WorldWideScience

Sample records for direct infrared sensors

  1. Uncooled tunneling infrared sensor

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  2. Quantifying direct carbon dioxide emissions from wastewater treatment units by nondispersive infrared sensor (NDIR) - A pilot study.

    Kosse, Pascal; Kleeberg, Tasja; Lübken, Manfred; Matschullat, Jörg; Wichern, Marc

    2018-08-15

    Treatment of nutrient-rich wastewater potentially results in direct release of greenhouse gases (GHGs) such as CO 2 , N 2 O or CH 4 - and thus affects Waste Water Treatment Plant's carbon footprint. Accurate CO 2 quantification is challenging due to various chemical, physical and operational conditions. A floating chamber equipped with a nondispersive infrared, single beam, dual wavelength sensor has been evaluated for a pilot approach to quantify fugitive CO 2 emissions above different wastewater treatment units. Total average CO 2 flux was 1182gCO 2 ·m -2 ·d -1 with minimum and maximum fluxes of 829gCO 2 ·m -2 ·d -1 and 1493gCO 2 ·m -2 ·d -1 , respectively. Total observed CO 2 emissions were in 7 to 17kgCO 2 ·PE -1 ·a -1 (average 12kgCO 2 ·PE -1 ·a -1 ). The nitrification tank accounted for about 94.3% of the emissions, followed by secondary clarification (ca. 4.3%) and denitrification (ca. 1.4%), based on those average annual CO 2 emissions per population equivalent (PE). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Thermoelectric infrared imaging sensors for automotive applications

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  4. A flexible infrared sensor for tissue oximetry

    Petersen, Søren Dahl; Thyssen, Anders; Engholm, Mathias

    2013-01-01

    We present a flexible infrared sensor for use in tissue oximetry with the aim of treating prematurely born infants. The sensor will detect the oxygen saturation in brain tissue through near infrared spectroscopy. The sensor itself consists of several individual silicon photo detectors fully...

  5. Hybrid active pixel sensors in infrared astronomy

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  6. Thermal infrared panoramic imaging sensor

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the

  7. Infrared sensor for water pollution and monitoring

    Baudet, E.; Gutierrez-Arrovo, A.; Bailleul, M.; Rinnert, E.; Nemec, P.; Charrier, J.; Bodiou, L.; Colas, F.; Compère, C.; Boussard, C.; Bureau, B.; Michel, K.; Nazabal, V.

    2017-05-01

    Development of Mid-infrared sensors for the detection of biochemical molecules is a challenge of great importance. Mid-infrared range (4000 - 400 cm-1) contains the absorption bands related to the vibrations of organic molecules (nitrates, hydrocarbons, pesticides, etc.). Chalcogenide glasses are an important class of amorphous materials appropriate for sensing applications. Indeed, they are mainly studied and used for their wide transparency in the infrared range (up to 15 μm for selenide glasses) and high refractive index (between 2 and 3). The aim of this study is to synthesize and characterize chalcogenide thin films for developing mid-IR optical waveguides. Therefore, two (GeSe2)100-x(Sb2Se3)x chalcogenide glasses, where x=10 and 50 were chosen for their good mid-IR transparency, high stability against crystallization and their refractive index contrast suitable for mid-IR waveguiding. Chalcogenide glasses were prepared using the conventional melting and quenching method and then used for RF magnetron sputtering deposition. Sputtered thin films were characterized in order to determine dispersion of refractive index in UV-Vis-NIR-MIR. Obtained results were used for the simulation of the optical design in mid-infrared (λ = 7.7 μm). Selenide ridge waveguide were prepared by RIE-ICP dry etching process. Single-mode propagation at 7.7 μm was observed. Optical losses of 0.7 +/- 0.3 and 2.5 +/- 0.1 dB.cm-1 were measured in near-infrared (λ = 1.55 μm) and midinfrared (λ = 7.7 μm), respectively. Achieved results are promising for the fabrication of an integrated optical sensor operating in the mid-infrared.

  8. Human Movement Detection and Identification Using Pyroelectric Infrared Sensors

    Jaeseok Yun

    2014-05-01

    Full Text Available Pyroelectric infrared (PIR sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth, three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor and three speed levels (slow, moderate, fast. We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

  9. Long Wave Infrared Cavity Enhanced Sensors

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2005-12-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.

  10. Multi-Directional Environmental Sensors

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  11. Avoiding obstacles by using a proximity infrared sensor skin

    Cao Zhengcai; Fu Yili; Wu Qidi; Wang Shuguo; Wang Guangguo

    2007-01-01

    Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot surface to form soft sensor skin is very difficult with the traditional technology, hi this paper we propose a new method to realize such a skin. By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely. The developed sensor skin is a large-area, flexible array of infrared sensors with data processing capabilities. Depending on the skin electronics, it endows its carrier with an ability to sense its surroundings. The structure, the method of infrared sensor signal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.

  12. Thermal infrared remote sensing sensors, methods, applications

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  13. Kinematic measurements using an infrared sensor

    Marinho, F; Paulucci, L

    2016-01-01

    The use of an infrared sensor as a new alternative to measure position as a function of time in kinematic experiments was investigated using a microcontroller as the data acquisition and control device. These are versatile sensors that offer advantages over typical ultrasound devices. The setup described in this paper enables students to develop their own experiments, promoting opportunities for learning physical concepts such as the different types of forces that can act on a body (gravitational, elastic, drag, etc) and the resulting types of movements with good sensitivity within the 4–30 cm range. As a proof of concept we also present the application of a prototype designed to record the kinematics of mass-spring systems. (paper)

  14. Impact of Soil Water Content on Landmine Detection Using Radar and Thermal Infrared Sensors

    Hong, Sung-ho

    2001-01-01

    .... The most important of these is water content since it directly influences the three other properties in this study, the ground penetrating radar and thermal infrared sensors were used to identify non...

  15. Direct and inverse problems of infrared tomography

    Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander

    2016-01-01

    The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source...

  16. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Xiaomu Luo

    2016-06-01

    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  17. Modern Directions for Potentiometric Sensors

    Bakker, Eric; Chumbimuni-Torres, Karin

    2009-01-01

    This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473

  18. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  19. Bio-Inspired Micromechanical Directional Acoustic Sensor

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  20. Radar and Infrared Sensors for Landmine Detection

    Borchers, Brian

    2001-01-01

    .... Data from the IR camera and GPR system, in conjunction with soil water content measurements have been used to help validate theoretical models of the performance of the IR and GPR sensors for landmine detection...

  1. Center for Direct Reading and Sensor Technologies

    Federal Laboratory Consortium — Direct-reading methods and sensors are being used more frequently in many different settings ranging from personal monitoring of individual health to applications in...

  2. Thermal infrared sensors for postharvest deficit irrigation of peach

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  3. Tracking Objects with Networked Scattered Directional Sensors

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  4. Design of the flame detector based on pyroelectric infrared sensor

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  5. Application of military uncooled infrared sensors to homeland defense

    Hornberger, Chris

    2002-08-01

    During the early 1990's, uncooled microbolometer thermal imaging technology began a journey from Government and corporate laboratories to practical application in addressing military, Government, and commercial customer needs. Today, that transition could arguably be considered complete, punctuated by BAE SYSTEMS' delivery of the 10,000th microbolometer camera on 12 February 2002. While microbolometer developmental research continues to advance the state-of-the-art at an ever increasing pace, uncooled infrared cameras are widely deployed serving society in meaningful ways; from preventative maintenance and process inspection to law enforcement and rescue operations. Following last years terrorist attacks in New York and Virginia, President Bush appointed Governor Ridge to lead federal coordination efforts for defense of the homeland. While uncooled microbolometer sensors served in Homeland Security long before September 2001, it is certain that new applications will be identified for surveillance, security, law enforcement and protection needs. In this paper we will describe advances in military uncooled infrared sensor technology and how these sensors can serve in the role of Homeland Defense. Developments in uncooled sensors that will be described include the rugged performance validation of a thermal weapon sight and head-mounted imager. We will look at those areas of Homeland Defense that are most likely to benefit from the application of uncooled microbolometer thermal imaging sensor technology. These include: a) search & rescue camera systems, b) handheld surveillance systems and c) hands-free camera systems.

  6. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  7. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  8. Infrared and Visible links for medical Body Sensor Networks

    Lebas , C; Sahuguede , S; Julien-Vergonjanne , A; Combeau , P; Aveneau , L

    2018-01-01

    International audience; — Our previous studies focused on channel simulation and performance evaluation of optical wireless links for medical body sensor networks. This allowed us to increase our expertise in this field and to propose here a full optical wireless bidirectional system named as LiFi communication system for medical monitoring applications. The full duplex bidirectional communication is based on an infrared uplink and visible downlink. The studied scenario considers a patient we...

  9. Development of Infrared Lip Movement Sensor for Spoken Word Recognition

    Takahiro Yoshida

    2007-12-01

    Full Text Available Lip movement of speaker is very informative for many application of speech signal processing such as multi-modal speech recognition and password authentication without speech signal. However, in collecting multi-modal speech information, we need a video camera, large amount of memory, video interface, and high speed processor to extract lip movement in real time. Such a system tends to be expensive and large. This is one reasons of preventing the use of multi-modal speech processing. In this study, we have developed a simple infrared lip movement sensor mounted on a headset, and made it possible to acquire lip movement by PDA, mobile phone, and notebook PC. The sensor consists of an infrared LED and an infrared photo transistor, and measures the lip movement by the reflected light from the mouth region. From experiment, we achieved 66% successfully word recognition rate only by lip movement features. This experimental result shows that our developed sensor can be utilized as a tool for multi-modal speech processing by combining a microphone mounted on the headset.

  10. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  11. Multi-robot system using low-cost infrared sensors

    Anubhav Kakkar

    2013-03-01

    Full Text Available This paper presents a proposed set of the novel technique, methods, and algorithm for simultaneous path planning, area exploration, area retrieval, obstacle avoidance, object detection, and object retrieval   autonomously by a multi-robot system. The proposed methods and algorithms are built considering the use of low cost infrared sensors with the ultimate function of efficiently exploring the given unknown area and simultaneously identifying desired objects by analyzing the physical characteristics of several of the objects that come across during exploration. In this paper, we have explained the scenario by building a coordinative multi-robot system consisting of two autonomously operated robots equipped with low-cost and low-range infrared sensors to perform the assigned task by analyzing some of the sudden changes in their environment. Along with identifying and retrieving the desired object, the proposed methodology also provide an inclusive analysis of the area being explored. The novelties presented in the paper may significantly provide a cost-effective solution to the problem of area exploration and finding a known object in an unknown environment by demonstrating an innovative approach of using the infrared sensors instead of high cost long range sensors and cameras. Additionally, the methodology provides a speedy and uncomplicated method of traversing a complicated arena while performing all the necessary and inter-related tasks of avoiding the obstacles, analyzing the area as well as objects, and reconstructing the area using all these information collected and interpreted for an unknown environment. The methods and algorithms proposed are simulated over a complex arena to depict the operations and manually tested over a physical environment which provided 78% correct results with respect to various complex parameters set randomly.

  12. History highlights and future trends of infrared sensors

    Corsi, Carlo

    2010-10-01

    Infrared (IR) technologies (materials, devices and systems) represent an area of excellence in science and technology and, even if they have been generally confined to a selected scientific community, they have achieved technological and scientific highlights constituting 'innovation drivers' for neighbouring disciplines, especially in the sensors field. The development of IR sensors, initially linked to astronomical observations, since World War II and for many years has been fostered essentially by defence applications, particularly thermo-vision and, later on, smart vision and detection, for surveillance and warning. Only in the last few decades, the impact of silicon technology has changed the development of IR detectors dramatically, with the advent of integrated signal read-outs and the opening of civilian markets (EO communications, biomedical, environmental, transport and energy applications). The history of infrared sensors contains examples of real breakthroughs, particularly true in the case of focal plane arrays that first appeared in the late 1970s, when the superiority of bi-dimensional arrays for most applications pushed the development of technologies providing the highest number of pixels. An impressive impulse was given to the development of FPA arrays by integration with charge coupled devices (CCD), with strong competition from different technologies (high-efficiency photon sensors, Schottky diodes, multi-quantum wells and, later on, room temperature microbolometers/cantilevers). This breakthrough allowed the development of high performance IR systems of small size, light weight and low cost - and therefore suitable for civil applications - thanks to the elimination of the mechanical scanning system and the progressive reduction of cooling requirements (up to the advent of microbolometers, capable of working at room temperature). In particular, the elimination of cryogenic cooling allowed the development and commercialisation of IR Smart Sensors

  13. Auto-Navigation of Micromouse Based on Infrared Sensor

    Zhang Haoming

    2014-05-01

    Full Text Available Micromouse is an intelligent robot that is designed to search a shortest path to the destination in a unknown maze, in order to make the mouse can memory the right complex maze information automatically after searching and dashing, different parameters decided by infrared sensors were used to record micromouse’s position in the maze, also is used as the reference to realize micromouse position compensation, which can ensure the rapidity, accuracy and good stability of micromouse in high speed exploration and dashing.

  14. Visualizing Sound Directivity via Smartphone Sensors

    Hawley, Scott H.; McClain Jr, Robert E.

    2017-01-01

    We present a fast, simple method for automated data acquisition and visualization of sound directivity, made convenient and accessible via a smartphone app, "Polar Pattern Plotter." The app synchronizes measurements of sound volume with the phone's angular orientation obtained from either compass, gyroscope or accelerometer sensors and produces a graph and exportable data file. It is generalizable to various sound sources and receivers via the use of an input-jack-adaptor to supplant the smar...

  15. Infrared Non-Contact Head Sensor for Control of Wheelchair Movements

    Christensen, Henrik Vie; Garcia, Juan Carlos

    2005-01-01

    This paper presents a new human-machine interface for controlling a wheelchair by head movements. The position of the head is determined by use of infrared sensors, with no parts attached to the head of the user. The placement of the infrared sensors are behind the head of the user, so that the f......This paper presents a new human-machine interface for controlling a wheelchair by head movements. The position of the head is determined by use of infrared sensors, with no parts attached to the head of the user. The placement of the infrared sensors are behind the head of the user, so...

  16. Self-adaptive calibration for staring infrared sensors

    Kendall, William B.; Stocker, Alan D.

    1993-10-01

    This paper presents a new, self-adaptive technique for the correlation of non-uniformities (fixed-pattern noise) in high-density infrared focal-plane detector arrays. We have developed a new approach to non-uniformity correction in which we use multiple image frames of the scene itself, and take advantage of the aim-point wander caused by jitter, residual tracking errors, or deliberately induced motion. Such wander causes each detector in the array to view multiple scene elements, and each scene element to be viewed by multiple detectors. It is therefore possible to formulate (and solve) a set of simultaneous equations from which correction parameters can be computed for the detectors. We have tested our approach with actual images collected by the ARPA-sponsored MUSIC infrared sensor. For these tests we employed a 60-frame (0.75-second) sequence of terrain images for which an out-of-date calibration was deliberately used. The sensor was aimed at a point on the ground via an operator-assisted tracking system having a maximum aim point wander on the order of ten pixels. With these data, we were able to improve the calibration accuracy by a factor of approximately 100.

  17. Miniature infrared hyperspectral imaging sensor for airborne applications

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  18. Sistem Monitoring Parkir Mobil menggunakan Sensor Infrared berbasis RASPBERRY PI

    DECY NATALIANA

    2016-02-01

    Full Text Available ABSTRAK Masalah yang selalu timbul dalam sistem perparkiran adalah kurangnya informasi mengenai status ketersediaan lahan parkir, untuk itu diperlukan sebuah sistem monitoring parkir. Tujuan penelitian ini adalah merancang dan merealisasikan model sistem monitoring perparkiran dengan fasilitas pemilihan area parkir dengan berbasiskan Raspberry Pi serta pemanfaatan infrared sebagai sensor. Sistem ini mampu menampilkan status ketersediaan dari area parkir yang ditampilkan pada display serta dilengkapi dengan perhitungan tarif parkir. Pada sistem yang dirancang dilengkapi dengan tombol untuk memilih area parkir, 2 buah sensor pada masing-masing area parkir untuk mendeteksi kendaraan, kamera untuk kemanan dan lampu LED sebagai indikator ketersediaan area parkir. Perangkat lunak yang digunakan pada sistem ini dirancang dengan menggunakan bahasa Python 2 dan untuk sistem database digunakan SQLite3. Pengujian dilakukan secara simulasi pada miniatur perparkiran. Hasil pengujian model sistem perparkiran dapat menampilkan kondisi dari masing-masing area parkir yang ditampilkan pada display. Kedua buah LED berhasil menjadi indikator ada tidaknya lahan parkir yang masih kosong. Untuk sistem perhitungan tarif parkir telah sesuai dengan perhitungan lamanya parkir. Kata kunci : Parkir, Raspberry Pi , Infrared, Python 2, Monitoring. ABSTRACT The problem which always happens in parking system is the lack of information about the parking area. That’s why we need parking monitoring system. The purposes of this project are to devise and create parking monitoring system which has fitur for ordering parking area. The system based on Raspberry Pi. The system use infra red as sensor. Beside show the availability status of parking area in a display, this system also calculates the price of using the parking area. The System equipped with button for ordering parking area, 2 infrared sensors for each area, web camera for security and 2 LED lamps for availability

  19. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  20. A sensor element for direct radiation measurement

    Bajons, P.; Wernhart, U.; Zeiler, H. [University of Vienna (Austria). Institut of Material Physics

    1998-08-01

    A combination of a photodiode with a nonimaging light concentrator is developed to perform measurements of the direct solar radiation component. A prototype composed of low price elements is taken as a starting point to discuss the problems which must be faced when calibrating such sensors. By this the influence of the angle of incidence and spectral distribution (caused by different air mass or varying degree of clearness) of the incident radiation on the behavior of the system is studied. The readings are compared to the calculated (global minus diffuse) readings obtained from two standard star pyranometers. Finally the possibilities for increasing the accuracy of the sensor element and for applying the device are discussed. (author)

  1. Infrared light sensor applied to early detection of tooth decay

    Benjumea, Eberto; Espitia, José; Díaz, Leonardo; Torres, Cesar

    2017-08-01

    The approach dentistry to dental care is gradually shifting to a model focused on early detection and oral-disease prevention; one of the most important methods of prevention of tooth decay is opportune diagnosis of decay and reconstruction. The present study aimed to introduce a procedure for early diagnosis of tooth decay and to compare result of experiment of this method with other common treatments. In this setup, a laser emitting infrared light is injected in core of one bifurcated fiber-optic and conduced to tooth surface and with the same bifurcated fiber the radiation reflected for the same tooth is collected and them conduced to surface of sensor that measures thermal and light frequencies to detect early signs of decay below a tooth surface, where demineralization is difficult to spot with x-ray technology. This device will can be used to diagnose tooth decay without any chemicals and rays such as high power lasers or X-rays.

  2. An Estimation of a Passive Infra-Red Sensor Probability of Detection

    Osman, E.A.; El-Gazar, M.I.; Shaat, M.K.; El-Kafas, A.A.; Zidan, W.I.; Wadoud, A.A.

    2009-01-01

    Passive Infera-Red (PIR) sensors are one of many detection sensors are used to detect any intrusion process of the nuclear sites. In this work, an estimation of a PIR Sensor's Probability of Detection of a hypothetical facility is presented. sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensor test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The PIR sensor construction, operation and design for the investigated nuclear site are explained. Walking and running intrusion tests were carried out inside the field areas of the PIR sensor to evaluate the sensor performance during the intrusion process. 10 trials experimentally performed for achieving the intrusion process via a passive infra-red sensor's network system. The performance and intrusion senses of PIR sensors inside the internal zones was recorded and evaluated.

  3. A Simple Test to Evaluate the Calibration Stability and Accuracy of Infrared Thermocouple Sensors

    Pinnock, Derek R.; Bugbee, Bruce

    2002-01-01

    Accurately measuring surface temperature is not difficult when the surface, the sensor, and air temperatures are similar, but it is challenging when the surface temperature is significantly different than air and sensor temperatures. We tested three Infrared Thermocouple sensors (IRT’s) that had been used for two years in a greenhouse environment. The importance of the correction for sensor body temperature was also examined.

  4. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    are offset by the superior performance, ma-turity, and robustness of SWIR lasers, detectors, and other components, while the reverse is true for the MWIR and LWIR bands. PNNL's research activities include identification of signature chemicals and quantification of their spectroscopy, exploration of novel sensing techniques, and experimental sensor system construction and testing. In FY02, experimental QC laser systems developed with DARPA funding were used to explore continuous-wave (cw) CES in various forms culminating in the NICE-OHMS technique [1-3] discussed below. In FY02 PNNL also built an SWIR sensor to validate utility of the SWIR spectral region for chemical sensing, and explore the science and engineering of CES in field environments. The remainder of this report is devoted to PNNL's LWIR CES research. During FY02 PNNL explored the performance and limitations of several detection tech-niques in the LWIR including direct cavity-enhanced absorption, cavity-dithered phase-sensitive detection and resonant sideband cavity-enhanced detection. This latter tech-nique is also known as NICE-OHMS, which stands for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy. This technique, pioneered in the near infra-red (NIR) by Dr J. Hall and coworkers at the University of Colorado, is one of the most sensitive spectroscopic techniques currently known. In this report, the first demonstra-tion of this technique in the LWIR is presented.

  5. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  6. Overview of benefits, challenges, and requirements of wheeled-vehicle mounted infrared sensors

    Miller, John Lester; Clayton, Paul; Olsson, Stefan F.

    2013-06-01

    Requirements for vehicle mounted infrared sensors, especially as imagers evolve to high definition (HD) format will be detailed and analyzed. Lessons learned from integrations of infrared sensors on armored vehicles, unarmored military vehicles and commercial automobiles will be discussed. Comparisons between sensors for driving and those for situation awareness, targeting and other functions will be presented. Conclusions will be drawn regarding future applications and installations. New business requirements for more advanced digital image processing algorithms in the sensor system will be discussed. Examples of these are smarter contrast/brightness adjustments algorithms, detail enhancement, intelligent blending (IR-Vis) modes, and augmented reality.

  7. Quality assurance tests of the CBM silicon tracking system sensors with an infrared laser

    Teklishyn, Maksym [FAIR GmbH, Darmstadt (Germany); KINR, Kyiv (Ukraine); Collaboration: CBM-Collaboration

    2016-07-01

    Double-sided 300 μm thick silicon microstrip sensors are planned to be used in the Silicon Tracking System (STS) of the future CBM experiment. Different tools, including an infrared laser, are used to induce charge in the sensor medium to study the sensor response. We use present installation to develop a procedure for the sensor quality assurance during mass production. The precise positioning of the laser spot allows to make a clear judgment about the sensor interstrip gap response which provides information about the charge distribution inside the sensor medium. Results are compared with the model estimations.

  8. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    Warriach, Ehsan Ullah; Claudel, Christian G.

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN

  9. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors

    Odat, Enas M.; Shamma, Jeff S.; Claudel, Christian

    2017-01-01

    In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) from IDPS

    National Oceanic and Atmospheric Administration, Department of Commerce — Sensor Data Records (SDRs), or Level 1b data, from the Visible Infrared Imaging Radiometer Suite (VIIRS) are the calibrated and geolocated radiance and reflectance...

  11. Sensores ópticos com detecção no infravermelho próximo e médio Near and mid infrared optical sensors

    Kássio M. G. Lima

    2009-01-01

    Full Text Available Optical chemical sensors with detection in the near and mid infrared region are reviewed. Fundamental concepts of infrared spectroscopy and optical chemical sensors are briefly described, before presenting some aspects on optical chemical sensors, such as synthesis of NIR and IR reagents, preparation of new materials as well as application in determinations of species of biological, industrial and environmental importance.

  12. Human action pattern monitor for telecare system utilizing magnetic thin film infrared sensor

    Osada, H.; Chiba, S.; Oka, H.; Seki, K.

    2002-01-01

    The magnetic thin film infrared sensor (MFI) is an infrared sensing device utilizing a temperature-sensitive magnetic thin film with marked temperature dependence in the room temperature range. We propose a human action pattern monitor (HPM) constructed with the MFI, without a monitor camera to save the clients' privacy, as a telecare system

  13. Infrared processing and sensor fusion for anti-personnel land-mine detection

    Schavemaker, J.G.M.; Cremer, F.; Schutte, K.; Breejen, E. den

    2000-01-01

    In this paper we present the results of infrared processing and sensor fusion obtained within the European research project GEODE (Ground Explosive Ordnance DEtection) that strives for the realization of a vehicle-mounted, multi-sensor anti-personnel land-mine detection system for humanitarian

  14. Space-based infrared sensors of space target imaging effect analysis

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  15. Infrared

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  16. Barkhausen noise sensor with direct field control

    Stupakov, Oleksandr

    2013-01-01

    Roč. 11, č. 1 (2013), s. 209-212 ISSN 1546-198X R&D Projects: GA ČR GP102/09/P108 Institutional research plan: CEZ:AV0Z10100520 Keywords : Barkhausen noise * field measurement * magnetic non-destructive testing Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 0.558, year: 2013

  17. Microparticle impact sensor measures energy directly

    Alexander, W. M.; Berg, O. E.

    1965-01-01

    Construction of a capacitor sensor consisting of a dielectric layer between two conductive surface layers and connected across a potential source through a sensing resistor permits measurement of energy of impinging particles without degradation of sensitivity. A measurable response is produced without penetration of the dielectric layer.

  18. An Adaptive Directed Query Dissemination Scheme for Wireless Sensor Networks

    Chatterjea, Supriyo; De Luigi, Simone; Havinga, Paul J.M.; Sun, M.T.

    This paper describes a directed query dissemination scheme, DirQ that routes queries to the appropriate source nodes based on both constant and dynamicvalued attributes such as sensor types and sensor values. Unlike certain other query dissemination schemes, location information is not essential for

  19. Visualizing Sound Directivity via Smartphone Sensors

    Hawley, Scott H.; McClain, Robert E.

    2018-02-01

    When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a simple method for visualizing angular dependence in sound fields, made possible via the confluence of sensors available via a new smartphone app that the authors have developed.

  20. Direction Finding Using Multiple MEMS Acoustic Sensors

    2015-09-01

    Technologies Boomerang Warrior-X. A shoulder-mounted device detects incoming fire and provides visual and/or audio announcement via speaker , earpiece or...panel, which is located inside the vehicle, alerts soldiers through an LED 12-hour clock image display panel and speaker mounted inside the vehicle...sensor was operated at the bending frequency due to its large amplitude of vibration . Because the bending mode is excited by the pressure gradient of

  1. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  2. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  3. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  4. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  5. Direct conversion of infrared radiant energy for space power applications

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  6. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  7. Optical monitoring of kidney oxygenation and hemodynamics using a miniaturized near-infrared sensor

    Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Nguan, Christopher

    2017-02-01

    Background: Following human renal allograft transplant primary graft dysfunction can occur early in the postoperative period as a result of acute tubular necrosis, acute rejection, drug toxicity, and vascular complications. Successful treatment of graft dysfunction requires early detection and accurate diagnosis so that disease-specific medical and/or surgical intervention can be provided promptly. However, current diagnostic methods are not sensitive or specific enough, so that identifying the cause of graft dysfunction is problematic and often delayed. Near-infrared spectroscopy (NIRS) is an established optical method that monitors changes in tissue hemodynamics and oxygenation in real time. We report the feasibility of directly monitoring kidney the kidney in an animal model using NIRS to detect renal ischemia and hypoxia. Methods: In an anesthetized pig, a customized continuous wave spatially resolved (SR) NIRS sensor was fixed directly to the surface of the surgically exposed kidney. Changes in the concentration of oxygenated (O2Hb) deoxygenated (HHb) and total hemoglobin (THb) were monitored before, during and after renal artery clamping and reperfusion, and the resulting fluctuations in chromophore concentration from baseline used to measure variations in renal perfusion and oxygenation. Results: On clamping the renal artery THb and O2Hb concentrations declined progressively while HHb rose. With reperfusion after releasing the artery clamp O2Hb and THb rose while HHb fell with all parameters returning to its baseline. This pattern was similar in all three trials. Conclusion: This pilot study indicates that a miniaturized NIRS sensor applied directly to the surface of a kidney in an animal model can detect the onset of renal ischemia and tissue hypoxia. With modification, our NIRS-based method may contribute to early detection of renal vascular complications and graft dysfunction following renal transplant.

  8. Investigation of fluids as filling of a biomimetic infrared sensor based on the infrared receptors of pyrophilous insects

    Kahl, T.; Li, N.; Schmitz, H.; Bousack, H.

