WorldWideScience

Sample records for direct ion storage

  1. Comparisons between direct ion storage and thermoluminescence dosimetry individual monitoring systems, and internet reporting

    International Nuclear Information System (INIS)

    Kiuru, A.; Kahilainen, J.; Hyvoenen, H.; Vartiainen, E.

    2001-01-01

    A new electronic direct ion storage (DIS) dosemeter allows accumulated personal dose equivalent H p (d) at depths of 10 mm and 0.07 mm to be monitored in a few seconds by inserting the dosemeter into a local reader without deleting the accumulated dose. The DIS system meets general requirements on individual monitoring of hospital personnel using ionising radiation. It differs greatly from off-line thermoluminescence dosimetry systems and offers many additional benefits. The non-volatile reading takes only 5 s, is taken as often as needed, and the data are collected into a dose database, where background radiation is subtracted. Individual personnel doses are reported in Intranet as well as on the Internet at regular intervals to the National Regulatory Authorities. (author)

  2. Direct ion storage dosimetry systems for photon, beta and neutron radiation with instant readout capabilities

    International Nuclear Information System (INIS)

    Wernli, C.; Kahilainen, J.

    2001-01-01

    The direct ion storage (DIS) dosemeter is a new type of electronic dosemeter from which the dose information for both H p (10) and H p (0.07) can be obtained instantly at the workplace by using an electronic reader unit. The number of readouts is unlimited and the stored information is not affected by the readout procedure. The accumulated dose can also be electronically reset by authorised personnel. The DIS dosemeter represents a potential alternative for replacing the existing film and thermoluminescence dosemeters (TLDs) used in occupational monitoring due to its ease of use and low operating costs. The standard version for normal photon and beta dosimetry, as well as a developmental version for neutron dosimetry, have been characterised in several field studies. Two new small size variations are also introduced including a contactless readout device and a militarised version optimised for field use. (author)

  3. Operational aspects of the direct ion storage dosimeter system: 18 months of experience at CERN

    International Nuclear Information System (INIS)

    Carbonez, P.; Kotamaki, E.; Otto, Th.

    2006-01-01

    CERN, the European Organization for Nuclear Research, operates a dosimetry service for external exposure. The service monitors approximately 5000 Staff, scientific visitors and contractors personnel working on the organizations sites with personal dosimeters for personal dose equivalent (Hp(10), Hp(0.07)) from gamma, beta and neutron radiation. The dosimetry service is approved by the Swiss Federal Health Office, the competent authority for radiation protection. In 2004, the R.A.D.O.S. D.I.S. -1 dosemeter has been introduced to CERN as a gamma-beta dosemeter. Technical characteristics of this dosimeter, based on the direct ion storage technology, are high sensitivity, excellent linearity of the personal dose response with respect to radiation energy or dose, and long-term physical storage of personal dose-related information without the risk of fading. One important technical feature of the dosemeter is its 'instant reading' capability: the user himself can evaluate the received personal dose nondestructively on specific reader stations. This information is digitized, centralized by the CERN-wide network and stored in a database. The consequence of the 'instant reading' capability is a break with in the traditional organisation of a dosimetry service. The personal dosimeters are no longer exchanged periodically for evaluation, but a monthly value of personal dose is calculated from the readings initiated by the user. After a wearing period of one year, users are invited to exchange the dosimeter against a new, recently calibrated unit. The introduction of the D.I.S.-1 dosimeter has profoundly changed the type of work in CERN dosimetry service. Technical and laboratory work (development of film dosimeters, densitometric evaluation) have made place for computer-based procedures and database management. (authors)

  4. Do you know DIS? a novel passive individual dosimeterd. Direct Ion Storage dosimeter DIS-1 officially approved in Switzerland

    International Nuclear Information System (INIS)

    Fiechtner, A.; Wernli, C.

    2001-01-01

    For individual monitoring film and TLD are the most often used types of dosimeters. On a smaller scale phosphate glasses and detectors based on optically stimulated luminescence (OSL) are also in use. As a new addition to the list of available personnel dosimeters the direct ion storage (DIS) system became legally approved for the first time in Switzerland. At the Paul Scherrer Institute (PSI) the RADOS dosimetry system DIS-1 is in official use since beginning of 2001. (orig.) [de

  5. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  6. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  7. Ion-ion collisions and ion storage rings

    International Nuclear Information System (INIS)

    Mowat, J.R.

    1988-01-01

    Improved understanding of fundamental ion-ion interactions is expected to emerge from research carried out with ion storage rings. In this short survey the significant advantages and unique features that make stored ions useful targets for collision experiments are reviewed and discussed. It is pointed out that improvements to existing ion-ion experiments, as well as qualitatively new experiments, should occur over the next few years as ion storage rings become available for atomic physics. Some new experiments are suggested which are difficult if not impossible with present-day technology, but which seem feasible at storage rings facilities. (orig.)

  8. Calculation of ion storage in electron beams with account of ion-ion interactions

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.; Shirkov, G.D.

    1979-01-01

    Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage

  9. An introduction to direct access storage devices

    CERN Document Server

    Sierra, Hugh M

    2012-01-01

    This book presents an exposition of the technology, design, organization, and structure of direct access storage devices (disk drives). It includes a discussion of the evolution of the technology (magnetic recording) and an assessment of other storage technologies, including optical recording. Examples of codes used in past implementations of disk drives as well as an application of disk drive usage dictated by reliability considerations are also included. The presentation assumes a minimum knowledge of magnetic recording, servomechanism design, and coding.

  10. HISTRAP proposal: heavy-ion storage ring for atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D K; Alton, G D; Datz, S; Dittner, P F; Dowling, D T; Haynes, D L; Hudson, E D; Johnson, J W; Lee, I Y; Lord, R S

    1987-04-01

    HISTRAP, Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charge very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 T m and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  11. Small electrostatic storage rings; also for highly charged ions?

    International Nuclear Information System (INIS)

    Moeller, S.P.; Pedersen, U.V.

    2001-01-01

    Two years ago, a small electrostatic storage ring ELISA (electrostatic ion storage ring, Aarhus) was put into operation. The design of this small 7 m circumference ring was based on electrostatic deflection plates and quadrupoles. This is in contrast to the larger ion storage rings, which are based on magnetic focusing and deflection. The result is a small, relatively inexpensive, storage ring being able to store ions of any mass and any charge at low energy ( -11 mbar resulting in storage times of several tens of seconds for singly charged ions. The maximum number of singly charged ions that can be stored is a few 10 7 . Several experiments have already been performed in ELISA. These include lifetime studies of metastable ions and studies of fullerenes and metal-cluster ions. Lasers are also used for excitation of the circulating ions. Heating/cooling of the ring is possible. Cooling of the ring leads to significantly lower pressures, and correspondingly longer lifetimes. A change of the temperature of the vacuum chambers surrounding the ion beam also leads to a change of the spectrum of the black-body radiation, which has a significant influence on weakly bound negative ions. At the time of writing, at least two other electrostatic storage rings are being built, and more are planned. In the following, the electrostatic storage ring ELISA will be described, and results from some of the initial experiments demonstrating the performance will be shown. The relative merits of such a ring, as opposed to the larger magnetic rings and the smaller ion traps will be discussed. The potential for highly charged ions will be briefly mentioned. (orig.)

  12. Atomic and molecular physics with ion storage rings

    International Nuclear Information System (INIS)

    Larsson, M.

    1995-01-01

    Advances in ion-source, accelerator and beam-cooling technology have made it possible to produce high-quality beams of atomic ions in arbitrary charged states as well as molecular and cluster ions are internally cold. Ion beams of low emittance and narrow momentum spread are obtained in a new generation of ion storage-cooler rings dedicated to atomic and molecular physics. The long storage times (∼ 5 s ≤ τ ≤ days) allow the study of very slow processes occurring in charged (positive and negative) atoms, molecules and clusters. Interactions of ions with electrons and/or photons can be studied by merging the stored ion beam with electron and laser beams. The physics of storage rings spans particles having a charge-to-mass ratio ranging from 60 + and C 70 + ) to 0.4 - 1.0 (H + , D + , He 2+ , ..., U 92+ ) and collision processes ranging from <1 meV to ∼ 70 GeV. It incorporates, in addition to atomic and molecular physics, tests of fundamental physics theories and atomic physics bordering on nuclear and chemical physics. This exciting development concerning ion storage rings has taken place within the last five to six years. (author)

  13. Laser-Cooled Ions and Atoms in a Storage Ring

    International Nuclear Information System (INIS)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M.

    2003-01-01

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting 9 Be + beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of 12 C 6+ ions.

  14. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  15. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  16. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  17. Laser-Cooled Ions and Atoms in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M., E-mail: m.weidemueller@mpi-hd.mpg.de [Max-Planck-Insitut fuer Kernphysik (Germany)

    2003-03-15

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting {sup 9}Be{sup +} beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of {sup 12}C{sup 6+} ions.

  18. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  19. Direct photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Baeuchle, Bjoern

    2010-01-01

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E lab =35 AGeV and 158 AGeV, (s NN ) 1/2 =62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  20. Direct processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Zagrebaev, V.I.

    1983-01-01

    Direct processes in heavy ion reactions are investigated. Relative theoretical contributions in the inclusive spectrum of α particles on processes of stripping breakup and inelastic breakup are estimated using the 22 Ne+ 181 Ta reaction as an example. The consideration is performed taking into account Coulomb and nuclear distortions in the inlet and outlet ion channels. It is shown that the hard edge of α spectrum and its maximum are well described by peripheral direct processes. The hard spectrum edge is conditioned by the pure process of ''incomplete fussion'' bringing about the production af a compound nucleus. The main part of inclusive spectrum is conditioned by reactions of inelastic and elastic breakup not connected with the production of a compound nucleus

  1. Dissociative recombination and excitation in ion storage rings

    International Nuclear Information System (INIS)

    Larsson, Mats

    2000-01-01

    The application of ion storage rings to the study of electron-molecular ion interaction has led to an experimental breakthrough. The development since the first experiments with molecular ions in storage rings about seven years ago, which in themselves represented a big leap forward, has been striking, and was impossible to envision at the outset. The development has been driven by advances in accelerator physics, detector technology, challenging applications in astrophysics and atmospheric physics, and by a close interplay with theory. Despite the remarkable progress, many important questions remain unanswered. For example, even for someone with a good knowledge of molecular physics it may come as a surprise that it is far from understood how the simplest polyatomic molecule H 3 + recombines with electrons, and it remains an experimental controversy at what rate it recombines

  2. Astrochemistry in TSR and CSR Ion Storage Rings

    Science.gov (United States)

    Novotny, Oldrich

    2017-04-01

    Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.

  3. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  4. Multiple Coulomb ordered strings of ions in a storage ring

    International Nuclear Information System (INIS)

    Hasse, Rainer W.

    2002-01-01

    We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency

  5. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes

    Science.gov (United States)

    Chen, Chia-Chin; Maier, Joachim

    2018-02-01

    The requirements for rechargeable batteries place high demands on the electrodes. Efficient storage means accommodating both ions and electrons, not only in substantial amounts, but also with substantial velocities. The materials' space could be largely extended by decoupling the roles of ions and electrons such that transport and accommodation of ions take place in one phase of a composite, and transport and accommodation of electrons in the other phase. Here we discuss this synergistic concept being equally applicable for positive and negative electrodes along with examples from the literature for Li-based and Ag-based cells. Not only does the concept have the potential to mitigate the trade-off between power density and energy density, it also enables a generalized view of bulk and interfacial storage as necessary for nanocrystals. It furthermore allows for testable predictions of heterogeneous storage in passivation layers, dependence of transfer resistance on the state of charge, or heterogeneous storage of hydrogen at appropriate contacts. We also present an outlook on constructing artificial mixed-conductor electrodes that have the potential to achieve both high energy density and high power density.

  6. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  7. Experiments with highly-charged heavy-ions performed at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1992-01-01

    The new heavy ion accelerator facility SIS/ESR was inaugurated in April 1990. During 1991 the experimental storage ring, ESR, has been commissioned. Highly-charged heavy ions from O 8+ up to Bi 82+ were successfully accumulated, cooled, and stored in the ring. Now all highly-charged, heavy ions can be provided for experiments at comfortable storage times and at energies roughly between 100 and 500 MeV/u. A report on the achievements and on the first experimental results will be given. For the experiments, special emphasis is put on capture processes in the electron cooler, i.e. on radiative and dielectronic recombination processes as well as on capture events of bound target electrons from a gas jet. In this case, the capture leads either directly (REC) or by cascading to X-ray emission, which is also exploited for a precision spectroscopy of the structure of the heaviest ions. Another exciting topic is the radioactive decay of highly charged ions: For instance the β-decay into bound atomic states, which is not possible for neutral atoms, was studied for stored naked Dy ions. (orig.)

  8. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  9. Ion trap architectures and new directions

    Science.gov (United States)

    Siverns, James D.; Quraishi, Qudsia

    2017-12-01

    Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

  10. Office of Storage and Transportation Systems quality assurance directive

    International Nuclear Information System (INIS)

    1986-10-01

    This Directive provides policy guidance, defines organizational authorities and responsibilities for quality assurance (QA) and establishes minimum acceptable requirements for assuring the quality of all programs under the overall direction of the OSTS. This directive provides guidance for preparation of subordinate QA documents (e.g., QA plans, procedures) for the major Office of Storage and Transportation Systems programs that support DOE licensing and/or certification objectives. In turn, those highly specific QA documents will amplify the general guidance presented in this Directive

  11. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    Gostishchev, Vitaly

    2008-06-01

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  12. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  13. Electron impact single detachment on the F- ions using the heavy ion storage ring CRYRING: cross-section determination

    International Nuclear Information System (INIS)

    Andersson, K.; Hanstorp, D.; Oesterdahl, F.; Danared, H.; Kaellberg, A.

    2001-01-01

    Electron Impact Single Detachment (EISD) of F - has been studied using the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm, Sweden. F - ions stored in the ring were merged with an electron beam in one of the ring sections. Neutral F atoms produced in the EISD process were detected in the zero-degree direction using a surface barrier detector. The threshold for the detachment process was found to be around 7.6 eV, thus more than twice the binding energy of F - . The cross-sections increased smoothly up to 55 eV where it reached a maximum of 1.9 x 10 -16 cm 2 . At higher energies a slow decrease of the cross-section was observed, which follows the energy dependence predicted by the Bethe-Born approximation. The experiment showed that CRYRING can be used favourably for studies of anions, and several experiments are forthcoming. (orig.)

  14. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  15. Joining the petabyte club with direct attached storage

    International Nuclear Information System (INIS)

    Haupt, Andreas; Leffhalm, Kai; Wegner, Peter; Wiesand, Stephan

    2011-01-01

    Our site successfully runs more than a Petabyte of online disk, using nothing but Direct Attached Storage. The bulk of this capacity is grid-enabled and served by dCache, but sizable amounts are provided by traditional AFS or modern Lustre filesystems as well. While each of these storage flavors has a different purpose, owing to their respective strengths and weaknesses for certain use cases, their instances are all built from the same universal storage bricks. These are managed using the same scale-out techniques used for compute nodes, and run the same operating system as those, thus fully leveraging the existing know-how and infrastructure. As a result, this storage is cost effective especially regarding total cost of ownership. It is also competitive in terms of aggregate performance, performance per capacity, and – due to the possibility to make use of the latest technology early – density and power efficiency. Further advantages include a high degree of flexibility and complete avoidance of vendor lock-in. Availability and reliability in practice turn out to be more than adequate for a HENP site's major tasks. We present details about this Ansatz for online storage, hardware and software used, tweaking and tuning, lessons learned, and the actual result in practice.

  16. Joining the petabyte club with direct attached storage

    Science.gov (United States)

    Haupt, Andreas; Leffhalm, Kai; Wegner, Peter; Wiesand, Stephan

    2011-12-01

    Our site successfully runs more than a Petabyte of online disk, using nothing but Direct Attached Storage. The bulk of this capacity is grid-enabled and served by dCache, but sizable amounts are provided by traditional AFS or modern Lustre filesystems as well. While each of these storage flavors has a different purpose, owing to their respective strengths and weaknesses for certain use cases, their instances are all built from the same universal storage bricks. These are managed using the same scale-out techniques used for compute nodes, and run the same operating system as those, thus fully leveraging the existing know-how and infrastructure. As a result, this storage is cost effective especially regarding total cost of ownership. It is also competitive in terms of aggregate performance, performance per capacity, and - due to the possibility to make use of the latest technology early - density and power efficiency. Further advantages include a high degree of flexibility and complete avoidance of vendor lock-in. Availability and reliability in practice turn out to be more than adequate for a HENP site's major tasks. We present details about this Ansatz for online storage, hardware and software used, tweaking and tuning, lessons learned, and the actual result in practice.

  17. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.

    Science.gov (United States)

    Zhu, Yue; Peng, Lele; Chen, Dahong; Yu, Guihua

    2016-01-13

    There is a growing need for energy storage devices in numerous applications where a large amount of energy needs to be either stored or delivered quickly. The present paper details the study of alkali-ion intercalation pseudocapacitance in ultrathin VOPO4 nanosheets, which hold promise in high-rate alkali-ion based electrochemical energy storage. Starting from bulk VOPO4·2H2O chunks, VOPO4 nanosheets were obtained through simple ultrasonication in 2-propanol. These nanosheets as the cathode exhibit a specific capacity of 154 and 136 mAh/g (close to theoretical value 166 mAh/g) for lithium and sodium storage devices at 0.1 C and 100 and ∼70 mAh/g at 5 C, demonstrating their high rate capability. Moreover, the capacity retention is maintained at 90% for lithium ion storage and 73% for sodium ion storage after 500 cycles, showing their reasonable stability. The demonstrated alkali-ion intercalation pseudocapacitance represents a promising direction for developing battery materials with promising high rate capability.

  18. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  19. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  1. CSR: a new tool for storage and cooling of keV ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Froese, Michael; Blaum, Klaus; Crespo Lopez-Urrutia, Jose; Fellenberger, Florian; Grieser, Manfred; Kaiser, Dirk; Lange, Michael; Laux, Felix; Menk, Sebastian; Orlov, Dmitry A.; Repnow, Roland; Schroeter, Claus D.; Schwalm, Dirk; Sieber, Thomas; Ullrich, Joachim; Varju, Jozef; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Toker, Jonathan; Zajfman, Daniel [Weizman Institute of Science, Rehovot (Israel)

    2009-07-01

    An electrostatic Cryogenic Storage Ring (CSR) is currently being built in Heidelberg, Germany. The current status and final design of this ring, with a focus on the optimized 2 K chamber cooling, precision chamber suspension, and pumping down to extremely low pressures via cryogenic vacuum chambers will be presented. This ring will allow long storage times of highly charged ion and polyatomic molecular beams with energies in the range of keV per charge-state. Combining the long storage times with vacuum chamber temperatures approaching 2 K, infrared-active molecular ions will be radiatively cooled to their rotational ground states. Many aspects of this concept were experimentally tested with a cryogenic trap for fast ion beams (CTF), which has already demonstrated the storage of fast ion beams in a large cryogenic device. An upcoming test will investigate the effect of pre-baking the cryogenic vacuum chambers to 600 K on the cryogenic vacuum and the ion beam storage.

  2. Direct seawater desalination by ion concentration polarization

    Science.gov (United States)

    Kim, Sung Jae; Ko, Sung Hee; Kang, Kwan Hyoung; Han, Jongyoon

    2010-04-01

    A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity ~500 mM or ~30,000 mg l-1) to fresh water (salinity water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (~99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l-1, which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

  3. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  4. Future directions in electron--ion collision physics

    International Nuclear Information System (INIS)

    Reed, K.J.; Griffin, D.C.

    1992-01-01

    This report discusses the following topics: Summary of session on synergistic co-ordination of theory and experiment; synergism between experiment and theory in atomic physics; comparison of theory and experiment for electron-ion excitation and ionization; summary of session on new theoretical and computational methods; new theoretical and computational methods-r-matrix calculations; the coulomb three-body problem: a progress report; summary of session on needs and applications for electron-ion collisional data; electron-ion collisions in the plasma edge; needs and applications of theoretical data for electron impact excitation; summary of session on relativistic effects, indirect effects, resonance, etc; direct and resonant processes in electron-ion collisions; relativistic calculations of electron impact ionization and dielectronic recombination cross section for highly charged ions; electron-ion recombination in the close-coupling approximation; modified resonance amplitudes with strongly correlated channels; a density-matrix approach to the broadening of spectral lines by autoionization, radiative transitions and electron-ion collisions; towards a time-dependent description of electron-atom/ion collisions two electron systems; and comments on inclusion of the generalized bright interaction in electron impact excitation of highly charged ions

  5. Lattice design of HISTRAP: Heavy ion storage ring for atomic physics

    International Nuclear Information System (INIS)

    Lee, I.Y.; Martin, J.A.; McGrory, J.B.; Milner, W.T.; Olsen, D.K.; Young, G.R.

    1987-01-01

    HISTRAP, a Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, cool, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. This four-fold symmetrical ring has a maximum bending power of 2 Tm. It has achromatic bends and uses quadrupole triplets for focusing

  6. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  7. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    Science.gov (United States)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  8. Minimization of storage and disposal volumes by treatment of liquids by highly selective ion exchangers

    International Nuclear Information System (INIS)

    Tusa, E.; Harjula, R.; Lehto, J.

    2000-01-01

    Novel highly selective inorganic ion exchangers provide new efficient methods for the treatment of nuclear waste liquids. These methods have several advantages compared to conventional technologies such as evaporation, direct solidification or treatment by organic ion exchange resins. Due to high selectivity, the radionuclides can be concentrated to a very small volume even from high-salt effluents. This means that the volume waste will be very small compared to other methods, which brings considerable savings in the cost of intermediate storage and final disposal. Process equipment are highly compact and require little supervision, which brings down the capital and operation costs. The new selective inorganic ion exchangers CsTreat, SrTreat and CoTreat (manufactured by Fortum Engineering Ltd., Finland) have the highest selectivities and processing capacities, exceeding those of zeolites by several orders of magnitude. The materials are now in use in a number of nuclear sites worldwide, including those in the USA, Europe and Japan. Installations include mobile and stationary systems. Considerable experience has been gained in the use of these new materials. Lessons learned, as well as advantages and economic benefits of these highly selective exchangers will be discussed in this paper. (authors)

  9. QED in highly-charged high Z ions - experiments at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1996-01-01

    A survey on the fundamental structure aspects of very heavy few -electron ions, in particular H-like systems, is presented. Special emphasis is given to contribution from quantum-electro-dynamics at strong central potentials. The technical possibilities to produce highly-charged heavy ions are reviewed and the ground-state Lamb-shift experiments performed at the heavy ion storage ring ESR are summarized. A short outlook on further developments in this field is added. (author). 23 refs, 9 figs

  10. Studies of Lifetimes in an Ion Storage Ring Using Laser Technique

    International Nuclear Information System (INIS)

    Rostohar, Danijela; Derkatch, Anna; Hartman, Henrik; Norlin, Lars-Olov; Royen, Peder; Schef, Peter; Mannervik, Sven

    2003-01-01

    The laser-probing method for lifetime measurements of metastable levels, performed by applying the Fast Ion Beam Laser (FIBLAS) method to ions stored in a storage ring, has been developed by the Stockholm group. Recently, we have applied this method to lifetime measurements of close lying metastable levels. In this paper we discuss experimental studies of ions with complex structure and present the first experimentally obtained lifetimes of selected metastable levels in complex systems as Fe + , Eu + and La + .

  11. Safety analysis report for packaging (onsite) for the Waste Encapsulation and Storage Facility ion exchange module

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Waste Encapsulation and Storage Facility (WESF) is in need of providing an emergency ion exchange system to remove cesium or strontium from the pool cell in the event of a capsule failure. The emergency system is call the WESF Emergency Ion Exchange System and the packaging is called the WESF ion exchange module (WIXM). The packaging system will meet the onsite transportation requirements for a Type B, highway route controlled quantity package as well as disposal requirements for Category 3 waste

  12. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  13. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  14. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  15. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    International Nuclear Information System (INIS)

    Kovalenko, Oleksandr

    2015-01-01

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.

  16. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  17. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  18. Smart materials for energy storage in Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Ashraf E Abdel-Ghany

    2016-01-01

    Full Text Available Advanced lithium-ion batteries contain smart materials having the function of insertion electrodes in the form of powders with specific and optimized electrochemical properties. Different classes can be considered: the surface modified active particles at either positive or negative electrodes, the nano-composite electrodes and the blended materials. In this paper, various systems are described, which illustrate the improvement of lithium-ion batteries in term of specific energy and power, thermal stability and life cycling.

  19. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    Science.gov (United States)

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  20. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    Science.gov (United States)

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  2. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.

    Science.gov (United States)

    Wang, Xianfu; Xie, Yiming; Tang, Kai; Wang, Chao; Yan, Chenglin

    2018-05-11

    Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen-ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO 3 ) electrode with high Coulombic efficiency and stability. The as-obtained electrode exhibits ultrafast hydrogen-ion storage properties with a specific capacity of 88 mA hg -1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO 3 electrode in the hydrogen-ion cell was investigated in detail. The results reveal a conversion reaction of the MoO 3 electrode into H 0.88 MoO 3 during the first hydrogen-ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H 0.88 MoO 3 and H 0.12 MoO 3 during the following cycles. This study reveals new opportunities for the development of high-power energy storage devices with lightweight elements. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR

    International Nuclear Information System (INIS)

    Kuehl, T; Bagnoud, V; Stoehlker, T; Litvinov, Y; Winters, D F A; Zielbauer, B; Backe, H; Spielmann, Ch; Seres, J; Tünnermann, A; Neumayer, P; Aurand, B; Namba, S; Zhao, H Y

    2014-01-01

    The HESR high-energy ion storage ring at FAIR will provide unprecedented possibilities for strong-field physics using novel laser sources on relativistic heavy ions. An overview on the planning will be given.

  4. Coherent instability of the heavy ion beam in the storage ring

    International Nuclear Information System (INIS)

    Noda, A.

    1981-01-01

    The storage ring as the final part of a driver for heavy ion fusion is required to provide heavy ions (A asymptotically equals 200) with energy of 5 -- 10 GeV and such a high intensity as 1 -- 6 x 10 15 ions/pulse. So as to raise the number of ions which can be accumulated in a ring, singlly charged heavy ion is used for its relatively smaller incoherent space charge force compared with higher charge states. The intensity limit due to incoherent space charge force is 0.7 -- 1.4 x 10 15 ions for U 1 + . Much more severe limits exist due to coherent motion of heavy ion beams (0.8 -- 2 x 10 13 for longitudinal motion and 0.9 -- 1.1 x 10 12 for transverse motion), because of the relatively lower velocity of the accumulated ions. It seems unrealistic to use a lot of rings in order to operate below such intensity limits of the above instability. Therefore the number of the storage rings is constrained within a reasonable value (3 -- 7) and the possibility of compressing the bunches of heavy ion beams before the instability grows fatally large is studied. (author)

  5. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively. The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.

  6. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] prototype hardware studies

    International Nuclear Information System (INIS)

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs

  7. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  8. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  9. Treatment of spent ion-exchange resins for storage and disposal

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes the experience gained by different countries on storage of spent ion exchange resins, immobilization of them into various matrices and the development of new methods in decomposition and solidification of spent resins. The report contains all the results of the Coordinated Research Programme together with additional data available from countries not participating in this programme. A review of practical industrial experience in treating spent ion exchange resins is given in the annex

  10. Advances in electron cooling in heavy-ion storage rings

    International Nuclear Information System (INIS)

    Danared, H.

    1994-01-01

    The efficiency of electron cooling can be improved by reducing the temperature of the electrons. If the magnetic field at the location of the electron gun is stronger than in the region where the electrons interact with the ions, and the field gradient is adiabatic with respect to the cyclotron motion of the electrons, the resulting expansion of the electron beam reduces its transverse temperature by a factor equal to the ratio between the two fields. A ten times expanded electron beam was introduced in the CRYRING electron cooler in the summer of 1993, and similar arrangements have since then been made at the TSR ring in Heidelberg and at ASTRID in Aarhus. The reduction of the transverse electron temperature has increased cooling rates with large factors, and improves the energy resolution and increases count rates when the cooler is used as an electron target for ion-electron recombination experiments

  11. The search for electric dipole moments of light ions in storage rings

    International Nuclear Information System (INIS)

    Rathmann, Frank; Saleev, Artem; Nikolaev, N N

    2013-01-01

    The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10 −29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3 He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters

  12. Light ion EDM search in magnetic storage rings

    International Nuclear Information System (INIS)

    Onderwater, C. J. G.

    2006-01-01

    Permanent electric dipole moments (EDMs) violate parity and time-reversal symmetry. Within the Standard Model (SM), they require CP violation and are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of 'new physics.' So far only electrically neutral systems were used for sensitive searches of EDMs. Several techniques, based on storing fast particles in a magnetic storage ring, are being developed to probe charged particles for an EDM. With the introduction of these novel experimental methods, high sensitivity for charged systems, in particular light nuclei, is within reach.

  13. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Zhang, Xinyu; Garimella, Sandilya V B; Prost, Spencer A; Webb, Ian K; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V; Norheim, Randolph V; Baker, Erin S; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2015-06-16

    A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations.

  14. Direct cryosorption pumping of an energetic hydrogen ion beam

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Ryan, P.M.; Tsai, C.C.

    1979-01-01

    Cryosorption pumps (CSP) are a prime candidate for the pumping of helium and deuterium-tritium (D-T) in tokamak divertor systems and may also see service in neutral beam injectors. However, the ability of a CSP to take high energy ions escaping from a plasma or neutral beam has not previously been demonstrated. In this study we arranged a 10-cm ion source of the type used in the Oak Ridge Tokamak (ORMAK) to inject a beam of ions directly into the inlet of a CSP. The pump contained two chevron baffles at 100K and 15K as well as a 15K cryosorption surface covered with a type 5A molecular sieve. The cryosurfaces were cooled by a closed-cycle helium refrigerator. For hydrogen ion pulses up to 11.5-keV energy and 1.3-A current, the pressure maintained during the pulse was only a few percent higher than that maintained with an equal flow of cold neutral gas. Pulse lengths of 100-300 ms were used. Calorimetric measurements showed that 40-60% of the I-V power was incident on the pump inlet. Cool-down and regeneration behavior of the pump will also be discussed

  15. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    Science.gov (United States)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  16. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  17. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  18. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  19. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  20. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  1. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    Science.gov (United States)

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.

  2. Directing the Branching Growth of Cuprous Oxide by OH- Ions

    Science.gov (United States)

    Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng

    The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.

  3. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Ahn, S.H. [University of Tennessee, Knoxville (UTK); Allmond, James M [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Bardayan, Daniel W [ORNL; Baugher, T. [Michigan State University, East Lansing; Bazin, D. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Beene, James R [ORNL; Berryman, J. S. [Michigan State University, East Lansing; Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK)/Sungkyunkwan University, Korea; Cizewski, J. A. [Rutgers University; Gade, A. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Galindo-Uribarri, Alfredo {nmn} [ORNL; Garcia-Ruiz, R.F. [Instituut voor Kernen Stralingsfysica, KU Leuven, B-3001, Leuven, Belgium; Grzywacz, Robert Kazimierz [ORNL; Howard, Meredith E [ORNL; Kozub, R. L. [Tennessee Technological University (TTU); Liang, J Felix [ORNL; Manning, Brett M [ORNL; Matos, M. [Louisiana State University; McDaniel, S. [Michigan State University, East Lansing; Miller, D. [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Padgett, S [University of Tennessee, Knoxville (UTK); Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Pain, Steven D [ORNL; Pittman, S. T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Radford, David C [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [ORNL; Smith, Michael Scott [ORNL; Stracener, Daniel W [ORNL; Stroberg, S. [Michigan State University, East Lansing; Tostevin, Jeffrey A [ORNL; Varner Jr, Robert L [ORNL; Weisshaar, D. [Michigan State University, East Lansing; Wimmer, K. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL)/Central Michigan University; Winkler, R. [Michigan State University, East Lansing

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  4. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  5. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan

    2018-02-12

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  6. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  7. CNS-directed gene therapy for lysosomal storage diseases

    OpenAIRE

    Sands, Mark S; Haskins, Mark E

    2008-01-01

    Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders usually caused by deficient activity of a single lysosomal enzyme. As most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems, including the central nervous system (CNS). At least 75% of all LSDs have a significant CNS component. Approaches such as bone marrow transplantation (BMT) or enzyme replacement therapy (ERT) can effectively treat the systemic dis...

  8. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  9. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-09

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  11. Multifunctional structural lithium ion batteries for electrical energy storage applications

    Science.gov (United States)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  12. Ion Storage Tests with the High Performance Antimatter Trap (HiPAT)

    Science.gov (United States)

    Martin, James J.; Lewis, Raymond A.; Chakrabarti, Suman; Pearson, Boise; Schafer, Charles (Technical Monitor)

    2002-01-01

    The NASA/Marshall Space Flight Centers (NASA/MSFC) Propulsion Research Center (PRC) is evaluating an antiproton storage system, referred to as the High Performance Antiproton Trap (HiPAT). This interest stems from the sheer energy represented by matter/antimatter annihilation process with has an energy density approximately 10 order of magnitude above that of chemical propellants. In other terms, one gram of antiprotons contains the equivalent energy of approximately 23 space shuttle external tanks or ET's (each ET contains roughly 740,000 kgs of fuel and oxidizer). This incredible source of stored energy, if harnessed, would be an enabling technology for deep space mission where both spacecraft weight and propulsion performance are key to satisfying aggressive mission requirements. The HiPAT hardware consists of a 4 Tesla superconductor system, an ultra high vacuum test section (vacuum approaching 10(exp -12) torr), and a high voltage confinement electrode system (up to 20 kvolts operation). The current laboratory layout is illustrated. The HiPAT designed objectives included storage of up to 1 trillion antiprotons with corresponding lifetimes approaching 18 days. To date, testing has centered on the storage of positive hydrogen ions produced in situ by a stream of high-energy electrons that passes through the trapping region. However, due to space charge issues and electron beam compression as it passes through the HiPAT central field, current ion production is limited to less then 50,000 ions. Ion lifetime was determined by counting particle populations at the end of various storage time intervals. Particle detection was accomplished by destructively expelling the ions against a micro-channel plate located just outside the traps magnetic field. The effect of radio frequency (RF) stabilization on the lifetime of trapped particles was also examined. This technique, referred to as a rotating wall, made use of a segmented electrode located near the center of the trap

  13. Directed flow of baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Nikonov, E.G.; Toneev, V.D.; Noerenberg, W.; Shanenko, A.A.

