An efficient implicit direct forcing immersed boundary method for incompressible flows
International Nuclear Information System (INIS)
Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y
2015-01-01
A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature
International Nuclear Information System (INIS)
Gibbons, M.R.; Hewett, D.W.
1997-01-01
We investigate the linear dispersion and other properties of the Darwin Direct Implicit Particle-in-cell (DADIPIC) method in order to deduce guidelines for its use in the simulation of long time-scale, kinetic phenomena in plasmas. The Darwin part of this algorithm eliminates the Courant constraint for light propagation across a grid cell in a time step and divides the field solution into several elliptic equations. The direct implicit method is only applied to the electrostatic field relieving the need to resolve plasma oscillations. Linear theory and simulations verifying the theory are used to generate the desired guidelines as well as show the utility of DADIPIC for a wide range of low frequency, electromagnetic phenomena. We find that separation of the fields has made the task of predicting algorithm behavior easier and produced a robust method without restrictive constraints. 20 refs., 11 figs., 3 tabs
Electromagnetic direct implicit PIC simulation
International Nuclear Information System (INIS)
Langdon, A.B.
1983-01-01
Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
Directory of Open Access Journals (Sweden)
R.K. Mohanty
2014-01-01
Full Text Available In this paper, we report new three level implicit super stable methods of order two in time and four in space for the solution of hyperbolic damped wave equations in one, two and three space dimensions subject to given appropriate initial and Dirichlet boundary conditions. We use uniform grid points both in time and space directions. Our methods behave like fourth order accurate, when grid size in time-direction is directly proportional to the square of grid size in space-direction. The proposed methods are super stable. The resulting system of algebraic equations is solved by the Gauss elimination method. We discuss new alternating direction implicit (ADI methods for two and three dimensional problems. Numerical results and the graphical representation of numerical solution are presented to illustrate the accuracy of the proposed methods.
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
International Nuclear Information System (INIS)
Lambert, M.A.
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods
International Nuclear Information System (INIS)
Drouin, M.
2009-11-01
This research thesis proposes a new formulation of the relativistic implicit direct method, based on the weak formulation of the wave equation which is solved by means of a Newton algorithm. The first part of this thesis deals with the properties of the explicit particle-in-cell (PIC) methods: properties and limitations of an explicit PIC code, linear analysis of a numerical plasma, numerical heating phenomenon, interest of a higher order interpolation function, and presentation of two applications in high density relativistic laser-plasma interaction. The second and main part of this report deals with adapting the direct implicit method to laser-plasma interaction: presentation of the state of the art, formulating of the direct implicit method, resolution of the wave equation. The third part concerns various numerical and physical validations of the ELIXIRS code: case of laser wave propagation in vacuum, demonstration of the adjustable damping which is a characteristic of the proposed algorithm, influence of space-time discretization on energy conservation, expansion of a thermal plasma in vacuum, two cases of plasma-beam unsteadiness in relativistic regime, and then a case of the overcritical laser-plasma interaction
International Nuclear Information System (INIS)
Gibbons, M.R.
1995-06-01
This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell's equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents
International Nuclear Information System (INIS)
Gibbons, M.R.; Hewett, D.W.
1995-01-01
We describe a new algorithm for simulating low frequency, kinetic phenomena in plasma. Darwin direct implicit particle-in-cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. Through the Darwin method the hyperbolic Maxwell's equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The direct implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. We discuss the algorithms for pushing the particles and solving the fields in 2D cartesian geometry. We also detail boundary conditions for conductors and dielectrics. Finally, we present two test cases, electron cyclotron waves and collisionless heating in inductively coupled plasmas. For these test cases DADIPIC shows agreement with analytic kinetic theory and good energy conservation characteristics. 33 refs., 7 figs., 2 tabs
Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong
2012-06-15
A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.
Implicit and fully implicit exponential finite difference methods
Indian Academy of Sciences (India)
Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue
Tay, Wei Choon; Tan, Eng Leong
2014-07-01
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.
Waveform relaxation methods for implicit differential equations
P.J. van der Houwen; W.A. van der Veen
1996-01-01
textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems
New Implicit General Linear Method | Ibrahim | Journal of the ...
African Journals Online (AJOL)
A New implicit general linear method is designed for the numerical olution of stiff differential Equations. The coefficients matrix is derived from the stability function. The method combines the single-implicitness or diagonal implicitness with property that the first two rows are implicit and third and fourth row are explicit.
International Nuclear Information System (INIS)
Yee, H.C.; Shinn, J.L.
1986-12-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated
International Nuclear Information System (INIS)
Yee, H.C.; Shinn, J.L.
1987-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated. 46 references
LOMEGA: a low frequency, field implicit method for plasma simulation
International Nuclear Information System (INIS)
Barnes, D.C.; Kamimura, T.
1982-04-01
Field implicit methods for low frequency plasma simulation by the LOMEGA (Low OMEGA) codes are described. These implicit field methods may be combined with particle pushing algorithms using either Lorentz force or guiding center force models to study two-dimensional, magnetized, electrostatic plasmas. Numerical results for ωsub(e)deltat>>1 are described. (author)
Multigrid Methods for Fully Implicit Oil Reservoir Simulation
Molenaar, J.
1996-01-01
In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Implicit methods for the Navier-Stokes equations
Yoon, S.; Kwak, D.
1990-01-01
Numerical solutions of the Navier-Stokes equations using explicit schemes can be obtained at the expense of efficiency. Conventional implicit methods which often achieve fast convergence rates suffer high cost per iteration. A new implicit scheme based on lower-upper factorization and symmetric Gauss-Seidel relaxation offers very low cost per iteration as well as fast convergence. High efficiency is achieved by accomplishing the complete vectorizability of the algorithm on oblique planes of sweep in three dimensions.
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
Energy Technology Data Exchange (ETDEWEB)
Jardin, S C
2010-09-28
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
International Nuclear Information System (INIS)
Jardin, S.C.
2010-01-01
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Adaptive implicit method for thermal compositional reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)
2008-10-15
As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.
Seismic response of reactor building on alluvial soil by direct implicit integration
International Nuclear Information System (INIS)
Thakkar, S.K.; Dinkar, A.K.
1983-01-01
The evaluation of seismic response of a reactor building is a complex problem. A study has been made in this paper of seismic response of a reactor building by direct implicit integration method. The direct implicit integration methods besides being unconditionally stable have the merit of including response of higher modes without much effort. A reactor building consisting of external shell, internal shell, internals and raft is considered to be resting on alluvium. The complete building including the foundation is idealized by axisymmetric finite elements. The structure is analyzed separately for horizontal and vertical components of ground motion using harmonic analysis. Total response is found by superposition of two responses. The variation of several parameters, such as soil stiffness, embedment depth, inertia of foundation, viscous boundary and damping on seismic response is studied. The structural response is seen to depend significantly on the soil stiffness and damping. The seismic response is observed to be less sensitive to embedment depth and inertia of foundation. The vertical accelerations on the raft, boiler room floor slab and dome due to vertical ground motions are quite appreciable. The viscous boundary is seen to alter structural response in significantly compared to rigid boundaries in a larger mesh and its use appears to be promising in absorbing energy of body waves when used with direct implicit integration method. (orig.)
A finite volume alternate direction implicit approach to modeling selective laser melting
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Mohanty, Sankhya
2013-01-01
Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation...... is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...
Some Implicit Methods for Solving Harmonic Variational Inequalities
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2016-08-01
Full Text Available In this paper, we use the auxiliary principle technique to suggest an implicit method for solving the harmonic variational inequalities. It is shown that the convergence of the proposed method only needs pseudo monotonicity of the operator, which is a weaker condition than monotonicity.
Energy Technology Data Exchange (ETDEWEB)
Lou, Jialin [North Carolina State Univ., Raleigh, NC (United States); Xia, Yidong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Lixiang [North Carolina State Univ., Raleigh, NC (United States); Luo, Hong [North Carolina State Univ., Raleigh, NC (United States); Edwards, Jack [North Carolina State Univ., Raleigh, NC (United States); Mueller, Frank [North Carolina State Univ., Raleigh, NC (United States)
2016-09-01
In this study, we use a combination of modeling techniques to describe the relationship between fracture radius that might be accomplished in a hypothetical enhanced geothermal system (EGS) and drilling distance required to create and access those fractures. We use a combination of commonly applied analytical solutions for heat transport in parallel fractures and 3D finite-element method models of more realistic heat extraction geometries. For a conceptual model involving multiple parallel fractures developed perpendicular to an inclined or horizontal borehole, calculations demonstrate that EGS will likely require very large fractures, of greater than 300 m radius, to keep interfracture drilling distances to ~10 km or less. As drilling distances are generally inversely proportional to the square of fracture radius, drilling costs quickly escalate as the fracture radius decreases. It is important to know, however, whether fracture spacing will be dictated by thermal or mechanical considerations, as the relationship between drilling distance and number of fractures is quite different in each case. Information about the likelihood of hydraulically creating very large fractures comes primarily from petroleum recovery industry data describing hydraulic fractures in shale. Those data suggest that fractures with radii on the order of several hundred meters may, indeed, be possible. The results of this study demonstrate that relatively simple calculations can be used to estimate primary design constraints on a system, particularly regarding the relationship between generated fracture radius and the total length of drilling needed in the fracture creation zone. Comparison of the numerical simulations of more realistic geometries than addressed in the analytical solutions suggest that simple proportionalities can readily be derived to relate a particular flow field.
Comparison between implicit and hybrid solvation methods for the ...
Indian Academy of Sciences (India)
Administrator
Both implicit solvation method (dielectric polarizable continuum model, DPCM) and hybrid ... the free energy change (ΔGsol) as per the PCM ... Here the gas phase change is written as ΔGg = ΔEelec + ..... bution to the field of electrochemistry.
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove
2010-01-01
The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete......-Kutta methods, ESDIRK, Newton-Raphson, convergence control, error control, stepsize selection....
A GPU-accelerated implicit meshless method for compressible flows
Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng
2018-05-01
This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.
Energy Technology Data Exchange (ETDEWEB)
Finan, C.H. III
1980-12-01
Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.
Multigrid methods for fully implicit oil reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Molenaar, J.
1995-12-31
In this paper, the authors consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations the material balance or continuity equations, and the equation of motion (Darcy`s law). For the numerical solution of this system of nonlinear partial differential equations, there are two approaches: the fully implicit or simultaneous solution method, and the sequential solution method. In this paper, the authors consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations.
An advanced probabilistic structural analysis method for implicit performance functions
Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.
1989-01-01
In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.
Refinement of RAIM via Implementation of Implicit Euler Method
Energy Technology Data Exchange (ETDEWEB)
Lee, Yoonhee; Kim, Han-Chul [Korea Institute of Nuclear and Safety, Daejeon (Korea, Republic of)
2016-10-15
The first approach is a mechanistic approach which is used in LIRIC in which more than 200 reactions are modeled in detail. This approach enables to perform the detailed analysis. However, it requires huge computation burden. The other approach is a simplified model approach which is used in the IMOD, ASTEC/IODE, and etc. Recently, KINS has developed RAIM (Radio-Active Iodine chemistry Model) based on the simplified model approach. Since the numerical analysis module in RAIM is based on the explicit Euler method, there are major issues on the stability of the module. Therefore, implementation of a stable numerical method becomes essential. In this study, RAIM is refined via implementation of implicit Euler method in which the Newton method is used to find the solutions at each time step. The refined RAIM is tested by comparing to RAIM based on the explicit Euler method. In this paper, RAIM was refined by implementing the implicit Euler method. At each time step of the method in the refined RAIM, the reaction kinetics equations are solved by the Newton method in which elements of the Jacobian matrix are expressed analytically. With the results of OECD-BIP P10T2 test, the refined RAIM was compared to RAIM with the explicit Euler method. The refined RAIM shows better agreement with the experimental data than those from the explicit Euler method. For the rapid change of pH during the experiment, the refined RAIM gives more realistic changes in the concentrations of chemical species than those from the explicit Euler method. In addition, in terms of computing time, the refined RAIM shows comparable computing time to that with explicit Euler method. These comparisons are attributed to ⁓10 times larger time step size used in the implicit Euler method, even though computation burden at each time step in the refined RAIM is much higher than that of the explicit Euler method. Compared to the experimental data, the refined RAIM still shows discrepancy, which are attributed
Refinement of RAIM via Implementation of Implicit Euler Method
International Nuclear Information System (INIS)
Lee, Yoonhee; Kim, Han-Chul
2016-01-01
The first approach is a mechanistic approach which is used in LIRIC in which more than 200 reactions are modeled in detail. This approach enables to perform the detailed analysis. However, it requires huge computation burden. The other approach is a simplified model approach which is used in the IMOD, ASTEC/IODE, and etc. Recently, KINS has developed RAIM (Radio-Active Iodine chemistry Model) based on the simplified model approach. Since the numerical analysis module in RAIM is based on the explicit Euler method, there are major issues on the stability of the module. Therefore, implementation of a stable numerical method becomes essential. In this study, RAIM is refined via implementation of implicit Euler method in which the Newton method is used to find the solutions at each time step. The refined RAIM is tested by comparing to RAIM based on the explicit Euler method. In this paper, RAIM was refined by implementing the implicit Euler method. At each time step of the method in the refined RAIM, the reaction kinetics equations are solved by the Newton method in which elements of the Jacobian matrix are expressed analytically. With the results of OECD-BIP P10T2 test, the refined RAIM was compared to RAIM with the explicit Euler method. The refined RAIM shows better agreement with the experimental data than those from the explicit Euler method. For the rapid change of pH during the experiment, the refined RAIM gives more realistic changes in the concentrations of chemical species than those from the explicit Euler method. In addition, in terms of computing time, the refined RAIM shows comparable computing time to that with explicit Euler method. These comparisons are attributed to ⁓10 times larger time step size used in the implicit Euler method, even though computation burden at each time step in the refined RAIM is much higher than that of the explicit Euler method. Compared to the experimental data, the refined RAIM still shows discrepancy, which are attributed
Efficient parallel implicit methods for rotary-wing aerodynamics calculations
Wissink, Andrew M.
Euler/Navier-Stokes Computational Fluid Dynamics (CFD) methods are commonly used for prediction of the aerodynamics and aeroacoustics of modern rotary-wing aircraft. However, their widespread application to large complex problems is limited lack of adequate computing power. Parallel processing offers the potential for dramatic increases in computing power, but most conventional implicit solution methods are inefficient in parallel and new techniques must be adopted to realize its potential. This work proposes alternative implicit schemes for Euler/Navier-Stokes rotary-wing calculations which are robust and efficient in parallel. The first part of this work proposes an efficient parallelizable modification of the Lower Upper-Symmetric Gauss Seidel (LU-SGS) implicit operator used in the well-known Transonic Unsteady Rotor Navier Stokes (TURNS) code. The new hybrid LU-SGS scheme couples a point-relaxation approach of the Data Parallel-Lower Upper Relaxation (DP-LUR) algorithm for inter-processor communication with the Symmetric Gauss Seidel algorithm of LU-SGS for on-processor computations. With the modified operator, TURNS is implemented in parallel using Message Passing Interface (MPI) for communication. Numerical performance and parallel efficiency are evaluated on the IBM SP2 and Thinking Machines CM-5 multi-processors for a variety of steady-state and unsteady test cases. The hybrid LU-SGS scheme maintains the numerical performance of the original LU-SGS algorithm in all cases and shows a good degree of parallel efficiency. It experiences a higher degree of robustness than DP-LUR for third-order upwind solutions. The second part of this work examines use of Krylov subspace iterative solvers for the nonlinear CFD solutions. The hybrid LU-SGS scheme is used as a parallelizable preconditioner. Two iterative methods are tested, Generalized Minimum Residual (GMRES) and Orthogonal s-Step Generalized Conjugate Residual (OSGCR). The Newton method demonstrates good
Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.
2018-04-01
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.
Directory of Open Access Journals (Sweden)
Leo White
2015-12-01
Full Text Available We present modular implicits, an extension to the OCaml language for ad-hoc polymorphism inspired by Scala implicits and modular type classes. Modular implicits are based on type-directed implicit module parameters, and elaborate straightforwardly into OCaml's first-class functors. Basing the design on OCaml's modules leads to a system that naturally supports many features from other languages with systematic ad-hoc overloading, including inheritance, instance constraints, constructor classes and associated types.
International Nuclear Information System (INIS)
Ritchie, A.B.; Riley, M.E.
1997-06-01
The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems
Scalable implicit methods for reaction-diffusion equations in two and three space dimensions
Energy Technology Data Exchange (ETDEWEB)
Veronese, S.V.; Othmer, H.G. [Univ. of Utah, Salt Lake City, UT (United States)
1996-12-31
This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.
An implicit non-staggered Cartesian grid method for incompressible ...
Indian Academy of Sciences (India)
Immersed boundary; non-staggered; implicit; viscous flow. 1. ... functions for elastic boundaries (Saiki & Biringen 1996; Lai & Peskin 2000; Zhu & Peskin ... the effects of pressure and thereby explicitly achieving a strong coupling between them.
A practical implicit finite-difference method: examples from seismic modelling
International Nuclear Information System (INIS)
Liu, Yang; Sen, Mrinal K
2009-01-01
We derive explicit and new implicit finite-difference formulae for derivatives of arbitrary order with any order of accuracy by the plane wave theory where the finite-difference coefficients are obtained from the Taylor series expansion. The implicit finite-difference formulae are derived from fractional expansion of derivatives which form tridiagonal matrix equations. Our results demonstrate that the accuracy of a (2N + 2)th-order implicit formula is nearly equivalent to that of a (6N + 2)th-order explicit formula for the first-order derivative, and (2N + 2)th-order implicit formula is nearly equivalent to (4N + 2)th-order explicit formula for the second-order derivative. In general, an implicit method is computationally more expensive than an explicit method, due to the requirement of solving large matrix equations. However, the new implicit method only involves solving tridiagonal matrix equations, which is fairly inexpensive. Furthermore, taking advantage of the fact that many repeated calculations of derivatives are performed by the same difference formula, several parts can be precomputed resulting in a fast algorithm. We further demonstrate that a (2N + 2)th-order implicit formulation requires nearly the same memory and computation as a (2N + 4)th-order explicit formulation but attains the accuracy achieved by a (6N + 2)th-order explicit formulation for the first-order derivative and that of a (4N + 2)th-order explicit method for the second-order derivative when additional cost of visiting arrays is not considered. This means that a high-order explicit method may be replaced by an implicit method of the same order resulting in a much improved performance. Our analysis of efficiency and numerical modelling results for acoustic and elastic wave propagation validates the effectiveness and practicality of the implicit finite-difference method
Energy Technology Data Exchange (ETDEWEB)
Pogosyan, T A
1983-01-01
The article is dedicated to the solution of systems of differential equations which describe the transfer processes in an electric power system (EES) by implicit methods of numerical integration. The distinguishing feature of the implicit methods (Euler's reverse method and the trapeze method) is their absolute stability and, consequently, the relatively small accumulation of errors in each step of integration. Therefore, they are found to be very convenient for solving problems of electric power engineering, when the transfer processes are described by a rigid system of differential equations. The rigidity is associated with the range of values of the time constants considered. The advantage of the implicit methods over explicit are shown in a specific example (calculation of the dynamic stability of the simplest electric power system), along with the field of use of the implicit methods and the expedience of their use in power engineering problems.
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
Advanced Semi-Implicit Method (ASIM) for hyperbolic two-fluid model
International Nuclear Information System (INIS)
Lee, Sung Jae; Chung, Moon Sun
2003-01-01
Introducing the interfacial pressure jump terms based on the surface tension into the momentum equations of two-phase two-fluid model, the system of governing equations is turned mathematically into the hyperbolic system. The eigenvalues of the equation system become always real representing the void wave and the pressure wave propagation speeds as shown in the previous manuscript. To solve the interfacial pressure jump terms with void fraction gradients implicitly, the conventional semi-implicit method should be modified as an intermediate iteration method for void fraction at fractional time step. This Advanced Semi-Implicit Method (ASIM) then becomes stable without conventional additive terms. As a consequence, including the interfacial pressure jump terms with the advanced semi-implicit method, the numerical solutions of typical two-phase problems can be more stable and sound than those calculated exclusively by using any other terms like virtual mass, or artificial viscosity
International Nuclear Information System (INIS)
Koshizuka, S.; Oka, Y.
1997-01-01
Moving Particle Semi-implicit (MPS) method is presented. Partial differential operators in the governing equations, such as gradient and Laplacian, are modeled as particle interactions without grids. A semi-implicit algorithm is used for incompressible flow analysis. In the present study, calculation models of moving solids, thin structures and phase change between liquid and gas are developed. Interaction between breaking waves and a floating solid is simulated using the model of moving solids. Calculations of collapsing water with a vertical thin plate show that water spills out over the plate which is largely deformed. Impingement of water jets on a molten metal pool is analyzed to investigate fundamental processes of vapor explosions. Water, vapor and molten metal are simultaneously calculated with evaporation. This calculation reveals that filaments of the molten metal emerge as the fragmentation process of vapor explosions. The MPS method is useful for complex problems involving moving interfaces even if topological deformations occur. (author)
An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation
International Nuclear Information System (INIS)
Hui-Lin, Lai; Chang-Feng, Ma
2008-01-01
We establish an implicit scheme of lattice Boltzmann method for simulating the sine-Gordon equation, which can be transformed into the explicit one, so the computation of the scheme is simple. Moreover, the parameter θ of the implicit scheme is independent of the relaxation time, which makes the model more flexible. The numerical results show that this method is very effective. (fundamental areas of phenomenology (including applications))
Neill, Erica; Rossell, Susan Lee
2013-02-28
Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ha, Sanghyun; Park, Junshin; You, Donghyun
2017-11-01
Utility of the computational power of modern Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. Due to its serial and bandwidth-bound nature, the present choice of numerical methods is considered to be a good candidate for evaluating the potential of GPUs for solving Navier-Stokes equations using non-explicit time integration. An efficient algorithm is presented for GPU acceleration of the Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution method used in the semi-implicit fractional-step method. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while Navier-Stokes equations are computed on a GPU. Extension to multiple NVIDIA GPUs is implemented using NVLink supported by the Pascal architecture. Performance of the present method is experimented on multiple Tesla P100 GPUs compared with a single-core Xeon E5-2650 v4 CPU in simulations of boundary-layer flow over a flat plate. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (Ministry of Science, ICT and Future Planning NRF-2016R1E1A2A01939553, NRF-2014R1A2A1A11049599, and Ministry of Trade, Industry and Energy 201611101000230).
Ha, Sanghyun; Park, Junshin; You, Donghyun
2018-01-01
Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.
Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course
Kull, Trent C.
2011-01-01
A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…
An implicit second order numerical method for two-fluid models
International Nuclear Information System (INIS)
Toumi, I.
1995-01-01
We present an implicit upwind numerical method for a six equation two-fluid model based on a linearized Riemann solver. The construction of this approximate Riemann solver uses an extension of Roe's scheme. Extension to second order accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a linearized implicit integrating step is used. In practice this new numerical method has proved to be stable and capable of generating accurate non-oscillating solutions for two-phase flow calculations. The scheme was applied both to shock tube problems and to standard tests for two-fluid codes. (author)
An implicit boundary integral method for computing electric potential of macromolecules in solvent
Zhong, Yimin; Ren, Kui; Tsai, Richard
2018-04-01
A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.
Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's
Pulliam, Thomas H.
2010-01-01
The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.
Implicit Bias and Mental Health Professionals: Priorities and Directions for Research.
Merino, Yesenia; Adams, Leslie; Hall, William J
2018-06-01
This Open Forum explores the role of implicit bias along the mental health care continuum, which may contribute to mental health disparities among vulnerable populations. Emerging research shows that implicit bias is prevalent among service providers. These negative or stigmatizing attitudes toward population groups are held at a subconscious level and are automatically activated during practitioner-client encounters. The authors provide examples of how implicit bias may impede access to care, clinical screening and diagnosis, treatment processes, and crisis response. They also discuss how implicit attitudes may manifest at the intersection between mental health and criminal justice institutions. Finally, they discuss the need for more research on the impact of implicit bias on health practices throughout the mental health system, including the development of interventions to address implicit bias among mental health professionals.
Quasi-Newton methods for implicit black-box FSI coupling
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2014-09-01
Full Text Available In this paper we introduce a new multi-vector update quasi-Newton (MVQN) method for implicit coupling of partitioned, transient FSI solvers. The new quasi-Newton method facilitates the use of 'black-box' field solvers and under certain circumstances...
DEFF Research Database (Denmark)
Marschler, Christian; Sieber, Jan; Berkemer, Rainer
2014-01-01
We introduce a general formulation for an implicit equation-free method in the setting of slow-fast systems. First, we give a rigorous convergence result for equation-free analysis showing that the implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold...... against the direction of traffic. Equation-free analysis enables us to investigate the behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars' headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave solutions correspond...... to equilibria on the macroscopic level in the equation-free setup. The collapse of the traffic jam to the free flow then corresponds to a saddle-node bifurcation of this macroscopic equilibrium. We continue this bifurcation in two parameters using equation-free analysis....
Energy Technology Data Exchange (ETDEWEB)
Verdu, G.; Miro, R. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Vidal, V. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Valencia (Spain)
1999-05-01
To calculate the neutronic steady state of a nuclear power reactor core and its subcritical modes, it is necessary to solve a partial eigenvalue problem. In this paper, an implicit restarted Arnoldi method is presented as an advantageous alternative to classical methods as the Power Iteration method and the Subspace Iteration method. The efficiency of these methods, has been compared calculating the dominant Lambda modes of several configurations of the Three Mile Island reactor core.
Implicit Theories of Ability in Physical Education: Current Issues and Future Directions
Warburton, Victoria Emily; Spray, Christopher Mark
2017-01-01
Purpose: In light of the extensive empirical evidence that implicit theories have important motivational consequences for young people across a range of educational settings we seek to provide a summary of, and personal reflection on, implicit theory research and practice in physical education (PE). Overview: We first provide an introduction to…
Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains
2016-06-01
solve the Helmholtz equation as ∂Ω goes through significant change in its shape and topology — applications for which implicit representation of the...boundary-value problems for the wave equation and maxwell’s equations. Russian Math . Surv., 1965. [16] S. Reutskiy. The method of fundamental
Angelina Tiffany Iskandar; Melinda Haryanto
2015-01-01
The aim of this study was to test whether the implicit tax has an influence ontax explicitly in the context of Foreign Direct Investment for the companies listed onthe Indonesia Stock Exchange 2010-2013. The study sample as many as 34 companies,net of outlier as much as 6 data, the sample to 130 data. This study uses multipleregression. The results showed that the implicit tax that does not have a significantpositive influence on the explicit tax. This is because the role of tax planning andf...
Lee, Eun Seok
2000-10-01
An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with
Jiang, Zhen-Hua; Yan, Chao; Yu, Jian
2013-08-01
Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.
International Nuclear Information System (INIS)
Le Coq, G.; Boudsocq, G.; Raymond, P.
1983-03-01
The Control Variable Method is extended to multidimensional fluid flow transient computations. In this paper basic principles of the method are given. The method uses a fully implicit space discretization and is based on the decomposition of the momentum flux tensor into scalar, vectorial, and tensorial, terms. Finally some computations about viscous-driven flow and buoyancy-driven flow in cavity are presented
Semi-implicit method for three-dimensional compressible MHD simulation
International Nuclear Information System (INIS)
Harned, D.S.; Kerner, W.
1984-03-01
A semi-implicit method for solving the full compressible MHD equations in three dimensions is presented. The method is unconditionally stable with respect to the fast compressional modes. The time step is instead limited by the slower shear Alfven motion. The computing time required for one time step is essentially the same as for explicit methods. Linear stability limits are derived and verified by three-dimensional tests on linear waves in slab geometry. (orig.)
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
Drift-Implicit Multi-Level Monte Carlo Tau-Leap Methods for Stochastic Reaction Networks
Ben Hammouda, Chiheb
2015-05-12
In biochemical systems, stochastic e↵ects can be caused by the presence of small numbers of certain reactant molecules. In this setting, discrete state-space and stochastic simulation approaches were proved to be more relevant than continuous state-space and deterministic ones. These stochastic models constitute the theory of stochastic reaction networks (SRNs). Furthermore, in some cases, the dynamics of fast and slow time scales can be well separated and this is characterized by what is called sti↵ness. For such problems, the existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap method, can be very slow. Therefore, implicit tau-leap approxima- tions were developed to improve the numerical stability and provide more e cient simulation algorithms for these systems. One of the interesting tasks for SRNs is to approximate the expected values of some observables of the process at a certain fixed time T. This is can be achieved using Monte Carlo (MC) techniques. However, in a recent work, Anderson and Higham in 2013, proposed a more computationally e cient method which combines multi-level Monte Carlo (MLMC) technique with explicit tau-leap schemes. In this MSc thesis, we propose new fast stochastic algorithm, particularly designed 5 to address sti↵ systems, for approximating the expected values of some observables of SRNs. In fact, we take advantage of the idea of MLMC techniques and drift-implicit tau-leap approximation to construct a drift-implicit MLMC tau-leap estimator. In addition to accurately estimating the expected values of a given observable of SRNs at a final time T , our proposed estimator ensures the numerical stability with a lower cost than the MLMC explicit tau-leap algorithm, for systems including simultane- ously fast and slow species. The key contribution of our work is the coupling of two drift-implicit tau-leap paths, which is the basic brick for
Fast Implicit Methods For Elliptic Moving Interface Problems
2015-12-11
surfaces [30], and has recently been employed in the geometric nonuniform fast Fourier transform [12] and in the finite element method [31]. We employ...analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms ...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform . Second, bilinear quadratures ---which
An implicit finite element method for discrete dynamic fracture
Energy Technology Data Exchange (ETDEWEB)
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, An; Cao, Yang; Shi, Quan
2018-01-01
In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.
Directory of Open Access Journals (Sweden)
Clarisse Gravina Ricci
2018-02-01
Full Text Available Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes.
Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew
2018-01-01
Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300
International Nuclear Information System (INIS)
Tokiwai, Moriyasu.
1995-01-01
Calcium oxides and magnetic oxides as wastes generated upon direct reduction are subjected to molten salt electrolysis, and reduced metallic calcium and magnesium are separated and recovered. Then calcium and magnesium are used recyclically as the reducing agent upon conducting direct oxide reduction. Even calcium oxides and magnesium oxides, which have high melting points and difficult to be melted usually, can be melted in molten salts of mixed fluorides or chlorides by molten-salt electrolysis. Oxides are decomposed by electrolysis, and oxygen is removed in the form of carbon monoxide, while the reduced metallic calcium and magnesium rise above the molten salts on the side of a cathode, and then separated. Since only carbon monoxide is generated as radioactive wastes upon molten salt electrolysis, the amount of radioactive wastes can be greatly reduced, and the amount of the reducing agent used can also be decreased remarkably. (N.H.)