    2012-04-01

    The beetle Melanophila acuminata is highly dependent on forest fires. The burned wood serves as food for the larvae and the adults copulate on the burned areas to put their eggs in the freshly burned trees. To be able to detect forest fires from great distances the beetle developed a highly sensitive infrared receptor which works according to a photomechanical principle. The beetle has two pit organs, one on each lateral side, of which each houses around 70 dome shaped infrared receptors. These IR-receptors consist of a hard outer cuticular shell and an inner microfluidic core. When IR-radiation is absorbed, the pressure in the core increases due to the thermal expansion. This results in a deflection of a dendritic tip of a mechanosensitiv neuron which generates the signal. This biological principle was transferred into a new kind of un-cooled technical infrared receptor. To demonstrate the functional principle and the feasibility of this IR-sensor a macroscopic demonstrator sensor was build. It consisted of an inner fluid filled cavity (pressure chamber), an IR-transmissive window and a membrane. The deflection of the membrane due to the absorbed IR-energy was measured by a sensitive commercial capacitive sensor. In the experiments ethanol with added black ink, a mix of ethanol and glucose with additional absorber, air with additional absorber and water were used as fillings of the cavity and compared against each other. In order to get insights into the physics of the results of the experiments accompanying simulations using FEM methods and analytical calculations have been performed. The results showed that ethanol and air as fillings of the cavity caused the largest deflection of the membrane. Furthermore it turned out that the thermal expansion of the sensor housing material has an important influence. The comparison of the measured deflection with calculated deflections showed a good concordance.

  9. Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements

    Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak

  10. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  11. Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring

    Muda, R; Lewis, E; O' Keeffe, S; Dooly, G; Clifford, J, E-mail: razali.muda@ul.i [Optical Fibre Sensors Research Centre, Electronic and Computer Engineering Department, University of Limerick (Ireland)

    2009-07-01

    A novel and highly compact optical fibre based sensor system for measurement of high concentrations CO{sub 2} gas emissions in modern automotive exhaust is presented. The sensor system works based on the principle of open-path direct absorption spectroscopy in the mid-infrared wavelength range. The sensor system, which comprises low cost components and is compact in design, is well suited for applications in monitoring CO{sub 2} emissions from the exhaust of automotive vehicles. The sensor system utilises calcium fluoride (CaF{sub 2}) lenses and a narrow band pass (NBP) filter for detection of CO{sub 2} gas. The response of the sensor to high concentrations of CO{sub 2} gas is presented and the result is compared with that of a commercial flue gas analyser. The sensor shows response times of 5.2s and demonstrates minimal susceptibility to cross interferences of other gases present in the exhaust system.

  12. Uncooled infrared sensors: rapid growth and future perspective

    Balcerak, Raymond S.

    2000-07-01

    The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.

  13. Miniaturized multi channel infrared optical gas sensor system

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  14. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  15. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors

    Odat, Enas M.

    2017-09-18

    In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used for real-time vehicle detection, classification, and speed estimation in the context of wireless sensor networks. This framework relies on dynamic Bayesian Networks to fuse heterogeneous data both spatially and temporally for vehicle detection. To estimate the speed of the incoming vehicles, we first use cross correlation and wavelet transform-based methods to estimate the time delay between the signals of different sensors. We then propose a calibration and self-correction model based on Bayesian Networks to make a joint inference by all sensors about the speed and the length of the detected vehicle. Furthermore, we use the measurements of the ultrasonic and the PIR sensors to perform vehicle classification. Validation data (using an experimental dual infrared and ultrasonic traffic sensor) show a 99% accuracy in vehicle detection, a mean error of 5 kph in vehicle speed estimation, a mean error of 0.7m in vehicle length estimation, and a high accuracy in vehicle classification. Finally, we discuss the computational performance of the algorithm, and show that this framework can be implemented on low-power computational devices within a wireless sensor network setting. Such decentralized processing greatly improves the energy consumption of the system and minimizes bandwidth usage.

  16. Study of GeSn Alloy for Low Cost Monolithic Mid Infrared Quantum Well Sensor

    Prakash PAREEK

    2017-02-01

    Full Text Available This paper focuses on theoretical study of Tin incorporated group IV alloys particularly GeSn and design of quantum well sensor for mid infrared sensing applications. Initially, the physics behind the selection of material for midinfrared sensor is explained. The importance of controlling strain in GeSn alloy is also explained. The physical background and motivation for incorporation of Tin(Sn in Germanium is briefly narrated. Eigen energy states for different Sn concentrations are obtained for strain compensated quantum well in G valley conduction band (GCB, heavy hole (HH band and light hole (LH band by solving coupled Schrödinger and Poisson equations simultaneously. Sn concentration dependent absorption spectra for HH- GCB transition reveals that significant absorption observed in mid infrared range (3-5 µm. So, Ge1-x Snx quantum well can be used for mid infrared sensing applications.

  17. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment

    Jianing Wang

    2016-11-01

    Full Text Available In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2 sensor based on non-dispersive infrared (NDIR with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI, to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.

  18. Comparison of Three Non-Imaging Angle-Diversity Receivers as Input Sensors of Nodes for Indoor Infrared Wireless Sensor Networks: Theory and Simulation

    Beatriz R. Mendoza

    2016-07-01

    Full Text Available In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR, the sectored angle-diversity receiver (SDR, and the self-orienting receiver (SOR, which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network.

  19. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  20. Research on the Multiple Factors Influencing Human Identification Based on Pyroelectric Infrared Sensors

    Lou, Ping; Hu, Jianmin

    2018-01-01

    Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908

  1. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  2. A μ-biomimetic uncooled infrared sensor based on the infrared receptors of Melanophila acuminata

    Siebke, Georg

    2015-11-01

    The pyrophilous beetle Melanophila acuminata possesses an organ sensitive to IR radiation. It employs a photomechanic detection principle: A liquid filled pressure chamber is heated by absorbing the radiation. The liquid expands and leads to the deflection of a mechanosensitive dendrite. In addition, a sophisticated compensation mechanism prevents the build-up of large pressures. In this work, a biomimetic IR sensor based on the IR receptors of Melanophila acuminata is developed by means of microsystems technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of the chambers leads to the heating and expansion of a liquid. The increasing pressure deflects a membrane which is part of a plate capacitor with a diameter of 500 μm and an electrode distance of 500 nm. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. A theoretical model is developed which is able to predict the modulation frequency dependent response. It allows to calculate the filter properties of the compensation mechanism which is verified by an experimental test. A simplified sensor without the compensation mechanism is manufactured to analyse the influence of several parameters on the sensor's sensitivity. Finally, a solution for the fabrication of the μ-capacitor is presented. The large aspect ratio between electrode diameter and distance prevents to use a standard sacrificial layer process. The obtained capacitors pave the way to fabricate the complete full-featured sensor.

  3. A μ-biomimetic uncooled infrared sensor based on the infrared receptors of Melanophila acuminata

    Siebke, Georg

    2015-11-15

    The pyrophilous beetle Melanophila acuminata possesses an organ sensitive to IR radiation. It employs a photomechanic detection principle: A liquid filled pressure chamber is heated by absorbing the radiation. The liquid expands and leads to the deflection of a mechanosensitive dendrite. In addition, a sophisticated compensation mechanism prevents the build-up of large pressures. In this work, a biomimetic IR sensor based on the IR receptors of Melanophila acuminata is developed by means of microsystems technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of the chambers leads to the heating and expansion of a liquid. The increasing pressure deflects a membrane which is part of a plate capacitor with a diameter of 500 μm and an electrode distance of 500 nm. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. A theoretical model is developed which is able to predict the modulation frequency dependent response. It allows to calculate the filter properties of the compensation mechanism which is verified by an experimental test. A simplified sensor without the compensation mechanism is manufactured to analyse the influence of several parameters on the sensor's sensitivity. Finally, a solution for the fabrication of the μ-capacitor is presented. The large aspect ratio between electrode diameter and distance prevents to use a standard sacrificial layer process. The obtained capacitors pave the way to fabricate the complete full-featured sensor.

  4. Protection of High Ceiling Nuclear Facilities Using Photoelectric Sensors and Infrared Fire Detectors

    Wadoud, A.A.; El Eissawi, H.M.; Saleh, A.A.

    2017-01-01

    A variety of different security systems and components are commercially available and widely used. Before implementing a security system, it is important to understand the characteristics and requirements of the facility area to be protected. Technology and manufacturers of security devices are rapidly changing. It is necessary to use optimal security equipment suitable for the surrounding environment of the facility to be protected. Several security sensors can be used to protect the nuclear facilities, such as passive infrared detectors and glass breakage sensors, vibration detectors, and microwave sensors. This work introduces technical specifications, operation and method of installation for these detectors in nuclear facilities. Also a comparative study of different security sensors or equipment is provided. The photoelectric detectors and infrared fire beam smoke detectors are reliable, suitable and advanced security equipment. They can be used in special cases because of their advantages, this includes their long ranges and accuracy in performance. This paper presents a new concept for adapting the use infrared optical fire beam smoke detector as intrusion detection equipment in high ceiling buildings or towering height facilities. This is in addition to their main function, namely fire detection.The paper also provides a study for their types and installation method. Focus is made on the installation and operation method for two advanced security systems, and wireless control circuit for the overall system operation

  5. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    Jaggi, S.

    1993-01-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  6. Infrared sensors and sensor fusion; Proceedings of the Meeting, Orlando, FL, May 19-21, 1987

    Buser, R.G.; Warren, F.B.

    1987-01-01

    The present conference discusses topics in the fields of IR sensor multifunctional design; image modeling, simulation, and detection; IR sensor configurations and components; thermal sensor arrays; silicide-based IR sensors; and IR focal plane array utilization. Attention is given to the fusion of lidar and FLIR for target segmentation and enhancement, the synergetic integration of thermal and visual images for computer vision, the 'Falcon Eye' FLIR system, multifunctional electrooptics and multiaperture sensors for precision-guided munitions, and AI approaches to data integration. Also discussed are the comparative performance of Ir silicide and Pt silicide photodiodes, high fill-factor silicide monolithic arrays, and the characterization of noise in staring IR focal plane arrays

  7. Moving target tracking through distributed clustering in directional sensor networks.

    Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-12-18

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  8. Moving Target Tracking through Distributed Clustering in Directional Sensor Networks

    Asma Enayet

    2014-12-01

    Full Text Available The problem of moving target tracking in directional sensor networks (DSNs introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target’s location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  9. Evaluation Of Spatial Filters For Background Suppression In Infrared Mosaic Sensor Systems

    Bergen, T. L.; Mazaika, P. K.

    1982-12-01

    Spaceborne infrared mosaic sensors have been proposed for future surveillance systems. Because these systems will generate a large volume of data, background suppression will require algorithms which use innovative architectures and minimal storage. This paper analyzes the implementation and performance of candidate temporal and spatial filters. Spatial filters are attractive because they require far less memory, can effectively exploit a parallel, pipelined architecture, and are relatively insensitive to target speed. However, the performance of spatial filtering is substantially worse than that of temporal filtering when the sensor has good line-of-sight stability.

  10. Multi-modal Video Surveillance Aided by Pyroelectric Infrared Sensors

    Magno , Michele; Tombari , Federico; Brunelli , Davide; Di Stefano , Luigi; Benini , Luca

    2008-01-01

    International audience; The interest in low-cost and small size video surveillance systems able to collaborate in a network has been increasing over the last years. Thanks to the progress in low-power design, research has greatly reduced the size and the power consumption of such distributed embedded systems providing flexibility, quick deployment and allowing the implementation of effective vision algorithms performing image processing directly on the embedded node. In this paper we present ...

  11. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    Warriach, Ehsan Ullah

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN-SVM significantly outperforms other algorithms in terms of classification accuracy. We also show that some of these algorithms could run in real time on the prototype system. Copyright © 2013 ACM.

  12. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-01-01

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maxi...

  13. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  14. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil

    Markus S. Rauscher

    2017-02-01

    Full Text Available The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.

  15. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Fibreoptic distributed temperature sensor with spectral filtration by directional fibre couplers

    Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.

    2009-11-01

    We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.

  16. Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor.

    Small, Leo J; Nenoff, Tina M

    2017-12-27

    High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. Herein, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I 2 by a metal-organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I 2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I 2 . Furthermore, equivalent circuit modeling of the impedance data indicates a >10 5 × decrease in ZIF-8 resistance when 116 wt % I 2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. This report demonstrates how selective I 2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >10 5 × changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.

  17. On Connectivity of Wireless Sensor Networks with Directional Antennas

    Qiu Wang

    2017-01-01

    Full Text Available In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  18. Polymeric turbidity sensor fabricated by laser direct writing

    Li, Shu; Lin, Qiao; Wu, George; Chen, Liuhua; Wu, X

    2011-01-01

    The design of a miniature-sized turbidity sensor fabricated by laser direct writing was proposed and tested. A dual-beam dual-detector sensing structure was written by a 488 nm laser from UV curable optical polymer to form a 4 mm diameter turbidity sensing probe, with the fabrication process being shortened to a few seconds. Experimental tests on prototypes were conducted by using standard turbidity solutions, and the data were processed with a self-adapting neural network based on a single input single output algorithm. The scattering coefficient for normalized turbidity of the standards was obtained, and system accuracy was validated by an error analysis. Experimental results indicated that in the testing situation presented in this paper, the sensor was capable of responding to turbidity with a relative error of about 3%

  19. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  20. Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors.

    Malinowski, Pawel E; Georgitzikis, Epimitheas; Maes, Jorick; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David

    2017-12-10

    Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 -6 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.

  1. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    Ernesto Sifuentes

    2017-05-01

    Full Text Available This paper evaluates the performance of direct interface circuits (DIC, where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  2. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  3. An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor.

    Qu, Fangfang; Ren, Dong; Wang, Jihua; Zhang, Zhong; Lu, Na; Meng, Lei

    2016-01-11

    Spectral analysis technique based on near infrared (NIR) sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA) as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA) based on a variable evaluation index (EI) for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy.

  4. An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor

    Fangfang Qu

    2016-01-01

    Full Text Available Spectral analysis technique based on near infrared (NIR sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA based on a variable evaluation index (EI for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy.

  5. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    Andrea Trucco

    2015-06-01

    Full Text Available For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed. In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches.

  6. Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers

    Stroian, G.; Falco, T.; Seuntjens, J.P.

    2004-01-01

    The accuracy of dose delivery in radiotherapy is affected by the uncertainty in tumor localization. Motion of internal anatomy due to physiological processes such as respiration may lead to significant displacements which compromise tumor coverage and generate irradiation of healthy tissue. Real-time tracking with infrared-based systems is often used for tracking thoracic motion in radiation therapy. We studied the origin of ghost markers ('crosstalk') which may appear during dual sensor-based infrared tracking of independent reflective markers. Ghost markers occur when two or more reflective markers are coplanar with each other and with the sensors of the two camera-based infrared tracking system. Analysis shows that sensors are not points but they have a finite extent and this extent determines for each marker a 'ghost volume'. If one reflective marker enters the ghost volume of another marker, ghost markers will be reported by the tracking system; if the reflective markers belong to a surface their 'ghost volume' is reduced to a 'ghost surface' (ghost zone). Appearance of ghost markers is predicted for markers taped on the torso of an anthropomorphic phantom. This study illustrates the dependence of the shape, extent, and location of the ghost zones on the shape of the anthropomorphic phantom, the angle of view of the tracking system, and the distance between the tracking system and the anthropomorphic phantom. It is concluded that the appearance of ghost markers can be avoided by positioning the markers outside the ghost zones of the other markers. However, if this is not possible and the initial marker configuration is ghost marker-free, ghost markers can be eliminated during real-time tracking by virtue of the fact that they appear in the coordinate data sequence only temporarily

  7. Adaptive Gain and Analog Wavelet Transform for Low-Power Infrared Image Sensors

    P. Villard

    2012-01-01

    Full Text Available A decorrelation and analog-to-digital conversion scheme aiming to reduce the power consumption of infrared image sensors is presented in this paper. To exploit both intraframe redundancy and inherent photon shot noise characteristics, a column based 1D Haar analog wavelet transform combined with variable gain amplification prior to A/D conversion is used. This allows to use only an 11-bit ADC, instead of a 13-bit one, and to save 15% of data transfer. An 8×16 pixels test circuit demonstrates this functionality.

  8. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  9. Recent advances of mid-infrared compact, field deployable sensors: principles and applications

    Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek

    2016-04-01

    The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor

  10. Performance Evaluation of an Indoor Positioning Scheme Using Infrared Motion Sensors

    Changqiang Jing

    2014-10-01

    Full Text Available Internet of Things (IoT for Smart Environments (SE is a new scenario that collects useful information and provides convenient services to humans via sensing and wireless communications. Infra-Red (IR motion sensors have recently been widely used for indoor lighting because they allow the system to detect whether a human is inside or outside the sensors’ range. In this paper, the performance of a position estimation scheme based on IR motion sensor is evaluated in an indoor SE. The experimental results show that we can track the dynamic position of a pedestrian in straight moving model as well as two dimensional models. Experimental results also show that higher performance in accuracy and dynamic tracking in real indoor environment can be achieved without other devices.

  11. Self Powered Non-Dispersive Infra-Red CO{sub 2} Gas Sensor

    Gibson, D R; MacGregor, C, E-mail: des@gassensing.co.uk [Gas Sensing Solutions Ltd, 60 Grayshill Road, Westfield North Courtyard, Glasgow G68 9HQ (United Kingdom)

    2011-08-17

    This paper describes a non-dispersive infra-red CO{sub 2} gas sensor, incorporating a mid-infra-red solid state light source/ detector combination, tuned to match the spectral absorption characteristic of CO{sub 2} gas. Injection moulded optics provide low cost manufacture. Continuous operation power consumption is < 3.5mW and pulsed mode with energy per measurement < 6mJ. Self powered operation using a solar cell is demonstrated together with wireless capability. Performance of two path length variants (20mm and 70mm) is described. The sensor shows invariant temperature output characteristic from -25 to 50 deg. C. Accuracy level is typically {+-}3% of reading.

  12. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  13. Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-Ambient Carbon Dioxide Detection

    Swickrath, Michael J.; Anderson, Molly S.; McMillin, Summer; Broerman, Craig

    2013-01-01

    Carbon dioxide produced through respiration can accumulate rapidly within closed spaces. If not managed, a crew's respiratory rate increases, headaches and hyperventilation occur, vision and hearing are affected, and cognitive abilities decrease. Consequently, development continues on a number of CO2 removal technologies for human spacecraft and spacesuits. Terrestrially, technology development requires precise performance characterization to qualify promising air revitalization equipment. On-orbit, instrumentation is required to identify and eliminate unsafe conditions. This necessitates accurate in situ CO2 detection. Recursive compensation algorithms were developed for sub-ambient detection of CO2 with commercial off-the-shelf (COTS) non-dispersive infrared (NDIR) sensors. In addition, the source of the exponential loss in accuracy is developed theoretically. The basis of the loss can be explained through thermal, Doppler, and Lorentz broadening effects that arise as a result of the temperature, pressure, and composition of the gas mixture under analysis. The objective was to develop a mathematical routine to compensate COTS CO2 sensors relying on NDIR over pressures, temperatures, and compositions far from calibration conditions. The routine relies on a power-law relationship for the pressure dependency of the sensors along with an equivalent pressure to account for the composition dependency. A Newton-Raphson iterative technique solves for actual carbon dioxide concentration based on the reported concentration. Moreover, first principles routines were established to predict mixed-gas spectra based on sensor specifications (e.g., optical path length). The first principles model can be used to parametrically optimize sensors or sensor arrays across a wide variety of pressures/temperatures/ compositions. In this work, heuristic scaling arguments were utilized to develop reasonable compensation techniques. Experimental results confirmed this approach and provided

  14. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-08-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  15. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  16. Characterization of silicon microstrip sensors with a pulsed infrared laser system for the CBM experiment at FAIR

    Ghosh, Pradeep [Goethe Univ., Frankfurt (Germany); GSI (Germany); Eschke, Juergen [GSI (Germany); FAIR (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The Silicon Tracking System (STS) for the Compressed Baryonic Matter (CBM) experiment at FAIR will comprise more than 1200 double-sided silicon microstrip sensors. For the quality assurance of the prototype sensors a laser test system has been built up. The aim of the sensor scans with the pulsed infrared laser system is to determine the charge sharing between strips and to measure the uniformity of the sensor response over the whole active area. The laser system measures the sensor response in an automatized procedure at several thousand positions across the sensor with focused infrared laser light (σ∼15 μm, λ=1060 nm). The duration (5 ns) and power (few mW) of the laser pulses are selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24k electrons, which is similar to the charge created by minimum ionizing particles in these sensors. Results from the characterization of monolithic active pixel sensors, to understand the spot-size of the laser, and laser scans for different sensors are presented.

  17. Flow-through Fourier transform infrared sensor for total hydrocarbons determination in water.

    Pérez-Palacios, David; Armenta, Sergio; Lendl, Bernhard

    2009-09-01

    A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18 non-polar sorbent is placed inside the sensor and is able to retain hydrocarbons from water samples. The system does not require the use of chlorinated solvents, reducing the environmental impact, and the minimal sample handling stages serve to ensure sample integrity whilst reducing exposure of the analyst to any toxic hydrocarbons present within the samples. Fourier transform infrared (FT-IR) spectra were recorded by co-adding 32 scans at a resolution of 4 cm(-1) and the band located at 1462 cm(-1) due to the CH(2) bending was integrated from 1475 to 1450 cm(-1) using a baseline correction established between 1485 and 1440 cm(-1) using the areas as analytical signal. The technique, which provides a limit of detection (LOD) of 22 mg L(-1) and a precision expressed as relative standard deviation (RSD) lower than 5%, is considerably rapid and allows for a high level of automation.

  18. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  19. Infrared Range Sensor Array for 3D Sensing in Robotic Applications

    Yongtae Do

    2013-04-01

    Full Text Available This paper presents the design and testing of multiple infrared range detectors arranged in a two-dimensional (2D array. The proposed system can collect the sparse three-dimensional (3D data of objects and surroundings for robotics applications. Three kinds of tasks are considered using the system: detecting obstacles that lie ahead of a mobile robot, sensing the ground profile for the safe navigation of a mobile robot, and sensing the shape and position of an object on a conveyor belt for pickup by a robot manipulator. The developed system is potentially a simple alternative to high-resolution (and expensive 3D sensing systems, such as stereo cameras or laser scanners. In addition, the system can provide shape information about target objects and surroundings that cannot be obtained using simple ultrasonic sensors. Laboratory prototypes of the system were built with nine infrared range sensors arranged in a 3×3 array and test results confirmed the validity of system.

  20. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material.

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-05-18

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance.

  1. Dispersive infrared spectroscopy measurements of atmospheric CO2 using a Fabry–Pérot interferometer sensor

    Chan, K.L.; Ning, Z.; Westerdahl, D.; Wong, K.C.; Sun, Y.W.; Hartl, A.; Wenig, M.O.

    2014-01-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO 2 ) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO 2 absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO 2 concentration is determined from the measured optical absorption spectra by fitting it to the CO 2 reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H 2 O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO 2 measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO 2 measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO 2 analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO 2 measurement featuring high accuracy, correction of non-linear absorption and interference of water vapor. - Highlights: • Dispersive infrared

  2. A Deployment Scheme Based Upon Virtual Force for Directional Sensor Networks

    Chiu-Kuo Liang

    2015-11-01

    Full Text Available A directional sensor network is composed of many directional sensor nodes. Unlike conventional omni-directional sensors that always have an omni-angle of sensing range; directional sensors may have a limited angle of sensing range due to technical constraints or cost considerations. Area coverage is still an essential issue in a directional sensor network. In this paper, we study the area coverage problem in directional sensor networks with mobile sensors, which can move to the correct places to get high coverage. We present distributed self-deployment schemes of mobile sensors. After sensors are randomly deployed, each sensor calculates its next new location to move in order to obtain a better coverage than previous one. The locations of sensors are adjusted round by round so that the coverage is gradually improved. Based on the virtual force of the directional sensors, we design a scheme, namely Virtual force scheme. Simulation results show the effectiveness of our scheme in term of the coverage improvement.

  3. Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection

    Cremer, F.; Schavemaker, J.G.M.; Jong, W. de; Schutte, K.

    2003-01-01

    This paper gives a comparison of two vehicle-mounted infrared systems for landmine detection. The first system is a down-ward looking standard infrared camera using processing methods developed within the EU project LOTUS. The second system is using a forward-looking polarimetric infrared camera.

  4. Privacy-Preserved Behavior Analysis and Fall Detection by an Infrared Ceiling Sensor Network

    Mineichi Kudo

    2012-12-01

    Full Text Available An infrared ceiling sensor network system is reported in this study to realize behavior analysis and fall detection of a single person in the home environment. The sensors output multiple binary sequences from which we know the existence/non-existence of persons under the sensors. The short duration averages of the binary responses are shown to be able to be regarded as pixel values of a top-view camera, but more advantageous in the sense of preserving privacy. Using the “pixel values” as features, support vector machine classifiers succeeded in recognizing eight activities (walking, reading, etc. performed by five subjects at an average recognition rate of 80.65%. In addition, we proposed a martingale framework for detecting falls in this system. The experimental results showed that we attained the best performance of 95.14% (F1 value, the FAR of 7.5% and the FRR of 2.0%. This accuracy is not sufficient in general but surprisingly high with such low-level information. In summary, it is shown that this system has the potential to be used in the home environment to provide personalized services and to detect abnormalities of elders who live alone.

  5. Evolution of miniature detectors and focal plane arrays for infrared sensors

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  6. A Review on Direct Electrochemistry of Catalase for Electrochemical Sensors

    Periasamy Arun Prakash

    2009-03-01

    Full Text Available Catalase (CAT is a heme enzyme with a Fe(III/II prosthetic group at its redox centre. CAT is present in almost all aerobic living organisms, where it catalyzes the disproportionation of H2O2 into oxygen and water without forming free radicals. In order to study this catalytic mechanism in detail, the direct electrochemistry of CAT has been investigated at various modified electrode surfaces with and without nanomaterials. The results show that CAT immobilized on nanomaterial modified electrodes shows excellent catalytic activity, high sensitivity and the lowest detection limit for H2O2 determination. In the presence of nanomaterials, the direct electron transfer between the heme group of the enzyme and the electrode surface improved significantly. Moreover, the immobilized CAT is highly biocompatible and remains extremely stable within the nanomaterial matrices. This review discusses about the versatile approaches carried out in CAT immobilization for direct electrochemistry and electrochemical sensor development aimed as efficient H2O2 determination. The benefits of immobilizing CAT in nanomaterial matrices have also been highlighted.

  7. Composite Structure Monitoring using Direct Write Sensors, Phase II

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  8. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution

    Janotta, Markus; Karlowatz, Manfred; Vogt, Frank; Mizaikoff, Boris

    2003-10-31

    This work demonstrates the application of organically modified sol-gels as recognition layers combined with mid-infrared evanescent wave sensors for in situ detection of nitrated organics in aqueous media. Sol-gels were prepared by acid-catalyzed copolymerization of phenyltrimethoxysilane (PTMOS) and tetramethoxysilane (TMOS) and were spin-coated onto ZnSe attenuated total reflection (ATR) waveguides. These sensors were investigated with respect to their enrichment properties of selected organophosphates, i.e. parathion, fenitrothion and paraoxon, respectively, and their capability of suppressing interfering water background absorptions. Figures of merit are derived from calibration curves determined to assess sensitivity and reproducibility of the applied sensor system. It can be concluded that sol-gel coated infrared optical sensors enable reproducible detection of organophosphates down to the sub-ppm concentration range. Furthermore, measurement of spiked river water samples demonstrates feasibility as remote field sensor system. Once the required sensitivity is achieved, sol-gel based mid-infrared evanescent wave sensors have the potential of being an alternative to commonly applied biosensors for detection of organophosphates in environmental analysis, since they provide superior mechanical and chemical stability during application relevant periods of time.

  9. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. 77 FR 42419 - Airworthiness Directives; Honeywell International, Inc. Global Navigation Satellite Sensor Units

    2012-07-19

    ... Airworthiness Directives; Honeywell International, Inc. Global Navigation Satellite Sensor Units AGENCY: Federal.... Model KGS200 Mercury\\2\\ wide area augmentation system (WAAS) global navigation satellite sensor units... similar Honeywell global positioning system (GPS) sensor and the same software as the Model KGS200 Mercury...