    2000-11-01

    The collective motion of nucleons from high-energy heavy-ion collisions is analyzed within a relativistic two-fluid model for different equations of state (EoS). As function of beam energy the theoretical slope parameter F y of the differential directed flow is in good agreement with experimental data, when calculated for the QCD-consistent EoS described by the statistical mixed-phase model. Within this model, which takes the deconfinement phase transition into account, the excitation function of the directed flow left angle P x right angle turns out to be a smooth function in the whole range from SIS till SPS energies. This function is close to that for pure hadronic EoS and exhibits no minimum predicted earlier for a two-phase bag-model EoS. Attention is also called to a possible formation of nucleon antiflow (F y or∼100 A.GeV. (orig.)

  14. Direct nano-patterning of graphene with helium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Naitou, Y., E-mail: yu-naitou@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Iijima, T.; Ogawa, S. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-01-19

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO{sub 2}/Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He{sup +}). Doses of 2.0 × 10{sup 16 }He{sup + }cm{sup −2} from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He{sup +} in a non-monotonic fashion. Increasing the dose from 2.0 × 10{sup 16} to 5.0 × 10{sup 16 }He{sup + }cm{sup −2} improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10{sup 17 }He{sup + }cm{sup −2} degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices.

  15. Direct nano-patterning of graphene with helium ion beams

    International Nuclear Information System (INIS)

    Naitou, Y.; Iijima, T.; Ogawa, S.

    2015-01-01

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO 2 /Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He + ). Doses of 2.0 × 10 16  He +  cm −2 from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He + in a non-monotonic fashion. Increasing the dose from 2.0 × 10 16 to 5.0 × 10 16  He +  cm −2 improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10 17  He +  cm −2 degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices

  16. Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodium-Ion Storage.

    Science.gov (United States)

    Cho, Se Youn; Kang, Minjee; Choi, Jaewon; Lee, Min Eui; Yoon, Hyeon Ji; Kim, Hae Jin; Leal, Cecilia; Lee, Sungho; Jin, Hyoung-Joon; Yun, Young Soo

    2018-04-01

    Na-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating. In particular, PCN-2800 prepared by heating at 2800 °C has a distinctive sp 2 carbon bonding nature, crystalline domain size of ≈44.2 Å, and high electrical conductivity of ≈320 S cm -1 , presenting significantly high rate capability at 600 C (60 A g -1 ) and stable cycling behaviors over 40 000 cycles as an anode for Na-ion storage. The results of this study show the unusual graphitization behaviors of a char-type carbon precursor and exceptionally high rate and cycling performances of the resulting graphitic material, PCN-2800, even surpassing those of supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  18. Physics with colder molecular ions: The Heidelberg Cryogenic Storage Ring CSR

    International Nuclear Information System (INIS)

    Zajfman, D; Wolf, A; Schwalm, D; Orlov, D A; Grieser, M; Hahn, R von; Welsch, C P; Lopez-Urrutia, J R Crespo; Schroeter, C D; Urbain, X; Ullrich, J

    2005-01-01

    A novel cryogenic electrostatic storage ring is planned to be built at the Max-Planck Institute for Nuclear Physics in Heidelberg. The machine is expected to operate at low temperatures (∼2K) and to store beams with kinetic energies between 20 to 300 keV. An electron target based on cooled photocathode technology will serve as a major tool for the study of reactions between molecular ions and electrons. Moreover, atomic beams can be merged and crossed with the stored ion beams allowing for atom molecular-ion collision studies at very low up to high relative energies. The proposed experimental program, centered around the physics of cold molecular ions, is shortly outlined

  19. Model based, sensor-directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  20. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  1. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  2. Electron cooling of a bunched ion beam in a storage ring

    Science.gov (United States)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  3. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  4. Charge Equalization Controller Algorithm for Series-Connected Lithium-Ion Battery Storage Systems: Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2017-09-01

    Full Text Available This study aims to develop an accurate model of a charge equalization controller (CEC that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion battery cells. In this concept, an intelligent control algorithm is developed to activate bidirectional cell switches and control direct current (DC–DC converter switches along with pulse width modulation (PWM generation. Individual models of an electric vehicle (EV-sustainable Li-ion battery, optimal power rating, a bidirectional flyback DC–DC converter, and charging and discharging controllers are integrated to develop a small-scale CEC model that can be implemented for 10 series-connected Li-ion battery cells. Results show that the charge equalization controller operates at 91% efficiency and performs well in equalizing both overdischarged and overcharged cells on time. Moreover, the outputs of the CEC model show that the desired balancing level occurs at 2% of state of charge difference and that all cells are operated within a normal range. The configuration, execution, control, power loss, cost, size, and efficiency of the developed CEC model are compared with those of existing controllers. The proposed model is proven suitable for high-tech storage systems toward the advancement of sustainable EV technologies and renewable source of applications.

  5. Theory of nuclear heavy-ion direct transfer reactions

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1979-01-01

    We review the distorted-wave approach to direct transfer reactions and draw attention to some of the shortcomings of current theories. We show that a reformulated form of the distorted-wave Born approximation (DWBA) for transfer can lead to important simplifications of the theory, which are valid for nuclear heavy-ion induced reactions at energies > or approx. =MeV/nucleon. In particular, in the semiclassical limit, it leads to a new and simple formula for the transfer t-matrix which includes all the essential physics while offering several important advantages over standard ''full-recoil finite-range'' DWBA. One such advantage is that the new formula is more transparent in that it is amendable to interpretation and analytical manipulation. At high-energy it is shown to reduce to one earlier deduced using eikonal-DWBA. The conditions for the validity of the new theory are discussed in detail. They are shown to be generally well satisfied for small-mass transfer between heavy-ions at energies at or above those particularly favour transfer (> or approx. =10 MeV/nucleon for transfer of valence nucleons). The restriction to small mass is not due to any recoil approximation; in fact, it is only a necessary restriction at certain energies. The theory treats recoil exactly. Consideration of the optimum dynamical conditions for transfer leads to a set of matching conditions. The presence of hitherto neglected absorption, arising from dynamical effects of poor matching, it suggested and qualitatively discussed. Condition under which such absorption may be neglected are derived. Results of numerical calculations are presented showing that the theory is capable of good agreement with standard full-recoil finite-range DWBA, and that it is capable of giving at least as good an account of experimental data for nucleon-transfer between heavy-ions at energies approx.10 MeV/nucleon

  6. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  7. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  8. Fabrication and Characterization of Li-ion Electrodes for High-Power Energy Storage Devices

    OpenAIRE

    Lai, Chun-Han

    2017-01-01

    Renewable energy technologies have been a rapidly emerging option to meet future energy demand. However, their systems require stable, high-power storage devices to overcome fluctuating energy outputs for consistent distribution. Since traditional Li-ion batteries (LIB) are not considered to be capable of fast charging and discharging, we have to develop devices with new chemistry for high-power operation. This dissertation focuses on the development of supercapacitors and high-rate batteries...

  9. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  10. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  11. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  12. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Meeting ambitious goals of transition to distributed and environmentally-friendly renewable energy generation can be difficult to achieve without energy storage systems due to technical and economical challenges. Moreover, energy storage systems have a high potential of not only smoothing and imp...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...

  13. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Seong-Min [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Qiao, Ruimin [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Yang, Wanli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Lee, Sungsik [X-Ray Science Division, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Xiqian [Institute of Physics, Chinese Academy of Science, Beijing 100190 China; Anasori, Babak [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Lee, Hungsui [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Gogotsi, Yury [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Yang, Xiao-Qing [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-07-14

    Two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V2CTx, where Tx are surface functional groups) was synthesized and studied as anode material for Na-ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO32- content and Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na+-intercalated V2CTx and the carbonate based non-aqueous electrolyte. The results of this study will provide valuable information for the further studies on V2CTx as anode material for Na-ion batteries and capacitors.

  14. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    Science.gov (United States)

    Crompton, Kyle R.

    There are inherent safety risks associated with inactive lithium ion batteries leading to greater restrictions and regulations on shipping and storage. Maintaining all cells of a lithium ion battery at near zero voltage with an applied fixed resistive load is one promising approach which can lessen (and potentially eliminate) the risk of a lithium ion battery entering thermal runaway when in an inactive state. However, in a conventional lithium ion cell, a near zero cell voltage can be damaging if the anode electrochemical potential increases to greater than the potential where dissolution of the standard copper current collector occurs (i.e. 3.1 V vs. Li/Li+ at room temperature). Past approaches to yield lithium ion cells that are resilient to a near zero volt state of charge involve use of secondary active materials or alternative current collectors which have anticipated tradeoffs in terms of cell performance and cost. In the the present dissertation work the approach of managing the amount of reversible lithium in a cell during construction to prevent the anode potential from increasing to greater than 3.1 V vs. Li/Li+ during near zero volt storage is introduced. Anode pre-lithiation was used in LiCoO 2/MCMB pouch cells to appropriately manage the amount of reversible lithium so that there is excess reversible lithium compared to the cathodes intercalation capacity (reversible lithium excess cell or RLE cell). RLE LiCoO 2/MCMB cells maintained 99% of their original capacity after three, 3-day and three, 7-day storage periods at near zero volts under fixed load. A LiCoO2/MCMB pouch cell fabricated with a pre-lithiated anode also maintained its original discharge performance after three, 3-day storage periods under fixed load at 45°C. The strong recharge performance after near zero volt storage is attributed to the anode potential remaining below the copper dissolution potential during near zero volt storage as informed by reference electrode measurements. Pulse

  15. Adsorption and diffusion of lithium on layered silicon for Li-ion storage.

    Science.gov (United States)

    Tritsaris, Georgios A; Kaxiras, Efthimios; Meng, Sheng; Wang, Enge

    2013-05-08

    The energy density of Li-ion batteries depends critically on the specific charge capacity of the constituent electrodes. Silicene, the silicon analogue to graphene, being of atomic thickness could serve as high-capacity host of Li in Li-ion secondary batteries. In this work, we employ first-principles calculations to investigate the interaction of Li with Si in model electrodes of free-standing single-layer and double-layer silicene. More specifically, we identify strong binding sites for Li, calculate the energy barriers accompanying Li diffusion, and present our findings in the context of previous theoretical work related to Li-ion storage in other structural forms of silicon: the bulk and nanowires. The binding energy of Li is ~2.2 eV per Li atom and shows small variation with respect to Li content and silicene thickness (one or two layers) while the barriers for Li diffusion are relatively low, typically less than 0.6 eV. We use our theoretical findings to assess the suitability of two-dimensional silicon in the form of silicene layers for Li-ion storage.

  16. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  17. The physics of highly charged heavy ions revealed by storage/cooler rings

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.

    1996-01-01

    With the successful commissioning of storage and cooler rings for bright beams of very heavy ions near the threshold of the last decade of this century, not only did a prosperous development in heavy ion accelerator technology come to its present summit, but also fundamental fields in heavy ion physics were opened widely for exciting explorations. Now, essential aspects in this area are accessible, aspects one only dared to dream of another decade ago. In the meantime, great progress already has been made in the fundamental physics in this field. This is particularly true for achievements in the atomic physics of highly charged heavy ions. In this chapter, we present a review of the current advances in this rapidly developing field. There are two general domains to be considered in the atomic physics of highly charged heavy ions: the fields of collisions and of atomic structure. Both aspects have to be explored equally, as they are strongly interconnected. One has to investigate the interaction processes to know, for instance, the population of excited states to help answer questions on the atomic structure; and conversely, one has to know the structure to understand the interactions. In both the fields, fundamental principles can be studied uniquely. This is in particular true for the heaviest ion species with only a few- or even zero-electrons left. 140 refs., 39 figs

  18. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  19. Enhanced Schottky signals from electron-cooled, coasting beams in a heavy-ion storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, C., E-mail: claude.krantz@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Blaum, K.; Grieser, M. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Litvinov, Yu.A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany); Repnow, R.; Wolf, A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2011-02-11

    Measurements at the Test Storage Ring of the Max-Planck-Institut fuer Kernphysik in Heidelberg (Germany) have shown that the signal amplitude induced in a Schottky-noise pickup electrode by a coasting electron-cooled ion beam can be greatly enhanced by exposure of the latter to a perturbing radiofrequency signal which is detuned from the true beam revolution frequency. The centre frequencies obtained from harmonic analysis of the observed pickup signal closely follow those imposed on the ions by the electron cooling force. The phenomenon can be exploited to measure the true revolution frequency of ion beams of very low intensity, whose pure Schottky noise is too weak to be measurable under normal circumstances.

  20. Optimizing energy management of fuel cell-direct storage-hybrid systems; Optimierendes Energiemanagement von Brennstoffzelle-Direktspeicher-Hybridsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Bocklisch, Thilo

    2010-03-29

    The dissertation presents a new optimizing energy management concept for fuel cell-direct storage-hybrid systems. Initially, the characteristics of specific energy time series are investigated on the basis of real measurement data. A new concept for the multi-scale analysis, modelling and prediction of fluctuating photovoltaic supply and electric load demand profiles is developed. The second part of the dissertation starts with a discussion of the benefits of and the basic coupling and control principles for fuel cell-direct storage-hybrid systems. The typical characteristics of a PEM-fuel cell, a metal hydride hydrogen storage, a lithium-ion battery and a supercap unit are presented. A new modular DC/DC-converter is described. Results from experimental and theoretical investigations of the individual components and the overall hybrid system are discussed. New practicable models for the voltage-current-curve, the state of charge behaviour and the conversion losses are presented. The third part of the dissertation explains the new energy management concept. The optimization of power flows is achieved by a control-oriented approach, employing a) the primary control of bus voltage and fuel cell current, b) the secondary control to limit fuel cell current gradient and operating range and to perform direct storage charge control, and c) the system control to optimally adjust secondary control parameters aiming for a reduction of dynamic fuel cell stress and hydrogen consumption. Results from simulations and experimental investigations demonstrate the benefits and high capabilities of the new optimizing energy management concept. Examples of stationary and portable applications conclude the dissertation. (orig.)

  1. New directions for ion beam processing of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C W; Budai, J D; Zhu, J G; Withrow, S P [Oak Ridge National Lab., TN (United States)

    1997-03-01

    Recent developments in the use of ion implantation to modify the properties of optical materials are summarized. The use of ion implantation to form nanocrystal and quantum dots is emphasized. (author)

  2. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    International Nuclear Information System (INIS)

    Spruck, Kaija

    2015-05-01

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  3. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija

    2015-05-15

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  4. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N. [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2018-04-03

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn{sup 2+} intercalation chemistry, stand out as they can employ high-capacity Zn metal as the anode material. Herein, we report a layered calcium vanadium oxide bronze as the cathode material for aqueous Zn batteries. For the storage of the Zn{sup 2+} ions in the aqueous electrolyte, we demonstrate that the calcium-based bronze structure can deliver a high capacity of 340 mA h g{sup -1} at 0.2 C, good rate capability, and very long cycling life (96 % retention after 3000 cycles at 80 C). Further, we investigate the Zn{sup 2+} storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 W h kg{sup -1} at a power density of 53.4 W kg{sup -1}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Colliding or co-rotating ion beams in storage rings for EDM search

    International Nuclear Information System (INIS)

    Koop, I A

    2015-01-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10–20. We show that the bending radius of such an EDM storage ring could be about 2–3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed. (paper)

  6. Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine.

    Science.gov (United States)

    Hong, Seok-Min; Etacheri, Vinodkumar; Hong, Chulgi Nathan; Choi, Seung Wan; Lee, Ki Bong; Pol, Vilas G

    2017-06-07

    Fluorocarbon (C x F y ) anode materials were developed for lithium- and sodium-ion batteries through a facile one-step carbonization of a single precursor, polyvinylidene fluoride (PVDF). Interconnected carbon network structures were produced with doped fluorine in high-temperature carbonization at 500-800 °C. The fluorocarbon anodes derived from the PVDF precursor showed higher reversible discharge capacities of 735 mAh g -1 and 269 mAh g -1 in lithium- and sodium-ion batteries, respectively, compared to the commercial graphitic carbon. After 100 charge/discharge cycles, the fluorocarbon showed retentions of 91.3% and 97.5% in lithium (at 1C) and sodium (at 200 mA g -1 ) intercalation systems, respectively. The effects of carbonization temperature on the electrochemical properties of alkali metal ion storage were thoroughly investigated and documented. The specific capacities in lithium- and sodium-ion batteries were dependent on the fluorine content, indicating that the highly electronegative fluorine facilitates the insertion/extraction of lithium and sodium ions in rechargeable batteries.

  7. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  8. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; Hu, Jiangtao; Wen, Jianguo; Miller, Dean; Yan, Pengfei; Liu, Tongchao; Guo, Hua; Li, Wen; Song, Xiaohe; Zhou, Zengquing; Liu, Chaokun; Tang, Hanting; Tan, Rui; Chen, Zonghai; Ren, Yang; Lin, Yuan; Yang, Wanli; Wang, Chongmin; Wang, Lin-Wang; Lu, Jun; Amine, Khalil; Pan, Feng

    2017-08-03

    Abstract. Due to the enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, reduced cycling stability and total electrode capacity. In this work, we report a size-dependent excess capacity beyond the theoretical value of 170 mAhg-1 in a special carbon coated LiFePO4 composite cathode material, which delivers capacities of 191.2 and 213.5 mAhg-1 with the mean particle sizes of 83 nm and 42 nm, respectively. Moreover, this LiFePO4 composite also shows excellent cycling stability and high rate performance. Our further experimental tests and ab initio calculations reveal that the excess capacity comes from the charge passivation for which the C-O-Fe bonds would lead to charge redistribution on the surface of LiFePO4 and hence to enhance the bonding interaction between surface O atoms and Li-ions. The surface reconstruction for excess Li-ion storage makes full use of the large specific surface area for the nanocrystallites, which can maintain the fast Li-ion transport and enhance the capacity greatly that the nanocrystallites usually suffers.

  9. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.

    Science.gov (United States)

    Wu, Xianyong; Qi, Yitong; Hong, Jessica J; Li, Zhifei; Hernandez, Alexandre S; Ji, Xiulei

    2017-10-09

    Aqueous rechargeable batteries are promising solutions for large-scale energy storage. Such batteries have the merit of low cost, innate safety, and environmental friendliness. To date, most known aqueous ion batteries employ metal cation charge carriers. Here, we report the first "rocking-chair" NH 4 -ion battery of the full-cell configuration by employing an ammonium Prussian white analogue, (NH 4 ) 1.47 Ni[Fe(CN) 6 ] 0.88 , as the cathode, an organic solid, 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), as the anode, and 1.0 m aqueous (NH 4 ) 2 SO 4 as the electrolyte. This novel aqueous ammonium-ion battery demonstrates encouraging electrochemical performance: an average operation voltage of ca. 1.0 V, an attractive energy density of ca. 43 Wh kg -1 based on both electrodes' active mass, and excellent cycle life over 1000 cycles with 67 % capacity retention. Importantly, the topochemistry results of NH 4 + in these electrodes point to a new paradigm of NH 4 + -based energy storage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  11. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; Badano, L.; Bravar, A.; Istituto Nazionale di Fisica Nucleare, Legnaro

    1993-06-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beams has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called ''stable'' direction. In this paper measurements at the Indiana University cooler ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  12. Hydrogen storage in clathrate hydrates: Current state of the art and future directions

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Rajnish; Linga, Praveen

    2014-01-01

    Hydrogen is looked upon as the next generation clean energy carrier, search for an efficient material and method for storing hydrogen has been pursued relentlessly. Improving hydrogen storage capacity to meet DOE targets has been challenging and research efforts are continuously put forth to achieve the set targets and to make hydrogen storage a commercially realizable process. This review comprehensively summarizes the state of the art experimental work conducted on the storage of hydrogen as hydrogen clathrates both at the molecular level and macroscopic level. It identifies future directions and challenges for this exciting area of research. Hydrogen storage capacities of different clathrate structures – sI, sII, sH, sVI and semi clathrates have been compiled and presented. In addition, promising new approaches for increasing hydrogen storage capacity have been described. Future directions for achieving increased hydrogen storage and process scale up have been outlined. Despite few limitations in storing hydrogen in the form of clathrates, this domain receives prominent attention due to more environmental-friendly method of synthesis, easy recovery of molecular hydrogen with minimum energy requirement, and improved safety of the process

  13. Power ion beam production in an accelerator with inductive microsecond storage and plasmaerosion switch

    International Nuclear Information System (INIS)

    Mesyats, G.A.; Didenko, A.N.; Abdullin, Eh.N.; Tomskij Politekhnicheskij Inst.

    1986-01-01

    Results of investigations into powerful ion beam (PIB) production in an accelerator with inductive microsecond storage and plasmaerosion switch (PES) are given. The storage consists of the 100 kJ high-voltage pulse generator, the inductive load as a vacuum coaxial line. Coaxial line was divided into two regions with PES plasma guns. Generation of converging PIB on switching of energy flux from the first region to the second was performed in the PES area itself as well as in an additional diode during its placing at different distances from PES. The investigations have shown that microsecond PES is an effective element providing PIB eneration with durations of an order of tens of nanoseconds. Total PIB energy contribution is in the range of 3-6 kJ which constitutes 40-50% of total energy release in PES

  14. 3D direct writing fabrication of electrodes for electrochemical storage devices

    Science.gov (United States)

    Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang

    2017-06-01

    Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.

  15. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  16. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.

  17. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    International Nuclear Information System (INIS)

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-01-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results

  18. Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Kim Yong-Jin

    2010-01-01

    Full Text Available Abstract Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property.

  19. Permeability and storage ability of inorganic X12Y12 fullerenes for lithium atom and ion

    Science.gov (United States)

    Munsif, Sajida; Ayub, Khurshid

    2018-04-01

    In the current study, permeability and storage ability (exohedral and endohedral) of inorganic fullerenes X12Y12 (X = B, Al and Y = N, P) for lithium atom/ion (Li/Li+) is studied theoretically at M05-2X method. The translation of Li/Li+ through Al12P12 nano-cages is not only a kinetically feasible process but also has very high separation ratio in the favor of lithium atom over lithium ion. Adsorption/encapsulation energies of alkali metal on/in nano-cages show strong correlation with the size of the nano-cage. The percent changes in H-L gap for Li+-X12Y12 are about 1-25%, whereas the corresponding changes for Li-X12Y12 are 30-72%.

  20. Storage of a lithium-ion secondary battery under micro-gravity conditions

    Science.gov (United States)

    Sone, Yoshitsugu; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji; Takahashi, Keiji; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Kawaguchi, Jun'ichiro

    'HAYABUSA' is a Japanese inter-planetary spacecraft built for the exploration of an asteroid named 'ITOKAWA.' The spacecraft is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery was maintained at ca. 65% during storage, in case it is required for a loss of attitude control. The capacity of the battery was measured during flight operations. Along with the operation in orbit, a ground-test battery was discharged, and both results showed a good agreement. This result confirmed that the performance of the lithium-ion secondary battery stored under micro-gravity conditions is predictable using a ground-test battery.

  1. MeV ion-beam analysis of optical data storage films

    Science.gov (United States)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  2. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    Science.gov (United States)

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  3. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  4. Direct measurement of the plasma response to electrostatic ion waves

    International Nuclear Information System (INIS)

    Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.

    1995-01-01

    Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field

  5. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  6. Measurement of the ratio of C3+ and O4+ ions produced by ECRIS to prepare a laser cooling experiment at storage rings

    International Nuclear Information System (INIS)

    Zhu, X.L.; Wen, W.Q.; Ma, X.; Li, J.Y.; Feng, W.T.; Zhang, R.T.; Wang, Enliang; Yan, S.; Guo, D.L.; Hai, B.; Qian, D.B.; Zhang, P.; Xu, S.; Zhao, D.M.; Yang, J.; Zhang, D.C.; Li, B.; Gao, Y.; Huang, Z.K.; Wang, H.B.

    2014-01-01

    To prepare the upcoming laser cooling of relativistic C 3+ ion beams at the experimental Cooler Storage Ring (CSRe), a novel experiment was performed using a reaction microscope to determine the ratio of C 3+ ions in mixed ion beams of C 3+ and O 4+ that are produced by an Electron Cyclotron Resonance Ion Source (ECRIS). The mixed ion beams at an energy of 4 keV/u were directed to collide on a supersonic helium gas target. Using the single-electron capture channel and the coincidence technique, the fractions of C 3+ and O 4+ ions in the primary beam were obtained. Using different injection gases for ECRIS, including O 2 , CO, CO 2 , and CH 4 , at a fixed radio-frequency power of 300 W, the measured results showed that the fraction of C 3+ ions was greater than 70% for the injection gases of CO and CO 2 . These measured results are very important and helpful for the upcoming laser cooling experiments

  7. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    International Nuclear Information System (INIS)

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10 14 350 keV Ar/cm 2 + 1 x 10 15 500 keV Ne/cm 2 is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity

  9. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    Science.gov (United States)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  10. Direct Observation of Heavy-Tailed Storage Times of Bed Load Tracer Particles Causing Anomalous Superdiffusion

    Science.gov (United States)

    Bradley, D. Nathan

    2017-12-01

    A consensus has formed that the step length distribution of fluvial bed load is thin tailed and that the observed anomalous superdiffusion of bed load tracer particles must arise from heavy-tailed resting times. However, heavy-tailed resting times have never been directly observed in the field over multiple floods. Using 9 years of data from a large bed load tracer experiment, I show that the spatial variance of the tracer plume scales faster than linearly with integrated excess stream power, indicating anomalous superdiffusion. The superdiffusion is caused by a heavy-tailed distribution of observed storage times that is fit with a truncated Pareto distribution with a tail parameter that is predicted by anomalous diffusion theory. The heavy-tailed distribution of storage times causes the tracer virtual velocity to slow over time, indicated by a sublinear increase in the mean displacement that is predicted by the storage time distribution tail parameter.

  11. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Ihlefeld, Jon F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  12. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  13. Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)

  14. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  15. Direct-driven target implosion in heavy ion fusion

    International Nuclear Information System (INIS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination. (paper)

  16. Direct measurement of two-electron contributions to the ground state energy of heliumlike high-Z ions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Elliott, S.R.; Marrs, R.E.

    1995-09-01

    We report on a novel technique which exploits Radiative Recombination transitions for a direct experimental determination of the two-electron contributions to the ground state energy in heliumlike high-Z ions. Results are presented of a first experiment which was conducted at an electron beam ion trap for various elements ranging from Z=32 to 83. The comparison with theoretical predictions demonstrates that the achieved precision already provides a sensitive test of second order manybody contributions and approaches the size of the two-electron (screened) Lamb shift. The ptoential of the new technique will be outlined and the capability of the ESR storage ring for future investigations will be emphasized. (orig.)

  17. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  18. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; McPherson, J.; Olchowski, F.; Onel, Y.; Badano, L.; Conte, M.; Bravar, A.; Penzo, A.; Hall, J.; Kreiser, H.

    1993-01-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beam has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called open-quote stableclose quotes, direction. In this paper measurements at the Indiana University Cooler Ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  19. Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

    Science.gov (United States)

    Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V

    2018-03-01

    Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene

    Science.gov (United States)

    Li, Hai; Qian, Kun; Qin, Xianying; Liu, Dongqing; Shi, Ruiying; Ran, Aihua; Han, Cuiping; He, Yan-Bing; Kang, Feiyu; Li, Baohua

    2018-05-01

    The antimony oxide/reduced graphene oxide (Sb2O3/rGO) nanocomposites are used as anode of Li-ion and Na-ion batteries (LIBs and NIBs). However, it is unclear about Li-ion and Na-ion storage mechanism in Sb2O3/rGO nanocomposites. Herein, the conversion-alloying mechanisms of Sb2O3/rGO anodes for Na-ion and Li-ion storage are comparatively studied with a combined in-situ XRD and quasi in-situ XPS method. The distinct behaviours are monitored during (de)lithiation and (de)sodiation with respect to crystal structure and chemical composition evolution. It is evidenced that the Na-ion can be easily transported to the inner part of the Sb2O3, where the Li-ion almost cannot reach, leading to a fully transformation during sodiation. In addition, the conversion reaction product of amorphous Na2O display their better chemical stability than amorphous Li2O during electrochemical cycles, which contribute to a stable and long cycling life of NIBs. This work gain insight into the high-capacity anodes with conversation-alloying mechanism for NIBs.

  1. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel...... a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operating window. The second is a non-linear static model, while the third takes into account first......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  2. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. This journal is © the Owner Societies 2011

  3. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  4. Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1995-01-01

    A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development

  5. Heavy-ion fusion: Future promise and future directions

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous several papers in this heavy-ion fusion special session have described work that has taken place as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) project. Key technical issues in the design and costing of targets, accelerator systems, beam transport, reactor and balance-of-plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. The result of this study has been to, within the limits of our 1986 imagination and creativity, define the ''most attractive'' future heavy-ion fusion (HIF) power plant at some time in the future (beyond the year 2020 in this case). The project has specifically avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for a relative comparison among design options. The authors describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point

  6. Heavy-ion fusion: future promise and future directions

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous papers in this heavy-ion fusion special session have described work performed as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) Project. Key technical issues in the design and costing of targets, induction linacs, beam transport, reactor, balance of plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. Within the limits of our 1986 knowledge and imagination, this study defines the most attractive heavy-ion fusion (HIF) power plant concepts. The project has deliberately avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for relative comparisons among design options. We will describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point. This degree of optimism concerning such breakthroughs is probably at least as conservative as that used in other fusion assessments

  7. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    Science.gov (United States)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  8. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    Science.gov (United States)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions

  9. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  10. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    International Nuclear Information System (INIS)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10 -12 Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs

  11. Design considerations for a digital feedback system to control self-bunching in ion-storage rings

    Directory of Open Access Journals (Sweden)

    V. Ziemann

    2001-04-01

    Full Text Available We discuss the feasibility of a digital feedback system to cure self-bunching of the electron-cooled coasting ion beam in ion-storage rings such as CELSIUS [S. Holm, A. Johansson, S. Kullander, and D. Reistad, Phys. Scr. 34, 513–532 (1986]. Such a system is based on a fast digital filter that acts as a tunable artificial wake potential. It may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production.

  12. Non-Uniformity of Ion Implantation in Direct-Current Plasma Immersion Ion Implantation

    International Nuclear Information System (INIS)

    Cheng-Sen, Liu; Yu-Jia, Fan; Nan, Zhang; Li, Guan; Yuan, Yao; De-Zhen, Wang

    2010-01-01

    A particle-in-cell simulation is developed to study dc plasma immersion ion implantation. Particular attention is paid to the influence of the voltage applied to the target on the ion path, and the ion flux distribution on the target surface. It is found that the potential near the aperture within the plasma region is not the plasma potential, and is impacted by the voltage applied to the implanted target. A curved equipotential contour expands into the plasma region through the aperture and the extent of the expansion depends on the voltage. Ions accelerated by the electric field in the sheath form a beam shape and a flux distribution on the target surface, which are strongly dependent on the applied voltage. The results of the simulations demonstrate the formation mechanism of the grid-shadow effect, which is in agreement with the result observed experimentally. (physics of gases, plasmas, and electric discharges)

  13. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage

    DEFF Research Database (Denmark)

    Huang, Wei; Sun, Hongyu; Shangguan, Huihui

    2018-01-01

    Three-dimensional (3D) carbon-wrapped iron sulfide interlocked graphene (Fe7S8@C-G) composites for high-performance sodium-ion storage are designed and produced through electrostatic interactions and subsequent sulfurization. The iron-based metal–organic frameworks (MOFs, MIL-88-Fe) interact with...

  14. CHICSi - a 3π multi-detector system for studying heavy ion interactions inside a storage ring

    International Nuclear Information System (INIS)

    Avdeichikov, V.; Carlen, L.; Fokin, A.; Jakobsson, J.; Murin, Yu.; Maartensson, J.; Oskarsson, A.; van Veldhuizen, E.J.; Westerberg, L.; Whitlow, H.J.

    1996-01-01

    CHICSi - a 3π multi-detector system is presented. The setup consists of 576 ultra high vacuum compatible telescopes to study intermediate energy heavy ion as well as proton induced collisions at storage rings operating in slow ramping mode. Primary it will be installed at the gas-jet target station of the CELSIUS facility at The Svedberg Laboratory in Uppsala. (orig.)

  15. Primary Frequency Regulation with Li-Ion Battery Energy Storage System - Evaluation and Comparison of Different Control Strategies

    DEFF Research Database (Denmark)

    Thorbergsson, Egill; Knap, Vaclav; Swierczynski, Maciej Jozef

    2013-01-01

    devices is becoming more attractive, the aim of this paper is to analyse the viability of providing primary frequency regulation with Lithium-ion based energy storage systems. Three control strategies of the energy storage system are analysed and compared in terms of economic benefits on the Danish energy...... market. The revenues and degradation of the Lithium-ion batteries are obtained by simulations. Furthermore, an energy management strategy based on variable state-of-charge (SOC) set-point is evaluated. Preliminary, the influence of different state-of-charge levels on the cycle lifetime is estimated......The increased grid penetration levels of renewable sources are at the expense of the conventional power plants. This means that the grid support functions, traditionally achieved by the conventional power plants, need to be provided by new technologies. Since grid support with energy storage...

  16. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    International Nuclear Information System (INIS)

    Manard, Manuel J.; Weeks, Stephan; Kyle, Kevin

    2010-01-01

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  17. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    Science.gov (United States)

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  18. Resume and discussion of session on direct heavy ion reactions

    International Nuclear Information System (INIS)

    Hansen, O.