A Symmetry Particle Method towards Implicit Non‐Newtonian Fluids
Directory of Open Access Journals (Sweden)
Yalan Zhang
2017-02-01
Full Text Available In this paper, a symmetry particle method, the smoothed particle hydrodynamics (SPH method, is extended to deal with non‐Newtonian fluids. First, the viscous liquid is modeled by a non‐Newtonian fluid flow and the variable viscosity under shear stress is determined by the Carreau‐Yasuda model. Then a pressure correction method is proposed, by correcting density error with individual stiffness parameters for each particle, to ensure the incompressibility of fluid. Finally, an implicit method is used to improve efficiency and stability. It is found that the nonNewtonian behavior can be well displayed in all cases, and the proposed SPH algorithm is stable and efficient.
Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems
International Nuclear Information System (INIS)
Hykes, J. M.; Ferrer, R. M.
2013-01-01
The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is 98 Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)
A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method
International Nuclear Information System (INIS)
McPherson, Allen L.; Knoll, Dana A.; Cieren, Emmanuel B.; Feltman, Nicolas; Leibs, Christopher A.; McCarthy, Colleen; Murthy, Karthik S.; Wang, Yijie
2012-01-01
Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.
A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method
Energy Technology Data Exchange (ETDEWEB)
McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory
2012-09-10
Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.
High-order multi-implicit spectral deferred correction methods for problems of reactive flow
International Nuclear Information System (INIS)
Bourlioux, Anne; Layton, Anita T.; Minion, Michael L.
2003-01-01
Models for reacting flow are typically based on advection-diffusion-reaction (A-D-R) partial differential equations. Many practical cases correspond to situations where the relevant time scales associated with each of the three sub-processes can be widely different, leading to disparate time-step requirements for robust and accurate time-integration. In particular, interesting regimes in combustion correspond to systems in which diffusion and reaction are much faster processes than advection. The numerical strategy introduced in this paper is a general procedure to account for this time-scale disparity. The proposed methods are high-order multi-implicit generalizations of spectral deferred correction methods (MISDC methods), constructed for the temporal integration of A-D-R equations. Spectral deferred correction methods compute a high-order approximation to the solution of a differential equation by using a simple, low-order numerical method to solve a series of correction equations, each of which increases the order of accuracy of the approximation. The key feature of MISDC methods is their flexibility in handling several sub-processes implicitly but independently, while avoiding the splitting errors present in traditional operator-splitting methods and also allowing for different time steps for each process. The stability, accuracy, and efficiency of MISDC methods are first analyzed using a linear model problem and the results are compared to semi-implicit spectral deferred correction methods. Furthermore, numerical tests on simplified reacting flows demonstrate the expected convergence rates for MISDC methods of orders three, four, and five. The gain in efficiency by independently controlling the sub-process time steps is illustrated for nonlinear problems, where reaction and diffusion are much stiffer than advection. Although the paper focuses on this specific time-scales ordering, the generalization to any ordering combination is straightforward
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
International Nuclear Information System (INIS)
Mahaffy, J.H.; Liles, D.R.
1977-01-01
A numerical method for treating two-phase flow in pipes is presented which incorporates the use of a partially implicit scheme in regions of relatively low flow velocity and a fully implicit treatment in regions of high velocity. This method takes advantage of the lower cost per iteration of the partially implicit scheme, without being limited by its conditional stability. Applications of this approach to water reactor blowdown calculations produce reductions in computer time by factors of 2 to 4 without a significant loss of accuracy
Klepacz, Naomi A; Nash, Robert A; Egan, M Bernadette; Hodgkins, Charo E; Raats, Monique M
2016-08-01
Images on food and dietary supplement packaging might lead people to infer (appropriately or inappropriately) certain health benefits of those products. Research on this issue largely involves direct questions, which could (a) elicit inferences that would not be made unprompted, and (b) fail to capture inferences made implicitly. Using a novel memory-based method, in the present research, we explored whether packaging imagery elicits health inferences without prompting, and the extent to which these inferences are made implicitly. In 3 experiments, participants saw fictional product packages accompanied by written claims. Some packages contained an image that implied a health-related function (e.g., a brain), and some contained no image. Participants studied these packages and claims, and subsequently their memory for seen and unseen claims were tested. When a health image was featured on a package, participants often subsequently recognized health claims that-despite being implied by the image-were not truly presented. In Experiment 2, these recognition errors persisted despite an explicit warning against treating the images as informative. In Experiment 3, these findings were replicated in a large consumer sample from 5 European countries, and with a cued-recall test. These findings confirm that images can act as health claims, by leading people to infer health benefits without prompting. These inferences appear often to be implicit, and could therefore be highly pervasive. The data underscore the importance of regulating imagery on product packaging; memory-based methods represent innovative ways to measure how leading (or misleading) specific images can be. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo
International Nuclear Information System (INIS)
Evans, T.M.; Densmore, J.D.
2007-01-01
We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third method is shown to be up to ten times greater than the other coupling methods for selected calculations
Liu, Lulu
2013-01-01
The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.
Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement
International Nuclear Information System (INIS)
Layton, A.T.
2004-01-01
In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)
International Nuclear Information System (INIS)
Novitsky, Andrey; Qiu, C-W; Zouhdi, Said
2009-01-01
Based on the concept of the cloak generating function, we propose an implicit transformation-independent method for the required parameters of spherical cloaks without knowing the needed coordinate transformation beforehand. A non-ideal discrete model is used to calculate and optimize the total scattering cross-sections of different profiles of the generating function. A bell-shaped quadratic spherical cloak is found to be the best candidate, which is further optimized by controlling the design parameters involved. Such improved invisibility is steady even when the model is highly discretized.
Reynolds, Daniel R.
2012-01-01
Single-fluid resistive magnetohydrodynamics (MHD) is a fluid description of fusion plasmas which is often used to investigate macroscopic instabilities in tokamaks. In MHD modeling of tokamaks, it is often desirable to compute MHD phenomena to resistive time scales or a combination of resistive-Alfvén time scales, which can render explicit time stepping schemes computationally expensive. We present recent advancements in the development of preconditioners for fully nonlinearly implicit simulations of single-fluid resistive tokamak MHD. Our work focuses on simulations using a structured mesh mapped into a toroidal geometry with a shaped poloidal cross-section, and a finite-volume spatial discretization of the partial differential equation model. We discretize the temporal dimension using a fully implicit or the backwards differentiation formula method, and solve the resulting nonlinear algebraic system using a standard inexact Newton-Krylov approach, provided by the sundials library. The focus of this paper is on the construction and performance of various preconditioning approaches for accelerating the convergence of the iterative solver algorithms. Effective preconditioners require information about the Jacobian entries; however, analytical formulae for these Jacobian entries may be prohibitive to derive/implement without error. We therefore compute these entries using automatic differentiation with OpenAD. We then investigate a variety of preconditioning formulations inspired by standard solution approaches in modern MHD codes, in order to investigate their utility in a preconditioning context. We first describe the code modifications necessary for the use of the OpenAD tool and sundials solver library. We conclude with numerical results for each of our preconditioning approaches in the context of pellet-injection fueling of tokamak plasmas. Of these, our optimal approach results in a speedup of a factor of 3 compared with non-preconditioned implicit tests, with
Computer Simulation of Nonuniform MTLs via Implicit Wendroff and State-Variable Methods
Directory of Open Access Journals (Sweden)
L. Brancik
2011-04-01
Full Text Available The paper deals with techniques for a computer simulation of nonuniform multiconductor transmission lines (MTLs based on the implicit Wendroff and the statevariable methods. The techniques fall into a class of finitedifference time-domain (FDTD methods useful to solve various electromagnetic systems. Their basic variants are extended and modified to enable solving both voltage and current distributions along nonuniform MTL’s wires and their sensitivities with respect to lumped and distributed parameters. An experimental error analysis is performed based on the Thomson cable whose analytical solutions are known, and some examples of simulation of both uniform and nonuniform MTLs are presented. Based on the Matlab language programme, CPU times are analyzed to compare efficiency of the methods. Some results for nonlinear MTLs simulation are presented as well.
Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport
International Nuclear Information System (INIS)
Lynch, J.E.
1985-01-01
Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs
The iterative thermal emission method: A more implicit modification of IMC
Energy Technology Data Exchange (ETDEWEB)
Long, A.R., E-mail: arlong.ne@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843 (United States); Gentile, N.A. [Lawrence Livermore National Laboratory, L-38, P.O. Box 808, Livermore, CA 94550 (United States); Palmer, T.S. [Nuclear Engineering and Radiation Health Physics, Oregon State University, 100 Radiation Center, Corvallis, OR 97333 (United States)
2014-11-15
For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does
The iterative thermal emission method: A more implicit modification of IMC
International Nuclear Information System (INIS)
Long, A.R.; Gentile, N.A.; Palmer, T.S.
2014-01-01
For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does
The iterative thermal emission method: A more implicit modification of IMC
Long, A. R.; Gentile, N. A.; Palmer, T. S.
2014-11-01
For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of ;pseudo-scattering; introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however
MacArt, Jonathan F.; Mueller, Michael E.
2016-12-01
Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.
Numerical analysis of droplet impingement using the moving particle semi-implicit method
International Nuclear Information System (INIS)
Xiong, Jinbiao; Koshizuka, Seiichi; Sakai, Mikio
2010-01-01
Droplet impingement onto a rigid wall is simulated in two and three dimensions using the moving particle semi-implicit method. In two-dimensional calculations, the convergence is achieved and the propagation of a shockwave in a droplet is captured. The average pressure on the contact area decreases gradually after the maximum value. The numerically obtained maximum average impact pressure agrees with the Heymann correlation. A large shear stress appears at the contact edge due to jetting. A parametric study shows that the droplet diameter has only a minor effect on the pressure load due to droplet impingement. When the impingement takes place from an impact angle of π/4 rad, the pressure load and shear stress show a dependence only on the normal velocity to the wall. A comparison between the three-dimensional and two-dimensional results shows that consideration of the three-dimensional effect can decrease the average impact pressure by about 12%. (author)
Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation
Hatten, Noble; Russell, Ryan P.
2017-12-01
A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propagator is applied to coupled orbit/attitude propagation. Concepts previously shown to improve efficiency in 3DOF propagation are modified and extended to the 6DOF problem, including the use of variable-fidelity dynamics models. The impact of computing the stage dynamics of a single step in parallel is examined using up to 23 threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics function evaluation used in the estimation of the local truncation error. Efficiency is found to peak for typical examples when using approximately 8 to 12 stages for both serial and parallel implementations. Accuracy and efficiency compare favorably to explicit Runge-Kutta and linear-multistep solvers for representative scenarios. However, linear-multistep methods are found to be more efficient for some applications, particularly in a serial computing environment, or when parallelism can be applied across multiple trajectories.
Implicit short- and long-term memory direct our gaze in visual search.
Kruijne, Wouter; Meeter, Martijn
2016-04-01
Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that are presented more often than others may facilitate search, even long after it is no longer present (long-term priming). In this study, we investigate whether such short-term priming and long-term priming depend on dissociable mechanisms. By recording eye movements while participants searched for one of two conjunction targets, we explored at what stages of visual search different forms of priming manifest. We found both long- and short- term priming effects. Long-term priming persisted long after the bias was present, and was again found even in participants who were unaware of a color bias. Short- and long-term priming affected the same stage of the task; both biased eye movements towards targets with the primed color, already starting with the first eye movement. Neither form of priming affected the response phase of a trial, but response repetition did. The results strongly suggest that both long- and short-term memory can implicitly modulate feedforward visual processing.
Deng, Nanjie; Zhang, Bin W; Levy, Ronald M
2015-06-09
The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.
Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro
2016-07-01
Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.
Efficient implicit LES method for the simulation of turbulent cavitating flows
International Nuclear Information System (INIS)
Egerer, Christian P.; Schmidt, Steffen J.; Hickel, Stefan; Adams, Nikolaus A.
2016-01-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flow field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.
Numerical simulation on void bubble dynamics using moving particle semi-implicit method
International Nuclear Information System (INIS)
Tian Wenxi; Ishiwatari, Yuki; Ikejiri, Satoshi; Yamakawa, Masanori; Oka, Yoshiaki
2009-01-01
In present study, the collapse of void bubble in liquid has been simulated using moving particle semi-implicit (MPS) code. The liquid is described using moving particles and the bubble-liquid interface was set to be vacuum pressure boundary without interfacial heat mass transfer. The topological shape of bubble can be traced according to the motion and location of interfacial particles. The time dependent bubble diameter, interfacial velocity and bubble collapse time were obtained under wide parametric range. The comparison with Rayleigh and Zababakhin's prediction showed a good agreement which validates the applicability and accuracy on MPS method in solving present momentum problems. The potential void induced water hammer pressure pulse was also evaluated which is instructive for further material erosion study. The bubble collapse with non-condensable gas has been further simulated and the rebound phenomenon was successfully captured which is similar with vapor-filled cavitation phenomenon. The present study exhibits some fundamental characteristics of void bubble hydrodynamics and it is also expected to be instructive for further applications of MPS method to complicated bubble dynamics problems.
Fernandez, P.; Nguyen, N. C.; Peraire, J.
2017-05-01
We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.
Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie
2014-01-01
It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods
Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio
2015-04-01
The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along
Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods
Energy Technology Data Exchange (ETDEWEB)
Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S
2009-06-03
This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.
Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure
Hill, Mary C.
1990-01-01
The performance of the preconditioned conjugate-gradient method with three preconditioners is compared with the strongly implicit procedure (SIP) using a scalar computer. The preconditioners considered are the incomplete Cholesky (ICCG) and the modified incomplete Cholesky (MICCG), which require the same computer storage as SIP as programmed for a problem with a symmetric matrix, and a polynomial preconditioner (POLCG), which requires less computer storage than SIP. Although POLCG is usually used on vector computers, it is included here because of its small storage requirements. In this paper, published comparisons of the solvers are evaluated, all four solvers are compared for the first time, and new test cases are presented to provide a more complete basis by which the solvers can be judged for typical groundwater flow problems. Based on nine test cases, the following conclusions are reached: (1) SIP is actually as efficient as ICCG for some of the published, linear, two-dimensional test cases that were reportedly solved much more efficiently by ICCG; (2) SIP is more efficient than other published comparisons would indicate when common convergence criteria are used; and (3) for problems that are three-dimensional, nonlinear, or both, and for which common convergence criteria are used, SIP is often more efficient than ICCG, and is sometimes more efficient than MICCG.
International Nuclear Information System (INIS)
Langdon, A.B.
1985-01-01
Implicit time integration methods have been used extensively in numerical modelling of slowly varying phenomena in systems that also support rapid variation. Examples include diffusion, hydrodynamics and reaction kinetics. This article discussed implementation of implicit time integration in plasma codes of the ''particle-in-cell'' family, and the benefits to be gained
Direct methods in protein crystallography.
Karle, J
1989-11-01
It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.
Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.
2007-07-01
A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.
Vogel, Alecia C; Petersen, Steven E; Schlaggar, Bradley L
2013-10-01
The neurobiological basis of reading is of considerable interest, yet analyzing data from subjects reading words aloud during functional MRI data collection can be difficult. Therefore, many investigators use surrogate tasks such as visual matching or rhyme matching to eliminate the need for spoken output. Use of these tasks has been justified by the presumption of "automatic activation" of reading-related neural processing when a word is viewed. We have tested the efficacy of using a nonreading task for studying "reading effects" by directly comparing blood oxygen level dependent (BOLD) activity in subjects performing a visual matching task and an item naming task on words, pseudowords (meaningless but legal letter combinations), and nonwords (meaningless and illegal letter combinations). When compared directly, there is significantly more activity during the naming task in "reading-related" regions such as the inferior frontal gyrus (IFG) and supramarginal gyrus. More importantly, there are differing effects of lexicality in the tasks. A whole-brain task (matching vs. naming) by string type (word vs. pseudoword vs. nonword) by BOLD timecourse analysis identifies regions showing this three-way interaction, including the left IFG and left angular gyrus (AG). In the majority of the identified regions (including the left IFG and left AG), there is a string type × timecourse interaction in the naming but not the matching task. These results argue that the processing performed in specific regions is contingent on task, even in reading-related regions and is thus nonautomatic. Such differences should be taken into consideration when designing studies intended to investigate reading. Copyright © 2012 Wiley Periodicals, Inc.
National Research Council Canada - National Science Library
Mitchell, Jason
2002-01-01
A method is presented for the generation of exact numerical coefficients found in two families of implicit Chebyshev methods for the numerical integration of first- and second-order ordinary differential equations...
Implementation of an implicit method into heat conduction calculation of TRAC-PF1/MOD2 code
International Nuclear Information System (INIS)
Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio
1990-08-01
A two-dimensional unsteady heat conduction equation is solved in the TRAC-PF/MOD2 code to calculate temperature transients in fuel rod. A large CPU time is often required to get stable solution of temperature transients in the TRAC calculation with a small axial node size (less than 1.0 mm), because the heat conduction equation is discretized explicitly. To eliminate the restriction of the maximum time step size by the heat conduction calculation, an implicit method for solving the heat condition equation was developed and implemented into the TRAC code. Several assessment calculations were performed with the original and modified TRAC codes. It is confirmed that the implicit method is reliable and is successfully implemented into the TRAC code through comparison with theoretical solutions and assessment calculation results. It is demonstrated that the implicit method makes the heat conduction calculation practical even for the analyses of temperature transients with the axial node size less than 0.1 mm. (author)
AbuAlSaud, Moataz
2012-07-01
The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.
Savic, Branislav; Müri, René; Meier, Beat
Transcranial direct current stimulation (tDCS) is assumed to affect cortical excitability and dependent on the specific stimulation conditions either to increase or decrease learning. The purpose of this study was to modulate implicit task sequence learning with tDCS. As cortico-striatal loops are critically involved in implicit task sequence learning, tDCS was applied above the dorsolateral prefrontal cortex (DLPFC). In Experiment 1, anodal, cathodal, or sham tDCS was applied before the start of the sequence learning task. In Experiment 2, stimulation was applied during the sequence learning task. Consolidation of learning was assessed after 24 h. The results of both experiments showed that implicit task sequence learning occurred consistently but it was not modulated by different tDCS conditions. Similarly, consolidation measured after a 24 h-interval including sleep was also not affected by stimulation. These results indicate that a single session of DLPFC tDCS is not sufficient to modulate implicit task sequence learning. This study adds to the accumulating evidence that tDCS may not be as effective as originally thought. Copyright © 2017 Elsevier Inc. All rights reserved.
Gao, Longfei; Calo, Victor M.
2015-01-01
In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the concept of preconditioning and apply it to linear systems discretized from the 2D steady-state diffusion equations with orthotropic heterogeneous coefficients by the finite element method assuming tensor product basis functions. Specifically, we adopt the compound iteration idea and use ADI iterations as the preconditioner for the outside Krylov subspace method that is used to solve the preconditioned linear system. An efficient algorithm to perform each ADI iteration is crucial to the efficiency of the overall iterative scheme. We exploit the Kronecker product structure in the matrices, inherited from the tensor product basis functions, to achieve high efficiency in each ADI iteration. Meanwhile, in order to reduce the number of Krylov subspace iterations, we incorporate partially the coefficient information into the preconditioner by exploiting the local support property of the finite element basis functions. Numerical results demonstrated the efficiency and quality of the proposed preconditioner. © 2014 Elsevier B.V. All rights reserved.
Awareness of Implicit Attitudes
Hahn, Adam; Judd, Charles M.; Hirsh, Holen K.; Blair, Irene V.
2013-01-01
Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming IAT measures of implicit attitudes toward five different social groups. We found that participants were surprisingly accurate in their predictions. Across four studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2–4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants’ predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. All together, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes. PMID:24294868
Implicit particle simulation of electromagnetic plasma phenomena
International Nuclear Information System (INIS)
Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.
1986-11-01
A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)
A model to Estimate the Implicit Values of Housing Attributes by Applying the Hedonic Pricing Method
Directory of Open Access Journals (Sweden)
TD Randeniya
2017-05-01
Full Text Available Many scholars focused on the location based attributes rather than the non-location factors in decision making on land prices. Further, new research studies have identified the importance of the non-location attributes with the location factors. Many studies suggest that, many attributes exist which affects the housing price. Since the attributes involved and dominant for a particular case differs from one situation to the other, there cannot be an exact list of attributes. Yet, identification of factors that determine housing price and their relationships and the level of influence have poorly understood in planning and property development in the context of Sri Lanka. This study attempts to address what make householders to decide on housing price and application of hedonic pricing approach to estimate the implicit price of housing attributes in context of Sri Lanka. A sample study of selected fifty (50 single house transactions in Maharagama urban neighborhood area has been utilized to illustrate the applicability of the hedonic pricing model. As a methodology, correlation analysis has been carried out to study the degree of relationship between the housing price and the independent variables. The attributes which correlate with housing prices, the study identified the most significant attributes. A model was developed to estimate the future house price by applying the pricing model which is incorporated with these attributes. A hedonic house price model derived from multiple liner regression analysis was developed for the purpose. The findings reveal that six attributes as design type of the house, distance to the local road, quality of Infrastructure, garden size, number of the bed rooms and property age are contributed to estimate the implicit value of Housing property. The model developed would be used to identify implicit values of houses located in urban neighborhood area of Sri Lanka.
ITrace: An implicit trust inference method for trust-aware collaborative filtering
He, Xu; Liu, Bin; Chen, Kejia
2018-04-01
The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A CF algorithm recommends items of interest to the target user by leveraging the votes given by other similar users. In a standard CF framework, it is assumed that the credibility of every voting user is exactly the same with respect to the target user. This assumption is not satisfied and thus may lead to misleading recommendations in many practical applications. A natural countermeasure is to design a trust-aware CF (TaCF) algorithm, which can take account of the difference in the credibilities of the voting users when performing CF. To this end, this paper presents a trust inference approach, which can predict the implicit trust of the target user on every voting user from a sparse explicit trust matrix. Then an improved CF algorithm termed iTrace is proposed, which takes advantage of both the explicit and the predicted implicit trust to provide recommendations with the CF framework. An empirical evaluation on a public dataset demonstrates that the proposed algorithm provides a significant improvement in recommendation quality in terms of mean absolute error.
Sato, Hirotsune; Yoshida, Fujio
2009-06-01
Images of "seion" (unvoiced sound), "dakuon" (voiced sound), and "handakuon" (semi-voiced sound) in Japanese onomatopoeia were investigated by using two methods: the Implicit Association Test (IAT) and the semantic differential (SD). Undergraduate students (n=25) completed the six kinds of IATs and SD questionnaires related to the images. The results indicated that "dakuon" was evaluated as being more dynamic and heavier, and "seion" and "handakuon" were evaluated as being more static and lighter by both the IAT and SD methods. However, "seion" was evaluated as being more static and lighter than "handakuon" by the IAT, whereas "handakuon" was evaluated as being more static and lighter than "seion" by the SD method. The differences in evaluation by the two methods are discussed.
Directory of Open Access Journals (Sweden)
Sufia Zulfa Ahmad
2016-01-01
Full Text Available We derived a two-step, four-stage, and fifth-order semi-implicit hybrid method which can be used for solving special second-order ordinary differential equations. The method is then trigonometrically fitted so that it is suitable for solving problems which are oscillatory in nature. The methods are then used for solving oscillatory delay differential equations. Numerical results clearly show the efficiency of the new method when compared to the existing explicit and implicit methods in the scientific literature.
Directory of Open Access Journals (Sweden)
Lin Hu
2011-01-01
Full Text Available A class of drift-implicit one-step schemes are proposed for the neutral stochastic delay differential equations (NSDDEs driven by Poisson processes. A general framework for mean-square convergence of the methods is provided. It is shown that under certain conditions global error estimates for a method can be inferred from estimates on its local error. The applicability of the mean-square convergence theory is illustrated by the stochastic θ-methods and the balanced implicit methods. It is derived from Theorem 3.1 that the order of the mean-square convergence of both of them for NSDDEs with jumps is 1/2. Numerical experiments illustrate the theoretical results. It is worth noting that the results of mean-square convergence of the stochastic θ-methods and the balanced implicit methods are also new.
Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro
2015-07-01
Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.
International Nuclear Information System (INIS)
Zuo Juanli; Tian Wenxi; Qiu Suizheng; Chen Ronghua; Su Guanghui
2011-01-01
The gas-lift pump in liquid metal cooling fast reactor (LMFR) is an innovational conceptual design to enhance the natural circulation ability of reactor core. The two-phase flow character of gas-liquid metal makes significant improvement of the natural circulation capacity and reactor safety. In present basic study, the rising behavior of a single nitrogen bubble in five kinds of liquid metals (lead bismuth alloy, liquid kalium, sodium, potassium sodium alloy and lithium lead alloy) was numerically simulated using moving particle semi-implicit (MPS) method. The whole growing process of single nitrogen bubble in liquid metal was captured. The bubble shape and rising speed of single nitrogen bubble in each liquid metal were compared. The comparison between simulation results using MPS method and Grace graphical correlation shows a good agreement. (authors)
Novel Random Mutagenesis Method for Directed Evolution.
Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan
2017-01-01
Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.
Energy Technology Data Exchange (ETDEWEB)
Chai, Penghui, E-mail: phchai@vis.t.u-tokyo.ac.jp; Kondo, Masahiro; Erkan, Nejdet; Okamoto, Koji
2016-05-15
Highlights: • Multiphysics models were developed based on Moving Particle Semi-implicit method. • Mixing process, chemical reaction can be simulated in MCCI calculation. • CCI-2 experiment was simulated to validate the models. • Simulation and experimental results for sidewall ablation agree well. • Simulation results confirm the rapid erosion phenomenon observed in the experiment. - Abstract: Numerous experiments have been performed to explore the mechanisms of molten core-concrete interaction (MCCI) phenomena since the 1980s. However, previous experimental results show that uncertainties pertaining to several aspects such as the mixing process and crust behavior remain. To explore the mechanism governing such aspects, as well as to predict MCCI behavior in real severe accident events, a number of simulation codes have been developed for process calculations. However, uncertainties exist among the codes because of the use of different empirical models. In this study, a new computational code is developed using multiphysics models to simulate MCCI phenomena based on the moving particle semi-implicit (MPS) method. Momentum and energy equations are used to solve the velocity and temperature fields, and multiphysics models are developed on the basis of the basic MPS method. The CCI-2 experiment is simulated by applying the developed code. With respect to sidewall ablation, good agreement is observed between the simulation and experimental results. However, axial ablation is slower in the simulation, which is probably due to the underestimation of the enhancement effect of heat transfer provided by the moving bubbles at the bottom. In addition, the simulation results confirm the rapid erosion phenomenon observed in the experiment, which in the numerical simulation is explained by solutal convection provided by the liquid concrete at the corium/concrete interface. The results of the comparison of different model combinations show the effect of each
Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel
International Nuclear Information System (INIS)
Xiang, Hao; Chen, Bin
2015-01-01
The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We 0.28 Fr 0.78 (We is the Weber number, Fr is the Froude number). (paper)
De Raedt, Rudi; Remue, Jonathan; Loeys, Tom; Hooley, Jill M; Baeken, Chris
2017-12-01
It has been proposed that a crucial link between cognitive (i.e., self-schemas) and biological vulnerability is prefrontal control. This is because decreased control leads to impaired ability to inhibit ruminative thinking after the activation of negative self-schemas. However, current evidence is mainly correlational. In the current experimental study we tested whether the effect of neurostimulation of the dorsolateral prefrontal cortex (DLPFC) on self-esteem is mediated by momentary ruminative self-referential thinking (MRST) after the induction of negative self-schemas by criticism. We used a single, sham-controlled crossover session of anodal transcranial Direct Current Stimulation (tDCS) applied to the left DLPFC (cathode over the right supraorbital region) in healthy female individuals. After receiving tDCS/sham stimulation, we measured MRST and exposed the participants to critical audio scripts, followed by another MRST measurement. Subsequently, all participants completed two Implicit Relational Assessment Procedures to implicitly measure actual and ideal self-esteem. Our behavioral data indicated a significant decrease in MRST after real but not sham tDCS. Moreover, although there was no immediate effect of tDCS on implicit self-esteem, an indirect effect was found through double mediation, with the difference in MRST from baseline to after stimulation and from baseline to after criticism as our two mediators. The larger the decrease of criticism induced MRST after real tDCS, the higher the level of actual self-esteem. Our results show that tDCS can influence cognitive processes such as rumination, and subsequently self-esteem, but only after the activation of negative self-schemas. Rumination and negative self-esteem characterize different forms of psychopathology, and these data expand our knowledge of the role of the prefrontal cortex in controlling these self-referential processes, and the mechanisms of action of tDCS. Copyright © 2017 Elsevier Ltd
Enhancing Scalability of Sparse Direct Methods
International Nuclear Information System (INIS)
Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan
2007-01-01
TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers
Semi-implicit magnetohydrodynamic calculations
International Nuclear Information System (INIS)
Schnack, D.D.; Barnes, D.C.; Mikic, Z.; Harned, D.S.; Caramana, E.J.
1987-01-01
A semi-implicit algorithm for the solution of the nonlinear, three-dimensional, resistive MHD equations in cylindrical geometry is presented. The specific model assumes uniform density and pressure, although this is not a restriction of the method. The spatial approximation employs finite differences in the radial coordinate, and the pseudo-spectral algorithm in the periodic poloidal and axial coordinates. A leapfrog algorithm is used to advance wave-like terms; advective terms are treated with a simple predictor--corrector method. The semi-implicit term is introduced as a simple modification to the momentum equation. Dissipation is treated implicitly. The resulting algorithm is unconditionally stable with respect to normal modes. A general discussion of the semi-implicit method is given, and specific forms of the semi-implicit operator are compared in physically relevant test cases. Long-time simulations are presented. copyright 1987 Academic Press, Inc
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
Directory of Open Access Journals (Sweden)
Qinghui Du
2014-01-01
Full Text Available We consider semi-implicit Euler methods for stochastic age-dependent capital system with variable delays and random jump magnitudes, and investigate the convergence of the numerical approximation. It is proved that the numerical approximate solutions converge to the analytical solutions in the mean-square sense under given conditions.
E. Camporeale (Enrico); G.L. Delzanno; B.K. Bergen; J.D. Moulton
2016-01-01
htmlabstractWe describe a spectral method for the numerical solution of the Vlasov–Poisson system where the velocity space is decomposed by means of an Hermite basis, and the configuration space is discretized via a Fourier decomposition. The novelty of our approach is an implicit time
Jiang, Jiamin; Younis, Rami M.