  11. Design and fabrication of resonator-quantum well infrared photodetector for SF6 gas sensor application

    Sun, Jason; Choi, Kwong-Kit; DeCuir, Eric; Olver, Kimberley; Fu, Richard

    2017-07-01

    The infrared absorption of SF6 gas is narrowband and peaks at 10.6 μm. This narrowband absorption posts a stringent requirement on the corresponding sensors as they need to collect enough signal from this limited spectral bandwidth to maintain a high sensitivity. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency for more efficient signal collection. Since the resonant approach is applicable to narrowband as well as broadband, it is particularly suitable for this application. We designed and fabricated R-QWIPs for SF6 gas detection. To achieve the expected performance, the detector geometry must be produced according to precise specifications. In particular, the height of the diffractive elements and the thickness of the active resonator must be uniform, and accurately realized to within 0.05 μm. Additionally, the substrates of the detectors must be completely removed to prevent the escape of unabsorbed light in the detectors. To achieve these specifications, two optimized inductively coupled plasma etching processes were developed. Due to submicron detector feature sizes and overlay tolerance, we used an advanced semiconductor material lithography stepper instead of a contact mask aligner to pattern wafers. Using these etching techniques and tool, we have fabricated focal plane arrays with 30-μm pixel pitch and 320×256 format. The initial test revealed promising results.

  12. Low-cost three-dimensional gait analysis system for mice with an infrared depth sensor.

    Nakamura, Akihiro; Funaya, Hiroyuki; Uezono, Naohiro; Nakashima, Kinichi; Ishida, Yasumasa; Suzuki, Tomohiro; Wakana, Shigeharu; Shibata, Tomohiro

    2015-11-01

    Three-dimensional (3D) open-field gait analysis of mice is an essential procedure in genetic and nerve regeneration research. Existing gait analysis systems are generally expensive and may interfere with the natural behaviors of mice because of optical markers and transparent floors. In contrast, the proposed system captures the subjects shape from beneath using a low-cost infrared depth sensor (Microsoft Kinect) and an opaque infrared pass filter. This means that we can track footprints and 3D paw-tip positions without optical markers or a transparent floor, thereby preventing any behavioral changes. Our experimental results suggest with healthy mice that they are more active on opaque floors and spend more time in the center of the open-field, when compared with transparent floors. The proposed system detected footprints with a comparable performance to existing systems, and precisely tracked the 3D paw-tip positions in the depth image coordinates. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Analytical tools for thermal infrared engineerig: a thermal sensor simulation package

    Jaggi, Sandeep

    1992-09-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration. To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering'--ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as SNR, NER, NETD etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters. In addition, ATTIRE can be used as a tutorial for understanding the distribution of thermal flux or solar irradiance over selected bandwidths of the spectrum. This spectrally distributed incident flux can then be analyzed as it propagates through the subsystems that constitute the entire sensor. ATTIRE provides a variety of functions ranging from plotting black-body curves for varying bandwidths and computing the integral flux, to performing transfer function analysis of the sensor system. The package runs from a menu- driven interface in a PC-DOS environment. Each sub-system of the sensor is represented by windows and icons. A user-friendly mouse-controlled point-and-click interface allows the user to simulate various aspects of a sensor. The package can simulate a theoretical sensor system. Trade-off studies can be easily done by changing the appropriate parameters and monitoring the effect of the system performance. The package can provide plots of system performance versus any system parameter. A parameter (such as the entrance aperture of the optics) could be varied and its effect on another parameter (e.g., NETD) can be plotted. A third parameter (e.g., the

  14. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  15. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  16. AT89S52 Microcontroller Based Remote Room Monitoring System Using Passive Infrared Sensor

    Albert Gifson

    2009-12-01

    Full Text Available This research describes about the design of the room detection system using a Passive Infrared sensors (PIR controlled by Microcontroller AT89S52 for remote control application. The output of the PIR is a low logic when it captures the heat waves of the human body. The output PIR is connected to the port 1.7 on Microcontroller in high logic. The maximum distance is 5 meters for the sensor to detect an object. When there is a signal sent by PIR, the Microcontroller processes the data and activates the buzzer to beep and the stepper motor to stop. Microcontroller also sends data through the RS-232 that continues a signal to the personal mobile phone. In order that the message is able to be sent, then first, messages must be programmed and stored in the Microcontroller AT89S52. The average message delivery time is 8.8 seconds. The recipient can turn the alarm of system on or off by a missed call.

  17. Ultra-Low Power Consuming Direct Radiation Sensors Based on Floating Gate Structures

    Evgeny Pikhay

    2017-07-01

    Full Text Available In this paper, we report on ultra-low power consuming single poly floating gate direct radiation sensors. The developed devices are intended for total ionizing dose (TID measurements and fabricated in a standard CMOS process flow. Sensor design and operation is discussed in detail. Original array sensors were suggested and fabricated that allowed high statistical significance of the radiation measurements and radiation imaging functions. Single sensors and array sensors were analyzed in combination with the specially developed test structures. This allowed insight into the physics of sensor operations and exclusion of the phenomena related to material degradation under irradiation in the interpretation of the measurement results. Response of the developed sensors to various sources of ionizing radiation (Gamma, X-ray, UV, energetic ions was investigated. The optimal design of sensor for implementation in dosimetry systems was suggested. The roadmap for future improvement of sensor performance is suggested.

  18. Peel-and-Stick Sensors Powered by Directed RF Energy

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph; Schwartz, David

    2017-08-30

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm

  19. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    Mousa, Mustafa

    2014-04-01

    This article describes a machine learning approach to water level estimation in a dual ultrasonic/passive infrared urban flood sensor system. We first show that an ultrasonic rangefinder alone is unable to accurately measure the level of water on a road due to thermal effects. Using additional passive infrared sensors, we show that ground temperature and local sensor temperature measurements are sufficient to correct the rangefinder readings and improve the flood detection performance. Since floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm. © 2014 IEEE.

  20. Ceramic thermal wind sensor based on advanced direct chip attaching package

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  1. Direction of Wolf-Rayet stars in a very powerful far-infrared galaxy - Direct evidence for a starburst

    Armus, L.; Heckman, T.M.; Miley, G.K.

    1988-01-01

    Spectra covering the wavelength range 4476-7610 A are presented for the powerful far-infrared galaxy IRAS 01003-2238. The broad emission band centered at a rest wavelength of roughly 4660 A, and other broad weaker features are interpreted, as arising from the combined effect of approximately 100,000 late Wolf-Rayet stars of the WN subtype. This represents perhaps the most direct evidence to date for the presence of a large number of hot massive stars in the nucleus of a very powerful far-infrared galaxy. The high number of Wolf-Rayet stars in relation to the number of O-type stars may be interpreted as arguing against continuous steady state star formation in 01003-2238, in favor of a recent burst of star formation occurring approximately 100 million yrs ago. 24 references

  2. Fulfilling the pedestrian protection directive using a long-wavelength infrared camera designed to meet both performance and cost targets

    Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran

    2006-04-01

    Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.

  3. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  4. Direct training of robots using a positional deviation sensor

    Dessen, Fredrik

    1988-01-01

    A device and system for physically guiding a manipulator through its task is described. The device consists of inductive, contact-free positional deviation sensors, enabling the rcbot to track a motion marker. Factors limiting the tracking performance are the kinematics of the sensor device and the bartdwidth of the servo system. Means for improving it includes the use of optimal motion coordination and force and velocity feedback. This enables real-time manual training o...

  5. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  6. Cloud2IR: Infrared thermography and environmental sensors integrated in an autonomoussystem for long term monitoring of structures

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo

    2016-04-01

    Since late 2014, the project Cloud2SM aims to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. Cloud2SM address three main goals, the management of distributed data and sensors network, the asynchronous processing of the data through network and the local management of the sensors themselves [1]. Integrated to this project Cloud2IR is an autonomous sensor system dedicated to the long term monitoring of infrastructures. Past experimentations have shown the need as well as usefulness of such system [2]. Before Cloud2IR an initially laboratory oriented system was used, which implied heavy operating system to be used [3]. Based on such system Cloud2IR has benefited of the experimental knowledge acquired to redefine a lighter architecture based on generics standards, more appropriated to autonomous operations on field and which can be later included in a wide distributed architecture such as Cloud2SM. The sensor system can be divided in two parts. The sensor side, this part is mainly composed by the various sensors drivers themselves as the infrared camera, the weather station or the pyranometers and their different fixed configurations. In our case, as infrared camera are slightly different than other kind of sensors, the system implement in addition an RTSP server which can be used to set up the FOV as well as other measurement parameter considerations. The second part can be seen as the data side, which is common to all sensors. It instantiate through a generic interface all the sensors and control the data access loop (not the requesting). This side of the system is weakly coupled (see data coupling) with the sensor side. It can be seen as a general framework able to aggregate any sensor data, type or size and automatically encapsulate them in various generic data format as HDF5 or cloud data as OGC SWE standard. This whole part is also responsible of the

  7. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    Soo-Chul Lim

    2015-07-01

    Full Text Available Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces.

  8. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors.

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-07-09

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user's hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces.

  9. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors

    Lim, Soo-Chul; Shin, Jungsoon; Kim, Seung-Chan; Park, Joonah

    2015-01-01

    Touchscreen interaction has become a fundamental means of controlling mobile phones and smartwatches. However, the small form factor of a smartwatch limits the available interactive surface area. To overcome this limitation, we propose the expansion of the touch region of the screen to the back of the user’s hand. We developed a touch module for sensing the touched finger position on the back of the hand using infrared (IR) line image sensors, based on the calibrated IR intensity and the maximum intensity region of an IR array. For complete touch-sensing solution, a gyroscope installed in the smartwatch is used to read the wrist gestures. The gyroscope incorporates a dynamic time warping gesture recognition algorithm for eliminating unintended touch inputs during the free motion of the wrist while wearing the smartwatch. The prototype of the developed sensing module was implemented in a commercial smartwatch, and it was confirmed that the sensed positional information of the finger when it was used to touch the back of the hand could be used to control the smartwatch graphical user interface. Our system not only affords a novel experience for smartwatch users, but also provides a basis for developing other useful interfaces. PMID:26184202

  10. [Cotton identification and extraction using near infrared sensor and object-oriented spectral segmentation technique].

    Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Li-Su; Wang, Ke; Zhu, Jin-Xia

    2009-07-01

    The real-time, effective and reliable method of identifying crop is the foundation of scientific management for crop in the precision agriculture. It is also one of the key techniques for the precision agriculture. However, this expectation cannot be fulfilled by the traditional pixel-based information extraction method with respect to complicated image processing and accurate objective identification. In the present study, visible-near infrared image of cotton was acquired using high-resolution sensor. Object-oriented segmentation technique was performed on the image to produce image objects and spatial/spectral features of cotton. Afterwards, nearest neighbor classifier integrated the spectral, shape and topologic information of image objects to precisely identify cotton according to various features. Finally, 300 random samples and an error matrix were applied to undertake the accuracy assessment of identification. Although errors and confusion exist, this method shows satisfying results with an overall accuracy of 96.33% and a KAPPA coefficient of 0.926 7, which can meet the demand of automatic management and decision-making in precision agriculture.

  11. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  12. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  13. Model based, sensor directed remediation of underground storage tanks

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  14. DirQ: A Directed Query Dissemination Scheme for Wireless Sensor Networks

    Chatterjea, Supriyo; De Luigi, Simone; Havinga, Paul J.M.; Kaminska, B

    This paper describes a Directed Query Dissemination Scheme, DirQ that routes queries to the appropriate source nodes based on both constant and dynamic-valued attributes such as sensor types and sensor values. Location information is not essential for the operation of DirQ. DirQ only uses locally

  15. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  16. A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible with Wireless and Portable Deployment

    Desmond Gibson

    2013-05-01

    Full Text Available This paper describes development of a novel mid-infrared light emitting diode (LED and photodiode (PD light source/detector combination and use within a non-dispersive infrared (NDIR carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second, longevity (>15 years, low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ’s, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery. Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration, comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.

  17. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment.

    Gibson, Desmond; MacGregor, Calum

    2013-05-29

    This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.

  18. Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region

    Sharma, Anuj K.

    2018-05-01

    Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.

  19. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  20. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  1. Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept

    Hyldgård, Anders; Birkelund, Karen; Janting, Jakob

    2008-01-01

    in the filling material is measured. The packaging concept is used to encapsulate a microfabricated multi-sensor (measuring temperature, water conductivity, pressure and light intensity). The direct exposure of the sensors results in high sensitivity and fast response time. The design of an elongated multi-sensor......A packaging concept for Data Storage Tags is presented. A potted-tube packaging concept, using a polystyrene tube and different epoxies as filling material that allows for direct sensor exposure is investigated. The curing temperature, water uptake and the diffusion coefficient for water...... is described and effectiveness of the packaging is demonstrated with the precise measurement of water conductivity using the packaged multi-sensor. The packaging concept is very promising for high accuracy measurements in harsh environments....

  2. A self-decoupling piezoresistive sensor for measuring microforce in horizontal and vertical directions

    Zhou, Jie; Rong, Weibin; Wang, Lefeng; Gao, Peng; Sun, Lining

    2016-01-01

    This paper presents the design, fabrication and calibration of a novel two-dimension microforce sensor with nano-Newton resolution. The sensor, mainly composed of a clamped–clamped beam (horizontal detecting beam), an overhanging beam (vertical detecting beam) and a half-folded beam, is highly sensitive to microforces in the horizontal (parallel to the probe of the designed sensor) and vertical (perpendicular to the wafer surface) directions. The four vertical sidewall surface piezoresistors (horizontal piezoresistors) and two surface piezoresistors (vertical piezoresistors) were fabricated to achieve the requirements of two-dimension microforce measurements. Combining the sensor structure with Wheatstone bridge configurations, the microforce decoupling among the x , y , and z direction can be realized. Accordingly, the sensor is capable of detecting microforces in the horizontal and vertical directions independently. The calibration results verified that the sensor sensitivities at room temperature are 210.58 V N −1 and 159.2 V N −1 in the horizontal and vertical directions, respectively. Additionally, the sensor’s corresponding force resolutions are estimated at 2 nN and 3 nN in theory, respectively. The sensor can be used to measure the contact force between manipulating tools and micro-objects, in fields such as microassembly and biological assays. (paper)

  3. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  4. Direction-sensitive smart monitoring of structures using heterogeneous smartphone sensor data and coordinate system transformation

    Ozer, Ekin; Feng, Maria Q.

    2017-04-01

    Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system

  5. An extraordinary directive radiation based on optical antimatter at near infrared.

    Mocella, Vito; Dardano, Principia; Rendina, Ivo; Cabrini, Stefano

    2010-11-22

    In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.

  6. Optimization of biogas production using MEMS based near infrared inline-sensor

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  7. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  8. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Model based, sensor-directed remediation of underground storage tanks

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  10. Mechanical Design of an Omni-Directional Sensor Mount

    Rosheim, Mark

    2002-01-01

    This effort has been directed to development and demonstration of a gimbal mount capable of 180 degree singularity- free pitch and yaw motion about a two-axis center, avoiding the common problem of gimbal lock...

  11. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  12. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  13. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  14. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor.

    Lachenmeier, Dirk W; Godelmann, Rolf; Steiner, Markus; Ansay, Bob; Weigel, Jürgen; Krieg, Gunther

    2010-03-23

    Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol) has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR) spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT) IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p wines during fermentation, and for the determination of unrecorded alcohol (i.e. non-commercial or illicit products). The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample). The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the

  15. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor

    Ansay Bob

    2010-03-01

    Full Text Available Abstract Background Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. Results During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p Conclusions The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample. The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the process monitoring of fermentations, or the evaluation of

  16. Wireless Sensor Network Security Enhancement Using Directional Antennas: State of the Art and Research Challenges.

    Curiac, Daniel-Ioan

    2016-04-07

    Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.

  17. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  18. LKHW: A Directed Diffusion-Based Secure Multicast Scheme for Wireless Sensor Networks

    Di Pietro, Roberto; Mancini, Luigi V.; Law, Y.W.; Etalle, Sandro; Havinga, Paul J.M.

    In this paper, we present a mechanism for securing group communications in Wireless Sensor Networks (WSN). First, we derive an extension of Logical Key Hierarchy (LKH). Then we merge the extension with directed diffusion. The resulting protocol, LKHW, combines the advantages of both LKH and directed

  19. A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas

    Wu, Chun-Hsien; Chung, Yeh-Ching

    2009-01-01

    The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159

  20. Direct laser writing for nanoporous liquid core laser sensors

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  1. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  2. Do the results of respirable dust samples obtained from direct-on-filter X-ray diffraction, direct-on-filter infrared and indirect infrared (KBr pellet) methods correlate?

    Pretorius, C

    2010-11-01

    Full Text Available The objective of this study was to determine whether a correlation exists between the quartz results obtained from direct-on-filter X-ray Diffraction analysis, direct-on-filter Fourier-Transform Infrared analysis and indirect analysis (Potassium...

  3. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    Ghosh, P.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported

  4. A near-infrared fluorescent sensor for H+ in aqueous solution and living cells

    WU, Aibin; DUAN, Liping

    2014-01-01

    A heptamethine cyanine-based sensor (1) was designed and synthesized by incorporating heptamethine cyanine fluorophore and methylpiperazine. Sensor 1 exhibited good response to the change of pH levels, and a large Stokes shift (>100 nm) was obtained. Fluorescent image experiments in living cells further demonstrated its potential applications in biological systems.

  5. Infrared Multispectral Sensor Program, Phase 2. Field Measurements, Analysis and Modeling. Volume 1. Fourier Transform Spectrometer Sensor Characterization.

    1994-05-01

    TskY=250K) ... 5-27 6-1. Treeline Correlation With 10.1 Microns ...................... 6-2 6-2. Mean Contrast: CARC Panel vs. Treeline ...6-3 6-3. CARC Panel and Treeline .............................. 6-5 6-4. Signal-to-Clutter Ratio for CARC Panel vs. Treeline ............. 6-6 6...5. Low Emissivity Panel and Treeline ......................... 6-7 xii TABLES 4-1: Sensor Characterization Test Summary ....................... 4-2 4

  6. Assessment of near infrared and "software sensor" for biomass monitoring and control

    Soons, Z.I.T.A.; Streefland, M.; Straten, van G.; Boxtel, van A.J.B.

    2008-01-01

    Spectroscopic instrumentation is often seen as promising for process analytical technology (PAT) to enhance control of manufacturing (bio)pharmaceuticals. The interpretation of near infrared spectra is challenging due to the large number of wavelengths recorded and the overlapping absorbance

  7. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  8. Three-dimensional location of target fish by monocular infrared imaging sensor based on a L-z correlation model

    Lin, Kai; Zhou, Chao; Xu, Daming; Guo, Qiang; Yang, Xinting; Sun, Chuanheng

    2018-01-01

    Monitoring of fish behavior has drawn extensive attention in pharmacological research, water environmental assessment, bio-inspired robot design and aquaculture. Given that an infrared sensor is low cost, no illumination limitation and electromagnetic interference, interest in its use in behavior monitoring has grown considerably, especially in 3D trajectory monitoring to quantify fish behavior on the basis of near infrared absorption of water. However, precise position of vertical dimension (z) remains a challenge, which greatly impacts on infrared tracking system accuracy. Hence, an intensity (L) and coordinate (z) correlation model was proposed to overcome the limitation. In the modelling process, two cameras (top view and side view) were employed synchronously to identify the 3D coordinate of each fish (x-y and z, respectively), and the major challenges were the distortion caused by the perspective effect and the refraction at water boundaries. Therefore, a coordinate correction formulation was designed firstly for the calibration. Then the L-z correlation model was established based on Lambert's absorption law and statistical data analysis, and the model was estimated through monitoring 3D trajectories of four fishes during the day and night. Finally, variations of individuals and limits of the depth detection of the model were discussed. Compared with previous studies, the favorable prediction performance of the model is achieved for 3D trajectory monitoring, which could provide some inspirations for fish behavior monitoring, especially for nocturnal behavior study.

  9. Dispersive infrared spectroscopy measurements of atmospheric CO{sub 2} using a Fabry–Pérot interferometer sensor

    Chan, K.L. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong); Westerdahl, D. [Ability R and D Energy Research Centre, City University of Hong Kong (Hong Kong); Wong, K.C. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Sun, Y.W. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei (China); Hartl, A. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Wenig, M.O. [Meteorological Institute, Ludwig-Maximilians-Universität Munich (Germany)

    2014-02-01

    In this paper, we present the first dispersive infrared spectroscopic (DIRS) measurement of atmospheric carbon dioxide (CO{sub 2}) using a new scanning Fabry–Pérot interferometer (FPI) sensor. The sensor measures the optical spectra in the mid infrared (3900 nm to 5220 nm) wavelength range with full width half maximum (FWHM) spectral resolution of 78.8 nm at the CO{sub 2} absorption band (∼ 4280 nm) and sampling resolution of 20 nm. The CO{sub 2} concentration is determined from the measured optical absorption spectra by fitting it to the CO{sub 2} reference spectrum. Interference from other major absorbers in the same wavelength range, e.g., carbon monoxide (CO) and water vapor (H{sub 2}O), was taken out by including their reference spectra in the fit as well. The detailed descriptions of the instrumental setup, the retrieval procedure, a modeling study for error analysis as well as laboratory validation using standard gas concentrations are presented. An iterative algorithm to account for the non-linear response of the fit function to the absorption cross sections due to the broad instrument function was developed and tested. A modeling study of the retrieval algorithm showed that errors due to instrument noise can be considerably reduced by using the dispersive spectral information in the retrieval. The mean measurement error of the prototype DIRS CO{sub 2} measurement for 1 minute averaged data is about ± 2.5 ppmv, and down to ± 0.8 ppmv for 10 minute averaged data. A field test of atmospheric CO{sub 2} measurements were carried out in an urban site in Hong Kong for a month and compared to a commercial non-dispersive infrared (NDIR) CO{sub 2} analyzer. 10 minute averaged data shows good agreement between the DIRS and NDIR measurements with Pearson correlation coefficient (R) of 0.99. This new method offers an alternative approach of atmospheric CO{sub 2} measurement featuring high accuracy, correction of non-linear absorption and interference of water

  10. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.

    Liu, Wenguang; Yan, Chaoyi

    2018-03-28

    We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.

  11. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  12. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  13. Joint Navy and Air Force Infrared Sensor Stimulator (IRSS) Program for Installed Systems Test Facilities (ISTFs)

    Joyner, Tom

    1998-01-01

    ...) sensors undergoing integrated developmental and operational testing. IRSS generates digital IR scenes in real time to provide a realistic portrayal of IR scene radiance as viewed by and IR system under test in a threat engagement scenario...

  14. Design of the driving system for visible near-infrared spatial programmable push-broom remote CCD sensor

    Xu, Zhipeng; Wei, Jun; Zhou, Qianting; Weng, Dongshan; Li, Jianwei

    2010-11-01

    VNIR multi-spectral image sensor has wide applications in remote sensing and imaging spectroscopy. An image spectrometer of a spatial remote programmable push-broom sensing satellite requires visible near infrared band ranges from 0.4μm to 1.04μm which is one of the most important bands in remote sensing. This paper introduces a method of design the driving system for 1024x1024 VNIR CCD sensor for programmable push-broom remote sensing. The digital driving signal is generated by the FPGA device. There are seven modules in the FPGA program and all the modules are coded by VHDL. The driving system have five mainly functions: drive the sensor as the demand of timing schedule, control the AD convert device to work, get the parameter via RS232 from control platform, process the data input from the AD device, output the processed data to PCI sample card to display in computer end. All the modules above succeed working on FPGA device APA600. This paper also introduced several important keys when designing the driving system including module synchronization, critical path optimization.

  15. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  16. Feasibility Study on the Development of 2-channel Embedded Infrared Fiber-optic Sensor for Thermometry of Secondary Water System in Nuclear Power Plant

    Yoo, W. J.; Jang, K. W.; Seo, J. K.; Moon, J.; Han, K. T.; Lee, B.; Park, B. G.

    2011-01-01

    Any warm object by measuring the emitted infrared (IR) radiation. The radiometers using infrared optical fibers are based on the relationship between the temperature of a heat source and the quality and the quantity of an IR radiation. To measure physical properties including a temperature, optical fiber-based sensor has many advantages, such as small size, low cost, high resolution, remote sensing and immunity to electromagnetic radiation over conventional electrical sensors. In this study, we carried out the feasibility study on the development of an embedded IR fiber-optic sensor for thermometry of the secondary water system in a nuclear power plant. The 2-channel embedded fiberoptic temperature sensor was fabricated using two identical IR optical fibers for accurate thermometry without complicated calibration processes. To decide accurate temperature of the water, we measured the difference between the IR radiations emitted from the two temperature sensing probes according to the temperature variation of the water

  17. [Development of a portable mid-infrared rapid analyzer for oil concentration in water based on MEMS linear sensor array].

    Gao, Zhi-fan; Zeng, Li-bo; Shi, Lei; Li, Kai; Yang, Yuan-zhou; Wu, Qiong-shui

    2014-06-01

    Aiming at the existing problems such as weak environmental adaptability, low analytic efficiency and poor measuring repeatability in the traditional spectral oil analyzers, the present paper designed a portable mid-infrared rapid analyzer for oil concentration in water. To reduce the volume of the instrument, the non-symmetrical folding M-type Czerny-Turner optical structure was adopted in the core optical path. With a periodically rotating chopper, controlled by digital PID algorithm, applied for infrared light modulation, the modulating accuracy reached ±0.5%. Different from traditional grating-scanning spectrophotometers, this instrument used a fixed grating for light dispersion and avoided rotating error in the course of the measuring procedures. A new-type MEMS infrared linear sensor array was applied for modulated spectral signals detection, which improved the measuring efficiency remarkably. Optical simulation and experimental results indicate that the spectral range is 2 800 - 3 200 cm(-1), the spectral resolution is 6 cm(-1) (@3 130 cm(-1)), and the signal to noise ratio is up to 5 200 : 1. The acquisition time is 13 milliseconds per spectrogram, and the standard deviation of absorbance is less than 3 x 10(-3). These performances meet the standards of oil concentration measurements perfectly. Compared with traditional infrared spectral analyzers for oil concentration, the instrument demonstrated in this paper has many advantages such as smaller size, more efficiency, higher precision, and stronger vibration & moisture isolation. In addition, the proposed instrument is especially suitable for the environmental monitoring departments to implement real-time measurements in the field for oil concentration in water, hence it has broad prospects of application in the field of water quality monitoring.

  18. Autonomous Sun-Direction Estimation Using Partially Underdetermined Coarse Sun Sensor Configurations

    O'Keefe, Stephen A.

    In recent years there has been a significant increase in interest in smaller satellites as lower cost alternatives to traditional satellites, particularly with the rise in popularity of the CubeSat. Due to stringent mass, size, and often budget constraints, these small satellites rely on making the most of inexpensive hardware components and sensors, such as coarse sun sensors (CSS) and magnetometers. More expensive high-accuracy sun sensors often combine multiple measurements, and use specialized electronics, to deterministically solve for the direction of the Sun. Alternatively, cosine-type CSS output a voltage relative to the input light and are attractive due to their very low cost, simplicity to manufacture, small size, and minimal power consumption. This research investigates using coarse sun sensors for performing robust attitude estimation in order to point a spacecraft at the Sun after deployment from a launch vehicle, or following a system fault. As an alternative to using a large number of sensors, this thesis explores sun-direction estimation techniques with low computational costs that function well with underdetermined sets of CSS. Single-point estimators are coupled with simultaneous nonlinear control to achieve sun-pointing within a small percentage of a single orbit despite the partially underdetermined nature of the sensor suite. Leveraging an extensive analysis of the sensor models involved, sequential filtering techniques are shown to be capable of estimating the sun-direction to within a few degrees, with no a priori attitude information and using only CSS, despite the significant noise and biases present in the system. Detailed numerical simulations are used to compare and contrast the performance of the five different estimation techniques, with and without rate gyro measurements, their sensitivity to rate gyro accuracy, and their computation time. One of the key concerns with reducing the number of CSS is sensor degradation and failure. In

  19. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    Ghosh, Pradeep [Goethe University, Frankfurt am Main (Germany); GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Eschke, Juergen [GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Facility for Anti-proton and Ion Research, GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) of the CBM experiment at FAIR is composed of 8 tracking stations comprising of 1292 double-sided silicon micro-strip sensors. A Laser Test System (LTS) has been developed for the quality assurance of prototype sensors. The aim is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. Several prototype sensors with strip pitch of 50 and 58 μm have been tested, as well as a prototype module with realistic mechanical arrangement of sensor and read-out cables. The LTS is designed to measure sensor response in an automatized procedure across the sensor with focused laser beam (spot-size ∼ 12 μm, wavelength = 1060 nm). The pulse with duration (∼ 10 ns) and power (∼ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Results from laser scans of prototype sensors and detector module are reported.