    1983-01-01

    A conference divides into sessions, but the physics does not always respect such divisions. I found the subject of barrier penetrabilities viewed in a coupled channels picture new, exciting and central to all heavy-ion reaction dynamics. The subject was discussed in bits and pieces over three different sessions, partly in the talks by Winther, Landowne, Braun-Munzinger and Broglia, and partly from the floor by the same people and by Smilanski, I have concentrated on that subject alone and I therefore must apologize to the speakers in my session who covered different material, that definitely merited further discussions. Also, I apologize to other session chairmen, whose territory I have invaded. (orig.)

  19. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  20. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  1. Next-generation nanostructured lithium-ion cathode materials: critical challenges for new directions in R&D

    CSIR Research Space (South Africa)

    Ozoemena, K

    2016-07-01

    Full Text Available Every market analysis predicts that lithium-ion batteries (LIBs) will dominate energy storage technologies for now and the foreseeable future. LIBs will drive many applications ranging from portable electronics to electric vehicles and smart grids...

  2. K2 Mn4 O8 /Reduced Graphene Oxide Nanocomposites for Excellent Lithium Storage and Adsorption of Lead Ions.

    Science.gov (United States)

    Hao, Shu-Meng; Qu, Jin; Yang, Jing; Gui, Chen-Xi; Wang, Qian-Qian; Li, Qian-Jie; Li, Xiaofeng; Yu, Zhong-Zhen

    2016-03-01

    Ion diffusion efficiency at the solid-liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K 2 Mn 4 O 8 (KMO) exhibits efficient ion diffusion and ion-exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face-to-face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g -1 , which is much higher than that of KMO (326 mA h g -1 ). After 100 charge-discharge cycles, it still retains a charge capacity of 664 mA h g -1 . For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g -1 , which is higher than those of KMO (305 mg g -1 ) and RGO (63 mg g -1 ) alone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Accelerating Rate Calorimetry Tests of Lithium-Ion Cells Before and After Storage Degradation at High Temperature

    Directory of Open Access Journals (Sweden)

    Mendoza-Hernandez Omar Samuel

    2017-01-01

    Full Text Available Understanding the behavior of Li-ion cells during thermal runaway is critical to evaluate the safety of these energy storage devices under outstanding conditions. Li-ion cells possess a high energy density and are used to store and supply energy to many aerospace applications. Incidents related to the overheating or thermal runaway of these cells can cause catastrophic damages that could end up costly space missions; therefore, thermal studies of Li-ion cells are very important for ensuring safety and reliability of space missions. This work evaluates the thermal behavior of Li-ion cells before and after storage degradation at high temperature using accelerating rate calorimeter (ARC equipment to analyze the thermal behavior of Li-ion cells under adiabatic conditions. Onset temperature points of self-heating and thermal runaway reactions are obtained. The onset points are used to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge. The results obtained can be useful to develop accurate thermo-electrochemical models of Li-ion cells.

  4. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance

    International Nuclear Information System (INIS)

    Ling, Zheng; Yu, Chang; Fan, Xiaoming; Liu, Shaohong; Yang, Juan; Zhang, Mengdi; Wang, Gang; Xiao, Nan; Qiu, Jieshan

    2015-01-01

    A chitosan (CS) based nitrogen doped carbon cryogel with a high specific surface area (SSA) has been directly synthesized via a combined process of freeze-drying and high-temperature carbonization without adding any activation agents. The as-made carbon cryogel demonstrates an SSA up to 1025 m 2 g −1 and a high nitrogen content of 5.98 wt%, while its counterpart derived from CS powder only shows an SSA of 26 m 2 g −1 . Freeze-drying is a determining factor for the formation of carbon cryogel with a high SSA, where the CS powder with a size of ca. 200 μm is transformed into the sheet-shaped cryogel with a thickness of 5–8 μm. The as-made carbon cryogel keeps the sheet-shaped structure and the abundant pores are formed in situ and decorated inside the sheets during carbonization. The carbon cryogel shows significantly enhanced performance as supercapacitor and lithium ion battery electrodes in terms of capacity and rate capability due to its quasi two-dimensional (2D) structure with reduced thickness. The proposed method may provide a simple approach to configure 2D biomass-derived advanced carbon materials for energy storage devices. (paper)

  5. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    Science.gov (United States)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  6. Direct inner shell ionization accompanying heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-07-01

    51 V+ 40 Ar (180 MeV) fusion reaction is studied by means of K X-ray-particle-γ-ray coincidences. K X-ray yields associated with various evaporation residues are determined separately for two ionization processes: the direct ionization by the projectile prior to the nuclear interaction and the postcollisional ionization due to the internal conversion of γ-rays. Implications for possible measurements of nuclear reaction times are discussed. 24 refs., 9 figs., 2 tabs. (author)

  7. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  8. ENHANCING THE OPERATIONAL EFFICIENCY OF DIRECT CURRENT DRIVE BASED ON USE OF SUPERCONDENSER POWER STORAGE UNITS

    Directory of Open Access Journals (Sweden)

    А. M. Mukha

    2017-10-01

    Full Text Available Purpose.The scientific work is intended to analyse the expansion of the load range and the implementation of regeneration braking (RB of the direct current drive by using the supercondenser power storage units. Methodology.To solve the problem, we use the methods of the electric drive theory, impulse electronics and the method of calculation of transient electromagnetic processes in linear electric circuits in the presence of super-condensers therein. Findings.The stiffness of the mechanical and electromechanical characteristics of a series motor is significantly increased, which makes it possible to use a DC drive under load, much smaller than 15…20% of the nominal one. Numerical calculations of the operation process of the supercondenser power storage unit were fulfilled with a sharp decrease in the load of a traction electric motor of a direct current electric locomotive. The possibility of RB of the direct current drive with the series motor is substantiated. The equations of the process of charging and discharging of super-condenser storage unit in RB mode are solved. The authors examined the effect of capacitance on the nature of maintaining the excitation current of an electric motor in the mode of small loads.Originality.The paper developed theoretical approaches for the transformation of soft (mechanical and electromechanical characteristics into hard ones of DC series motors. For the first time a new, combined method of the series motor RB is proposed and substantiated. Further development obtained the methods for evaluating the storage unit parameters, taking into account the criteria for reliable parallel operation of super-condensers with an electric motor field. Practical value.The proposed and substantiated transformation of soft characteristics into stiff ones allows us to use general-purpose electric drives with series motors and at low loads, and in traction electric drives - to reduce the intensity of electric stockwheel

  9. Operation and control of an ion-implantation/sputtering storage device for 85Kr

    International Nuclear Information System (INIS)

    McClanahan, E.D.; Moss, R.W.; Greenwell, E.N.

    1986-01-01

    The design and operation of a device for implanting 85 Kr in a sputtered Cu-Y alloy for long-term storage tests are described. A total of approx.400 Ci of 85 Kr, in a 4.2% mixture with nonradioactive isotopes, was implanted in three batches at a rate of 6.1 sccm. A triode discharge operating at a pressure of 0.4 Pa with a plasma current of 4.5 A was maintained with a potential of 67 V. The target and substrate potentials were 2400 and 290, respectively, with an ion current density of approx.100 A/m 2 . The discharge and pumping action was started with nonradioactive Kr, then was switched to the radioactive gas until all in the reservoir was consumed, then again was switched to the nonradioactive gas to apply a closeout layer. The control feature used made it possible to empty the 85 Kr reservoir without use of an auxiliary pumping system. 13 refs., 4 figs

  10. Use of storage tank holdup measurements to reduce inventory differences in an ion exchange process

    International Nuclear Information System (INIS)

    Bonner, C.A.; Marshall, R.

    1986-01-01

    Inventory differences (ID) in an ion exchange process area have plagued the Los Alamos National Laboratory for years. The problem has always been attributed to plutonium precipitation in banks of horizontally oriented storage tanks; however, efforts to maintain the precipitates at low enough or even stable levels failed. Factoring tank holdup measurements into the end-of-month inventory balance would probably solve the ID problem; however, the authors were advised that gamma-based holdup measurements would yield very poor quality holdup estimates because of difficulties in determining transmission corrections and tank ''cross talk.'' When the ID problem became particularly troublesome in the spring of 1985, the authors evaluated two different gamma-based measurement techniques for estimating tank holdup. Not only did holdup estimates made by the two techniques agree, but plutonium recovered during intensive tank cleanout confirmed that the holdup measurements were of sufficient accuracy to be used for material balance adjustments. The measurement method chosen for routine use is somewhat unique since it is calibrated using tank cleanout data and requires no transmission corrections. The holdup measurements are made on a monthly basis and have dramatically reduced end-of-month inventory differences. This paper will present both a description of the measurement methodology and the inventory difference improvements

  11. Magnox fuel dry storage and direct disposal assessment of CEGB/SSEB reports

    International Nuclear Information System (INIS)

    1987-12-01

    This report assesses the Boards' presented work in response to Recommendations 17 and 18 of the Environment Committee's First Report (Jan 86). The Boards have made an extensive study of the dry store design and also considered direct disposal. Their basic conclusion that the financial advantage is with continued reprocessing is accepted with the comment that their storage and disposal costs may be on the high side. The Boards statements on drying wet-stored fuel and on improvement of the fuel's chemical stability are accepted. The Boards coverage of fuel after disposal is considered to be too brief; the assessment expresses a more pessimistic view than the Boards' of the acceptability of direct disposal. (author)

  12. Direction-dependent RBS channelling studies in ion implanted LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, E., E-mail: elke.wendler@uni-jena.de; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-15

    Damage formation in ion implanted LiNbO{sub 3} was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO{sub 3} crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO{sub 3} lattice structure and most likely also form Nb{sub Li} antisite defects.

  13. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    They are considerably below the heavy-ion results which indicates that a simple scaling of prompt photons as observed in pp is not sufficient to explain the direct photons in central. Pb+Pb reactions. It is also instructive to compare the γ/π0 ratio extracted from heavy-ion data to those from pp and pC in figure 3. The value in ...

  14. Parallel electric fields accelerating ions and electrons in the same direction

    International Nuclear Information System (INIS)

    Hultqvist, B; Lundin, R.

    1988-01-01

    In this contribution the authors present Viking observations of electrons and positive ions which move upward along the magnetic field lines with energies of the same order of magnitude. The authors propose that both ions and electrons are accelerated by an electric field which has low-frequency temporal variations such that the ions experience and average electrostatic potential drop along the magnetic field lines whereas the upward streaming electrons are accelerated in periods of downward pointing electric field which is quasi-static for the electrons and forces them to beam out of the field region before the field changes direction

  15. Storage yard operations in container terminals : Literature overview, trends, and research directions

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.; Roodbergen, Kees Jan

    2014-01-01

    Inbound and outbound containers are temporarily stored in the storage yard at container terminals. A combination of container demand increase and storage yard capacity scarcity create complex operational challenges for storage yard managers. This paper presents an in-depth overview of storage yard

  16. Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bo [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Bai, Zhimin, E-mail: zhimibai@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Minsi [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Dong, Lei; Xiong, Dongbin [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-06-15

    Highlights: • Hierarchical porous vanadium pentoxide nanofibers were synthesized by electrospinning. • V{sub 2}O{sub 5} nanofibers showed much enhanced lithium storage performance. • Kinetics process of electrospinning V{sub 2}O{sub 5} nanofibers was studied by means of EIS for the first time. • Strategies to enhance the electrochemical performance of V{sub 2}O{sub 5} electrode were concluded. - Abstract: The hierarchical V{sub 2}O{sub 5} nanofibers cathode materials with diameter of 200–400 nm are successfully synthesized via an electrospinning followed by annealing. Powder X-ray diffraction (XRD) pattern confirms the formation of phase-pure product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) obviously display the hierarchical porous nanofibers constructed by attached tiny vanadium oxide nanoplates. Electrochemical behavior of the as-prepared product is systematically studied using galvanostatic charge/discharge testing, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It turns out that in comparison to the commercial V{sub 2}O{sub 5} and other unique nanostructured materials in the literature, our V{sub 2}O{sub 5} nanofibers show much enhanced lithium storage capacity, improved cyclic stability, and higher rate capability. After 100 cycles at a current density of 800 mA g{sup −1}, the specific capacity of the V{sub 2}O{sub 5} nanofibers retain 133.9 mAh g{sup −1}, corresponding to high capacity retention of 96.05%. More importantly, the EIS at various discharge depths clearly reveal the kinetics process of the V{sub 2}O{sub 5} cathode reaction with lithium. Based on our results, the possible approach to improve the specific capacity and rate capability of the V{sub 2}O{sub 5} cathode material is proposed. It is expected that this study could accelerate the development of V{sub 2}O{sub 5} cathode in rechargeable lithium ion batteries.

  17. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Jian-Wu; Zhang, Da-Wei; Zang, Yong; Sun, Xin; Cheng, Bin; Ding, Chu-Xiong; Yu, Yan; Chen, Chun-Hua

    2014-01-01

    Highlights: • A unique bowl-like hollow spherical Co 3 O 4 structure is prepared through a simple, low-cost and mass-yield method. • Such a bowl-like hollow Co 3 O 4 microsphere demonstrates extraordinary rate and cycling performance for Li-storage. • The sodium-storage behavior of Co 3 O 4 is investigated for the first time. - Abstract: Bowl-like hollow Co 3 O 4 microspheres are prepared via a simple and low-cost route by thermally treating Co-containing resorcinol-formaldehyde composites gel in air. Scanning electron microscopy, transmission electron microscope and N 2 adsorption-desorption measurements demonstrate that these bowl-like hollow Co 3 O 4 microspheres are composed of hollow inner cavities and outer shell walls (70 nm thickness), on which a considerable amount of mesopores centered around 5-17 nm size are distributed. When employed as the anode material for lithium-ion batteries, these bowl-like hollow Co 3 O 4 microspheres exhibit extraordinary cycling performance (111% retention after 50 cycles owing to capacity rise), fairly high rate capacity (650 mAh g −1 at 5 C) and enhanced lithium storage capacity. Meanwhile, the Na-storage behavior of Co 3 O 4 as an anode material of Na-ion batteries is initially investigated based on such a hollow structure and it exhibits similar feature of discharge/charge profiles and a high initial discharge capacity but relatively moderate capacity retention compared with the Li-storage performance

  18. Toward a New Test of the Relativistic Time Dilation Factor by Laser Spectroscopy of Fast Ions in a Storage Ring

    International Nuclear Information System (INIS)

    Saathoff, G.; Eisenbarth, U.; Hannemann, S.; Hoog, I.; Huber, G.; Karpuk, S.; Krohn, S.; Lassen, J.; Schwalm, D.; Weidemueller, M.; Wolf, A.; Gwinner, G.

    2003-01-01

    The frequency measurement of Doppler-shifted optical lines of ions circulating in a storage ring at high speed permits a sensitive test of the relativistic Doppler-formula and, hence, the time dilation factor γ SR of special relativity. Previous measurements at the storage ring TSR with 7 Li + at v=0.065c gave a new, improved limit, but were hampered by the large observed linewidth, exceeding the natural width 15-fold. Recently we have identified the broadening to be caused by velocity-changing processes in the storage ring. Saturation spectroscopy has proven to be largely immune against these effects and has yielded linewidths only a few MHz larger than the natural one. This is the major ingredient for an improved test of γ SR , which is now under way.

  19. Toward a New Test of the Relativistic Time Dilation Factor by Laser Spectroscopy of Fast Ions in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, G.; Eisenbarth, U.; Hannemann, S. [Max-Planck-Institut fuer Kernphysik (Germany); Hoog, I.; Huber, G.; Karpuk, S. [Universitaet Mainz, Institut fuer Physik (Germany); Krohn, S. [Max-Planck-Institut fuer Kernphysik (Germany); Lassen, J. [Universitaet Mainz, Institut fuer Physik (Germany); Schwalm, D.; Weidemueller, M.; Wolf, A.; Gwinner, G. [Max-Planck-Institut fuer Kernphysik (Germany)

    2003-03-15

    The frequency measurement of Doppler-shifted optical lines of ions circulating in a storage ring at high speed permits a sensitive test of the relativistic Doppler-formula and, hence, the time dilation factor {gamma}{sub SR} of special relativity. Previous measurements at the storage ring TSR with {sup 7}Li{sup +} at v=0.065c gave a new, improved limit, but were hampered by the large observed linewidth, exceeding the natural width 15-fold. Recently we have identified the broadening to be caused by velocity-changing processes in the storage ring. Saturation spectroscopy has proven to be largely immune against these effects and has yielded linewidths only a few MHz larger than the natural one. This is the major ingredient for an improved test of {gamma}{sub SR}, which is now under way.

  20. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Da; Lee, Jim Yang, E-mail: cheleejy@nus.edu.sg [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 (Singapore)

    2011-09-02

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo{sub 2}O{sub 4} nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo{sub 2}O{sub 4} nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo{sub 2}O{sub 4} nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo{sub 2}O{sub 4} nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo{sub 2}O{sub 4} demonstrated excellent reversible lithium ion storage properties and a specific capacity ({approx}800 mAh g{sup -1}) much higher than that of carbon (typically {approx} 350 mAh g{sup -1}).

  1. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    International Nuclear Information System (INIS)

    Deng, Da; Lee, Jim Yang

    2011-01-01

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo 2 O 4 nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo 2 O 4 nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo 2 O 4 nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo 2 O 4 nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo 2 O 4 demonstrated excellent reversible lithium ion storage properties and a specific capacity (∼800 mAh g -1 ) much higher than that of carbon (typically ∼ 350 mAh g -1 ).

  2. Exceptional ion rejection ability of directional solvent for non-membrane desalination

    Energy Technology Data Exchange (ETDEWEB)

    Rish, Daniel [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Civil Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Luo, Shirui; Kurtz, Brien [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Luo, Tengfei, E-mail: tluo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Center for Sustainable Energy at Notre Dame, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-01-13

    The recently demonstrated directional solvent extraction (DSE) is promising for very low temperature, membrane-free water desalination. In this paper, we combine atomistic simulations and experimental validation to demonstrate that the currently used directional solvent, decanoic acid, can reject all major salt ions in seawater, with very high rejection rates. The salinities of the DSE recovered water show that ion rejection rates are ∼98%–99%—similar to those of the best reverse osmosis membranes. Our test also shows that the DSE process can desalt seawater to produce fresh water that meets drinking water standards.

  3. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  4. Exceptional ion rejection ability of directional solvent for non-membrane desalination

    International Nuclear Information System (INIS)

    Rish, Daniel; Luo, Shirui; Kurtz, Brien; Luo, Tengfei

    2014-01-01

    The recently demonstrated directional solvent extraction (DSE) is promising for very low temperature, membrane-free water desalination. In this paper, we combine atomistic simulations and experimental validation to demonstrate that the currently used directional solvent, decanoic acid, can reject all major salt ions in seawater, with very high rejection rates. The salinities of the DSE recovered water show that ion rejection rates are ∼98%–99%—similar to those of the best reverse osmosis membranes. Our test also shows that the DSE process can desalt seawater to produce fresh water that meets drinking water standards

  5. First-principles studies of complex hydrides for lithium-ion battery and hydrogen storage applications

    Science.gov (United States)

    Mason, Timothy Hudson

    We employ density functional theory in a computational study of two energy storage systems. In the first, we explore the thermodynamic viability of light metal hydrides as a high capacity Li-ion battery negative electrode. Given a set of solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble as a function of lithium electrochemical potential. We present computational results for several new conversion reactions with predicted capacities between 2400 and 4000 mAhg-1 that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li4BN3H10 and compare with our theoretical prediction. The maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si, whose 400% expansion hinders its cyclability. In the second study, we attempt to gain understanding of recent experimental results of lithium borohydride nanoconfined in highly ordered nanoporous carbon. The carbon environment is modeled as a single sheet of graphene, and adsorption energies are calculated for nanoparticles of the constituent phases of LiBH 4 desorption processes (LiBH4, LiH, lithium and boron). We find good agreement with previous studies of a single lithium atom adsorbed onto graphene. We predict that infiltrated LiBH4 will decompose such that boron is trapped in carbon vacancies, and that the resulting boron doping is required to achieve negative wetting energies for the remaining LiBH4. Desorption enthalpies are found to increase with shrinking cluster sizes, suggesting that the observed lowering of desorption temperatures is a kinetic effect although interactions with the carbon surface itself are predicted to have an overall effect of decreasing the desorption enthalpy .

  6. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    Science.gov (United States)

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  7. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] vacuum test stand for pressures of 10-12 Torr

    International Nuclear Information System (INIS)

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.

    1988-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of about 15 cm, and requires a vacuum of 10 -12 Torr in order to decelerate highly-charged very-heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling one-sixteenth of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diameter components, with 316LN stainless steel flanges. Prior to assembly, these components were vacuum fired at 950/degree/C at a pressure of 10 -4 Torr. The test stand is bakeable in situ at 300/degree/C. Pumping is achieved with two 750-L/s titanium sublimator pumps and one 60-L/s ion pump. Pressure is measured with two extractor ion gauges and a 10 -14 PP RGA. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10 -12 Torr has been achieved. 7 refs., 5 figs

  8. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  9. Paul Trapping of Radioactive 6He+ Ions and Direct Observation of Their β Decay

    International Nuclear Information System (INIS)

    Flechard, X.; Lienard, E.; Mery, A.; Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Herbane, M.; Labalme, M.; Mauger, F.; Naviliat-Cuncic, O.; Velten, Ph.; Thomas, J. C.

    2008-01-01

    We demonstrate that abundant quantities of short-lived β unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6 He + (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10 8 ions have been stored over a measuring period of six days, and about 10 5 decay coincidences between the beta particles and the 6 Li ++ recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments

  10. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  11. Directed ion beam sputter etching of polytetrafluorethylene (teflon) using an argon ion source

    Energy Technology Data Exchange (ETDEWEB)

    Garner, C E; Gabriel, S B; Kuo, Y S

    1982-09-24

    Polytetrafluoroethylene (Teflon) tubes of outside diameter 375-625 ..mu..m were perforated by bombarding the tubes with an argon ion beam. Holes of diameter 18 ..mu..m and 40 ..mu..m on a side and open-are ratios of 55% and 65% respectively were formed using electroformed nickel mesh masks. Scanning electron micrographs of the hole walls reveal that they are relatively smooth and that the holes go completely through the tubing walls. Holes with the smoothest walls and the sharpest definition were obtained by using low beam power densities and a tubing target temperature of less than 50/sup 0/C. Volumetric flow rate measurements show that the flow rate through the perforated tubules is 0.2-0.5 cm/sup 3/ min/sup -1/ for a pressure drop across the tubes of 2.2 Torr. The perforated microtubules have an important application in medicine for sufferers of hydrocephalus, a malady which results in the build-up of cerebrospinal fluid in the brain. The perforated tubing is inserted into the ventricle and serves as a shunt by draining off the excess cerebrospinal fluid into another part of the brain, where the fluid is absorbed by normal processes.

  12. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems

    International Nuclear Information System (INIS)

    Darcovich, K.; Kenney, B.; MacNeil, D.D.; Armstrong, M.M.

    2015-01-01

    Highlights: • Canadian home energy system modeled with PV, ICE CHP, battery and power grid. • Battery function is modeled on fundamental electrochemical principles. • Techno-economics of control strategies assessed. • Impact of control strategies battery cycles is developed for wear analysis. • Non-monotonic nature of battery cycles with transient renewables is discussed. - Abstract: Energy storage units have become important components in residential micro-cogeneration (MCG) systems. As MCG systems are often connected to single residences or buildings in a wide variety of settings, they are frequently unique and highly customized. Lithium-ion batteries have recently gained some profile as energy storage units of choice, because of their good capacity, high efficiency, robustness and ability to meet the demands of typical residential electrical loads. In the present work, modeled scenarios are explored which examine the performance of a MCG system with an internal combustion engine, photovoltaic input and a Li-ion storage battery. An electricity demand profile from new data collected in Ottawa, Canada is used to provide a full year energy use context for the analyses. The demands placed on the battery are examined to assess the suitability of the battery size and performance, as well as control related functionalities which reveal significantly varying battery use, and led to a quantitative expression for equivalent cycles. The energy use simulations are derived from electrochemical fundamentals adapted for a larger battery pack. Simulation output provides the basis for techno-economic commentary on how to assess large-scale Li-ion batteries for effective electrical storage purposes in MCG systems, and the impact of the nature of the control strategy on the battery service life

  13. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    International Nuclear Information System (INIS)

    Oró, Eduard; Depoorter, Victor; Pflugradt, Noah; Salom, Jaume

    2015-01-01

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO 2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  14. Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage

    Science.gov (United States)

    Thompson, Travis

    thermogalvanic devices. Although thermogalvanic devices are known, there has been little exploration into the use of thermogalvanic devices for power generation and energy storage. First, this work formalizes the energy problem and introduces the operating principles of thermoelectric, galvanic, and thermogalvanic devices. Second, oxide based thermoelectric materials are explored from a synthetic and processing standpoint. Out of necessity, a new synthetic technique was invented and a novel hot-press technique was developed. Third, a solid Li-ion conducting electrolyte, based on the garnet crystal structure, is identified for the use in a thermogalvanic cell. In order to better understand the conductivity behavior, an in-depth exploration into the variables that control the ionic transport is performed on the electrolyte. Third, a thermogalvanic cell is constructed using this garnet based Li-ion conducting solid electrolyte and the first demonstration of such a cell is presented. Finally, strategies to improve the performance of thermogalvanic cells based on garnet type solid electrolytes are outlined for future work. The purpose of this work is to use an interdisciplinary approach to marry together the electrochemistry of galvanic systems with the strategies used to better semiconductor based thermoelectric materials and ceramics processing techniques to fabricate these systems. This dissertation will explore the interplay of these areas.

  15. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  16. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  17. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    International Nuclear Information System (INIS)

    Sanjari, Mohammad Shahab

    2013-01-01

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  18. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  19. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

    Science.gov (United States)

    Mortazavi, Bohayra; Dianat, Arezoo; Rahaman, Obaidur; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-10-01

    Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

  20. Solvent-Directed Sol-Gel Assembly of 3-Dimensional Graphene-Tented Metal Oxides and Strong Synergistic Disparities in Lithium Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jianchao; An, Yonghao; Montalvo, Elizabeth; Campbell, Patrick G.; Worsley, Marcus A.; Tran, Ich C.; Liu, Yuanyue; Wood, Brandon C.; Biener, Juergen; Jiang, Hanqing; Tang, Ming; Wang, Y. Morris

    2016-03-21

    Graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to a passive role played by the exceptional electronic and mechanical properties of graphene in enabling metal oxides (MOs) to achieve near-theoretical capacities. In contrast, the effects of MOs on the active lithium storage mechanisms of graphene remain enigmatic. Via a unique two-step solvent-directed sol-gel process, we have synthesized and directly compared the electrochemical performance of several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs can play an equally important role in empowering graphene to achieve large reversible lithium storage capacity. The magnitude of capacity improvement is found to scale roughly with the surface coverage of MOs, and depend sensitively on the type of MOs. We define a synergistic factor based on the capacity contributions. Our quantitative assessments indicate that the synergistic effect is most achievable in conversion-reaction GMOs (Fe2O3/graphene and SnO2/graphene) but not in intercalation-based TiO2/graphene. However, a long cycle stability up to 2000 cycles was observed in TiO2/graphene nanocomposites. We propose a surface coverage model to qualitatively rationalize the beneficial roles of MOs to graphene. Our first-principles calculations further suggest that the extra lithium storage sites could result from the formation of Li2O at the interface with graphene during the conversion-reaction. These results suggest an effective pathway for reversible lithium storage in graphene and shift design paradigms for graphene-based electrodes.

  1. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  2. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  3. Preparation of MgB2 superconducting microbridges by focused ion beam direct milling

    Science.gov (United States)

    Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li

    2017-01-01

    MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.

  4. A direct plasma injection system into an RFQ for clean and safe ion implantation

    International Nuclear Information System (INIS)

    Takeuchi, T.; Katayama, T.; Okamura, M.; Yano, K.; Sakumi, A.; Hattori, T.; Hayashizaki, N.; Jameson, R.A.

    2002-01-01

    A new injection system, direct plasma injection system, was tested and its principle was proved successfully. We found that one of advantages of this injection system was efficient consumption of source materials. Large portions of induced ions can be injected into a first stage accelerator. This feature is quite useful for ion implantation applications, because toxic exhaust gas can be eliminated. In order to utilize this system for industrial application, the feasibility of a boron injection scheme using a Nd:YAG laser system was investigated

  5. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    Science.gov (United States)

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  6. Biphase Cobalt-Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodium-Ion Electrochemical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xiaoqiang [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering; Charles, Daniel S. [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering; Xu, Wenqian [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). X-ray Science Division; Feygenson, Mikhail [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division and Spallation Neutron Source (SNS) outstation Juelich Centre for Neutron Science (JCNS), Forschungszentrum Juelich GmbH; Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Teng, Xiaowei [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering

    2017-11-22

    Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO2.H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacity towards Na-ions in an aqueous electrolyte (121 mA h g-1 at a scan rate of 1 mV s-1 in the half-cell and 81 mA h g-1 at a current density of 2 A g-1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g-1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.

  7. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  8. EFFECT OF ION ∇ B DRIFT DIRECTION ON TURBULENCE FLOW AND FLOW SHEAR

    International Nuclear Information System (INIS)

    FENZI, C; McKEE, G.R; BURRELL, K.H; CARLSTROM, T.N; FONCK, R.J; GROEBNER, R.J

    2003-01-01

    The divertor magnetic geometry has a significant effect on the poloidal flow and resulting flow shear of turbulence in the outer region of L-mode tokamak plasmas, as determined via two-dimensional measurements of density fluctuations with Beam Emission Spectroscopy on DIII-D. Plasmas with similar parameters, except that in one case the ion (del)B drift points towards the divertor X-point (lower single-null, LSN), and in the other case, the ion (del)B drift points away from the divertor X-point (upper single-null, USN), are compared. Inside of r/a=0.9, the turbulence characteristics (amplitude, flow direction, correlation lengths) are similar in both cases, while near r/a=0.92, a dramatic reversal of the poloidal flow of turbulence relative to the core flow direction is observed in plasmas with the ion (del)B drift pointing towards the divertor X-point. No such flow reversal is observed in plasmas with the ion (del)B drift pointing away from the divertor X-point. This poloidal flow reversal results in a significantly larger local shear in the poloidal turbulence flow velocity in plasmas with the ion (del)B drift pointing towards the divertor X-point. Additionally, these plasmas locally exhibit significant dispersion, with two distinct and counter-propagating turbulence modes. Likewise, the radial correlation length of the turbulence is reduced in these plasmas, consistent with biorthogonal decomposition measurements of dominant turbulence structures. The naturally occurring turbulence flow shear in these LSN plasmas may facilitate the LH transition that occurs at an input power of roughly one-half to one-third that of corresponding plasmas with the ion (del)B drift pointing away from the X-point

  9. Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjin; Kim, Seok Goo; Choi, Jooho; Lee, Jaewook [Korea Aerospace Univ., Koyang (Korea, Republic of); Song, Hwa Seob; Park, Sang Hui [Hyosung Corporation, Seoul (Korea, Republic of)

    2016-10-15

    Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results.

  10. Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method

    International Nuclear Information System (INIS)

    Kim, Dongjin; Kim, Seok Goo; Choi, Jooho; Lee, Jaewook; Song, Hwa Seob; Park, Sang Hui

    2016-01-01

    Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results

  11. Development of a Vsible-Light-Active Film for Direct Solar Energy Storage

    Science.gov (United States)

    Salazar, Audrey

    We conceived of a two-compartment photocatalytic assembly for direct storage of solar energy as chemical potential. Our approach was to maintain reductant and oxidant in separate compartments and develop a visible light (wavelength >400nm) photo-active film to effect an uphill photoreaction between compartments. A proton exchange membrane was included in the assembly to complete the electrical circuit. Towards obtaining a working prototype of the assembly, we developed a freeze-drying method to adhere visible-light photoactive nanoparticles to a self- standing, non-porous and conductive indium tin oxide-polyvinylidene difluoride (ITO-PVDF) support film, developed in-house. We explored the possibility of employing an iron-rich metal oxide as the photocatalytic component of the film and several were explored utilizing the sodium tartrate-assisted photoreduction of Cr(VI) to Cr(III). Although the Fe2O3-coated TiO2 nanoparticles were active for photoreduction, the initial reaction rate was modest and was slowed by substantial deactivation, making it unsuitable as a photo-active material for the composite film. A complete, two-compartment assembly was prepared using cadmium sulfide (CdS) and preliminarily examined for the Cr(VI) probe reaction, however, no catalytic activity was observed. To identify the reason(s) for this observation, further testing of the apparatus and the composite film is required.

  12. Design considerations for a feedback system to control self-bunching in ion-storage rings

    International Nuclear Information System (INIS)

    Ziemann, V.

    2001-02-01

    We discuss the feasibility of a feedback system to cure self-bunching of the electron-cooled coasting ion-beam in CELSIUS. Such a system may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production

  13. Surface Passivation of Lithium-Ion Electrodes: A Path to High-Performance Energy Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage is one of the most crucial aspects of space technology. Whether the energy is stored as fuel in the solid rocket boosters or as electrochemical energy...

  14. Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2016-01-01

    Silicene, germanene and stanene likely to graphene are atomic thick material with interesting properties. We employed first-principles density functional theory (DFT) calculations to investigate and compare the interaction of Na or Li ions on these films. We first identified the most stable binding sites and their corresponding binding energies for a single Na or Li adatom on the considered membranes. Then we gradually increased the ions concentration until the full saturation of the surfaces is achieved. Our Bader charge analysis confirmed complete charge transfer between Li or Na ions with the studied 2D sheets. We then utilized nudged elastic band method to analyze and compare the energy barriers for Li or Na ions diffusions along the surface and through the films thicknesses. Our investigation findings can be useful for the potential application of silicene, germanene and stanene for Na or Li ion batteries.

  15. Behaviour of direct and delayed fast ion losses during NBI on TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers; M.