2017-06-01
The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.
Directory of Open Access Journals (Sweden)
Taís Pasquotto Andreoli
2016-07-01
Full Text Available The most of exposure of individuals to brand ads happens on mere exposure condition, when the stimuli are available in the context, but aren´t necessarily actively processed, but yet unconsiously, at the preattentive level. Despite the lack of individual intention and conscious, it emphasizes the ability of preattentive processing on influencing memory and judgement on stimuli receiving. In the light of the above, the study has with aim to analize the influency diferences in the individual receiver according with the level of attention used on the brand ad processing. To that, the study adopted a concepctual base with the attention process under a complex perspective, subdivided into preattention and attention, and the influency of attention in the memory of individual receiver. Using a hipothteical-dedutivo method, the explicit and implicit memory and the brand valuation were analysed and compared between three different attention levels (preattention, divided attention and drived attention. As contribution, the study support three of the four traced hypotheses: implicit memory independent of the level of attention; explicit memory in larger levels of attention; brand valuation on preattetinve processing higher than those expected by chance, but without diferences between the three attention levels.
Direct Discrete Method for Neutronic Calculations
International Nuclear Information System (INIS)
Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid
2002-01-01
The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)
Thick restarting of the Davidson method: An extension to implicit restarting
Energy Technology Data Exchange (ETDEWEB)
Stathopoulos, A.; Yousef Saad; Wu, Kesheng [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
The solution of the large, sparse, eigenvalue problem Ax = {lambda}x, for a few eigenpairs is central to many scientific applications. The Arnoldi method, and its equivalent in the symmetric case the Lanczos method, have been the traditional approach to solving these problems. Preconditioning, through some shift-and-invert technique, is frequently employed, because of the difficulty of these problems. A different approach is followed by the Generalized Davidson (GD) method which is a popular preconditioned variant of the Lanczos iteration. Instead of using a three-term recurrence to build an orthonormal basis for the Krylov subspace, the GD algorithm obtains the next basis vector by explicitly orthogonalizing the preconditioned residual (M - {lambda}I){sup -1} (A - {lambda}I)x against the existing basis. A straightforward extension to the non-symmetric case has also been studied in. The GD method can be regarded as a way of improving convergence and robustness at the expense of a more complicated step.
Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo
2014-11-01
Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.
A Direct Method of Hamiltonian Structure
International Nuclear Information System (INIS)
Li Qi; Chen Dengyuan; Su Shuhua
2011-01-01
A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functional is related with the conservation densities of the corresponding hierarchy. Three examples and their two reductions are given. (general)
Direct methods for determining internal contamination
International Nuclear Information System (INIS)
Melandri, C.
1985-01-01
The direct methods of investigation on body content of radionuclides emitting gamma rays with energies higher than 100 KeV are described. After a short review of the earlier methods, the main technical charateristics of the present used whole body counters and counting geometries are described together with the calibration methods. Qualitative and quantitative data interpretation are also briefly discussed. The minimum detectable activity and the Derived Investigation Levels at different times from the intake both by ingestion or by inhalation as aerosol are finally compared for some radionuclides of great importance in the health physic survey
Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method
Lawton, Stephen; Crawford, Curran
2014-06-01
Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.
Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method
International Nuclear Information System (INIS)
Lawton, Stephen; Crawford, Curran
2014-01-01
Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade
Implicit moral evaluations: A multinomial modeling approach.
Cameron, C Daryl; Payne, B Keith; Sinnott-Armstrong, Walter; Scheffer, Julian A; Inzlicht, Michael
2017-01-01
Implicit moral evaluations-i.e., immediate, unintentional assessments of the wrongness of actions or persons-play a central role in supporting moral behavior in everyday life. Yet little research has employed methods that rigorously measure individual differences in implicit moral evaluations. In five experiments, we develop a new sequential priming measure-the Moral Categorization Task-and a multinomial model that decomposes judgment on this task into multiple component processes. These include implicit moral evaluations of moral transgression primes (Unintentional Judgment), accurate moral judgments about target actions (Intentional Judgment), and a directional tendency to judge actions as morally wrong (Response Bias). Speeded response deadlines reduced Intentional Judgment but not Unintentional Judgment (Experiment 1). Unintentional Judgment was stronger toward moral transgression primes than non-moral negative primes (Experiments 2-4). Intentional Judgment was associated with increased error-related negativity, a neurophysiological indicator of behavioral control (Experiment 4). Finally, people who voted for an anti-gay marriage amendment had stronger Unintentional Judgment toward gay marriage primes (Experiment 5). Across Experiments 1-4, implicit moral evaluations converged with moral personality: Unintentional Judgment about wrong primes, but not negative primes, was negatively associated with psychopathic tendencies and positively associated with moral identity and guilt proneness. Theoretical and practical applications of formal modeling for moral psychology are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-04-01
The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integration methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.
Guthrey, Pierson Tyler
) argument requires. The maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work, we overcome this difficulty by introducing a novel time-stepping strategy: the regionally-implicit discontinuous Galerkin (RIDG) method. The RIDG is method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent (for linear constant coefficient problems) to a predictor-corrector approach, where the prediction is computed by a space-time DG method (STDG). The corrector is an explicit method that uses the space-time reconstructed solution from the predictor step. In this work, we modify the predictor to include not just local information, but also neighboring information. With this modification, we show that the stability is greatly enhanced; we show that we can remove the polynomial degree dependence of the maximum time-step and show vastly improved time-steps in multiple spatial dimensions. Upon the development of the general RIDG method, we apply it to the non-relativistic 1D1V Vlasov-Poisson equations and the relativistic 1D2V Vlasov-Maxwell equations. For each we validate the high-order method on several test cases. In the final test case, we demonstrate the ability of the method to simulate the acceleration of electrons to relativistic speeds in a simplified test case.
Multithreaded implicitly dealiased convolutions
Roberts, Malcolm; Bowman, John C.
2018-03-01
Implicit dealiasing is a method for computing in-place linear convolutions via fast Fourier transforms that decouples work memory from input data. It offers easier memory management and, for long one-dimensional input sequences, greater efficiency than conventional zero-padding. Furthermore, for convolutions of multidimensional data, the segregation of data and work buffers can be exploited to reduce memory usage and execution time significantly. This is accomplished by processing and discarding data as it is generated, allowing work memory to be reused, for greater data locality and performance. A multithreaded implementation of implicit dealiasing that accepts an arbitrary number of input and output vectors and a general multiplication operator is presented, along with an improved one-dimensional Hermitian convolution that avoids the loop dependency inherent in previous work. An alternate data format that can accommodate a Nyquist mode and enhance cache efficiency is also proposed.
Lai, Calvin; Nosek, Brian; Hoffman, Kelly
2017-01-01
Implicit prejudice are social preferences that exist outside of conscious awareness or conscious control. We summarize evidence for three mechanisms that influence the expression of implicit prejudice: associative change, contextual change, and change in control over implicit prejudice. We then review the evidence (or lack thereof) for five open issues in implicit prejudice reduction research: 1) what shows effectiveness in real-world application; 2) what doesn’t work for implicit prejudice r...
EDM 1.0: electron direct methods.
Kilaas, R; Marks, L D; Own, C S
2005-02-01
A computer program designed to provide a number of quantitative analysis tools for high-resolution imaging and electron diffraction data is described. The program includes basic image manipulation, both real space and reciprocal space image processing, Wiener-filtering, symmetry averaging, methods for quantification of electron diffraction patterns and two-dimensional direct methods. The program consists of a number of sub-programs written in a combination of C++, C and Fortran. It can be downloaded either as GNU source code or as binaries and has been compiled and verified on a wide range of platforms, both Unix based and PC's. Elements of the design philosophy as well as future possible extensions are described.
Asgharzadeh, Hafez; Borazjani, Iman
2014-11-01
Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro
2017-07-01
Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.
On implicit racial prejudice against infants
Wolf, L.J.; Maio, G.R.; Karremans, J.C.T.M.; Leygue, C.
2017-01-01
Because of the innocence and dependence of children, it would be reassuring to believe that implicit racial prejudice against out-group children is lower than implicit prejudice against out-group adults. Yet, prior research has not directly tested whether or not adults exhibit less spontaneous
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.
2017-04-01
We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.
Sensitivity study with respect to direction of ADI method during re-flooding in AHWR
Energy Technology Data Exchange (ETDEWEB)
Kumar, M.; Mukhopadhyay, D. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Safety Div.; Ghosh, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Raja Ramanna Fellow; Kumar, R. [Indian Institute of Technology, Roorkee (India)
2015-05-15
The Advanced Heavy water Reactor (AHWR) is a natural circulation vertical pressure tube type boiling light water cooled and heavy water moderated reactor. As the AHWR fuel bundle quenching under accident condition is designed primarily with radial jets at several axial locations, bottom re-flooding still remain open as another option. Radial direction injection of emergency core cooling leads to rewetting of AHWR fuel cluster in circumferential direction. A 3D fuel pin model has been developed by using Finite Difference Method (FDM) of transient heat conduction equation. Alternating Direction Implicit technique of Finite Difference Method (FDM) has been used for discretisation of numerical equation in different time step at different direction. Sensitivity numerical study with respect to direction of ADI method has been carried out to optimize the time step during the transient as well as steady state and is found that it is insensitivity with direction of solution. Further, to assess influence of circumferential rewetting vis-a-vis axial rewetting. Both the analyses are carried out with same fluid temperature and heat transfer coefficients as boundary conditions. It has been found from the analyses that for radial jet, the circumferential conduction is significant and overall the fuel temperature falls in the quench plane with the initiation of quenching event. The paper discusses the sensitivity study with respect to direction of ADI solution and comparison of numerical results for circumferential and axial rewetting for single pin.
direct method of analysis of an isotropic rectangular plate direct
African Journals Online (AJOL)
eobe
This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.
Parallel Implicit Algorithms for CFD
Keyes, David E.
1998-01-01
The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.
International Nuclear Information System (INIS)
Wei Yuanyuan; Lu Daogang
2009-01-01
There is the free surface in the main vessel of fast reactor, when long period earthquakes happen, the fluid will impact the coping of vessel and make the reactor dangerous. The flow of the fluid was simulated by moving particle semi-implicit method. The phenomenon on sloshing response of the free surface in the main vessel of fast reactor excited by 3 sine waves was simulated. The impact pressure from the research can provide important loadings for the integrality analysis of the main vessel. (authors)
Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation
International Nuclear Information System (INIS)
Costa, Carlos A N; Campos, Itamara S; Costa, Jessé C; Neto, Francisco A; Schleicher, Jörg; Novais, Amélia
2013-01-01
Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality. (paper)
NUEN-618 Class Project: Actually Implicit Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Vega, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-12-14
This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.
An implicit Smooth Particle Hydrodynamic code
Energy Technology Data Exchange (ETDEWEB)
Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)
2000-05-01
An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.
Direct measurement of tritium in urine by liquid scintillation method
International Nuclear Information System (INIS)
Zhang Caihong; Wen Qinghua; Chen Kefei; Li Huaixin
1999-01-01
The author introduces the method for direct measurement of tritium concentration in urine using liquid scintillation. Effects of sampling containers, store patterns and storage time are studied. Meanwhile, results of two methods are compared with direct measurement method and oxidation distillation method. The results shows that direct measurement method is a economic and simple method, which can meet the need of determination of urine tritium for NPP workers. There is no significant difference compared with the data obtained by oxidation distillation method
Stability by Liapunov's direct methods with applications
Salle, Joseph La
1961-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Implicit computational complexity and compilers
DEFF Research Database (Denmark)
Rubiano, Thomas
Complexity theory helps us predict and control resources, usually time and space, consumed by programs. Static analysis on specific syntactic criterion allows us to categorize some programs. A common approach is to observe the program’s data’s behavior. For instance, the detection of non...... evolution and a lot of research came from this theory. Until now, these implicit complexity theories were essentially applied on more or less toy languages. This thesis applies implicit computational complexity methods into “real life” programs by manipulating intermediate representation languages...
International Nuclear Information System (INIS)
Javaux, Denis
2002-01-01
This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced
Zheng, Xiang
2015-03-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors. © 2015 Elsevier Inc.
International Nuclear Information System (INIS)
Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David
2015-01-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors
Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David
2015-03-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.
2018-05-01
The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».
Future directions in shielding methods and analysis
International Nuclear Information System (INIS)
Goldstein, H.
1987-01-01
Over the nearly half century history of shielding against reactor radiation, there has been a see-saw battle between theory and measurement. During that period the capability and accuracy of calculational methods have been enormously improved. The microscopic cross sections needed as input to the theoretical computations are now also known to adequate accuracy (with certain exceptions). Nonetheless, there remain substantial classes of shielding problems not yet accessible to satisfactory computational methods, particularly where three-dimensional geometries are involved. This paper discusses promising avenues to approach such problems, especially in the light of recent and expected advances in supercomputers. In particular, it seems that Monte Carlo methods should be much more advantageous in the new computer environment than they have been in the past
Direct methods for seismic profiling. Final report
Energy Technology Data Exchange (ETDEWEB)
Bleistein, N.; Cohen, J.K.; Hagin, F.G.
1979-12-12
A coordinated research program in inverse problems was concluded. The program evolved from formulation to analytical solution to implemented computer algorithms. There were two main lines of research in this program: a velocity inversion method, with application to seismic exploration, and a physical optics inverse scattering method for reflector mapping, with application to nondestructive evaluation. In each case, computer algorithms based on the theoretical results were tested on real or testbed data from the area of the cited application. Research goals of both a theoretical and practical nature were achieved. 34 figures.
Implicit User Interest Profile
Chan, K
2002-01-01
User interest profile presents items that the users are interested in. Typically those items can be listed or grouped. Listing is good but it does not possess interests at different abstraction levels - the higher-level interests are more general, while the lower-level ones are more specific. Furthermore, more general interests, in some sense, correspond to longer-term interests, while more specific interests correspond to shorter-term interests. This hierarchical user interest profile has obvious advantages: specifying user's specific interests and general interests and representing their relationships. Current user interest profile structures mostly do not use implicit method, nor use an appropriate clustering algorithm especially for conceptually hierarchical structures. This research studies building a hierarchical user interest profile (HUIP) and the hierarchical divisive algorithm (HDC). Several users visit hundreds of web pages and each page is recorded in each users profile. These web pages are used t...
Leow, Li-Ann; Gunn, Reece; Marinovic, Welber; Carroll, Timothy J
2017-08-01
When sensory feedback is perturbed, accurate movement is restored by a combination of implicit processes and deliberate reaiming to strategically compensate for errors. Here, we directly compare two methods used previously to dissociate implicit from explicit learning on a trial-by-trial basis: 1 ) asking participants to report the direction that they aim their movements, and contrasting this with the directions of the target and the movement that they actually produce, and 2 ) manipulating movement preparation time. By instructing participants to reaim without a sensory perturbation, we show that reaiming is possible even with the shortest possible preparation times, particularly when targets are narrowly distributed. Nonetheless, reaiming is effortful and comes at the cost of increased variability, so we tested whether constraining preparation time is sufficient to suppress strategic reaiming during adaptation to visuomotor rotation with a broad target distribution. The rate and extent of error reduction under preparation time constraints were similar to estimates of implicit learning obtained from self-report without time pressure, suggesting that participants chose not to apply a reaiming strategy to correct visual errors under time pressure. Surprisingly, participants who reported aiming directions showed less implicit learning according to an alternative measure, obtained during trials performed without visual feedback. This suggests that the process of reporting can affect the extent or persistence of implicit learning. The data extend existing evidence that restricting preparation time can suppress explicit reaiming and provide an estimate of implicit visuomotor rotation learning that does not require participants to report their aiming directions. NEW & NOTEWORTHY During sensorimotor adaptation, implicit error-driven learning can be isolated from explicit strategy-driven reaiming by subtracting self-reported aiming directions from movement directions, or
Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries
2017-08-01
This work focuses on efficient full-wave solutions of multiscale electromagnetic problems in the time domain. Three local implicitization techniques are proposed and carefully analyzed in order to relax the traditional time step limit of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, staggered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-Direction-Implicit (ADI) implicitization. All of them are applied in preferable directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of the sparse linear systems. Both exponential and linear stability are rigorously investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm the conservation of energy inside a cavity for a million iterations if the time step is chosen below the proposed, relaxed limit. Apart from the theoretical contributions, new accomplishments such as the development of the leapfrog Alternating-Direction-Hybrid-Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time step limit for the conventional, fully explicit FDTD method on a nonuniform grid, have immediate practical applications.
Implicit Theories of Persuasion.
Roskos-Ewoldsen, David R.
1997-01-01
Explores whether individuals have implicit theories of persuasion. Examines how persuasive strategies are cognitively represented--identifies types of tactics in attitude change and social acceptability of persuasive strategies. Finds implicit theories of persuasion reflect the audience's familiarity with the topic. Finds also that implicit…
Asgharzadeh, Hafez; Borazjani, Iman
2017-02-15
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
Asgharzadeh, Hafez; Borazjani, Iman
2016-01-01
The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the
DEFF Research Database (Denmark)
Anderson, Joel; Antalikova, Radka
2014-01-01
Denmark is currently experiencing the highest immigration rate in its modern history. Population surveys indicate that negative public attitudes toward immigrants actually stem from attitudes toward their (perceived) Islamic affiliation. We used a framing paradigm to investigate the explicit...... and implicit attitudes of Christian and Atheist Danes toward targets framed as Muslims or as immigrants. The results showed that explicit and implicit attitudes were more negative when the target was framed as a Muslim, rather than as an immigrant. Interestingly, implicit attitudes were qualified...... by the participants’ religion. Specifically, analyses revealed that Christians demonstrated more negative implicit attitudes toward immigrants than Muslims. Conversely, Atheists demonstrated more negative implicit attitudes toward Muslims than Atheists. These results suggest a complex relationship between religion...
Ego depletion impairs implicit learning.
Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J
2014-01-01
Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
Angular biasing in implicit Monte-Carlo
International Nuclear Information System (INIS)
Zimmerman, G.B.
1994-01-01
Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise
How explicit and implicit test instructions in an implicit learning task affect performance.
Directory of Open Access Journals (Sweden)
Arnaud Witt
Full Text Available Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised.
Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2016-06-01
This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.
Directory of Open Access Journals (Sweden)
Ana Carolina Peuker
2013-03-01
Full Text Available Pesquisas recentes têm investigado mecanismos cognitivos implícitos que influenciam a decisão e o comportamento de uso da droga, como viés atencional e reatividade a pistas. Tais respostas são eliciadas automaticamente, potencializando a vulnerabilidade à dependência e recaída ao uso da droga. Este estudo teve como objetivo apresentar a perspectiva teórica dos modelos de duplo-processamento dos comportamentos aditivos assim como discutir a influência dos processos automáticos no uso de drogas, suas formas de avaliação e técnicas que objetivam modificar diretamente tais processos. Os resultados sugerem que medidas implícitas possam avaliar os mecanismos automáticos mais acuradamente do que medidas explícitas. Diante disso, sugere-se que intervenções voltadas para a transformação das cognições implícitas sejam alternativas eficazes para o tratamento da dependência química.Recent studies have investigated the implicit cognitive mechanisms that influence the decision to use drugs and drug use behavior, such as attentional bias and reactivity to cues. Those responses are automatically elicited and can increase vulnerability to addiction and relapse. This review aimed to present theoretical perspective of dual-process models of addictive behaviors and to discuss the influence of automatic processes in drug intake, how they can be assessed, and techniques to directly modify them. The results suggest that implicit measures can assess the automatic mechanisms more accurately than explicit measures. Therefore, it is suggested that interventions aimed at the transformation of implicit cognitions can be effective alternatives for the treatment of addictive behaviors.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Yong; Kim, Song Hyun; Shin, Chang Ho; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)
2014-05-15
In this study, as a preliminary study to develop an implicit method having high accuracy, the distribution characteristics of spherical particles were evaluated by using explicit modeling techniques in various volume packing fractions. This study was performed to evaluate implicitly simulated distribution of randomly packed spheres in a medium. At first, an explicit modeling method to simulate random packed spheres in a hexahedron medium was proposed. The distributed characteristics of l{sub p} and r{sub p}, which are used in the particle position sampling, was estimated. It is analyzed that the use of the direct exponential distribution, which is generally used in the implicit modeling, can cause the distribution bias of the spheres. It is expected that the findings in this study can be utilized for improving the accuracy in using the implicit method. Spherical particles, which are randomly distributed in medium, are utilized for the radiation shields, fusion reactor blanket, fuels of VHTR reactors. Due to the difficulty on the simulation of the stochastic distribution, Monte Carlo (MC) method has been mainly considered as the tool for the analysis of the particle transport. For the MC modeling of the spherical particles, three methods are known; repeated structure, explicit modeling, and implicit modeling. Implicit method (called as the track length sampling method) is a modeling method that is the sampling based modeling technique of each spherical geometry (or track length of the sphere) during the MC simulation. Implicit modeling method has advantages in high computational efficiency and user convenience. However, it is noted that the implicit method has lower modeling accuracy in various finite mediums.
Direct methods for radionuclides measurement in water environment
International Nuclear Information System (INIS)
Chernyaev, A.; Gaponov, I.; Kazennov, A.
2004-01-01
The paper is devoted to the direct method of anthropogenic radionuclide measurement in the water environment. Opportunities of application of submersible gamma-spectrometers for in situ underwater measurements of gamma-radiating nuclides and also the direct method for 90 Sr detection are considered
Delzanno, G. L.
2015-11-01
A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.
Measuring Implicit Rental Rates for Farm Capital
Hrubovcak, James
1986-01-01
Developing implicit rental rates for capital inputs is an Important step in understanding the Impact of tax law changes on agricultural investments This article develops a methodology for estimating implicit rental rates and presents annual estimates of rental rates for seven categories of farm equipment and structures from 1955 to 1979 This article also compares these rental rates With those estimated under a no-tax alternative The author developed a method for estimating marginal Federal In...
An efficient direct method for image registration of flat objects
Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei
2017-09-01
Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.
Multi-frequency direct sampling method in inverse scattering problem
Kang, Sangwoo; Lambert, Marc; Park, Won-Kwang
2017-10-01
We consider the direct sampling method (DSM) for the two-dimensional inverse scattering problem. Although DSM is fast, stable, and effective, some phenomena remain unexplained by the existing results. We show that the imaging function of the direct sampling method can be expressed by a Bessel function of order zero. We also clarify the previously unexplained imaging phenomena and suggest multi-frequency DSM to overcome traditional DSM. Our method is evaluated in simulation studies using both single and multiple frequencies.
International Nuclear Information System (INIS)
Szoke, A; Brooks, E D; McKinley, M; Daffin, F
2005-01-01
The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media
Substructuring in the implicit simulation of single point incremental sheet forming
Hadoush, A.; van den Boogaard, Antonius H.
2009-01-01
This paper presents a direct substructuring method to reduce the computing time of implicit simulations of single point incremental forming (SPIF). Substructuring is used to divide the finite element (FE) mesh into several non-overlapping parts. Based on the hypothesis that plastic deformation is
A Modified Alternating Direction Method for Variational Inequality Problems
International Nuclear Information System (INIS)
Han, D.
2002-01-01
The alternating direction method is an attractive method for solving large-scale variational inequality problems whenever the subproblems can be solved efficiently. However, the subproblems are still variational inequality problems, which are as structurally difficult to solve as the original one. To overcome this disadvantage, in this paper we propose a new alternating direction method for solving a class of nonlinear monotone variational inequality problems. In each iteration the method just makes an orthogonal projection to a simple set and some function evaluations. We report some preliminary computational results to illustrate the efficiency of the method
Processing implicit control: evidence from reading times
Directory of Open Access Journals (Sweden)
Michael eMcCourt
2015-10-01
Full Text Available Sentences such as The ship was sunk to collect the insurance exhibit an unusual form of anaphora, implicit control, where neither anaphor nor antecedent is audible. The nonfinite reason clause has an understood subject, PRO, that is anaphoric; here it may be understood as naming the agent of the event of the host clause. Yet since the host is a short passive, this agent is realized by no audible dependent. The putative antecedent to PRO is therefore implicit, which it normally cannot be. What sorts of representations subserve the comprehension of this dependency? Here we present four self-paced reading time studies directed at this question. Previous work showed no processing cost for implicit versus explicit control, and took this to support the view that PRO is linked syntactically to a silent argument in the passive. We challenge this conclusion by reporting that we also find no processing cost for remote implicit control, as in: The ship was sunk. The reason was to collect the insurance. Here the dependency crosses two independent sentences, and so cannot, we argue, be mediated by syntax. Our Experiments 1-4 examined the processing of both implicit (short passive and explicit (active or long passive control in both local and remote configurations. Experiments 3 and 4 added either three days ago or just in order to the local conditions, to control for the distance between the passive and infinitival verbs, and for the predictability of the reason clause, respectively. We replicate the finding that implicit control does not impose an additional processing cost. But critically we show that remote control does not impose a processing cost either. Reading times at the reason clause were never slower when control was remote. In fact they were always faster. Thus efficient processing of local implicit control cannot show that implicit control is mediated by syntax; nor, in turn, that there is a silent but grammatically active argument in passives.
Implicit attitudes towards risky and safe driving
DEFF Research Database (Denmark)
Martinussen, Laila Marianne; Sømhovd, Mikael Julius; Møller, Mette
; further, self-reports of the intention to drive safely (or not) are socially sensitive. Therefore, we examined automatic preferences towards safe and risky driving with a Go/No-go Association Task (GNAT). The results suggest that (1) implicit attitudes towards driving behavior can be measured reliably...... with the GNAT; (2) implicit attitudes towards safe driving versus towards risky driving may be separable constructs. We propose that research on driving behavior may benefit from routinely including measures of implicit cognition. A practical advantage is a lesser susceptibility to social desirability biases......, compared to self-report methods. Pending replication in future research, the apparent dissociation between implicit attitudes towards safe versus risky driving that we observed may contribute to a greater theoretical understanding of the causes of unsafe and risky driving behavior....
Finite Element Methods On Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces
DEFF Research Database (Denmark)
Nemitz, Oliver; Nielsen, Michael Bang; Rumpf, Martin
2009-01-01
dynamic tubular grid encoding format for a narrow band. A reaction diffusion model on a fixed surface and surface evolution driven by a nonlinear geometric diffusion approach, by isotropic or truly anisotropic curvature motion, are investigated as characteristic model problems. The proposed methods...
National Research Council Canada - National Science Library
Liu, Chaoqun
1999-01-01
.... Four transitional stages are observed: the linear and weakly nonlinear growth, the appearance of staggered A-vortex patterns, the evolution of A-vortex into hairpin vortex, the breakdown of hairpin vortical structures...
International Nuclear Information System (INIS)
Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.
1996-01-01
This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron
2012-01-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach
Markov chain Monte Carlo methods in directed graphical models
DEFF Research Database (Denmark)
Højbjerre, Malene
Directed graphical models present data possessing a complex dependence structure, and MCMC methods are computer-intensive simulation techniques to approximate high-dimensional intractable integrals, which emerge in such models with incomplete data. MCMC computations in directed graphical models h...
DEFF Research Database (Denmark)
Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter
1995-01-01
The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...... has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual...... stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method....
Comparison of the direct enzyme assay method with the membrane ...
African Journals Online (AJOL)
Comparison of the direct enzyme assay method with the membrane filtration technique in the quantification and monitoring of microbial indicator organisms – seasonal variations in the activities of coliforms and E. coli, temperature and pH.
A direct sampling method to an inverse medium scattering problem
Ito, Kazufumi; Jin, Bangti; Zou, Jun
2012-01-01
In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when
A direct sampling method for inverse electromagnetic medium scattering
Ito, Kazufumi; Jin, Bangti; Zou, Jun
2013-01-01
In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based
Direct Linear Transformation Method for Three-Dimensional Cinematography
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Ego Depletion Impairs Implicit Learning
Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.
2014-01-01
Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517
Ego depletion impairs implicit learning.
Directory of Open Access Journals (Sweden)
Kelsey R Thompson
Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.
International Nuclear Information System (INIS)
Chiem, Kok Siong; Zhao Yong
2004-01-01
In this study, a high-resolution characteristic-based finite-volume (FV) method on unstructured grids [Int. J. Numer. Method Eng. 50 (2001) 11; Int. J. Heat Fluid Flow 21 (2000) 432] is extended by a matrix-free implicit dual-time stepping scheme for the numerical simulation of steady and unsteady flow and heat transfer with porous media. The method has been used to study the characteristics of a complex problem: flow and heat transfer in a channel with multiple discrete porous blocks, which was originally proposed by Huang and Vafai [J. Thermophys. Heat Transfer 8 (3) (1994) 563]. In addition, flow and heat transfer in a channel partially or fully filled with porous layers and containing solid protruding blocks with constant heat flux on its lower surface are also investigated in details. Hydrodynamic and heat transfer results are reported for both steady and transient flow cases. In particular, the effects of Darcy and Reynolds numbers on heat transfer augmentation and pressure loss are studied. An in-depth discussion of the formation and variation of recirculation is presented and the existence of optimum porous insert is demonstrated. At high Reynolds numbers the flow in the porous channel exhibits a cyclic characteristics although unlike the non-porous channel flow, the cyclic vortex development is only restricted to a small area behind the last solid block, while temperature changes more slowly and does not exhibit cyclic variations over a long period of time. It is shown that for all the cases studied altering some parametric values can have significant and interesting effects on both flow pattern as well as heat transfer characteristics
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
Role of implicit learning abilities in metaphor understanding.
Drouillet, Luc; Stefaniak, Nicolas; Declercq, Christelle; Obert, Alexandre
2018-05-01
Although the use of metaphors is a central component of language, the processes that sustain their comprehension have yet to be specified. Work in the fields of both metaphors and implicit learning suggests that implicit learning abilities facilitate the comprehension of metaphors. However, to date, no study has directly explored the relationships between the understanding of metaphors and so-called implicit learning tasks. We used a meaning decision task comparing literal, metaphorical and meaningless expressions to assess metaphor understanding and a probabilistic serial reaction time task for assessing implicit learning. Our results show that implicit learning positively predicts the time gap between responses to literal and metaphorical expressions and negatively predicts the difference between metaphorical and meaningless expressions. Thus, when confronted with novel metaphors, participants with higher implicit learning abilities are better able to identify that the expressions have some meaning. These results are interpreted in the context of metaphor understanding and psycholinguistic theories. Copyright © 2018 Elsevier Inc. All rights reserved.
Implicit measure for yoga research: Yoga implicit association test
Directory of Open Access Journals (Sweden)
Judu V Ilavarasu
2014-01-01
Conclusions: Implicit measures may be used in the yoga field to assess constructs, which are difficult to self-report or may have social desirability threat. Y-IAT may be used to evaluate implicit preference toward yoga.