  20. LKHW: A Directed Diffusion-Based Secure Multicast Scheme for Wireless Sensor Networks

    Di Pietro, Roberto; Mancini, Luigi V.; Law, Y.W.; Etalle, Sandro; Havinga, Paul J.M.; Huang, C.H; Ramanujam, J.

    2003-01-01

    We present a mechanism for securing group communications in Wireless Sensor Networks (WSN). First, we derive an extension of Logical Key Hierarchy (LKH). Then we merge the extension with Directed Diffusion (DD). The resulting protocol, LKHW, combines the advantages of both LKH and DD. In particular,

  1. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  2. Atmospheric refraction effects on optical-infrared sensor performance in a littoral-maritime environment

    Fritz, P.; Moerman, M.M.; Jong, A.N.; Leeuw, G. de; Winkel, H.

    2004-01-01

    During a number of transmission experiments over littoral waters, quantitative measurements of atmospheric refraction phenomena were carried out to determine the range performance of optical–IR sensors. Examples of distortion and intensity gain generated by spatial variations of the atmospheric

  3. Photodiode-based cutting interruption sensor for near-infrared lasers.

    Adelmann, B; Schleier, M; Neumeier, B; Hellmann, R

    2016-03-01

    We report on a photodiode-based sensor system to detect cutting interruptions during laser cutting with a fiber laser. An InGaAs diode records the thermal radiation from the process zone with a ring mirror and optical filter arrangement mounted between a collimation unit and a cutting head. The photodiode current is digitalized with a sample rate of 20 kHz and filtered with a Chebyshev Type I filter. From the measured signal during the piercing, a threshold value is calculated. When the diode signal exceeds this threshold during cutting, a cutting interruption is indicated. This method is applied to sensor signals from cutting mild steel, stainless steel, and aluminum, as well as different material thicknesses and also laser flame cutting, showing the possibility to detect cutting interruptions in a broad variety of applications. In a series of 83 incomplete cuts, every cutting interruption is successfully detected (alpha error of 0%), while no cutting interruption is reported in 266 complete cuts (beta error of 0%). With this remarkable high detection rate and low error rate, the possibility to work with different materials and thicknesses in combination with the easy mounting of the sensor unit also to existing cutting machines highlight the enormous potential for this sensor system in industrial applications.

  4. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  5. A Novel Dual Traffic/Flash Flood Monitoring System Using Passive Infrared/Ultrasonic Sensors

    Mousa, Mustafa; Odat, Enas M.; Claudel, Christian

    2015-01-01

    Floods are the most common type of natural disaster, causing thousands of casualties every year. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the high concentration of population in cities. Since most flash flood casualties are caused by a lack of information, it is critical to generate accurate and detailed warnings of flash floods. However, deploying an infrastructure that solely monitor flash floods makes little economic sense, since the average periodicity of catastrophic flash floods exceeds the lifetime of a typical sensor network. To address this issue, we propose a new sensing device that can simultaneously monitor urban flash floods and another phenomenon of interest (traffic congestion on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow and flash flood sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm. Two of the sensors have been deployed in a flood prone area, where they captured the only (minor) flash flood that occurred over the one-year test period, with no false detection, and an agreement in the estimated water level estimate (during the flash flood event) of about 2 cm.

  6. A Novel Dual Traffic/Flash Flood Monitoring System Using Passive Infrared/Ultrasonic Sensors

    Mousa, Mustafa

    2015-10-19

    Floods are the most common type of natural disaster, causing thousands of casualties every year. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the high concentration of population in cities. Since most flash flood casualties are caused by a lack of information, it is critical to generate accurate and detailed warnings of flash floods. However, deploying an infrastructure that solely monitor flash floods makes little economic sense, since the average periodicity of catastrophic flash floods exceeds the lifetime of a typical sensor network. To address this issue, we propose a new sensing device that can simultaneously monitor urban flash floods and another phenomenon of interest (traffic congestion on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow and flash flood sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm. Two of the sensors have been deployed in a flood prone area, where they captured the only (minor) flash flood that occurred over the one-year test period, with no false detection, and an agreement in the estimated water level estimate (during the flash flood event) of about 2 cm.

  7. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages.

    Wang, Ting; Tan, Siow-Ying; Mutilangi, William; Plans, Marcal; Rodriguez-Saona, Luis

    2016-12-01

    Formulating whey protein beverages at acidic pH provides better clarity but the beverages typically develop an unpleasant and astringent flavor. Our aim was to evaluate the application of infrared spectroscopy and chemometrics in predicting astringency of acidic whey protein beverages. Whey protein isolate (WPI), whey protein concentrate (WPC), and whey protein hydrolysate (WPH) from different manufacturers were used to formulate beverages at pH ranging from 2.2 to 3.9. Trained panelists using the spectrum method of descriptive analysis tested the beverages providing astringency scores. A portable Fourier transform infrared spectroscopy attenuated total reflectance spectrometer was used for spectra collection that was analyzed by multivariate regression analysis (partial least squares regression) to build calibration models with the sensory astringency scores. Beverage astringency scores fluctuated from 1.9 to 5.2 units and were explained by pH, protein type (WPC, WPI, or WPH), source (manufacturer), and their interactions, revealing the complexity of astringency development in acidic whey protein beverages. The WPC and WPH beverages showed an increase in astringency as the pH of the solution was lowered, but no relationship was found for WPI beverages. The partial least squares regression analysis showed strong relationship between the reference astringency scores and the infrared predicted values (correlation coefficient >0.94), giving standard error of cross-validation ranging from 0.08 to 0.12 units, depending on whey protein type. Major absorption bands explaining astringency scores were associated with carboxylic groups and amide regions of proteins. The portable infrared technique allowed rapid prediction of astringency of acidic whey protein beverages, providing the industry a novel tool for monitoring sensory characteristics of whey-containing beverages. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Infrared photoexcitation spectroscopy of conducting polymer and C60 composites: direct evidence of photo-induced electron transfer

    Lee, Kwanghee; Janssen, R.A.J.; Sariciftci, N.S.; Heeger, A.J.

    1994-01-01

    We report direct spectral evidence of photoinduced electron transfer from the excited state of conducting polymer onto C60 by infrared photoexcitation spectroscopy, from 0.01 eV (100 cm-1) to 1.3 eV (11,000 cm-1). The photoinduced absorption spectra of poly(3-octylthiophene) (P30T) and

  9. Infrared spectrophotometry, a rapid and effective tool for characterization of direct distillation naphthas

    Baldrich Ferrer, Carlos A; Novoa Mantilla, Luz Angela

    2005-01-01

    The characterization of naphtha obtained by direct distillation of medium and heavy crude oils is often limited by the low yield of these fractions. Gas chromatography is a technique that allows a complete determination of the chemical composition of this fraction. However, the prediction of properties such as octane rating and RVP from chromatographic data is a difficult task because there are not adequate models to predict the interaction of the different components, and particularly in the case of heavier fractions, there are some problems for the complete separation of components under the gas chromatographic conditions. The IR technology constitutes a rapid and effective tool to predict several properties of naphtha from the correlation of the spectrum in the infrared area and the properties. In this study, prediction models were developed in a Petrospec Cetane 2000 analyzer, in order to predict in a fast and simple way, the density, the antiknock index and the aromatic content of straight run naphtha obtained in a standard crude oil distillation unit. The equipment used was designed in the factory for the exclusive characterization of medium distillation and not for lighter fractions therefore this work constitutes an innovation given the extensive applications of this type of analyzers

  10. Utilização Do Sensor Airdas (Airborne Infrared Disaster Assessment System) no monitoramento de desflorestamentos no norte do estado do mato grosso - Brasil

    Geraldo José Lucatelli Dória de Araújo; João Antônio Raposo Pereira; Tânia Maria Vieira da Silva; Helvécio Mafra; James A. Brass; Robert N. Lockwood; Robert G. Higgins; Philip J. Riggan

    2008-01-01

    This study has as objective to assess AIRDAS (Airborne Infrared Disaster Assessment System) sensor for the monitoring of deforestation in the northern area of Mato Grosso State, between the latitudes 10° and 12° south and longitudes 54° and 56° west, within the area known as deforestation arch. The results show that the main advantage of...

  11. Direct and indirect measures of speech articulator motions using low power EM sensors

    Barnes, T; Burnett, G; Gable, T; Holzrichter, J F; Ng, L

    1999-01-01

    Low power Electromagnetic (EM) Wave sensors can measure general properties of human speech articulator motions, as speech is produced. See Holzrichter, Burnett, Ng, and Lea, J.Acoust.Soc.Am. 103 (1) 622 (1998). Experiments have demonstrated extremely accurate pitch measurements ( and lt; 1 Hz per pitch cycle) and accurate onset of voiced speech. Recent measurements of pressure-induced tracheal motions enable very good spectra and amplitude estimates of a voiced excitation function. The use of the measured excitation functions and pitch synchronous processing enable the determination of each pitch cycle of an accurate transfer function and, indirectly, of the corresponding articulator motions. In addition, direct measurements have been made of EM wave reflections from articulator interfaces, including jaw, tongue, and palate, simultaneously with acoustic and glottal open/close signals. While several types of EM sensors are suitable for speech articulator measurements, the homodyne sensor has been found to provide good spatial and temporal resolution for several applications

  12. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  13. Detectability of planetary rings around super-earths by direct infrared imaging

    Morel, Carine

    2013-01-01

    Super-Earths, of which more than 80 have already been discovered, draw a lot of attention. With masses between those of the Earth and Neptune, they are ideal targets for searching for bio-signatures. All the gas giants of the solar system have a ring system, and even the Earth is suspected to have had rings in the past; their presence around super-Earths is thus expected and could give information on the formation process of these planets. The characterization of Super-Earths and their environment has thus become an important goal of modern astronomy. They are still difficult to study because of their small size, but the potential presence of planetary rings can make them easier to observe by the transit method and by direct imaging. This PhD evaluates the possibilities of detecting and characterizing rings around super-Earths by direct infrared imaging with the ELT-METIS instrument. To do this, a model to simulate the thermal emission of a super-Earth and its rings is developed. It is then used to study the influence of physical parameters and orientation of the rings and of planetary orbit on their detectability. The results show that ELT-METIS will be able to detect rings similar to the B and C rings of Saturn, extended within the Roche limit. The super-Earths surrounded by rings will be observable in middle orbit, between about 0.4 and 1 AU, around hot stars within 20 pc of the Sun. It is also shown that the photometric monitoring along the orbit of a super-Earth surrounded by rings should help constrain some of their physical characteristics. (author) [fr

  14. Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites

    Wichmann, Malte H G; Buschhorn, Samuel T; Boeger, Lars; Schulte, Karl; Adelung, Rainer

    2008-01-01

    In the present work, a direction sensitive bending strain sensor consisting of a single block of epoxy/multi-wall carbon nanotube composite was developed. Moreover, the manufacturing could be realized in a straightforward single-step processing route. The directional sensitivity to bending deformations is related to the change in electrical resistance, which becomes positive or negative, depending on the direction of bending deflection. This effect is achieved by generating a gradient in electrical conductivity throughout the material. The resistance versus strain behaviour of these devices is investigated in detail and related to the microstructure of the nanocomposites.

  15. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    Dalhatu Muhammed

    2018-02-01

    Full Text Available Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal, long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  16. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar

    2018-02-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  17. Fabrication of flex sensors through direct ink write technique and its electrical characterization

    Abas, Muhammad; Rahman, Khalid

    2016-11-01

    The present work is intended to fabricate low-cost flex sensor from conductive carbon paste using direct ink write (DIW) technique. DIW method is one of the additive manufacturing processes, which is capable to deposit a variety of material on a variety of substrates by a different mechanism to feature resolution at a microns level. It is widely used in the electronic industry for fabrication of PCBS and electrodes for different electronic devices. The DIW system in present study extrudes material stored in the syringe barrel through nozzle using compressed air. This mechanism will assist in creating patterns on a variety of substrates. Pneumatic controller is employed to control deposition of material, while computer-controlled X-Y stage is employed to control pattern generation. For effective and control patterning, printing parameters were optimized using Taguchi design optimization technique. The conductive carbon paste is used as ink for pattern generation on flexible PET substrate. Samples of flex sensor having different dimensions are prepared through DIW. The fabricated sensors were used as flexion sensor, and its electrical characteristic was evaluated. The obtained sensors are stable and reliable in performance.

  18. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Vargas-Rosales, Cesar; Khan, Anwar

    2018-01-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted. PMID:29389874

  19. Flash Flood Detection in Urban Cities Using Ultrasonic and Infrared Sensors

    Mousa, Mustafa; Zhang, Xiangliang; Claudel, Christian

    2016-01-01

    Floods are the most common type of natural disaster. Often leading to loss of lives and properties in the thousands yearly. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the population density of cities. Since most flood casualties are caused by a lack of information on the impending flood (type, location, severity), sensing these events is critical to generate accurate and detailed warnings and short term forecasts. However, no dedicated flash flood sensing systems, that could monitor the propagation of flash floods, in real time, currently exist in cities. In the present paper, firstly a new sensing device that can simultaneously monitor urban flash floods and traffic congestion has been presented. This sensing device is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy, using a combination of L1-regularized reconstruction and artificial neural networks to process measurement data. Secondly, corresponding algorithms have been implemented on a low-power wireless sensor platform, and their performance in water level estimation in a 6 months test involving four different sensors is illustrated. The results demonstrate that urban water levels can be reliably estimated with error less than 2 cm, and that the preprocessing and machine learning schemes can run in real-time on currently available wireless sensor platforms.

  20. Flash Flood Detection in Urban Cities Using Ultrasonic and Infrared Sensors

    Mousa, Mustafa

    2016-07-19

    Floods are the most common type of natural disaster. Often leading to loss of lives and properties in the thousands yearly. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the population density of cities. Since most flood casualties are caused by a lack of information on the impending flood (type, location, severity), sensing these events is critical to generate accurate and detailed warnings and short term forecasts. However, no dedicated flash flood sensing systems, that could monitor the propagation of flash floods, in real time, currently exist in cities. In the present paper, firstly a new sensing device that can simultaneously monitor urban flash floods and traffic congestion has been presented. This sensing device is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy, using a combination of L1-regularized reconstruction and artificial neural networks to process measurement data. Secondly, corresponding algorithms have been implemented on a low-power wireless sensor platform, and their performance in water level estimation in a 6 months test involving four different sensors is illustrated. The results demonstrate that urban water levels can be reliably estimated with error less than 2 cm, and that the preprocessing and machine learning schemes can run in real-time on currently available wireless sensor platforms.

  1. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  2. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    Yu-Hua Li

    2011-07-01

    Full Text Available A land-based mobile mapping system (MMS is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS. The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters. In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  3. Direct sensor orientation of a land-based mobile mapping system.

    Rau, Jiann-Yeou; Habib, Ayman F; Kersting, Ana P; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  4. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  6. A Performance Study of LEACH and Direct Diffusion Routing Protocols in Wireless Sensor Network

    Fakher, S.; Sharshar, K.; Moawad, M.I.; Shokair, M.

    2016-01-01

    The Wireless Sensor Network (WSN) is composed of a large number of sensor nodes with limited computation communication, and battery facilities. One of the common applications of this network is environment monitoring through sensing motion, measuring temperature, humidity and radiation. One of the basic activities in WSN is data gathering which represents a great challenge. Many routing protocols are proposed for that network to collect and aggregate the data. The most popular ones are hierarchy and data centric routing protocols. The main goal of this study is to identify the most preferable routing protocol, to be used in each mobility model. This paper studies the performance of LEACH (Low Energy Adaptive Clustering Hierarchy) from hierarchy routing protocol and direct diffusion from data centric routing protocol which is not clarified until now. Moreover, a comparison between LEACH and direct diffusion protocol using NS2 simulator will be made, and an analysis of these protocols will be conducted. The comparison includes packet delivery ratio, throughput, average energy ratio, average delay, network lifetime, and routing overhead. The performance is evaluated by varying the number of sensor nodes under three mobility models Reference Point Group Mobility Model (RPGM), Manhattan and random waypoint mobility model. Simulation results show that LEACH routing protocol has a good performance in RPGM and Manhattan than random waypoint mobility model. Direct diffusion has a good performance in random waypoint mobility model than in RPGM and Manhattan mobility model

  7. Sun-Direction Estimation Using a Partially Underdetermined Set of Coarse Sun Sensors

    O'Keefe, Stephen A.; Schaub, Hanspeter

    2015-09-01

    A comparison of different methods to estimate the sun-direction vector using a partially underdetermined set of cosine-type coarse sun sensors (CSS), while simultaneously controlling the attitude towards a power-positive orientation, is presented. CSS are commonly used in performing power-positive sun-pointing and are attractive due to their relative inexpensiveness, small size, and reduced power consumption. For this study only CSS and rate gyro measurements are available, and the sensor configuration does not provide global triple coverage required for a unique sun-direction calculation. The methods investigated include a vector average method, a combination of least squares and minimum norm criteria, and an extended Kalman filter approach. All cases are formulated such that precise ground calibration of the CSS is not required. Despite significant biases in the state dynamics and measurement models, Monte Carlo simulations show that an extended Kalman filter approach, despite the underdetermined sensor coverage, can provide degree-level accuracy of the sun-direction vector both with and without a control algorithm running simultaneously. If no rate gyro measurements are available, and rates are partially estimated from CSS, the EKF performance degrades as expected, but is still able to achieve better than 10∘ accuracy using only CSS measurements.

  8. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Luis Pallarés Puerto

    2011-05-01

    Full Text Available The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  9. Direct measurement of wall shear stress in a reattaching flow with a photonic sensor

    Ayaz, U K; Ioppolo, T; Ötügen, M V

    2013-01-01

    Wall shear stress measurements are carried out in a planar backward-facing step flow using a micro-optical sensor. The sensor is essentially a floating element system and measures the shear stress directly. The transduction method to measure the floating element deflection is based on the whispering gallery optical mode (WGM) shifts of a dielectric microsphere. This method is capable of measuring floating element displacements of the order of a nanometer. The floating element surface is circular with a diameter of ∼960 µm, which is part of a beam that is in contact with the dielectric microsphere. The sensor is calibrated for shear stress as well as pressure sensitivity yielding 7.3 pm Pa −1 and 0.0236 pm Pa −1 for shear stress and pressure sensitivity, respectively. Hence, the contribution by the wall pressure is less than two orders of magnitude smaller than that of shear stress. Measurements are made for a Reynolds number range of 2000–5000 extending to 18 step heights from the step face. The results are in good agreement with those of earlier reports. An analysis is also carried out to evaluate the performance of the WGM sensor including measurement sensitivity and bandwidth. (paper)

  10. Automated and angular time-synchronized directional gamma-ray scintillation sensor

    Kronenberg, S.; Brucker, G.J.

    1998-01-01

    The authors' previous research resulted in directional sensors for gamma rays and X rays that have a 4π solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of ∼1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events' count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the radiation source to be

  11. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  12. Midcourse Space Experiment: Off-Axis Rejection Performance of the Infrared Sensor

    O'Neil, R. R; Gibson, J; Richards, E

    2005-01-01

    .... Analysis indicates that direct scatter of terrestrial radiance from contaminants on the telescope primary mirror is the principal source of stray radiation and the bidirectional reflectance distribution function (BRDF...

  13. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  14. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  15. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  16. Optical temperature sensor based on the Nd{sup 3+} infrared thermalized emissions in a fluorotellurite glass

    Lalla, E.A. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); León-Luis, S.F., E-mail: sleonlui@ull.es [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Malta Consolider Team, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Monteseguro, V. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Malta Consolider Team, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Pérez-Rodríguez, C. [Departamento de Física, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); Cáceres, J.M. [Departamento de Ingeniería Industrial, Universidad de la Laguna, San Cristóbal de la Laguna, 38200 Santa Cruz de Tenerife (Spain); and others

    2015-10-15

    The temperature dependence of the infrared luminescence of a fluorotellurite glass doped with 0.01 and 2.5 mol% of Nd{sup 3+} ions was studied in order to use it as a high temperature sensing probe. For this purpose, the emission intensities of the ({sup 4}S{sub 3/2}, {sup 4}F{sub 7/2}), ({sup 2}H{sub 9/2}, {sup 4}F{sub 5/2}),{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} transitions were measured in a wide range of temperatures from 300 upto 650 K. The changes in the emission profiles were calibrated by means of the fluorescence intensity ratio technique. The calibrations showed a strong dependence on the Nd{sup 3+} ions concentration, having the low-doped concentrated sample the best response to changes of temperature. The maximum value obtained for the thermal sensibility is 17×10{sup −4} K{sup −1} at 640 K, being one of the highest values found in the literature for Nd{sup 3+} optical temperature sensors. Finally, the experimental calibrations were compared with the theoretical temperature luminescence response calculated from the Judd–Ofelt theory. - Highlights: • Nd{sup 3+}-doped fluorotellurite glasses were prepared. • The intensities of the ({sup 4}S{sub 3/2},{sup 4}F{sub 7/2}),({sup 2}H{sub 9/2},{sup 4}F{sub 5/2}), {sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} transitions. • The highest thermal sensitivity has been obtained for the glass with the lowest concentration of Nd{sup 3+} ions. • The Nd{sup 3+}-doped fluorotellurite glass fits the requirement for a good temperature sensor.

  17. Using ferrite to improve directional sensing for pulse travelling in MV power cables with two inductive sensors

    Li, Y.; Wouters, P.A.A.F.; Wagenaars, P.; Wielen, van der P.C.J.M.; Steennis, E.F.

    2013-01-01

    Inductive sensors are widely used for detection of high frequency signal, e.g. from partial discharge (PD) activity. A single inductive sensor, installed in a ring main unit (RMU) in a medium-voltage (MV) system, is not able to judge the direction of the signal origin. A method to determine its

  18. Spiral-shaped piezoelectric sensors for Lamb waves direction of arrival (DoA) estimation

    De Marchi, L.; Testoni, N.; Marzani, A.

    2018-04-01

    A novel strategy to design piezoelectric sensors suited for direction of arrival (DoA) estimation of incoming Lamb waves is presented in this work. The designed sensor is composed by two piezoelectric patches (P1, P2) bonded on the structure to be inspected. In particular, by exploiting the Radon transform, the proposed procedure computes the shape of P2 given the shape of P1 so that the difference in time of arrival (DToA) of the Lamb waves at the two patches is linearly related to the DoA while being agnostic of the waveguide dispersion curves. With a dedicated processing procedure, the waveforms acquired from the two electrodes and digitized can be used to retrieve the DoA information. Numerical and experimental results show that DoA estimation performed by means of the proposed shaped transducers is extremely robust.

  19. Structural Study of Reduced Graphene Oxide/ Polypyrrole Composite as Methanol Sensor in Direct Methanol Fuel Cell

    Mumtazah Atiqah Hassan; Siti Kartom Kamarudin; Siti Kartom Kamarudin

    2016-01-01

    Density functional theory (DFT) computations were performed on the optimized geometric and electronic properties of reduced graphene oxide/polypyrole (rGO/ PPy) composite in comparison with pure graphene and graphene oxide structures. Incorporation of both reduced GO (rGO) and PPy will form a good composite which have advantages from both materials such as good mechanical strength and excellent electrical conductivity. These composite would be very suitable in fabrication of methanol sensor in direct methanol fuel cell (DMFC). The HOMO-LUMO energy (eV) was also calculated. These computations provide a theoretical explanation for the good performance of rGO/ PPy composite as electrode materials in methanol sensor. (author)

  20. An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology

    Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akin, Tayfun

    2017-02-01

    This paper introduces an 80x80 microbolometer array with a 35 μm pixel pitch operating in the 8-12 μm wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer approaches, MikroSens' CIR detector technology does not require the use of special high TCR materials like VOx or a-Si, instead, it allows to implement microbolometers with standard CMOS layers, where the suspended bulk micromachined structure is obtained by only few consecutive selective MEMS etching steps while protecting the wirebond pads with a simple lithograpy step. This approach not only reduces the fabrication cost but also increases the production yield. In addition, needing simple subtractive post-CMOS fabrication steps allows the CIR technology to be carried out in any CMOS and MEMS foundry in a truly fabless fashion, where industrially mature and Au-free wafer level vacuum packaging technologies can also be carried out, leading to cost advantage, simplicity, scalability, and flexibility. The CIR approach is used to implement an 80x80 FPA with 35 μm pixel pitch, namely MS0835A, using a 0.18 μm CMOS process. The fabricated sensor is measured to provide NETD (Noise Equivalent Temperature Difference) value of 163 mK at 17 fps (frames per second) and 71 mK at 4 fps with F/1.0 optics in a dewar environment. The measurement results of the wafer level vacuum packaged sensors with one side AR coating shows an NETD values of 112 mK at 4 fps with F/1.1 optics, i.e., demonstrates a good performance for high volume low-cost applications like advanced presence detection and human counting applications. The CIR approach of MikroSens is scalable and can be used to

  1. Sensors

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  2. Sensors

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  3. Design And Implementation Of Smart Parking System Using Peripheral Interface Controllers And Infrared Sensors

    May Thaw Htet

    2015-08-01

    Full Text Available With the increase in world population and vehicle production parking spaces and facilities are required. As the numbers of vehicles on the road are increasing day by day parking problems which are increasing at an alarming rate in every major city cause drivers frustration traffic congestion and time wasting especially during the peak business hours. Lot of researches was being done all over the world to implement better parking management system which reduces parking problems. SPARK Smart Parking is parking garage system that utilizes various technologies to implement best parking system. The proposed system is aimed to inform drivers about the number of available parking spaces without any parking difficulties. This system is designed for two- level parking slots with twenty six parking spaces and one aisle on each floor. The condition of parking slots is detected by IR sensors and is reported periodically to main controller via floor controllers and self controllers. PIC 18F4550 is chosen to be used as controllers because it is suitable for the proposed system. Each floor contains LCD display which will show available parking spaces of that floor. LCD display at the entrance gate will show overall available parking slots of two floors. In this paper a new parking system called Smart Parking system is proposed to help drivers getting the real-time parking information and to find vacant spaces in a car park in a shorter time. This kind of system minimizes not only traffic congestion problems but also staff requirements to control the traffic in the car park.

  4. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  5. Direct immune-detection of cortisol by chemiresistor graphene oxide sensor.

    Kim, Yo-Han; Lee, Kyungmin; Jung, Hunsang; Kang, Hee Kyung; Jo, Jihoon; Park, In-Kyu; Lee, Hyun Ho

    2017-12-15

    In this study, a biosensor to detect a stress biomarker of cortisol using cortisol monoclonal antibody (c-Mab) covalently immobilized on reduced graphene oxide (rGO) channel as electrical sensing element was demonstrated. Highly specific immune-recognition between the c-Mab and the cortisol was identified and characterized on a basis of resistance change at the rGO channel based chemiresistor sensor achieving the limit of detection of 10pg/mL (27.6 pM). In addition, cortisol concentrations of real human salivary sample and buffer solution of rat adrenal gland acute slices, which could secret the cortisol induced by adrenocorticotropic hormone (ACTH), were directly measured by the chemiresistor corresponding to the specific sensing of the cortisol. The rGO chemiresistor could selectively measure the cortisol levels in spite of diverse neuroendocrine's existence. The potential perspective of this study can be a protocol of new cortisol sensor development, which will be applicable to point-of-care testing (POCT) targeted for salivary cortisol, in vitro psychobiological study on cortisol induction, and implantable sensor chip in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. MEMS pressure sensor with maximum performances by using novel back-side direct-exposure concept featuring through glass vias

    Mukhopadhyay, B.; Fritz, M.; Mackowiak, P.; Vu, T. C.; Ehrmann, O.; Lang, K.-D.; Ngo, H.-D.

    2013-05-01

    Design, simulation, fabrication, and characterization of novel MEMS pressure sensors with new back-side-direct-exposure packaging concept are presented. The sensor design is optimized for harsh environments e.g. space, military, offshore and medical applications. Unbreakable connection between the active side of the Si-sensor and the protecting glass capping was realized by anodic bonding using a thin layer of metal. To avoid signal corruption of the measured pressure caused by an encapsulation system, the media has direct contact to the backside of the Si membrane and can deflect it.