    1995-09-01

    The dependence with density and beam energy of the different kind of fast ion losses, direct and delayed, during tangential balanced NBI injection in TJ-II helical axis stellerator has been analysed. Direct losses increase with energy and a strong difference between the two injection directions appears, are produced by passing particles that loss confinement in a dew mu,sec and the influence of birth profiles produces an increase with density. Delayed losses are very well separated in time from direct ones, are produced by particles experimenting pitch angle scattering an,d, most o them, correspond to trapped particles. Are much less important than the direct ones (about 1/3), decrease slowly with energy and, with CX, increase with density (an effect of initial profile). The absorption is rather independent of energy with low values at low density in reason of high shine trough and CX losses, but reovers quickly with the density increase

  16. Behaviour of direct and delayed fast ion losses during NBI on TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1995-01-01

    The dependence with density and beam energy of the different kind of fast ion losses, direct and delayed, during tangential balanced NBI injection in TJ-II helical axis stellarator has been analysed. Direct losses increase with energy and a strong difference between the two injection directions appears, are produced by passing particles that loss confinement in a few μsec and the influence of birth profiles produces an increase with density. Delayed losses are very well separated in time from direct ones, are produced by particles experimenting pitch angle scattering and, most o them, correspond to trapped particles. Are much less important than the direct ones (about 1/3), decrease slowly with energy and, with C X, increase with density (an effect of initial profile). The absorption is rather independent of energy with low values at low density in reason of high shine through and C X losses, but recovers quickly with the density increase. (Author) 4 refs

  17. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  18. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  19. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  20. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.

    Science.gov (United States)

    Groenewold, Gary S; Williams, John M; Appelhans, Anthony D; Gresham, Garold L; Olson, John E; Jeffery, Mark T; Rowland, Brad

    2002-11-15

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min(-1) at 25 degrees C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 degrees C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol(-1). This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  1. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  2. The U. S. DOE Carbon Storage Program: Status and Future Directions

    Science.gov (United States)

    Damiani, D.

    2016-12-01

    The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations

  3. Reduction of deposition asymmetries in directly driven ion-beam and laser targets

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    The authors have developed a procedure for reducing energy-dependent asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which they propose as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driver or reactor scenarios. It also allows the use of beam currents or energy fluxes to help reduce deposition asymmetry

  4. Rapidly patterning micro/nano devices by directly assembling ions and nanomaterials

    OpenAIRE

    Na Liu; Feifei Wang; Lianqing Liu; Haibo Yu; Shaorong Xie; Jun Wang; Yuechao Wang; Gwo-Bin Lee; Wen J. Li

    2016-01-01

    The synthesis and assembly of components are key steps in micro/nano device manufacturing. In this article, we report an optically controlled assembly method that can rapidly pattern micro/nano devices by directly assembling ions and nanomaterials without expensive physical masks and complex etching processes. Utilizing this controllable process, different types of device components (e.g., metallic and semiconductor) can be fabricated and assembled in 10?30?seconds, which is far more rapid an...

  5. A gas ionisation Direct-STIM detector for MeV ion microscopy

    International Nuclear Information System (INIS)

    Norarat, Rattanaporn; Guibert, Edouard; Jeanneret, Patrick; Dellea, Mario; Jenni, Josef; Roux, Adrien; Stoppini, Luc; Whitlow, Harry J.

    2015-01-01

    Direct-Scanning Transmission Ion Microscopy (Direct-STIM) is a powerful technique that yields structural information in sub-cellular whole cell imaging. Usually, a Si p-i-n diode is used in Direct-STIM measurements as a detector. In order to overcome the detrimental effects of radiation damage which appears as a broadening in the energy resolution, we have developed a gas ionisation detector for use with a focused ion beam. The design is based on the ETH Frisch grid-less off-axis Geiger–Müller geometry. It is developed for use in a MeV ion microscope with a standard Oxford Microbeams triplet lens and scanning system. The design has a large available solid angle for other detectors (e.g. proton induced fluorescence). Here we report the performance for imaging ReNcells VM with μm resolution where energy resolutions of <24 keV fwhm could be achieved for 1 MeV protons using isobutane gas

  6. Lithium-ion Energy Storage at Very Low Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion batteries with specific energy >180 Wh/kg, calendar life (>15years), and a wide operating temperature range (-60oC to 60oC) are crucial for the...

  7. Penning traps with unitary architecture for storage of highly charged ions

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  8. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  9. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon; Yao, Yan; Cui, Yi; Cho, Jaephil

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si

  10. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  11. Chemistry of ice: Migration of ions and gases by directional freezing of water

    Directory of Open Access Journals (Sweden)

    Umer Shafique

    2016-09-01

    Full Text Available Redistribution of anions and cations creates an electrical imbalance in ice grown from electrolyte solutions. Movement of acidic and basic ions in cooling solutions can permanently change the pH of frozen and unfrozen parts of the system, largely. The extent of pH change associated with freezing is determined by solute concentration and the extent of cooling. In the present work, redistribution of hydrogen, hydroxyl, carbonate, and bicarbonate ions was studied during directional freezing in batch aqueous systems. Controlled freezing was employed vertically as well as radially in acidic and basic solutions. In each case, the ions substantially migrated along with moving freezing front. Conductometry and pH-metry were employed to monitor the moving ions. Besides, some other experiments were carried out with molecular gases, such as oxygen, carbon dioxide, and chlorine and an azeotropic mixture like water–ethanol. Findings can be used to understand possible changes that can occur in preserving materials by freezing.

  12. Fluorescent carbon quantum dot hydrogels for direct determination of silver ions.

    Science.gov (United States)

    Cayuela, A; Soriano, M L; Kennedy, S R; Steed, J W; Valcárcel, M

    2016-05-01

    The paper reports for the first time the direct determination of silver ion (Ag(+)) using luminescent Carbon Quantum Dot hydrogels (CQDGs). Carbon Quantum Dots (CQDs) with different superficial moieties (passivate-CQDs with carboxylic groups, thiol-CQDs and amine-CQDs) were used to prepare hybrid gels using a low molecular weight hydrogelator (LMWG). The use of the gels results in considerable fluorescence enhancement and also markedly influences selectivity. The most selective CQDG system for Ag(+) ion detection proved to be those containing carboxylic groups onto their surface. The selectivity towards Ag(+) ions is possibly due to its flexible coordination sphere compared with other metal ions. This fluorescent sensing platform is based on the strong Ag-O interaction which can quench the photoluminescence of passivate-CQDs (p-CQDs) through charge transfer. The limit of detection (LOD) and quantification (LOQ) of the proposed method were 0.55 and 1.83µgmL(-1), respectively, being applied in river water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  14. Effect of storage in media with different ion strengths and osmolalities on human periodontal ligament cells

    International Nuclear Information System (INIS)

    Blomloef, L.; Otteskog, P.; Hammarstroem, L.

    1981-01-01

    The viability of the periodontal ligament (PDL) cells is critical for a successful healing of replanted exarticulated teeth. It is mainly dependent on the duration of the extra-alveolar time and the storage medium. Saliva has usually been recommended as the most suitable storage medium, but recent experimental studies indicate that milk is preferable. In the present study the effect on cultured PDL cells of saliva and milk has been compared with some reference media such as tap water or saline by means of a 3 H-uridine leakage test. Storage in milk or saline was found to cause much less 3 H-uridine leakage than storage in saliva or tap water. Cells stored in milk for 60-180 min showed about the same leakage as cells stored in saline or Hanks' balanced salt solution. Osmolality measurements showed that saliva was hypotonic, while the osmolality of milk ranged within physiological limits. When the osmolality of saliva was increased by addition of NaCl the leakage of the stored cells decreased to the level of cells stored in 0.9% NaCl or milk. (author)

  15. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Jun; Hou, Wenhua; Wang, Jiulin; Nuli, Yanna

    2015-08-24

    Herein, MoO2 nanoplates have been facilely prepared through a hydrothermal process by using MoO3 microbelts as the intercalation host. The obtained MoO2 nanoplates manifest excellent electrochemical properties when the discharge cutoff voltage is simply set at 1.0 V to preclude the occurrence of conversion reactions. Its initial reversible capacity reaches 251 mAh g(-1), which is larger than that of Li4Ti5O12 , at a current rate of 0.2 C. The average capacity decay is only 0.0465 mAh g(-1) per cycle, with a coulombic efficiency of 99.5% (from the 50th cycle onward) for 2000 cycles at 1 C. Moreover, this MoO2 electrode demonstrates an outstanding high power performance. When the current rate is increased from 0.2 to 50 C, about 54% of the capacity is retained. The superior electrochemical performance can be attributed to the metallic conductivity of MoO2, short Li(+) diffusion distance in the nanoplates, and reversible crystalline phase conversion of the addition-type reaction of MoO2. The prepared MoO2 nanoplates may hopefully replace their currently used analogues, such as Li4Ti5O12 , in high power lithium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Direct observation of cascade defect formation at low temperatures in ion-irradiated metals

    International Nuclear Information System (INIS)

    Muroga, T.; Hirooka, K.; Ishino, S.

    1984-01-01

    Direct transmission electron microscopy observations of cascade defect formation have been carried out in gold, Type 316 stainless steel, and aluminum irradiated by Al + , Ar - , and Xe + ions with energies between 80 and 400 keV. By utilizing a link of an ion accelerator to an electron microscope, in situ observations at low temperature (-150 0 C) have become possible. In gold, subcascade structures are clearly observed in all cases. Obvious dependence on projectile mass and energy is observed for cascade structure and vacancy clustering efficiency in gold and for defect visibility in aluminum and Type 316 stainless steel. A computer simulation calculation using MARLOWE shows subcascade distributions a little smaller in size and larger in number than the present observation

  17. Symmetry issues in a class of ion beam targets using short direct drive pulses

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Lindl, J.D.

    1986-01-01

    We address a class of modified ion beam targets where the symmetry issues are ameliorated in the regime of short bursts of direct drive pulses. Short pulses are here defined so that the fractional change in target radii of peak beam energy deposition are assumed to be small (during each such direct drive burst with a fixed beam focal radius). This requirement is actually not stringent on the temporal pulse-length. In fact we show an explicit example where this can be satisfied by a ≥ 60 ns direct drive pulse-train. A new beam placement scheme is used which systematically eliminated low order spherical harmonic asymmetries. The residual asymmetries of such pulses are studied with both simple model and numerical simulations

  18. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    OpenAIRE

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, P. A. (Paul A.)

    2017-01-01

    Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, ...

  19. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  20. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  1. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  2. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    Science.gov (United States)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  3. Facile template-directed synthesis of carbon-coated SnO2 nanotubes with enhanced Li-storage capabilities

    International Nuclear Information System (INIS)

    Zhu, Xiaoshu; Zhu, Jingyi; Yao, Yinan; Zhou, Yiming; Tang, Yawen; Wu, Ping

    2015-01-01

    Herein, a novel type of carbon-coated SnO 2 nanotubes has been designed and synthesized through a facile two-step hydrothermal approach by using ZnO nanorods as templates. During the synthetic route, SnO 2 nanocrystals and carbon layer have been uniformly deposited on the rod-like templates in sequence, meanwhile ZnO nanorods could be in situ dissolved owing to the generated alkaline and acidic environments during hydrothermal coating of SnO 2 nanocrystals and hydrothermal carbonization of glucose, respectively. When utilized as an anode material in lithium-ion batteries, the carbon-coated SnO 2 nanotubes manifests markedly enhanced Li-storage capabilities in terms of specific capacity and cycling stability in comparison with bare SnO 2 nanocrystals. - Graphical abstract: Display Omitted - Highlights: • C-coated SnO 2 nanotubes prepared via facile ZnO-nanorod-templated hydrothermal route. • Unique morphological and structural features toward lithium storage. • Enhanced Li-storage performance in terms of specific capacity and cycling stability

  4. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils

    OpenAIRE

    DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.

    2012-01-01

    Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function...

  5. PTOLEMY, a program for heavy-ion direction-reaction calculations

    International Nuclear Information System (INIS)

    Gloeckner, D.H.; Macfarlane, M.H.; Pieper, S.C.

    1976-03-01

    Ptolemy is an IBM/360 program for the computation of nuclear elastic and direct-reaction cross sections. It carries out both optical-model fits to elastic-scattering data at one or more energies, and DWBA calculations for nucleon-transfer reactions. Ptolemy has been specifically designed for heavy-ion calculations. It is fast and does not require large amounts of core. The input is exceptionally flexible and easy to use. This report outlines the types of calculation that Ptolemy can carry out, summarizes the formulas used, and gives a detailed description of its input

  6. Selected-ion storage GC-MS analysis of polycyclic aromatic hydrocarbons in palm dates and tuna fish

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omair, A.; Helaleh, M.I.H. [Kuwait Inst. for Scientific Research (KISR), Central Analytical Lab. (CAL), Safat (Kuwait)

    2004-06-01

    A rapid analytical method based on Soxhlet extraction has been developed for determination of polycyclic aromatic hydrocarbons (PAH) in palm dates and tuna fish. The method is based on selected ion-storage gas chromatography-mass spectrometry. In the work discussed we were interested in the analysis of 16 polycyclic aromatic hydrocarbons (PAH) regarded by the EPA as priority pollutants. Soxhlet extraction of real, fortified, and blank samples, with hexane as solvent, was used to extract the analytes of interest. An excellent detection limit and good relative standard deviations (RSD) were obtained and analysis time was short. The linearity and sensitivity of the method for measurement of these analytes at trace levels are discussed. (orig.)

  7. Comments on the current status and possible future directions of research on heavy-ion interactions near the Coulomb barrier

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1990-01-01

    This paper contains comments on the current status and possible future directions of research on heavy-ion interactions near the Coulomb barrier. Fusion reactions, elastic and inelastic scattering and transfer reactions are discussed

  8. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    Science.gov (United States)

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  9. Assessment for ion beam analysis methods about hydrogen isotope in hydrogen storaged metal

    International Nuclear Information System (INIS)

    Ding Wei; Long Xinggui; Shi Liqun

    2006-01-01

    In this paper, experimental arrangements of measuring hydrogen isotope concentration and distribution in metal hydride with ion beam analysis methods were reported, and the advantage and disadvantage of different methods were analyzed too. Experiment results show that it can get abundant information and accurate value by these ways. It can get an accurate value since it's the Rutherford cross-section, and the Mylar film used in the experiment is thin enough for H, D and T distinguishing each other while using ERD analysis method with 6.0 MeV O ion beam to proceed this work, but the disadvantage of this method is that the sample preparing is more difficult, and the analysis depth is lower. It could get the distribution information of H, D and T and the analysis depth is about 3.0 μm while using ERD analysis method with 7.4 MeV 4 He ion beam, but the disadvantage is that the spectra of H, D and T overlap each other, which makes a big error in simulated calculation. If using PBS method with 3.0 MeV proton, the analysis depth is deeper, but it couldn't get the H distribution information. (authors)

  10. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage

    Directory of Open Access Journals (Sweden)

    Wangjia Tang

    2018-01-01

    Full Text Available Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively, carbon spheres with diameters of 150–250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries (SIBs and deliver a high reversible capacity of 102 mAh g−1 and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g−1 and good rate performance (65 mAh g−1 at a high current density of 2 A g−1. The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics.

  11. Direct digital radiography versus storage phosphor radiography in the detection of wrist fractures

    Energy Technology Data Exchange (ETDEWEB)

    Peer, Siegfried; Neitzel, Ulrich; Giacomuzzi, Salvatore M.; Pechlaner, Sigurd; KUenzel, Karl Heinz; Peer, Regina; Gassner, Eva; Steingruber, Iris; Gaber, O.; Jaschke, Werner

    2002-04-01

    AIM: To define the value of digital radiography with a clinical flat panel detector system for evaluation of wrist fractures in comparison with state of the art storage phosphor radiography. MATERIAL AND METHODS: Hard copy images of 26 fractured wrist specimens were acquired with the same exposure dose on a state of the art storage phosphor radiography system and a clinical flat panel detector. Image features like cortical bone surface, trabecular bone, soft tissues and fracture delineation were independently analysed by 4 observers using a standardised protocol. Image quality ratings were evaluated with an analysis of variance (ANOVA). RESULTS: Flat panel detector radiographs were rated superior with respect to cortical and trabecular bone representation as well as fracture evaluation, while storage phosphor radiographs produced better soft tissue detail. CONCLUSION: In some of the observed image quality aspects, the performance of caesium iodide/amorphous silicon flat panel detector exceeds state of the art storage phosphor radiography. This makes it well suited for skeletal imaging particularly in trauma as seen in the detection of wrist fractures. Peer, S. et al. (2002)

  12. Direct digital radiography versus storage phosphor radiography in the detection of wrist fractures

    International Nuclear Information System (INIS)

    Peer, Siegfried; Neitzel, Ulrich; Giacomuzzi, Salvatore M.; Pechlaner, Sigurd; KUenzel, Karl Heinz; Peer, Regina; Gassner, Eva; Steingruber, Iris; Gaber, O.; Jaschke, Werner

    2002-01-01

    AIM: To define the value of digital radiography with a clinical flat panel detector system for evaluation of wrist fractures in comparison with state of the art storage phosphor radiography. MATERIAL AND METHODS: Hard copy images of 26 fractured wrist specimens were acquired with the same exposure dose on a state of the art storage phosphor radiography system and a clinical flat panel detector. Image features like cortical bone surface, trabecular bone, soft tissues and fracture delineation were independently analysed by 4 observers using a standardised protocol. Image quality ratings were evaluated with an analysis of variance (ANOVA). RESULTS: Flat panel detector radiographs were rated superior with respect to cortical and trabecular bone representation as well as fracture evaluation, while storage phosphor radiographs produced better soft tissue detail. CONCLUSION: In some of the observed image quality aspects, the performance of caesium iodide/amorphous silicon flat panel detector exceeds state of the art storage phosphor radiography. This makes it well suited for skeletal imaging particularly in trauma as seen in the detection of wrist fractures. Peer, S. et al. (2002)

  13. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  14. Direct-indirect mixed implosion mode in heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Kawata, S.; Miyazawa, K.; Kikuchi, T.; Someya, T.

    2007-01-01

    In order to realize an effective implosion, beam illumination non-uniformity on a fuel target must be suppressed less than a few percent. In this study, a direct-indirect mixture implosion mode is proposed and discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement dz from the center of a fusion reactor chamber. In a direct-driven implosion mode, dz of ∼20 μm was tolerable, and in an indirect-implosion mode, dz of ∼100 μm was allowable. In the direct-indirect mixture mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer, the radiation transport is expected to smooth the HIB illumination non-uniformity in the lateral direction. Two-dimensional implosion simulations are performed, and show that the HIB illumination non-uniformity is well smoothed in the direct-indirect mixture target. Our simulation results present that a large pellet displacement of approximately a few hundred microns is allowed in order to obtain a sufficient fusion energy output in HIF

  15. Direct measurement of the concentration of metastable ions produced from neutral gas particles using laser-induced fluorescence

    Science.gov (United States)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2017-10-01

    Extensive information can be obtained on wave-particle interactions and wave fields by direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastables that are produced from neutral gas particles and existing ions in other electronic states. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal. The results show that under circumstances where the metastable ion population is coming directly from the ionization of neutrals (as opposed to the excitation of ground-state ions), the velocity distribution will only faithfully represent processes which act on the ion dynamics in a time shorter than the metastable lifetime. Therefore, it is important to know the ratio of metastable population coming from neutrals to that from existing ions to correct the LIF measurements of plasma ion temperature and electrostatic waves. In this paper, we experimentally investigate the ratio of these two populations by externally launching an ion acoustic wave and comparing the wave amplitudes that are measured with LIF and a Langmuir probe using a lock-in amplifier. DE-FG02-99ER54543.

  16. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery.

    Science.gov (United States)

    Li, Weifeng; Yang, Yanmei; Zhang, Gang; Zhang, Yong-Wei

    2015-03-11

    Density functional theory calculations have been performed to investigate the binding and diffusion behavior of Li in phosphorene. Our studies reveal the following findings: (1) Li atom forms strong binding with phosphorus atoms and exists in the cationic state; (2) the shallow energy barrier (0.08 eV) of Li diffusion on monolayer phosphorene along zigzag direction leads to an ultrahigh diffusivity, which is estimated to be 10(2) (10(4)) times faster than that on MoS2 (graphene) at room temperature; (3) the large energy barrier (0.68 eV) along armchair direction results in a nearly forbidden diffusion, and such strong diffusion anisotropy is absent in graphene and MoS2; (4) a remarkably large average voltage of 2.9 V is predicted in the phosphorene-based Li-ion battery; and (5) a semiconducting to metallic transition induced by Li intercalation of phosphorene gives rise to a good electrical conductivity, ideal for use as an electrode. Given these advantages, it is expected that phosphorene will present abundant opportunities for applications in novel electronic device and lithium-ion battery with a high rate capability and high charging voltage.

  17. Quantitative assessment of the ion-beam irradiation induced direct damage of nucleic acid bases through FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); University of Science and Technology of China, Hefei 230029, Anhui (China); Su, Xi; Yao, Guohua; Lu, Yilin; Ke, Zhigang; Liu, Jinghua; Wu, Yuejin; Yu, Zengliang [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China)

    2014-07-01

    Energetic particles exist ubiquitously in nature, and when they hit DNA molecules in organisms, they may induce critical biological effects such as mutation. It is however still a challenge to measure directly and quantitatively the damage imposed by the energetic ions on target DNA molecules. In this work we attempted to employ Fourier transformation infrared (FTIR) spectroscopy to assess the ion-induced direct damage of four nucleic acid bases, namely, thymine (T), cytosine (C), guanine (G), and adenine (A), which are the building blocks of DNA molecules. The samples were prepared as thin films, irradiated by argon ion-beams at raised ion fluences, and in the meantime measured by FTIR spectroscopy for the damage in a quasi-in-situ manner. It was found that the low-energy ion-beam induced radiosensitivity of the four bases shows the sequence G > T > C > A, wherein the possible mechanism was also discussed.

  18. Multi-directional self-ion irradiation of thin gold films: A new strategy for achieving full texture control

    International Nuclear Information System (INIS)

    Seita, Matteo; Muff, Daniel; Spolenak, Ralph

    2011-01-01

    Highlights: → Multi-directional self-ion bombardment of Au films. → Extensive selective grain growth leads to single crystal-like films. → Texture rotation is prevented by the multi-directional irradiation process. → Texture rotation rate depends on the film initial defect density. - Abstract: Post-deposition ion bombardment can be employed to convert polycrystalline films into single crystals through a process of selective grain growth. Here we report a new technique that enables selective grain growth in self-ion bombarded gold films - a system in which the formation of large single crystal domains was prevented by the occurrence of ion-induced texture rotation. Our findings suggest that the extent of the texture rotation is a function of the ion fluence and the film initial microstructure.

  19. 3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities

    Science.gov (United States)

    Kim, Dahye; Quang, Nguyen Duc; Hien, Truong Thi; Chinh, Nguyen Duc; Kim, Chunjoong; Kim, Dojin

    2017-11-01

    Since the demand for high power Li-ion batteries (LIBs) is increasing, spinel-structured lithium titanate, Li4Ti5O12 (LTO), as the anode material has attracted great attention because of its excellent cycle retention, good thermal stability, high rate capability, and so on. However, LTO shows relatively low conductivity due to empty 3 d orbital of Ti4+ state. Nanoscale architectures can shorten electron conduction path, thus such low electronic conductivity can be overcome while Li+ can be easily accessed due to large surface area. Herein, three dimensional bicontinuous LTO electrodes were prepared via close-packed self-assembly with polystyrene (PS) spheres followed by removal of them, which leads to no blockage of Li+ ion transportation pathways as well as fast electron conduction. 3D bicontinuous LTO electrodes showed high-rate lithium storage capability (103 mAh/g at 20 C), which is promising as the power sources that require rapid electrochemical response.[Figure not available: see fulltext.

  20. Metal-Organic Frameworks Triggered High-Efficiency Li storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Shen, Lisha; Song, Huawei; Wang, Chengxin

    2017-01-01

    Recently, metal organic framework (MOF) nanostructures have been frequently reported in the field of energy storage, specifically for Li-ion or Na-ion storage. By inter-separating the active sites of metal cluster and organic ligands, MOF nanostructures are exceptionally promising for realizing fast ion exchange and high-efficiency transportation and addressing the intricate issues that the energy-intensive Li-ion batteries have faced over many years. The related ion-storage mechanism remains to be explored. Is the traditional redox reaction mechanism operative for these nanostructure, as it is for transitional metal oxide? Herein, taking [Fe_3O(BDC)_3(H_2O)_2(NO_3)]n (Fe-MIL-88B) as an example, an Fe-based metal organic polyhedral nanorods of MIL–88 B structure was designed as an anode for Li-ion storage. When tested at 60 mA g"−"1, the nanoporous Fe-MIL–88 B polyhedral nanorods retained a reversible capacity of 744.5 mAh g"−"1 for more than 400 cycles. Ex situ characterizations of the post-cycled electrodes revealed that both the transition metal ions and the organic ligands contributed to the high reversible specific capacity. The polyhedral nanorods electrodes held the metal-organic skeleton together throughout the battery operation, although in a somewhat different manner than the pristine ones. This further substantiated that some MOF nanostructures are more appropriate than others for stable lithiation/delithiation processes. State-of-the-art CR2032 full cells showed that a high capacity of 86.8 mAh g"−"1 that was retained after 100 cycles (herein, the capacity for the full cell was calculated based on both the weight of the anode and the cathode, and the charge-discharge rate was 0.25C), when commercial LiFePO_4 powders were used as the cathode.

  1. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets

    Science.gov (United States)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.

    2017-10-01

    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are

  2. Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance

    Science.gov (United States)

    Kwon, Dohyoung; Ryu, Jaegeon; Shin, Myungsoo; Song, Gyujin; Hong, Dongki; Kim, Kwang S.; Park, Soojin

    2018-01-01

    Dual-porous Ge nanostructures are synthesized via two straightforward steps. Compared with conventional approaches related to porous Ge materials, different types of pores can be readily generated by adjusting the relative ratio of the precursor amounts for GeO2 and SiO2. Unlike using hard templates with different sizes for introducing secondary pores, this system makes a uniformly blended structure of porogen and active sites in the nanoscale range. When GeO2 is subjected to zincothermic reduction, it is selectively converted to pure Ge still connected to unreacted SiO2. During the reduction process, primary pores (larger than 50 nm) are formed by eliminating zinc oxide by-products, while inactive SiO2 with respect to zinc metal could contribute to retaining the overall structure. Finally, the HF treatment completely leaches remaining SiO2 and formed secondary pores (micro/mesopores) to complete the dual-porous Ge structure. The resulting Ge structure is tested as an anode material for lithium-ion batteries. The Ge electrode exhibits an outstanding reversibility and an exceptional cycling stability corresponding to a capacity retention of 100% after 100 cycles at C/5 and of 94.4% after 300 cycles at C/2. Furthermore, multi-scale pores facilitate a facile Li-ion accessibility, resulting in an excellent rate capability delivering ∼740 mAh g-1 at 5C.

  3. Irradiation effects in the storage and disposal of radioactive ion-exchange resins

    International Nuclear Information System (INIS)

    Swyler, K.J.; Dodge, C.E.; Dayal, R.; Weiss, A.J.

    1982-01-01

    Research is under way to characterize the effects of self-irradiation on radwastes which may be generated when organic ion-exchange media are used in water demineralization or decontamination operations at nuclear facilities. External factors affecting the relation between laboratory evaluations and field performance are emphasized. Initial experiments do not yet indicate substantial radiation dose-rate effects on radiolytic gas yields or acid product formation, when (fully swollen) sulfonic acid resins are irradiated in a sealed air environment. At the same time, oxygen gas is removed from the environment of irradiated resins. Interaction between mild steel coupons and acidic species produced in the irradiation induced decomposition of sulfonic acid resin results in irradiation enhanced corrosion. Corrosion rates depend on radiation dose rate, moisture content and resin chemical loading. In some cases, corrosion rates decrease with time, suggesting depletion of acidic species within the resin bed, or a synergistic interaction between resin and corrosion coupon. Implications of these and other results on evaluating field behavior of radwaste containing ion-exchange media are discussed. 4 figures, 2 tables

  4. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    International Nuclear Information System (INIS)

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-01-01

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  5. Facile synthesis and Li-ion storage properties of porous Mn-based oxides microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaojuan, E-mail: houxiaojuan@nuc.edu.cn [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China); Zhu, Jie [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China); School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang, Hebei Province 065000 (China); Shi, Shuzheng [School of Mechanical Engineering, Hebei University of Architecture, Zhangjiakou, Hebei Province 075000 (China); He, Jian; Mu, Jiliang; Geng, Wenping; Chou, Xiujian; Xue, Chenyang [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China)

    2017-05-15

    Highlights: • The Mn{sub 2}O{sub 3}, MnCo{sub 2}O{sub 4} and CoMn{sub 2}O{sub 4} microspheres were fabricated with the same method. • Capacities present an increasing trend as with the increasing percentage of Co element. • Plateaus present a lower trend as with the increasing percentage of Mn element. • Mn{sub 2}O{sub 3} microspheres present the most excellent cycling stability. - Abstract: Porous nanosheets assembled Mn-based oxides (Mn{sub 2}O{sub 3}, MnCo{sub 2}O{sub 4} and CoMn{sub 2}O{sub 4}) microspheres of diameters about 3–6 μm and pore size distribution mainly around 10 nm have been synthesized by the same facile solvothermal route without any surfactant followed by a calcination process. In virtue of the porous nanosheets constructed microspheres, the Mn-based oxides microspheres Mn{sub 2}O{sub 3} present specific capacities of 650 mAh/g after 100 charge and discharge cycles. Additionally among the three Mn-based oxides the representative specific capacities present an increasing trend as with the increasing percentage of Co element, the plateau of charge and discharge present a lower trend as with the increasing percentage of Mn element which is more suitable as anode materials in high output full batteries. Then the oxides with different components could be applied in different conditions such as the need for high specific capacity or high output lithium-ion batteries. Consequently the easy fabrication of microspheres and excellent electrochemical performances demonstrate Mn-based oxides’ great potential in lithium-ion batteries.

  6. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  7. Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode.

    Science.gov (United States)

    Zhu, Bin; Jin, Yan; Tan, Yingling; Zong, Linqi; Hu, Yue; Chen, Lei; Chen, Yanbin; Zhang, Qiao; Zhu, Jia

    2015-09-09

    Silicon, one of the most promising candidates as lithium-ion battery anode, has attracted much attention due to its high theoretical capacity, abundant existence, and mature infrastructure. Recently, Si nanostructures-based lithium-ion battery anode, with sophisticated structure designs and process development, has made significant progress. However, low cost and scalable processes to produce these Si nanostructures remained as a challenge, which limits the widespread applications. Herein, we demonstrate that Si nanoparticles with controlled size can be massively produced directly from low grade Si sources through a scalable high energy mechanical milling process. In addition, we systematically studied Si nanoparticles produced from two major low grade Si sources, metallurgical silicon (∼99 wt % Si, $1/kg) and ferrosilicon (∼83 wt % Si, $0.6/kg). It is found that nanoparticles produced from ferrosilicon sources contain FeSi2, which can serve as a buffer layer to alleviate the mechanical fractures of volume expansion, whereas nanoparticles from metallurgical Si sources have higher capacity and better kinetic properties because of higher purity and better electronic transport properties. Ferrosilicon nanoparticles and metallurgical Si nanoparticles demonstrate over 100 stable deep cycling after carbon coating with the reversible capacities of 1360 mAh g(-1) and 1205 mAh g(-1), respectively. Therefore, our approach provides a new strategy for cost-effective, energy-efficient, large scale synthesis of functional Si electrode materials.

  8. Long-time dynamics of laser-cooled ions in the TSR storage ring

    International Nuclear Information System (INIS)

    Mudrich, M.

    2000-01-01

    This diploma thesis studies experimentally the long-time dynamics of laser-cooled 9 Be + -beams at the TSR under different cooling conditions. The goal is to enlarge the understanding of ultra-cold, non-neutral plasma at high center-of-mass energies. By means of improved measurement capabilities one can now for the first time monitor the entire phase-space over a long time. This makes it possible to quantitatively analyse the possibilities and limitations of laser cooling at a storage ring. Under optimum cooling conditions a regime of high phase-space density is reached, close to the region where influences of Coulomb coupling are expected. Furthermore, a Monte-Carlo model is worked out that qualitatively describes the beam dynamics. The model includes the influence of transverse-longitudinal coupling due to intra beam scattering on the longitudinal phase-space distribution. At high phase-space density a sudden disappearance of intra beam collisions is observed experimentally and possible interpretations are given. (orig.)

  9. Direct evidence for a thermal effect of Ar+ ion bombardment in a conventional sputtering mode

    International Nuclear Information System (INIS)

    Okuyama, F.; Fujimoto, Y.

    1986-01-01

    Evidence is presented that the Ar + ion bombardment for sputtering in Auger electron spectroscopy can heat the target up to 2000 0 C if the target has poor heat conduction. Polycrystalline microneedles of Cr exhibited spherical tips after being exposed to 3 keV Ar + ions, proving that the needle tips were melted by impacting Ar + ions. Microneedles of Mo ion bombarded under the same condition were bent plastically, which perhaps reflects the thermal annealing of the needles during ion bombardment

  10. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.

    Science.gov (United States)

    Debord, J Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A; Verkhoturov, Stanislav V; Schweikert, Emile A

    2012-04-12

    Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.

  11. Evaluation of metal ions in rice samples: extraction and direct determination by ICP OES

    International Nuclear Information System (INIS)

    Oliveira, Andrea; Cadore, Solange; Baccan, Nivaldo

    2012-01-01

    A method for extraction of metal ions present in rice samples using ammoniacal EDTA solution, pH = 10, as extractor agent is proposed under the following optimized conditions: 0.20 g of rice sample and 5.00 mL of ammoniacal EDTA (ethylenediaminetetraacetic acid) solution, with 5 min of ultrasound exposure time. Using robust ICP OES (inductively coupled plasma atomic emission spectrometry) conditions, direct analysis of the extraction solution was allowed, and the recovery values obtained were above 90% for most of the studied elements (P, K, Mg, Ca, Zn, Mn, Cu and Mo) with RSD -1 (Mn) - 48.68 mg kg -1 (K), showing adequate detectability for the determination of the analytes. The analysis of different samples indicated that Brazilian 'integral' rice contains higher contents of the constituents studied, followed by 'parboiled' rice, and the 'agulhinha' rice a long and thin grain type. (author)

  12. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non‐Polar Solvents by using Conductometry

    Science.gov (United States)

    Iseda, Kazuya

    2018-01-01

    Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717

  13. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A data acquisition and storage system for the ion auxiliary propulsion system cyclic thruster test

    Science.gov (United States)

    Hamley, John A.