A direct simulation method for flows with suspended paramagnetic particles
Kang, T.G.; Hulsen, M.A.; Toonder, den J.M.J.; Anderson, P.D.; Meijer, H.E.H.
2008-01-01
A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a
Comparison of direct and precipitation methods for the estimation of ...
African Journals Online (AJOL)
Background: There is increase in use of direct assays for analysis of high and low density lipoprotein cholesterol by clinical laboratories despite differences in performance characteristics with conventional precipitation methods. Calculation of low density lipoprotein cholesterol in precipitation methods is based on total ...
Unmanned aerial vehicle trajectory planning with direct methods
Geiger, Brian
A real-time method for trajectory optimization to maximize surveillance time of a fixed or moving ground target by one or more unmanned aerial vehicles (UAVs) is presented. The method accounts for performance limits of the aircraft, intrinsic properties of the camera, and external disturbances such as wind. Direct collocation with nonlinear programming is used to implement the method in simulation and onboard the Penn State/Applied Research Lab's testbed UAV. Flight test results compare well with simulation. Both stationary targets and moving targets, such as a low flying UAV, were successfully tracked in flight test. In addition, a new method using a neural network approximation is presented that removes the need for collocation and numerical derivative calculation. Neural networks are used to approximate the objective and dynamics functions in the optimization problem which allows for reduced computation requirements. The approximation reduces the size of the resulting nonlinear programming problem compared to direct collocation or pseudospectral methods. This method is shown to be faster than direct collocation and psuedospectral methods using numerical or automatic derivative techniques. The neural network approximation is also shown to be faster than analytical derivatives but by a lesser factor. Comparative results are presented showing similar accuracy for all methods. The method is modular and enables application to problems of the same class without network retraining.
Energy Technology Data Exchange (ETDEWEB)
Richard C. Martineau; Ray A. Berry
2003-04-01
A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson
Energy Technology Data Exchange (ETDEWEB)
Azad, Hamed Moslehi; Shirani, A.S. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering
2017-07-15
Thermal hydraulic analysis of sodium boiling in fuel assemblies is an important issue in safety of sodium cooled reactors and subchannel method is an efficient approach in transient two phase flow analyses. Almost all of the subchannel codes which use two-fluid model in two phase flow analysis, are based on semi implicit algorithm. With the full implicit method it is possible to use larger time steps. In order to compare the semi implicit algorithm with full implicit algorithm, two transient subchannel numerical programs which one is based on semi implicit algorithm and the other is based on full implicit algorithm have been written in FORTRAN in this work for simulation of transients in sodium cooled Kompakter-Natriumsiede-Kreislauf (KNS) at the former Kernforschungszentrum Karlsruhe (KfK) in Germany.
Sexual Murderers' Implicit Theories
Beech, Anthony; Fisher, Dawn; Ward, Tony
2005-01-01
Interviews with 28 sexual murderers were subjected to grounded theory analysis. Five implicit theories (ITs) were identified: dangerous world, male sex drive is uncontrollable, entitlement, women as sexual objects, and women as unknowable. These ITs were found to be identical to those identified in the literature as being present in rapists. The…
Stem cell monitoring with a direct or indirect labeling method
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Hwan; Lee, Yong Jin [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)
2016-12-15
The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.
A direct sampling method to an inverse medium scattering problem
Ito, Kazufumi
2012-01-10
In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when the measured data are only available for one or two incident directions. A mathematical derivation is provided for its validation. Two- and three-dimensional numerical simulations are presented, which show that the method is accurate even with a few sets of scattered field data, computationally efficient, and very robust with respect to noises in the data. © 2012 IOP Publishing Ltd.
Direct sampling methods for inverse elastic scattering problems
Ji, Xia; Liu, Xiaodong; Xi, Yingxia
2018-03-01
We consider the inverse elastic scattering of incident plane compressional and shear waves from the knowledge of the far field patterns. Specifically, three direct sampling methods for location and shape reconstruction are proposed using the different component of the far field patterns. Only inner products are involved in the computation, thus the novel sampling methods are very simple and fast to be implemented. With the help of the factorization of the far field operator, we give a lower bound of the proposed indicator functionals for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functionals decay like the Bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functionals continuously dependent on the far field patterns, which further implies that the novel sampling methods are extremely stable with respect to data error. For the case when the observation directions are restricted into the limited aperture, we firstly introduce some data retrieval techniques to obtain those data that can not be measured directly and then use the proposed direct sampling methods for location and shape reconstructions. Finally, some numerical simulations in two dimensions are conducted with noisy data, and the results further verify the effectiveness and robustness of the proposed sampling methods, even for multiple multiscale cases and limited-aperture problems.
Sleep can eliminate list-method directed forgetting.
Abel, Magdalena; Bäuml, Karl-Heinz T
2013-05-01
Recent work suggests a link between sleep and memory consolidation, indicating that sleep in comparison to wakefulness stabilizes memories. However, relatively little is known about how sleep affects forgetting. Here we examined whether sleep influences directed forgetting, the finding that people can intentionally forget obsolete memories when cued to do so. We applied the list-method directed forgetting task and assessed memory performance after 3 delay intervals. Directed forgetting was present after a short 20-min delay and after a 12-hr delay filled with diurnal wakefulness; in contrast, the forgetting was absent after a 12-hr delay that included regular nocturnal sleep. Successful directed forgetting after a delay thus can depend on whether sleep or wakefulness follows upon encoding: When wakefulness follows upon encoding, the forgetting can be successful; when sleep follows upon encoding, no forgetting may arise. Connections of the results to recent studies on the interplay between forgetting and sleep are discussed.
Directed forgetting of complex pictures in an item method paradigm.
Hauswald, Anne; Kissler, Johanna
2008-11-01
An item-cued directed forgetting paradigm was used to investigate the ability to control episodic memory and selectively encode complex coloured pictures. A series of photographs was presented to 21 participants who were instructed to either remember or forget each picture after it was presented. Memory performance was later tested with a recognition task where all presented items had to be retrieved, regardless of the initial instructions. A directed forgetting effect--that is, better recognition of "to-be-remembered" than of "to-be-forgotten" pictures--was observed, although its size was smaller than previously reported for words or line drawings. The magnitude of the directed forgetting effect correlated negatively with participants' depression and dissociation scores. The results indicate that, at least in an item method, directed forgetting occurs for complex pictures as well as words and simple line drawings. Furthermore, people with higher levels of dissociative or depressive symptoms exhibit altered memory encoding patterns.
A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions
International Nuclear Information System (INIS)
Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan
2007-01-01
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported
One directional polarized neutron reflectometry with optimized reference layer method
International Nuclear Information System (INIS)
Masoudi, S. Farhad; Jahromi, Saeed S.
2012-01-01
In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning.
McDougle, Samuel D; Bond, Krista M; Taylor, Jordan A
2015-07-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. Copyright © 2015 the authors 0270-6474/15/359568-12$15.00/0.
Direct methods for surface X-ray diffraction
International Nuclear Information System (INIS)
Saldin, D. K.; Harder, R.; Shneerson, V. L.; Vogler, H.; Moritz, W.
2000-01-01
We develop of a direct method for surface X-ray diffraction that exploits the holographic feature of a known reference wave from the substrate. A Bayesian analysis of the optimal inference to be made from an incomplete data set suggests a maximum entropy algorithm that balances agreement with the data and other statistical considerations
The linogram algorithm and direct fourier method with linograms
International Nuclear Information System (INIS)
Edholm, P.R.
1990-01-01
This text is an attempt to describe the linogram algorithm based on a somewhat simplified mathematical description of the algorithm which is also more similar to the actual digital implementation. Another algorithm with linograms, which may be called a direct fourier method is also presented. (K.A.E.)
Calibration method for direct conversion receiver front-ends
Directory of Open Access Journals (Sweden)
R. Müller
2008-05-01
Full Text Available Technology induced process tolerances in analog circuits cause device characteristics different from specification. For direct conversion receiver front-ends a system level calibration method is presented. The malfunctions of the devices are compensated by tuning dominant circuit parameters. Thereto optimization techniques are applied which use measurement values and special evaluation functions.
Mindfulness - en implicit utopi?
DEFF Research Database (Denmark)
Nielsen, Anne Maj
2014-01-01
The field of mindfulness and meditation has met growing interest in the western world during the last decades. Mindfulness aims to develop a friendly, accepting and mindful awareness in the present moment. Critiques have argued that this aim is deployed in a new kind of management technology where...... mindfulness is used for individualized stress-reduction in order to keep up with existing or worsened working conditions instead of stress-reducing changes in the common working conditions. Mindfulness research emphasizes positive outcomes in coping with demands and challenges in everyday life especially...... considering suffering (for example stress and pain). While explicit constructions of Utopia present ideas of specific societal communities in well-functioning harmony, the interest in mindfulness can in contradistinction be considered an implicit critique of present life-conditions and an “implicit utopia...
Chinese implicit leadership theory.
Ling, W; Chia, R C; Fang, L
2000-12-01
In a 1st attempt to identify an implicit theory of leadership among Chinese people, the authors developed the Chinese Implicit Leadership Scale (CILS) in Study 1. In Study 2, they administered the CILS to 622 Chinese participants from 5 occupation groups, to explore differences in perceptions of leadership. Factor analysis yielded 4 factors of leadership: Personal Morality, Goal Efficiency, Interpersonal Competence, and Versatility. Social groups differing in age, gender, education level, and occupation rated these factors. Results showed no significant gender differences, and the underlying cause for social group differences was education level. All groups gave the highest ratings to Interpersonal Competence, reflecting the enormous importance of this factor, which is consistent with Chinese collectivist values.
Comparing Methods for Estimating Direct Costs of Adverse Drug Events.
Gyllensten, Hanna; Jönsson, Anna K; Hakkarainen, Katja M; Svensson, Staffan; Hägg, Staffan; Rehnberg, Clas
2017-12-01
To estimate how direct health care costs resulting from adverse drug events (ADEs) and cost distribution are affected by methodological decisions regarding identification of ADEs, assigning relevant resource use to ADEs, and estimating costs for the assigned resources. ADEs were identified from medical records and diagnostic codes for a random sample of 4970 Swedish adults during a 3-month study period in 2008 and were assessed for causality. Results were compared for five cost evaluation methods, including different methods for identifying ADEs, assigning resource use to ADEs, and for estimating costs for the assigned resources (resource use method, proportion of registered cost method, unit cost method, diagnostic code method, and main diagnosis method). Different levels of causality for ADEs and ADEs' contribution to health care resource use were considered. Using the five methods, the maximum estimated overall direct health care costs resulting from ADEs ranged from Sk10,000 (Sk = Swedish krona; ~€1,500 in 2016 values) using the diagnostic code method to more than Sk3,000,000 (~€414,000) using the unit cost method in our study population. The most conservative definitions for ADEs' contribution to health care resource use and the causality of ADEs resulted in average costs per patient ranging from Sk0 using the diagnostic code method to Sk4066 (~€500) using the unit cost method. The estimated costs resulting from ADEs varied considerably depending on the methodological choices. The results indicate that costs for ADEs need to be identified through medical record review and by using detailed unit cost data. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman
2012-06-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.
The Direct Lighting Computation in Global Illumination Methods
Wang, Changyaw Allen
1994-01-01
Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.
A direction of developing a mining method and mining complexes
Energy Technology Data Exchange (ETDEWEB)
Gabov, V.V.; Efimov, I.A. [St. Petersburg State Mining Institute, St. Petersburg (Russian Federation). Vorkuta Branch
1996-12-31
The analyses of a mining method as a main factor determining the development stages of mining units is presented. The paper suggests a perspective mining method which differs from the known ones by following peculiarities: the direction selectivity of cuts with regard to coal seams structure; the cutting speed, thickness and succession of dusts. This method may be done by modulate complexes (a shield carrying a cutting head for coal mining), their mining devices being supplied with hydraulic drive. An experimental model of the module complex has been developed. 2 refs.
Directory of Open Access Journals (Sweden)
Jean-François Degbomont
2010-10-01
Full Text Available This paper addresses the symbolic representation of non-convex real polyhedra, i.e., sets of real vectors satisfying arbitrary Boolean combinations of linear constraints. We develop an original data structure for representing such sets, based on an implicit and concise encoding of a known structure, the Real Vector Automaton. The resulting formalism provides a canonical representation of polyhedra, is closed under Boolean operators, and admits an efficient decision procedure for testing the membership of a vector.
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Kautský, J.; Šroubek, Filip
2010-01-01
Roč. 86, č. 1 (2010), s. 72-86 ISSN 0920-5691 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Implicit invariants * Orthogonal polynomials * Polynomial image deformation Subject RIV: BD - Theory of Information Impact factor: 4.930, year: 2010 http://library.utia.cas.cz/separaty/2009/ZOI/flusser-0329394.pdf
International Nuclear Information System (INIS)
Schnoll-Bitai, I.; Friedrich Olaj, O.; Liu Song Yu
1999-01-01
The systems styrene-p-methylstyrene, styrene-p-chlorostyrene, methyl methacrylate-p-methylstyrene and methyl methacrylate-p-chlorostyrene were polymerized under pseudo-stationary conditions (rotating sector or pulsed laser) at 25 degree C, 40 degree C and 50 degree C. The respective molecular weight distributions measured by GPC were analysed in order to derive directly the phenomenological rate constant of propagation, κ sub ρ. Copolymer compositions as a function of monomer feed could be described by the terminal model, whereas the kinetic results could only be interpreted in terms of the restricted penultimate model
Energy Technology Data Exchange (ETDEWEB)
Ryu, Seungyeob, E-mail: syryu@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Youngin; Yoon, Juhyeon [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Sungho, E-mail: sunghoko@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)
2014-01-15
Highlights: • We directly simulate circular-cap bubbles in low viscous liquids. • The counter diffusion multiphase lattice Boltzmann method is proposed. • The present method is validated through benchmark tests and experimental results. • The high-Reynolds-number bubbles can be simulated without any turbulence models. • The present method is feasible for the direct simulation of bubbly flows. -- Abstract: The counter diffusion lattice Boltzmann method (LBM) is used to directly simulate rising circular-cap bubbles in low viscous liquids. A counter diffusion model for single phase flows has been extended to multiphase flows, and the implicit formulation is converted into an explicit one for easy calculation. Bubbles at high Reynolds numbers ranging from O(10{sup 2}) to O(10{sup 4}) are simulated successfully without any turbulence models, which cannot be done for the existing LBM versions. The characteristics of the circular-cap bubbles are studied for a wide range of Morton numbers and compared with the previous literature. Calculated results agree with the theoretical and experimental data. Consequently, the wake phenomena of circular-cap bubbles and bubble induced turbulence are presented.
Mutant fatty acid desaturase and methods for directed mutagenesis
Shanklin, John [Shoreham, NY; Whittle, Edward J [Greenport, NY
2008-01-29
The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.
International Nuclear Information System (INIS)
Dahmani, M.; Baudron, A.M.; Lautard, J.J.; Erradi, L.
2001-01-01
The mixed dual nodal method MINOS is used to solve the reactor kinetics equations with improved quasistatic IQS model and the θ method is used to solve the precursor equations. The speed of calculation which is the main advantage of the MINOS method and the possibility to use the large time step for shape flux calculation permitted by the IQS method, allow us to reduce considerably the computing time. The IQS/MINOS method is implemented in CRONOS 3D reactor code. Numerical tests on different transient benchmarks show that the results obtained with the IQS/MINOS method and the direct numerical method used to solve the kinetics equations, are very close and the total computing time is largely reduced
Preferences for cervical cancer screening: The role of implicit associations
Korfage, I.J.; Kwaadsteniet, E.W. de; Voorst, A. van; Stiggelbout, A.M.; Vries, M. de; Pieterse, A.H.
2018-01-01
Objectives: Implicit associations influence behaviour, but their impact on cancer screening intentions is unknown. Methods: We assessed implicit associations with cervical cancer screening using an evaluative priming task. Participants were shown primes ('Pap test', neutral or non-word) followed by
Method for observing phase objects without halos and directional shadows
Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi
2015-03-01
A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.
Right to privacy and some methods of direct marketing
Directory of Open Access Journals (Sweden)
Hana Kelblová
2013-01-01
Full Text Available Promotion constitutes part of the marketing mix which consists of advertising, sales support, public relations, personal sale and direct marketing. It may be stated that the law delimits boundaries to all these elements of the communication mix. In the following contribution I will only focus on some methods of direct marketing and I intend to investigate the “purposeful appeal to purchase and consumer behaviour of clients” as viewed by the present Czech law. These communications often disturb the privacy of individuals, harass in an inappropriate time, marketing companies often illegally collect and share customers’ personal information. My target is to list legal limits instituted in the sphere of direct marketing for the individual marketing practices by the Czech law.
A gradient activation method for direct methanol fuel cells
International Nuclear Information System (INIS)
Liu, Guicheng; Yang, Zhaoyi; Halim, Martin; Li, Xinyang; Wang, Manxiang; Kim, Ji Young; Mei, Qiwen; Wang, Xindong; Lee, Joong Kee
2017-01-01
Highlights: • A gradient activation method was reported firstly for direct methanol fuel cells. • The activity recovery of Pt-based catalyst was introduced into the novel activation process. • The new activation method led to prominent enhancement of DMFC performance. • DMFC performance was improved with the novel activation step by step within 7.5 h. - Abstract: To realize gradient activation effect and recover catalytic activity of catalyst in a short time, a gradient activation method has firstly been proposed for enhancing discharge performance and perfecting activation mechanism of the direct methanol fuel cell (DMFC). This method includes four steps, i.e. proton activation, activity recovery activation, H_2-O_2 mode activation and forced discharging activation. The results prove that the proposed method has gradually realized replenishment of water and protons, recovery of catalytic activity of catalyst, establishment of transfer channels for electrons, protons, and oxygen, and optimization of anode catalyst layer for methanol transfer in turn. Along with the novel activation process going on, the DMFC discharge performance has been improved, step by step, to more than 1.9 times higher than that of the original one within 7.5 h. This method provides a practicable activation way for the real application of single DMFCs and stacks.
Solving Kepler's equation using implicit functions
Mortari, Daniele; Elipe, Antonio
2014-01-01
A new approach to solve Kepler's equation based on the use of implicit functions is proposed here. First, new upper and lower bounds are derived for two ranges of mean anomaly. These upper and lower bounds initialize a two-step procedure involving the solution of two implicit functions. These two implicit functions, which are non-rational (polynomial) Bézier functions, can be linear or quadratic, depending on the derivatives of the initial bound values. These are new initial bounds that have been compared and proven more accurate than Serafin's bounds. The procedure reaches machine error accuracy with no more that one quadratic and one linear iterations, experienced in the "tough range", where the eccentricity is close to one and the mean anomaly to zero. The proposed method is particularly suitable for space-based applications with limited computational capability.
Application of Patterson-function direct methods to materials characterization.
Rius, Jordi
2014-09-01
The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.
Application of Patterson-function direct methods to materials characterization
Directory of Open Access Journals (Sweden)
Jordi Rius
2014-09-01
Full Text Available The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM, from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.
Direct methods for limit states in structures and materials
Weichert, Dieter
2014-01-01
Knowing the safety factor for limit states such as plastic collapse, low cycle fatigue or ratcheting is always a major design consideration for civil and mechanical engineering structures that are subjected to loads. Direct methods of limit or shakedown analysis that proceed to directly find the limit states offer a better alternative than exact time-stepping calculations as, on one hand, an exact loading history is scarcely known, and on the other they are much less time-consuming. This book presents the state of the art on various topics concerning these methods, such as theoretical advances in limit and shakedown analysis, the development of relevant algorithms and computational procedures, sophisticated modeling of inelastic material behavior like hardening, non-associated flow rules, material damage and fatigue, contact and friction, homogenization and composites.
Implicit learning as an ability.
Kaufman, Scott Barry; Deyoung, Colin G; Gray, Jeremy R; Jiménez, Luis; Brown, Jamie; Mackintosh, Nicholas
2010-09-01
The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber, 1993; Stanovich, 2009) have suggested that individual differences in implicit learning are minimal relative to individual differences in explicit learning. In the current study of English 16-17year old students, we investigated the association of individual differences in implicit learning with a variety of cognitive and personality variables. Consistent with prior research and theorizing, implicit learning, as measured by a probabilistic sequence learning task, was more weakly related to psychometric intelligence than was explicit associative learning, and was unrelated to working memory. Structural equation modeling revealed that implicit learning was independently related to two components of psychometric intelligence: verbal analogical reasoning and processing speed. Implicit learning was also independently related to academic performance on two foreign language exams (French, German). Further, implicit learning was significantly associated with aspects of self-reported personality, including intuition, Openness to Experience, and impulsivity. We discuss the implications of implicit learning as an ability for dual-process theories of cognition, intelligence, personality, skill learning, complex cognition, and language acquisition. 2010 Elsevier B.V. All rights reserved.
The present state and future directions of PDF methods
Pope, S. B.
1992-01-01
The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.
Implicit memory. Retention without remembering.
Roediger, H L
1990-09-01
Explicit measures of human memory, such as recall or recognition, reflect conscious recollection of the past. Implicit tests of retention measure transfer (or priming) from past experience on tasks that do not require conscious recollection of recent experiences for their performance. The article reviews research on the relation between explicit and implicit memory. The evidence points to substantial differences between standard explicit and implicit tests, because many variables create dissociations between these tests. For example, although pictures are remembered better than words on explicit tests, words produce more priming than do pictures on several implicit tests. These dissociations may implicate different memory systems that subserve distinct memorial functions, but the present argument is that many dissociations can be understood by appealing to general principles that apply to both explicit and implicit tests. Phenomena studied under the rubric of implicit memory may have important implications in many other fields, including social cognition, problem solving, and cognitive development.
Synthesise of Zn O nano wires by direct oxidation method
International Nuclear Information System (INIS)
Farbod, M.; Ahangarpour, A.
2007-01-01
Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.
The method of modular characteristic direction probabilities in MPACT
Energy Technology Data Exchange (ETDEWEB)
Liu, Z. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28 Xianning west road, Xi' an, Shaanxi 710049 (China); Kochunas, B.; Collins, B.; Downar, T. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2200 Bonisteel, Ann Arbor, MI 48109 (United States); Wu, H. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28 Xianning west road, Xi' an, Shaanxi 710049 (China)
2013-07-01
The method of characteristic direction probabilities (CDP) is based on a modular ray tracing technique which combines the benefits of the collision probability method (CPM) and the method of characteristics (MOC). This past year CDP was implemented in the transport code MPACT for 2-D and 3-D transport calculations. By only coupling the fine mesh regions passed by the characteristic rays in the particular direction, the scale of the probabilities matrix is much smaller compared to the CPM. At the same time, the CDP has the same capacity of dealing with the complicated geometries with the MOC, because the same modular ray tracing techniques are used. Results from the C5G7 benchmark problems are given for different cases to show the accuracy and efficiency of the CDP compared to MOC. For the cases examined, the CDP and MOC methods were seen to differ in k{sub eff} by about 1-20 pcm, and the computational efficiency of the CDP appears to be better than the MOC for some problems. However, in other problems, particularly when the CDP matrices have to be recomputed from changing cross sections, the CDP does not perform as well. This indicates an area of future work. (authors)
Alternating direction transport sweeps for linear discontinuous SN method
International Nuclear Information System (INIS)
Yavuz, M.; Aykanat, C.
1993-01-01
The performance of Alternating Direction Transport Sweep (ADTS) method is investigated for spatially differenced Linear Discontinuous S N (LD-S N ) problems on a MIMD multicomputer, Intel IPSC/2. The method consists of dividing a transport problem spatially into sub-problems, assigning each sub-problem to a separate processor. Then, the problem is solved by performing transport sweeps iterating on the scattering source and interface fluxes between the sub-problems. In each processor, the order of transport sweeps is scheduled such that a processor completing its computation in a quadrant of a transport sweep is able to use the most recent information (exiting fluxes of neighboring processor) as its incoming fluxes to start the next quadrant calculation. Implementation of this method on the Intel IPSC/2 multicomputer displays significant speedups over the one-processor method. Also, the performance of the method is compared with those reported previously for the Diamond Differenced S N (DD-S N ) method. Our experimental experience illustrates that the parallel performance of both the ADTS LD- and DD-S N methods is the same. (orig.)
Fuel coolant interaction experiment by direct electrical heating method
International Nuclear Information System (INIS)
Takeda, Tsuneo; Hirano, Kenmei
1979-01-01
In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)
Comparison of Rice Direct Seeding Methods (Mechanical and Manual with Transplanting Method
Directory of Open Access Journals (Sweden)
A Eyvani
2014-04-01
Full Text Available The main method of rice planting in Iran is transplanting. Due to poor mechanization of rice production, this method is laborious and costly. The other method is direct seeding in wet lands which is performed in the one third of rice cultivation area of the world. The most important problem in this method is high labor requirement of weed control. In order to compare the different rice planting methods (direct drilling, transplanting, and seed broadcasting a manually operated rice direct seeder (drum seeder was designed and fabricated. The research was conducted using a randomized complete block design with three treatments and three replications. Required draft force, field efficiency, effective field capacity, yield, and yield components were measured and the treatments were compared economically. Results showed that there were significant differences among the treatments from the view point of rice yield at the confidence level of 95% i.e. the transplanting method had the maximum yield. A higher rice yield was obtained from the direct seeder compared to the manual broadcasting method but, the difference between these two methods for crop yield was not significant even at the confidence level of the 95%. The coefficient of variation of seed distribution with direct seeding was more than 20%. The labor and time requirements per hectare reduced to 7 and 20 times, respectively when comparing the newly designed direct seeder with the transplanting method. The direct seeding method had the highest benefit to cost ratio in spite of its lower yield. Therefore, this method could be recommended in the rice growing regions.
NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION
International Nuclear Information System (INIS)
Brown, Robert A.; Soummer, Remi
2010-01-01
We report on new methods for evaluating realistic observing programs that search stars for planets by direct imaging, where observations are selected from an optimized star list and stars can be observed multiple times. We show how these methods bring critical insight into the design of the mission and its instruments. These methods provide an estimate of the outcome of the observing program: the probability distribution of discoveries (detection and/or characterization) and an estimate of the occurrence rate of planets (η). We show that these parameters can be accurately estimated from a single mission simulation, without the need for a complete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide tools to define a mission for a particular science goal; for example, a mission can be defined by the expected number of discoveries and its confidence level. We detail how an optimized star list can be built and how successive observations can be selected. Our approach also provides other critical mission attributes, such as the number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.), our methods are directly applicable to the design of such future missions and provide guidance to the mission and instrument design based on scientific performance. We illustrate our new methods with practical calculations and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004, assuming a small fraction of JWST observing time (7%), η = 0.3, and 70 observing visits, limited by starshade fuel.
A direct sampling method for inverse electromagnetic medium scattering
Ito, Kazufumi
2013-09-01
In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and the behavior of the fundamental solution. It is applicable to a few incident fields and needs only to compute inner products of the measured scattered field with the fundamental solutions located at sampling points. Hence, it is strictly direct, computationally very efficient and highly robust to the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can provide reliable support estimates for multiple scatterers in the case of both exact and highly noisy data. © 2013 IOP Publishing Ltd.
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
Alternating direction methods for classical and ptychographic phase retrieval
International Nuclear Information System (INIS)
Wen, Zaiwen; Yang, Chao; Liu, Xin; Marchesini, Stefano
2012-01-01
In this paper, we show how the augmented Lagrangian alternating direction method (ADM) can be used to solve both the classical and ptychographic phase retrieval problems. We point out the connection between ADM and projection algorithms such as the hybrid input–output algorithm, and compare its performance against standard algorithms for phase retrieval on a number of test images. Our computational experiments show that ADM appears to be less sensitive to the choice of relaxation parameters, and it usually outperforms the existing techniques for both the classical and ptychographic phase retrieval problems. (paper)
International Nuclear Information System (INIS)
Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki
1975-12-01
A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)
Multilevel Drift-Implicit Tau-Leap
Ben Hammouda, Chiheb
2016-01-06
The dynamics of biochemical reactive systems with small copy numbers of one or more reactant molecules is dominated by stochastic effects. For those systems, discrete state-space and stochastic simulation approaches were proved to be more relevant than continuous state-space and deterministic ones. In systems characterized by having simultaneously fast and slowtimescales, the existing discrete space-state stochastic path simulation methods such as the stochastic simulation algorithm (SSA) and the explicit tauleap method can be very slow. Implicit approximations were developed in the literature to improve numerical stability and provide efficient simulation algorithms for those systems. In this work, we propose an efficient Multilevel Monte Carlo method in the spirit of the work by Anderson and Higham (2012) that uses drift-implicit tau-leap approximations at levels where the explicit tauleap method is not applicable due to numerical stability issues. We present numerical examples that illustrate the performance of the proposed method.
Assessment of implicit sexual associations in non-incarcerated pedophiles.
van Leeuwen, Matthijs L; van Baaren, Rick B; Chakhssi, Farid; Loonen, Marijke G M; Lippman, Maarten; Dijksterhuis, Ap
2013-11-01
Offences committed by pedophiles are crimes that evoke serious public concern and outrage. Although recent research using implicit measures has shown promise in detecting deviant sexual associations, the discriminatory and predictive quality of implicit tasks has not yet surpassed traditional assessment methods such as questionnaires and phallometry. The current research extended previous findings by examining whether a combination of two implicit tasks, the Implicit Association Task (IAT) and the Picture Association Task (PAT), was capable of differentiating pedophiles from non-pedophiles, and whether the PAT, which allows separate analysis for male, female, boy and girl stimulus categories, was more sensitive to specific sexual associations in pedophiles than the IAT. A total of 20 male self-reported pedophiles (10 offender and 10 non-offenders) and 20 male self-reported heterosexual controls completed the two implicit measures. Results indicated that the combination of both tasks produced the strongest results to date in detecting implicit pedophilic preferences (AUC = .97). Additionally, the PAT showed promise in decomposing the sexual associations in pedophiles. Interestingly, as there was an equal distribution of offenders and non-offenders in the pedophile group, it was possible to test for implicit association differences between these groups. This comparison showed no clear link between having these implicit sexual associations and actual offending.
Direct numerical methods of mathematical modeling in mechanical structural design
International Nuclear Information System (INIS)
Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed
2002-01-01
Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures
Subdifferential-based implicit return-mapping operators in computational plasticity
Czech Academy of Sciences Publication Activity Database
Sysala, Stanislav; Čermák, Martin; Koudelka, T.; Kruis, J.; Zeman, J.; Blaheta, Radim
2016-01-01
Roč. 96, č. 11 (2016), s. 1318-1338 ISSN 1521-4001 R&D Projects: GA MŠk LQ1602; GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : elastoplasticity * nonsmooth yield surface * multivalued flow direction * implicit return-mapping scheme * semismooth Newton method * limit analysis Subject RIV: BA - General Mathematics http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500305/full
Method and apparatus for high-efficiency direct contact condensation
Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab
1999-01-01
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.