  7. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  8. Batch fabrication of polymer microfluidic cartridges for QCM sensor packaging by direct bonding

    Sandström, Niklas; Zandi Shafagh, Reza; Gylfason, Kristinn B.; Haraldsson, Tommy; van der Wijngaart, Wouter

    2017-12-01

    Quartz crystal microbalance (QCM) sensing is an established technique commonly used in laboratory based life-science applications. However, the relatively complex, multi-part design and multi-step fabrication and assembly of state-of-the-art QCM cartridges make them unsuited for disposable applications such as point-of-care (PoC) diagnostics. In this work, we present the uncomplicated manufacturing of QCMs in polymer microfluidic cartridges. Our novel approach comprises two key innovations: the batch reaction injection molding of microfluidic parts; and the integration of the cartridge components by direct, unassisted bonding. We demonstrate molding of batches of 12 off-stoichiometry thiol-ene epoxy polymer (OSTE+) polymer parts in a single molding cycle using an adapted reaction injection molding process; and the direct bonding of the OSTE+  parts to other OSTE+  substrates, to printed circuit boards, and to QCMs. The microfluidic QCM OSTE+  cartridges were successfully evaluated in terms of liquid sealing as well as electrical properties, and the sensor performance characteristics are on par with those of a commercially available QCM biosensor cartridge. The simplified manufacturing of QCM sensors with maintained performance potentializes novel application areas, e.g. as disposable devices in a point of care setting. Moreover, our results can be extended to simplifying the fabrication of other microfluidic devices with multiple heterogeneously integrated components.

  9. Biquaternion beamspace with its application to vector-sensor array direction findings and polarization estimations

    Li, Dan; Xu, Feng; Jiang, Jing Fei; Zhang, Jian Qiu

    2017-12-01

    In this paper, a biquaternion beamspace, constructed by projecting the original data of an electromagnetic vector-sensor array into a subspace of a lower dimension via a quaternion transformation matrix, is first proposed. To estimate the direction and polarization angles of sources, biquaternion beamspace multiple signal classification (BB-MUSIC) estimators are then formulated. The analytical results show that the biquaternion beamspaces offer us some additional degrees of freedom to simultaneously achieve three goals. One is to save the memory spaces for storing the data covariance matrix and reduce the computation efforts of the eigen-decomposition. Another is to decouple the estimations of the sources' polarization parameters from those of their direction angles. The other is to blindly whiten the coherent noise of the six constituent antennas in each vector-sensor. It is also shown that the existing biquaternion multiple signal classification (BQ-MUSIC) estimator is a specific case of our BB-MUSIC ones. The simulation results verify the correctness and effectiveness of the analytical ones.

  10. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  11. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  12. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  13. Recent Trends in Monitoring of European Water Framework Directive Priority Substances Using Micro-Sensors: A 2007–2009 Review

    Nicole Jaffrezic-Renault

    2010-08-01

    Full Text Available This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report. Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests.

  14. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    Tang, Qing-Wen; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Thomas Tam, Pak-Hin, E-mail: xywang@nju.edu.cn, E-mail: phtam@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  15. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  16. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  17. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  18. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    Woo, Sang Gu; Lee, In Hwan; Lee, Kyong Chang

    2015-01-01

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  19. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    Woo, Sang Gu; Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of); Lee, Kyong Chang [Pukyong National University, Busan (Korea, Republic of)

    2015-09-15

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  20. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers*

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-01-01

    The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1?S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a ?-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kineti...

  1. Photoelectric sensor output controlled by eyeball movements

    1965-01-01

    The difference between the infrared absorption of the iris and infrared reflectivity of the eyeball controls the operation of a device consisting of an infrared source and amplifier, a cadmium selenide infrared sensor, and an infrared filter.

  2. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  3. Sensor for direct measurement of the boundary shear stress in fluid flow

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-04-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  4. Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications

    Kazuhiro Watanabe

    2012-02-01

    Full Text Available This paper describes the characteristics of optical fiber sensors with surface plasmon resonance (SPR at 1,310 nm in which the scattering loss of silica optical fiber is low. SPR operation in the infrared wavelength range is achieved by coating a thin tantalum pentaoxide (Ta2O5 film. The novelty of this paper lies in the verification of how the hetero-core scheme could be operated as a commercial base candidate in the sense of easy fabrication, sufficient mechanical strength, and significant sensitivity as a liquid detector under the basis of a low loss transmission network in the near infrared wavelength region. The effect of Ta2O5 layer thickness has been experimentally revealed in the wavelength region extending to 1,800 nm by using the hetero-core structured optical fiber. SPR characterizations have been made in the wavelength region 1,000–1,300 nm, showing the feasible operation at the near infrared wavelength and the possible practical applications. In addition, the technique developed in this work has been interestingly applied to a multi-point water-detection and a water-level gauge in which tandem-connected SPR sensors system using hetero-core structured fibers were incorporated. The detailed performance characteristics are also shown on these applications.

  5. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  6. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  7. Energy efficient routing protocols for wireless sensor networks: comparison and future directions

    Loganathan Murukesan

    2017-01-01

    Full Text Available Wireless sensor network consists of nodes with limited resources. Hence, it is important to design protocols or algorithms which increases energy efficiency in order to improve the network lifetime. In this paper, techniques used in the network layer (routing of the internet protocol stack to achieve energy efficiency are reviewed. Usually, the routing protocols are classified into four main schemes: (1 Network Structure, (2 Communication Model, (3 Topology Based, and (4 Reliable Routing. In this work, only network structure based routing protocols are reviewed due to the page constraint. Besides, this type of protocols are much popular among the researchers since they are fairly simple to implement and produce good results as presented in this paper. Also, the pros and cons of each protocols are presented. Finally, the paper concludes with possible further research directions.

  8. Experimental Results for Direction of Arrival Estimation with a Single Acoustic Vector Sensor in Shallow Water

    Alper Bereketli

    2015-01-01

    Full Text Available We study the performances of several computationally efficient and simple techniques for estimating direction of arrival (DOA of an underwater acoustic source using a single acoustic vector sensor (AVS in shallow water. Underwater AVS is a compact device, which consists of one hydrophone and three accelerometers in a packaged form, measuring scalar pressure and three-dimensional acceleration simultaneously at a single position. A very controlled experimental setup is prepared to test how well-known techniques, namely, arctan-based, intensity-based, time domain beamforming, and frequency domain beamforming methods, perform in estimating DOA of a source in different circumstances. Experimental results reveal that for almost all cases beamforming techniques perform best. Moreover, arctan-based method, which is the simplest of all, provides satisfactory results for practical purposes.

  9. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  10. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.

    Hinson, Brian T; Morgansen, Kristi A

    2015-10-06

    The wings of the hawkmoth Manduca sexta are lined with mechanoreceptors called campaniform sensilla that encode wing deformations. During flight, the wings deform in response to a variety of stimuli, including inertial-elastic loads due to the wing flapping motion, aerodynamic loads, and exogenous inertial loads transmitted by disturbances. Because the wings are actuated, flexible structures, the strain-sensitive campaniform sensilla are capable of detecting inertial rotations and accelerations, allowing the wings to serve not only as a primary actuator, but also as a gyroscopic sensor for flight control. We study the gyroscopic sensing of the hawkmoth wings from a control theoretic perspective. Through the development of a low-order model of flexible wing flapping dynamics, and the use of nonlinear observability analysis, we show that the rotational acceleration inherent in wing flapping enables the wings to serve as gyroscopic sensors. We compute a measure of sensor fitness as a function of sensor location and directional sensitivity by using the simulation-based empirical observability Gramian. Our results indicate that gyroscopic information is encoded primarily through shear strain due to wing twisting, where inertial rotations cause detectable changes in pronation and supination timing and magnitude. We solve an observability-based optimal sensor placement problem to find the optimal configuration of strain sensor locations and directional sensitivities for detecting inertial rotations. The optimal sensor configuration shows parallels to the campaniform sensilla found on hawkmoth wings, with clusters of sensors near the wing root and wing tip. The optimal spatial distribution of strain directional sensitivity provides a hypothesis for how heterogeneity of campaniform sensilla may be distributed.

  11. Short-range remote spectral sensor using mid-infrared semiconductor lasers with orthogonal code-division multiplexing approach

    Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem

    2002-09-01

    Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.

  12. Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo

    Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.

    2010-02-01

    Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.

  13. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  14. Sensitivity Range Analysis of Infrared (IR) Transmitter and Receiver Sensor to Detect Sample Position in Automatic Sample Changer

    Syirrazie Che Soh; Nolida Yussup; Nur Aira Abdul Rahman; Maslina Ibrahim

    2016-01-01

    Sensitivity range of IR Transmitter and Receiver Sensor influences the effectiveness of the sensor to detect position of a sample. Then the purpose of this analysis is to determine the suitable design and specification the electronic driver of the sensor to gain appropriate sensitivity range for required operation. The related activities to this analysis cover electronic design concept and specification, calibration of design specification and evaluation on design specification for required application. (author)

  15. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  16. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  17. Routing Protocols for Underwater Wireless Sensor Networks: Taxonomy, Research Challenges, Routing Strategies and Future Directions.

    Khan, Anwar; Ali, Ihsan; Ghani, Abdullah; Khan, Nawsher; Alsaqer, Mohammed; Rahman, Atiq Ur; Mahmood, Hasan

    2018-05-18

    Recent research in underwater wireless sensor networks (UWSNs) has gained the attention of researchers in academia and industry for a number of applications. They include disaster and earthquake prediction, water quality and environment monitoring, leakage and mine detection, military surveillance and underwater navigation. However, the aquatic medium is associated with a number of limitations and challenges: long multipath delay, high interference and noise, harsh environment, low bandwidth and limited battery life of the sensor nodes. These challenges demand research techniques and strategies to be overcome in an efficient and effective fashion. The design of routing protocols for UWSNs is one of the promising solutions to cope with these challenges. This paper presents a survey of the routing protocols for UWSNs. For the ease of description, the addressed routing protocols are classified into two groups: localization-based and localization-free protocols. These groups are further subdivided according to the problems they address or the major parameters they consider during routing. Unlike the existing surveys, this survey considers only the latest and state-of-the-art routing protocols. In addition, every protocol is described in terms of its routing strategy and the problem it addresses and solves. The merit(s) of each protocol is (are) highlighted along with the cost. A description of the protocols in this fashion has a number of advantages for researchers, as compared to the existing surveys. Firstly, the description of the routing strategy of each protocol makes its routing operation easily understandable. Secondly, the demerit(s) of a protocol provides (provide) insight into overcoming its flaw(s) in future investigation. This, in turn, leads to the foundation of new protocols that are more intelligent, robust and efficient with respect to the desired parameters. Thirdly, a protocol can be selected for the appropriate application based on its described

  18. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results

    Lagouarde, J.-P.; Irvine, M.

    2008-12-01

    The measurements of surface temperature are prone to important directional anisotropy related to the structure of the canopy and the radiative and energy exchanges inside of it. Directional effects must be taken into account for a number of practical applications such as the correction of large swath satellite data, the assimilation of thermal infrared (TIR) measurements in surface models, the design of future spatial missions… For urban canopies, experimental measurements of TIR directional anisotropy previously performed during summer days over Marseille in the framework of the ESCOMPTE campaign (2001) revealed significant angular surface temperature variations with noticeable hot spot effects whose intensity was related to the canopy structure. The CAPITOUL project ( http://medias.cnrs.fr/capitoul/ ) provided the opportunity to extend these results to other seasons and to nighttime conditions. The experimental setup is based on the use of 2 airborne TIR cameras with different lenses, inclination and resolution, and installed aboard a small aircraft. The flight protocol allowed the retrieval of directional anisotropy in all azimutal directions and in a range of zenith viewing angles between nadir and 62°. Measurements were performed during several intensive operation periods (IOP) in summer (2004 july), autumn (2004 September and October) and winter (2005 February). Only the first results of the 2004 autumn and 2005 winter IOPs are presented in this paper. The results obtained in daytime conditions confirm the systematic hot spot effects observed in previous experiments over cities. The variations found seem to be particularly important in winter when sun elevation is low: for instance they range between -4 and 10 K between oblique and nadir viewing in February. During nighttime conditions, angular variations are much lower (always less than 2 K between nadir and 60° zenithal viewing angle), whichever the azimutal viewing direction.

  19. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo

    2018-01-01

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also

  20. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  1. Development of a real-time and quantitative thrombus sensor for an extracorporeal centrifugal blood pump by near-infrared light.

    Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Nishida, Masahiro; Mizuno, Tomohiro; Arai, Hirokuni; Maruyama, Osamu

    2018-01-01

    We developed an optical thrombus sensor for a monopivot extracorporeal centrifugal blood pump. In this study, we investigated its quantitative performance for thrombus detection in acute animal experiments of left ventricular assist using the pump on pathogen-free pigs. Optical fibers were set in the driver unit of the pump. The incident light at the near-infrared wavelength of 810 nm was aimed at the pivot bearing, and the resulting scattered light was guided to the optical fibers. The detected signal was analyzed to obtain the thrombus formation level. As a result, real-time and quantitative monitoring of the thrombus surface area on the pivot bearing was achieved with an accuracy of 3.6 ± 2.3 mm 2 . In addition, the sensing method using the near-infrared light was not influenced by changes in the oxygen saturation and the hematocrit. It is expected that the developed sensor will be useful for optimal anticoagulation management for long-term extracorporeal circulation therapies.

  2. Sensor

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  3. Directional support value of Gaussian transformation for infrared small target detection.

    Yang, Changcai; Ma, Jiayi; Qi, Shengxiang; Tian, Jinwen; Zheng, Sheng; Tian, Xin

    2015-03-20

    Robust small target detection is one of the key techniques in IR search and tracking systems for self-defense or attacks. In this paper we present a robust solution for small target detection in a single IR image. The key ideas of the proposed method are to use the directional support value of Gaussian transform (DSVoGT) to enhance the targets, and use the multiscale representation provided by DSVoGT to reduce the false alarm rate. The original image is decomposed into sub-bands in different orientations by convolving the image with the directional support value filters, which are deduced from the weighted mapped least-squares-support vector machines (LS-SVMs). Based on the sub-band images, a support value of Gaussian matrix is constructed, and the trace of this matrix is then defined as the target measure. The corresponding multiscale correlations of the target measures are computed for enhancing target signal while suppressing the background clutter. We demonstrate the advantages of the proposed method on real IR images and compare the results against those obtained from standard detection approaches, including the top-hat filter, max-mean filter, max-median filter, min-local-Laplacian of Gaussian (LoG) filter, as well as LS-SVM. The experimental results on various cluttered background images show that the proposed method outperforms other detectors.

  4. A HWIL test facility of infrared imaging laser radar using direct signal injection

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  5. FY 2006 Infrared Photonics Final Report

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  6. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  7. Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.

    Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru

    2015-02-13

    Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  9. Operation characteristic analysis of a direct methanol fuel cell system using the methanol sensor-less control method

    Chen, C.Y.; Chang, C.L. [Institute of Nuclear Energy Research (INER), Longtan Township, Taoyuan County (China); Sung, C.C. [National Taiwan University (China)

    2012-10-15

    The application of methanol sensor-less control in a direct methanol fuel cell (DMFC) system eliminates most of the problems encountered when using a methanol sensor and is one of the major solutions currently used in commercial DMFCs. This study focuses on analyzing the effect of the operating characteristics of a DMFC system on its performance under the methanol sensor-less control as developed by Institute of Nuclear Energy Research (INER). Notably, the influence of the dispersion of the methanol injected on the behavior of the system is investigated systematically. In addition, the mechanism of the methanol sensor-less control is investigated by varying factors such as the timing of the injection of methanol, the cathode flow rate, and the anode inlet temperature. These results not only provide insight into the mechanism of methanol sensor-less control but can also aid in the improvement and application of DMFC systems in portable and low-power transportation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in Wastewater with DNA-Directed Immobilization Aptamer Sensors

    Yang, Zhugen; Castrignanò, Erika; Estrela, Pedro; Frost, Christopher G.; Kasprzyk-Hordern, Barbara

    2016-02-01

    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel.

  11. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  12. Direct and simultaneous detection of organic and inorganic ingredients in herbal powder preparations by Fourier transform infrared microspectroscopic imaging.

    Chen, Jian-Bo; Sun, Su-Qin; Tang, Xu-Dong; Zhang, Jing-Zhao; Zhou, Qun

    2016-08-05

    Herbal powder preparation is a kind of widely-used herbal product in the form of powder mixture of herbal ingredients. Identification of herbal ingredients is the first and foremost step in assuring the quality, safety and efficacy of herbal powder preparations. In this research, Fourier transform infrared (FT-IR) microspectroscopic identification method is proposed for the direct and simultaneous recognition of multiple organic and inorganic ingredients in herbal powder preparations. First, the reference spectrum of characteristic particles of each herbal ingredient is assigned according to FT-IR results and other available information. Next, a statistical correlation threshold is determined as the lower limit of correlation coefficients between the reference spectrum and a larger number of calibration characteristic particles. After validation, the reference spectrum and correlation threshold can be used to identify herbal ingredient in mixture preparations. A herbal ingredient is supposed to be present if correlation coefficients between the reference spectrum and some sample particles are above the threshold. Using this method, all kinds of herbal materials in powder preparation Kouqiang Kuiyang San are identified successfully. This research shows the potential of FT-IR microspectroscopic identification method for the accurate and quick identification of ingredients in herbal powder preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. New Directions in EEG Measurement: an Investigation into the Fidelity of Electrical Potential Sensor Signals

    M. FATOORECHI

    2015-01-01

    Full Text Available Low frequency noise performance is the key indicator in determining the signal to noise ratio of a capacitively coupled sensor when used to acquire electroencephalogram signals. For this reason, a prototype Electric Potential Sensor device based on an auto-zero operational amplifier has been developed and evaluated. The absence of 1/f noise in these devices makes them ideal for use with signal frequencies ~10 Hz or less. The active electrodes are designed to be physically and electrically robust and chemically and biochemically inert. They are electrically insulated (anodized and have diameters of 12 mm or 18 mm. In both cases, the sensors are housed in inert stainless steel machined housings with the electronics fabricated in surface mount components on a printed circuit board compatible with epoxy potting compounds. Potted sensors are designed to be immersed in alcohol for sterilization purposes. A comparative study was conducted with a commercial wet gel electrode system. These studies comprised measurements of both free running electroencephalogram and Event Related Potentials. Quality of the recorded electroencephalogram was assessed using three methods of inspection of raw signal, comparing signal to noise ratios, and Event Related Potentials noise analysis. A strictly comparable signal to noise ratio was observed and the overall conclusion from these comparative studies is that the noise performance of the new sensor is appropriate.

  14. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  15. Proposal of ultrasonic-assisted mid-infrared spectroscopy for incorporating into daily life like smart-toilet and non-invasive blood glucose sensor

    Kitazaki, Tomoya; Mori, Keita; Yamamoto, Naoyuki; Wang, Congtao; Kawashima, Natsumi; Ishimaru, Ichiro

    2017-07-01

    We proposed the extremely compact beans-size snap-shot mid-infrared spectroscopy that will be able to be built in smartphones. And also the easy preparation method of thin-film samples generated by ultrasonic standing wave is proposed. Mid-infrared spectroscopy is able to identify material components and estimate component concentrations quantitatively from absorption spectra. But conventional spectral instruments were very large-size and too expensive to incorporate into daily life. And preparations of thin-film sample were very troublesome task. Because water absorption in mid-infrared lights is very strong, moisture-containing-sample thickness should be less than 100[μm]. Thus, midinfrared spectroscopy has been utilized only by analytical experts in their laboratories. Because ultrasonic standing wave is compressional wave, we can generate periodical refractive-index distributions inside of samples. A high refractiveindex plane is correspond to a reflection boundary. When we use a several MHz ultrasonic transducer, the distance between sample surface and generated first node become to be several ten μm. Thus, the double path of this distance is correspond to sample thickness. By combining these two proposed methods, as for liquid samples, urinary albumin and glucose concentrations will be able to be measured inside of toilet. And as for solid samples, by attaching these apparatus to earlobes, the enhancement of reflection lights from near skin surface will create a new path to realize the non-invasive blood glucose sensor. Using the small ultrasonic-transducer whose diameter was 10[mm] and applied voltage 8[V], we detected the internal reflection lights from colored water as liquid sample and acrylic board as solid sample.

  16. An adaptive secret key-directed cryptographic scheme for secure transmission in wireless sensor networks

    Muhammad, K.; Jan, Z.; Khan, Z

    2015-01-01

    Wireless Sensor Networks (WSNs) are memory and bandwidth limited networks whose main goals are to maximize the network lifetime and minimize the energy consumption and transmission cost. To achieve these goals, different techniques of compression and clustering have been used. However, security is an open and major issue in WSNs for which different approaches are used, both in centralized and distributed WSNs' environments. This paper presents an adaptive cryptographic scheme for secure transmission of various sensitive parameters, sensed by wireless sensors to the fusion center for further processing in WSNs such as military networks. The proposed method encrypts the sensitive captured data of sensor nodes using various encryption procedures (bitxor operation, bits shuffling, and secret key based encryption) and then sends it to the fusion center. At the fusion center, the received encrypted data is decrypted for taking further necessary actions. The experimental results with complexity analysis, validate the effectiveness and feasibility of the proposed method in terms of security in WSNs. (author)

  17. Directed assembly of nanomaterials for miniaturized sensors by dip-pen nanolithography using precursor inks

    Su, Ming

    The advent of nanomaterials with enhanced properties and the means to pattern them in a controlled fashion have paved the way to construct miniaturized sensors for improved detection. However it remains a challenge for the traditional methods to create such sensors and sensor arrays. Dip pen nanolithography (DPN) can form nanostructures on a substrate by controlling the transfer of molecule inks. However, previous DPN can not pattern solid materials on insulating surfaces, which are necessary to form functional electronic devices. In the dissertation, the concept of reactive precursor inks for DPN is developed for the generation of solid functional nanostructures of the following materials: organic molecule, sol-gel material, and conducting polymer. First, the covalent bonding is unnecessary for DPN as shown in the colored ink DPN; therefore the numbers of molecules that can be patterned is extended beyond thiol or thiolated molecules. Subsequently, a reactive precursor strategy (sol) is developed to pattern inorganic or organic/inorganic composite nanostructures on silicon based substrates. The method works by hydrolysis of metal precursors in the water meniscus and allows the preparation of solid structures with controlled geometry beyond the individual molecule level. Then the SnO 2 nanostructures patterned between the gaps of electrodes are tested as gas sensors. Proof-of-concept experiments are demonstrated on miniaturized sensors that show fast response and recovery to certain gases. Furthermore, an eight-unit sensor array is fabricated on a chip using SnO2 sols that are doped with different metals. The multiplexed device can recognize different gases by comparing the response patterns with the reference patterns of known gases generated on the same array. At last, the idea of precursor ink for DPN is extended to construct conducting polymer based devices. By using an acid promoted polymerization approach, conducting polymers are patterned on silicon dioxide

  18. First Results of a Detection Sensor for the Monitoring of Laying Hens Reared in a Commercial Organic Egg Production Farm Based on the Use of Infrared Technology

    Mauro Zaninelli

    2016-10-01

    Full Text Available The development of a monitoring system to identify the presence of laying hens, in a closed room of a free-range commercial organic egg production farm, was the aim of this study. This monitoring system was based on the infrared (IR technology and had, as final target, a possible reduction of atmospheric ammonia levels and bacterial load. Tests were carried out for three weeks and involved 7 ISA (Institut de Sélection Animale brown laying hens. The first 5 days was used to set up the detection sensor, while the other 15 days were used to evaluate the accuracy of the resulting monitoring system, in terms of sensitivity and specificity. The setup procedure included the evaluation of different color background (CB thresholds, used to discriminate the information contents of the thermographic images. At the end of this procedure, a CB threshold equal to an increase of 3 °C from the floor temperature was chosen, and a cutoff level of 196 colored pixels was identified as the threshold to use to classify a positive case. The results of field tests showed that the developed monitoring system reached a fine detection accuracy (sensitivity = 97.9% and specificity = 94.9% and the IR technology proved to be a possible solution for the development of a detection sensor necessary to reach the scope of this study.

  19. First Results of a Detection Sensor for the Monitoring of Laying Hens Reared in a Commercial Organic Egg Production Farm Based on the Use of Infrared Technology.

    Zaninelli, Mauro; Redaelli, Veronica; Tirloni, Erica; Bernardi, Cristian; Dell'Orto, Vittorio; Savoini, Giovanni

    2016-10-21

    The development of a monitoring system to identify the presence of laying hens, in a closed room of a free-range commercial organic egg production farm, was the aim of this study. This monitoring system was based on the infrared (IR) technology and had, as final target, a possible reduction of atmospheric ammonia levels and bacterial load. Tests were carried out for three weeks and involved 7 ISA (Institut de Sélection Animale) brown laying hens. The first 5 days was used to set up the detection sensor, while the other 15 days were used to evaluate the accuracy of the resulting monitoring system, in terms of sensitivity and specificity. The setup procedure included the evaluation of different color background (CB) thresholds, used to discriminate the information contents of the thermographic images. At the end of this procedure, a CB threshold equal to an increase of 3 °C from the floor temperature was chosen, and a cutoff level of 196 colored pixels was identified as the threshold to use to classify a positive case. The results of field tests showed that the developed monitoring system reached a fine detection accuracy (sensitivity = 97.9% and specificity = 94.9%) and the IR technology proved to be a possible solution for the development of a detection sensor necessary to reach the scope of this study.

  20. A selective glucose sensor based on direct oxidation on a bimetal catalyst with a molecular imprinted polymer.

    Cho, Seong Je; Noh, Hui-Bog; Won, Mi-Sook; Cho, Chul-Ho; Kim, Kwang Bok; Shim, Yoon-Bo

    2018-01-15

    A selective nonenzymatic glucose sensor was developed based on the direct oxidation of glucose on hierarchical CuCo bimetal-coated with a glucose-imprinted polymer (GIP). Glucose was introduced into the GIP composed of Nafion and polyurethane along with aminophenyl boronic acid (APBA), which was formed on the bimetal electrode formed on a screen-printed electrode. The extraction of glucose from the GIP allowed for the selective permeation of glucose into the bimetal electrode surface for oxidation. The GIP-coated bimetal sensor probe was characterized using electrochemical and surface analytical methods. The GIP layer coated on the NaOH pre-treated bimetal electrode exhibited a dynamic range between 1.0µM and 25.0mM with a detection limit of 0.65±0.10µM in phosphate buffer solution (pH 7.4). The anodic responses of uric acid, acetaminophen, dopamine, ascorbic acid, L-cysteine, and other saccharides (monosaccharides: galactose, mannose, fructose, and xylose; disaccharides: sucrose, lactose, and maltose) were not detected using the GIP-coated bimetal sensor. The reliability of the sensor was evaluated by the determination of glucose in artificial and whole blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    Jiu Huang

    2018-04-01

    Full Text Available With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs, of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed

  2. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  3. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  4. High Frequency Magnetic Field Direction Finding Using MGL-S9A B-dot Sensors

    2013-03-21

    electromagnetic theory every week I know I wouldn’t have gotten so much accomplished while still remembering the fundamentals of this research. Your... Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Array Theory...of Figures Figure Page 1.1 Rivet Joint RC-135 aircraft [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 MGL-S8A B-dot sensor [2

  5. Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor

    Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...

  6. Investigating the use of multi-point coupling for single-sensor bearing estimation in one direction

    Woolard, Americo G.; Phoenix, Austin A.; Tarazaga, Pablo A.

    2018-04-01

    Bearing estimation of radially propagating symmetric waves in solid structures typically requires a minimum of two sensors. As a test specimen, this research investigates the use of multi-point coupling to provide directional inference using a single-sensor. By this provision, the number of sensors required for localization can be reduced. A finite-element model of a beam is constructed with a symmetrically placed bipod that has asymmetric joint-stiffness properties. Impulse loading is applied at different points along the beam, and measurements are taken from the apex of the bipod. A technique is developed to determine the direction-of-arrival of the propagating wave. The accuracy when using the bipod with the developed technique is compared against results gathered without the bipod and measuring from an asymmetric location along the beam. The results show 92% accuracy when the bipod is used, compared to 75% when measuring without the bipod from an asymmetric location. A geometry investigation finds the best accuracy results when one leg of the bipod has a low stiffness and a large diameter relative to the other leg.

  7. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  8. A disposable flexible humidity sensor directly printed on paper for medical applications

    Barmpakos, D.; Segkos, A.; Tsamis, C.; Kaltsas, G.