    1989-01-01

    A nine-track tape drive interfaced to a standard personal computer was used to transport data from a remote test site to the NASA Lewis mainframe computer for analysis. The Cyclic Ground Test of the Ion Auxiliary Propulsion System (IAPS), which successfully achieved its goal of 2557 cycles and 7057 hr of thrusting beam on time generated several megabytes of test data over many months of continuous testing. A flight-like controller and power supply were used to control the thruster and acquire data. Thruster data was converted to RS232 format and transmitted to a personal computer, which stored the raw digital data on the nine-track tape. The tape format was such that with minor modifications, mainframe flight data analysis software could be used to analyze the Cyclic Ground Test data. The personal computer also converted the digital data to engineering units and displayed real time thruster parameters. Hardcopy data was printed at a rate dependent on thruster operating conditions. The tape drive provided a convenient means to transport the data to the mainframe for analysis, and avoided a development effort for new data analysis software for the Cyclic test. This paper describes the data system, interfacing and software requirements.

  15. Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Kim, Doo Soo; Hur, Jaehyun; Park, Min Sang; Yoon, Sukeun; Kim, Il Tae

    2018-06-01

    We report a facile approach to synthesize Fe-Sb-based hybrid oxides nanocomposites consisting of Sb, Sb2O3, and Fe3O4 for use as new anode materials for lithium-ion batteries. The composites are synthesized via galvanic replacement between Fe3+ and Sb at high temperature in triethylene glycol medium. The phase, morphology, and composition changes of the composites involved in the various stages of the replacement reaction are characterized using X-ray diffractometry, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The as-prepared composites have different compositions with very small particle sizes (interfacial contact area between the nanocomposite and electrolyte, stable structure of the composites owing to a mixture of inactive phases generated by the conversion reaction between Li+ and oxide metal-whose structure serves as an electron conductor, inhibits agglomeration of Sb particles, and acts as an effective buffer against volume change of Sb during cycling-and high Li+ diffusion ability.

  16. Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xiang Xiaoxia; Huang Zhengzheng; Liu Enhui; Shen Haijie; Tian Yingying; Xie Hui; Wu Yuhu; Wu Zhilian

    2011-01-01

    Highlights: → Polyaniline nanotube is synthesized by the self-assembly method in aqueous media. → Carbon nanotubes were prepared from polyaniline nanotube by physical activation. → Activation leads to large surface area, and surface nitrogen and oxygen functional groups. → Such physical and chemical properties lead to the good electrochemical properties. → After 20 cycles, a reversible capacity of 728 mAh g -1 was obtained. - Abstract: Carbon nanotubes with large surface area and surface nitrogen and oxygen functional groups are prepared by carbonizing and activating of polyaniline nanotubes, which is synthesized by polymerization of aniline with the self-assembly method in aqueous media. The physicochemical properties of the carbon nanotubes are characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurements. The surface area and pore diameter are 618.9 m 2 g -1 and 3.10 nm. The electrochemical properties of the carbon nanotubes as anode materials in lithium ion batteries are evaluated. At a current density of 100 mA g -1 , the activated carbon nanotube shows an enormously first discharge capacity of about 1370 mAh g -1 and a charge capacity of 907 mAh g -1 . After 20 cycling tests, the activated carbon nanotube retains a reversible capacity of 728 mAh g -1 . These indicate it may be a promising candidate for an anode material for lithium secondary batteries.

  17. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  18. Dual Carbon-Confined SnO2 Hollow Nanospheres Enabling High Performance for the Reversible Storage of Alkali Metal Ions.

    Science.gov (United States)

    Wu, Qiong; Shao, Qi; Li, Qiang; Duan, Qian; Li, Yanhui; Wang, Heng-Guo

    2018-04-25

    To explore a universal electrode material for the high-performance electrochemical storage of Li + , Na + , and K + ions remains a big challenge. Herein, we propose a "trinity" strategy to coat the SnO 2 hollow nanospheres using the dual carbon layer from the polydopamine-derived nitrogen-doped carbon and graphene. Thereinto, hollow structures with sufficient void space could buffer the volume expansion, whereas dual carbon-confined strategy could not only elastically prevent the aggregation of nanoparticle and ensure the structural integrity but also immensely improve the conductivity and endow high rate properties. Benefiting from the effective strategy and specific structure, the dual carbon-confined SnO 2 hollow nanosphere (denoted as G@C@SnO 2 ) can serve as the universal host material for alkali metal ions and enable their rapid and reversible storage. As expected, the resulting G@C@SnO 2 as a universal anode material shows reversible alkali-metal-ion storage with high performance. We believe this that strategy could pave the way for constructing other metal-oxide-based dual carbon-confined high-performance materials for the future energy storage applications.

  19. Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions.

    Science.gov (United States)

    Derks, Terry G J; van Rijn, Margreet

    2015-05-01

    Hepatic glycogen storage diseases (GSD) underscore the intimate relationship between carbohydrate and lipid metabolism. The hyperlipidemias in hepatic GSD reflect perturbed intracellular metabolism, providing biomarkers in blood to monitor dietary management. In different types of GSD, hyperlipidemias are of a different origin. Hypertriglyceridemia is most prominent in GSD type Ia and associated with long-term outcome morbidity, like pancreatitis and hepatic adenomas. In the ketotic subtypes of GSD, hypertriglyceridemia reflects the age-dependent fasting intolerance, secondary lipolysis and increased mitochondrial fatty acid oxidation. The role of high protein diets is established for ketotic types of GSD, but non-traditional dietary interventions (like medium-chain triglycerides and the ketogenic diet) in hepatic GSD are still controversial and necessitate further studies. Patients with these rare inherited disorders of carbohydrate metabolism meet several criteria of the metabolic syndrome, therefore close monitoring for cardiovascular diseases in ageing GSD patients may be justified.

  20. Platelet storage in Fresenius/NPBI polyolefin and BTHC-PVC bags: a direct comparison.

    Science.gov (United States)

    Hornsey, V S; McColl, K; Drummond, O; Macgregor, I R; Prowse, C V

    2008-08-01

    New platelet storage systems, such as changes in the plastic of the storage bags, require validation. In this study, pooled buffy coat platelets stored in Fresenius/NPBI polyolefin bags were compared with those stored in Fresenius/NPBI butyryl-trihexyl citrate (BTHC) plasticized polyvinyl chloride (PVC). The CompoSelect thrombocyte polishing filter system (1000 mL polyolefin bag) and the CompoStop F730 system (1300 mL BTHC-PVC bag) were used to prepare paired, plasma-suspended, buffy coat platelet concentrates. Samples were taken up to day 7 for in vitro analysis. In a separate experiment, 12 units were prepared using the CompoStop F730 system and samples taken after leucofiltration for FXIIa assay. By day 7, platelet concentrates stored in BTHC-PVC demonstrated significantly higher pH levels (7.32 +/- 0.05 vs. 7.26 +/- 0.05) and a greater degree of cell lysis as shown by increased lactate dehydrogenase levels (497 +/- 107 vs. 392 +/- 81 U L(-1)). The supernatants contained higher concentrations of soluble P-selectin and the chemokine 'regulated on activation, normal T-cell expressed and presumably secreted', which are released from the alpha-granules during activation. The ATP concentrations were significantly lower in BTHC-PVC. Platelet counts, mean platelet volume and hypotonic shock response were similar for both bags. FXIIa antigen concentrations were 0.6 +/- 0.2 ng mL(-1) indicating that activation of the contact factor pathway had not occurred. Although the CompoStop F730 leucoreduction filter did not activate the contact system, platelets stored in 100% plasma in BTHC-PVC bags demonstrated different in vitro characteristics from those stored in polyolefin. Further work is required to demonstrate whether these differences will affect in vivo recovery and survival.

  1. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  2. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.

    Science.gov (United States)

    Grützke, Martin; Krüger, Steffen; Kraft, Vadim; Vortmann, Britta; Rothermel, Sergej; Winter, Martin; Nowak, Sascha

    2015-10-26

    Shredding of the cells is often the first step in lithium-ion battery (LIB) recycling. Thus, LiNi1/3 Mn1/3 Co1/3 O2 (NMC)/graphite lithium-ion cells from a field-tested electric vehicle were shredded and transferred to tinplate or plastic storage containers. The formation of hazardous compounds within, and being released from, these containers was monitored over 20 months. The tinplate cans underwent fast corrosion as a result of either residual charge in the active battery material, which could not fully be discharged because of contact loss to the current collector, or redox reactions between the tinplate surface and metal parts of the shredded material. The headspace compositions of the containers were investigated at room temperature and 150 °C using headspace-gas chromatography-mass spectrometry (HS-GC-MS). Samples of the waste material were also collected using microwave-assisted extraction and the extracts were analyzed over a period of 20 months using ion chromatography-electrospray ionization-mass spectrometry (IC-ESI-MS). LiPF6 was identified as a conducting salt, whereas dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate were the main solvent components. Cyclohexylbenzene was also detected, which is an additive for overcharge protection. Diethyl carbonate, fluoride, difluorophosphate and several ionic and non-ionic alkyl (fluoro)phosphates were also identified. Importantly, dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were quantified using HS-GC-MS through the use of an internal standard. DMFP, DEFP, and related compounds are known as chemical warfare agents, and the presence of these materials is of great interest. In the case of this study, these hazardous materials are present but in manageable low concentrations. Nonetheless, the presence of such compounds and their potential release during an accident that may occur during shredding or recycling of large amounts of LIB waste should be considered. © 2015

  3. Manipulation of inverted and direct opals by a focused ion beam scanning electron microscope (FIB SEM)

    International Nuclear Information System (INIS)

    Magni, S; Milani, M; Tatti, F; Savoia, C

    2008-01-01

    Focused ion beam (FIB) milling techniques are presented aiming at the manipulation of both tin dioxide (SnO 2 ) inverted opals and polystyrene (PS) direct opals. Different SnO 2 opals are considered in order to estimate the regularity of their bulk after the production. A SnO 2 mesoporous monolith is FIB micromachined to make it suitable for optical applications. PS direct opals are structured by FIB milling at different scales. Ordered arrays of PS opals are modified by selectively removing a single sphere. In performing this task, we discuss the effects on the FIB milling due to the gas-assisted enhanced etching and to the binding of the nearest neighbours. Techniques to achieve imaging of PS opals in absence of a conductive coating are also brought up. Furthermore, isolated PS spheres are drilled with or without enhanced etching in order to produce controlled defects on them. The FIB-assisted manipulations we show may find potential applications in the field of photonic crystals, (bio)sensors and lithography assisted by colloidal masks.

  4. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may mot be possible by other techniques

  5. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques

  6. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  7. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling

    Science.gov (United States)

    Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao

    2017-10-01

    Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.

  8. Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes

    Science.gov (United States)

    Genieser, R.; Loveridge, M.; Bhagat, R.

    2018-05-01

    A previous study is focused on high temperature cycling of industrially manufactured Li-ion pouch cells (NMC-111/Graphite) with different electrolytes at 80 °C [JPS 373 (2018) 172-183]. Within this article the same test set-up is used, with cells stored for 30 days at different open circuit potentials and various electrolytes instead of electrochemical cycling. The most pronounced cell degradation (capacity fade and resistance increase) happens at high potentials. However appropriate electrolyte formulations are able to suppress ageing conditions by forming passivating surface films on both electrodes. Compared with electrochemical cycling at 80 °C, cells with enhanced electrolytes only show a slight resistance increase during storage and the capacity fade is much lower. Additionally it is shown for the first time, that the resistance is decreasing and capacity is regained once these cells are cycled again at room temperature. This is not the case for electrolytes without additives or just vinylene carbonate (VC) as an additive. It is further shown that the resistance increase of cells with the other electrolytes is accompanied by a reduction of the cell volume during further cycling. This behaviour is likely related to the reduction of CO2 at the anode to form additional SEI layer components.

  9. High-precision X-ray spectroscopy of highly-charged ions at the experimental storage ring using silicon microcalorimeters

    Science.gov (United States)

    Scholz, Pascal A.; Andrianov, Victor; Echler, Artur; Egelhof, Peter; Kilbourne, Caroline; Kiselev, Oleg; Kraft-Bermuth, Saskia; McCammon, Dan

    2017-10-01

    X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, housed in a new dry cryostat equipped with a pulse tube cooler, was applied at a test beamtime at the experimental storage ring (ESR) of the GSI facility in Darmstadt. A U89+ beam at 75 MeV/u and a 124Xe54+ beam at various beam energies, both interacting with an internal gas-jet target, were used in different cycles. This test was an important benchmark for designing a larger array with an improved lateral sensitivity and statistical accuracy.

  10. Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shan, Hui; Xiong, Dongbin; Li, Xifei; Sun, Yipeng; Yan, Bo; Li, Dejun; Lawes, Stephen; Cui, Yanhua; Sun, Xueliang

    2016-01-01

    Graphical abstract: - Highlights: • The graphene aerogel (GA) with controllable surface defects was synthesized. • The graphene aerogel anodes showed high specific capacity and excellent cyclability. • Surface defects on the GA significantly function for lithium storage. • This study can extend the application of the graphene anodes for LIBs. - Abstract: Three dimensional self-assembled graphene aerogel (GA) anode materials with some surface defects have been successfully generated through a facile hydrothermal procedure using graphene oxide as precursor. The morphologies and textural properties of as-obtained GA were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman and other spectroscopy techniques. The surface defects and electrical conductivities of GA can be controlled by adjusting the hydrothermal reaction time. The results indicate that GA with a reaction time of 6 h exhibits extremely high reversible capacity (1430 mAh g"−"1 at the current density of 100 mA g"−"1) and superior rate capability (587 mAh g"−"1 at 800 mA g"−"1) with excellent cycling stability (maintaining a reversible capacity of 960 mAh g"−"1 at 100 mA g"−"1 after 100 cycles). It is demonstrated that the 3D porous network with increased defect density, as well as the considerable electrical conductivity, results in the excellent electrochemical performance of the as-made GA anodes in lithium-ion batteries.

  11. Direct separation of 67Ga citrate from zinc and copper target materials by an ion exchange

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ferieg, Kh.; Saleh, Z.A.

    2004-01-01

    The separation of 6 7G a from zinc and copper target materials using an anion- f:exchanger (Dowex21K) and 0.1 M citrate buffer at pH 6 is described. The gallium-67 was separated in citrate solution and can be directly used for medical applications. Gallium-67 with a half-life of 78.3 h and gamma-rays with energies of 93, 185 and 300 keV is a cyclotron produced radioisotope for which a considerable demand exists. 6 7G a is frequently produced through proton or deuteron bombardment of natural or enriched Zn targets (Helus and Maier-Borst, 1973). It is usually separated from Zn by ion exchange chromatography (Helus and Maier-Borst, 1973; van der Walt and Strelow, 1983) or by liquid extraction Helus and Maier-Borst, 1973; Hupf and Beaver, 1970). The isotope is usually supplied in citrate solution which is widely used as 6 7G a Gallium citrate which is a well-established radiopharmaceutical for imaging soft tissue tumors and abscesses. Several routes for large scale production of 6 7G a and the development of medical applications have been reported (Silvester and Thakur, 1970; Dahl and Tilbury, 1972; Steyn and Meyer,1973; Vlatkovic et al., 1975; Neirinckx, 1976; Thakur, 1977). Various attempts were carried out to separate gallium-67 by using different ion exchange methods (Strelow et al., 1971; Das and Ramamoorthy, 1995; Boothe et al.,1991) through the labelling of citrate by using 6 7G a was carried out for medical applications

  12. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  13. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  14. Outstanding Li-storage performance of LiFePO4@MWCNTs cathode material with 3D network structure for lithium-ion batteries

    Science.gov (United States)

    Sun, Xiaodong; Zhang, Le

    2018-05-01

    In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.

  15. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, Riccardo [FastCAP Systems Corporation, Boston, MA (United States); Cooley, John [FastCAP Systems Corporation, Boston, MA (United States)

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  16. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    Science.gov (United States)

    Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.

    2015-06-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.

  17. Investigation of pUC19 DNA damage induced by direct and indirect effect of 7Li ions radiation

    International Nuclear Information System (INIS)

    Sui Li; Zhao Kui; Guo Jiyu; Ni Meinan; Kong Fuquan; Cai Minghui; Yang Mingjian

    2006-01-01

    The effect of direct and indirect action on DNA damage in 7 Li ions radiation is investigated. Using 7 Li ions generated by HI-13 tandem accelerator, three conditions of pUC19 plasmid DNA samples including dry, with or without mannitol are irradiated at different doses in air. These irradiated DNA samples are analyzed with atomic force microscopy (AFM) in nanometer-scale. The changes of DNA forms as the dose increases are observed. The results show that free radical is the main factor in DNA strand breaks induced by 7 Li ions radiation under condition of aqueous solution. The mannitol can effectively scavenge free radical and reduce the yields of DNA strand breaks. The experimental results of this report can offered valuable basal data for cancer therapy by boron neutron capture therapy (BNCT) or heavy ion radiation method, etc. (author)

  18. Field tests experience from 1.6MW/400kWh Li-ion battery energy storage system providing primary frequency regulation service

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Lithium-ion battery energy storage systems (BESSs) represent suitable alternatives to conventional generating units for providing primary frequency regulation on the Danish market. This paper presents aspects concerning the operation of the BESSs in the Danish energy market while providing upwards...... on the BESS demonstrator located in Western Denmark and initial results are introduced and discussed. These measurements can be used to validate models for battery ageing during realistic operation or to develop the diagnostic tools for the BESS....

  19. The direct heat measurement of mechanical energy storage metal-organic frameworks.

    Science.gov (United States)

    Rodriguez, Julien; Beurroies, Isabelle; Loiseau, Thierry; Denoyel, Renaud; Llewellyn, Philip L

    2015-04-07

    In any process, the heat exchanged is an essential property required in its development. Whilst the work related to structural transitions of some flexible metal-organic frameworks (MOFs) has been quantified and linked with potential applications such as molecular springs or shock absorbers, the heat related to such transitions has never been directly measured. This has now been carried out with MIL-53(Al) using specifically devised calorimetry experiments. We project the importance of these heats in devices such as molecular springs or dampers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Description of heavy-ion fusion in terms of direct reaction theory

    International Nuclear Information System (INIS)

    Hong, S.W.

    1987-01-01

    A direct reaction description of the heavy-ion fusion, proposed by Udagawa, Kim and Tamura, has been successfully used in calculating the fusion cross sections and the spin distributions for a number of systems in the energy regions from the sub-barrier to the above-barrier region. A fusion potential is introduced in this theory and the radius of the fusion potential is treated as an adjustable parameter. The theory is thus a one-parameter theory. The results obtained by Udagawa, Kim and Tamura showed that the radius parameter ranges from 1.4 to 1.5 fm, which is much larger than the radius (1.0 fm) used in other models. A hard evidence is shown to demonstrate the necessity of the long-ranged fusion potential radius in the near-barrier region. In the above-barrier region, the use of the energy-dependent optical potential and the energy-dependent fusion potential radius is proved to be essential in reproducing the measured fusion cross sections. As a further application of the theory, the double folded potential model is utilized to provide the real part of the optical potential. The imaginary part of the optical potential is determined so that not only the elastic scattering but also the fusion cross sections can be reproduced

  1. Directed Flow in Heavy-Ion Collisions and Its Implications for Astrophysics

    Directory of Open Access Journals (Sweden)

    Yuri B. Ivanov

    2017-11-01

    Full Text Available Analysis of directed flow ( v 1 of protons, antiprotons and pions in heavy-ion collisions is performed in the range of collision energies s N N = 2.7–39 GeV. Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS and two versions of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover transition. The crossover EoS is unambiguously preferable for the description of experimental data at lower collision energies s N N ≲ 20 Gev. However, at higher collision energies s N N ≳ 20 Gev. the purely hadronic EoS again becomes advantageous. This indicates that the deconfinement EoS in the quark-gluon sector should be stiffer at high baryon densities than those used in the calculation. The latter finding is in agreement with that discussed in astrophysics in connection with existence of hybrid stars with masses up to about two solar masses.

  2. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  3. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres

    International Nuclear Information System (INIS)

    Zhao, Liwei; Li, Hongji; Li, Mingji; Xu, Sheng; Li, Cuiping; Qu, Changqing; Zhang, Lijun; Yang, Baohe

    2016-01-01

    Highlights: • Graphene/TaC/Ta wire electrode was prepared by CVD. • Carbon hollow spheres as a solid electrolyte were prepared by hydrothermal. • Specific capacitance of assembled capacitor reached 593 F g −1 at 10 A g −1 . • The capacitor provided high energy and power densities (132 W h kg −1 /3.17 kW kg −1 ). • The hybrid capacitor also exhibited a high stability during long endurance tests. - Abstract: Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593 F g −1 at a current density of 10 A g −1 . The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132 W h kg −1 at a high power density of 3.17 kW kg −1 . The high energy density is attributed to the widened operation window ranging from 0 to 3.0 V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.

  4. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  5. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  6. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  7. Damage accumulation in nitrogen implanted 6H-SiC: Dependence on the direction of ion incidence and on the ion fluence

    International Nuclear Information System (INIS)

    Zolnai, Z.; Ster, A.; Khanh, N. Q.; Battistig, G.; Lohner, T.; Gyulai, J.; Kotai, E.; Posselt, M.

    2007-01-01

    The influence of crystallographic orientation and ion fluence on the shape of damage distributions induced by 500 keV N + implantation at room temperature into 6H-SiC is investigated. The irradiation was performed at different tilt angles between 0 degree sign and 4 degree sign with respect to the crystallographic axis in order to consider the whole range of beam alignment from channeling to random conditions. The applied implantation fluence range was 2.5x10 14 -3x10 15 cm -2 . A special analytical method, 3.55 MeV 4 He + ion backscattering analysis in combination with channeling technique (BS/C), was employed to measure the disorder accumulation simultaneously in the Si and C sublattices of SiC with good depth resolution. For correct energy to depth conversion in the BS/C spectra, the average electronic energy loss per analyzing He ion for the axial channeling direction was determined. It was found that the tilt angle of nitrogen implantation has strong influence on the shape of the induced disorder profiles. Significantly lower disorder was found for channeling than for random irradiation. Computer simulation of the measured BS/C spectra showed the presence of a simple defect structure in weakly damaged samples and suggested the formation of a complex disorder state for higher disorder levels. Full-cascade atomistic computer simulation of the ion implantation process was performed to explain the differences in disorder accumulation on the Si and C sublattices. The damage buildup mechanism was interpreted with the direct-impact, defect-stimulated amorphization model in order to understand damage formation and to describe the composition of structural disorder versus the ion fluence and the implantation tilt angle

  8. Li-ion batteries from LiFePO{sub 4} cathode and anatase/graphene composite anode for stationary energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon; Wang, Donghai; Viswanathan, Vish V.; Wang, Wei; Nie, Zimin; Zhang, Ji-Guang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352 (United States); Bae, In-Tae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Duong, Tien [US Departments of Energy, 1000 Independence Ave., Washington, DC 20858 (United States)

    2010-03-15

    Li-ion batteries made from LiFePO{sub 4} cathode and anatase TiO{sub 2}/graphene composite anode were investigated for potential application in stationary energy storage. Fine-structured LiFePO{sub 4} was synthesized by a novel molten surfactant approach whereas anatase TiO{sub 2}/graphene nanocomposite was prepared via self-assembly method. The full cell that operated at 1.6 V demonstrated negligible fade even after more than 700 cycles at measured 1 C rate. While with relative lower energy density than traditional Li-ion chemistries interested for vehicle applications, the Li-ion batteries based on LiFePO{sub 4}/TiO{sub 2} combination potentially offers long life and low cost, along with safety, all which are critical to the stationary applications. (author)

  9. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  10. Alkali metal ion-proton exchange equilibria and water sorption studies on nafon 117 membrane and dowex 50 W exchange resins: effect of long storage or aging

    International Nuclear Information System (INIS)

    Ramkumar, Jayshree; Venkataramani, B.

    2004-09-01

    Alkali metal ion -H + exchanges on Nafion 117 membrane treated differently, Dowex 50 W x 4 and Dowex 50 W x 8 resins have been studied at a total ionic strength of 0.1 mol dm -3 . The water sorption isotherms of these exchangers in different ionic forms generated over the entire range of water activity, have been analysed by the D'Arcy and Watt equation (DWE). Water sorption studies have shown that the physical structure of the exchangers have changed due to long -storage or aging, resulting in poorer water sorption and even formation of pores in the case of Dowex 50 W x 8 resin. As a result, the counter ions in the exchangers are not hydrated and the water is present in a free form, albeit structured, in the resin phase. The selectivity sequence for the alkali metal ions with reference to the H + (Li + + + ) for the exchangers used in the present study is in accordance with that reported in the literature for the ionomers having sulphonic acid as the functional group. In view of the absence of hydration of the cations in the resin phase, the driving force for the selectivity of the cation, namely, the net gain in entropy, is expected to come from the loss of structured water during the exchange process. Pre treating the Nafion 117 membrane with boiling acid solution activates the clustered region of the membrane in the H + form, while pretreatment with boiling water expands the non-ionic domain (the region connecting the clusters). These modifications influence the state of water present in the Nafion 117 membrane and the ion exchange equilibria. As a result of long storage or aging, the ion exchangers lose their elasticity or swelling characteristics. The results obtained in the present study indicate that in aged materials, the ionogenic groups are existing as isolated ion -pairs rather than in a clustered morphology. (author)

  11. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    International Nuclear Information System (INIS)

    Zhang, L; Heinig, N F; Bazargan, S; Abd-Ellah, M; Moghimi, N; Leung, K T

    2015-01-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion–Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation. (paper)

  12. Direct determination of a radiation-damage profile with atomic resolution in ion-irradiated platinum. MSC report No. 5030

    International Nuclear Information System (INIS)

    Pramanik, D.; Seidman, D.N.

    1983-05-01

    The field-ion microscope (FIM) technique has been employed to determine directly a radiation damage profile, with atomic resolution, in a platinum specimen which had been irradiated at 80 0 K with 20-keV Kr + ions to a fluence of 5 x 10 12 cm - 2 . It is shown that the microscopic spatial-vacancy distribution (radiation-damage profile) is directly related to the elastically-deposited-energy profile. The experimentally constructed radiation-damage profile is compared with a theoretical damage profile - calculated employing the TRIM Monte Carlo code - and excellent agreement is obtained between the two, thus demonstrating that it is possible to go directly from a microscopic spatial distribution of vacancies to a continuous radiation-damage profile

  13. Direct observation of the point-defect structure of depleted-zones in ion-irradiated metals

    International Nuclear Information System (INIS)

    Wei, C.

    1978-01-01

    The point-defect structure of individual depleted zones has been studied systematically. Four-pass zone-refined tungsten field-ion microscope (FIM) specimens were irradiated in-situ at 10 K with 30 keV Cr + , Mo + , or W + ions to a total dose of (2 to 10) x 10 12 ion cm -2 and examined by the pulse field-evaporation technique at 10 K. The experimental conditions were such that each depleted zone was created by a single incident-ion. The number of vacant lattice sites within a depleted zone was compared with a modified Kinchin--Pease model. The radial distribution function was determined for each depleted zone; it was found that the vacant lattice sites within the volume of each depleted zone tended to exist in a highly clustered state. It was found that the diameter D of each depleted zone was described by the equation D approximately equal to [y 2 ]/sup 1 / 2 / where [y 2 ]/sup 1 / 2 / is the second moment of the theoretical distribution curve, of the fraction of incident ion energy deposited in atom motion, transverse to the direction of the incident ion-beam. The spatial distribution of self-interstitial atoms (SIAs) in a specimen irradiated with 30 keV Cr + ions and in a specimen irradiated with 18 keV Au + ions, at 10 K, was determined. A low bound to the average range of replacement collision sequences (RCSs) was found to be 175 +- 85 A. A detailed FIM study was also made of the vacancy structure of a (220) platelet created by a single 30 keV W + ion in a platinum-4.0 at. % gold alloy; the specimen was irradiated at 40 K and then isochronally warmed to 100 K. The (220) platelet was found to consist of 31 vacant lattice sites, lying in four (220) planes, and clustered in a disc-shaped region which is approximately 20 A in diameter. It was suggested that prismatic dislocation loops lying on (220) type planes in ion or fast neutron irradiated platinum can form as a result of the direct collapse of (220) type vacancy platelets

  14. A directly coupled monolithic rectangular resonator forming a robust microwave plasma ion source for SIFT-MS

    International Nuclear Information System (INIS)

    Spanel, P; Hall, E F H; Workman, C T; Smith, D

    2004-01-01

    A simple ion source is described that consists of a glass discharge tube positioned judiciously in a rectangular waveguide resonator that is directly coupled to an under-run standard magnetron. This ion source operates well with gas mixtures, including rare gases, air and water vapour in the pressure range 10-100 Pa and at magnetron powers within the range 15-40 W. The main advantage of this magnetron/cavity arrangement is the absence of mechanically adjustable parts (aerial and tuning stub), in contrast to other commonly used arrangements that combine a cavity resonator that is connected to the magnetron via a launcher and a coaxial cable

  15. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  16. A directly coupled monolithic rectangular resonator forming a robust microwave plasma ion source for SIFT-MS

    Energy Technology Data Exchange (ETDEWEB)

    Spanel, P [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom); Hall, E F H [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom); Workman, C T [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom); Smith, D [Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, ST5 8RP (United Kingdom)

    2004-05-01

    A simple ion source is described that consists of a glass discharge tube positioned judiciously in a rectangular waveguide resonator that is directly coupled to an under-run standard magnetron. This ion source operates well with gas mixtures, including rare gases, air and water vapour in the pressure range 10-100 Pa and at magnetron powers within the range 15-40 W. The main advantage of this magnetron/cavity arrangement is the absence of mechanically adjustable parts (aerial and tuning stub), in contrast to other commonly used arrangements that combine a cavity resonator that is connected to the magnetron via a launcher and a coaxial cable.

  17. Direct Comparison of Biologically Optimized Spread-out Bragg Peaks for Protons and Carbon Ions

    International Nuclear Information System (INIS)

    Wilkens, Jan J.; Oelfke, Uwe

    2008-01-01

    Purpose: In radiotherapy with hadrons, it is anticipated that carbon ions are superior to protons, mainly because of their biological properties: the relative biological effectiveness (RBE) for carbon ions is supposedly higher in the target than in the surrounding normal tissue, leading to a therapeutic advantage over protons. The purpose of this report is to investigate this effect by using biological model calculations. Methods and Materials: We compared spread-out Bragg peaks for protons and carbon ions by using physical and biological optimization. The RBE for protons and carbon ions was calculated according to published biological models. These models predict increased RBE values in regions of high linear energy transfer (LET) and an inverse dependency of the RBE on dose. Results: For pure physical optimization, protons yield a better dose distribution along the central axis. In biologically optimized plans, RBE variations for protons were relatively small. For carbon ions, high RBE values were found in the high-LET target region, as well as in the low-dose region outside the target. This means that the LET dependency and dose dependency of the RBE can cancel each other. We show this for radioresistant tissues treated with two opposing beams, for which the predicted carbon RBE within the target volume was lower than outside. Conclusions: For tissue parameters used in this study, the model used does not predict a biologic advantage of carbon ions. More reliable model parameters and clinical trials are necessary to explore the true potential of radiotherapy with carbon ions

  18. Direct observation of the vacancy structure of depleted zones in tungsten ion irradiated at 100K

    International Nuclear Information System (INIS)

    Wei, C.Y.; Seidman, D.N.

    1978-12-01

    The structure of depleted zones (DZs) created by the in-situ irradiation of tungsten specimens, at 10 0 K, with 30 keV W + , Mo + or Cr + ions has been studied by field-ion microscopy. As the mass of the 30 keV ion was decreased the following observations were made: (1) the spatial extent of the DZs increased; (2) the vacancy concentration within the DZs decreased; (3) the fraction of isolated monovacancies increased; and (4) subcascades formed within the DZs

  19. An Induction Linac Driver For A 0.44 MJ Heavy-Ion Direct Drive Target

    International Nuclear Information System (INIS)

    Seidl, P.A.; Lee, E.P.; Bangerter, R.O.; Faltens, A.

    2010-01-01

    The conceptual design of a heavy ion fusion driver system is described, including all major components. Particular issues emerging from this exercise are identified and discussed. The most important conclusion of our study is that due to stringent requirements on ion pulse phase space, we are unable to find a credible accelerator design that meets the requirements of the example target. Either the target design must be modified to accept larger ion ranges and larger focal spot sizes, or we must consider other target options.

  20. Direct Current as an Integrating Platform for ZNE Buildings with EVs and Storage: DC Direct Systems – A Bridge to a Low Carbon Future?

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl [California Inst. for Energy and the Environment, Berkeley, CA (United States); Vossos, Vagelis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kloss, Margarita [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-01

    Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for an ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.

  1. Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries

    International Nuclear Information System (INIS)

    Dong Shanmu; Wang Haibo; Gu Lin; Zhou Xinhong; Liu Zhihong; Han Pengxian; Wang Ya; Chen Xiao; Cui Guanglei; Chen Liquan

    2011-01-01

    Nanosized rutile TiO 2 is one of the most promising candidates for anode material in lithium-ion micro-batteries owing to their smaller dimension in ab-plane resulting in an enhanced performance for area capacity. However, few reports have yet emerged up to date of rutile TiO 2 nanorod arrays growing along c-axis for Li-ion battery electrode application. In this study, single-crystalline rutile TiO 2 nanorod arrays growing directly on Ti foil substrates have been fabricated using a template-free method. These nanorods can significantly improve the electrochemical performance of rutile TiO 2 in Li-ion batteries. The capacity increase is about 10 times in comparison with rutile TiO 2 compact layer.

  2. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics

    Science.gov (United States)

    Trudell, James R.; Harris, R. Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  3. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage

    Science.gov (United States)

    Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen

    2018-04-01

    To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.

  4. Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO2-Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors.