Massively Parallel and Scalable Implicit Time Integration Algorithms for Structural Dynamics
Farhat, Charbel
1997-01-01
Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because of the following additional facts: (a) explicit schemes are easier to parallelize than implicit ones, and (b) explicit schemes induce short range interprocessor communications that are relatively inexpensive, while the factorization methods used in most implicit schemes induce long range interprocessor communications that often ruin the sought-after speed-up. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet be offset by the speed of the currently available parallel hardware. Therefore, it is essential to develop efficient alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating the low-frequency dynamics of aerospace structures.
Direct osmosis method of purification and desalination of drinking water
International Nuclear Information System (INIS)
Khaydarov, R.A.; Khaydarov, R.R.
2005-01-01
Full text: Drinking water quality is one of the general factors influencing people's health. The human activity in industry and agriculture has led to pollution of the environment: soil, air, both surface and ground waters that are polluted with chemical substances. It has a disastrous effect on the health of the population, especially of children. At present, the known equipment, based on ion exchange, electrodialysis and reverse osmosis, require great expense, energy expenditures, and highly qualified personnel that are inaccessible to the population especially living in remote regions. Methods, which are usually used in water supplying plants, cannot remove spore forms of bacteria and many types of chemical substances. The purpose of this Project is to create an absolutely new method for purification of drinking water from chemical and biological agents. The method is based on using direct osmosis process that removes all contaminants except one and removing last contaminant. This method will be used for making new low energy-consuming and cheap mini-systems for individual and collective use for desalination of drinking water and purification from bacteria, radionuclides, heavy metal ions, and organic contaminants. Preliminary experiments and calculations conducted in Uzbekistan show that the energy consumption is 0.8 MW per 1 m 3 of water. Advantage of the method is low energy consumption, potentially purifying water without pretreatment and removing different types of bacteria including spore forms, radionuclides, heavy metal ions, organic contaminants. Devices can be powered by solar units in remote locations. The purpose of this work is further elaboration of this technology creation of new method and its accommodation to conditions of different countries. Test models will be made and tested in laboratories of interested countries
Implicit Memory in Multiple Sclerosis
Directory of Open Access Journals (Sweden)
G. Latchford
1993-01-01
Full Text Available A number of neuropsychological studies have revealed that memory problems are relatively common in patients with multiple sclerosis (MS. It may be useful to compare MS with conditions such as Huntington's disease (HD, which have been referred to as subcortical dementia. A characteristic of these conditions may be an impairment in implicit (unconscious memory, but not in explicit (conscious memory. The present study examined the functioning of explicit and implicit memory in MS. Results showed that implicit memory was not significantly impaired in the MS subjects, and that they were impaired on recall but not recognition. A correlation was found between implicit memory performance and disability status in MS patients. Findings also suggest the possibility of long-term priming of implicit memory in the control subjects. The implications of these results are discussed.
Age effects on explicit and implicit memory
Directory of Open Access Journals (Sweden)
Emma eWard
2013-09-01
Full Text Available It is well documented that explicit memory (e.g., recognition declines with age. In contrast, many argue that implicit memory (e.g., priming is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favours the single-system view. Implications for the memory systems debate are discussed.
Age effects on explicit and implicit memory.
Ward, Emma V; Berry, Christopher J; Shanks, David R
2013-01-01
It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed.
[Laboratory diagnosis of genital herpes--direct immunofluorescence method].
Majewska, Anna; Romejko-Wolniewicz, Ewa; Zareba-Szczudlik, Julia; Kilijańczyk, Marek; Gajewska, Małgorzata; Młynarczyk, Grazyna
2013-07-01
Aim of the study was to determine clinical usefulness of direct immunofluorescence method in the laboratory diagnosis of genital herpes in women. Overall 187 anogenital swabs were collected from 120 women. Using a dacron-tipped applicator 83 swabs were collected from women suspected of genital herpes and 104 from patients with no signs of genital infection. All samples were tested using cell culture (Vero cell line) and then direct immunofluorescence method (DIF) for the identification of antigens of herpes simplex viruses: HSV-1 and HSV-2. Characteristic cytopathic effect (CPE), indicative of alphaherpesvirus infection, was observed in 43.4% of cultures with clinical specimens collected from women with suspected genital herpes and in 29.8% of cultures of clinical specimens taken from patients with no clinical symptoms of genital herpes. Herpes simplex viruses were determined in 73 samples by direct immunofluorescence method after amplification of the virus in cell culture. The DIF test confirmed the diagnosis based on the microscopic CPE observation in 85%. In 15% of samples (taken from pregnant women without clinical signs of infection) we reported positive immunofluorescence in the absence of CPE. The frequency of antigen detection was statistically significantly higher in samples that were positive by culture study (chi-square test with Yates's correction, p genital herpes in swabs taken from the vestibule of the vagina and the vulva. However, there was no statistically significant difference in the frequency of detection of Herpes Simplex Virus antigens in specimens from different parts of the genital tract in both groups of women (chi-square test, p > 0.05). In our study HHV-1 was the main causative agent of genital herpes. The growing worldwide prevalence of genital herpes, challenges with the clinical diagnosis, and availability of effective antiviral therapy are the main reasons for a growing interest in rapid, proper laboratory diagnosis of infected
Resistivity measurements using a direct current induction method (1963)
International Nuclear Information System (INIS)
Delaplace, J.; Hillairet, J.
1964-01-01
The conventional methods for measuring electrical resistivities necessitate the fixing of electrical contacts on the sample either mechanically or by soldering. Furthermore it is also necessary to carry,out the measurements on low cross-section samples which are not always easy to obtain. Our direct-current induction method on the other hand requires no contacts and can easily be applied to samples of large cross-section. The sample is placed in a uniform magnetic field; at the moment when the current is cut, eddy currents appear in the sample which tend to oppose the disappearance of the field. The way in which the magnetic flux decreases in the sample makes it possible to determine the resistivity of the material. This method has been applied to samples having diameters of between 1 and 30 mm in the case of metals which are good conductors. It gives a value for the local resistivity and makes it possible to detect any variation along a sample. The measurements can be carried out at all temperature from a few degrees absolute to 500 deg. C. We have used the induction method to follow the purification of beryllium by zone-melting; it is in effect possible to estimate the purity of a material by resistivity measurements. We have measured the resistivity along each bar treated by the zone-melting technique and have thus, localised the purest section. High temperature measurements have been carried out on uranium carbide and on iron-aluminium alloys. This method constitutes an interesting means of investigation the resistivity of solid materials. Its accuracy and rapidity make it particularly adapted both to fundamental research and to production control. (authors) [fr
A copula method for modeling directional dependence of genes
Directory of Open Access Journals (Sweden)
Park Changyi
2008-05-01
Full Text Available Abstract Background Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation. Results We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex by adopting a measure of directional dependence based on a copula function. We have compared
Limit State of Materials and Structures Direct Methods 2
Oueslati, Abdelbacet; Charkaluk, Eric; Tritsch, Jean-Bernard
2013-01-01
To determine the carrying capacity of a structure or a structural element susceptible to operate beyond the elastic limit is an important task in many situations of both mechanical and civil engineering. The so-called “direct methods” play an increasing role due to the fact that they allow rapid access to the request information in mathematically constructive manners. They embrace Limit Analysis, the most developed approach now widely used, and Shakedown Analysis, a powerful extension to the variable repeated loads potentially more economical than step-by-step inelastic analysis. This book is the outcome of a workshop held at the University of Sciences and Technology of Lille. The individual contributions stem from the areas of new numerical developments rendering these methods more attractive for industrial design, extension of the general methodology to new horizons, probabilistic approaches and concrete technological applications.
Implicit flux-split schemes for the Euler equations
Thomas, J. L.; Walters, R. W.; Van Leer, B.
1985-01-01
Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.
Directory of Open Access Journals (Sweden)
Shahid Hasnain
2017-07-01
Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Signed distance function implicit geologic modeling
Directory of Open Access Journals (Sweden)
Roberto Mentzingen Rolo
Full Text Available Abstract Prior to every geostatistical estimation or simulation study there is a need for delimiting the geologic domains of the deposit, which is traditionally done manually by a geomodeler in a laborious, time consuming and subjective process. For this reason, novel techniques referred to as implicit modelling have appeared. These techniques provide algorithms that replace the manual digitization process of the traditional methods by some form of automatic procedure. This paper covers a few well established implicit methods currently available with special attention to the signed distance function methodology. A case study based on a real dataset was performed and its applicability discussed. Although it did not replace an experienced geomodeler, the method proved to be capable in creating semi-automatic geological models from the sampling data, especially in the early stages of exploration.
DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro
2016-10-01
This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.
Linogram and other direct Fourier methods for tomographic reconstruction
International Nuclear Information System (INIS)
Magnusson, M.
1993-01-01
Computed tomography (CT) is an outstanding break-through in technology as well as in medical diagnostics. The aim in CT is to produce an image with good image quality as fast as possible. The two most well-known methods for CT-reconstruction are the Direct Fourier Method (DFM) and the Filtered Backprojection Method (FBM). This thesis is divided in four parts. In part 1 we give an introduction to the principles of CT as well as a basic treatise of the DFM and the FBM. We also present a short CT history as well as brief descriptions of techniques related to X-ray CT such as SPECT, PET and MRI. Part 2 is devoted to the Linogram Method (LM). The method is presented both intuitively and rigorously and a complete algorithm is given for the discrete case. The implementation has been done using the SNARK subroutine package with various parameters and phantom images. For comparison, the FBM has been applied to the same input projection data. The experiments show that the LM gives almost the same image quality, pixel for pixel, as the FBM. In part 3 we show that the LM is a close relative to the common DFM. We give a new extended explanation of artifacts in DFMs. The source of the problem is twofold: interpolation errors and circular convolution. By identifying the second effect as distinct from the first one, we are able to suggest and verify remedies for the DFM which brings the image quality on par with FBM. One of these remedies is the LM. A slight difficulty with both LM and ordinary DFM techniques is that they require a special projection geometry, whereas most commercial CT-scanners provides fan beam projection data. However, the wanted linogram projection data can be interpolated from fan beam projection data. In part 4, we show that it is possible to obtain good image quality with both LM and DFM techniques using fan beam projection indata. The thesis concludes that the computation cost can be essentially decreased by using LM or other DFMs instead of FBM
Advanced Methods for Direct Ink Write Additive Manufacturing
Energy Technology Data Exchange (ETDEWEB)
Compel, W. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-24
Lawrence Livermore National Laboratory is one of the world’s premier labs for research and development of additive manufacturing processes. Out of these many processes, direct ink write (DIW) is arguably one of the most relevant for the manufacture of architected polymeric materials, components and hardware. However, a bottleneck in this pipeline that has largely been ignored to date is the lack of advanced software implementation with respect to toolpath execution. There remains to be a convenient, automated method to design and produce complex parts that is user-friendly and enabling for the realization of next generation designs and structures. For a material to be suitable as a DIW ink it must possess the appropriate rheological properties for this process. Most importantly, the material must exhibit shear-thinning in order to extrude through a print head and have a rapid recovery of its static shear modulus. This makes it possible for the extrudate to be self-supporting upon exiting the print head. While this and other prerequisites narrow the scope of ‘offthe- shelf’ printable materials directly amenable to DIW, the process still tolerates a wide range of potential feedstock materials. These include metallic alloys, inorganic solvent borne dispersions, polymeric melts, filler stabilized monomer compositions, pre-elastomeric feedstocks and thermoset resins each of which requires custom print conditions tailored to the individual ink. As such, an ink perfectly suited for DIW may be prematurely determined to be undesirable for the process if printed under the wrong conditions. Defining appropriate print conditions such as extrusion rate, layer height, and maximum bridge length is a vital first step in validating an ink’s DIW capability.
Tempelaar, Dirk T.; Rienties, Bart; Giesbers, Bas; Gijselaers, Wim H.
2015-01-01
Empirical studies into meaning systems surrounding implicit theories of intelligence typically entail two stringent assumptions: that different implicit theories and different effort beliefs represent opposite poles on a single scale, and that implicit theories directly impact the constructs as achievement goals and academic motivations. Through…
Implicit LES using adaptive filtering
Sun, Guangrui; Domaradzki, Julian A.
2018-04-01
In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.
How "implicit" are implicit color effects in memory?
Zimmer, Hubert D; Steiner, Astrid; Ecker, Ullrich K H
2002-01-01
Processing colored pictures of objects results in a preference to choose the former color for a specific object in a subsequent color choice test (Wippich & Mecklenbräuker, 1998). We tested whether this implicit memory effect is independent of performances in episodic color recollection (recognition). In the study phase of Experiment 1, the color of line drawings was either named or its appropriateness was judged. We found only weak implicit memory effects for categorical color information. In Experiment 2, silhouettes were colored by subjects during the study phase. Performances in both the implicit and the explicit test were good. Selections of "old" colors in the implicit test, though, were almost completely confined to items for which the color was also remembered explicitly. In Experiment 3, we applied the opposition technique in order to check whether we could find any implicit effects regarding items for which no explicit color recollection was possible. This was not the case. We therefore draw the conclusion that implicit color preference effects are not independent of explicit recollection, and that they are probably based on the same episodic memory traces that are used in explicit tests.
Variational methods for direct/inverse problems of atmospheric dynamics and chemistry
Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena
2013-04-01
We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the
Design method for marine direct drive volume control ahead actuator
Directory of Open Access Journals (Sweden)
WANG Haiyang
2018-02-01
Full Text Available [Objectives] In order to reduce the size, weight and auxiliary system configuration of marine ahead actuators, this paper proposes a kind of direct drive volume control electro-hydraulic servo ahead actuator. [Methods] The protruding and indenting control of the servo oil cylinder are realized through the forward and reverse of the bidirectional working gear pump, and the flow matching valve implements the self-locking of the ahead actuator in the target position. The mathematical model of the ahead actuator is established, and an integral separation fuzzy PID controller designed. On this basis, using AMESim software to build a simulation model of the ahead actuator, and combined with testing, this paper completes an analysis of the control strategy research and dynamic and static performance of the ahead actuator. [Results] The experimental results agree well with the simulation results and verify the feasibility of the ahead actuator's design. [Conclusions] The research results of this paper can provide valuable references for the integration and miniaturization design of marine ahead actuators.
Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.
Silas, Jonathan; Brandt, Karen R
2016-03-11
It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Park, Jin Young; Ryu, Vin; Ha, Ra Yeon; Lee, Su Jin; Choi, Won-Jung; Ha, Kyooseob; Cho, Hyun-Sang
2014-04-01
Although self-esteem is thought to be an important psychological factor in bipolar disorder, little is known about implicit and explicit self-esteem in manic patients. In this study, we investigated differences in implicit and explicit self-esteem among bipolar manic patients, bipolar euthymic patients, and healthy controls using the Implicit Association Test (IAT). Participants included 19 manic patients, 27 euthymic patients, and 27 healthy controls. Participants completed a self-esteem scale to evaluate explicit self-esteem and performed the self-esteem IAT to evaluate implicit self-esteem. There were no differences among groups in explicit self-esteem. However, there were significant differences among groups in implicit self-esteem. Manic patients had higher IAT scores than euthymic patients and a trend toward higher IAT scores than healthy controls. Our findings suggest that, on the latent level, a manic state is not simply the opposite of a depressed state. Furthermore, there may be a discontinuity of implicit self-esteem between manic and euthymic states. These unexpected results may be due to characteristics of the study participants or the methods used to assess implicit self-esteem. Nevertheless, they provide greater insights on the psychological status of manic patients. © 2014.
Tavelli, Maurizio; Dumbser, Michael
2017-07-01
We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In
Mono-implicit Runge Kutta schemes for singularly perturbed delay differential equations
Rihan, Fathalla A.; Al-Salti, Nasser S.
2017-09-01
In this paper, we adapt Mono-Implicit Runge-Kutta schemes for numerical approximations of singularly perturbed delay differential equations. The schemes are developed to reduce the computational cost of the fully implicit method which combine the accuracy of implicit method and efficient implementation. Numerical stability properties of the schemes are investigated. Numerical simulations are provided to show the effectiveness of the method for both stiff and non-stiff initial value problems.
Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method
Energy Technology Data Exchange (ETDEWEB)
Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief [Departement of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)
2014-02-24
Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.
Direct Survival Analysis: a new stock assessment method
Directory of Open Access Journals (Sweden)
Eduardo Ferrandis
2007-03-01
Full Text Available In this work, a new stock assessment method, Direct Survival Analysis, is proposed and described. The parameter estimation of the Weibull survival model proposed by Ferrandis (2007 is obtained using trawl survey data. This estimation is used to establish a baseline survival function, which is in turn used to estimate the specific survival functions in the different cohorts considered through an adaptation of the separable model of the fishing mortality rates introduced by Pope and Shepherd (1982. It is thus possible to test hypotheses on the evolution of survival during the period studied and to identify trends in recruitment. A link is established between the preceding analysis of trawl survey data and the commercial catch-at-age data that are generally obtained to evaluate the population using analytical models. The estimated baseline survival, with the proposed versions of the stock and catch equations and the adaptation of the Separable Model, may be applied to commercial catch-at-age data. This makes it possible to estimate the survival corresponding to the landing data, the initial size of the cohort and finally, an effective age of first capture, in order to complete the parameter model estimation and consequently the estimation of the whole survival and mortality, along with the reference parameters that are useful for management purposes. Alternatively, this estimation of an effective age of first capture may be obtained by adapting the demographic structure of trawl survey data to that of the commercial fleet through suitable selectivity models of the commercial gears. The complete model provides the evaluation of the stock at any age. The coherence (and hence the mutual “calibration” between the two kinds of information may be analysed and compared with results obtained by other methods, such as virtual population analysis (VPA, in order to improve the diagnosis of the state of exploitation of the population. The model may be
Nasir, N. F.; Mirus, M. F.; Ismail, M.
2017-09-01
Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.
Fukuda, Shuichi; Nauta, Bram
2013-01-01
PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital
Fukuda, Shuichi; Nauta, Bram
2014-01-01
PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital
Development of rupture process analysis method for great earthquakes using Direct Solution Method
Yoshimoto, M.; Yamanaka, Y.; Takeuchi, N.
2010-12-01
Conventional rupture process analysis methods using teleseismic body waves were based on ray theory. Therefore, these methods have the following problems in applying to great earthquakes such as 2004 Sumatra earthquake: (1) difficulty in computing all later phases such as the PP reflection phase, (2) impossibility of computing called “W phase”, the long period phase arriving before S wave, (3) implausibility of hypothesis that the distance is far enough from the observation points to the hypocenter compared to the fault length. To solve above mentioned problems, we have developed a new method which uses the synthetic seismograms computed by the Direct Solution Method (DSM, e.g. Kawai et al. 2006) as Green’s functions. We used the DSM software (http://www.eri.u-tokyo.ac.jp/takeuchi/software/) for computing the Green’s functions up to 1 Hz for the IASP91 (Kennett and Engdahl, 1991) model, and determined the final slip distributions using the waveform inversion method (Kikuchi et al. 2003). First we confirmed whether the Green’s functions computed by DSM were accurate in higher frequencies up to 1 Hz. Next we performed the rupture process analysis of this new method for Mw8.0 (GCMT) large Solomon Islands earthquake on April 1, 2007. We found that this earthquake consisted of two asperities and the rupture propagated across the subducting Sinbo ridge. The obtained slip distribution better correlates to the aftershock distributions than existing method. Furthermore, this new method keep same accuracy of existing method (which has the advantage of calculating) with respect to direct P-wave and reflection phases near the source, and also accurately calculate the later phases such a PP-wave.
Li, Haibin; He, Yun; Nie, Xiaobo
2018-01-01
Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
The explicit and implicit dance in psychoanalytic change.
Fosshage, James L
2004-02-01
How the implicit/non-declarative and explicit/declarative cognitive domains interact is centrally important in the consideration of effecting change within the psychoanalytic arena. Stern et al. (1998) declare that long-lasting change occurs in the domain of implicit relational knowledge. In the view of this author, the implicit and explicit domains are intricately intertwined in an interactive dance within a psychoanalytic process. The author views that a spirit of inquiry (Lichtenberg, Lachmann & Fosshage 2002) serves as the foundation of the psychoanalytic process. Analyst and patient strive to explore, understand and communicate and, thereby, create a 'spirit' of interaction that contributes, through gradual incremental learning, to new implicit relational knowledge. This spirit, as part of the implicit relational interaction, is a cornerstone of the analytic relationship. The 'inquiry' more directly brings explicit/declarative processing to the foreground in the joint attempt to explore and understand. The spirit of inquiry in the psychoanalytic arena highlights both the autobiographical scenarios of the explicit memory system and the mental models of the implicit memory system as each contributes to a sense of self, other, and self with other. This process facilitates the extrication and suspension of the old models, so that new models based on current relational experience can be gradually integrated into both memory systems for lasting change.
Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method
Iritani, T.; HAL QCD Collaboration
We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.
Are implicit self-esteem measures valid for assessing individual and cultural differences?
Falk, Carl F; Heine, Steven J; Takemura, Kosuke; Zhang, Cathy X J; Hsu, Chih-Wei
2015-02-01
Our research utilized two popular theoretical conceptualizations of implicit self-esteem: 1) implicit self-esteem as a global automatic reaction to the self; and 2) implicit self-esteem as a context/domain specific construct. Under this framework, we present an extensive search for implicit self-esteem measure validity among different cultural groups (Study 1) and under several experimental manipulations (Study 2). In Study 1, Euro-Canadians (N = 107), Asian-Canadians (N = 187), and Japanese (N = 112) completed a battery of implicit self-esteem, explicit self-esteem, and criterion measures. Included implicit self-esteem measures were either popular or provided methodological improvements upon older methods. Criterion measures were sampled from previous research on implicit self-esteem and included self-report and independent ratings. In Study 2, Americans (N = 582) completed a shorter battery of these same types of measures under either a control condition, an explicit prime meant to activate the self-concept in a particular context, or prime meant to activate self-competence related implicit attitudes. Across both studies, explicit self-esteem measures far outperformed implicit self-esteem measures in all cultural groups and under all experimental manipulations. Implicit self-esteem measures are not valid for individual or cross-cultural comparisons. We speculate that individuals may not form implicit associations with the self as an attitudinal object. © 2013 Wiley Periodicals, Inc.
Directed forgetting of complex pictures in an item method paradigm
Hauswald, Anne; Kissler, Johanna
2008-01-01
An item-cued directed forgetting paradigm was used to investigate the ability to control episodic memory and selectively encode complex coloured pictures. A series of photographs was presented to 21 participants who were instructed to either remember or forget each picture after it was presented. Memory performance was later tested with a recognition task where all presented items had to be retrieved, regardless of the initial instructions. A directed forgetting effect that is, better recogni...
Implicit time accurate simulation of unsteady flow
van Buuren, René; Kuerten, Hans; Geurts, Bernard J.
2001-03-01
Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright
Multigrid treatment of implicit continuum diffusion
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
Implicit Coordination Strategies for Effective Team Communication.
Butchibabu, Abhizna; Sparano-Huiban, Christopher; Sonenberg, Liz; Shah, Julie
2016-06-01
We investigated implicit communication strategies for anticipatory information sharing during team performance of tasks with varying degrees of complexity. We compared the strategies used by teams with the highest level of performance to those used by the lowest-performing teams to evaluate the frequency and methods of communications used as a function of task structure. High-performing teams share information by anticipating the needs of their teammates rather than explicitly requesting the exchange of information. As the complexity of a task increases to involve more interdependence among teammates, the impact of coordination on team performance also increases. This observation motivated us to conduct a study of anticipatory information sharing as a function of task complexity. We conducted an experiment in which 13 teams of four people performed collaborative search-and-deliver tasks with varying degrees of complexity in a simulation environment. We elaborated upon prior characterizations of communication as implicit versus explicit by dividing implicit communication into two subtypes: (a) deliberative/goal information and (b) reactive status updates. We then characterized relationships between task structure, implicit communication, and team performance. We found that the five teams with the fastest task completion times and lowest idle times exhibited higher rates of deliberative communication versus reactive communication during high-complexity tasks compared with the five teams with the slowest completion times and longest idle times (p = .039). Teams in which members proactively communicated information about their next goal to teammates exhibited improved team performance. The findings from our work can inform the design of communication strategies for team training to improve performance of complex tasks. © 2016, Human Factors and Ergonomics Society.
Series-parallel method of direct solar array regulation
Gooder, S. T.
1976-01-01
A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.
Sleep Can Eliminate List-Method Directed Forgetting
Abel, Magdalena; Bäuml, Karl-Heinz T.
2013-01-01
Recent work suggests a link between sleep and memory consolidation, indicating that sleep in comparison to wakefulness stabilizes memories. However, relatively little is known about how sleep affects forgetting. Here we examined whether sleep influences directed forgetting, the finding that people can intentionally forget obsolete memories when…
Directory of Open Access Journals (Sweden)
Sergiu Ciprian Catinas
2015-07-01
Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.
29 CFR 4211.13 - Modifications to the direct attribution method.
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Modifications to the direct attribution method. 4211.13... Changes Not Subject to PBGC Approval § 4211.13 Modifications to the direct attribution method. (a) Error in direct attribution method. The unfunded vested benefits allocated to a withdrawing employer under...
Development and Validation of a Bioanalytical Method for Direct ...
African Journals Online (AJOL)
Purpose: To develop and validate a user-friendly spiked plasma method for the extraction of diclofenac potassium that reduces the number of treatments with plasma sample, in order to minimize human error. Method: Instead of solvent evaporation technique, the spiked plasma sample was modified with H2SO4 and NaCl, ...
Method of operating a direct dme fuel cell system
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...
Blind compressed sensing image reconstruction based on alternating direction method
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
Exactly energy conserving semi-implicit particle in cell formulation
International Nuclear Information System (INIS)
Lapenta, Giovanni
2017-01-01
We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These
Exactly energy conserving semi-implicit particle in cell formulation
Energy Technology Data Exchange (ETDEWEB)
Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be
2017-04-01
We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These
RESEARCH OF IMPLICIT ATTITUDES TOWARDS GAMBLING FOR GAMBLERS AND NON-GAMBLERS
Plotka, Irina; Blumenau, Nina; Vinogradova, Zhanna
2016-01-01
The importance of studying attitudes towards gambling has been recently recognized in the field of gambling. Research aim is to examine whether non-gamblers and gamblers exhibit both positive and negative implicit attitudes towards gambling-related stimuli. Research questions: (I) What is the valence of implicit associations with gambling among gamblers and non-gamblers? (II) Are the differences in attitudes towards gambling revealed by explicit and implicit methods among gamblers and non–gam...
Implicit persuasion of voters in the 2012 Slovak republic parliamentary elections
Cíbik Lukáš
2016-01-01
The aim of the article is to see the degree of implicit position and value correlation between the voters of particular political parties in Slovakia (SMER-SD, SaS, and SDKÚ-DS). The free association method is supposed to reveal implicit purposes of individual political issues, beliefs and values in the eyes of their voters. Social representations, public discourse and implicit purposes objectified and anchored in civil society by the political elites are obtained by the discrete association ...
Changing theories of change: strategic shifting in implicit theory endorsement.
Leith, Scott A; Ward, Cindy L P; Giacomin, Miranda; Landau, Enoch S; Ehrlinger, Joyce; Wilson, Anne E
2014-10-01
People differ in their implicit theories about the malleability of characteristics such as intelligence and personality. These relatively chronic theories can be experimentally altered, and can be affected by parent or teacher feedback. Little is known about whether people might selectively shift their implicit beliefs in response to salient situational goals. We predicted that, when motivated to reach a desired conclusion, people might subtly shift their implicit theories of change and stability to garner supporting evidence for their desired position. Any motivated context in which a particular lay theory would help people to reach a preferred directional conclusion could elicit shifts in theory endorsement. We examine a variety of motivated situational contexts across 7 studies, finding that people's theories of change shifted in line with goals to protect self and liked others and to cast aspersions on disliked others. Studies 1-3 demonstrate how people regulate their implicit theories to manage self-view by more strongly endorsing an incremental theory after threatening performance feedback or memories of failure. Studies 4-6 revealed that people regulate the implicit theories they hold about favored and reviled political candidates, endorsing an incremental theory to forgive preferred candidates for past gaffes but leaning toward an entity theory to ensure past failings "stick" to opponents. Finally, in Study 7, people who were most threatened by a previously convicted child sex offender (i.e., parents reading about the offender moving to their neighborhood) gravitated most to the entity view that others do not change. Although chronic implicit theories are undoubtedly meaningful, this research reveals a previously unexplored source of fluidity by highlighting the active role people play in managing their implicit theories in response to goals. 2014 APA, all rights reserved
Implicit versus explicit associative learning and experimentally induced placebo hypoalgesia
Directory of Open Access Journals (Sweden)
Andrea L Martin-Pichora
2011-03-01
Full Text Available Andrea L Martin-Pichora1,2, Tsipora D. Mankovsky-Arnold3, Joel Katz11Department of Psychology, York University, Toronto, ON, Canada; 2Centre for Student Development and Counseling, Ryerson University, Toronto, ON, Canada; 3Department of Psychology, McGill University, Montreal, QC, CanadaAbstract: The present study examined whether 1 placebo hypoalgesia can be generated through implicit associative learning (ie, conditioning in the absence of conscious awareness and 2 the magnitude of placebo hypoalgesia changes when expectations about pain are made explicit. The temperature of heat pain stimuli was surreptitiously lowered during conditioning trials for the placebo cream and the magnitude of the placebo effect was assessed during a subsequent set of trials when the temperature was the same for both placebo and control conditions. To assess whether placebo hypoalgesia could be generated from an implicit tactile stimulus, a 2 × 2 design was used with direction of cream application as one factor and verbal information about which cream was being applied as the second factor. A significant placebo effect was observed when participants received verbal information about which cream was being applied but not following implicit conditioning alone. However, 87.5% of those who showed a placebo response as the result of implicit conditioning were able to accurately guess the order of cream application during the final trial, despite a lack of awareness about the sensory manipulation and low confidence in their ratings, suggesting implicit learning in some participants. In summary, implicit associative learning was evident in some participants but it was not sufficient to produce a placebo effect suggesting some level of explicit expectation or cognitive mediation may be necessary. Notably, the placebo response was abolished when expectations were made explicit, suggesting a delicate interplay between attention and expectation.Keywords: placebo hypoalgesia
Implicit learning in psychotic patients
Schmand, B.; Kop, W. J.; Kuipers, T.; Bosveld, J.