    2017-11-01

    The present study demonstrates an inkjet - printed interdigitated electrode array on paper substrate and its evaluation as humidity sensor. Inkjet droplet formation analysis has been performed in order to achieve repeatable results regarding generated droplets, based on the driving pulses applied on the inkjet piezoelectric element. Droplet formation has been monitored using stroboscopic effect. Three different paper substrates, namely high glossy inkjet photo paper, glossy inkjet photo and matte inkjet photo paper have been evaluated to investigate compatibility with the ink. Relative humidity measurements have been carried out in a controlled environment. Material degradation, long term response and memory effect are some of the aspects which were studied within the frame of the present work. The proposed sensor provides the opportunity for novel biomedical applications given the flexible substrate nature and the low - cost, single - step fabrication approach.

  9. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  10. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  11. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    Muhammad Arsalan

    2018-05-01

    Full Text Available The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet, which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database and mobile iris challenge evaluation (MICHE-I datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  12. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-06

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of 80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

  13. Ultra-Sensitive Transition-Edge Sensors for the Background Limited Infrared/Sub-mm Spectrograph (BLISS)

    Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Chui, T.; Eom, B.-H.; Day, P. K.; Bock, J. J.; Holmes, W.A.; Bradford, C. M.

    2011-01-01

    We report progress in fabricating ultra-sensitive superconducting transition-edge sensors (TESs) for BLISS. BLISS is a suite of grating spectrometers covering 35-433 micron with R approx. 700 cooled to 50 mK that is proposed to fly on the Japanese space telescope SPICA. The detector arrays for BLISS are TES bolometers readout with a time domain SQUID multiplexer. The required noise equivalent power (NEP) for BLISS is NEP = 10(exp -19) W/Hz(exp 1/2) with an ultimate goal of NEP= 5 x 10(exp -20) W/Hz(exp 1/2) to achieve background limited noise performance. The required and goal response times are tau = 150 ms and tau = 50ms respectively to achieve the NEP at the required and goal optical chop frequency 1-5 Hz. We measured prototype BLISS arrays and have achieved NEP = 6 x 10(exp -18) W/Hz(exp 1/2) and tau = 1.4 ms with a Ti TES (T(sub C) = 565 mK) and NEP approx. 2.5 x 10(exp -19) W/Hz(exp 1/2) and tau approximates 4.5 ms with an Ir TES (T(sub C) = 130 mK). Dark power for these tests is estimated at 1-5 fW.

  14. Characterization of the column-based priority logic readout of Topmetal-II− CMOS pixel direct charge sensor

    An, M.; Zhang, W.; Xiao, L.; Gao, C.; Chen, C.; Huang, G.; Ji, R.; Liu, J.; Pei, H.; Sun, X.; Wang, K.; Yang, P.; Zhou, W.; Han, M.; Mei, Y.; Li, X.; Sun, Q.

    2017-01-01

    We present the detailed study of the digital readout of Topmetal-II - CMOS pixel direct charge sensor. Topmetal-II - is an integrated sensor with an array of 72×72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators in each pixel with individually adjustable thresholds. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic features with a full clock-less circuitry hence there is no continuously running clock distributed in the pixel and matrix logic. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments. We studied the detailed working behavior and performance of this readout, and demonstrated its functional validity and potential in imaging applications.

  15. Real-Time and Label-Free Chemical Sensor-on-a-chip using Monolithic Si-on-BaTiO3 Mid-Infrared waveguides.

    Jin, Tiening; Li, Leigang; Zhang, Bruce; Lin, Hao-Yu Greg; Wang, Haiyan; Lin, Pao Tai

    2017-07-19

    Chip-scale chemical detection is demonstrated by using mid-Infrared (mid-IR) photonic circuits consisting of amorphous silicon (a-Si) waveguides on an epitaxial barium titanate (BaTiO 3 , BTO) thin film. The highly c-axis oriented BTO film was grown by the pulsed laser deposition (PLD) method and it exhibits a broad transparent window from λ = 2.5 μm up to 7 μm. The waveguide structure was fabricated by the complementary metal-oxide-semiconductor (CMOS) process and a sharp fundamental waveguide mode has been observed. By scanning the spectrum within the characteristic absorption regime, our mid-IR waveguide successfully perform label-free monitoring of various organic solvents. The real-time heptane detection is accomplished by measuring the intensity attenuation at λ = 3.0-3.2 μm, which is associated with -CH absorption. While for methanol detection, we track the -OH absorption at λ = 2.8-2.9 μm. Our monolithic Si-on-BTO waveguides establish a new sensor platform that enables integrated photonic device for label-free chemical detection.

  16. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Karim S. Karim

    2011-05-01

    Full Text Available In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs. We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE. Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the

  17. Coaxial printing method for directly writing stretchable cable as strain sensor

    Yan, Hai-liang; Chen, Yan-qiu; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu; Hong, Xiao; Hui, David; Yan, Hui

    2016-01-01

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  18. Coaxial printing method for directly writing stretchable cable as strain sensor

    Yan, Hai-liang [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Hong, Xiao [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); College of Computer Science, Sichuan University, Chengdu 610207 (China); Hui, David [Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148 (United States); Yan, Hui, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China)

    2016-08-22

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  19. FY 2005 Infrared Photonics Final Report

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and

  20. Calibration of displacement sensors up to 300 µm with nanometre accuracy and direct traceability to a primary standard of length

    Haitjema, H.; Schellekens, P.H.J.; Wetzels, S.F.C.L.

    2000-01-01

    A new class of sensor has recently appeared: nanometre sensors. These sensors are characterized by nanometre or sub-nanometre resolution and an uncertainty of a few nanometres over a range of at least several micrometres. Instruments such as capacitive or inductive sensors, laser interferometers,

  1. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  3. Directional Degradation of Spectralon Diffuser Under Ionizing Radiation for Calibration of Space-Based Sensors

    Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.

    2012-01-01

    Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing

  4. Roadmap on optical sensors.

    Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  5. Roadmap on optical sensors

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  6. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  7. Thermal microphotonic sensor and sensor array

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  8. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  9. The growth of urchin-like Co{sub 3}O{sub 4} directly on sensor substrate and its gas sensing properties

    Shen, Shui Fa, E-mail: sfshen@fzu.edu.cn; Xu, Mei Li; Lin, Dong Bao; Pan, Hai Bo

    2017-02-28

    Highlights: • Urchin-like Co{sub 3}O{sub 4} successfully grew on ceramic tube by a hydrothermal method. • The dependence of the product morphology on reaction additives was investigated. • The formation mechanism of urchin-like Co{sub 3}O{sub 4} was proposed. • The sensor with urchin-like Co{sub 3}O{sub 4} growing directly on ceramic tubes exhibits higher response sensitivity than the sensors fabricated from other morphological Co{sub 3}O{sub 4} or by traditional coating method. - Abstract: Urchin-like Co{sub 3}O{sub 4} has successfully grown directly on ITO glass and sensor ceramic substrate through hydrothermal reaction followed by calcination. The combined characterizations of X-ray diffraction (XRD) patterns, nitrogen adsorption-desorption and scanning electron microscopy (SEM) indicate that the as-prepared product possesses good crystallinity, large specific surface area and urchin-like morphology which is greatly influenced by the reaction additives. The sensor with urchin-like Co{sub 3}O{sub 4} growing directly on ceramic sensor tube exhibits higher response sensitivity than the sensors fabricated with other morphological Co{sub 3}O{sub 4} or by traditional coating method.

  10. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  11. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    Wu, Wei; Shih, Wei-Heng [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Shih, Wan Y., E-mail: shihwy@drexel.edu [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2016-03-28

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.65}[PbTiO{sub 3}]{sub 0.35} (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  12. FY 2004 Infrared Photonics Final Report

    Anheier, Norman C.; Allen, Paul J.; Keller, Paul E.; Bennett, Wendy D.; Martin, Peter M.; Johnson, Bradley R.; Sundaram, S. K.; Riley, Brian J.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2004-10-01

    Research done by the Infrared Photonics team at PNNL is focused on developing miniaturized integrated optics for the MWIR and LWIR by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin film deposition capabilities, direct-laser writing techniques, IR photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology - all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to Quantum Cascade Laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  13. Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development

    Ashok Mulchandani

    2003-06-01

    Full Text Available The realisation of a miniaturised potentiometric enzyme biosensor is presented. The biosensor chip utilises the enzyme organophosphorus hydrolase (OPH for the direct determination of pesticides. The transducer structure of the sensors chip consists of a pH-sensitive capacitive electrolyte-insulator-semiconductor (EIS structure that reacts towards pH changes caused by the OPH-catalised hydrolysis of the organophosphate compounds. The biosensor is operated versus a conventional Ag/AgCl reference electrode. Measurements were performed in the capacitance/voltage (C/V and the constant capacitance (ConCap mode for the two different pesticides paraoxon and parathion. For the development of this new type of biosensor, different immobilisation strategies, influence of buffer composition and concentration, transducer material, detection limit, long-term stability and selectivity have been studied.

  14. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor

    Qiu Cuicui; Wang Xia; Liu Xueying; Hou Shifeng; Ma Houyi

    2012-01-01

    Highlights: ► Au thin films are formed by electrodeposition and galvanic replacement technology. ► Glucose oxidase is stably immobilized via a simple physical adsorption method. ► The direct electrochemical behavior is obtained on the immobilized glucose oxidase. ► An amperometric sensor of glucose with an excellent sensing capability is achieved. - Abstract: Glucose oxidase (GOx) was stably immobilized via a simple physical adsorption method onto the nanostructured Au thin films fabricated by using electrodeposition and galvanic replacement technology, which provides a facile method to prepare morphology-controllable Au films and also facilitates the preparation and application of enzyme modified electrodes. An obvious advantage of the as-prepared enzyme electrode (denoted as GOx/Au/GCE) is that the nano-Au films provide a favorable microenvironment for GOx and facilitate the electron transfer between the active center of GOx and electrodes. Cyclic voltammetry (CV) results indicate that the immobilized GOx displayed a direct, reversible and surface-confined redox reaction in the phosphate buffer solution. Furthermore, the enzyme modified electrode was used as a glucose bioelectrochemical sensor, exhibiting a linear relationship in the concentration ranges of 2.5–32.5 μmol L −1 and 60–130 μmol L −1 with a detection limit of 0.32 μmol L −1 (S/N = 3) at an applied potential of −0.55 V. Due to the excellent stability, sensitivity and anti-interference ability, the Au thin films are hopeful in the construction of glucose biosensors.

  15. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  16. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  17. RadSensor: Xray Detection by Direct Modulation of an Optical Probe Beam

    Lowry, M E; Bennett, C V; Vernon, S P; Bond, T; Welty, R; Behymer, E; Petersen, H; Krey, A; Stewart, R; Kobayashi, N P; Sperry, V; Stephan, P; Reinhardt, C; Simpson, S; Stratton, P; Bionta, R; McKernan, M; Ables, E; Ott, L; Bond, S; Ayers, J.; Landen, O L; Bell, P M

    2003-01-01

    We present a new x-ray detection technique based on optical measurement of the effects of x-ray absorption and electron hole pair creation in a direct band-gap semiconductor. The electron-hole pairs create a frequency dependent shift in optical refractive index and absorption. This is sensed by simultaneously directing an optical carrier beam through the same volume of semiconducting medium that has experienced an xray induced modulation in the electron-hole population. If the operating wavelength of the optical carrier beam is chosen to be close to the semiconductor band-edge, the optical carrier will be modulated significantly in phase and amplitude. This approach should be simultaneously capable of very high sensitivity and excellent temporal response, even in the difficult high-energy xray regime. At xray photon energies near 10 keV and higher, we believe that sub-picosecond temporal responses are possible with near single xray photon sensitivity. The approach also allows for the convenient and EMI robust transport of high-bandwidth information via fiber optics. Furthermore, the technology can be scaled to imaging applications. The basic physics of the detector, implementation considerations, and preliminary experimental data are presented and discussed

  18. Direct determination of lycopene content in tomatoes (Lycopersicon esculentum) by attenuated total reflectance infrared spectroscopy and multivariate analysis.

    Halim, Yuwana; Schwartz, Steven J; Francis, David; Baldauf, Nathan A; Rodriguez-Saona, Luis E

    2006-01-01

    Lycopene is a potent antioxidant that has been shown to play critical roles in disease prevention. Efficient assays for detection and quantification of lycopene are desirable as alternatives to time- and labor-intensive methods. Attenuated total reflectance infrared (ATR-IR) spectroscopy was used for quantification of lycopene in tomato varieties. Calibration models were developed by partial least-squares regression (PLSR) using quantitative measures of lycopene concentration from liquid chromatography as reference method. IR spectra showed a distinct marker band at 957 cm(-1) for trans Carbon-Hydrogen (CH) deformation vibration of lycopene. PLSR models predicted the lycopene content accurately and reproducibly with a correlation coefficient (sigma) of 0.96 and standard error of cross-validation ATR-IR spectroscopy allowed for rapid, simple, and accurate determination of lycopene in tomatoes with minimal sample preparation. Results suggest that the ATR-IR method is applicable for high-throughput quantitative analysis and screening for lycopene in tomatoes.

  19. The Ultrasonic Directional Tidal Breathing Pattern Sensor: Equitable Design Realization Based on Phase Information.

    Sinharay, Arijit; Rakshit, Raj; Khasnobish, Anwesha; Chakravarty, Tapas; Ghosh, Deb; Pal, Arpan

    2017-08-11

    Pulmonary ailments are conventionally diagnosed by spirometry. The complex forceful breathing maneuver as well as the extreme cost of spirometry renders it unsuitable in many situations. This work is aimed to facilitate an emerging direction of tidal breathing-based pulmonary evaluation by designing a novel, equitable, precise and portable device for acquisition and analysis of directional tidal breathing patterns, in real time. The proposed system primarily uses an in-house designed blow pipe, 40-kHz air-coupled ultrasound transreceivers, and a radio frequency (RF) phase-gain integrated circuit (IC). Moreover, in order to achieve high sensitivity in a cost-effective design philosophy, we have exploited the phase measurement technique, instead of selecting the contemporary time-of-flight (TOF) measurement; since application of the TOF principle in tidal breathing assessments requires sub-micro to nanosecond time resolution. This approach, which depends on accurate phase measurement, contributed to enhanced sensitivity using a simple electronics design. The developed system has been calibrated using a standard 3-L calibration syringe. The parameters of this system are validated against a standard spirometer, with maximum percentage error below 16%. Further, the extracted respiratory parameters related to tidal breathing have been found to be comparable with relevant prior works. The error in detecting respiration rate only is 3.9% compared to manual evaluation. These encouraging insights reveal the definite potential of our tidal breathing pattern (TBP) prototype for measuring tidal breathing parameters in order to extend the reach of affordable healthcare in rural regions and developing areas.

  20. Reusable bi-directionalsensor to measure thermal conductivity of 100-μm thick biological tissues

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  1. Direct Determination of the Absorption of Graphene Mono- and Multi-layers in the Visible and Near-Infrared

    Wu, Yang; Mak, Kin Fai; Lui, Chun Hung; Maultzsch, Janina; Heinz, Tony

    2008-03-01

    Single-crystal mono- and multi-layer graphene samples were prepared by mechanical exfoliation on quartz substrates. The absorption spectra of samples of 1 -- 8 monolayer thickness were measured in the optical and near-infrared range. The absorption coefficient was found to be largely independent of photon energy and linear in the number of graphene layers. Such absorption measurements can thus be used to determine the thickness of mesoscopic graphite to monolayer accuracy, as already demonstrated in the context of Rayleigh scattering [Casiraghi et al. Nano Letters 2007]. By analysis of the optical transmission problem for a thin film at the air-quartz interface, we deduced an absorption of 2.3% per layer. The magnitude of the monolayer absorption agrees with the value of πα, where α is the fine-structure constant, and corresponds the result obtained from a tight-binding model of the graphene electronic structure [Gusynin et al. PRL 2006]. The predicted (and measured) optical absorption, we note, is equivalent to a constant optical conductance ofπe^22h=6.09x10-5φ-1.

  2. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance fourier transform-infrared spectroscopy.

    Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina

    2015-02-01

    The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®

  3. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions

  4. Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS

    Kilmury, Sara L. N.; Burrows, Lori L.

    2016-01-01

    Although two-component systems are a ubiquitous means of rapid bacterial adaptation to changing environments, identification of the specific signals detected by sensor kinases can be challenging. Also, little is known about the diverse, poorly characterized family of sensor kinases that detect intramembrane signals. We show that the major type IV pilin, PilA, is an inhibitory intramembrane ligand for the PilS sensor kinase that controls pilA expression and we characterize the mechanism of sig...

  5. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  6. Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor.

    Yagati, Ajay Kumar; Pyun, Jae-Chul; Min, Junhong; Cho, Sungbo

    2016-02-01

    For label-free and direct detection of C-reactive protein (CRP), an impedimetric sensor based on an indium tin oxide (ITO) electrode array functionalized with reduced graphene oxide-nanoparticle (rGO-NP) hybrid was fabricated and evaluated. Analytical measurements were performed to examine the properties of rGO-NP-modified ITO microelectrodes and to determine the influence upon sensory performance of using nanostructures modified for antibody immobilization and for recognition of CRP binding events. Impedimetric measurements in the presence of the redox couple [Fe(CN)6](3-/4-) showed significant changes in charge transfer resistance upon binding of CRP. The impedance measurements were highly target specific, linear with logarithmic CRP concentrations in PBS and human serum across a 1 ng mL(-1) and 1000 ng mL(-1) range and associated with a detection limits of 0.06 and 0.08 ng mL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    Aseev, Pavel, E-mail: pavel.aseev@upm.es; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.; Alvi, Naveed ul Hassan; Calleja, Enrique [Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Mánuel, José M.; Jiménez, Juan J.; García, Rafael [Departamente Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz (Spain); Morales, Francisco M. [Departamente Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz (Spain); IMEYMAT: Institute of Research on Electron Microscopy and Materials of the University of Cádiz, 11510 Cádiz (Spain); Senichev, Alexander [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Lienau, Christoph [Institute of Physics and Center of Interface Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg (Germany); and others

    2015-02-16

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology.

  8. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    Aseev, Pavel; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.; Alvi, Naveed ul Hassan; Calleja, Enrique; Mánuel, José M.; Jiménez, Juan J.; García, Rafael; Morales, Francisco M.; Senichev, Alexander; Lienau, Christoph

    2015-01-01

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology

  9. Direct evidence that scorpion α-toxins (site-3 modulate sodium channel inactivation by hindrance of voltage-sensor movements.

    Zhongming Ma

    Full Text Available The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4 and S5-S6 in Domain 1 (D1 and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal muscle voltage-gated sodium channel, hNav1.4, moves in response to depolarization from the resting to the inactivated state, two D4S4 reporters (R2C and R3C, Arg1451Cys and Arg1454Cys, respectively move from internal to external positions as deduced by reactivity to internally or externally applied sulfhydryl group reagents, methane thiosulfonates (MTS. The changes in reporter reactivity, when cycling rapidly between hyperpolarized and depolarized voltages, enabled determination of the positions of the D4 voltage-sensor and of its rate of movement. Scorpion α-toxin binding impedes D4S4 segment movement during inactivation since the modification rates of R3C in hNav1.4 with methanethiosulfonate (CH3SO2SCH2CH2R, where R = -N(CH33 (+ trimethylammonium, MTSET and benzophenone-4-carboxamidocysteine methanethiosulfonate (BPMTS were slowed ~10-fold in toxin-modified channels. Based upon the different size, hydrophobicity and charge of the two reagents it is unlikely that the change in reactivity is due to direct or indirect blockage of access of this site to reagent in the presence of toxin (Tx, but rather is the result of inability of this segment to move outward to the normal extent and at the normal rate in the toxin-modified channel. Measurements of availability of R3C to internally applied reagent show decreased access (slower rates of thiol reaction providing further evidence for encumbered D4S4 movement in the presence of toxins consistent with the assignment of at least part of the toxin binding site to the region of D4S4 region of the voltage-sensor

  10. Application Of FA Sensor 2

    Park, Seon Ho

    1993-03-01

    This book introduces FA sensor from basic to making system, which includes light sensor like photo diode and photo transistor, photo electricity sensor, CCD type image sensor, MOS type image sensor, color sensor, cds cell, and optical fiber scope. It also deals with direct election position sensor such as proximity switch, differential motion, linear scale of photo electricity type, and magnet scale, rotary sensor with summary of rotary encoder, rotary encoder types and applications, flow sensor, and sensing technology.

  11. Determining the direction of a geometrical/optical reference axis in the coordinate system of a triaxial magnetometer sensor

    Primdahl, Fritz; Brauer, Peter; Merayo, José M.G.

    2002-01-01

    optical or geometrical axes in order to be able to determine the precise orientation of the magnetic coordinate axes in an external reference system. Two methods for determining a reference axis in the sensor coordinates are discussed: (1) using a triaxial coil facility to measure the sensor orientation...

  12. LED-Absorption-QEPAS Sensor for Biogas Plants

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  13. LED-Absorption-QEPAS Sensor for Biogas Plants

    Michael Köhring

    2015-05-01

    Full Text Available A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors.

  14. Antigen-Dissociation from Antibody-Modified Nanotransistor Sensor Arrays as a Direct Biomarker Detection Method in Unprocessed Biosamples.

    Krivitsky, Vadim; Zverzhinetsky, Marina; Patolsky, Fernando

    2016-10-12

    The detection of biomolecules is critical for a wide spectrum of applications in life sciences and medical diagnosis. Nonetheless, biosamples are highly complex solutions, which contain an enormous variety of biomolecules, cells, and chemical species. Consequently, the intrinsic chemical complexity of biosamples results in a significant analytical background noise and poses an immense challenge to any analytical measurement, especially when applied without prior efficient separation and purification steps. Here, we demonstrate the application of antigen-dissociation regime, from antibody-modified Si-nanowire sensors, as a simple and effective direct sensing mechanism of biomarkers of interest in complex biosamples, such as serum and untreated blood, which does not require ex situ time-consuming biosample manipulation steps, such as centrifugation, filtering, preconcentration, and desalting, thus overcoming the detrimental Debye screening limitation of nanowire-based biosensors. We found that two key parameters control the capability to perform quantitative biomarkers analysis in biosamples: (i) the affinity strength (k off rate) of the antibody-antigen recognition pair, which dictates the time length of the high-affinity slow dissociation subregime, and (ii) the "flow rate" applied during the solution exchange dissociation step, which controls the time width of the low-affinity fast-dissociation subregime. Undoubtedly, this is the simplest and most convenient approach for the SiNW FET-based detection of antigens in complex untreated biosamples. The lack of ex situ biosample manipulation time-consuming processes enhances the portability of the sensing platform and reduces to minimum the required volume of tested sample, as it allows the direct detection of untreated biosamples (5-10 μL blood or serum), while readily reducing the detection cycle duration to less than 5 min, factors of great importance in near-future point-of-care medical applications. We believe

  15. A Micromachined Infrared Senor for an Infrared Focal Plane Array

    Seong M. Cho

    2008-04-01

    Full Text Available A micromachined infrared sensor for an infrared focal plane array has been designed and fabricated. Amorphous silicon was used as a sensing material, and silicon nitride was used as a membrane material. To get a good absorption in infrared range, the sensor structure was designed as a l/4 cavity structure. A Ni-Cr film was selected as an electrode material and mixed etching scheme was applied in the patterning process of the Ni-Cr electrode. All the processes were made in 0.5 μm iMEMS fabricated in the Electronics and Telecommunication Research Institute (ETRI. The processed MEMS sensor had a small membrane deflection less than 0.15 μm. This small deflection can be attributed to the rigorous balancing of the stresses of individual layers. The efficiency of infrared absorption was more than 75% in the wavelength range of 8 ~ 14 μm. The processed infrared sensor showed high responsivity of ~230 kV/W at 1.0V bias and 2 Hz operation condition. The time constant of the sensor was 8.6 msec, which means that the sensor is suitable to be operated in 30 Hz frame rate.

  16. Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source

    Jordi Palacín

    2011-12-01

    Full Text Available In this paper, a low cost optical flow sensor is combined with an external laser device to measure surface displacements and mechanical oscillations. The measurement system is based on applying coherent light to a diffuser surface and using an optical flow sensor to analyze the reflected and transferred light to estimate the displacement of the surface or the laser spot. This work is focused on the characterization of this measurement system, which can have the optical flow sensor placed at different angles and distances from the diffuser surface. The results have shown that the displacement of the diffuser surface is badly estimated when the optical mouse sensor is placed in front of the diffuser surface (angular orientation >150° while the highest sensitivity is obtained when the sensor is located behind the diffuser surface and on the axis of the laser source (angular orientation 0°. In this case, the coefficient of determination of the measured displacement, R2, was very high (>0.99 with a relative error of less than 1.29%. Increasing the distance between the surface and the sensor also increased the sensitivity which increases linearly, R2 = 0.99. Finally, this measurement setup was proposed to measure very low frequency mechanical oscillations applied to the laser device, up to 0.01 Hz in this work. The results have shown that increasing the distance between the surface and the optical flow sensor also increases the sensitivity and the measurement range.

  17. X-ray-to-current signal conversion characteristics of trench-structured photodiodes for direct-conversion-type silicon X-ray sensor

    Ariyoshi, Tetsuya; Funaki, Shota; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2017-01-01

    To reduce the radiation dose required in medical X-ray diagnoses, we propose a high-sensitivity direct-conversion-type silicon X-ray sensor that uses trench-structured photodiodes. This sensor is advantageous in terms of its long device lifetime, noise immunity, and low power consumption because of its low bias voltage. With this sensor, it is possible to detect X-rays with almost 100% efficiency; sensitivity can therefore be improved by approximately 10 times when compared with conventional indirect-conversion-type sensors. In this study, a test chip was fabricated using a single-poly single-metal 0.35 μm process. The formed trench photodiodes for the X-ray sensor were approximately 170 and 300 μm deep. At a bias voltage of 25 V, the absorbed X-ray-to-current signal conversion efficiencies were 89.3% (theoretical limit; 96.7%) at a trench depth of 170 μm and 91.1% (theoretical limit; 94.3%) at a trench depth of 300 μm. (author)

  18. Microneedle pH Sensor: Direct, Label-Free, Real-Time Detection of Cerebrospinal Fluid and Bladder pH.

    Mani, Ganesh Kumar; Miyakoda, Kousei; Saito, Asuka; Yasoda, Yutaka; Kajiwara, Kagemasa; Kimura, Minoru; Tsuchiya, Kazuyoshi

    2017-07-05

    Acid-base homeostasis (body pH) inside the body is precisely controlled by the kidneys and lungs and buffer systems, such that even a minor pH change could severely affect many organs. Blood and urine pH tests are common in day-to-day clinical trials and require little effort for diagnosis. There is always a great demand for in vivo testing to understand more about body metabolism and to provide effective diagnosis and therapy. In this article, we report the simple fabrication of microneedle-based direct, label-free, and real-time pH sensors. The reference and working electrodes were Ag/AgCl thick films and ZnO thin films on tungsten (W) microneedles, respectively. The morphological and structural characteristics of microneedles were carefully investigated through various analytical methods. The developed sensor exhibited a Nernstian response of -46 mV/pH. Different conditions were used to test the sensor to confirm their accuracy and stability, such as various buffer solutions, with respect to time, and we compared the reading with commercial pH electrodes. Besides that, the fabricated microneedle sensor ability is proven by in vivo testing in mouse cerebrospinal fluid (CSF) and bladders. The pH sensor procedure reported here is totally reversible, and results were reproducible after several rounds of testing.

  19. Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS.

    Kilmury, Sara L N; Burrows, Lori L

    2016-05-24

    Type IV pili are important virulence factors for many pathogens, including Pseudomonas aeruginosa Transcription of the major pilin gene-pilA-is controlled by the PilS-PilR two-component system in response to unknown signals. The absence of a periplasmic sensing domain suggested that PilS may sense an intramembrane signal, possibly PilA. We suggest that direct interactions between PilA and PilS in the inner membrane reduce pilA transcription when PilA levels are high. Overexpression in trans of PilA proteins with diverse and/or truncated C termini decreased native pilA transcription, suggesting that the highly conserved N terminus of PilA was the regulatory signal. Point mutations in PilA or PilS that disrupted their interaction prevented autoregulation of pilA transcription. A subset of PilA point mutants retained the ability to interact with PilS but could no longer decrease pilA transcription, suggesting that interaction between the pilin and sensor kinase is necessary but not sufficient for pilA autoregulation. Furthermore, PilS's phosphatase motif was required for the autoregulation of pilA transcription, suggesting that under conditions where PilA is abundant, the PilA-PilS interaction promotes PilR dephosphorylation and thus down-regulation of further pilA transcription. These data reveal a clever bacterial inventory control strategy in which the major subunit of an important P. aeruginosa virulence factor controls its own expression.