    Science.gov (United States)

    Le, Zaiyuan; Liu, Fang; Nie, Ping; Li, Xinru; Liu, Xiaoyan; Bian, Zhenfeng; Chen, Gen; Wu, Hao Bin; Lu, Yunfeng

    2017-03-28

    Sodium-ion capacitors can potentially combine the virtues of high power capability of conventional electrochemical capacitors and high energy density of batteries. However, the lack of high-performance electrode materials has been the major challenge of sodium-based energy storage devices. In this work, we report a microwave-assisted synthesis of single-crystal-like anatase TiO 2 mesocages anchored on graphene as a sodium storage material. The architecture of the nanocomposite results in pseudocapacitive charge storage behavior with fast kinetics, high reversibility, and negligible degradation to the micro/nanostructure. The nanocomposite delivers a high capacity of 268 mAh g -1 at 0.2 C, which remains 126 mAh g -1 at 10 C for over 18 000 cycles. Coupling with a carbon-based cathode, a full cell of sodium-ion capacitor successfully demonstrates a high energy density of 64.2 Wh kg -1 at 56.3 W kg -1 and 25.8 Wh kg -1 at 1357 W kg -1 , as well as an ultralong lifespan of 10 000 cycles with over 90% of capacity retention.

  5. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite.

    Science.gov (United States)

    Topcu, Cihan

    2016-12-01

    A novel polyvinyl chloride membrane chlorate (ClO 3 - ) selective electrode based on modified smectite was developed for the direct determination of chlorate ions and the potentiometric performance characteristics of its were examined. The best selectivity and sensitivity for chlorate ions were obtained for the electrode membrane containing ionophore/polyvinylchloride/o-nitrophenyloctylether in composition of 12/28/60 (w/w%). The proposed electrode showed a Nernstian response toward chlorate ions at pH=7 in the concentration range of 1×10 -7 -1×10 -1 M and the limit of detection was calculated as 9×10 -8 M from the constructed response plot. The linear slope of the electrode was -61±1mVdecade -1 for chlorate activity in the mentioned linear working range. The selectivity coefficients were calculated according to both the matched potential method and the separate solution method. The calculated selectivity coefficients showed that the electrode performed excellent selectivity for chlorate ions. The potentiometric response of electrode toward chlorate ions was found to be highly reproducible. The electrode potential was stable between pH=4-10 and it had a dynamic response time of <5s. The potentiometric behavior of the electrode in partial non-aqueous medium was also investigated and the obtained results (up to 5% (v/v) alcohol) were satisfactory. The proposed electrode was used during 15 weeks without any significant change in its potential response. Additionally, the electrode was very useful in water analysis studies such as dam water, river water, tap water, and swimming pool water where the direct determination of chlorate ions was required. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neutrino Signals in Electron-Capture Storage-Ring Experiments

    Directory of Open Access Journals (Sweden)

    Avraham Gal

    2016-06-01

    Full Text Available Neutrino signals in electron-capture decays of hydrogen-like parent ions P in storage-ring experiments at GSI are reconsidered, with special emphasis placed on the storage-ring quasi-circular motion of the daughter ions D in two-body decays P → D + ν e . It is argued that, to the extent that daughter ions are detected, these detection rates might exhibit modulations with periods of order seconds, similar to those reported in the GSI storage-ring experiments for two-body decay rates. New dedicated experiments in storage rings, or using traps, could explore these modulations.

  7. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  8. Energy Storage

    CSIR Research Space (South Africa)

    Bladergroen, B

    2015-10-01

    Full Text Available In commercial arena, the most recent developments in EES are in electrochemical storage, singling out Li-ion batteries and Vanadium Redox flow batteries, while power-to-gas/-fuels (electrolysis of water into hydrogen and subsequent methanisation...

  9. Direct potentiometric control of chloride-ion content in water coolant of nuclear reactors

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Vilkov, N.Ya.; Krasnoperov, V.M.; Epimakhova, L.V.

    1979-01-01

    The work of automatic chloride measuring device designed for continuous determination of chloride-ion concentration in water coolants of nuclear power plants is investigated. A series of experiments have been performed to investigate a device with sensitive element in the form of potentiometric cell with two flowing porous metal silver electrodes (PSE), placed in series. A calibration circuit of chloride measuring devices and PSE is described. A comparison is made between the results obtained by means of automatic chloride measuring device and results of manual control of samples. A conclusion is drawn that automatic chloride measuring devices meet the requirements of nuclear power plants for methods and instruments of control of chloride-ions microconcentration. The development and implantation of automatic chloride-ion analizers will make the analytical control on nuclear power plants easier and make it possible to obtain more reliable information

  10. Directions for reactor target design based on the US heavy ion fusion systems assessment

    International Nuclear Information System (INIS)

    Wilson, D.C.; Dudziak, D.; Magelssen, G.; Zuckerman, D.; Dreimeyer, D.

    1986-01-01

    We studied areas of major uncertainty in target design using the cost of electricity as our figure of merit. Net electric power from the plant was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain. Factors of three changes in gain cause only 8 to 12% changes in electricity cost. An increase in the peak power needed to drive targets poses only a small cost risk, but requires many more beamlets be transported to the target. A shortening of the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. To address the major uncertainties, target design should concentrate on the understanding requirements for ion range and peak driver power

  11. Power ion beam production in a magnetic-insulated diode placed in a circuit with an inductive storage with a plasmoerosion circuit breaker

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Karpov, V.B.; Krasik, Ya.E.; Paul', E.A.

    1991-01-01

    Consideration is given to results of experimental studies of modes of operation of plasma current breaker and magnetic insulated diode, placed parallel in a circuit with inductive storage and microsecond generator, as well as parameters of high-power ion beam, generated in gas-filled diode. Magnetic field of mirror configuration, which enabled to locate the gas-filled diode dose to breaking region was used for decrease of electrodynamic plasma transfer. It is shown that time delay (of the order of ten and more) of power maximum in gas-filled diode with respect to power maximum in plasma breaker is observed when using passive plasma source on anode

  12. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Science in bullet points: How to compile scientific results to underpin guidelines for CO2 storage for the German transposition of the European CCS Directive

    Science.gov (United States)

    Streibel, Martin

    2015-04-01

    In 2012 the German Parliament passed the transposition of the EC Directive 2009/31/EC the "Carbon Dioxide Storage Law" (KSpG). The law focuses on the demonstration of the CO2 storage technology and mainly regulates the storage part of the Carbon Capture and Storage (CCS) chain. As the law has a conceptual character, appendix 1 provides a description of criteria for the characterisation and assessment of a potential CO2 storage site starting with field data ending with requirements for dynamic modelling of the storage complex. Appendix 2 describes the expected monitoring system during all relevant phases of a life cycle of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects on one hand that the CO2 storage technology is still being developed and on the other hand that site specific aspects needs to be considered. In 2004 the Federal Ministry of Education and Research of Germany launched the programme GEOTECHNOLOGIEN with one key aspect being the development of technologies for a sustainable storage of carbon dioxide in geological formations. Within this research field more than 30 projects in three phases have been funded until the end of 2014. In order to benefit from the gathered knowledge and use the experiences for the policy/law making process the umbrella project AUGE has been launched in October 2012 with a life time of three years. The aim of the project is to review and compile all results of projects funded during the three phases to underpin the appendices of the KSpG. In the first part of the paper the most important findings of the project with regard to the overall risk of a geological CO2 storage and the procedure of compiling the guidance document will be discussed. Milestones of this project were • the compilation of the results of national, European and international projects; • interviews with stakeholders; • a workshops to define state of the art for certain involved technologies and existing gaps

  14. Tailoring Highly N-Doped Carbon Materials from Hexamine-Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Na-Ion Storage.

    Science.gov (United States)

    Liu, Sitong; Zhou, Jisheng; Song, Huaihe

    2018-03-01

    To prepare highly N-doped carbon materials (HNCs) as well as to determine the influence of N dopants on Na-ion storage performance, hexamine-based metal-organic frameworks are employed as new and efficient precursors in the preparation of HNCs. The HNCs possess reversible capacities as high as 160 and 142 mA h g -1 at 2 A g -1 (≈8 C) and 5 A g -1 (≈20 C), respectively, and maintain values of 145 and 123 mA h g -1 after 500 cycles, thus exhibiting excellent rate and long-term cyclic performance. Based on systematic analysis, a new insight into the roles of the different N configurations in Na-ion storage is proposed. The adsorption of Na ions on pyridinic-N (N-6) and pyrrolic-N (N-5) is fully irreversible, whereas the adsorption on graphitic-N (N-Q) is partially reversible and the adsorption on N-oxide (N-O) is fully reversible. More importantly, the N-6/N-Q ratio is an intrinsic parameter that reflects the relationship between the N configurations and carbon textures for N-doped carbons prepared from in situ pyrolysis of organic precursors. The cyclic stability and rate-performance improve with decreasing N-6/N-Q ratio. Therefore, this work is of great significance for the design of N-doped carbon electrodes with high performance for sodium ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application

    Science.gov (United States)

    Kubiak, Pierre; Cen, Zhaohui; López, Carmen M.; Belharouak, Ilias

    2017-12-01

    The introduction of Li-ion batteries for grid applications has become evidence as the cost per kWh is continuously decreasing. Although the Li-ion battery is a mature technology for automotive applications and portable electronics, its use for stationary applications needs more validation. The Li-ion technology is considered safe enough for grid storage application, but its lifetime is generally evaluated to be around 10 years. Higher market penetration will be achieved if a longer lifespan could be demonstrated. Therefore, aging evaluation of the batteries becomes crucial. In this paper we investigated the effects of aging after a three years' standby field deployment of a 250 kW/500 kWh Li-ion battery integrated with the grid and solar farm under the harsh climate conditions of Qatar. The development of tools for acquisition and analysis of data from the battery management system (BMS) allows the assessment of the battery performance at the battery stack, string and cell levels. The analysis of the residual capacity after aging showed that the stack suffered from a low decrease of capacity, whereas some inconsistencies have been found between the strings. These inconsistencies are caused by misalignment of a small number of cells that underwent self-discharge during standby at high state of charge.

  16. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  17. Direct classification of olive oils by using two types of ion mobility spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Garrido-Delgado, Rocio [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Mercader-Trejo, Flora [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Metrologia de Materiales, Centro Nacional de Metrologia, km. 4.5 Carretera a Los Cues, El Marques, Queretaro (Mexico); Sielemann, Stefanie; Bruyn, Wolfgang de [G.A.S. Gesellschaft fuer analytische Sensorsysteme mbH, BioMedizinZentrumDortmund, Otto-Hahn-Str. 15, 44227 Dortmund (Germany); Arce, Lourdes [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain)

    2011-06-24

    Graphical abstract: Highlights: > We explore the use of Ion Mobility Spectrometers for classification of olive oils. > Three types of olive oils were analyzed with both devices coupled to headspace system. > The ion mobility data were processed using chemometric to obtain global information. > The classification rate was better using tritium source and separation step prior IMS. - Abstract: In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.

  18. Direct classification of olive oils by using two types of ion mobility spectrometers

    International Nuclear Information System (INIS)

    Garrido-Delgado, Rocio; Mercader-Trejo, Flora; Sielemann, Stefanie; Bruyn, Wolfgang de; Arce, Lourdes; Valcarcel, Miguel

    2011-01-01

    Graphical abstract: Highlights: → We explore the use of Ion Mobility Spectrometers for classification of olive oils. → Three types of olive oils were analyzed with both devices coupled to headspace system. → The ion mobility data were processed using chemometric to obtain global information. → The classification rate was better using tritium source and separation step prior IMS. - Abstract: In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.

  19. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    Science.gov (United States)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  20. DNA damage induced by the direct effect of He ion particles

    International Nuclear Information System (INIS)

    Urushibara, A.; Shikazono, N.; Watanabe, R.; Fujii, K.; O'Neill, P.; Yokoya, A.

    2006-01-01

    We present here evidence showing that the yields of DNA lesions induced by He 2+ ions strongly depend on Linear energy transfer (LET). In this study, hydrated plasmid DNA was irradiated with He 2+ ions with LET values of 19, 63 and 95 keVμm -1 . The yields of prompt single-strand breaks (SSBs) are very similar at the varying LET values, whereas the yields of prompt double-strand breaks (DSBs) increase with increasing LET. Further, base lesions were revealed as additional strand breaks by post-irradiation treatment of the DNA with endonuclease III (Nth) and formamido-pyrimidine-DNA glycosylase (Fpg). The reduction in the yield of these enzymatically induced SSBs and DSBs becomes significant as the LET increases. These results suggest that the clustering of DNA lesions becomes more probable in regions of high LET. (authors)

  1. Neutrinoless double beta decay with 82SeF6 and direct ion imaging

    Science.gov (United States)

    Nygren, D. R.; Jones, B. J. P.; López-March, N.; Mei, Y.; Psihas, F.; Renner, J.

    2018-03-01

    We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. A promising new detection technique is outlined which combines techniques pioneered in high pressure xenon gas, such as topological discrimination, with the high Q-value afforded by the double beta decay isotope 82Se. The lack of free electrons in SeF6 mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are presented, suggesting that such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100 kg scale, and still better at the ton-scale.

  2. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Kalpataru, E-mail: panda@afm.eei.eng.osaka-u.ac.jp, E-mail: phy.kalpa@gmail.com; Inami, Eiichi; Sugimoto, Yoshiaki [Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Sankaran, Kamatchi J.; Tai, Nyan Hwa [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, I-Nan, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-20

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm{sup 2} at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  3. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    International Nuclear Information System (INIS)

    Panda, Kalpataru; Inami, Eiichi; Sugimoto, Yoshiaki; Sankaran, Kamatchi J.; Tai, Nyan Hwa; Lin, I-Nan

    2014-01-01

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm 2 at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  4. Ion cyclotron waves: Direct compariosn between ground-based measurements and observations in the source region

    International Nuclear Information System (INIS)

    Perraut, S.; Gendrin, R.; Roux, A.; de Villedary, C.

    1984-01-01

    Simultaneous measurements of ion cyclotron waves (ICW's) were performed on GEOS spacecraft and in the vicinity of their magnetic footprints with the French Mobile station. The detailed comparison between the two sets of data shown that while ICW's having F + gyrofrequency at the equator, generally propagate to the ground, only 50% of those generated above F/sub He/ can reach the ground station. It is shown that these results are in good agreement with the conclusions that Rauch and Roux [1982] drew on the basis of measurements reported by Young et al 1981]. In an He + -rich plasma, ICW's with F>F/sub He/ suffer a reflection where the frequency locally matches the local bi-ion hybrid frequency. We extend the calculations of Rauch and Roux and calculate, as a function of the He + concentration, the tunneling of ICW's through the stopband induced by the presence of minor He + ions. It is shown that the transmission coefficient strongly depends upon the wave frequency for a given He + abundance ratio. The results obtained are shown to be supported by existing observations

  5. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    Science.gov (United States)

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  6. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    DEFF Research Database (Denmark)

    Wang, L.; Lee, D. J.; Lee, W. J.

    2008-01-01

    wind turbines andWells turbines to respectively capture wind energy and wave energy from marine wind and oceanwave. In addition to wind-turbine generators(WTGs) andwave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE......This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore......) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system(FESS) and a compressed air energy storage (CAES) system to balance the required energy...

  7. MoS2 anchored free-standing three dimensional vertical graphene foam based binder-free electrodes for enhanced lithium-ion storage

    International Nuclear Information System (INIS)

    Ouyang, Bo; Wang, Ying; Zhang, Zheng; Rawat, R.S.

    2016-01-01

    The vertical graphene with hierarchical three-dimensional network architecture is a promising substrate for high energy and power density Li-ion battery due to its large surface area, inherent three-dimensional network and excellent ion transport property. Three dimensional vertical graphene (3DVG) is synthesized via plasma enhanced chemical vapor deposition (PECVD) using cost-effective and environment-friendly natural oil of M. alternifolia as precursor. The MoS 2 nanosheets are then anchored on free-standing 3DVG by hydrothermal method to make the binder free MoS 2 @3DVG anode of a Li-ion battery. The MoS 2 @3DVG electrodes deliver an enhanced capacity of 670 mAh g −1 with the capacity retention of 99% after 30 cycles at 100 mA g −1 , much better than that of the reference sample of MoS 2 @3DG (550 mAh g −1 at 100 mA g −1 ) which uses 3D planar graphene. Superior performance of the vertical graphene based electrode is attributed to the unique hierarchical structure and densely packed reactive edges of the as-synthesized 3DVG. The versatility of plasma-assisted natural precursor based vertical graphene as functional nano-structured substrate for MoS 2 , as active material, for advanced energy storage devices is demonstrated.

  8. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  9. Direct evidence of the existence of Mn3+ ions in MnTiO3

    Science.gov (United States)

    Maurya, R. K.; Sharma, Priyamedha; Patel, Ashutosh; Bindu, R.

    2017-08-01

    We investigate the room temperature electronic properties of MnTiO3 synthesised by different preparation conditions. For this purpose, we prepared MnTiO3 under two different cooling rates, one is naturally cooled while the other is quenched in liq.nitrogen. The samples were studied using optical absorbance, photoemission spectroscopy and band structure calculations. We observe significant changes in the structural parameters as a result of quenching. Interestingly, in the parent compound, our combined core level, valence band and optical absorbance studies give evidence of the Mn existence in both 2+ and 3+ states. The fraction of Mn3+ ions has been found to increase on quenching MnTiO3 suggests an increase in oxygen non-stoichiometry. The increase in the fraction of the Mn3+ ions has been manifested a) as slight enhancement in the intensity of the optical absorbance in the visible region. There occurs persistent photo-resistance when the incident light is terminated after shining; b) in the behaviour of the features (close to Fermi level) in the valence band spectra. Hence, the combined analysis of the core level, valence band and optical absorbance spectra suggests that the charge carriers are hole like which further leads to the increase in the electrical conductivity of the quenched sample. The present results provide a recipe to tune the optical absorption in the visible range for its applications in optical sensors, solar cell, etc.

  10. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    International Nuclear Information System (INIS)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas

  11. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment

    International Nuclear Information System (INIS)

    Vaclavik, Lukas; Cajka, Tomas; Hrbek, Vojtech; Hajslova, Jana

    2009-01-01

    A novel approach for the authentication of olive oil samples representing different quality grades has been developed. A new type of ion source, direct analysis in real time (DART), coupled to a high-resolution time-of-flight mass spectrometer (TOFMS) was employed for the comprehensive profiling of triacylglycerols (TAGs) and/or polar compounds extracted with a methanol-water mixture. The main parameters influencing the ionization efficiency of TAGs were the type of sample solvent, degree of sample dilution, ion beam temperature, and presence of a dopant (ammonia vapors). The ionization yield of polar compounds depended mainly on a content of water in the extract and ion beam temperature. Using DART-TOFMS, not only differentiation among extra virgin olive oil (EVOO), olive pomace oil (OPO) and olive oil (OO) could be easily achieved, but also EVOO adulteration with commonly used adulterant, hazelnut oil (HO), was feasible. Based on the linear discriminant analysis (LDA), the introduced method allowed detection of HO addition of 6 and 15% (v/v) when assessing DART-TOFMS mass profiles of polar compounds and TAGs, respectively.

  12. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vaclavik, Lukas; Cajka, Tomas; Hrbek, Vojtech [Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Chemistry and Analysis, Technicka 5, 166 28 Prague 6 (Czech Republic); Hajslova, Jana, E-mail: jana.hajslova@vscht.cz [Institute of Chemical Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Chemistry and Analysis, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2009-07-10

    A novel approach for the authentication of olive oil samples representing different quality grades has been developed. A new type of ion source, direct analysis in real time (DART), coupled to a high-resolution time-of-flight mass spectrometer (TOFMS) was employed for the comprehensive profiling of triacylglycerols (TAGs) and/or polar compounds extracted with a methanol-water mixture. The main parameters influencing the ionization efficiency of TAGs were the type of sample solvent, degree of sample dilution, ion beam temperature, and presence of a dopant (ammonia vapors). The ionization yield of polar compounds depended mainly on a content of water in the extract and ion beam temperature. Using DART-TOFMS, not only differentiation among extra virgin olive oil (EVOO), olive pomace oil (OPO) and olive oil (OO) could be easily achieved, but also EVOO adulteration with commonly used adulterant, hazelnut oil (HO), was feasible. Based on the linear discriminant analysis (LDA), the introduced method allowed detection of HO addition of 6 and 15% (v/v) when assessing DART-TOFMS mass profiles of polar compounds and TAGs, respectively.

  13. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Science.gov (United States)

    Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun

    2017-12-01

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

  14. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.

    Science.gov (United States)

    Shen, Wei; Wang, Cong; Liu, Haimei; Yang, Wensheng

    2013-10-18

    A porous Na3 V2 (PO4 )3 cathode material coated uniformly with a layer of approximately 6 nm carbon has been synthesized by the sol-gel method combined with a freeze-drying process. The special porous morphology and structure significantly increases the specific surface area of the material, which greatly enlarges the contact area between the electrode and electrolyte, and consequently supplies more active sites for sodium ions. When employed as a cathode material of sodium-ion batteries, this porous Na3 V2 (PO4 )3 /C exhibits excellent rate performance and cycling stability; for instance, it shows quite a flat potential plateau at 3.4 V in the potential window of 2.7-4.0 V versus Na(+) /Na and delivers an initial capacity as high as 118.9 and 98.0 mA h g(-1) at current rates of 0.05 and 0.5 C, respectively, and after 50 cycles, a good capacity retention of 92.7 and 93.6 % are maintained. Moreover, even when the discharge current density is increased to 5 C (590 mA g(-1) ), an initial capacity of 97.6 mA h g(-1) can still be achieved, and an exciting capacity retention of 88.6 % is obtained after 100 cycles. The good cycle performance, excellent rate capability, and moreover, the low cost of Na3 V2 (PO4 )3 /C suggest that this material is a promising cathode for large-scale sodium-ion rechargeable batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    International Nuclear Information System (INIS)

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, Paul

    2017-01-01

    Highlights: •Commercially available PV-battery system is installed in mid-sized UK home. •PV generation and household electricity demand recorded for one year. •More than fifty long-term ageing experiments on commercial batteries undertaken. •Comprehensive battery degradation model based on long-term ageing data validated. •PV-Battery system is shown not be economically viable. -- Abstract: Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, it remains unclear when and under which conditions battery storage can be profitably operated within residential photovoltaic systems. This fact is particularly pertinent when battery degradation is considered within the decision framework. In this work, a commercially available coupled photovoltaic lithium-ion battery system is installed within a mid-sized UK family home. Photovoltaic energy generation and household electricity demand is recorded for more than one year. A comprehensive battery degradation model based on long-term ageing data collected from more than fifty long-term degradation experiments on commercial Lithium-ion batteries is developed. The comprehensive model accounts for all established modes of degradation including calendar ageing, capacity throughput, ambient temperature, state of charge, depth of discharge and current rate. The model is validated using cycling data and exhibited an average maximum transient error of 7.4% in capacity loss estimates and 7.3% in resistance rise estimates for over a year of cycling. The battery ageing model is used to

  16. Enhanced lithium-ion storage performance by structural phase transition from two-dimensional rhombohedral Fe_2O_3 to cubic Fe_3O_4

    International Nuclear Information System (INIS)

    Ren, Yurong; Wang, Jiawei; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • The rhombohedral Fe_2O_3 transforms to the cubic Fe_3O_4 via a calcination treatment. • Phase structure of anodes has great influences on their electrochemical performances. • Fe_3O_4/reduced graphene oxide shows a high capacity of 825.3 mAh g"−"1 at 50 mA g"−"1. - Abstract: The electrochemical performance of a material varies with its structural phase transition. It is found that the rhombohedral Fe_2O_3 can transform to the cubic Fe_3O_4 via a calcination treatment in a nitrogen atmosphere, and lithium-ion storage performances of Fe_3O_4 get an obvious improvement due to its structural advantages. On the basis of data calculated by X-ray diffraction, the larger unit cell volume as well as the higher void fraction of cubic Fe_3O_4 provides lithium-ions with more transport channels for Li ions diffusion and storage without serious volume change, and thus the cubic Fe_3O_4 delivers an excellent reversible capacity of 921.1 mAh g"−"1 after 15 cycles at the current density of 50 mA g"−"1, which is much higher than 328.3 mAh g"−"1 for the rhombohedral Fe_2O_3. To further enhance the structural stability of electrodes, reduced graphene oxide is introduced. The Fe_3O_4/reduced graphene oxide show an excellent specific capacity of 825.3 mAh g"−"1 after 40 cycles and impressive rate performance of 600 mAh g"−"1 at the current density of 400 mA g"−"1, which are much higher than that of Fe_3O_4 (417 and 300 mAh g"−"1), Fe_2O_3 (137.4 and 95 mAh g"−"1) and Fe_2O_3/reduced graphene oxide (390.1 and 480 mAh g"−"1). These results demonstrate that the structural phase transition and reduced graphene oxide of Fe_3O_4/reduced graphene oxide composites offer unique characteristics suitable for high-performance energy storage application.

  17. Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes

    CSIR Research Space (South Africa)

    West, N

    2013-07-01

    Full Text Available This paper explores the synergistic and catalytic properties of a newly developed lithium ion battery (LIB) composite cathode of LiMn(sub2)O(Sub4) modified with bimetallic (Au–Fe) nanoparticle. Spinel phase LiMn(sub)2O(sub4) was doped...

  18. The FERRUM project: an extremely long radiative lifetime in Ti II measured in an ion storage ring

    International Nuclear Information System (INIS)

    Hartman, H; Rostohar, D; Derkatch, A; Lundin, P; Schef, P; Johansson, S; Lundberg, H; Mannervik, S; Norlin, L-O; Royen, P

    2003-01-01

    We have extended the laser probing technique at the CRYRING storage ring to measurement of the extremely long lifetime (28 s) of the metastable 3d 2 ( 3 P)4s b 4 P 5/2 level in Ti II. The result obtained demonstrates the power of this method for investigation of such long-lived levels. This is the first experimental lifetime investigation of metastable states in Ti II. (letter to the editor)

  19. Direct fabrication of nano-gap electrodes by focused ion beam etching

    International Nuclear Information System (INIS)

    Nagase, Takashi; Gamo, Kenji; Kubota, Tohru; Mashiko, Shinro

    2006-01-01

    A simple approach to increase the reliability of nano-gap electrode fabrication techniques is presented. The method is based on maskless sputter etching of Au electrodes using a focused ion beam (FIB) and in-situ monitoring of the etching steps by measuring a current fed to the Au electrodes. The in-situ monitoring is crucial to form nano-gaps much narrower than a FIB spot size. By using this approach, gaps of ∼3-6 nm are fabricated with the high yield of ∼90%, and most of the fabricated nano-gap electrodes showed high resistances of 10 GΩ-1 TΩ. The controllability of the fabrication steps is significantly improved by using triple-layered films consisting of top Ti, Au, and bottom adhesion Ti layers. The applicability of the fabricated nano-gap electrodes to electron transport studies of nano-sized objects is demonstrated by electrical measurement of Au colloidal nano-particles

  20. Measurements of Coulomb Cross Section for Production of Direct Electron-pairs by High Energy Ions at the CERN SPS

    CERN Multimedia

    2002-01-01

    QED predicts copious direct electron pair production by ultrarelativistic heavy nuclei in a high Z medium such as nuclear emulsion. First order QED calculations (combined screening and non-screening) for this process show that 1000@+32 electron pairs above 100~keV energy) should be emitted for a total |1|6O track length of 10.9~m in nuclear emulsion at 200~GeV/AMU. Emulsion exposures with oxygen (and other nuclei if available) at 60 and 200~GeV/AMU will be used to calibrate the energy dependent cross section @s~@j~(1n~E)|2|-|3, whose exponent depends on atomic screening. The oxygen tracks in the developed emulsions will be scanned with a microscope, and the number of direct electron pairs will be counted for individual tracks. The exposed stacks will contain sufficient emulsion (and CR39 plastic to check for possible interactions) that adequate path length will be available for exposures to @$>$~10|4~ions at each energy and ion species. \\\\ \\\\ If the absolute value of this cross section is confirmed as large a...

  1. Progress and future direction for the interim safe storage and disposal of Hanford high level waste (HLW)

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1996-01-01

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the US DOE and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described

  2. Soft ionization of saturated hydrocarbons, alcohols and nonpolar compounds by negative-ion direct analysis in real-time mass spectrometry.

    Science.gov (United States)

    Cody, Robert B; Dane, A John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  3. Investigations of direct and sequential Coulomb break-up of light ions

    International Nuclear Information System (INIS)

    Srivastava, D.K.; Basu, D.N.; Rebel, H.

    1988-07-01

    Coulomb dissociation of 6 Li in the field of 208 Pb at different energies via resonance and continuum levels is discussed in detail. Relations are given which can be used to directly relate the Coulomb break-up cross section to the astrophysical S-factor. Predictions for energy dependence and angular-distributions are given. The direct Coulomb break-up of 6 Li is found to be of the same order of magnitude as the sequential break-up at higher projectile energies. The effect to eleastic scattering can be accounted for by introducing a dynamic polarization potential. Predictions are given for the direct Coulomb dissociation of 26 MeV/nucleon 7 Li and 16 O incident on 208 Pb through dipole transitions to the continuum, and for 20 Ne via quadrupole transitions in similar experimental situations. (orig.) [de

  4. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chong-Qiang; Zhang, Chun-Jian [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Jun [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2017-12-15

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic {sup 197}Au + {sup 197}Au collisions at √(s{sub NN}) = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200 GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings. (orig.)

  5. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    An outlook on the perspective of photon measurements at ... QCD, the theory of strong interaction, enters the perturbative regime and is calculable. ... While photon production may be less difficult to treat than some other processes ... the context of both prompt and thermal direct photons, as they are dominated by the lowest.

  6. Interference between direct and indirect modes in two-nucleon transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Scott, D.K.; Harvey, B.G.; Hendrie, D.L.; Jahnke, U.; Kraus, L.; Maguire, C.F.; Mahoney, J.; Terrien, Y.; Yagi, K.; Glendenning, N.K.

    1975-01-01

    Direct and indirect transitions to the lowest 2 + collective states are shown to interfere constructively in the pickup reaction 122 Sn( 16 O, 18 O) 120 Sn at 104 MeV, and destructively in the inverse stripping reaction 120 Sn( 18 O, 16 O) 122 Sn at 99 MeV

  7. In-Source Laser Spectroscopy with the Laser Ion Source and Trap: First Direct Study of the Ground-State Properties of ^{217,219}Po

    Directory of Open Access Journals (Sweden)

    D. A. Fink

    2015-02-01

    Full Text Available A Laser Ion Source and Trap (LIST for a thick-target, isotope-separation on-line facility has been implemented at CERN ISOLDE for the production of pure, laser-ionized, radioactive ion beams. It offers two modes of operation, either as an ion guide, which performs similarly to the standard ISOLDE resonance ionization laser ion source (RILIS, or as a more selective ion source, where surface-ionized ions from the hot ion-source cavity are repelled by an electrode, while laser ionization is done within a radio-frequency quadrupole ion guide. The first physics application of the LIST enables the suppression of francium contamination in ion beams of neutron-rich polonium isotopes at ISOLDE by more than 1000 with a reduction in laser-ionization efficiency of only 20. Resonance ionization spectroscopy is performed directly inside the LIST device, allowing the study of the hyperfine structure and isotope shift of ^{217}Po for the first time. Nuclear decay spectroscopy of ^{219}Po is performed for the first time, revealing its half-life, α-to-β-decay branching ratio, and α-particle energy. This experiment demonstrates the applicability of the LIST at radioactive ion-beam facilities for the production and study of pure beams of exotic isotopes.

  8. Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Scholten, Tjardo; Hooghiem, Joram; Persis, Claudio De; Herber, Rien

    2017-01-01

    This paper outlines a method in which the heat production of a geothermal system is controlled in relation to the demand from a district-heating network. A model predictive control strategy is designed, which uses volume measurements in the storage tank, and predictions of the demand, to regulate

  9. Direct detection and quantification of transition metal ions in human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Stadler, Nadina; Lindner, Robyn A; Davies, Michael Jonathan

    2004-01-01

    OBJECTIVE: The involvement of transition metals in atherosclerosis is controversial. Some epidemiological studies have reported a relationship between iron (Fe) and cardiovascular disease, whereas others have not. Experimental studies have reported elevated levels of iron and copper (Cu) in disea......OBJECTIVE: The involvement of transition metals in atherosclerosis is controversial. Some epidemiological studies have reported a relationship between iron (Fe) and cardiovascular disease, whereas others have not. Experimental studies have reported elevated levels of iron and copper (Cu......) in diseased human arteries but have often used methods that release metal ions from proteins. METHODS AND RESULTS: In this study, we have used the minimally invasive technique of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICPMS) to quantify iron...... and copper in ex vivo healthy human arteries and carotid lesions. The EPR spectra detected are characteristic of nonheme Fe(III) complexes. Statistically elevated levels of iron were detected in the intima of lesions compared with healthy controls (0.370 versus 0.022 nmol/mg tissue for EPR, 0.525 versus 0...

  10. Pumping characteristics for H2, CO and gas mixture of H2 and CO of distributed ion pump for the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Hirano, Nobuo; Kobari, Toshiaki; Matsumoto, Manabu

    1995-01-01

    Evacuation in the vacuum chamber of the deflection magnet part of the SPring-8 storage ring is planned to be performed with a non evaporable getter pump (NEG) as well as a distributed ion pump (DIP). Pumping characteristics for H 2 , CO and a gas mixture of H 2 and CO of DIP was investigated. The structure of the DIP constructed on a trial basis and an experimental setup to measure the DIP pumping characteristics were described. Pumping speed above 100 L/s per 1 m at the 10 -6 Pa device and pumping speed of about 500 L/s per 1 m at the 10 -7 Pa device were achieved for a gas mixture of H 2 and CO (37% and 55% CO). On the DIP saturated with CO, pumping speed for H 2 is about twice that of pumping speed for CO at the 10 -7 Pa device. Pumping speed for CO is about 1.5 times of the speed for N 2 at the 10 -6 Pa device. Pressure of 1.2 x 10 -8 Pa (9.0 x 10 -11 Torr) is achieved at a room temperature by baking at 150degC for 40 hr. Thus, it was confirmed that the DIP has sufficient pumping characteristics as a pump for the SPring-8 storage ring. (T.H.)