1992-01-01
Implicit verbal learning of psychotic patients (n = 59) and non-psychotic control patients (n = 20) was studied using stem completion and association tasks in lexical and semantic priming paradigms. Performance on these tasks was contrasted with explicit memory on Rey's verbal learning test.
Media multitasking and implicit learning.
Edwards, Kathleen S; Shin, Myoungju
2017-07-01
Media multitasking refers to the simultaneous use of different forms of media. Previous research comparing heavy media multitaskers and light media multitaskers suggests that heavy media multitaskers have a broader scope of attention. The present study explored whether these differences in attentional scope would lead to a greater degree of implicit learning for heavy media multitaskers. The study also examined whether media multitasking behaviour is associated with differences in visual working memory, and whether visual working memory differentially affects the ability to process contextual information. In addition to comparing extreme groups (heavy and light media multitaskers) the study included analysis of people who media multitask in moderation (intermediate media multitaskers). Ninety-four participants were divided into groups based on responses to the media use questionnaire, and completed the contextual cueing and n-back tasks. Results indicated that the speed at which implicit learning occurred was slower in heavy media multitaskers relative to both light and intermediate media multitaskers. There was no relationship between working memory performance and media multitasking group, and no relationship between working memory and implicit learning. There was also no evidence for superior performance of intermediate media multitaskers. A deficit in implicit learning observed in heavy media multitaskers is consistent with previous literature, which suggests that heavy media multitaskers perform more poorly than light media multitaskers in attentional tasks due to their wider attentional scope.
Implicit, explicit and speculative knowledge
van Ditmarsch, H.; French, T.; Velázquez-Quesada, F.R.; Wáng, Y.N.
We compare different epistemic notions in the presence of awareness of propositional variables: the logic of implicit knowledge (in which explicit knowledge is definable), the logic of explicit knowledge, and the logic of speculative knowledge. Speculative knowledge is a novel epistemic notion that
Towards a Formal Treatment of Implicit Invocation
National Research Council Canada - National Science Library
Dingel, J
1997-01-01
.... A formal computational model for implicit invocation is presented. We develop a verification framework for implicit invocation that is based on Jones' rely/guarantee reasoning for concurrent systems Jon83,St(phi)91...
Direct mounted photovoltaic device with improved adhesion and method thereof
Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C
2014-12-23
The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.
Ducted combustion chamber for direct injection engines and method
Mueller, Charles
2015-03-03
An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.
"Whole" Ballet Education: Exploring Direct and Indirect Teaching Methods
Choi, Euichang; Kim, Na-ye
2015-01-01
The purpose of this study was to explore teaching methods for whole ballet in Korean ballet education. This study built upon a first phase of research that identified the educational content of "whole" ballet. Four dimensions were identified as the educational content: "physical," "cognitive," "emotional"…
Divergence of Scientific Heuristic Method and Direct Algebraic Instruction
Calucag, Lina S.
2016-01-01
This is an experimental study, made used of the non-randomized experimental and control groups, pretest-posttest designs. The experimental and control groups were two separate intact classes in Algebra. For a period of twelve sessions, the experimental group was subjected to the scientific heuristic method, but the control group instead was given…
Job Search as Goal-Directed Behavior: Objectives and Methods
Van Hoye, Greet; Saks, Alan M.
2008-01-01
This study investigated the relationship between job search objectives (finding a new job/turnover, staying aware of job alternatives, developing a professional network, and obtaining leverage against an employer) and job search methods (looking at job ads, visiting job sites, networking, contacting employment agencies, contacting employers, and…
Direct dating of fossils by the helium-uranium method
International Nuclear Information System (INIS)
Schaeffer, O.A.
1967-01-01
The He-U method has been found to be applicable to the dating of fossil carbonates. This method furnishes a new dating technique particularly applicable to the Pleistocene and the Tertiary periods, especially the Late Tertiary, for which other methods of age dating either fail or are difficult to correlate with the fossil record. The method has been checked for possible losses of helium and uranium from or to the surroundings. It has been found that, while a calcite lattice does not appear to retain helium, if the lattice is aragonite there is good evidence that helium leakage is not a problem. This is true at least for times up to 20 m. y. For corals where the uranium is apparently uniformly distributed within the lattice as a trace element, the uranium does not exchange or undergo concentration changes. As a result aragonite corals yield reliable He-U ages. On the other hand, the uranium in mollusc fossils is apparently mainly in the grain boundaries and is not always a tight system as far as uranium exchange or concentration changes are concerned. To obtain a reliable age for a mollusc one needs additional evidence to ensure lack of changes in uranium concentration. If the measurement of U and He is combined with 238 U, 234 U and 230 Th determinations, it appears that many mollusc shells will also be datable by the method. The resulting evidence for secular equilibrium in the 238 U chain is good evidence for a closed system as far as U concentration changes are concerned. (author)
29 CFR 4211.35 - Direct attribution method for withdrawals after the initial plan year.
2010-07-01
... WITHDRAWING EMPLOYERS Allocation Methods for Merged Multiemployer Plans § 4211.35 Direct attribution method for withdrawals after the initial plan year. The allocation method under this section is the... 29 Labor 9 2010-07-01 2010-07-01 false Direct attribution method for withdrawals after the initial...
Managers' implicit and explicit risk-attitudes in managerial decision making
Bittner, Jenny; Landwehr, Julia; Hertel, Guido; Binnewies, Carmen; Krumm, Stefan; Holling, Heinz; Kleinmar, Martin
2013-01-01
Purpose We examined the contribution of implicit and explicit risk-attitudes to the prediction of risky management decisions. Indirect methods allow for the measurement of implicit attitudes, while self-report is typically used to measure explicit, reflective attitudes. Indirect methods make it
Meinders, Vincent T.; van den Boogaard, Antonius H.; Huetink, Han
2003-01-01
To intensify the use of implicit finite element codes for solving large scale problems, the computation time of these codes has to be decreased drastically. A method is developed which decreases the computational time of implicit codes by factors. The method is based on introducing inertia effects
Direct methods for measuring radionuclides in the human body
International Nuclear Information System (INIS)
1996-01-01
Occupational exposure leading to intakes of internally incorporated radionuclides can occur as a result of various activities. This includes work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve exposure to enhanced levels of naturally occurring radionuclides. In 1987 the IAEA published a Safety Guide on basic principles for occupational radiation monitoring which set forth principles and objectives of a strategy for monitoring exposures of workers. Since drafting of the present Safety Practice commenced, the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) have been issued. On the basis of the principles laid down in the BSS, the 1987 Safety Guide is also being revised, and recommendations on the assessment of the occupational intake of radioactive materials are to be added. The present Safety Practice, which deals with direct measurement of radionuclides in the human body, is the first to be published in this area. Refs, figs, tabs
29 CFR 4206.7 - Amount of credit in plans using the direct attribution method.
2010-07-01
... TO A PARTIAL WITHDRAWAL § 4206.7 Amount of credit in plans using the direct attribution method. In a plan that uses the direct attribution allocation method described in section 4211(c)(4) of ERISA, the... 29 Labor 9 2010-07-01 2010-07-01 false Amount of credit in plans using the direct attribution...
Training implicit social anxiety associations: an experimental intervention.
Clerkin, Elise M; Teachman, Bethany A
2010-04-01
The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. (c) 2010 Elsevier Ltd. All rights reserved.
Creemers, Daan H M; Scholte, Ron H J; Engels, Rutger C M E; Prinstein, Mitchell J; Wiers, Reinout W
2012-03-01
The aim of the present study was to examine whether explicit and implicit self-esteem, the interaction between these two constructs, and their discrepancy are associated with depressive symptoms, suicidal ideation, and loneliness. Participants were 95 young female adults (M = 21.2 years, SD = 1.88) enrolled in higher education. We administered the Name Letter Task to measure implicit self-esteem, and the Rosenberg self-esteem scale to assess explicit self-esteem. The results indicated that explicit but not implicit self-esteem was negatively associated with depressive symptoms, suicidal ideation, and loneliness. The interaction of implicit and explicit self-esteem was associated with suicidal ideation, indicating that participants with high implicit self-esteem combined with a low explicit self-esteem showed more suicidal ideation. Furthermore, the size of the discrepancy between implicit and explicit self-esteem was positively associated with depressive symptoms, suicidal ideation, and loneliness. In addition, results showed that the direction of the discrepancy is an important: damaged self-esteem (high implicit self-esteem combined with low explicit self-esteem) was consistently associated with increased levels of depressive symptoms, suicidal ideation, and loneliness, while defensive or fragile self-esteem (high explicit and low implicit self-esteem) was not. Together, these findings provide new insights into the relationship of implicit and explicit self-esteem with depressive symptoms, suicidal ideation, and loneliness. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Trendel, Olivier; Werle, Carolina O C
2016-09-01
Eating behaviors largely result from automatic processes. Yet, in existing research, automatic or implicit attitudes toward food often fail to predict eating behaviors. Applying findings in cognitive neuroscience research, we propose and find that a central reason why implicit attitudes toward food are not good predictors of eating behaviors is that implicit attitudes are driven by two distinct constructs that often have diverging evaluative consequences: the automatic affective reactions to food (e.g., tastiness; the affective basis of implicit attitudes) and the automatic cognitive reactions to food (e.g., healthiness; the cognitive basis of implicit attitudes). More importantly, we find that the affective and cognitive bases of implicit attitudes directly and uniquely influence actual food choices under different conditions. While the affective basis of implicit attitude is the main driver of food choices, it is the only driver when cognitive resources during choice are limited. The cognitive basis of implicit attitudes uniquely influences food choices when cognitive resources during choice are plentiful but only for participants low in impulsivity. Researchers interested in automatic processes in eating behaviors could thus benefit by distinguishing between the affective and cognitive bases of implicit attitudes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Consider the source: persuasion of implicit evaluations is moderated by source credibility.
Smith, Colin Tucker; De Houwer, Jan; Nosek, Brian A
2013-02-01
The long history of persuasion research shows how to change explicit, self-reported evaluations through direct appeals. At the same time, research on how to change implicit evaluations has focused almost entirely on techniques of retraining existing evaluations or manipulating contexts. In five studies, we examined whether direct appeals can change implicit evaluations in the same way as they do explicit evaluations. In five studies, both explicit and implicit evaluations showed greater evidence of persuasion following information presented by a highly credible source than a source low in credibility. Whereas cognitive load did not alter the effect of source credibility on explicit evaluations, source credibility had an effect on the persuasion of implicit evaluations only when participants were encouraged and able to consider information about the source. Our findings reveal the relevance of persuasion research for changing implicit evaluations and provide new ideas about the processes underlying both types of evaluation.
A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...
African Journals Online (AJOL)
In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...
Are implicit emotion measurements evoked by food unrelated to liking?
Mojet, Jozina; Dürrschmid, Klaus; Danner, Lukas; Jöchl, Max; Heiniö, Raija Liisa; Holthuysen, Nancy; Köster, Egon
2015-01-01
In an effort to find a simple method to measure implicit and unconscious emotional effects of food consumption, a number of methods were compared in an experiment in which 3 groups of at least 24 subjects were each exposed to a pair of yoghurts of the same brand and marketed in the same way, but
High school students' implicit theories of what facilitates science learning
Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael
2011-11-01
Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think
Directions in implementation research methods for behavioral and social science.
Irwin, Molly; Supplee, Lauren H
2012-10-01
There is a growing interest, by researchers, policymakers, and practitioners, in evidence-based policy and practice. As a result, more dollars are being invested in program evaluation in order to establish "what works," and in some cases, funding is specifically tied to those programs found to be effective. However, reproducing positive effects found in research requires more than simply adopting an evidence-based program. Implementation research can provide guidance on which components of an intervention matter most for program impacts and how implementation components can best be implemented. However, while the body of rigorous research on effective practices continues to grow, research on implementation lags behind. To address these issues, the Administration for Children and Families and federal partners convened a roundtable meeting entitled, Improving Implementation Research Methods for Behavioral and Social Science, in the fall of 2010. This special section of the Journal of Behavioral Health Services & Research includes papers from the roundtable and highlights the role implementation science can play in shedding light on the difficult task of taking evidence-based practices to scale.
Multipole lenses with implicit poles and with harmonic distribution of current density in a coil
International Nuclear Information System (INIS)
Skachkov, V.S.
1984-01-01
General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed
Khataybeh, S. N.; Hashim, I.
2018-04-01
In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.
Implicit function with natural behavior over entire domain
International Nuclear Information System (INIS)
Itoh, Taku; Saitoh, Ayumu; Kamitani, Atsushi; Nakamura, Hiroaki
2012-01-01
To generate a smooth implicit function that behaves naturally over an entire domain, a method to smoothly combine an implicit function f(x) with a global support function g(x) has been proposed. The proposed method can be applied to large scattered point data, since the implicit function f(x) is generated by a partition-of-unity-based method. The global support function g(x) is generated by a radial basis function-based method or by the least-squares method. To ensure a smooth combination of f(x) and g(x), an appropriate weight function is employed. In numerical experiments, the proposed method is applied to large point data. The results illustrate that the proposed method can generate a smooth implicit function F(x) with natural behavior over the entire domain. In addition, on the given points, the accuracy of F(x) is exactly the same as that of f(x). Furthermore, the computational cost for generation of F(x) is almost the same as that of f(x). (author)
International Nuclear Information System (INIS)
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-01
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
Can implicit motivation be measured?
DEFF Research Database (Denmark)
Kraus, Alexandra; Scholderer, Joachim
According to recent neurobiological models, food choices are influenced by two separate reward systems: motivational wanting (incentive salience of the reward) and affective liking (hedonic pleasure associated with the reward). Both are assumed to have conscious and unconscious components. Applying...... such promising conceptual frameworks within consumer research would not only be helpful for understanding human appetite but also has implications for predicting consumer behaviour. Since the affective liking system has strong similarities to contemporary attitude theories, implicit and explicit measures...... of evaluation could be applied. However, no comparable procedures have been developed for the motivational wanting component; generally accepted “low-tech” measures are therefore still lacking! Thus, the aim of this study was to develop and test implicit measures of wanting that can be used as dependent...
Implicit normativity in scientific advice
DEFF Research Database (Denmark)
Folker, Anna Paldam; Andersen, Hanne; Sandøe, Peter
2008-01-01
This paper focuses on implicit normative considerations underlying scientific advice-those normative questions, decisions, or issues that scientific advisers and the general public are not fully aware of but that nevertheless have implications for the character of the advice given. Using...... nutritional science as an example, we identify three such implicit normative issues. The first concerns the aim of scientific advice: whether it is about avoiding harm or promoting good. The second concerns the intended beneficiaries of the advice: whether advice should be framed to benefit the society...... as a whole or with special concern for the most vulnerable members of the population. The third consideration involves scientific advisers' attempts to balance the strengths of the scientific evidence with the expected consequences of scientific advice. We hope to promote more explicit discussion...
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Object recognition by implicit invariants
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Kautsky, J.; Šroubek, Filip
2007-01-01
Roč. 2007, č. 4673 (2007), s. 856-863 ISSN 0302-9743. [Computer Analysis of Images and Patterns. Vienna, 27.08.2007-29.08.2007] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Invariants * implicit invariants * moments * orthogonal polynomials * nonlinear object deformation Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.402, year: 2005 http:// staff .utia.cas.cz/sroubekf/papers/CAIP_07.pdf
Securities regulation and implicit penalties
Directory of Open Access Journals (Sweden)
Donghua Chen
2011-06-01
Full Text Available The extant literature offers extensive support for the significant role played by institutions in financial markets, but implicit regulation and monitoring have yet to be examined. This study fills this void in the literature by employing unique Chinese datasets to explore the implicit regulation and penalties imposed by the Chinese government in regulating the initial public offering (IPO market. Of particular interest are the economic consequences of underwriting IPO deals for client firms that violate regulatory rules in China’s capital market. We provide evidence to show that the associated underwriters’ reputations are impaired and their market share declines. We further explore whether such negative consequences result from a market disciplinary mechanism or a penalty imposed by the government. To analyze the possibility of a market disciplinary mechanism at work, we investigate (1 the market reaction to other client firms whose IPO deals were underwritten by underwriters associated with a violation at the time the violation was publicly disclosed and (2 the under-pricing of IPO deals undertaken by these underwriters after such disclosure. To analyze whether the government imposes an implicit penalty, we examine the application processing time for future IPO deals underwritten by the associated underwriters and find it to be significantly longer than for IPO deals underwritten by other underwriters. Overall, there is little evidence to suggest that the market penalizes underwriters for the rule-violating behavior of their client firms in China. Instead, the Chinese government implicitly penalizes them by imposing more stringent criteria on and lengthening the processing time of the IPO deals they subsequently underwrite.
Explicit Versus Implicit Income Insurance
Thomas J. Kniesner; James P. Ziliak
2001-01-01
October 2001 (Revised from July 2001). Abstract: By supplementing income explicitly through payments or implicitly through taxes collected, income-based taxes and transfers make disposable income less variable. Because disposable income determines consumption, policies that smooth disposable income also create welfare improving consumption insurance. With data from the Panel Study of Income Dynamics we find that annual consumption variation is reduced by almost 20 percent due to explicit and ...
A point implicit time integration technique for slow transient flow problems
Energy Technology Data Exchange (ETDEWEB)
Kadioglu, Samet Y., E-mail: kadioglu@yildiz.edu.tr [Department of Mathematical Engineering, Yildiz Technical University, 34210 Davutpasa-Esenler, Istanbul (Turkey); Berry, Ray A., E-mail: ray.berry@inl.gov [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States); Martineau, Richard C. [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)
2015-05-15
Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very
A point implicit time integration technique for slow transient flow problems
International Nuclear Information System (INIS)
Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.
2015-01-01
Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very
[Psychological theory and implicit sociology.].
Sévigny, R
1983-01-01
This text is based on the hypothesis that every theory on the psychology of personality must inevitably, in one manner or another, have a sociological referent, that is to say, it must refer to a body of knowledge which deals with a diversity of social contexts and their relations to individuals. According to this working hypothesis, such a sociology is implicit. This text then discusses a group of theoretical approaches in an effort to verify this hypothesis. This approach allows the extrication of diverse forms or diverse expressions of this implicit sociology within this context several currents are rapidly explored : psychoanalysis, behaviorism, gestalt, classical theory of needs. The author also comments on the approach, inspired by oriental techniques or philosophies, which employs the notion of myth to deepen self awareness. Finally, from the same perspective, he comments at greater length on the work of Carl Rogers, highlighting the diverse form of implicit sociology. In addition to Carl Rogers, this text refers to Freud, Jung, Adler, Reich, Perls, Goodman, Skinner as well as to Ginette Paris and various analysts of Taoism. In conclusion, the author indicates the significance of his analysis from double viewpoint of psychological theory and practice.
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
Cognitive load disrupts implicit theory-of-mind processing.
Schneider, Dana; Lam, Rebecca; Bayliss, Andrew P; Dux, Paul E
2012-08-01
Eye movements in Sally-Anne false-belief tasks appear to reflect the ability to implicitly monitor the mental states of other individuals (theory of mind, or ToM). It has recently been proposed that an early-developing, efficient, and automatically operating ToM system subserves this ability. Surprisingly absent from the literature, however, is an empirical test of the influence of domain-general executive processing resources on this implicit ToM system. In the study reported here, a dual-task method was employed to investigate the impact of executive load on eye movements in an implicit Sally-Anne false-belief task. Under no-load conditions, adult participants displayed eye movement behavior consistent with implicit belief processing, whereas evidence for belief processing was absent for participants under cognitive load. These findings indicate that the cognitive system responsible for implicitly tracking beliefs draws at least minimally on executive processing resources. Thus, even the most low-level processing of beliefs appears to reflect a capacity-limited operation.
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei
2012-07-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
Implicit Associations with Popularity in Early Adolescence: An Approach-Avoidance Analysis
Lansu, Tessa A. M.; Cillessen, Antonius H. N.; Karremans, Johan C.
2012-01-01
This study examined 241 early adolescents' implicit and explicit associations with popularity. The peer status and gender of both the targets and the perceivers were considered. Explicit associations with popularity were assessed with sociometric methods. Implicit associations with popularity were assessed with an approach-avoidance task (AAT).…
Implicit thermohydraulic coupling of two-phause flow calculations
International Nuclear Information System (INIS)
Lekach, S.; Kaufman, J.M.
1980-01-01
A numerical scheme that implicitly couples the hydraulic variables with thermal variables during a one or two-phase transient calculation in a one-dimensional pipe is presented. The transients are performed to achieve a steady-state condition. It is shown that by preserving the strong interdependence that exists between the hydraulic and thermal variables with an implicit flux treatment, it is possible to achieve a greater degree of numerical stability and in less computer time than with an explicit treatment. The method is slightly more complex but the large time step advantage more than pays for the overhead
Implicit integration of plasticity models for granular materials
DEFF Research Database (Denmark)
Ahadi, A.; Krenk, Steen
2003-01-01
A stress integration algorithm for granular materials based on fully implicit integration with explicit updating is presented. In the implicit method the solution makes use of the gradient to the potential surface at the final stress state which is unknown. The final stress and hardening parameters...... stresses are not supported the functions and their derivatives are not representative outside the compressive octant of the principal stress space. The elastic predictor is therefore preconditioned in order to ensure that the first predictor is within the valid region. Capability and robustness...
An alternative method for the measurement of the mechanical impulse of a vertically directed blast
CSIR Research Space (South Africa)
Turner, GR
2008-01-01
Full Text Available An alternative method for the measurement of the total mechanical impulse of a vertically directed blast due to an explosive charge is presented. The method differs from apparatus that employ a vertically displaced mass (similar in principle...
Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme
van Noorden, Cornelis J. F.
2002-01-01
Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is
Directory of Open Access Journals (Sweden)
Nasim Ariana
2016-11-01
Full Text Available This study attempted to investigate the extent to which two types of pragmatic instruction -explicit versus implicit- affect learners’ knowledge in terms of their awareness and production of request strategies. Thirty students with the same level of proficiency were divided into two groups (explicit and implicit. They were exposed to listening excerpts taken from the book Tactics for Listening, with the focus on request making strategies. While the explicit group was equipped with direct awareness-raising tasks and written metapragmatic explanations on the use of appropriate requests, the implicit group was provided with a set of implicit awareness-raising tasks. Outcomes of the study demonstrate that pragmatic instruction of requesting improved learners’ awareness of both groups. Also an improvement of learners’ production of requests did take place in both groups after the interventional period. However, the explicit group outperformed the implicit one as far as production of request making was concerned.
Real time ray tracing of skeletal implicit surfaces
DEFF Research Database (Denmark)
Rouiller, Olivier; Bærentzen, Jakob Andreas
Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...
Efficient implicit FEM simulation of sheet metal forming
van den Boogaard, Antonius H.; Meinders, Vincent T.; Huetink, Han
2003-01-01
For the simulation of industrial sheet forming processes, the time discretisation is one of the important factors that determine the accuracy and efficiency of the algorithm. For relatively small models, the implicit time integration method is preferred, because of its inherent equilibrium check.
Implicit Procedural Learning in Fragile X and Down Syndrome
Bussy, G.; Charrin, E.; Brun, A.; Curie, A.; des Portes, V.
2011-01-01
Background: Procedural learning refers to rule-based motor skill learning and storage. It involves the cerebellum, striatum and motor areas of the frontal lobe network. Fragile X syndrome, which has been linked with anatomical abnormalities within the striatum, may result in implicit procedural learning deficit. Methods: To address this issue, a…
Schnabel, Konrad; Banse, Rainer; Asendorpf, Jens B
2006-06-01
This study explored the psychometric properties of the Implicit Association Test (IAT) when it is employed for the assessment of two personality traits within one sample. The sequence of an anxiousness and an angriness IAT was counterbalanced across 100 participants and the IATs' predictive validity for anxious versus angry behaviour after emotion inductions was examined and compared to direct self-report measures. The anxiousness IAT added incremental validity over direct measures for the prediction of anxious behaviour. The angriness IAT was affected by an order effect. When the angriness IAT was completed after the anxiousness IAT both tests correlated with r=.46 whereas they were not significantly correlated when the angriness IAT was completed first. Direct anxiousness and angriness measures were uncorrelated. Implications for the assessment of multiple implicit personality self-concept dimensions are discussed.
IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems
Hujeirat, A.
1998-07-01
The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and
Making the implicit explicit: A look inside the implicit discount rate
International Nuclear Information System (INIS)
Schleich, Joachim; Gassmann, Xavier; Faure, Corinne; Meissner, Thomas
2016-01-01
Implicit discount rates (IDRs) are employed in energy models to capture household investment decisions, yet the factors behind the IDR and their respective implications for policy-making usually remain blurred and fractional. The proposed comprehensive framework distinguishes three broad categories of factors underlying the IDR for household adoption of energy-efficient technologies (EETs): preferences (notably over time, risk, loss, debt, and the environment), predictable (ir)rational behavior (bounded rationality, rational inattention, behavioral biases), and external barriers to energy efficiency. Existing empirical findings suggest that the factors underlying the IDRs that differ across household characteristics and technologies should be accounted for in energy models. Furthermore, the framework allows for a fresh look at the interplay of IDRs and policies. We argue that a simple observation of high IDRs (or observing correlations between IDRs and socio-economic characteristics) does not provide guidance for policy-making since the underlying sources cannot be identified. Instead, we propose that some of the factors underlying the IDR - notably external barriers - can be changed (through directed policy interventions) whereas other factors - notably preferences and predictable (ir)rational behavior - are innate and can only be taken into account (through reactive policy interventions). - Highlights: • Implicit discount rates (IDRs) reflect preferences, predictable (ir)rational behaviors and external barriers. • The factors underlying the IDRs can be used to design directed and reactive policies. • IDRs in energy models should vary by household and technology characteristics.
Implicitly Weighted Methods in Robust Image Analysis
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2012-01-01
Roč. 44, č. 3 (2012), s. 449-462 ISSN 0924-9907 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robustness * high breakdown point * outlier detection * robust correlation analysis * template matching * face recognition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.767, year: 2012
Hybrid Polling Method for Direct Link Communication for IEEE 802.11 Wireless LANs
Directory of Open Access Journals (Sweden)
Woo-Yong Choi
2008-10-01
Full Text Available The direct link communication between STAtions (STAs is one of the techniques to improve the MAC performance of IEEE 802.11 infrastructure networks. For the efficient direct link communication, in the literature, the simultaneous polling method was proposed to allow the multiple direct data communication to be performed simultaneously. However, the efficiency of the simultaneous polling method is affected by the interference condition. To alleviate the problem of the lower polling efficiency with the larger interference range, the hybrid polling method is proposed for the direct link communication between STAs in IEEE 802.11 infrastructure networks. By the proposed polling method, we can integrate the sequential and simultaneous polling methods properly according to the interference condition. Numerical examples are also presented to show the medium access control (MAC performance improvement by the proposed polling method.
International Nuclear Information System (INIS)
Santoso, Agus; Darsono; Sujitno, Tjipto; Suprapto
1996-01-01
Fabrication and characterization of hydrogenated amorphous silicon produced by direct evaporation method have been done. The experiment was carried out at pressure conditions of 2 x 10-5 torr, RF frequency of 13.56 MHz, hydrogen gas flow of 0,8 1/minute, electrode distance of 2.48 cm. voltage electrode of 700 volt and evaporation time 1.45 minute. Using UV-VIS spectrophotometer, it is found that at wavelength of 359 nm, the absorbance degree of material that was by direct hydrogenated method was 0,886. This means that more hydrogen are absorbed by direct method While, if the hydrogenation is carried out by means of indirect method, the degree of absorbance at the wavelength of 359 nm is 0,103. From this result, it can be concluded that the direct methods is better than indirect method
Directory of Open Access Journals (Sweden)
Minghua Xu
2014-01-01
Full Text Available We consider the problem of seeking a symmetric positive semidefinite matrix in a closed convex set to approximate a given matrix. This problem may arise in several areas of numerical linear algebra or come from finance industry or statistics and thus has many applications. For solving this class of matrix optimization problems, many methods have been proposed in the literature. The proximal alternating direction method is one of those methods which can be easily applied to solve these matrix optimization problems. Generally, the proximal parameters of the proximal alternating direction method are greater than zero. In this paper, we conclude that the restriction on the proximal parameters can be relaxed for solving this kind of matrix optimization problems. Numerical experiments also show that the proximal alternating direction method with the relaxed proximal parameters is convergent and generally has a better performance than the classical proximal alternating direction method.
Implicit and explicit attitudes among students
Félix Neto
2009-01-01
Mental processing and mental experience is not the same thing. The former is the operation of the mind; the latter is the subjective life that emerges from these operations. In social evaluation, implicit and explicit attitudes express this distinction. https://implicit.harvard.edu/ was created to provide experience with the Implicit Association Test (IAT) a procedure designed to measure social knowledge that may operate outside of awareness. In this paper we examined the relationships betwee...
Direct determination of scattering time delays using the R-matrix propagation method
International Nuclear Information System (INIS)
Walker, R.B.; Hayes, E.F.
1989-01-01
A direct method for determining time delays for scattering processes is developed using the R-matrix propagation method. The procedure involves the simultaneous generation of the global R matrix and its energy derivative. The necessary expressions to obtain the energy derivative of the S matrix are relatively simple and involve many of the same matrix elements required for the R-matrix propagation method. This method is applied to a simple model for a chemical reaction that displays sharp resonance features. The test results of the direct method are shown to be in excellent agreement with the traditional numerical differentiation method for scattering energies near the resonance energy. However, for sharp resonances the numerical differentiation method requires calculation of the S-matrix elements at many closely spaced energies. Since the direct method presented here involves calculations at only a single energy, one is able to generate accurate energy derivatives and time delays much more efficiently and reliably
Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests
Tóth, G.; Keppens, R.; Bochev, Mikhail A.
1998-01-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
Implicit and explicit processes in social cognition
DEFF Research Database (Denmark)
Frith, Christopher; Frith, Uta
2008-01-01
In this review we consider research on social cognition in which implicit processes can be compared and contrasted with explicit, conscious processes. In each case, their function is distinct, sometimes complementary and sometimes oppositional. We argue that implicit processes in social interaction...... are automatic and are often opposed to conscious strategies. While we are aware of explicit processes in social interaction, we cannot always use them to override implicit processes. Many studies show that implicit processes facilitate the sharing of knowledge, feelings, and actions, and hence, perhaps...