  20. Infrared Sky Surveys

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  1. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87albumin and total protein in human plasma. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Optischer Sensor

    Brandenburg, A.; Hutter, F.; Edelhaeuser, R.

    1992-01-01

    WO 2010040565 A1 UPAB: 20100506 NOVELTY - The integrated optical sensor comprises a first waveguide (4), a second waveguide (5) optically coupled to the first waveguide via a directional coupler, a substrate, which carries the first and the second waveguides, a single waveguide coupled with a light source, and an output waveguide coupled with a light-sensitive element. The sensor has a functional surface in the region of the directional coupler for depositing or deposition of the substance to...

  4. Modeling Performance of an Airborne Infrared Sensor Used by a Man-in-the-Loop in Tactical Aircraft during Daylight Operations

    Harder, James

    1998-01-01

    .... The best monochromatic tactical aircraft displays are contrast limited during daylight operations and are able to reproduce only a fraction of the available dynamic range of current generation IR imaging sensors...

  5. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    Seiichi Takamatsu; Hisanori Takano; Nguyen Binh-Khiem; Tomoyuki Takahata; Eiji Iwase; Kiyoshi Matsumoto; Isao Shimoyama

    2010-01-01

    We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV) curable adhesive. Parylene was directly deposited onto a small volume (1 μL) of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to ...

  6. A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers

    Al-Habaibeh, A.; Shi, F.; Brown, N.; Kerr, D.; Jackson, M.; Parkin, R. M.

    2004-10-01

    This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an online infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system.

  7. Infrared Heaters

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  8. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  9. Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines.

    Chau, Siu-Leung; Tang, Ho-Wai; Ng, Kwan-Ming

    2016-05-05

    With a coating of gold nanoparticles (AuNPs), over-the-counter (OTC) drugs and Chinese herbal medicine granules in KBr pellets could be analyzed by Fourier Transform Infra-red (FT-IR) spectroscopy and Surface-assisted Laser Desorption/Ionization mass spectrometry (SALDI-MS). FT-IR spectroscopy allows fast detection of major active ingredient (e.g., acetaminophen) in OTC drugs in KBr pellets. Upon coating a thin layer of AuNPs on the KBr pellet, minor active ingredients (e.g., noscapine and loratadine) in OTC drugs, which were not revealed by FT-IR, could be detected unambiguously using AuNPs-assisted LDI-MS. Moreover, phytochemical markers of Coptidis Rhizoma (i.e. berberine, palmatine and coptisine) could be quantified in the concentrated Chinese medicine (CCM) granules by the SALDI-MS using standard addition method. The quantitative results matched with those determined by high-performance liquid chromatography with ultraviolet detection. Being strongly absorbing in UV yet transparent to IR, AuNPs successfully bridged FT-IR and SALDI-MS for direct analysis of active ingredients in the same solid sample. FT-IR allowed the fast analysis of major active ingredient in drugs, while SALDI-MS allowed the detection of minor active ingredient in the presence of excipient, and also quantitation of phytochemicals in herbal granules. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube

    Kim, Jaejin; Hwang, Jinyoung; Chung, Hoeil

    2008-01-01

    Both near-infrared (NIR) and Raman spectroscopy have been studied for the quantitative measurement of components (H 3 PO 4 , HNO 3 , and CH 3 COOH) in an etchant solution and the corresponding prediction robustness has been evaluated. Both measurements were accomplished by illuminating radiation directly through a Teflon tube. Raman spectral features of each component were much clearer and more selective than those observed in the NIR spectrum. Especially, NIR spectral variation pertinent to H 3 PO 4 and HNO 3 were mostly based on the displacement and perturbation of water bands rather than due solely to NIR absorption. Therefore, the resulting spectral variations were not highly specific. When the validation set contained minor spectral variations resulting from a slight instrumental change, NIR prediction performance for all three components degraded substantially by showing obvious prediction bias. However, the accuracies of Raman predictions were maintained. Since partial least squares (PLS) models for each component were built using NIR spectra of poor specificity with broadly overlapping features, even minor spectral differences introduced by instrumental variations sensitively influenced the prediction performance of the NIR models. Overall, the selectivity (specificity) of a targeting spectroscopic method should be considered critically to secure prediction robustness for monitoring components in an etchant solution

  11. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  12. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level

    Špringer, Tomáš; Piliarik, Marek; Homola, Jiří

    2010-01-01

    Roč. 145, č. 1 (2010), s. 588-591 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : microfluidics * surface plasmon resonance * DNA detection Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  13. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

    Leigh, S J; Purssell, C P; Billson, D R; Hutchins, D A

    2014-01-01

    Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor. (paper)

  14. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  15. Infrared source test

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  16. Wireless Integrated Network Sensors Next Generation

    Merrill, William

    2004-01-01

    ..., autonomous networking, and distributed operations for wireless networked sensor systems. Multiple types of sensor systems were developed and provided including capabilities for acoustic, seismic, passive infrared detection, and visual imaging...

  17. Ultra-thin infrared metamaterial detector for multicolor imaging applications.

    Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J

    2017-09-18

    The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

  18. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  19. Infrared sensing based sensitive skin

    CAO Zheng-cai; FU Yi-li; WANG Shu-guo; JIN Bao

    2006-01-01

    Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.

  20. Control of a Two-Stage Direct Power Converter with a Single Voltage Sensor Mounted in the Intermediary Circuit

    Klumpner, Christian; Wheeler, P.; Blaabjerg, Frede

    2004-01-01

    Controlling a converter requires not only a powerful processors but also accurate voltage and current sensors and fast and precise analogue-digital converters, which increase the cost per kW of the assembly, especially in the low power range. A matrix converter requires less transducers than a back...... converters but in two stages (AC/DC/AC) without using energy storage in the intermediary circuit. They also offer the possibility to reduce the number of switches compared to the standard single-stage matrix converter. This paper presents a new method to control a two-stage DPC providing sine-wave in sine...

  1. Infrared astronomy

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  2. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  3. Development of an integrated sampler based on direct 222Rn/220Rn progeny sensors in flow-mode for estimating unattached/attached progeny concentration

    Mishra, Rosaline; Sapra, B.K.; Mayya, Y.S.

    2009-01-01

    A flow-mode integrated sampler consisting of a wire-mesh and filter-paper array along with passive solid state nuclear track detectors has been developed for estimating unattached and attached fraction of 222 Rn/ 220 Rn progeny concentration. The essential element of this sampler is the direct 222 Rn/ 220 Rn progeny sensor (DRPS/DTPS), which is an absorber-mounted-LR115 type nuclear track detector that selectively registers the alpha particles emitted from the progeny deposited on its surface. During sampling at a specified flow-rate, the unattached progeny is captured on the wire-mesh; while the attached progeny gets transmitted and is captured on the filter-paper. The alpha particles emitted by the deposited progeny atoms are registered on the sensors placed at a specified distance facing the wire-mesh and the filter-paper, respectively. The various steps involved in the development of this flow-mode direct progeny sampler such as the optimization of the sampling rate and the distance between the sensor and the deposition substrate are discussed. The sensitivity factor of the DTPS-loaded sampler for 220 Rn progeny deposited on the wire-mesh and filter-paper is found to be 23.77 ± 0.64 (track cm -2 h -1 ) (Bq m -3 ) -1 and 22.30 ± 0.18 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively; while that of DRPS-loaded sampler for 222 Rn progeny deposition, is 3.03 ± 0.14 (track cm -2 h -1 ) (Bq m -3 ) -1 and 2.08 ± 0.07 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively. The highlight of this flow-mode sampler is its high sensitivity and that it utilizes the passive technique for estimating the unattached and attached progeny concentration, thus doing away with the alpha counting procedures.

  4. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  5. Conformational heterogeneity of the bacteriopheophytin electron acceptor HA in reaction centers from Rhodopseudomonas viridis revealed by Fourier transform infrared spectroscopy and site-directed mutagenesis.

    Breton, J; Bibikova, M; Oesterhelt, D; Nabedryk, E

    1999-08-31

    The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.

  6. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2017-05-01

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in

  7. Infrared thermography

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  8. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  9. Clementine sensor suite

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  10. iHWG-μNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer.

    Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B

    2014-07-21

    A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

  11. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  12. Multifuctional integrated sensors (MFISES).

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  13. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Plekhovich, A. D.; Kotereva, T. V.; Snopatin, G. E.; Gerasimenko, V. V.; Pushkin, A. A.

    2016-10-01

    The glasses of [GeSe4]100-xIx (x = 1, 3, 5, 8, 10) compositions are prepared; their thermal properties, transparency in the mid-IR range and stability against crystallization are investigated. The glass transition temperature (Tg) in this system decreases monotonically with increasing iodine content from the value of Tg = 176 °C at x = 1 to Tg = 129 °C at x = 10. It has been determined by X-ray diffraction method that the addition of iodine reduces the volume fraction of the crystalline phase in glasses after annealing at 350 °C. Using a single crucible technique, the rod of [GeSe4]95I5 glass was drawn into a single-index fiber of 300 μm diameter and 10 m length. The optical losses were 2-3 dB/m in the spectral range 2.5-8 μm; the minimum optical losses were 1.7 dB/m at a wavelength of 5.5 μm. The content of impurity hydrogen in the form of Se-H in the fiber was about 3.6 ppm(wt), impurity oxygen in the form of Ge-O is 1 ppm(wt). The possibility of use of such [GeSe4]95I5 glass single-index fiber for infrared analysis of liquids by example of crude oil and water solutions of acetone has been demonstrated.

  14. Digital Sensor Technology

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  15. Fiber Bragg Grating Sensors for Harsh Environments

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  16. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets

  17. Obstacle-avoiding robot with IR and PIR motion sensors

    Ismail, R.; Omar, Z.; Suaibun, S.

    2016-10-01

    Obstacle avoiding robot was designed, constructed and programmed which may be potentially used for educational and research purposes. The developed robot will move in a particular direction once the infrared (IR) and the PIR passive infrared (PIR) sensors sense a signal while avoiding the obstacles in its path. The robot can also perform desired tasks in unstructured environments without continuous human guidance. The hardware was integrated in one application board as embedded system design. The software was developed using C++ and compiled by Arduino IDE 1.6.5. The main objective of this project is to provide simple guidelines to the polytechnic students and beginners who are interested in this type of research. It is hoped that this robot could benefit students who wish to carry out research on IR and PIR sensors.

  18. Non-contact optical Liquid Level Sensors

    Kiseleva, L. L.; Tevelev, L. V.; Shaimukhametov, R. R.

    2016-06-01

    Information about characteristics of the optical liquid level sensor are present. Sensors are used to control of the light level limit fluid - water, kerosene, alcohol, solutions, etc. Intrinsically safe, reliable and easy to use. The operating principle of the level sensor is an optoelectronic infrared device.

  19. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    Seiichi Takamatsu

    2010-06-01

    Full Text Available We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV curable adhesive. Parylene was directly deposited onto a small volume (1 μL of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to avoid denaturation of the glucose oxidase. The glucose oxidase solution was encapsulated and unsealed. Glucose sensing was demonstrated using standard amperometric detection at glucose concentrations between 0.1 and 100 mM, which covers the glucose concentration range of diabetic patients. Our proposed Parylene encapsulation and UV-adhesive cover form a liquid phase glucose-oxidase package that has the advantages of room temperature processing and direct liquid encapsulation of a small volume solution without use of conventional solidifying chemicals.

  20. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  1. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system.

    Wittmann, Frieder; Held, Jeremia P; Lambercy, Olivier; Starkey, Michelle L; Curt, Armin; Höver, Raphael; Gassert, Roger; Luft, Andreas R; Gonzenbach, Roman R

    2016-08-11

    The effect of rehabilitative training after stroke is dose-dependent. Out-patient rehabilitation training is often limited by transport logistics, financial resources and a lack of motivation/compliance. We studied the feasibility of an unsupervised arm therapy for self-directed rehabilitation therapy in patients' homes. An open-label, single group study involving eleven patients with hemiparesis due to stroke (27 ± 31.5 months post-stroke) was conducted. The patients trained with an inertial measurement unit (IMU)-based virtual reality system (ArmeoSenso) in their homes for six weeks. The self-selected dose of training with ArmeoSenso was the principal outcome measure whereas the Fugl-Meyer Assessment of the upper extremity (FMA-UE), the Wolf Motor Function Test (WMFT) and IMU-derived kinematic metrics were used to assess arm function, training intensity and trunk movement. Repeated measures one-way ANOVAs were used to assess differences in training duration and clinical scores over time. All subjects were able to use the system independently in their homes and no safety issues were reported. Patients trained on 26.5 ± 11.5 days out of 42 days for a duration of 137 ± 120 min per week. The weekly training duration did not change over the course of six weeks (p = 0.146). The arm function of these patients improved significantly by 4.1 points (p = 0.003) in the FMA-UE. Changes in the WMFT were not significant (p = 0.552). ArmeoSenso based metrics showed an improvement in arm function, a high number of reaching movements (387 per session), and minimal compensatory movements of the trunk while training. Self-directed home therapy with an IMU-based home therapy system is safe and can provide a high dose of rehabilitative therapy. The assessments integrated into the system allow daily therapy monitoring, difficulty adaptation and detection of maladaptive motor patterns such as trunk movements during reaching. Unique identifier: NCT02098135 .

  2. Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor

    Wang, Yu; Kim, Sung-Hoon; Feng, Liang

    2015-01-01

    Heteroatom doping has been proven as an efficient way to improve the fluorescent efficiency of carbon dots. Co-doping with heteroatoms may introduce more active sites to carbon dots, which would broaden applications of CDs in sensing. In this work, highly luminescent nitrogen and sulfur co-doped carbon dots (NSCDs) were synthesized through a facile one-step microwave assisted method by using citric acid and rubeanic acid as carbon, nitrogen, and sulfur sources. The well-isolated NSCDs not only exhibit an enhanced fluorescent efficiency with a relatively high quantum yield up to 17.6%, but also show potential use as a multi-sensing platform based on their fluorescence “on-off-on” and color changing behaviors. The NSCDs can be directly used for the selective determination of mercury cations without any functionalization. The detection limit is approximately calculated as 0.18 μM and linear range is 0–20 μM. The sensing mechanism is proposed as coordination reaction induced by oligomers upon the carbon core. Furthermore, in the presence of cyanide anions, the fluorescence shows linear recovery associated with the concentration of cyanide, indicating its potential usage for the detection of cyanide ion. The optimized pH range for such fluorescence “on-off-on” sensing system is investigated as pH 6–8, suggesting potential applications in bio-sensing and imaging area. In addition, by adding hydrosulfide anion to NSCDs@Hg 2+ complex, a notable color change could be clearly observed due to the formation of fuscous HgS. In application, a handy test paper for direct and rapid detection of Hg 2+ is manufactured for the evaluation of usage of NSCDs in the real circumstance. - Highlights: • NSCDs were synthesized by using citric acid and rubeanic acid. • NSCDs exhibited an enhanced fluorescent efficiency with high QY up to 17.6%. • NSCDs presented good sensing performance to mercury ions. • NSCDs showed potential use as a multi-sensing platform

  3. Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor

    Wang, Yu [Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Kim, Sung-Hoon, E-mail: shokim@knu.ac.kr [Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Feng, Liang, E-mail: fengl@dicp.ac.cn [Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2015-08-26

    Heteroatom doping has been proven as an efficient way to improve the fluorescent efficiency of carbon dots. Co-doping with heteroatoms may introduce more active sites to carbon dots, which would broaden applications of CDs in sensing. In this work, highly luminescent nitrogen and sulfur co-doped carbon dots (NSCDs) were synthesized through a facile one-step microwave assisted method by using citric acid and rubeanic acid as carbon, nitrogen, and sulfur sources. The well-isolated NSCDs not only exhibit an enhanced fluorescent efficiency with a relatively high quantum yield up to 17.6%, but also show potential use as a multi-sensing platform based on their fluorescence “on-off-on” and color changing behaviors. The NSCDs can be directly used for the selective determination of mercury cations without any functionalization. The detection limit is approximately calculated as 0.18 μM and linear range is 0–20 μM. The sensing mechanism is proposed as coordination reaction induced by oligomers upon the carbon core. Furthermore, in the presence of cyanide anions, the fluorescence shows linear recovery associated with the concentration of cyanide, indicating its potential usage for the detection of cyanide ion. The optimized pH range for such fluorescence “on-off-on” sensing system is investigated as pH 6–8, suggesting potential applications in bio-sensing and imaging area. In addition, by adding hydrosulfide anion to NSCDs@Hg{sup 2+} complex, a notable color change could be clearly observed due to the formation of fuscous HgS. In application, a handy test paper for direct and rapid detection of Hg{sup 2+} is manufactured for the evaluation of usage of NSCDs in the real circumstance. - Highlights: • NSCDs were synthesized by using citric acid and rubeanic acid. • NSCDs exhibited an enhanced fluorescent efficiency with high QY up to 17.6%. • NSCDs presented good sensing performance to mercury ions. • NSCDs showed potential use as a multi-sensing platform.

  4. A Direct Method for Mapping the Center of Pressure Measured by an Insole Pressure Sensor System to the Shoe's Local Coordinate System.

    Weaver, Brian T; Braman, Jerrod E; Haut, Roger C

    2016-06-01

    A direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system. When pressed onto the IPSS the location of the probe's tip was coincident with the CoP measured by the IPSS (IPSS-CoP). Two separate pushes (i.e., data points) were used to develop vectors in each respective coordinate system. Simple vector mathematics determined the rotational and translational components of the transformation matrix needed to express the IPSS-CoP into the local shoe coordinate system. Validation was performed by comparing IPSS-CoP with an embedded force plate measured CoP (FP-CoP) from data gathered during kinematic trials. Six male subjects stood on an embedded FP and performed anterior/posterior (AP) sway, internal rotation, and external rotation of the body relative to a firmly planted foot. The IPSS-CoP was highly correlated with the FP-CoP for all motions, root mean square errors (RMSRRs) were comparable to other research, and there were no statistical differences between the displacement of the IPSS-CoP and FP-CoP for both the AP and medial/lateral (ML) axes, respectively. The results demonstrated that this methodology could be utilized to determine the transformation variables need to express IPSS-CoP into a known coordinate system measured by motion tracking equipment and that these variables can be determined outside the laboratory anywhere motion tracking equipment is available.

  5. A MYOELECTRIC PROSTHETIC ARM CONTROLLED BY A SENSOR-ACTUATOR LOOP

    Patrik Kutílek

    2014-06-01

    Full Text Available This paper describes new methods and systems designed for application in upper extremity prostheses. An artificial upper limb with this system is a robot arm controlled by EMG signals and a set of sensors. The new multi-sensor system is based on ultrasonic sensors, infrared sensors, Hall-effect sensors, a CO2 sensor and a relative humidity sensor. The multi-sensor system is used to update a 3D map of objects in the robot’s environment, or it directly sends information about the environment to the control system of the myoelectric arm. Occupancy grid mapping is used to build a 3D map of the robot’s environment. The multi-sensor system can identify the distance of objects in 3D space, and the information from the system is used in a 3D map to identify potential collisions or a potentially dangerous environment, which could damage the prosthesis or the user. Information from the sensors and from the 3D map is evaluated using a fuzzy expert system. The control system of the myoelectric prosthetic arm can choose an adequate reaction on the basis of information from the fuzzy expert system. The systems and methods were designed and verified using MatLab/Simulink. They are aimed for use as assistive technology for disabled people.

  6. Direct observation of the discrete energy spectrum of two lanthanide-based single-chain magnets by far-infrared spectroscopy

    Haas, Sabrina; Heintze, Eric; Zapf, Sina; Gorshunov, Boris; Dressel, Martin; Bogani, Lapo

    2014-05-01

    The far-infrared optical transmission has been studied for two lanthanide-based single-chain magnets DyPhOPh and TbPhOPh in the frequency range between 3 and 80 cm-1. The spectra were acquired at temperatures between 2 and 80 K and magnetic fields up to 6 T. Based on their magnetic field dependence in DyPhOPh two of the observed absorption lines are identified as transitions inside the crystal field split Dy3+ ground multiplet 6H15/2, coupled to the neighboring spins. In TbPhOPh one transition was observed inside the crystal-field-split Tb3+ ground multiplet 7F6. The results allow a spectroscopic investigation of the role of single-ion anisotropy and exchange in Glauber dynamics.

  7. A near-infrared reflectance spectroscopic method for the direct analysis of several fodder-related chemical components in drumstick (Moringa oleifera Lam.) leaves.

    Zhang, Junjie; Li, Shuqi; Lin, Mengfei; Yang, Endian; Chen, Xiaoyang

    2018-05-01

    The drumstick tree has traditionally been used as foodstuff and fodder in several countries. Due to its high nutritional value and good biomass production, interest in this plant has increased in recent years. It has therefore become important to rapidly and accurately evaluate drumstick quality. In this study, we addressed the optimization of Near-infrared spectroscopy (NIRS) to analyze crude protein, crude fat, crude fiber, iron (Fe), and potassium (K) in a variety of drumstick accessions (N = 111) representing different populations, cultivation programs, and climates. Partial least-squares regression with internal cross-validation was used to evaluate the models and identify possible spectral outliers. The calibration statistics for these fodder-related chemical components suggest that NIRS can predict these parameters in a wide range of drumstick types with high accuracy. The NIRS calibration models developed in this study will be useful in predicting drumstick forage quality for these five quality parameters.

  8. 基于红外光电传感器的智能寻迹小车设计%Design of intelligent-searching-track race car based on infrared photoelectric sensor

    胡媛媛; 邓世建; 王书婧

    2011-01-01

    寻迹小车可以看作是缩小化的智能汽车,对智能汽车的研究有一定的借鉴意义.采用飞思卡尔公司的MC9S12DG128B作为核心控制芯片,设计了通过红外光电传惠器检测路径信息的智能寻迹小车.该系统由处理器模块、路径识别模块、电机驱动模块、舵机驱动模块、车速检测模块、液晶显示模块与电源模块等组成.实际应用表明,该小车可以在专门设计的跑道上快速平稳地实现寻迹功能.%The tracing car can be regarded as the contractible intelligent vehicle. Its research has a certain significance for the intelligent car. By using Freescale company's devices MC9S12DG128B as the core control chip, this paper designed the intelligent tracing car to detection route information through the infrared photoelectric sensor. The system includes processor module, path recognition module, motor driver module, servo driver module, speed detection module, LCD module,power supply module and so on. The practical application shows that the car can rapidly and smoothly realize the tracing function in the runway of the special design.

  9. Research directed at developing a classical theory to describe isotope separation of polyatomic molecules illuminated by intense infrared radiation. Final report, May 7-September 30, 1979

    Lamb, W.E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories

  10. Fleet Protection Using a Small UAV Based IR Sensor

    Buss, James R; Ax, Jr, George R

    2005-01-01

    A study was performed to define candidate electro-optical and infrared (EO/IR) sensor configurations and assess their potential utility as small UAV-based sensors surveilling a perimeter around surface fleet assets...

  11. Modeling and fabrication of lithium polymer ion batteries designed for wireless sensor network applications and printed directly on device

    Steingart, Daniel Artemis

    Microfabrication has enabled devices that were unimaginable just a century ago. The ability to create structured channels of metal and ceramic within the confines of half a micron took four decades to perfect but the reward has created cheap, reliable, and small computer devices, some of which communicate with no wires to the rest of the world. Conversely, electrochemical energy cells, or batteries, were well known to the scientific community one hundred years ago, and a 19th century chemist would be hard pressed to find a radical difference in the size, structure and performance of most batteries. While materials have been purified, and new chemistries have been implemented, modern batteries only offer, at most, an order of magnitude improvement in energy and power density over their original counter parts. Moore's "Law" [1] regarding integrated circuits only applies to semiconductor devices for a very simple reason: energy storage capacity is directly related to size. While transistor performance increases as size decreases, battery performance in terms of deliverable power and not. Though some performance gain can be made by modifying the battery chemistry or microstructure, more mass will always provide more capacity. With the advent of the "smart dust" class computers a critical point was reached. The devices became significantly smaller than the batteries required to do useful work, inspiring a new kind of battery, the microbattery, or a battery of a size of less than a few cubic millimeters and capable of delivering a continuous current of roughly 50 to 100 muA at 1 to 4 V. The pioneering microbatteries created by Bates [2] were promising in that they (1) used common microfabrication techniques and (2) were completely solid state. These cells are only now beginning to see commercialization, and are beset by a variety of problems. Though some are related to manufacturing control, others are inherent to the nature of the production processes. Sputtering and

  12. Far infrared photoconductors

    Leotin, J.; Meny, C.

    1990-01-01

    This paper presents the development of far infrared photoconductors for the focal plane of a spaceborne instrument named SAFIRE. SAFIRE (Spectroscopy of the Atmosphere using Far-Infrared Emission) belongs to the EOS program (Earth Observing System) and is now in the definition phase. It is a joint effort by scientists from the United States, Great Britain, Italy and France for a new generation of atmosphere sensor. The overall goal of the SAFIRE experiment is to improve the understanding of the ozone distribution in the middle atmosphere by conducting global scale measurements of the important chemical, radiative and dynamical processes which influence its changes. This will be accomplished by the measurement of the far infrared thermal limb emission in seven spectral channels covering the range 80 to 400 cm -1 with a maximum resolution of 0.004 cm -1 . For example key gases like OH, O, HO 2 , N 2 O 5 will be probed for the first time. Achievement of the required detector sensitivity in the far-infrared imposes the choice of photoconductive detectors operating at liquid helium temperatures. Germanium doped with gallium is selected for six channels whereas germanium doped with beryllium is suitable for the N 2 O 5 channel. Both photoconductors Ge:Ga and Ge:Be benefit from a well established material technology. A better wavelength coverage of channel 1 is achieved by applying a small uniaxial stress of the order of 0.1 GPa on the Ge:Ga photoconductors. The channel 6B wavelength coverage could be improved by using zinc-doped-germanium (Ge:Zn) or, much better, by using a Blocked Impurity band silicon detector doped with antimony (BIB Si:Sb). The later is developed as an optional basis

  13. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Milan Sak-Bosnar

    2004-01-01

    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  14. A novel type of electrochemical sensor based on ferromagnetic carbon-encapsulated iron nanoparticles for direct determination of hemoglobin in blood samples.

    Matysiak, Edyta; Donten, Mikolaj; Kowalczyk, Agata; Bystrzejewski, Michal; Grudzinski, Ireneusz P; Nowicka, Anna M

    2015-02-15

    An effective, fast, facile and direct electrochemical method of determination of hemoglobin (Hb) in blood sample without any sample preparation is described. The method is accomplished by using the ferromagnetic electrode modifier (carbon-encapsulated iron nanoparticles) and an external magnetic field. The successful voltammetric determination of hemoglobin is achieved in PBS buffer as well as in the whole blood sample. The obtained results show the excellent electroactivity of Hb. The measurements are of high sensitivity and good reproducibility. The detection limit is estimated to be 0.7 pM. The electrochemical determination data were compared with the gravimetric data obtained with a quartz crystal microbalance. The agreement between these results is very good. The changes of the electrode surface morphology before and after Hb detection are monitored by electron microscopy. The functionality of the electrochemical sensor is tested with human and rat blood samples. The concentration of hemoglobin in the blood samples determined by using voltammetric/gravimetric detection is in perfect agreement with the data obtained from typical clinical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Infrared thermography in veterinary medicine

    Hudak, R.; Zivcak, J.; Sevcik, A.; Danko, J.

    2008-01-01

    The use of infrared thermography in veterinary medicine has been practiced since at least the 1960's, but it is only now, in approximately the last 5 years, that it has been viewed with a reasonably open mind in the veterinary community at large. One of the reasons is progress in sensors technology, which contributed for an outstanding improvement of the thermal imager parameters. Paper deals with veterinary thermography and with description of applications at the University of Veterinary Medicine in Kosice. (authors)

  16. Bragg gratings: Optical microchip sensors

    Watts, Sam

    2010-07-01

    A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.

  17. Gas sensor

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  18. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy.

    Otsuka, Yuta; Yamamoto, Masahiro; Tanaka, Hideji; Otsuka, Makoto

    2015-01-01

    Theophylline anhydrate (TA) in tablet formulation is transformed into monohydrate (TH) at high humidity and the phase transformation affected dissolution behavior. Near-infrared spectroscopic (NIR) method is applied to predict the change of pharmaceutical properties of TA tablets during storage at high humidity. The tablet formulation containing TA, lactose, crystalline cellulose and magnesium stearate was compressed at 4.8 kN. Pharmaceutical properties of TA tables were measured by NIR, X-ray diffraction analysis, dissolution test and tablet hardness. TA tablet was almost 100% transformed into TH after 24 hours at RH 96%. The pharmaceutical properties of TA tablets, such as tablet hardness, 20 min dissolution amount (D20) and increase of tablet weight (TW), changed with the degree of hydration. Calibration models for TW, tablet hardness and D20 to predict the pharmaceutical properties at high-humidity conditions were developed on the basis of the NIR spectra by partial least squares regression analysis. The relationships between predicted and actual measured values for TW, tablet hardness and D20 had straight lines, respectively. From the results of NIR-chemometrics, it was confirmed that these predicted models had high accuracy to monitor the tablet properties during storage at high humidity.