  11. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated- Temperature Li-ion Storage

    Science.gov (United States)

    Tang, Jialiang; Pol, Vilas G.

    2016-02-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  12. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    Science.gov (United States)

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  13. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Blanchart, E.; Bernoux, M.; Sarda, X.; Feller, C. [Institut de Recherche pour le Developpement, Montpellier (France); Siqueira Neto, M.; Cerri, C.C.; Piccolo, M. [CENA-USP, Piracicaba (Brazil). Lab. Biogeoquimica Ambiental; Douzet, J.M. [CIRAD, Antsirabe (Madagascar); Scopel, E. [CIRAD-CA, Planaltina (Brazil)

    2007-07-01

    Soils represent a large carbon pool, approximately 1500 Gt, equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. The management and maintenance of soil carbon is therefore an integral part of the global carbon cycle. Land use change, inappropriate agricultural practices and climate change can all lead to a net release of C from soils to the atmosphere, exacerbating the problems of greenhouse gas release. Any modification of land-use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. These modifications also alter soil macrofauna that is known to affect soil carbon dynamics. Direct seeding Mulch-based Cropping (DMC) systems with two crops per year without soil tillage have widely been adopted over the last 10 to 15 years in the Cerrado (central region) of Brazil. They are replacing the traditional soybean monocropping with fallow under conventional tillage (CT). Th e objective of this study was to examine how DMC practices affect soil organic carbon (SOC) dynamics and macrofauna (Rio Verde, Goias State). The approach was to determine soil C stocks and macrofauna in five fi elds under DMC aged 1, 5, 7, 11 and 13 years. In order to compare DMC systems with the native system of the region and previous land-use, a situation under native Cerrado (tree-savanna like vegetation) and a field conducted traditionally (CT) were also studied. Soil C stocks were calculated for the 0-10 and 0-40 cm soil depth and also for the fi rst 400 kg m{sup -2} of soil to compare the same amount of soil and to suppress the potential artefact of soil compaction when sample is based on fix layer depth. Soil macrofauna was hand-sorted from soil monoliths (30 cm depth, TSBF method). In our study, the annual rate of carbon storage was equal to ca. 1.6 MgC ha{sup -1}, which is in the range of values measured for DMC in different areas of Brazil

  14. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  15. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  16. Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles

    Science.gov (United States)

    Zhang, Xiao; Jiang, Bin; Guo, Jinxue; Xie, Yaping; Tang, Lin

    2014-12-01

    The major challenge to promote the commercialization of SnO2 anode materials is to construct unique structures and/or composites that could alleviate the volume effect and extend the lifespan. This study develops an efficient synthetic solution for the preparation of mesoporous SnO2 nanosheets, which involves an evaporation-induced selfassembly process and the following thermal treatment. Surfactant F127 is used as the soft template to form abundant cores. The as-prepared sample intrinsically inherits flexible sheet-like structure and porous features, as characterized with XRD, SEM, TEM and BET techniques. Based on these combining structural benefits, the sample is utilized as anode materials for lithium-ion batteries and exhibits excellent Li+ storage performance such as large and stable reversible capacity, good rate capability, and especially the outstanding durable cycling life of over 1000 cycles, which meets the demands of practical applications. The structural changes of SnO2 nanosheets are observed from the decomposed electrodes after different electrochemical cycles. Moreover, this synthesis strategy may offer an alternative and universal approach for synthesis of other transitional metal oxides or their binary composites as high-performance anode materials for lithium-ion batteries.

  17. Structural and Electrochemical Study of Vanadium-Doped TiO2 Ramsdellite with Superior Lithium Storage Properties for Lithium-Ion Batteries.

    Science.gov (United States)

    Pérez-Flores, Juan Carlos; Hoelzel, Markus; García-Alvarado, Flaviano; Kuhn, Alois

    2016-04-04

    Titanium-oxide-based materials are considered attractive and safe alternatives to carbonaceous anodes in Li-ion batteries. In particular, the ramsdellite form TiO2 (R) is known for its superior lithium-storage ability as the bulk material when compared with other titanates. In this work, we prepared V-doped lithium titanate ramsdellites with the formula Li0.5 Ti1-x Vx O2 (0≤x≤0.5) by a conventional solid-state reaction. The lithium-free Ti1-x Vx O2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion-extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5 Ti1-x Vx O2 compounds and to follow the lithium extraction by difference-Fourier maps. Previously delithiated Ti1-x Vx O2 ramsdellites are able to insert up to 0.8 Li(+) per transition-metal atom. The initial gravimetric capacities of 270 mAh g(-1) with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2 -related intercalation compounds for the threshold of one e(-) per formula unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ptolemy: a program for heavy-ion direct-reaction calculations

    International Nuclear Information System (INIS)

    Macfarlane, M.H.; Pieper, S.C.

    1978-04-01

    Ptolemy is an IBM/360 program for the computation of nuclear elastic and direct-reaction cross sections. It carries out optical-model fits to elastic-scattering data at one or more energies and for one or more combinations of projectile and target, collective model DWBA calculations of excitation processes, and finite-range DWBA calculations of nucleon-transfer reactions. It is fast and does not require large amounts of core. The input is exceptionally flexible and easy to use. The types of calculations that Ptolemy can carry out are outlined, the formulas used are summarized, and a detailed description of its input is given

  19. Directed flow in heavy-ion collisions at NICA: What is interesting to measure?

    Energy Technology Data Exchange (ETDEWEB)

    Bravina, L.V. [University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' , (Moscow Engineering Physics Institute), Moscow (Russian Federation); Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Zabrodin, E.E. [University of Oslo, Department of Physics, Oslo (Norway); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , (Moscow Engineering Physics Institute), Moscow (Russian Federation); Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany)

    2016-08-15

    We study the formation of the directed flow of hadrons in nuclear collisions at energies between AGS and SPS in Monte Carlo cascade model. The slope of the proton flow at midrapidity tends to zero (softening) with increasing impact parameter of the collision. For very peripheral topologies this slope becomes negative (antiflow). The effect is caused by rescattering of hadrons in remnants of the colliding nuclei. Since the softening of the proton flow can be misinterpreted as indication of the presence of quark-gluon plasma, we propose several measurements at NICA facility which can help one to distinguish between the cases with and without the plasma formation. (orig.)

  20. TiO2-photoanode-assisted direct solar energy harvesting and storage in a solar-powered redox cell using halides as active materials.

    Science.gov (United States)

    Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong

    2018-06-19

    The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO2 photoanode in the cathode side. Direct charging the cell by solar irradiation results in the conversion of solar energy in to chemical energy. While discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br2/Br- and I3-/I- in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5V with good round-trip efficiencies. This design is expected to be a potential alternative towards the development of affordable, inexhaustible and clean solar energy technologies.

  1. Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties

    International Nuclear Information System (INIS)

    Anthuvan Rajesh, John; Pandurangan, Arumugam; Senthil, Chenrayan; Sasidharan, Manickam

    2014-01-01

    Highlights: • Ni/CNTs core/shell structure was synthesized using LaNi 5 alloy catalyst by CVD. • The magnetic and lithium-ion storage properties of Ni/CNTs structure were studied. • The specific Ni/CNTs structure shows strong ferromagnetic property with large coercivity value of 446.42 Oe. • Ni/CNTs structure shows enhanced electrochemical performance in terms of stable capacity and better rate capability. - Abstract: A method was developed to synthesize ferromagnetic nickel core/carbon shell nanotubes (Ni/CNTs) by chemical vapor deposition using Pauli paramagnetic lanthanum nickel (LaNi 5 ) alloy both as a catalyst and as a source for the Ni-core. The Ni-core was obtained through oxidative dissociation followed by hydrogen reduction during the catalytic growth of the CNTs. Transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) analyses reveal that the Ni-core exists as a face centered cubic single crystal. The magnetic hysteresis loop of Ni/CNTs particle shows increased coercivity (446.42 Oe) than bulk Ni at room temperature. Furthermore, the Ni/CNTs core/shell particles were investigated as anode materials in lithium-ion batteries. The Ni/CNTs electrode delivered a high discharge capacity of 309 mA h g −1 at 0.2 C, and a stable cycle-life, which is attributed to high structural stability of Ni/CNTs electrode during electrochemical lithium-ion insertion and de-insertion redox reactions

  2. Electrical enhancement of direct methanol fuel cells by metal-plasma ion implantation Pt-Ru/C multilayer catalysts.

    Science.gov (United States)

    Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan

    2009-02-01

    Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.

  3. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    Science.gov (United States)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  4. Direct Trace Element Analysis of Liquid Blood Samples by In-Air Ion Beam Analytical Techniques (PIXE-PIGE).

    Science.gov (United States)

    Huszank, Robert; Csedreki, László; Török, Zsófia

    2017-02-07

    There are various liquid materials whose elemental composition is of interest in various fields of science and technology. In many cases, sample preparation or the extraction can be complicated, or it would destroy the original environment before the analysis (for example, in the case of biological samples). However, multielement direct analysis of liquid samples can be realized by an external PIXE-PIGE measurement system. Particle-induced X-ray and gamma-ray emission spectroscopy (PIXE, PIGE) techniques were applied in external (in-air) microbeam configuration for the trace and main element determination of liquid samples. The direct analysis of standard solutions of several metal salts and human blood samples (whole blood, blood serum, blood plasma, and formed elements) was realized. From the blood samples, Na, P, S, Cl, K, Ca, Fe, Cu, Zn, and Br elemental concentrations were determined. The focused and scanned ion beam creates an opportunity to analyze very small volume samples (∼10 μL). As the sample matrix consists of light elements, the analysis is possible at ppm level. Using this external beam setup, it was found that it is possible to determine elemental composition of small-volume liquid samples routinely, while the liquid samples do not require any preparation processes, and thus, they can be analyzed directly. In the case of lower concentrations, the method is also suitable for the analysis (down to even ∼1 ppm level) but with less accuracy and longer measurement times.

  5. Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Olson, J.E.; Miller, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-02-01

    Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysis time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.

  6. Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC.

    Science.gov (United States)

    Chen, Qiang; Kinde, Monica N; Arjunan, Palaniappa; Wells, Marta M; Cohen, Aina E; Xu, Yan; Tang, Pei

    2015-09-08

    Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but molecular mechanisms underlying anesthetic action remain debatable. We found that ELIC, a pLGIC from Erwinia chrysanthemi, can be functionally inhibited by isoflurane and other anesthetics. Structures of ELIC co-crystallized with isoflurane in the absence or presence of an agonist revealed double isoflurane occupancies inside the pore near T237(6') and A244(13'). A pore-radius contraction near the extracellular entrance was observed upon isoflurane binding. Electrophysiology measurements with a single-point mutation at position 6' or 13' support the notion that binding at these sites renders isoflurane inhibition. Molecular dynamics simulations suggested that isoflurane binding was more stable in the resting than in a desensitized pore conformation. This study presents compelling evidence for a direct pore-binding mechanism of isoflurane inhibition, which has a general implication for inhibitory action of general anesthetics on pLGICs.

  7. Silver effect of Co–Ni composite material on energy storage and structural behavior for Li-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Prasanna, K.; Subburaj, T.; Jo, Yong Nam; Lee, Chang Woo

    2013-01-01

    Ag powder has been comparatively applied to the Co–Ni materials preparing by mixing method and the prepared electrodes were used as negative electrodes for Li-ion batteries applications. The prepared Co–Ni and Ag–Co–Ni with 10 wt.% of Ag composite electrodes are characterized by XRD, FE-SEM with EDX, impedance and electrochemical charge-discharge studies. These electrochemical studies are demonstrated at current rates of 0.1 C and 0.5 C between 0.01 and 2.0 V vs. Li/Li + . The porous Co–Ni and Ag–Co–Ni composite materials are electrochemically tested in lithium half cells. The porous Ag–Co–Ni composite material demonstrates that the initial and end of discharge capacity up to 20th cycles is, respectively, 860 and 715 mAh g −1 at 0.1 C rate maintaining at approximately 83%. The porous Ag–Co–Ni composite electrode may be a good candidate for high power lithium-ion batteries.

  8. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  9. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  10. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code

    International Nuclear Information System (INIS)

    Dos Santos, M.; Clairand, I.; Gruel, G.; Barquinero, J.F.; Villagrasa, C.; Incerti, S.

    2014-01-01

    The purpose of this work is to evaluate the influence of the chromatin condensation on the number of direct double-strand break (DSB) damages induced by ions. Two geometries of chromosome territories containing either condensed or de-condensed chromatin were implemented as biological targets in the Geant4 Monte Carlo simulation code and proton and alpha irradiation was simulated using the Geant4-DNA processes. A DBSCAN algorithm was used in order to detect energy deposition clusters that could give rise to single-strand breaks or DSBs on the DNA molecule. The results of this study show an increase in the number and complexity of DNA DSBs in condensed chromatin when compared with de-condensed chromatin. This work aims to evaluate the influence of the chromatin condensation in the number and complexity of direct DSB damages induced by proton and alpha irradiation. With the simulations of this study, the increase in the number and complexity of DSB-like clusters induced by ions in the heterochromatin when compared with euchromatin regions of the cell nucleus has been observed and quantified. These results suggest that condensed chromatin can be the location of more severe radiation-induced lesions, more difficult to repair, than de-condensed chromatin. On the other hand, it was also observed that, whatever the chromatin condensation, more possible damages are found after proton irradiation compared with alpha particles of the same LET. Nevertheless, as already remarked, this study concerns only the direct effect of ionising radiation that can be calculated from the results of the physical stage simulated with Geant4-DNA. To include indirect effects induced by radicals around the DNA molecule, the elements needed for simulating the chemical stage are being developed in the frame of the Geant4-DNA project(15, 16) and they are planned to be included in future work. With a complete calculation (direct + indirect damages) it would then be possible to estimate an energy

  11. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  12. Network Distributed Data Acquisition, Storage, and Graphical Live Display Software for a Laser Ion Source at CERN

    CERN Document Server

    Rossel, Ralf Erik; Rothe, Sebastian

    2014-01-01

    This project documentation outlines the requirements and implementation details for the measurement data recording software currently in development for the Resonance Ionisation Laser Ion Source (RILIS) at CERN. The software is capable of acquiring data from multiple laser parameter monitoring devices and associating the gathered values to represent qualitative and quantitative measurements. The measurement data is displayed graphically within the program and recorded to files for later analysis. The main application of the software is the acquisition coordination and recording of measurement data during spectroscopy experiments performed by RILIS and collaborating experiments. This document describes the design concept and detailed program implementation status at the end of July 2014 and provides an outlook to future developments in RILIS spectroscopy data acquisition.

  13. THE USE OF A FACTORIAL DESIGN TO EVALUATE THE PHYSICAL STABILITY OF TABLETS PREPARED BY DIRECT COMPRESSION .2. SELECTION OF EXCIPIENTS SUITABLE FOR USE UNDER TROPICAL STORAGE-CONDITIONS

    NARCIS (Netherlands)

    BOS, CE; BOLHUIS, GK; LERK, CF; DEBOER, JH; DUINEVELD, CAA; SMILDE, AK; DOORNBOS, DA

    1991-01-01

    A factorial design has been used to study the influence of disintegrant concentration, storage temperature and relative humidity upon storage on the physical stability of tablets prepared by direct compression. Tablets prepared from a binary mixture of a filler-binder and a disintegrant were stored

  14. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  15. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  16. Inverse spinel transition metal oxides for lithium-ion storage with different discharge/charge conversion mechanisms

    International Nuclear Information System (INIS)

    Wang, Jiawei; Ren, Yurong; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • Inverse spinel structure relieves the irreversible phase transition of electrodes. • Anodes with the same structure show different discharge/charge conversion mechanisms. • High reversible capacity confirms the potential feasibility of composites. - Abstract: Inverse spinel transition metal oxides (Fe 3 O 4 , MnFe 2 O 4 , Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide) are prepared by a facile ethylene-glycol-assisted hydrothermal method. The stability of inverse spinel structure and the high specific surface area of nanoscale provide transition metal oxides with high specific capacity. And the surface modification with reduced graphene oxide improves the poor conductivity of pristine transition metal oxides. Pristine Fe 3 O 4 and MnFe 2 O 4 deliver the high initial discharge capacity of 1137.1 and 1088.9 mAh g −1 , respectively. Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide get the reversible capacity of 645.8 and 720 mAh g −1 , respectively, even after 55 cycles. The different discharge/charge conversion mechanisms make them different capacity stability. The great electrochemical performances of composites offer electrodes with suitable characteristics for high-performance energy storage application.

  17. Dry storage

    International Nuclear Information System (INIS)

    Arnott, Don.

    1985-01-01

    The environmental movement has consistently argued against disposal of nuclear waste. Reasons include its irretrievability in the event of leakage, the implication that reprocessing will continue and the legitimacy attached to an expanding nuclear programme. But there is an alternative. The author here sets out the background and a possible future direction of a campaign based on a call for dry storage. (author)

  18. What can we learn from the directed flow in heavy-ion collisions at BES RHIC energies?

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu.B. [NRC ' ' Kurchatov Institute' ' , National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Soldatov, A.A. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-01-15

    Analysis of directed flow (v{sub 1}) of protons, antiprotons and pions in heavy-ion collisions is performed in the range of collision energies √(s{sub NN}) = 2.7-39 GeV. Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover transition. The crossover EoS is unambiguously preferable for the description of the most part of experimental data in this energy range. The directed flow indicates that the crossover deconfinement transition takes place in semicentral Au+Au collisions in a wide range of collision energies 4

  19. Facile and efficient room temperature solid state reaction enabled synthesis of antimony nanoparticles embedded within reduced graphene oxide for enhanced sodium-ion storage

    Science.gov (United States)

    Zhang, Xiukui; Wu, Ping; Jiang, Li; Zhang, Xiaofang; Shi, Hongxia; Zhu, Xiaoshu; Wei, Shaohua; Zhou, Yiming

    2018-06-01

    Herein, a very simple and cost-effective solid state reaction method is employed to obtain, for the first time, the antimony nanoparticles embedded within reduced graphene oxide matrices (designated as Sb/rGO). By directly grinding antimony chloride and sodium hydroxide together at room temperature in the presence of graphene oxide (GO), Sb4O5Cl2 precursor was quickly obtained, which is evenly incorporated in the graphene oxide matrices. After subsequent chemical reduction by NaBH4, the Sb/rGO composite was successfully synthesized. The as-prepared Sb/rGO composite consists of uniform Sb nanoparticles of sub-20 nm, all of which have been wrapped in and protected by the rGO matrices. The Sb nanoparticles serve as a sufficient sodium ion reservoir while the rGO matrices provide highly efficient pathways for transport of sodium ions and electrons. Moreover, the volume expansion of Sb during sodiation can be buffered in the rGO matrices. As a result, the Sb/rGO composite exhibits excellent electrochemical performance in sodium-ion batteries (SIBs), including an enhanced cycling stability with a highly reversible charge capacity of 455 mA h g-1 after 45 cycles at 100 mA g-1, and a coulombic efficiency exceeding 98% during cycling. The findings in the present work pave the way to not only synthesize the designated promising electrode materials for high performance SIBs, but also thoroughly understand the solid-state reaction.

  20. Stored ions in the Paul trap. Preliminary investigations on life-time measurement of the metastable 6D3/2 state of 226Ra+, storage properties of 138Ba+ and 28N2+ at variation of the buffer-gas pressure

    International Nuclear Information System (INIS)

    Leuthner, Heiko

    2011-01-01

    Paul-traps are a widely used tool in scientific research and play an important role in atomic physics and mass spectrometry. (1) From the earth-alkaline ions only spectroscopic data of Ra + are lacking. Those are important for the test of theoretical models and for a future atomic parity violation experiment. The first part of this work describes the setting up of a Paul-trap based Laser-experiment for measuring the lifetime of the 6D 3/2 state of 226 Ra + . Basic tests with 138 Ba + ions are presented. (2) Damping and space charge effects on resonances in the stability region strongly affect the use of Paul-traps in mass spectrometry and analysis of reaction products. The second part of this work presents detailed investigations on the storage of big, buffer-gas-cooled ion clouds in two different Paul-trap experiments; the first of them uses 138 Ba + ions detected continuously by electronic and optical detection systems, the second one uses N 2 + molecular ions and an automated destructive time-of-flight-detection method. A high precision measurement with N 2 + of the first stability region of the trap not only gives the possibility of direct comparison of experimental and theoretical resonances but also provides absolute ion numbers over the whole region for the first time. Unlike previous measurements, the investigations on nonlinear resonances where done on the superimposed stability regions of 4 simultaneously stored ion species. The nonlinear resonances were studied by varying buffer gas pressure and ion number and showed collective resonances without external excitation. By varying the buffer gas pressure the spatial distribution of a Ba + -ion cloud was investigated as well as the change of the optimal storing parameters using N 2 + -ions. Optimum Pressures for catching and trapping of ions turned out to be unequal. Shape and position of externally excited collective and individual resonances were studied under variation of ion number, buffer-gas pressure

  1. Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Jiafeng [School of Materials; Yuan, Tao [School of Materials; Pang, Yuepeng [School of Materials; Xu, Xinbo [School of Materials; Yang, Junhe [School of Materials; Hu, Wenbin; Zhong, Cheng; Ma, Zi-Feng [Shanghai Electrochemical Energy Devices Research Center,; Bi, Xuanxuan [Chemical; Zheng, Shiyou [School of Materials

    2017-10-06

    Red phosphorus (P) is considered to be one of the most attractive anodic materials for lithium-ion batteries (LIBs) due to its high theoretical capacity of 2596 mAh g–1. However, intrinsic characteristics such as the poor electronic conductivity and large volume expansion at lithiation impede the development of red P. Here, we design a new strategy to embed red P particles into a cross-link-structural carbon film (P–C film), in order to improve the electronic conductivity and accommodate the volume expansion. The red P/carbon film is synthesized via vapor phase polymerization (VPP) followed by the pyrolysis process, working as a flexible binder-free anode for LIBs. High cycle stability and good rate capability are achieved by the P–C film anode. With 21% P content in the film, it displays a capacity of 903 mAh g–1 after 640 cycles at a current density of 100 mA g–1 and a capacity of 460 mAh g–1 after 1000 cycles at 2.0 A g–1. Additionally, the Coulombic efficiency reaches almost 100% for each cycle. The superior properties of the P–C films together with their facile fabrication make this material attractive for further flexible and high energy density LIB applications.

  2. Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries

    International Nuclear Information System (INIS)

    Lee, Bichna; Han, Su Chul; Oh, Minhak; Lah, Myoung Soo; Sohn, Kee-Sun; Pyo, Myoungho

    2013-01-01

    SnO 2 /graphene nanocomposites were prepared from graphite oxide (GTO). Sn 2+ precursors were impregnated between graphene layers of GTO and subsequently subjected to thermal treatment to produce nanocomposites consisting of SnO 2 and reduced GTO (SnO 2 /rGTO). When thermally reduced, the pre-aligned nature of graphene layers in GTO produced densely packed and thick graphene stacks, in contrast to graphene layers in the SnO 2 nanocomposites (SnO 2 /rGO) made from thermal reduction of mechanically exfoliated graphene oxide (GO). The surface area and void volume of the SnO 2 /rGTO nanocomposites (280 m 2 g −1 and 0.27 cm 3 g −1 , respectively) were significantly decreased, by comparison with those of the SnO 2 /rGO nanocomposites (390 m 2 g −1 and 0.39 cm 3 g −1 , respectively), which resulted in an enhanced dimensional-stability of SnO 2 during the lithium alloying/dealloying processes. As a result, SnO 2 /rGTO proved to be superior to SnO 2 /rGO as an anode material in lithium ion batteries from the view-point of both reversible charge–discharge (C–D) capacity and cyclability. The simplification of the nanocomposite preparation process (the removal of mechanical exfoliation) is an additional benefit of using GTO as a template

  3. Detection of Potato Storage Disease via Gas Analysis: A Pilot Study Using Field Asymmetric Ion Mobility Spectrometry

    Directory of Open Access Journals (Sweden)

    Massimo Rutolo

    2014-08-01

    Full Text Available Soft rot is a commonly occurring potato tuber disease that each year causes substantial losses to the food industry. Here, we explore the possibility of early detection of the disease via gas/vapor analysis, in a laboratory environment, using a recent technology known as FAIMS (Field Asymmetric Ion Mobility Spectrometry. In this work, tubers were inoculated with a bacterium causing the infection, Pectobacterium carotovorum, and stored within set environmental conditions in order to manage disease progression. They were compared with controls stored in the same conditions. Three different inoculation time courses were employed in order to obtain diseased potatoes showing clear signs of advanced infection (for standard detection and diseased potatoes with no apparent evidence of infection (for early detection. A total of 156 samples were processed by PCA (Principal Component Analysis and k-means clustering. Results show a clear discrimination between controls and diseased potatoes for all experiments with no difference among observations from standard and early detection. Further analysis was carried out by means of a statistical model based on LDA (Linear Discriminant Analysis that showed a high classification accuracy of 92.1% on the test set, obtained via a LOOCV (leave-one out cross-validation.

  4. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  5. Geotechnical and large-scale numerical studies of direct ultimate storage of fuel elements. Part project I

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Hanisch, J.; Liedtke, L.

    1991-01-01

    Within the framework of geological investigations of the experimental field for thermal simulation of drift emplacement (TSS), a new model of the formation of the Asse structure was worked out. Consequently, that structure is not a typical salt dome, but was formed by a combination of gravitational sliding of the cap rock and halotectonic salt ascent. The TSS experimental field is situated in the center of the Asse structure, north-east of the so-called main saddle. The storage galleries are located completely within the Stassfurt main salt which consists of halotectonically relatively slightly loaded rock salt and anhydrite. The engineering geology exploration concentrated on an improved treatment of core material. A total of about 250 m of core material was considered, paying special attention to stress relaxation cracks occuring very frequently in salt cores. (orig./DG) [de

  6. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  7. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  8. Effect of the Ion Mass and Energy on the Response of 70-nm SOI Transistors to the Ion Deposited Charge by Direct Ionization

    International Nuclear Information System (INIS)

    Raine, M.; Gaillardin, M.; Sauvestre, J.E.; Flament, O.; Bournel, A.; Aubry-Fortuna, V.

    2010-01-01

    The response of SOI transistors under heavy ion irradiation is analyzed using Geant4 and Synopsys Sentaurus device simulations. The ion mass and energy have a significant impact on the radial ionization profile of the ion deposited charge. For example, for an identical LET, the higher the ion energy per nucleon, the wider the radial ionization track. For a 70-nm SOI technology, the track radius of high energy ions (≥ 10 MeV/a) is larger than the transistor sensitive volume; part of the ion charge recombines in the highly doped source or drain regions and does not participate to the transistor electric response. At lower energy (≤ 10 MeV/a), as often used for ground testing, the track radius is smaller than the transistor sensitive volume, and the entire charge is used for the transistor response. The collected charge is then higher, corresponding to a worst-case response of the transistor. Implications for the hardness assurance of highly-scaled generations are discussed. (authors)

  9. An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage

    International Nuclear Information System (INIS)

    Mahon, Daniel; Claudio, Gianfranco; Eames, Philip C.

    2017-01-01

    Highlights: • Mg 2+ ion exchange used to enhance the energy storage potential of 13× pellets. • 13× molecular sieves do not allow the hydration of impregnated MgSO 4 . • Zeolite-Y allows for the hydration of impregnated MgSO 4 . • Ion exchange time period impacts the percentage of ion exchange completion. - Abstract: The need to develop renewable heat sources for domestic space heating is a well known problem, for solar thermal systems mismatch between generation and load is a major issue, and thermochemical interseasonal heat storage offers a solution to this problem. Recent research has shown that using an absorbent material as a host for salt hydrates can be advantageous in achieving a high energy density material while alleviating the problematic practical characteristics, such as agglomeration, which salt hydrates typically possess. In this paper results are presented for a 13X molecular sieve which was tested to determine its potential for interseasonal domestic thermochemical energy storage alone and as a host material for Magnesium Sulfate (MgSO 4 ). Two different impregnation preparation methods have been utilised in our experiments, (i) a wetness impregnation method and (ii) a new method in which 13X molecular sieve powders and MgSO 4 are formed into pellets with use of a binder. The materials produced by each method were tested against each other and compared to a zeolite-Y material to assess which is the best candidate material for thermal energy storage. The impact of ion exchange on the energy storage potential of the 13X materials was also investigated. Analysis of the materials characteristics and thermal performance was conducted using a Differential Scanning Calorimeter (DSC), Thermogravimetric Analyser (TGA) coupled with a Residual Gas Analyser (RGA), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDX) spectroscopy and a custom built fixed bed 200 g in-situ hydration and dehydration chamber to assess the materials

  10. Direct formation of thin films and epitaxial overlayers at low temperatures using a low-energy (10-500 eV) ion beam deposition system

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Alton, G.D.; Appleton, B.R.; Herbots, N.; Noggle, T.S.; Pennycook, S.J.

    1987-01-01

    A low-energy ion beam deposition system has been developed at Oak Ridge National Laboratory and has been applied successfully to the growth of epitaxial films at low temperatures for a number of different elements. The deposition system utilizes the ion source and optics of a commercial ion implantation accelerator. The 35 keV mass- and energy-analyzed ion beam from the accelerator is decelerated in a four-element electrostatic lens assembly to energies between 10 and 500 eV for direct deposition onto a target under UHV conditions. Current densities on the order of 10 μA/cm 2 are achieved with good uniformity over a 1.4 cm diameter spot. The completed films are characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning have been studied. Epitaxial overlayers which show good minimum yields by ion channeling (3 to 4%) have been produced at temperatures as low as 375 0 C for Si on Si(100) and 250 0 C for Ge on Ge(100) at growth rates that exceed the solid-phase epitaxy rates at these temperatures by more than an order of magnitude

  11. Batch test equilibration studies examining the removal of Cs, Sr, and Tc from supernatants from ORNL underground storage tanks by selected ion exchangers

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Bell, J.T.

    1995-01-01

    Bench-scale batch equilibration tests have been conducted with supernatants from two underground tanks at the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to determine the effectiveness of selected ion exchangers in removing cesium, strontium, and technetium. Seven sorbents were evaluated for cesium removal, nine for strontium removal, and four for technetium removal. The results indicate that granular potassium cobalt hexacyanoferrate was the most effective of the exchangers evaluated for removing cesium from the supernatants. The powdered forms of sodium titanate (NaTiO) and cystalline silicotitanate (CST) were superior in removing the strontium; however, for the sorbents of suitable particle size for column use, titanium monohydrogen phosphate (TiHP φ), sodium titanate/polyacrylonitrile (NaTiO-PAN), and titanium monohydrogen phosphate/polyacrylonitrile (TiP-PAN) gave the best results and were about equally effective. Reillex trademark 402 was the most effective exchanger in removing the technetium; however, it was only slightly more satisfactory than Reillex trademark HPQ

  12. Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath

    International Nuclear Information System (INIS)

    Sharifian, M.; Shokri, B.

    2008-01-01

    A detailed one-dimensional simulation of the ion dynamics of the plasma sheath near a substrate (cathode) in the presence of fast monoenergetic electrons has been carried out in this article. The sheath evolution is investigated by using a fluid model assuming that the ions, plasma electrons and monoenergetic, fast electrons act as three fluids (fluid approach). The effect of the density of fast electrons on the ion density, ion velocity, and ion energy near the cathode and the evolution of the sheath boundary in front of the cathode are separately explored. Also, the variation of the ion velocity and ion density at the vicinity of the cathode as a function of time is investigated in the absence and presence of the electron beam. Results indicate that the presence of fast electrons in the sheath causes significant change in the sheath thickness and therefore basically changes the ion velocity, ion density, and ion impact energy on the cathode compared to the absence of the electron beam case

  13. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  14. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    Science.gov (United States)

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  15. Control of Strobilurin Fungicides in Wheat Using Direct Analysis in Real Time Accurate Time-of-Flight and Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry

    NARCIS (Netherlands)

    Schurek, J.; Vaclavik, L.; Hooijerink, H.; Lacina, O.; Poustka, J.; Sharman, M.; Caldow, M.; Nielen, M.W.F.; Hajslova, J.

    2008-01-01

    Ambient mass spectrometry has been used for the analysis of strobilurin residues in wheat. The use of this novel, challenging technique, employing a direct analysis in a real time (DART) ion-source coupled with a time-of-flight mass spectrometer (TOF MS) and a desorption electrospray ionization

  16. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  17. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    Science.gov (United States)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  18. ERDA's Chemical Energy Storage Program

    Science.gov (United States)

    Swisher, J. H.; Kelley, J. H.

    1977-01-01

    The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.

  19. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  20. High-Capacity and Ultrafast Na-Ion Storage of a Self-Supported 3D Porous Antimony Persulfide-Graphene Foam Architecture.

    Science.gov (United States)

    Lu, Yanying; Zhang, Ning; Jiang, Shuang; Zhang, Yudong; Zhou, Meng; Tao, Zhanliang; Archer, Lynden A; Chen, Jun

    2017-06-14

    The key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. Here, we report Sb 2 S 5 nanoparticles (∼5 nm) uniformly encapsulated in three-dimensional (3D) porous graphene foam, which were fabricated by a facile hydrothermal coassembly strategy, as a high-performance anode material for sodium-ion batteries. The as-prepared composite can be directly used as electrodes without adding a binder or current collector, exhibiting outstanding electrochemical performance with a high reversible capacity (845 mA h g -1 at 0.1 A g -1 ), ultralong cycling life (91.6% capacity retention after 300 cycles at 0.2 A g -1 ), and exceptional rate capability (525 mA h g -1 at 10.0 A g -1 ). This is attributed to fast Na + ion diffusion from the ultrasmall nanoparticles and excellent electric transport between the active material and 3D porous graphene, which also provide an effective strategy for anchoring the nanoparticles. Experimental results show that the Sb 2 S 5 undergoes a reversible reaction of Sb 2 S 5 + 16Na ↔ 5Na 2 S + 2Na 3 Sb during sodiation/desodiation. Moreover, a full cell with Na 3 (VO 0.5 ) 2 (PO 4 ) 2 F 2 /C cathode and the as-prepared composite anode was assembled, displaying high output voltage (∼2.2 V) with a stable capacity of 828 mA h g -1 for anode material (with 100 cycles at 0.1 A g -1 ), showing the potential for practical application.