Implicit Attitudes Toward Green Consumer Behaviour
Directory of Open Access Journals (Sweden)
Delphine Vantomme
2005-12-01
Full Text Available The purpose of this study was to examine the usefulness of implicit (automatic attitudes to explain the weak attitude-behaviour relationships often found in green consumer behaviour research. Therefore, not only explicit but also implicit attitudes toward green consumer behaviour were measured by means of the Implicit Association Test (IAT. Explicit measures revealed positive attitudes, while the IAT showed more positive attitudes toward the ecological than toward the traditional product (Experiment 1 or no differences in these attitudes (Experiment 2 and follow-up study. When existing products were involved, implicit attitudes related to behavioural intention, even where the explicit attitude measure did not.
Implicit and explicit appraisals of the importance of intrusive thoughts.
Teachman, Bethany A; Woody, Sheila R; Magee, Joshua C
2006-06-01
To evaluate cognitive theories of obsessions, the current study experimentally manipulated appraisals of the importance of intrusive thoughts. Undergraduate students (N = 156) completed measures of obsessive-compulsive disorder (OCD) symptoms and beliefs and were primed with a list of commonly reported unwanted thoughts. Participants were then informed that unwanted thoughts are either (1) significant and indicative of their personal values, or (2) meaningless, or participants (3) received no instructions about unwanted thoughts. Participants then completed implicit and explicit measures of self-evaluation and interpretations of their unwanted thoughts. Results indicated that the manipulation shifted implicit appraisals of unwanted thoughts in the expected direction, but not self-evaluations of morality or dangerousness. Interestingly, explicit self-esteem and beliefs about the significance of unwanted thoughts were associated with measures of OCD beliefs, whereas implicit self-evaluations of dangerousness were better predicted by the interaction of pre-existing OCD beliefs with the manipulation. Results are discussed in terms of divergent predictors of implicit and explicit responses to unwanted thoughts.
O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A
2016-02-01
How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin
Wałęga, A.; Rutkowska, A.; Grzebinoga, M.
2017-04-01
Correct determination of direct runoff is crucial for proper and safe dimensioning of hydroengineering structures. It is commonly assessed using SCS-CN method developed in the United States. However, due to deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified Sahu-Mishra-Eldo (SME) method was introduced and tested for three catchments located in the upper Vistula basin. Modification of SME method involved a determination of maximum potential retention S based on CN parameter derived from SCS-CN method. The modified SME method yielded direct runoff values very similar to those observed in the investigated catchments. Moreover, it generated significantly smaller errors in the direct runoff estimation as compared with SCS-CN and SME methods in the analyzed catchments. This approach may be used for estimating the runoff in uncontrolled catchments.
Application of the Method of Direct Solidification for Obtaining New Materials
International Nuclear Information System (INIS)
Grankin, S.S.
2007-01-01
The influence of the method of direct solidification on the formation of the material structure has been considered. The main methods of single crystal growth have been described. A considerable influence of the crystal growth parameters (temperature gradient at the front of solidification and the speed of moving of the front of solidification) on the type of the structure and morphology of single crystals has been shown. The examples of application of the method of direct solidification in experimental and industrial production are showed: production of directly crystallized blades for turbines of nuclear power plants and gas-turbine engines
Carbody structural lightweighting based on implicit parameterized model
Chen, Xin; Ma, Fangwu; Wang, Dengfeng; Xie, Chen
2014-05-01
Most of recent research on carbody lightweighting has focused on substitute material and new processing technologies rather than structures. However, new materials and processing techniques inevitably lead to higher costs. Also, material substitution and processing lightweighting have to be realized through body structural profiles and locations. In the huge conventional workload of lightweight optimization, model modifications involve heavy manual work, and it always leads to a large number of iteration calculations. As a new technique in carbody lightweighting, the implicit parameterization is used to optimize the carbody structure to improve the materials utilization rate in this paper. The implicit parameterized structural modeling enables the use of automatic modification and rapid multidisciplinary design optimization (MDO) in carbody structure, which is impossible in the traditional structure finite element method (FEM) without parameterization. The structural SFE parameterized model is built in accordance with the car structural FE model in concept development stage, and it is validated by some structural performance data. The validated SFE structural parameterized model can be used to generate rapidly and automatically FE model and evaluate different design variables group in the integrated MDO loop. The lightweighting result of body-in-white (BIW) after the optimization rounds reveals that the implicit parameterized model makes automatic MDO feasible and can significantly improve the computational efficiency of carbody structural lightweighting. This paper proposes the integrated method of implicit parameterized model and MDO, which has the obvious practical advantage and industrial significance in the carbody structural lightweighting design.
El-Amin, Mohamed
2012-01-01
The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.
Estimation of velocity vector angles using the directional cross-correlation method
DEFF Research Database (Denmark)
Kortbek, Jacob; Jensen, Jørgen Arendt
2006-01-01
and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and a circulating flow rig with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions...... transducer is used with a normal transmission of a focused ultrasound field. In the simulations the relative standard deviation of the velocity magnitude is between 0.7% and 7.7% for flow angles between 45 deg and 90 deg. The study showed that angle estimation by directional beamforming can be estimated...
A Fifth Order Hybrid Linear Multistep method For the Direct Solution ...
African Journals Online (AJOL)
A linear multistep hybrid method (LMHM)with continuous coefficients isconsidered and directly applied to solve third order initial and boundary value problems (IBVPs). The continuous method is used to obtain Multiple Finite Difference Methods (MFDMs) (each of order 5) which are combined as simultaneous numerical ...
Ramos, Tania; Marques, João; Garcia-Marques, Leonel
2017-01-01
Implicit memory reflects itself on situations in which previously acquired information is expressed, without awareness or intention. The study of implicit memory has had a profound impact on how researchers have investigated the human memory. In this paper, we review the main studies which have revealed dissociations between direct and indirect…
Applying Case-Based Method in Designing Self-Directed Online Instruction: A Formative Research Study
Luo, Heng; Koszalka, Tiffany A.; Arnone, Marilyn P.; Choi, Ikseon
2018-01-01
This study investigated the case-based method (CBM) instructional-design theory and its application in designing self-directed online instruction. The purpose of this study was to validate and refine the theory for a self-directed online instruction context. Guided by formative research methodology, this study first developed an online tutorial…
A method for crack profiles identification in eddy current testing by the multi-directional scan
International Nuclear Information System (INIS)
Kojima, Fumio; Ikeda, Takuya; Nguyen, Doung
2006-01-01
This paper is concerned with a method for identification of crack shape in conducting materials. Multi-directional scanning strategies using Eddy Current Testing is performed for sizing complex natural crackings. Two dimensional measurements by means of multi-directional scan are used in a output least square identifications. (author)
Biasing transition rate method based on direct MC simulation for probabilistic safety assessment
Institute of Scientific and Technical Information of China (English)
Xiao-Lei Pan; Jia-Qun Wang; Run Yuan; Fang Wang; Han-Qing Lin; Li-Qin Hu; Jin Wang
2017-01-01
Direct Monte Carlo (MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system.But it is not efficient at simulating rare events.A biasing transition rate method based on direct MC simulation is proposed to solve the problem in this paper.This method biases transition rates of the components by adding virtual components to them in series to increase the occurrence probability of the rare event,hence the decrease in the variance of MC estimator.Several cases are used to benchmark this method.The results show that the method is effective at modeling system failure and is more efficient at collecting evidence of rare events than the direct MC simulation.The performance is greatly improved by the biasing transition rate method.
Iritani, Takumi
2018-03-01
Both direct and HAL QCD methods are currently used to study the hadron interactions in lattice QCD. In the direct method, the eigen-energy of two-particle is measured from the temporal correlation. Due to the contamination of excited states, however, the direct method suffers from the fake eigen-energy problem, which we call the "mirage problem," while the HAL QCD method can extract information from all elastic states by using the spatial correlation. In this work, we further investigate systematic uncertainties of the HAL QCD method such as the quark source operator dependence, the convergence of the derivative expansion of the non-local interaction kernel, and the single baryon saturation, which are found to be well controlled. We also confirm the consistency between the HAL QCD method and the Lüscher's finite volume formula. Based on the HAL QCD potential, we quantitatively confirm that the mirage plateau in the direct method is indeed caused by the contamination of excited states.
A direct method of natural frequency analysis on pipeline conveying fluid with both ends supported
International Nuclear Information System (INIS)
Huang Yimin; Ge Seng; Wu Wei; Jie He
2012-01-01
Highlights: ► A direct method which derived from Ferrari's method was used to solve quartic equations. ► Frequency equations of pipeline conveying fluid with both ends supported was studied. ► Each order natural frequencies can be obtained by using the direct method. ► The first five critical flow velocities were obtained by using numerical method. - Abstract: The natural frequency equations of fluid–structure interaction in pipeline conveying fluid with both ends supported is investigated by a direct method, and the direct method is derived from Ferrari's method which is used to solve quartic equations. The dynamic equation of pipeline conveying fluid with two variables is obtained by Hamilton's variation principle based on Euler–Bernoulli Beam theory. By using the separation of variables method and the derived method from Ferrari's method, the natural frequency equations and the critical flow velocity equations of pipeline conveying fluid with both ends supported are obtained in mathematical decoupling. Each order natural frequencies and critical flow velocities can be obtained by using numerical method. The first five order dimensionless critical flow velocities are obtained, and the results indicate that clamped–simply supported is less stable than clamped–clamped supported and more stable than simply–simply supported. All the conclusions can be applied to nuclear installations and other engineering fields of improving the vibration.
Directional spectrum of ocean waves from array measurements using phase/time/path difference methods
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.
Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...
Estimating the direction of innovative change based on theory an mixed methods
Geurts, Petrus A.T.M.; Roosendaal, Hans E.
2001-01-01
In predicting the direction of innovative changethe question arises of the valid measurement ofyet unknown variables. We developed and applied aresearch method that combines qualitativeand quantitative elements in one interview formatand an analysis tool suitable for these data. Animportant
Nakamura, Mitsuo; Hayakawa, Tomomi; Okamura, Aiko; Kohigashi, Mutsumi; Fukui, Kenji; Narumoto, Jin
2015-01-01
Background If delusions serve as a defense mechanism in schizophrenia patients with paranoia, then they should show normal or high explicit self-esteem and low implicit self-esteem. However, the results of previous studies are inconsistent. One possible explanation for this inconsistency is that there are two types of paranoia, “bad me” (self-blaming) paranoia and “poor me” (non-self-blaming) paranoia. We thus examined implicit and explicit self-esteem and self-blaming tendency in patients with schizophrenia and schizoaffective disorder. We hypothesized that patients with paranoia would show lower implicit self-esteem and only those with non-self-blaming paranoia would experience a discrepancy between explicit and implicit self-esteem. Methods Participants consisted of patients with schizophrenia and schizoaffective disorder recruited from a day hospital (N=71). Participants were assessed for psychotic symptoms, using the Brief Psychiatric Rating Scale (BPRS), and self-blaming tendency, using the brief COPE. We also assessed explicit self-esteem, using the Rosenberg Self-Esteem Scale (RSES), implicit self-esteem, using Brief Implicit Association Test (BIAT), and discrepancy between explicit and implicit self-esteem. Results Contrary to our hypothesis, implicit self-esteem in paranoia and nonparanoia showed no statistical difference. As expected, only patients with non-self-blaming paranoia experienced a discrepancy between explicit and implicit self-esteem; other groups showed no such discrepancy. Conclusion These results suggest that persecutory delusion plays a defensive role in non-self-blaming paranoia. PMID:25565849
Implicit and Explicit Instruction of Spelling Rules
Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.
2012-01-01
The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…
Implicit Measures: A Normative Analysis and Review
De Houwer, Jan; Teige-Mocigemba, Sarah; Spruyt, Adriaan; Moors, Agnes
2009-01-01
Implicit measures can be defined as outcomes of measurement procedures that are caused in an automatic manner by psychological attributes. To establish that a measurement outcome is an implicit measure, one should examine (a) whether the outcome is causally produced by the psychological attribute it was designed to measure, (b) the nature of the…
One-Step Direct Return Method For Mohr-Coulomb Plasticity
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Andersen, Lars
2004-01-01
A new return method for the Mohr-Coulomb yield criteria is presented. The idea is to transform the problem into the principal direction and thereby achieve very simple formulas for calculating the elastic return stresses.......A new return method for the Mohr-Coulomb yield criteria is presented. The idea is to transform the problem into the principal direction and thereby achieve very simple formulas for calculating the elastic return stresses....
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2013-01-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-01-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-01-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
On the implicit density based OpenFOAM solver for turbulent compressible flows
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
Implicit and explicit interethnic attitudes and ethnic discrimination in hiring
Blommaert, E.C.C.A.; Tubergen, F.A. van; Coenders, M.T.A.
2012-01-01
We study effects of explicit and implicit interethnic attitudes on ethnic discrimination in hiring. Unlike explicit attitudes, implicit attitudes are characterised by reduced controllability, awareness or intention. Effects of implicit interethnic attitudes on ethnic discrimination in the labour
EdgeMaps: visualizing explicit and implicit relations
Dörk, Marian; Carpendale, Sheelagh; Williamson, Carey
2011-01-01
In this work, we introduce EdgeMaps as a new method for integrating the visualization of explicit and implicit data relations. Explicit relations are specific connections between entities already present in a given dataset, while implicit relations are derived from multidimensional data based on shared properties and similarity measures. Many datasets include both types of relations, which are often difficult to represent together in information visualizations. Node-link diagrams typically focus on explicit data connections, while not incorporating implicit similarities between entities. Multi-dimensional scaling considers similarities between items, however, explicit links between nodes are not displayed. In contrast, EdgeMaps visualize both implicit and explicit relations by combining and complementing spatialization and graph drawing techniques. As a case study for this approach we chose a dataset of philosophers, their interests, influences, and birthdates. By introducing the limitation of activating only one node at a time, interesting visual patterns emerge that resemble the aesthetics of fireworks and waves. We argue that the interactive exploration of these patterns may allow the viewer to grasp the structure of a graph better than complex node-link visualizations.
Phelan, Sean M.; Dovidio, John F.; Puhl, Rebecca M.; Burgess, Diana J.; Nelson, David B.; Yeazel, Mark W.; Hardeman, Rachel; Perry, Sylvia; van Ryn, Michelle
2014-01-01
Objective To examine the magnitude of explicit and implicit weight biases compared to biases against other groups; and identify student factors predicting bias in a large national sample of medical students. Design and Methods A web-based survey was completed by 4732 1st year medical students from 49 medical schools as part of a longitudinal study of medical education. The survey included a validated measure of implicit weight bias, the implicit association test, and 2 measures of explicit bi...
Scroggins, W Anthony; Mackie, Diane M; Allen, Thomas J; Sherman, Jeffrey W
2016-02-01
In three experiments, we used a novel Implicit Association Test procedure to investigate the impact of group memberships on implicit bias and implicit group boundaries. Results from Experiment 1 indicated that categorizing targets using a shared category reduced implicit bias by increasing the extent to which positivity was associated with Blacks. Results from Experiment 2 revealed that shared group membership, but not mere positivity of a group membership, was necessary to reduce implicit bias. Quadruple process model analyses indicated that changes in implicit bias caused by shared group membership are due to changes in the way that targets are evaluated, not to changes in the regulation of evaluative bias. Results from Experiment 3 showed that categorizing Black targets into shared group memberships expanded implicit group boundaries. © 2015 by the Society for Personality and Social Psychology, Inc.
Directory of Open Access Journals (Sweden)
Pakshir Hamid-Reza
2011-04-01
Full Text Available Abstract Background Different methods have been used for detecting developmental defects of enamel (DDE. This study aimed to compare photographic and replication methods with the direct clinical examination method for detecting DDE in children's permanent incisors. Methods 110 8-10-year-old schoolchildren were randomly selected from an examined sample of 335 primary Shiraz school children. Modified DDE index was used in all three methods. Direct examinations were conducted by two calibrated examiners using flat oral mirrors and tongue blades. Photographs were taken using a digital SLR camera (Nikon D-80, macro lens, macro flashes, and matt flash filters. Impressions were taken using additional-curing silicon material and casts made in orthodontic stone. Impressions and models were both assessed using dental loupes (magnification=x3.5. Each photograph/impression/cast was assessed by two calibrated examiners. Reliability of methods was assessed using kappa agreement tests. Kappa agreement, McNemar's and two-sample proportion tests were used to compare results obtained by the photographic and replication methods with those obtained by the direct examination method. Results Of the 110 invited children, 90 were photographed and 73 had impressions taken. The photographic method had higher reliability levels than the other two methods, and compared to the direct clinical examination detected significantly more subjects with DDE (P = 0.002, 3.1 times more DDE (P Conclusion The photographic method was much more sensitive than direct clinical examination in detecting DDE and was the best of the three methods for epidemiological studies. The replication method provided less information about DDE compared to photography. Results of this study have implications for both epidemiological and detailed clinical studies on DDE.
Determination of velocity vector angles using the directional cross-correlation method
DEFF Research Database (Denmark)
Kortbek, Jacob; Jensen, Jørgen Arendt
2005-01-01
and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array transducer is used......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions......-time ) between signals to correlate, and a proper choice varies with flow angle and flow velocity. One performance example is given with a fixed value of k tprf for all flow angles. The angle estimation on measured data for flow at 60 ◦ to 90 ◦ , yields a probability of valid estimates between 68% and 98...
An implicit iterative scheme for solving large systems of linear equations
International Nuclear Information System (INIS)
Barry, J.M.; Pollard, J.P.
1986-12-01
An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches
Fully implicit kinetic modelling of collisional plasmas
International Nuclear Information System (INIS)
Mousseau, V.A.
1996-05-01
This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method
Evaluation of direct saponification method for determination of cholesterol in meats.
Adams, M L; Sullivan, D M; Smith, R L; Richter, E F
1986-01-01
A gas chromatographic (GC) method has been developed for determination of cholesterol in meats. The method involves ethanolic KOH saponification of the sample material, homogeneous-phase toluene extraction of the unsaponifiables, derivatization of cholesterol to its trimethylsilylether, and quantitation by GC-flame ionization detection using 5-alpha-cholestane as internal standard. This direct saponification method is compared with the current AOAC official method for determination of cholesterol in 20 different meat products. The direct saponification method eliminates the need for initial lipid extraction, thus offering a 30% savings in labor, and requires fewer solvents than the AOAC method. It produced comparable or slightly higher cholesterol results than the AOAC method in all meat samples examined. Precision, determined by assaying a turkey meat sample 16 times over 4 days, was excellent (CV = 1.74%). Average recovery of cholesterol added to meat samples was 99.8%.
Elastic-plastic fracture assessment using a J-R curve by direct method
International Nuclear Information System (INIS)
Asta, E.P.
1996-01-01
In the elastic-plastic evaluation methods, based on J integral and tearing modulus procedures, an essential input is the material fracture resistance (J-R) curve. In order to simplify J-R determination direct, a method from load-load point displacement records of the single specimen tests may be employed. This procedure has advantages such as avoiding accuracy problems of the crack growth measuring devices and reducing testing time. This paper presents a structural integrity assessment approach, for ductile fracture, using the J-R obtained by a direct method from small single specimen fracture tests. The J-R direct method was carried out by means of a developed computational program based on theoretical elastic-plastic expressions. A comparative evaluation between the direct method J resistance curves and those obtained by the standard testing methodology on typical pressure vessel steels has been made. The J-R curves estimated from the direct method give an acceptable agreement with the approach proposed in this study which is reliable to use for engineering determinations. (orig.)
Direct fourier method reconstruction based on unequally spaced fast fourier transform
International Nuclear Information System (INIS)
Wu Xiaofeng; Zhao Ming; Liu Li
2003-01-01
First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)
Czech Academy of Sciences Publication Activity Database
Vlček, Jan; Lukšan, Ladislav
2015-01-01
Roč. 30, č. 3 (2015), s. 616-633 ISSN 1055-6788 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained minimization * variable metric methods * limited-memory methods * the BFGS update * conjugate directions * numerical results Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015
A Three Step Explicit Method for Direct Solution of Third Order ...
African Journals Online (AJOL)
This study produces a three step discrete Linear Multistep Method for Direct solution of third order initial value problems of ordinary differential equations of the form y'''= f(x,y,y',y''). Taylor series expansion technique was adopted in the development of the method. The differential system from the basis polynomial function to ...
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.
Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.
Taniguchi, Naohiro; Murakami, Hiroshi
2017-01-01
Constructing protein-coding genes with desired mutations is a basic step for protein engineering. Herein, we describe a multiple site-directed and saturation mutagenesis method, termed MUPAC. This method has been used to introduce multiple site-directed mutations in the green fluorescent protein gene and in the moloney murine leukemia virus reverse transcriptase gene. Moreover, this method was also successfully used to introduce randomized codons at five desired positions in the green fluorescent protein gene, and for simple DNA assembly for cloning.
Determination of the response time of pressure transducers using the direct method
International Nuclear Information System (INIS)
Perillo, S.R.P.
1994-01-01
The available methods to determine the response time of nuclear safety related pressure transducers are discussed, with emphasis to the direct method. In order to perform the experiments, a Hydraulic Ramp Generator was built. The equipment produces ramp pressure transients simultaneously to a reference transducer and to the transducer under test. The time lag between the output of the two transducers, when they reach a predetermined setpoint, is measured as the time delay of the transducer under test. Some results using the direct method to determine the time delay of pressure transducers (1 E Class Conventional) are presented. (author). 18 refs, 35 figs, 12 tabs
Effting, Marieke; Salemink, Elske; Verschuere, Bruno; Beckers, Tom
2016-03-01
Avoidance behavior is central to several anxiety disorders. The current study tested whether avoidance behavior for spiders depends on a dynamic interplay between implicit and explicit processes, moderated by the availability to exert control through working memory capacity (WMC). A total of 63 participants completed an approach-avoidance task, an implicit association test, a spider fear questionnaire and a behavioral avoidance test that included an assessment of approach distance as well as approach speed. WMC was measured by a complex operation span task. It was hypothesized that in individuals with low WMC, implicit avoidance tendencies and implicit negative associations predict avoidance behavior for a spider better than the explicit measure, whereas in high WMC individuals, the explicit measure should better predict avoidance behavior than the implicit measures. Results revealed that WMC moderated the influence of implicit negative associations, but not implicit avoidance tendencies, on spider approach distance but not the speed of approaching. Although explicit spider fear directly influenced avoidance behavior, its impact was not modulated by WMC. Participants in our study were from a non-clinical sample, which limits the generalizability of our findings. These findings suggest that implicit processes might become more pertinent for fear behavior as the ability to control such processes wanes, which may be particularly relevant for anxiety disorders given their association with lowered executive control functioning. As such, training procedures that specifically target implicit processes or control abilities might improve treatment outcomes for anxiety disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of two methods for direct detection of Fusarium spp. in water.
Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S
2016-04-01
Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water. Copyright © 2016 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Colin Tucker Smith
2015-10-01
Full Text Available Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly-held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations.
Smith, Colin Tucker; De Houwer, Jan
2015-01-01
Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations.
An implicit steady-state initialization package for the RELAP5 computer code
International Nuclear Information System (INIS)
Paulsen, M.P.; Peterson, C.E.; Odar, F.
1995-08-01
A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model
Neutron methods for the direct determination of the magnetic induction in thick films
Energy Technology Data Exchange (ETDEWEB)
Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany)
2016-03-15
We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed. - Highlights: • We present neutron methods for investigations of the thick magnetic films. • It is the methods for the direct determination of the magnetic induction. • Magnetic induction in bulk, at single interface and in a single domain. • It is Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. • These methods are complementary to polarized neutron reflectometry.
An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery
Directory of Open Access Journals (Sweden)
Lizhang Zhou
2017-06-01
Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.
Direct methods of soil-structure interaction analysis for earthquake loadings
International Nuclear Information System (INIS)
Yun, J. B.; Kim, J. M.; Kim, Y. S. and others
1993-07-01
The objectives of this study are to review the methods of soil- structure interaction system analysis, particularly the direct method, and to carry out the blind prediction analysis of the Forced Vibration Test(FVT) before backfill in the course of Hualien LSST project. The scope and contents of this study are as follows : theoretical review on soil-structure interaction analysis methods, free-field response analysis methods, modelling methods of unbounded exterior region, hualien LSST FVT blind prediction analysis before backfill. The analysis results are found to be very well compared with the field test results
Implicit memory in music and language.
Ettlinger, Marc; Margulis, Elizabeth H; Wong, Patrick C M
2011-01-01
Research on music and language in recent decades has focused on their overlapping neurophysiological, perceptual, and cognitive underpinnings, ranging from the mechanism for encoding basic auditory cues to the mechanism for detecting violations in phrase structure. These overlaps have most often been identified in musicians with musical knowledge that was acquired explicitly, through formal training. In this paper, we review independent bodies of work in music and language that suggest an important role for implicitly acquired knowledge, implicit memory, and their associated neural structures in the acquisition of linguistic or musical grammar. These findings motivate potential new work that examines music and language comparatively in the context of the implicit memory system.
A Root-MUSIC-Like Direction Finding Method for Cyclostationary Signals
Directory of Open Access Journals (Sweden)
Yide Wang
2005-01-01
Full Text Available We propose a new root-MUSIC-like direction finding algorithm that exploits cyclostationarity in order to improve the direction-of-arrival estimation. The proposed cyclic method is signal selective, it allows to increase the resolution power and the noise robustness significantly, and it is also able to handle more sources than the number of sensors. Computer simulations are used to show the performance of the algorithm.
Human infant faces provoke implicit positive affective responses in parents and non-parents alike.
Senese, Vincenzo Paolo; De Falco, Simona; Bornstein, Marc H; Caria, Andrea; Buffolino, Simona; Venuti, Paola
2013-01-01
Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs) infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors.
Implicit solvers for large-scale nonlinear problems
International Nuclear Information System (INIS)
Keyes, David E; Reynolds, Daniel R; Woodward, Carol S
2006-01-01
Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications
Direct methods of solution for problems in mechanics from invariance principles
International Nuclear Information System (INIS)
Rajan, M.
1986-01-01
Direct solutions to problems in mechanics are developed from variational statements derived from the principle of invariance of the action integral under a one-parameter family of infinitesimal transformations. Exact, direct solution procedures for linear systems are developed by a careful choice of the arbitrary functions used to generate the infinitesimal transformations. It is demonstrated that the well-known methods for the solution of differential equations can be directly adapted to the required variational statements. Examples in particle and continuum mechanics are presented
Inter-comparison of different direct and indirect methods to determine radon flux from soil
International Nuclear Information System (INIS)
Grossi, C.; Vargas, A.; Camacho, A.; Lopez-Coto, I.; Bolivar, J.P.; Xia Yu; Conen, F.
2011-01-01
The physical and chemical characteristics of radon gas make it a good tracer for use in the application of atmospheric transport models. For this purpose the radon source needs to be known on a global scale and this is difficult to achieve by only direct experimental methods. However, indirect methods can provide radon flux maps on larger scales, but their reliability has to be carefully checked. It is the aim of this work to compare radon flux values obtained by direct and indirect methods in a measurement campaign performed in the summer of 2008. Different systems to directly measure radon flux from the soil surface and to measure the related parameters terrestrial γ dose and 226 Ra activity in soil, for indirect estimation of radon flux, were tested. Four eastern Spanish sites with different geological and soil characteristics were selected: Teruel, Los Pedrones, Quintanar de la Orden and Madrid. The study shows the usefulness of both direct and indirect methods for obtaining radon flux data. Direct radon flux measurements by continuous and integrated monitors showed a coefficient of variation between 10% and 23%. At the same time, indirect methods based on correlations between 222 Rn and terrestrial γ dose rate, or 226 Ra activity in soil, provided results similar to the direct measurements, when these proxies were directly measured at the site. Larger discrepancies were found when proxy values were extracted from existing data bases. The participating members involved in the campaign study were the Institute of Energy Technology (INTE) of the Technical University of Catalonia (UPC), Huelva University (UHU), and Basel University (BASEL).
International Nuclear Information System (INIS)
Gancs, L.; Nemeth, Z.; Horanyi, G.
2002-01-01
Radiotracer methods, particularly the radiotracer thin foil method, provide unique possibility of in situ monitoring of chromate adsorption on powdered adsorbents. Two different versions of the thin foil method can be distinguished. In the direct method, the species to be studied is labelled and the radiation measured gives direct information on the adsorption of this species. In the indirect method, a different labelled indicator species is added to the system and the adsorption of this species is followed and the adsorption of the species to be studied is determined based on analysis of the competitive adsorption processes. Both methods were used in the present study. In the in situ methods, the radiation measured consists of two main parts, one coming from the solution background, the other originating from the adsorption layer. In the case of the thin foil method using isotopes emitting soft β - radiation or low energy X-ray the solution background is governed and minimised by self-absorption of the radiation. In the direct study we applied an experimental methodology based on the energy selective measurement of the characteristic K α,β X-radiation emitted by the 51 Cr-labelled chromate species, whereas 35 S-labelled sulphate ions were used as the indicator species in the indirect study. (P.A.)
Measuring strategic control in implicit learning: how and why?
Norman, Elisabeth
2015-01-01
Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledg...
A robust direct-integration method for rotorcraft maneuver and periodic response
Panda, Brahmananda
1992-01-01
The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.
DEFF Research Database (Denmark)
Chen, Shanshin; Tortorelli, Daniel A.; Hansen, John Michael
1999-01-01
of ordinary diffferential equations is employed to avoid the instabilities associated with the direct integrations of differential-algebraic equations. To extend the unconditional stability of the implicit Newmark method to nonlinear dynamic systems, a discrete energy balance is enforced. This constraint......Advances in computer hardware and improved algorithms for multibody dynamics over the past decade have generated widespread interest in real-time simulations of multibody mechanics systems. At the heart of the widely used algorithms for multibody dynamics are a choice of coordinates which define...... the kinmatics of the system, and a choice of time integrations algorithms. The current approach uses a non-dissipative implict Newmark method to integrate the equations of motion defined in terms of the independent joint coordinates of the system. The reduction of the equations of motion to a minimal set...