  19. Mid-infrared Semiconductor Optoelectronics

    Krier, Anthony

    2006-01-01

    The practical realisation of optoelectronic devices operating in the 2–10 µm (mid-infrared) wavelength range offers potential applications in a variety of areas from environmental gas monitoring around oil rigs and landfill sites to the detection of pharmaceuticals, particularly narcotics. In addition, an atmospheric transmission window exists between 3 µm and 5 µm that enables free-space optical communications, thermal imaging applications and the development of infrared measures for "homeland security". Consequently, the mid-infrared is very attractive for the development of sensitive optical sensor instrumentation. Unfortunately, the nature of the likely applications dictates stringent requirements in terms of laser operation, miniaturisation and cost that are difficult to meet. Many of the necessary improvements are linked to a better ability to fabricate and to understand the optoelectronic properties of suitable high-quality epitaxial materials and device structures. Substantial progress in these m...

  20. Characteristic evaluation of acoustic emission sensors

    Jung, Hyun Kyu; Joo, Y. S.; Lee, N. H

    2000-12-01

    This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the basic principle of AE sensors in order to select AE sensor suitably. The described sensors include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor, directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability and repeatability. For the high reliability, sensor has to be calibrated in accordance with ASTM standard E 1106 which explains to measure the characteristics of AE sensor accurately. For investigating the degradation of AE sensor under the severe environment for example the high radiation condition, It is important to perform the repeatability test which is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor applications are also summarized.

  1. Geographically distributed environmental sensor system

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  2. New directions in fluxgate sensors

    Ripka, P

    2000-01-01

    Although fluxgates may have a resolution of 50 pT and an absolute precision of 1 nT, their accuracy is often degraded by crossfield response, non-linearities, hysteresis and perming effects. The trends are miniaturization, lower power consumption and production cost, non-linear tuning and digital processing. New core shapes and signal-processing methods have been suggested.

  3. New directions in fluxgate sensors

    Ripka, Pavel

    2000-01-01

    Although fluxgates may have a resolution of 50 pT and an absolute precision of 1 nT, their accuracy is often degraded by crossfield response, non-linearities, hysteresis and perming effects. The trends are miniaturization, lower power consumption and production cost, non-linear tuning and digital processing. New core shapes and signal-processing methods have been suggested

  4. Daily SST fields produced by blending infrared and microwave radiometer estimates

    Sreejith, O.P.; Shenoi, S.S.C.

    Measurement of Sea Surface Temperature (SST) using satellite based sensors have matured during the last decade. The infrared measurements, using the AVHRR sensor, flown onboard the NOAA satellites, have been used for the generation of high...

  5. Automatic Thermal Infrared Panoramic Imaging Sensor

    Gutin, Mikhail; Tsui, Eddy K; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-01-01

    .... Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence...

  6. Automatic Thermal Infrared Panoramic Imaging Sensor

    Gutin, Mikhail; Tsui, Eddy K; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-01-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset...

  7. A self-repairing polymer waveguide sensor

    Song, Young J; Peters, Kara J

    2011-01-01

    This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors

  8. Terahertz and Mid Infrared

    Shulika, Oleksiy; Detection of Explosives and CBRN (Using Terahertz)

    2014-01-01

    The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m).  Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications.  From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Det...

  9. Taste sensor; Mikaku sensor

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  10. Wireless MEMs BioSensor, Phase I

    National Aeronautics and Space Administration — Crossfield is proposing to develop a low cost, single chip plant bio-monitor using an embedded MEMs based infrared (IR) spectroscopy gas sensor for carbon dioxide...

  11. Expanding the vision of sensor materials

    National Research Council Staff; Commission on Engineering and Technical Systems; National Materials Advisory Board; Division on Engineering and Physical Sciences; National Research Council

    .... Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical...

  12. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  13. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.

    Rivero, Clara; Stegeman, Robert; Couzi, Michel; Talaga, David; Cardinal, Thierry; Richardson, Kathleen; Stegeman, George

    2005-06-13

    Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

  14. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  15. Sensor module design and forward and inverse kinematics analysis of 6-DOF sorting transferring robot

    Zhou, Huiying; Lin, Jiajian; Liu, Lei; Tao, Meng

    2017-09-01

    To meet the demand of high strength express sorting, it is significant to design a robot with multiple degrees of freedom that can sort and transfer. This paper uses infrared sensor, color sensor and pressure sensor to receive external information, combine the plan of motion path in advance and the feedback information from the sensors, then write relevant program. In accordance with these, we can design a 6-DOF robot that can realize multi-angle seizing. In order to obtain characteristics of forward and inverse kinematics, this paper describes the coordinate directions and pose estimation by the D-H parameter method and closed solution. On the basis of the solution of forward and inverse kinematics, geometric parameters of links and link parameters are optimized in terms of application requirements. In this way, this robot can identify route, sort and transfer.

  16. Digital Sensor Technology

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  17. Communications for unattended sensor networks

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  18. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  19. Studies of planetary boundary layer by infrared thermal imagery

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  20. Compliant Tactile Sensors

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  1. Advanced infrared optically black baffle materials

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  2. Optical sensors for earth observation. Chikyu kansokuyo kogaku sensor

    Ono, A [National Research Laboratory of Metrology, Tsukuba (Japan)

    1991-10-10

    Developments are made on an optical imager (ASTER) used to collect mainly images of land areas and an infrared sounder (IMG) to measure vertical air temperature distribution and vertical concentration distribution of specific gases, as satellite mounted sensors for earth observation. All the sensor characteristics of the ASTER comprising a visible near infrared radiometer, short wave infrared radiometer and thermal infrared radiometer are required to be capable of providing measurement, evaluation and assurance at the required accuracies during the entire life time. A problem to be solved is how to combine the on-ground calibration prior to launching, on-satellite calibration, and calibration between the test site and the sensors. The IMG is a Fourier transform spectroscopic infrared sounder, which is demanded of a high wave resolution over extended periods of time as well as a high radiation measuring capability. Also required are the level elevation of analysis algorithms to solve inverse problems from the observed radiation spectra, and the data base with high accuracy. 19 refs., 4 figs., 4 tabs.

  3. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  4. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    Zhaoyuan Yu

    2015-12-01

    Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  5. Airborne Sensor Thermal Management Solution

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  6. Ambient Sensors

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  7. An infrared view of high Tc superconductors

    Tanner, D.B.; Timusk, T.; McMaster Univ., Hamilton, ON

    1989-01-01

    Studies of the infrared properties of the high T c superconductors are reviewed, with particular emphasis on attempts to determine the energy gap by far infrared spectroscopy and on the properties of the strong absorption that occurs in the mid infrared. The authors argue that this mid-infrared absorption is a direct particle-hole excitation rather than a Holstein emission process. In addition, they conclude that although the energy gap is not easily observed, several recent experiments place it in the weak to moderate strong coupling range

  8. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  9. Optical Fiber Grating based Sensors

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  10. Development of a remote vital signs sensor

    Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.

    1997-01-01

    This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group's (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone's malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologies to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed

  11. Development of a remote vital signs sensor

    Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.

    1997-06-01

    This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologies to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.

  12. Professional Android Sensor Programming

    Milette, Greg

    2012-01-01

    Learn to build human-interactive Android apps, starting with device sensors This book shows Android developers how to exploit the rich set of device sensors—locational, physical (temperature, pressure, light, acceleration, etc.), cameras, microphones, and speech recognition—in order to build fully human-interactive Android applications. Whether providing hands-free directions or checking your blood pressure, Professional Android Sensor Programming shows how to turn possibility into reality. The authors provide techniques that bridge the gap between accessing sensors and putting the

  13. High-speed uncooled MWIR hostile fire indication sensor

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  14. Multisensor satellite data integration for sea surface wind speed and direction determination

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  15. Direct measurement of the field from a magnetic recording head using an InAs Hall sensor on a contact write/read tester

    Gokemeijer, N.J.; Clinton, T.W.; Crawford, T.M.; Johnson, Mark

    2005-01-01

    At 1 Tbit/in 2 areal density magnetic recording dimensions, reliable magnetic field metrology does not exist. One technique to map the spatial profile of the magnetic field of a write head is to use a contact read/write tester. A magnetic recording head is brought into contact with a Hall sensor, and is subsequently scanned with nm resolution. For a 300 nm track width longitudinal recording head, the magnetic field of the head was mapped. Measurements include the down track field gradient and cross-track field profile and the current-field transfer curve. These results suggest this technique offers a viable write field metrology

  16. Research on cloud background infrared radiation simulation based on fractal and statistical data

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  17. Attention Sensor

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  18. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  19. Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine.

    de Castro, Eduardo da S G; Cassella, Ricardo J

    2016-05-15

    Reference methods for quality control of vaccines usually require treatment of the samples before analysis. These procedures are expensive, time-consuming, unhealthy and require careful manipulation of the sample, making them a potential source of analytical errors. This work proposes a novel method for the quality control of thermostabilizer samples of the yellow fever vaccine employing attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). The main advantage of the proposed method is the possibility of direct determination of the analytes (sodium glutamate and sorbitol) without any pretreatment of the samples. Operational parameters of the FTIR technique, such as the number of accumulated scans and nominal resolution, were evaluated. The best conditions for sodium glutamate were achieved when 64 scans were accumulated using a nominal resolution of 4 cm(-1). The measurements for sodium glutamate were performed at 1347 cm(-1) (baseline correction between 1322 and 1369 cm(-1)). In the case of sorbitol, the measurements were done at 890cm(-1) (baseline correction between 825 and 910 cm(-1)) using a nominal resolution of 2 cm(-1) with 32 accumulated scans. In both cases, the quantitative variable was the band height. Recovery tests were performed in order to evaluate the accuracy of the method and recovery percentages in the range 93-106% were obtained. Also, the methods were compared with reference methods and no statistical differences were observed. The limits of detection and quantification for sodium glutamate were 0.20 and 0.62% (m/v), respectively, whereas for sorbitol they were 1 and 3.3% (m/v), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor

    Brandstetter, M.; Volgger, L.; Genner, A.; Jungbauer, C.; Lendl, B.

    2013-02-01

    This work reports on a compact sensor for fast and reagent-free point-of-care determination of glucose, lactate and triglycerides in blood serum based on a tunable (1030-1230 cm-1) external-cavity quantum cascade laser (EC-QCL). For simple and robust operation a single beam set-up was designed and only thermoelectric cooling was used for the employed laser and detector. Full computer control of analysis including liquid handling and data analysis facilitated routine measurements. A high optical pathlength (>100 μm) is a prerequisite for robust measurements in clinical practice. Hence, the optimum optical pathlength for transmission measurements in aqueous solution was considered in theory and experiment. The experimentally determined maximum signal-to-noise ratio (SNR) was around 140 μm for the QCL blood sensor and around 50 μm for a standard FT-IR spectrometer employing a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. A single absorption spectrum was used to calculate the analyte concentrations simultaneously by using a partial-least-squares (PLS) regression analysis. Glucose was determined in blood serum with a prediction error (RMSEP) of 6.9 mg/dl and triglycerides with an error of cross-validation (RMSECV) of 17.5 mg/dl in a set of 42 different patients. In spiked serum samples the lactate concentration could be determined with an RMSECV of 8.9 mg/dl.

  1. Infrared laser system

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  2. Feldspar, Infrared Stimulated Luminescence

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  3. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis.

  4. Semiconductor acceleration sensor

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  5. Use of infrared radiation thermometers for temperature control of plastic and paper webs in electric infrared ovens

    Jacobson, D.A.

    1985-01-01

    Using infrared radiation thermometers in conjunction with infrared heater systems requires special considerations to ensure that accuracy will be achieved. If the thermometer picks up infrared radiation from the heaters, faulty readings can occur. Two methods are generally employed to eliminate this interference. Sight tubes are used to block infrared rays from entering the sensor lens, and a thermometer is chosen which responds to a different wavelength than that being emitted from the infrared heaters. The main types of electric infrared heaters are: (a) screw-in bulbs (shortwave); (b) evacuated tungsten filament tubes (shortwave); (c) quartz tubes (medium wave); (d) quartz panel heaters (medium wave); (e) Ceramic heaters (medium-long wave); (f) metal sheath heaters (medium-long wave). Positioning of a sensor on a production line is dictated by the product being processed and the desired use of the temperature information. The most common location for a sensor is just after the infrared unit. The pyrometer information can be used for setting up the process, for quality control, for heater failure detection, and for control of the heaters. For wide web application in which uniformity across the web is essential, traversing sensors can be used to scan the web to ensure a uniform heating of the product. This information then can be used to control infrared profiling zones which are positioned across the web. In plastics applications, the thermometer most commonly is positioned also at the exit end of the infrared unit. Control functions are similar to those just listed. In some indexing machines, the plastic is sensed while still in the last index station, and the index an be initiated by the thermometer

  6. Infrared image enhancement with learned features

    Fan, Zunlin; Bi, Duyan; Ding, Wenshan

    2017-11-01

    Due to the variation of imaging environment and limitations of infrared imaging sensors, infrared images usually have some drawbacks: low contrast, few details and indistinct edges. Hence, to promote the applications of infrared imaging technology, it is essential to improve the qualities of infrared images. To enhance image details and edges adaptively, we propose an infrared image enhancement method under the proposed image enhancement scheme. On the one hand, on the assumption of high-quality image taking more evident structure singularities than low-quality images, we propose an image enhancement scheme that depends on the extractions of structure features. On the other hand, different from the current image enhancement algorithms based on deep learning networks that try to train and build the end-to-end mappings on improving image quality, we analyze the significance of first layer in Stacked Sparse Denoising Auto-encoder and propose a novel feature extraction for the proposed image enhancement scheme. Experiment results prove that the novel feature extraction is free from some artifacts on the edges such as blocking artifacts, ;gradient reversal;, and pseudo contours. Compared with other enhancement methods, the proposed method achieves the best performance in infrared image enhancement.

  7. Extragalactic infrared astronomy

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  8. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor

    Chander, G.; Meyer, D.J.; Helder, D.L.

    2004-01-01

    As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.

  9. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

  10. Sensors, Volume 4, Thermal Sensors

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  11. Air launch wireless sensor nodes (ALSN) for battle damage assessment (BDA)

    Back, Jason M.; Beck, Steven D.; Frank, Mark A.; Hoenes, Eric

    2006-05-01

    This paper summarizes the Defense Threat Reduction Agency (DTRA) sponsored development and demonstration of an Air Launched Sensor Node (ALSN) system designed to fill DTRA's immediate need to support the Global Strike requirement of weapon-borne deliverable sensors for Battle Damage Assessment (BDA). Unattended ground sensors were integrated into a CBU-103 Tactical Munitions Dispenser (TMD), and flight test demonstrated with the 46 th Test Wing at Eglin AFB, FL. The objectives of the ALSN program were to repackage an existing multi-sensor node system to conform to the payload envelope and deployment configuration design; to integrate this payload into the CBU-103 TMD; and to conduct a combined payload flight test demonstration. The final sensor node included multiple sensors a microphone, a geophone, and multiple directional Passive Infrared (PIR) detectors with processing electronics, a low power wireless communications 802.15.4 mesh network, GPS (Global Positioning System), and power integrated into a form-fit BLU-97 munitions deployable package. This paper will present and discuss the flight test, results, and ALSN performance.

  12. Retrieval of 3D-Position af a Passive Object Using Infrared LED's and Photodiodes

    Christensen, Henrik Vie

    2005-01-01

    A sensor using infrared emitter/receiver pairs to determine the position of a passive object is presented. An array with a small number of infrared emitter/receiver pairs are proposed as sensing part to acquire information on the object position. The emitters illuminates the object and the intens......A sensor using infrared emitter/receiver pairs to determine the position of a passive object is presented. An array with a small number of infrared emitter/receiver pairs are proposed as sensing part to acquire information on the object position. The emitters illuminates the object...

  13. Infrared sensing techniques for adaptive robotic welding

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  14. Advanced Magnetoimpedance Sensors

    Li, Bodong

    2015-02-01

    This thesis is concerned with the advanced topics of thin film magnetoimpedance (MI) sensors. The author proposes and develops novel MI sensors that target on the challenges arising from emerging applications such as flexible electronics, passive wireless sensing, etc. In the study of flexible MI sensor, the investigated sensors of NiFe/Cu/NiFe tri-layersare fabricated on three flexible substrates having different surface roughness: Kapton, standard and premiumphotopaper. Sensitivity versus substrate roughness analysis is carried out for the selection of optimal substrate material. The high magnetic sensing performance is achieved by using Kapton substrate. Stress simulation, incorporated with the theory of magnetostriction effect, reveals the material composition of Ni/Fe being as a key factor of the stress dependent MI effect for the flexible MI sensors. In the development of MI-SAW device for passive wireless magnetic field sensing, NiFe/Cu/NiFe tri-layersand interdigital transducers(IDT) are designed and fabricated on a single piece of LiNbO3substrate, providing a high degree of integration and the advantage of standard microfabrication. The double-electrodeIDT has been utilized and proven to have an optimal sensing performance in comparison to the bi-directional IDT design. The optimized high frequency performance of the thin film MI sensor results in a MI-SAW passive wireless magnetic sensor with high magnetic sensitivity comparing to the MI microwire approach. Benefiting from the high degree of integration of the MI thin film element, in the following study, two additional sensing elements are integrated to the SAW device to have a multifunctional passive wireless sensor with extended temperature and humidity sensing capabilities. Analytical models havebeen developed to eliminate the crossovers of different sensing signals through additional reference IDTs, resulting in a multifunctional passive wireless sensor with the capability of detecting all three

  15. Low-cost thermo-electric infrared FPAs and their automotive applications

    Hirota, Masaki; Ohta, Yoshimi; Fukuyama, Yasuhiro

    2008-04-01

    This paper describes three low-cost infrared focal plane arrays (FPAs) having a 1,536, 2,304, and 10,800 elements and experimental vehicle systems. They have a low-cost potential because each element consists of p-n polysilicon thermocouples, which allows the use of low-cost ultra-fine microfabrication technology commonly employed in the conventional semiconductor manufacturing processes. To increase the responsivity of FPA, we have developed a precisely patterned Au-black absorber that has high infrared absorptivity of more than 90%. The FPA having a 2,304 elements achieved high resposivity of 4,300 V/W. In order to reduce package cost, we developed a vacuum-sealed package integrated with a molded ZnS lens. The camera aiming the temperature measurement of a passenger cabin is compact and light weight devices that measures 45 x 45 x 30 mm and weighs 190 g. The camera achieves a noise equivalent temperature deviation (NETD) of less than 0.7°C from 0 to 40°C. In this paper, we also present a several experimental systems that use infrared cameras. One experimental system is a blind spot pedestrian warning system that employs four infrared cameras. It can detect the infrared radiation emitted from a human body and alerts the driver when a pedestrian is in a blind spot. The system can also prevent the vehicle from moving in the direction of the pedestrian. Another system uses a visible-light camera and infrared sensors to detect the presence of a pedestrian in a rear blind spot and alerts the driver. The third system is a new type of human-machine interface system that enables the driver to control the car's audio system without letting go of the steering wheel. Uncooled infrared cameras are still costly, which limits their automotive use to high-end luxury cars at present. To promote widespread use of IR imaging sensors on vehicles, we need to reduce their cost further.

  16. Common bus multinode sensor system

    Kelly, T.F.; Naviasky, E.H.; Evans, W.P.; Jefferies, D.W.; Smith, J.R.

    1988-01-01

    This patent describes a nuclear power plant including a common bus multinode sensor system for sensors in the nuclear power plant, each sensor producing a sensor signal. The system consists of: a power supply providing power; a communication cable coupled to the power supply; plural remote sensor units coupled between the cable and one or more sensors, and comprising: a direct current power supply, connected to the cable and converting the power on the cable into direct current; an analog-to-digital converter connected to the direct current power supply; an oscillator reference; a filter; and an integrated circuit sensor interface connected to the direct current power supply, the analog-to-digital converter, the oscillator crystal and the filter, the interface comprising: a counter receiving a frequency designation word from external to the interface; a phase-frequency comparator connected to the counter; an oscillator connected to the oscillator reference; a timing counter connected to the oscillator, the phase/frequency comparator and the analog-to-digital converter; an analog multiplexer connectable to the sensors and the analog-to-digital converter, and connected to the timing counter; a shift register operatively connected to the timing counter and the analog-to-digital converter; an encoder connected to the shift register and connectable to the filter; and a voltage controlled oscillator connected to the filter and the cable

  17. Time-domain fiber loop ringdown sensor and sensor network

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  18. Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication

    Wang, Junhong; Carlson, David J.; Parsons, David B.; Hock, Terrence F.; Lauritsen, Dean; Cole, Harold L.; Beierle, Kathryn; Chamberlain, Edward

    2003-08-01

    This study evaluates performance of humidity sensors in two widely used operational radiosondes, Vaisala and Sippican (formally VIZ), in comparison with a research quality, and potentially more accurate, chilled mirror dew-point hygrometer named ``Snow White''. A research radiosonde system carrying the Snow White (SW) hygrometer was deployed in the Oklahoma panhandle and at Dodge City, KS during the International H2O Project (IHOP_2002). A total of sixteen sondes were launched with either Vaisala RS80 or Sippican VIZ-B2 radiosondes on the same balloons. Comparisons of humidity data from the SW with Vaisala and Sippican data show that (a) Vaisala RS80-H agrees with the SW very well in the middle and lower troposphere, but has dry biases in the upper troposphere (UT), (b) Sippican carbon hygristor (CH) has time-lag errors throughout the troposphere and fails to respond to humidity changes in the UT, sometimes even in the middle troposphere, and (c) the SW can detect cirrus clouds near the tropopause and possibly estimate their ice water content (IWC). The failure of CH in the UT results in significant and artificial humidity shifts in radiosonde climate records at stations where a transition from VIZ to Vaisala radiosondes has occurred.

  19. Far infrared through millimeter backshort-under-grid arrays

    Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.

    2006-06-01

    We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.

  20. Backshort-Under-Grid arrays for infrared astronomy

    Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2006-04-01

    We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.

  1. Measurement of radiosity coefficient by means of an infrared radiometer

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni

    1991-02-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author).

  2. Measurement of radiosity coefficient by means of an infrared radiometer

    Okamoto, Yoshizo; Kaminaga, Fumito; Osakabe, Masahiro; Maekawa, Katsuhiro; Ishii, Toshimitsu; Ouoka, Norikazu; Etou, Motokuni.

    1991-01-01

    An infrared radiometer has been used for measuring and visualizing the radiation temperature distribution of a surface in many fields. Measured radiation energy by the radiometer is a summation of an emitted radiation and a reflection, which is called a radiosity flux. The present paper shows the characteristics of the radiosity of tested materials. The infrared sensor in used to measure the erosion rate of the graphite by ion beam injection and the temperature distribution of a cutter. (author)

  3. Gas Sensor

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  4. Gas Sensor

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  5. Sensor web

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  6. Infrared observations of planetary atmospheres

    Orton, G.S.; Baines, K.H.; Bergstralh, J.T.

    1988-01-01

    The goal of this research in to obtain infrared data on planetary atmospheres which provide information on several aspects of structure and composition. Observations include direct mission real-time support as well as baseline monitoring preceding mission encounters. Besides providing a broader information context for spacecraft experiment data analysis, observations will provide the quantitative data base required for designing optimum remote sensing sequences and evaluating competing science priorities. In the past year, thermal images of Jupiter and Saturn were made near their oppositions in order to monitor long-term changes in their atmospheres. Infrared images of the Jovian polar stratospheric hot spots were made with IUE observations of auroral emissions. An exploratory 5-micrometer spectrum of Uranus was reduced and accepted for publication. An analysis of time-variability of temperature and cloud properties of the Jovian atomsphere was made. Development of geometric reduction programs for imaging data was initiated for the sun workstation. Near-infrared imaging observations of Jupiter were reduced and a preliminary analysis of cloud properties made. The first images of the full disk of Jupiter with a near-infrared array camera were acquired. Narrow-band (10/cm) images of Jupiter and Saturn were obtained with acousto-optical filters

  7. Multiparametric methane sensor for environmental monitoring

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  8. Non-uniformity Correction of Infrared Images by Midway Equalization

    Yohann Tendero

    2012-07-01

    Full Text Available The non-uniformity is a time-dependent noise caused by the lack of sensor equalization. We present here the detailed algorithm and on line demo of the non-uniformity correction method by midway infrared equalization. This method was designed to suit infrared images. Nevertheless, it can be applied to images produced for example by scanners, or by push-broom satellites. The obtained single image method works on static images, is fully automatic, having no user parameter, and requires no registration. It needs no camera motion compensation, no closed aperture sensor equalization and is able to correct for a fully non-linear non-uniformity.

  9. Biomimetic Flow Sensors

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  10. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    Brown, D. J.; Stefan, S. E.; Berden, G.; Steill, J.D.; Oomens, J.; Eyler, J.R.; Bendiak, B.

    2011-01-01

    All eight d-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  11. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    Brown, D. J.; Stefan, S. E.; G. Berden,; Steill, J. D.; Oomens, J.; Eyler, J. R.; Bendiak, B.

    2011-01-01

    All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  12. Third-generation imaging sensor system concepts

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  13. MEMS Skin Friction Sensor, Phase I

    National Aeronautics and Space Administration — Interdisciplinary Consulting Corporation proposes a sensor that offers the unique capability to make non-intrusive, direct, simultaneous mean and fluctuating shear...

  14. Chemical sensors

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  15. Water quality sensor

    Ishizuka, Keiko; Takahashi, Masanori; Watanabe, Atsushi; Ibe, Hidefumi.

    1994-01-01

    The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in reactor water under radiation irradiation condition, and it has a long life time. Namely, an oxygen sensor comprises electrodes attached on both sides of high temperature/radiation resistant ion conductive material in which ions are sufficiently diffused within a temperature range of from a room temperature to 300degC. It has a performance for measuring electromotive force caused by the difference of a partial pressure between a reference gas and a gas to be measured contained in the high temperature/radiation resistant material. A hydrogen peroxide sensor has the oxygen sensor described above, to which a filter for causing decomposition of hydrogen peroxide is attached. The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in a reactor water of a BWR type reactor under high temperature/radiation irradiation condition. Accordingly, accurate water quality environment in the reactor water can be recognized. As a result, determination of incore corrosion environment is established thereby enabling to attain reactor integrity, safety and long life. (I.S.)

  16. Mobile Networked Sensors for Environmental Observatories

    Kaiser, W. J.

    2005-12-01

    The development of the first embedded networked sensing (ENS) systems has been rapidly followed by their successful deployment for investigations in environments ranging from forest ecosystems, to rivers and lakes, and to subsurface soil observations. As ENS systems have been deployed, many technology challenges have been successfully addressed. For example, the requirements for local and remote data access and long operating life have been encountered and solved with a novel hierarchical network architecture and unique, low power platforms. This presentation will describe this progress and also the development and applications of a new ENS system addressing the most current challenges: A robotic ENS platform providing precise, reliable, and sustained observation capability with diverse sensing capabilities that may adapt to environmental dynamics. In the development of methods for autonomous observation by networked sensors, many applications have emerged requiring spatially and temporally intensive data sampling. Examples include the mapping of forest understory solar radiation, autonomous acquisition of imaging for plant phenology, and mapping of contaminant concentration in aquatic systems. Common to these applications is the need to actively and continuously configure the location and orientation of sensors for high fidelity mapping of the spatial distribution of phenomena. To address this primary environmental observation need, a new sensing platform, Networked Infomechanical Systems (NIMS) has been developed. NIMS relies on deployed aerial infrastructure (for example, cable suspension systems) in the natural environment to permit robotic devices to precisely and reliably move or remain stationary as required at elevations that may lie directly in or above the forest canopy or within a river or stream. NIMS systems are suspended to allow devices to translate a sensor node horizontally, and also to raise and lower devices. Examples of sensors that are now

  17. Biodegradable Piezoelectric Force Sensor.

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  18. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation, Phase II

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  19. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System, Phase I

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  20. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation, Phase I

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...