  1. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  2. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  3. Direct observation of interaction between plasma ions and grid-excited pulses in a Q-machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1970-01-01

    The change in velocity-distribution function caused by interaction between ions and density pulses in a Q-machine is observed experimentally.......The change in velocity-distribution function caused by interaction between ions and density pulses in a Q-machine is observed experimentally....

  4. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    NARCIS (Netherlands)

    Zhang, X.; Van Hulzen, M.; Singh, D.P.; Brownrigg, A.W.; Wright, J.P.; Van Dijk, N.H.; Wagemaker, M.

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is

  5. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    Oertzen, W. von; Voit, H.; Imanishi, B.

    1988-10-01

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  6. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  7. Kinetic method of ruthenium ion traces determination, basing on the reaction of oxidation of direct blue 6B, by means of hydrogen peroxide

    International Nuclear Information System (INIS)

    Suwinska, T.; Gregorowicz, A.; Matysek-Majewska, D.

    1980-01-01

    A sensitive and selective method of determination of ruthenium ion traces (1.10 - 3 μg/cm 3 ) has been worked out. The method is based on oxidation of direct blue 6B by hydrogen peroxide under acidic conditions at pH = 0,8 - 1,2 in the presence of ruthenium ions as catalyst. The method has been applied for determination of ruthenium traces in Pt, PdCl 2 , PtCl 4 and RhCl 3 .n H 2 O. In these materials ruthenium has been determined within the range of 1,10 - 2 % - 5,10 - 4 %. (author)

  8. Energy Storage Publications | Transportation Research | NREL

    Science.gov (United States)

    , California. 23 pp.; NREL Report No. PR-5400-60290. Optimal Sizing of Energy Storage and Photovoltaic Power (11) 2017 pp. 1095-1118. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System Prediction Model for Grid-Connected Li-ion Battery Energy Storage System - Preprint Paper Source: Smith

  9. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid

    International Nuclear Information System (INIS)

    Pavković, Danijel; Lobrović, Mihael; Hrgetić, Mario; Komljenović, Ante

    2016-01-01

    Highlights: • Battery/ultracapacitor storage is considered for a direct-current microgrid. • Microgrid voltage cascade control system with load compensator is designed. • Current references are allocated so that ultracapacitor takes on transient loads. • Adaptive Kalman filter-based estimator is used for indirect load compensation. • Control strategy has been verified on a downscaled hardware-in-the-loop setup. - Abstract: A control system design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional–integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup.

  10. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  11. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    Science.gov (United States)

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .

  12. A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries

    International Nuclear Information System (INIS)

    Wee, Jung-Ho

    2007-01-01

    This paper compares the total cost of direct methanol fuel cell (DMFC) and lithium (Li)-ion battery systems when applied as the power supply for laptop computers in the Korean environment. The average power output and operational time of the laptop computers were assumed to be 20 W and 3000 h, respectively. Considering the status of their technologies and with certain conditions assumed, the total costs were calculated to be US$140 for the Li-ion battery and US$362 for DMFC. The manufacturing costs of the DMFC and Li-ion battery systems were calculated to be $16.65 W -1 and $0.77 W h -1 , and the energy consumption costs to be $0.00051 W h -1 and $0.00032 W h -1 , respectively. The higher fuel consumption cost of the DMFC system was due to the methanol (MeOH) crossover loss. Therefore, the requirements for DMFCs to be able to compete with Li-ion batteries in terms of energy cost include reducing the crossover level to at an order magnitude of -9 and the MeOH price to under $0.5 kg -1 . Under these conditions, if the DMFC manufacturing cost could be reduced to $6.30 W -1 , then the DMFC system would become at least as competitive as the Li-ion battery system for powering laptop computers in Korea. (author)

  13. Directed technical change and the adoption of CO{sub 2} abatement technology. The case of CO{sub 2} capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Vincent M.; Reilly, John [Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2008-11-15

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO{sub 2}-trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO{sub 2} abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO{sub 2} emissions associated with energy use, directed technical change and the economy. We specify CO{sub 2} capture and storage (CCS) as a discrete CO{sub 2} abatement technology. We find that combining CO{sub 2}-trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  14. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  15. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  16. Investigation of the isochronous mode of the experimental storage ring (ESR) and the collector ring (CR). Decay spectroscopy of highly charged stored 140Pr ions at the FRS-ESR facility

    International Nuclear Information System (INIS)

    Litvinov, Sergey A.

    2008-11-01

    The combination of the present fragment separator FRS and the cooler-storage ring ESR at GSI provides conditions for accurate mass and unique half-life measurements of exotic nuclei. A major part of this doctoral work has been devoted to investigations of the isochronous ion-optical operating mode of the present ESR facility and the planned Collector Ring (CR) facility at FAIR. A detailed ion-optical study of the isochronous storage ring with the emphasis on the main parameters has been done. For example, a simple scaling law providing a quantitative estimate for the mass resolving power as a function of the transverse acceptance has been derived. The ion-optical matching of the FRS-ESR has been calculated and experimentally verified for both the standard and the isochronous operating modes of the ESR. In addition, the dispersion function of a stored ion beam has been measured for both ion-optical modes at the straight section. The improved setting for higher transmission in the standard mode has been used in an experiment on the half-life measurements of highly-charged ions. Orbital electron capture (EC) and/or β + -decay rates of 140 Pr ions with zero-, one- and two- bound electrons have been measured. A complementary future study of EC-decay in highly-charged 64 Cu ions is discussed. Based on the present experience, the ion-optical matching between the future in-flight fragment separator Super-FRS and the CR has been calculated. The isochronous mode of the CR has been calculated. A dedicated Monte-Carlo code (ISOCHRON) has been developed in order to investigate the influence of the transverse acceptance, the closed orbit distortions, the fringe fields of the quadrupoles, the magnetic field imperfections of the magnets on the mass resolving power. The influence of chromaticity on the isochronicity has been investigated. The correction of the chromaticity and of second-order isochronicity has been performed employing sextupole magnets in the arcs of the CR. The

  17. Investigation of the isochronous mode of the experimental storage ring (ESR) and the collector ring (CR). Decay spectroscopy of highly charged stored {sup 140}Pr ions at the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, Sergey A.

    2008-11-15

    The combination of the present fragment separator FRS and the cooler-storage ring ESR at GSI provides conditions for accurate mass and unique half-life measurements of exotic nuclei. A major part of this doctoral work has been devoted to investigations of the isochronous ion-optical operating mode of the present ESR facility and the planned Collector Ring (CR) facility at FAIR. A detailed ion-optical study of the isochronous storage ring with the emphasis on the main parameters has been done. For example, a simple scaling law providing a quantitative estimate for the mass resolving power as a function of the transverse acceptance has been derived. The ion-optical matching of the FRS-ESR has been calculated and experimentally verified for both the standard and the isochronous operating modes of the ESR. In addition, the dispersion function of a stored ion beam has been measured for both ion-optical modes at the straight section. The improved setting for higher transmission in the standard mode has been used in an experiment on the half-life measurements of highly-charged ions. Orbital electron capture (EC) and/or {beta}{sup +}-decay rates of {sup 140}Pr ions with zero-, one- and two- bound electrons have been measured. A complementary future study of EC-decay in highly-charged {sup 64}Cu ions is discussed. Based on the present experience, the ion-optical matching between the future in-flight fragment separator Super-FRS and the CR has been calculated. The isochronous mode of the CR has been calculated. A dedicated Monte-Carlo code (ISOCHRON) has been developed in order to investigate the influence of the transverse acceptance, the closed orbit distortions, the fringe fields of the quadrupoles, the magnetic field imperfections of the magnets on the mass resolving power. The influence of chromaticity on the isochronicity has been investigated. The correction of the chromaticity and of second-order isochronicity has been performed employing sextupole magnets in the

  18. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  19. Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system

    International Nuclear Information System (INIS)

    García-Triviño, Pablo; Torreglosa, Juan P.; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2016-01-01

    Although electric vehicles (EVs) are experiencing a considerable upsurge, the technology associated with them is still under development. This study focused on the control and operation of a medium-voltage direct-current (MVDC) microgrid with an innovative decentralized control system, which was used as a fast charging station (FCS) for EVs. The FCS was composed of a photovoltaic (PV) system, a Li-ion battery energy storage system (BESS), two 48 kW fast charging units for EVs, and a connection to the local grid. With this configuration and thanks to its decentralized control, the FCS was able to work as a stand-alone system most of the time though with occasional grid support. This paper presents a new decentralized energy management system (EMS) with two options to control the power sources of the FCS. The choice of the power source depends on the MVDC bus voltage, the state-of-charge (SOC) of the BESS, and the control option of the EMS. This control was tested by simulating the FCS, when connected to several EVs and under different sun irradiance conditions. Simulation results showed that the FCS operated smoothly and effectively, which confirms the feasibility of using this technology in EVs. - Highlights: • This paper studies a MVDC microgrid for fast charging station of EV. • It is composed of a PV system, a BESS, two EV charging stations and a grid connection. • A decentralized control scheme is applied to control the power sources. • The MVDC bus voltage is the key parameter for controlling the system. • The results demonstrate the feasibility of the system and control under study.

  20. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    Science.gov (United States)

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  1. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness

    International Nuclear Information System (INIS)

    Cometto, A; Russo, G; Giordanengo, S; Marchetto, F; Cirio, R; Attili, A; Bourhaleb, F; Milian, F M

    2014-01-01

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions. Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion. Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data. (paper)

  2. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  3. High-rate capability of lithium-ion batteries after storing at elevated temperature

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Chiang, Pin-Chi Julia

    2007-01-01

    High-rate performances of a lithium-ion battery after storage at elevated temperature are investigated electrochemically by means of three-electrode system. The high-rate capability is decreased significantly after high-temperature storage. A 3 C discharge capacities after room-temperature storage and 60 o C storage are 650 and 20 mAh, respectively. Lithium-ion diffusion in lithium cobalt oxide cathode limits the battery's capacity and the results show that storage temperature changes this diffusion behavior. Transmission electron microscopy (TEM) images show that many defects are directly observed in the cathode after storage compared with the fresh cathode; the structural defects block the diffusion within the particles. Electrochemical impedance and polarization curve indicate that mass-transfer (diffusion) dominates the discharge capacity during high-rate discharge

  4. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Pedersen, Jeanette; Røy, Hans

    2014-01-01

    Volatile fatty acids (VFAs) are key intermediates in the microbial food web. However, the analysis of low concentrations of VFAs in marine porewater is hampered by interference from high concentrations of inorganic ions. Published methods often use sample pretreatment, including distillation or d...

  5. Improvement in the assessment of direct and facilitated ion transfers by electrochemically induced redox transformations of common molecular probes

    DEFF Research Database (Denmark)

    Zhou, Min; Gan, Shiyu; Zhong, Lijie

    2012-01-01

    A new strategy based on a thick organic film modified electrode allowed us, for the first time, to explore the voltammetric processes for a series of hydrophilic ions by electrochemically induced redox transformations of common molecular probes. During the limited time available for voltammetry, ...

  6. Demonstration of direct energy recovery of full-energy ions at 40 keV on a PLT/ISX beam system

    International Nuclear Information System (INIS)

    Stirling, W.L.; Barber, G.C.; Dagenhart, W.K.

    1981-01-01

    Neutral beam injection systems that employ positive ion sources presently operate at energies of about 40 to 50 keV/nucleon at 60 A [Princeton Large Torus (PLT)] or 100 A [Princeton Divertor Experiment (PDX) or the Oak Ridge National Laboratory (ORNL) Impurities Study Experiment (ISX)] with about 60% conversion efficiency. However, the desire for multisecond beams in the 80-keV/nucleon energy range at approx. 10 MW/module has emphasized the need for technological advances in several areas. At such beam energies, as much as 75% of the initial beam energy is retained in the unneutralized ion components. As a result, two questions immediately come to mind: (1) how can one dispose of this energy; or better still, (2) how can one efficiently recover this energy. We have proposed and demonstrated a unique solution to this problem that not only removes the need for beam dumps but also returns from 50 to 80% of the energy contained in the full energy ion component directly and dynamically to the high voltage supply. In fact, the energy in the residual ion component is not expended. The tests were made on a PLT/ISX-type beam line at 40 keV/nucleon with about 800 kW and 0.1 s

  7. Demonstration of direct energy recovery of full energy ions at 40 keV on a PLT/ISX beam system

    International Nuclear Information System (INIS)

    Stirling, W.L.; Barber, G.C.; Dagenhart, W.K.

    1980-01-01

    The desire for multisecond beams in the 80-keV/nucleon energy range at 10 MW/module has emphasized the need for technological advances in several areas. At such beam energies, as much as 75% of the initial beam energy is retained in the unneutralized ion components. As a result, two questions immediately come to mind: how can one dispose of this energy; or better still, how can one efficiently recover this energy. The conventional way of treating such a problem is to deflect the ions out of the neutral beam and onto water-cooled plates or beam dumps. This method has worked satisfactorily for 40-keV/nucleon beams in excess of 1.5 MW and approx. 0.5 s. However, the power per unit area to be disposed of in the high power, multisecond beams mentioned above is beyond present-day technology. We have proposed and demonstrated a unique solution to this problem which not only removes the need for beam dumps but also returns from 50 to 80% of the energy contained in the full energy ion component directly and dynamically to the high voltage supply. In fact, the energy in the residual ion component is not expended. The tests were made on a PLT/ISX type beam line at 40 keV/nucleon of about 800 kW and 0.1 s

  8. Clinical utility of neuronal cells directly converted from fibroblasts of patients for neuropsychiatric disorders: studies of lysosomal storage diseases and channelopathy

    Science.gov (United States)

    Kano, Shin-ichi; Yuan, Ming; Cardarelli, Ross A.; Maegawa, Gustavo; Higurashi, Norimichi; Gaval-Cruz, Meriem; Wilson, Ashley M.; Tristan, Carlos; Kondo, Mari A.; Chen, Yian; Koga, Minori; Obie, Cassandra; Ishizuka, Koko; Seshadri, Saurav; Srivastava, Rupali; Kato, Takahiro A.; Horiuchi, Yasue; Sedlak, Thomas W.; Lee, Yohan; Rapoport, Judith L.; Hirose, Shinichi; Okano, Hideyuki; Valle, David; O'Donnell, Patricio; Sawa, Akira; Kai, Mihoko

    2015-01-01

    Methodologies for generating functional neuronal cells directly from human fibroblasts [induced neuronal (iN) cells] have been recently developed, but the research so far has only focused on technical refinements or recapitulation of known pathological phenotypes. A critical question is whether this novel technology will contribute to elucidation of novel disease mechanisms or evaluation of therapeutic strategies. Here we have addressed this question by studying Tay-Sachs disease, a representative lysosomal storage disease, and Dravet syndrome, a form of severe myoclonic epilepsy in infancy, using human iN cells with feature of immature postmitotic glutamatergic neuronal cells. In Tay-Sachs disease, we have successfully characterized canonical neuronal pathology, massive accumulation of GM2 ganglioside, and demonstrated the suitability of this novel cell culture for future drug screening. In Dravet syndrome, we have identified a novel functional phenotype that was not suggested by studies of classical mouse models and human autopsied brains. Taken together, the present study demonstrates that human iN cells are useful for translational neuroscience research to explore novel disease mechanisms and evaluate therapeutic compounds. In the future, research using human iN cells with well-characterized genomic landscape can be integrated into multidisciplinary patient-oriented research on neuropsychiatric disorders to address novel disease mechanisms and evaluate therapeutic strategies. PMID:25732146

  9. Underground storage

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-10

    A procedure is described for making an underground storage cavity in a soluble formation. Two holes are drilled, and fluid is pumped into the first hole. This fluid is a non-solute for the formation material. Then pressure is applied to the fluid until the formation is fractured in the direction of the second hole. More non-solute fluid is injected to complete the fracture between the 2 holes. A solute fluid is then circulated between the 2 holes, which results in removal of that part of the formation next to the fracture and the forming of a chamber.

  10. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  11. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  12. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  13. Direct {sup 99m}Tc labeling of Herceptin (trastuzumab) by {sup 99m}Tc(I) tricarbonyl ion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.-J.; Yen, C.-L.; Lo, S.-T.; Chen, K.-T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lo, J.-M. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jmlo@mx.nthu.edu.tw

    2008-03-15

    By simply incubating Herceptin (trastuzumab) with [{sup 99m}Tc(CO){sub 3}(OH{sub 2}){sub 3}]{sup +} ion in saline, a significant yield of {sup 99m}Tc-labeled trastuzumab was found to be achievable. The effective labeling may be based on that trastuzumab is inherent with endogenous histidine group to which {sup 99m}Tc(I) tricarbonyl ion can be strongly bound. For practical {sup 99m}Tc labeling processing, trastuzumab was purified beforehand from the commercial product, Herceptin (Genentech) via size exclusion chromatography to remove the excipient, {alpha}-histidine and a high-labeled yield could be obtained by incubating the purified trastuzumab with [{sup 99m}Tc(CO){sub 3}(OH{sub 2}){sub 3}]{sup +}. Retention of bioactivity of the {sup 99m}Tc(I)-labeled trastuzumab was validated using a cell binding test.

  14. An improved method for direct estimation of free cyanide in drinking water by Ion Chromatography-Pulsed Amperometry Detection (IC-PAD) on gold working electrode.

    Science.gov (United States)

    Kumar Meher, Alok; Labhsetwar, Nitin; Bansiwal, Amit

    2018-02-01

    In the present work a fast, reliable and safe Ion Exchange Chromatography-Pulsed Amperometry Detection (IC-PAD) method for direct determination of free cyanide in drinking water has been reported. To the best of our knowledge for the first time we are reporting the application of Gold working electrode for detection of free cyanide in a chromatography system. The system shows a wide linear range up to 8000µg/L. The electrode was found to have improved sensitivity and selectivity in the presence of interfering ions. The detection limit of the system was calculated to be 2µg/L. Long term evaluation of the electrode was found to be stable. Reproducible results were obtained from analysis of drinking water samples with recoveries of 98.3-101.2% and Relative Standard Deviations (RSD) of cyanide in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Storage ion trap of an 'In-Flight Capture' type for precise mass measurement of radioactive nuclear reaction products and fission fragments

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    2001-01-01

    Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered

  16. Selective area growth of InAs nanowires from SiO2/Si(1 1 1) templates direct-written by focused helium ion beam technology

    Science.gov (United States)

    Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung

    2018-02-01

    We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.

  17. Modeling and fabrication of lithium polymer ion batteries designed for wireless sensor network applications and printed directly on device

    Science.gov (United States)

    Steingart, Daniel Artemis

    Microfabrication has enabled devices that were unimaginable just a century ago. The ability to create structured channels of metal and ceramic within the confines of half a micron took four decades to perfect but the reward has created cheap, reliable, and small computer devices, some of which communicate with no wires to the rest of the world. Conversely, electrochemical energy cells, or batteries, were well known to the scientific community one hundred years ago, and a 19th century chemist would be hard pressed to find a radical difference in the size, structure and performance of most batteries. While materials have been purified, and new chemistries have been implemented, modern batteries only offer, at most, an order of magnitude improvement in energy and power density over their original counter parts. Moore's "Law" [1] regarding integrated circuits only applies to semiconductor devices for a very simple reason: energy storage capacity is directly related to size. While transistor performance increases as size decreases, battery performance in terms of deliverable power and not. Though some performance gain can be made by modifying the battery chemistry or microstructure, more mass will always provide more capacity. With the advent of the "smart dust" class computers a critical point was reached. The devices became significantly smaller than the batteries required to do useful work, inspiring a new kind of battery, the microbattery, or a battery of a size of less than a few cubic millimeters and capable of delivering a continuous current of roughly 50 to 100 muA at 1 to 4 V. The pioneering microbatteries created by Bates [2] were promising in that they (1) used common microfabrication techniques and (2) were completely solid state. These cells are only now beginning to see commercialization, and are beset by a variety of problems. Though some are related to manufacturing control, others are inherent to the nature of the production processes. Sputtering and

  18. Capacity fade of LiNi(1-x-y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1-x-y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test

    Science.gov (United States)

    Watanabe, Shoichiro; Kinoshita, Masahiro; Nakura, Kensuke

    2014-02-01

    Ni-based LiNi(1-x-y)CoxAlyO2 (NCA) and LiCoO2 (LCO) cathode materials taken out of lithium-ion cells after storage for 2 years at 45 °C were analyzed by various spectroscopic techniques. X-ray photoelectron spectroscopy exhibited that there was no difference between NCA and LCO. On the other hand, scanning transmission electron microscopy-electron energy-loss spectroscopy demonstrated there was a remarkably large difference between the two cathode materials. Ni-L2,3 energy-loss near-edge structure (ELNES) spectra of the NCA showed a peak at about 856.5 eV, which was assigned to trivalent nickel, was maintained even after storage, indicating that the NCA had no significant change in its surface structure during storage. On the other hand, in the Co-L2,3 ELNES spectra of the LCO a peak at about 782.5 eV, which was assigned to trivalent cobalt, significantly shifted to the lower energies after storage. These results suggest that crystal structure change of the active material surface is a predominant reason of deterioration during the storage test.

  19. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  20. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    Full Text Available Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet. The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  1. Direct observation of CD4 T cell morphologies and their cross-sectional traction force derivation on quartz nanopillar substrates using focused ion beam technique

    Science.gov (United States)

    Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Won-Yong; Hong, Chang-Hee; Lee, Sang-Kwon

    2013-07-01

    Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.

  2. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-07-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  3. Direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear optical and dynamical laser interaction

    International Nuclear Information System (INIS)

    Lalousis, P.

    1984-01-01

    Nonthermal direct electrodynamic interaction between laser energy and a fully ionized plasma was studied. The particular emphasis is on the action of nonlinear forces, in which the optical electromagnetic fields act on the plasma electrons which then transfer their energy to the ions electrostatically. Instead of the usual single fluid model, the plasma is treated as two separate conducting fluids for electrons and ions, coupled by momentum and Coulomb interactions. The equations governing the two fluids are derived from first principles, and numerical algorithms for computing these equations are developed, enabling the plasma oscillatons to be resolved and studied. Fully ionized plasma expansion without laser irradiation is studied first numerically. Remarkable damping mechanisms by coupling to ion oscillations have been observed. Inhomogeneities in densities of the two fluids result in large electrostatic fields and double layers are generated. There is quite close agreement between numerically calculated electrostatic fields and analytical solutions. Laser interaction with fully ionized plasma is also studied numerically. The generation of cavitons is numerically observed, and it is inferred that laser plasma interactions produce very high electrostatic fields in the vicinity of cavitons. It is further shown that charge neutrality is not necessarily maintained in a caviton

  4. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  5. Direct infusion electrospray ionization–ion mobility–mass spectrometry for comparative profiling of fatty acids based on stable isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Jiapeng, E-mail: jpleng@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Tuanqi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Wang, Haoyang [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China); Cui, Jianlan; Liu, Qinghao [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang, Zhixu; Zhang, Manyu [Agilent Technologies China Co., Ltd, Shanghai 200080 (China); Guo, Yinlong, E-mail: ylguo@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China)

    2015-08-05

    A rapid method for fatty acids (FAs) comparative profiling based on carboxyl-specific stable isotope labeling (SIL) and direct infusion electrospray ionization–ion mobility–mass spectrometry (ESI–IM–MS) is established. The design of the method takes advantage of the three-dimensional characteristics of IM–MS including drift time, m/z and ion intensity, for comparison of d0-/d6-2,4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP)-labeled FAs. In particular, without chromatographic separation, the method allowed direct FAs profiling in complex samples due to the advantageous priority of DMPP in signal enhancement as well as the extra resolution that IM–MS offered. Additionally, the d0-/d6-DMPP-labeled FAs showed expected features, including very similar drift times, 6 Da mass deviations, specific reporter ions, similar MS responses, and adherence to the drift time rule regarding the influence of carbon chain length and unsaturation on relative drift times. Therefore, the introduction of isotope analogs minimized the matrix effect and variations in quantification and ensured accurate identification of non-targeted FAs by those typical features. Peak intensity ratios between d0-/d6-DMPP-labeled ions were subsequently used in relative quantification for the detected FAs. The established strategy has been applied successfully in the rapid profiling of trace free FAs between normal and cancerous human thyroid tissues. Sixteen free FAs were found with the increased level with a statistically significant difference (p < 0.05) compared to the normal tissue samples. The integrated SIL technique and ESI–IM–MS are expected to serve as an alternative tool for high-throughput analysis of FAs in complex samples. - Highlights: • A novel method based on IM–MS and SIL was developed for FAs comparative profiling. • Without LC separation, the method allowed direct infusion profiling of FAs in complex samples. • Both of the efficiency and accuracy for FAs analyses

  6. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  7. Thermal management of Li-ion cells from the view of the development of energy storages for electric-powered vehicles in an overview; Thermomanagement von Li-Ionen-Zellen aus Sicht der Energiespeicher-Entwicklung fuer Elektrofahrzeuge im Ueberblick

    Energy Technology Data Exchange (ETDEWEB)

    Fleckenstein, Matthias [BMW Group, Muenchen (Germany)

    2010-07-01

    As the operation of a Li-ion energy storage system in automotive applications has to be efficient, safe and reliable, the thermal management of the battery cells becomes one of the main factors influencing the success of electrified powertrains. Therefore, one of the most important system variables is the cell internal temperature, as it influences efficiency, aging and power capability of the energy storage in a major way. The challenges and potentials of thermal management for Li-ion cells are illustrated in this article. It consists on one hand of the exact thermal and electric cell state determination. On the other hand it includes the control of battery temperature during operation by active cooling and heating and its operation strategy. Therefore the active cooling system can be implemented as air-, liquid or refrigerant fluid coolant cycles. An essential tools of thermal battery-management is the modeling of cell behavior. This article gives a survey on the simulation landscape of thermal-electric co-simulation of Li-ion cells mentioned in literature. Thermal cell models spread from lumped 0D-modes to complex 3D finite element models comprising different detailing degree and computation effort. Electric battery models range from simple cell models of an ideal voltage source up to complex microscopic spatialized electrochemical models. Focus is also set on the parameterization of the different cell models. The article mentions the established approaches to achieve electrical and thermal characteristics. Subsequently, two different variations of thermal-electric simulation models comprising different simulation aims are introduced. (orig.)

  8. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    Science.gov (United States)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  9. Transfer of Direct and Moiré Patterns by Reactive Ion Etching Through Ex Situ Fabricated Nanoporous Polymer Masks

    DEFF Research Database (Denmark)

    Shvets, Violetta; Hentschel, Thomas; Schulte, Lars

    2015-01-01

    modification, which are essential prerequisites for the conventional procedure of block copolymer directed self-assembly. The demonstrated elliptic and moire pattern transfers prove that the proposed ex situ procedure allows us to realize nanolithographic patterns that are difficult to realize...

  10. Facile construction of terpridine-based metallo-polymers in hydrogels, crystals and solutions directed by metal ions.

    Science.gov (United States)

    Li, Yajuan; Guo, Jiangbo; Dai, Bo; Geng, Lijun; Shen, Fengjuan; Zhang, Yajun; Yu, Xudong

    2018-07-01

    Driven by tunable metal-ligand interactions, a polydentate ligand TC containing terpyridine and carboxylic acid units was developed to construct metallo-polymers that showed multiple aggregation modes with controlled macroscopic properties. In the presence of different kind of Zn 2+ ions or NaOH, TC could form metallo-polymers via π-π stacking and metal-ligand interaction that further trapped water molecules, resulting in hydrogels and crystals. Moreover, these TC/Zn 2+ hydrogels could transform to soluble and fluorescent aggregates in the presence of NaOH due to the formation of binuclear metallo-polymers with enhanced ICT emission. The metal-ligand interactions tuned by different metal salts in gels, crystals, and sols were also studied and illustrated in detail, it was also proved that water was an essential linker for constructing Na + -based metallo-polymers from the TC/NaOH crystal data. This work demonstrated the engineered coordination pathways in generating controllable hydrogels and metallo-polymers for the first time, which led to novel approach for facilely constructing a number of hydrogels with tailorable macroscopic properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Characterization of Leucaena (Leucaena leucephala) oil by direct analysis in real time (DART) ion source and gas chromatography

    International Nuclear Information System (INIS)

    Alam, M.; Alandis, N.M.; Sharmin, E.; Ahmad, N.; Alrayes, B.F.; Ali, D.

    2017-01-01

    For the first time, we report the characterization of triacylglycerols and fatty acids in Leucaena (Leucaena leucephala) oil [LUCO], an unexplored nontraditional non-medicinal plant belonging to the family Fabaceae. LUCO was converted to fatty acid methyl esters (FAMEs). We analyzed the triacylglycerols (TAGs) of pure LUCO and their FAMEs by time-of-flight mass spectrometry (TOF-MS) followed by multivariate analysis for discrimination among the FAMEs. Our investigations for the analysis of LUCO samples represent noble features of glycerides. A new type of ion source, coupled with high-resolution TOF-MS was applied for the comprehensive analysis of triacylglycerols. The composition of fatty acid based LUCO oil was studied using Gas Chromatography (GC-FID). The major fatty acid components of LUCO oil are linoleic acid (52.08%) oleic acid (21.26%), palmitic acid (7.91%) and stearic acid (6.01%). A metal analysis in LUCO was done by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The structural elucidation and thermal stability of LUCO were studied by FT-IR, 1H NMR, 13C NMR spectroscopic techniques and TGA-DSC, respectively. We also measured the cytotoxicity of LUCO [es

  12. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    Energy Technology Data Exchange (ETDEWEB)

    Midey, Anthony J., E-mail: anthony.midey@excellims.com; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-12-04

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K{sub 0}, have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL{sup −1} levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL{sup −1} levels without extensive

  13. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    International Nuclear Information System (INIS)

    Midey, Anthony J.; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-01-01

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K 0 , have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL −1 levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL −1 levels without extensive sample handling

  14. Proceedings of the Cooling, Condensation, and Storage of Hydrogen Cluster Ions Workshop Held in Menlo Park, California on 8-9 January 1987.

    Science.gov (United States)

    1987-12-01

    5. Low susceptibility to accidental annihilation: Because large .4 cluster ions can be dynamically stored and have relatively small physical...1985. 10. Echt 0., Casero R., and Soler J. M., private communication. 7 0 p 0 N’. ’A. "--V ~N A f’~w N’.? .~ N’. ~b0aN N~ Robert L. Forward Prospects

  15. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  16. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Maxima and minima of the orientation phenomena for direct 1s→2p+-1 electron-ion collisional excitations in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Yoon Jung-Sik; Jung Young-Dae

    1999-01-01

    Orientation phenomena for direct 1s→2p +-1 electron-ion collisional excitations in weakly coupled plasma are investigated using the semiclassical trajectory method including the close-encounter effects. In weakly coupled plasmas, the electron-ion interaction potential is given by the classical nonspherical Debye-Hueckel model. The semiclassical screened hyperbolic-orbit trajectory method is applied to describe the motion of the projectile electron in order to investigate the variation of the orientation parameter as a function of the impact parameter, projectile energy, and Debye length. A comparison is also given for the hyperbolic-orbit and straight-line trajectory methods. The results show that the orientation parameters obtained by the hyperbolic-orbit trajectory method have maxima and minima for small impact parameter regions. In other words, there are complete 1s→2p +1 (maxima) and complete 1s→2p -1 (minima) transitions for certain impact parameters. These maxima cannot be found using the straight-line trajectory method. The variation of the propensity of the 1s→2p -1 transitions due to the plasma screening effects on the atomic wave functions is also discussed

  18. Measurements of isomeric yield ratios of fission products from proton-induced fission on natU and 232Th via direct ion counting

    Directory of Open Access Journals (Sweden)

    Rakopoulos Vasileios

    2017-01-01

    Full Text Available Independent isomeric yield ratios (IYR of 81Ge, 96Y, 97Y, 97Nb, 128Sn and 130Sn have been determined in the 25 MeV proton-induced fission of natU and 232Th. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL facility at the University of Jyväskylä. A direct ion counting measurement of the isomeric fission yield ratios was accomplished for the first time, registering the fission products in less than a second after their production. In addition, the IYRs of natU were measured by means of γ-spectroscopy in order to verify the consistency of the recently upgraded experimental setup. From the obtained results, indications of a dependence of the production rate on the fissioning system can be noticed. These data were compared with data available in the literature, whenever possible. Using the TALYS code and the experimentally obtained IYRs, we also deduced the average angular momentum of the fission fragments after scission.

  19. Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode

    International Nuclear Information System (INIS)

    Zhybak, Mykhailo T.; Vagin, Mikhail Yu.; Beni, Valerio; Liu, Xianjie; Turner, Anthony P. F.; Dempsey, Eithne; Korpan, Yaroslav I.

    2016-01-01

    We describe a composite material for use in electrochemical oxygen reduction. A screen-printed electrode (SPE) was consecutively modified with electrodeposited copper, a Nafion membrane and electropolymerized polyaniline (PANi) to give an electrocatalytic composite of type PANi/Nafion/Cu_2O/SPE that displays good electrical conductivity at neutral pH values. It is found that the presence of ammonia causes complex formation with Cu(I), and this causes electroreduction of oxygen to result in an increased cathodic current. The finding was applied to the quantification of ammonium ions in the 1 to 1000 μM concentration range by amperometry at −0.45 V (vs. Ag/AgCl). This Faradaic phenomenon offers the advantage of direct voltammetric detection, one of the lowest known limits of detection (0.5 μM), and high sensitivity (250 mA∙M"−"1∙cm"−"2). It was applied to the determination of ammonium ion in human serum where it compared well with the photometric routine approach for clinical analysis using glutamate dehydrogenase. (author)

  20. The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90.

    Science.gov (United States)

    Bartolini, Manuela; Wainer, Irving W; Bertucci, Carlo; Andrisano, Vincenza

    2013-01-25

    Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2mm×6mm i.d.), under a three-solvent gradient elution mode and UV detection at 256nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples. Copyright © 2012 Elsevier B.V. All rights reserved.