Direct LSC method for determination of bio-origin by C-14 measurement
International Nuclear Information System (INIS)
Kristof, Romana; Kozar Logar, Jasmina
2017-01-01
The aim of the research was to test the generalized direct liquid scintillation spectrometry (LSC) method for bio-origin determination by measurement of C-14. Examples of diversified items with known and unknown bio-origin were measured by liquid scintillation counting and analyzed by procedures, developed for fuel samples. Bio-origin of fuels, lubricants and monomer resins were successfully determined via direct LSC method after simple sample preparation with acceptable accuracy and trueness despite their diversity in color, viscosity, density or chemical composition. (author)
International Nuclear Information System (INIS)
Shuke, Noriyuki
1991-01-01
In hepatobiliary scintigraphy, kinetic model analysis, which provides kinetic parameters like hepatic extraction or excretion rate, have been done for quantitative evaluation of liver function. In this analysis, unknown model parameters are usually determined using nonlinear least square regression method (NLS method) where iterative calculation and initial estimate for unknown parameters are required. As a simple alternative to NLS method, direct integral linear least square regression method (DILS method), which can determine model parameters by a simple calculation without initial estimate, is proposed, and tested the applicability to analysis of hepatobiliary scintigraphy. In order to see whether DILS method could determine model parameters as good as NLS method, or to determine appropriate weight for DILS method, simulated theoretical data based on prefixed parameters were fitted to 1 compartment model using both DILS method with various weightings and NLS method. The parameter values obtained were then compared with prefixed values which were used for data generation. The effect of various weights on the error of parameter estimate was examined, and inverse of time was found to be the best weight to make the error minimum. When using this weight, DILS method could give parameter values close to those obtained by NLS method and both parameter values were very close to prefixed values. With appropriate weighting, the DILS method could provide reliable parameter estimate which is relatively insensitive to the data noise. In conclusion, the DILS method could be used as a simple alternative to NLS method, providing reliable parameter estimate. (author)
Directory of Open Access Journals (Sweden)
Hamid Reza Khalkhali
2016-09-01
Full Text Available Background Often, there is no access to sufficient sample size to estimate the prevalence using the method of direct estimator in all areas. The aim of this study was to compare small area’s Bayesian method and direct method in estimating the prevalence of steatosis in obese and overweight children. Materials and Methods: In this cross-sectional study, was conducted on 150 overweight and obese children aged 2 to 15 years referred to the Children's digestive clinic of Urmia University of Medical Sciences- Iran, in 2013. After Body mass index (BMI calculation, children with overweight and obese were assessed in terms of primary tests of obesity screening. Then children with steatosis confirmed by abdominal Ultrasonography, were referred to the laboratory for doing further tests. Steatosis prevalence was estimated by direct and Bayesian method and their efficiency were evaluated using mean-square error Jackknife method. The study data was analyzed using the open BUGS3.1.2 and R2.15.2 software. Results: The findings indicated that estimation of steatosis prevalence in children using Bayesian and direct methods were between 0.3098 to 0.493, and 0.355 to 0.560 respectively, in Health Districts; 0.3098 to 0.502, and 0.355 to 0.550 in Education Districts; 0.321 to 0.582, and 0.357 to 0.615 in age groups; 0.313 to 0.429, and 0.383 to 0.536 in sex groups. In general, according to the results, mean-square error of Bayesian estimation was smaller than direct estimation (P
Implicit environmental costs in hydroelectric development
International Nuclear Information System (INIS)
Carlsen, A.J.; Wenstoep, F.; Strand, J.
1992-01-01
The ranking of hydropower projects under the Norwegian Master Plan for Water Resources is used to derive implicit government preferences for a number of environmental attributes described by ordinal scores for each project. Higher negative scores are generally associated with greater implicit willingness to pay to avoid the environmental damage tied to the attribute, caused by hydropower development. The total (ordinary economic and implicit environmental) cost for each project are derived, and the environmental costs per capacity unit are found to be on the same order as the economic costs, lower for projects ranked for early exploitation, and higher for projects to be saved permanently. An implicit long-run marginal cost curve for Norwegian hydropower development is derived, which is generally upward sloping, but not uniformly so. This can be due to the model specification problems or ranking inconsistencies, both of which are likely to be present. 11 refs., 7 figs., 1 tab
Implicit and Explicit Memory Bias in Opiate Dependent, Abstinent and Normal Individuals
Directory of Open Access Journals (Sweden)
Jafar Hasani
2013-07-01
Full Text Available Objective: The aim of current research was to assess implicit and explicit memory bias to drug related stimuli in opiate Dependent, abstinent and normal Individuals. Method: Three groups including opiate Dependent, abstinent and normal Individuals (n=25 were selected by available sampling method. After matching on the base of age, education level and type of substance use all participants assessed by recognition task (explicit memory bias and stem completion task (implicit memory bias. Results: The analysis of data showed that opiate dependent and abstinent groups in comparison with normal individual had implicit memory bias, whereas in explicit memory only opiate dependent individuals showed bias. Conclusion: The identification of explicit and implicit memory governing addiction may have practical implications in diagnosis, treatment and prevention of substance abuse.
Energy Technology Data Exchange (ETDEWEB)
Wolski, M., E-mail: marcin.wolski@curtin.edu.au; Podsiadlo, P.; Stachowiak, G. W. [Tribology Laboratory, School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia 6102 (Australia)
2014-08-15
Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early
International Nuclear Information System (INIS)
Wolski, M.; Podsiadlo, P.; Stachowiak, G. W.
2014-01-01
Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS Sta ), vertical (FS V ) and horizontal (FS H ) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis
Directory of Open Access Journals (Sweden)
Ying Chen
Full Text Available In this paper, we present the direct-substitution (DS method to study the second-harmonic generation (SHG in arbitrary one-dimensional optical superlattices (OS. Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What’s more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems. Keywords: Second-harmonic generation, Direct-substitution, Fibonacci
Study of Fuze Structure and Reliability Design Based on the Direct Search Method
Lin, Zhang; Ning, Wang
2017-03-01
Redundant design is one of the important methods to improve the reliability of the system, but mutual coupling of multiple factors is often involved in the design. In my study, Direct Search Method is introduced into the optimum redundancy configuration for design optimization, in which, the reliability, cost, structural weight and other factors can be taken into account simultaneously, and the redundant allocation and reliability design of aircraft critical system are computed. The results show that this method is convenient and workable, and applicable to the redundancy configurations and optimization of various designs upon appropriate modifications. And this method has a good practical value.
International Nuclear Information System (INIS)
Mitsuyasu, T.; Ishii, K.; Hino, T.; Aoyama, M.
2009-01-01
Spectral history methods for pin-by-pin core analysis method using the three-dimensional direct response matrix have been developed. The direct response matrix is formalized by four sub-response matrices in order to respond to a core eigenvalue k and thus can be recomposed at each outer iteration in the core analysis. For core analysis, it is necessary to take into account the burn-up effect related to spectral history. One of the methods is to evaluate the nodal burn-up spectrum obtained using the out-going neutron current. The other is to correct the fuel rod neutron production rates obtained the pin-by-pin correction. These spectral history methods were tested in a heterogeneous system. The test results show that the neutron multiplication factor error can be reduced by half during burn-up, the nodal neutron production rates errors can be reduced by 30% or more. The root-mean-square differences between the relative fuel rod neutron production rate distributions can be reduced within 1.1% error. This means that these methods can accurately reflect the effects of intra- and inter-assembly heterogeneities during burn-up and can be used for core analysis. Core analysis with the DRM method was carried out for an ABWR quarter core and it was found that both thermal power and coolant-flow distributions were smoothly converged. (authors)
Implicit Recognition Based on Lateralized Perceptual Fluency
Vargas, Iliana M.; Voss, Joel L.; Paller, Ken A.
2012-01-01
In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention enc...
Implicit Discourse: Contributions to a Sociological Analysis
Directory of Open Access Journals (Sweden)
Josep Espluga Trenc
2014-01-01
Full Text Available This article discusses the variety of types or dimensions of implicit discourse. Specifically, a typological characterisation is proposed, based on the intentions of the producer of the discourse, including a distinction between four basic dimensions: insinuated discourse, hidden discourse, ?failed? discourse and underlying discourse. Some examples are provided of each dimension, and then it is held that the proposed typology is useful for the sociological analysis of implicit discourse, that is, for its detection and interpretation.
Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe
2015-01-01
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.
Tewfik, Ihab
2008-01-01
2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.
Unconscious Motivation. Part I: Implicit Attitudes toward L2 Speakers
Al-Hoorie, Ali H.
2016-01-01
This paper reports the first investigation in the second language acquisition field assessing learners' implicit attitudes using the Implicit Association Test, a computerized reaction-time measure. Examination of the explicit and implicit attitudes of Arab learners of English (N = 365) showed that, particularly for males, implicit attitudes toward…
Crouch, Julie L.; Irwin, Lauren M.; Wells, Brett M.; Shelton, Christopher R.; Skowronski, John J.; Milner, Joel S.
2012-01-01
Objective: Contemporary theories of child physical abuse (CPA) emphasize the proximal role of social cognitive processes (many of which are implicit in nature) in the occurrence of parental aggression. However, methods that allow for the systematic examination of implicit cognitive processes during the course of aggressive interactions are needed.…
Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing
2016-03-01
Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.
Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang
2018-03-27
Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.
Describing the organization of dominance relationships by dominance-directed tree method.
Izar, Patrícia; Ferreira, Renata G; Sato, Takechi
2006-02-01
Methods to describe dominance hierarchies are a key tool in primatology studies. Most current methods are appropriate for analyzing linear and near-linear hierarchies; however, more complex structures are common in primate groups. We propose a method termed "dominance-directed tree." This method is based on graph theory and set theory to analyze dominance relationships in social groups. The method constructs a transitive matrix by imposing transitivity to the dominance matrix and produces a graphical representation of the dominance relationships, which allows an easy visualization of the hierarchical position of the individuals, or subsets of individuals. The method is also able to detect partial and complete hierarchies, and to describe situations in which hierarchical and nonhierarchical principles operate. To illustrate the method, we apply a dominance tree analysis to artificial data and empirical data from a group of Cebus apella. Copyright 2006 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
ebrahim badparva
2010-04-01
Full Text Available Trichomonas vaginalis is a flagellate protozoan that lives in the genital tract and causes trichomoniasis in women. About 200 million people all over the world are infected with T. vaginalis. There are various methods with different sensitivity and specificity for detection of this parasite, that one of them is direct smear of vaginal secretions which is simpler, rapid and cheaper than other diagnostic methods. Materials and Methods: Demographic data was gathered by a questionnaire which contained different variables. Vaginal secretions samples were taken by spicolum and two swaps that maintained in glucose solution in separate tubes from 160 women referred to health centers of Khorramabad. One of the vaginal samples was examined by direct smear in saline solution and the other was cultured in Dorse medium. Results: Of 160 women suspected of trichomoniasis, 11.8% and 18.75% were positive by direct smear and culture respectively. The sensitivity of the direct method was 63.3%. Our findings indicated that 30% of the infected women belonged to the 31 – 35 age group, which had the most relative frequency of positive cases. Most of the patients (43% were illiterate or had elementary educational level. Conclussion: The sensivity of direct method is 63% in compare to culture ( as a Gold standard , which is ralatively low . Although the efficacy of this test could be imporved by shortening the elapsed time between sampling and examination , use of skilled microscopists , and different samples , but we recommend that more sensitive methods such as culture and PCR should be used .
THE MASS-METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Andrews, Brett H.; Martini, Paul, E-mail: andrews@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)
2013-03-10
The relation between galaxy stellar mass and gas-phase metallicity is a sensitive diagnostic of the main processes that drive galaxy evolution, namely cosmological gas inflow, metal production in stars, and gas outflow via galactic winds. We employed the direct method to measure the metallicities of {approx}200,000 star-forming galaxies from the Sloan Digital Sky Survey that were stacked in bins of (1) stellar mass and (2) both stellar mass and star formation rate (SFR) to significantly enhance the signal-to-noise ratio of the weak [O III] {lambda}4363 and [O II] {lambda}{lambda}7320, 7330 auroral lines required to apply the direct method. These metallicity measurements span three decades in stellar mass from log(M{sub *}/M{sub Sun }) = 7.4-10.5, which allows the direct method mass-metallicity relation to simultaneously capture the high-mass turnover and extend a full decade lower in mass than previous studies that employed more uncertain strong line methods. The direct method mass-metallicity relation rises steeply at low mass (O/H {proportional_to} M{sub *} {sup 1/2}) until it turns over at log(M{sub *}/M{sub Sun }) = 8.9 and asymptotes to 12 + log(O/H) = 8.8 at high mass. The direct method mass-metallicity relation has a steeper slope, a lower turnover mass, and a factor of two to three greater dependence on SFR than strong line mass-metallicity relations. Furthermore, the SFR-dependence appears monotonic with stellar mass, unlike strong line mass-metallicity relations. We also measure the N/O abundance ratio, an important tracer of star formation history, and find the clear signature of primary and secondary nitrogen enrichment. N/O correlates tightly with oxygen abundance, and even more so with stellar mass.
Implicit upwind schemes for computational fluid dynamics. Solution by domain decomposition
International Nuclear Information System (INIS)
Clerc, S.
1998-01-01
In this work, the numerical simulation of fluid dynamics equations is addressed. Implicit upwind schemes of finite volume type are used for this purpose. The first part of the dissertation deals with the improvement of the computational precision in unfavourable situations. A non-conservative treatment of some source terms is studied in order to correct some shortcomings of the usual operator-splitting method. Besides, finite volume schemes based on Godunov's approach are unsuited to compute low Mach number flows. A modification of the up-winding by preconditioning is introduced to correct this defect. The second part deals with the solution of steady-state problems arising from an implicit discretization of the equations. A well-posed linearized boundary value problem is formulated. We prove the convergence of a domain decomposition algorithm of Schwartz type for this problem. This algorithm is implemented either directly, or in a Schur complement framework. Finally, another approach is proposed, which consists in decomposing the non-linear steady state problem. (author)
A direct method for trajectory optimization of rigid bodies through contact
Posa, Michael Antonio; Cantu, Cecilia; Tedrake, Russell Louis
2013-01-01
Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning...
Quasar Parallax: a Method for Determining Direct Geometrical Distances to Quasars
Elvis, Martin; Karovska, Margarita
2002-01-01
We describe a novel method to determine direct geometrical distances to quasars that can measure the cosmological constant, Lambda, with minimal assumptions. This method is equivalent to geometric parallax, with the `standard length' being the size of the quasar broad emission line region (BELR) as determined from the light travel time measurements of reverberation mapping. The effect of non-zero Lambda on angular diameter is large, 40% at z=2, so mapping angular diameter distances vs. redshi...
Shintani, Kenichirou; Yoshitomi, Shinta; Takewaki, Izuru
2017-01-01
A method of physical parameter system identification (SI) is proposed here for three-dimensional (3D) building structures with in-plane rigid floors in which the stiffness and damping coefficients of each structural frame in the 3D building structure are identified from the measured floor horizontal accelerations. A batch processing least-squares estimation method for many discrete time domain measured data is proposed for the direct identification of the stiffness and damping coefficients of...
The inferiority complex in paranoia readdressed. A study with the Implicit Association Test
von Collani, Gernot; Werner, Ronny; Moritz, Steffen
2006-01-01
It has been theorised that patients with persecutory delusions display a lack of covert self-esteem (formerly termed the 'inferiority complex'), while at the same time displaying normal or even heightened levels of explicit self-esteem. However, the empirical basis for this assumption is inconsistent. Methods. In view of apparent shortcomings of prior studies to assess implicit self-esteem, the Implicit Association Test was utilised to readdress this theory. The Rosenberg scale served as an i...
Conceptions of sport ability and practice of sport: an implicit measure
Mascret, Nicolas; Falconetti, Jean-Louis; Cury, François
2016-01-01
International audience; People may endorse two conceptions of the nature of sport ability: an entity theory (sport ability is considered innate, stable, a gift, a talent) and an incremental theory (sport ability is improvable, linked to training and effort). Previous studies (e. g., Biddle et al., 2003) have used explicit methods to assess these beliefs. Using an implicit measure (ST-IAT, Single-Target Implicit Association Test) in order to overcome the social desirability which might be indu...
Pisano, Aurora; Weichert, Dieter
2015-01-01
Articles in this book examine various materials and how to determine directly the limit state of a structure, in the sense of limit analysis and shakedown analysis. Apart from classical applications in mechanical and civil engineering contexts, the book reports on the emerging field of material design beyond the elastic limit, which has further industrial design and technological applications. Readers will discover that “Direct Methods” and the techniques presented here can in fact be used to numerically estimate the strength of structured materials such as composites or nano-materials, which represent fruitful fields of future applications. Leading researchers outline the latest computational tools and optimization techniques and explore the possibility of obtaining information on the limit state of a structure whose post-elastic loading path and constitutive behavior are not well defined or well known. Readers will discover how Direct Methods allow rapid and direct access to requested information in...
International Nuclear Information System (INIS)
Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R.
2016-01-01
The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectra of Sn-doped In 2 O 3 (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In 2 O 3 single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.
Moorthi, Shrinivas; Higgins, R. W.
1993-01-01
An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.
Initialization method for triple-layer exchanged coupled direct overwrite MO disk (abstract)
Hatwar, T. K.; Genova, D. J.; Palumbo, A. C.
1993-05-01
Increasing efforts are directed at the development of direct overwrite (DOW) capability for achieving higher data transfer rate in MO media. DOW by light intensity modulation on a triple-layer medium has shown great promise. The three layers consist of memory, reference, and intermediate layers that are weakly coupled to each other. This scheme uses an auxiliary magnet to initialize the reference layer in one direction in addition to the bias magnet. DOW is between high and low power levels. High power aligns the magnetization of the coupled layers in one direction, and low power aligns the magnetization in the opposite direction. These high (Ph) and low (Pl) powers are generally widely separated. Since the focused writing beam has a Gaussian profile, when the center of the spot does the high power writing, the ``skirt'' is actually doing the low power writing. As a result, if the background is initialized in the direction of the high power written mark, a chain-like domain pattern is observed. This leads to high writing noise. We found that such writing noise can be eliminated by initializing the background in the direction of the low power written marks. We will discuss the spin structure in exchanged coupled triple-layer films and the DOW characteristics of the disk with the two different initialization methods.
The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions
International Nuclear Information System (INIS)
Tumino, A.; Gulino, M.; Spitaleri, C.; Cherubini, S.; Romano, S.; Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G.; Lamia, L.
2014-01-01
The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally
The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions
Energy Technology Data Exchange (ETDEWEB)
Tumino, A.; Gulino, M. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Università degli Studi di Enna Kore, Enna (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)
2014-05-09
The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.
Nicholl, Jon; Jacques, Richard M; Campbell, Michael J
2013-10-29
Comparison of outcomes between populations or centres may be confounded by any casemix differences and standardisation is carried out to avoid this. However, when the casemix adjustment models are large and complex, direct standardisation has been described as "practically impossible", and indirect standardisation may lead to unfair comparisons. We propose a new method of directly standardising for risk rather than standardising for casemix which overcomes these problems. Using a casemix model which is the same model as would be used in indirect standardisation, the risk in individuals is estimated. Risk categories are defined, and event rates in each category for each centre to be compared are calculated. A weighted sum of the risk category specific event rates is then calculated. We have illustrated this method using data on 6 million admissions to 146 hospitals in England in 2007/8 and an existing model with over 5000 casemix combinations, and a second dataset of 18,668 adult emergency admissions to 9 centres in the UK and overseas and a published model with over 20,000 casemix combinations and a continuous covariate. Substantial differences between conventional directly casemix standardised rates and rates from direct risk standardisation (DRS) were found. Results based on DRS were very similar to Standardised Mortality Ratios (SMRs) obtained from indirect standardisation, with similar standard errors. Direct risk standardisation using our proposed method is as straightforward as using conventional direct or indirect standardisation, always enables fair comparisons of performance to be made, can use continuous casemix covariates, and was found in our examples to have similar standard errors to the SMR. It should be preferred when there is a risk that conventional direct or indirect standardisation will lead to unfair comparisons.
A study on direct alloying with molybdenum oxides by feed wire method
Directory of Open Access Journals (Sweden)
Jingjing Zou
2018-04-01
Full Text Available Direct alloying with molybdenum oxides has been regarded in years; the main addition methods are adding to the bottom of electric arc furnace (EAF with scrap, adding to the ladle during the converter tapping and mixing molybdenum oxide, lime and reductant to prepare pellet added to basic oxygen furnace (BOF. In this paper, a new method for direct alloying with molybdenum trioxide is proposed, adding molybdenum trioxide molten steel by feeding wire method in ladle furnace (LF refining process. The feasibility of molybdenum oxide reduction, the influence rules of bottom-blown on liquid steel fluidity and the yield of molybdenum by feeding wire method were analyzed. Results show that molybdenum oxide can be reduced by [Al], [Si], [C], and even [Fe] in molten steel. Bottom blowing position has a significant influence on the flow of molten steel when the permeable brick is located in 1/2 radius. The yields of Mo are higher than 97% for the experiments with feed wire method, the implementation of direct alloying with molybdenum trioxide by feed wire method works even better than that uses of ferromolybdenum in the traditional process.
Direct strength method for web crippling—Lipped channels under EOF and IOF loading
Heurkens, R.A.J.; Hofmeyer, H.; Mahendran, M.; Snijder, H.H.
2018-01-01
To apply the Direct Strength Method (DSM) to web crippling of lipped channel sections, experiments were recently conducted under EOF and IOF loading conditions. In the research presented here, finite element models were first developed to predict the elastic buckling loads and the elasto-plastic
Lee, Yuh-shiow; Lee, Huang-mou; Fawcett, Jonathan M.
2013-01-01
In an item-method-directed forgetting task, Chinese words were presented individually, each followed by an instruction to remember or forget. Colored probe items were presented following each memory instruction requiring a speeded color-naming response. Half of the probe items were novel and unrelated to the preceding study item, whereas the…
A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.
Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L
2015-04-01
The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.
THE QUESTION OF HUMANITARIAN KNOWLEDGE: THE ESSENCE, MAIN DIRECTIONS AND METHODS
Directory of Open Access Journals (Sweden)
Anatoly V. Zavrazhin
2015-01-01
Full Text Available In the article the author emphasizes the role and importance of humanitarian knowledge not only in education, training future professionals, but in an objective, true evaluation of the events which occur today in the modern world. Reveals the methodological foundations, purpose, main directions and methods of humanitarian knowledge. Highlighted the special role in the Humanities.
An corrective method to correct of the inherent flaw of the asynchronization direct counting circuit
International Nuclear Information System (INIS)
Wang Renfei; Liu Congzhan; Jin Yongjie; Zhang Zhi; Li Yanguo
2003-01-01
As a inherent flaw of the Asynchronization Direct Counting Circuit, the crosstalk, which is resulted from the randomicity of the time-signal always exists between two adjacent channels. In order to reduce the counting error derived from the crosstalk, the author propose an effective method to correct the flaw after analysing the mechanism of the crosstalk
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
Integration of the ATHENA mirror modules: development of indirect and x-ray direct AIT methods
Vernani, Dervis; Blum, Steffen; Seure, Thibault; Bavdaz, Marcos; Wille, Eric; Schaeffer, Uwe; Lièvre, Nicolas; Nazeeruddin, Adeeb; Barrière, Nicolas M.; Collon, Maximilien J.; Cibik, Levent; Krumrey, Michael; Müller, Peter; Burwitz, Vadim
2017-08-01
Within the ATHENA optics technology plan, activities are on-going for demonstrating the feasibility of the mirror module Assembly Integration and Testing (AIT). Each mirror module has to be accurately attached to the mirror structure by means of three isostatic mounts ensuring minimal distortion under environmental loads. This work reports on the status of one of the two parallel activities initiated by ESA to address this demanding task. In this study awarded to the industrial consortium, the integration relies on opto-mechanical metrology and direct X-ray alignment. For the first or "indirect" method the X-ray alignment results are accurately referenced, by means of a laser tracking system, to optical fiducial targets mounted on the mirror modules and finally linked to the mirror structure coordinate system. With the second or "direct" method the alignment is monitored in the X-ray domain, providing figures of merit directly comparable to the final performance. The integration being designed and here presented, foresees combining the indirect method to the X-ray direct method. The characterization of the single mirror modules is planned at PTB's X-ray Parallel Beam Facility (XPBF 2.0) at BESSY II, and the integration and testing campaign at Panter. It is foreseen to integrate and test a demonstrator with two real mirror modules manufactured by cosine.
Assessment of diagnostic technology in health care: rationale, methods, problems, and directions
National Research Council Canada - National Science Library
Sox, Harold C
1989-01-01
... Rationale, Methods, Problems, and Directions Harold Sox, Susan Stern, Douglas Owens, and Herbert L. Abrams Institute of Medicine NATIONAL ACADEMY PRESS WASHINGTON, D.C. 1989 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritative the typesetting-specific the as from created publication files XML from...
Theory of direct-interband-transition line shapes based on Mori's method
International Nuclear Information System (INIS)
Sam Nyung Yi; Jai Yon Ryu; Ok Hee Chung; Joung Young Sug; Sang Don Choi; Yeon Choon Chung
1987-01-01
A theory of direct interband optical transition in the electron-phonon system is introduced on the basis of the Kubo formalism and by using Mori's method of calculation. The line shape functions are introduced in two different ways and are compared with those obtained by Choi and Chung based on Argyres and Sigel's projection technique
Jönsthövel, T.B.; Van Gijzen, M.B.; MacLachlan, S.; Vuik, C.; Scarpas, A.
2011-01-01
The demand for large FE meshes increases as parallel computing becomes the standard in FE simulations. Direct and iterative solution methods are used to solve the resulting linear systems. Many applications concern composite materials, which are characterized by large discontinuities in the material
Performance Analysis and Experimental Validation of the Direct Strain Imaging Method
Athanasios Iliopoulos; John G. Michopoulos; John C. Hermanson
2013-01-01
Direct Strain Imaging accomplishes full field measurement of the strain tensor on the surface of a deforming body, by utilizing arbitrarily oriented engineering strain measurements originating from digital imaging. In this paper an evaluation of the methodâs performance with respect to its operating parameter space is presented along with a preliminary...
The improved quasi-static method vs the direct method: a case study for CANDU reactor transients
International Nuclear Information System (INIS)
Kaveh, S.; Koclas, J.; Roy, R.
1999-01-01
Among the large number of methods for the transient analysis of nuclear reactors, the improved quasi-static procedure is one of the most widely used. In recent years, substantial increase in both computer speed and memory has motivated a rethinking of the limitations of this method. The overall goal of the present work is a systematic comparison between the improved quasi-static and the direct method (mesh-centered finite difference) for realistic CANDU transient simulations. The emphasis is on the accuracy of the solutions as opposed to the computational speed. Using the computer code NDF, a typical realistic transient of CANDU reactor has been analyzed. In this transient the response of the reactor regulating system to a substantial local perturbation (sudden extraction of the five adjuster rods) has been simulated. It is shown that when updating the detector responses is of major importance, it is better to use a well-optimized direct method rather than the improved quasi-static method. (author)
Combined incomplete LU and strongly implicit procedure preconditioning
Energy Technology Data Exchange (ETDEWEB)
Meese, E.A. [Univ. of Trondheim (Norway)
1996-12-31
For the solution of large sparse linear systems of equations, the Krylov-subspace methods have gained great merit. Their efficiency are, however, largely dependent upon preconditioning of the equation-system. A family of matrix factorisations often used for preconditioning, is obtained from a truncated Gaussian elimination, ILU(p). Less common, supposedly due to it`s restriction to certain sparsity patterns, is factorisations generated by the strongly implicit procedure (SIP). The ideas from ILU(p) and SIP are used in this paper to construct a generalized strongly implicit procedure, applicable to matrices with any sparsity pattern. The new algorithm has been run on some test equations, and efficiency improvements over ILU(p) was found.
Fully implicit 1D radiation hydrodynamics: Validation and verification
International Nuclear Information System (INIS)
Ghosh, Karabi; Menon, S.V.G.
2010-01-01
A fully implicit finite difference scheme has been developed to solve the hydrodynamic equations coupled with radiation transport. Solution of the time-dependent radiation transport equation is obtained using the discrete ordinates method and the energy flow into the Lagrangian meshes as a result of radiation interaction is fully accounted for. A tridiagonal matrix system is solved at each time step to determine the hydrodynamic variables implicitly. The results obtained from this fully implicit radiation hydrodynamics code in the planar geometry agrees well with the scaling law for radiation driven strong shock propagation in aluminium. For the point explosion problem the self similar solutions are compared with results for pure hydrodynamic case in spherical geometry. Results obtained when radiation interaction is also accounted agree with those of point explosion with heat conduction for lower input energies. Having, thus, benchmarked the code, self convergence of the method w.r.t. time step is studied in detail for both the planar and spherical problems. Spatial as well as temporal convergence rates are ≅1 as expected from the difference forms of mass, momentum and energy conservation equations. This shows that the asymptotic convergence rate of the code is realized properly.
Directory of Open Access Journals (Sweden)
Hong-wei Pan
2018-03-01
Full Text Available Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.
International Nuclear Information System (INIS)
Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.
1993-01-01
A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)
International Nuclear Information System (INIS)
Dorning, J.
1981-01-01
The research and development over the past eight years on local Green's function methods for the high-accuracy, high-efficiency numerical solution of nuclear engineering problems is reviewed. The basic concepts and key ideas are presented by starting with an expository review of the original fully two-dimensional local Green's function methods developed for neutron diffusion and heat conduction, and continuing through the progressively more complicated and more efficient nodal Green's function methods for neutron diffusion, heat conduction and neutron transport to establish the background for the recent development of Green's function methods in computational fluid mechanics. Some of the impressive numerical results obtained via these classes of methods for nuclear engineering problems are briefly summarized. Finally, speculations are proffered on future directions in which the development of these types of methods in fluid mechanics and other areas might lead. (orig.) [de
A direct method for estimating the alpha/beta ratio from quantitative dose-response data
International Nuclear Information System (INIS)
Stuschke, M.
1989-01-01
A one-step optimization method based on a least squares fit of the linear quadratic model to quantitative tissue response data after fractionated irradiation is proposed. Suitable end-points that can be analysed by this method are growth delay, host survival and quantitative biochemical or clinical laboratory data. The functional dependence between the transformed dose and the measured response is approximated by a polynomial. The method allows for the estimation of the alpha/beta ratio and its confidence limits from all observed responses of the different fractionation schedules. Censored data can be included in the analysis. A method to test the appropriateness of the fit is presented. A computer simulation illustrates the method and its accuracy as examplified by the growth delay end point. A comparison with a fit of the linear quadratic model to interpolated isoeffect doses shows the advantages of the direct method. (orig./HP) [de
A direct metal transfer method for cross-bar type polymer non-volatile memory applications
International Nuclear Information System (INIS)
Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee
2008-01-01
Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices
One Improvement Method of Reducing Duration Directly to Solve Time-Cost Tradeoff Problem
Jian-xun, Qi; Dedong, Sun
Time and cost are two of the most important factors for project plan and schedule management, and specially, time-cost tradeoff problem is one classical problem in project scheduling, which is also a difficult problem. Methods of solving the problem mainly contain method of network flow and method of mending the minimal cost. Thereinto, for the method of mending the minimal cost is intuitionistic, convenient and lesser computation, these advantages make the method being used widely in practice. But disadvantage of the method is that the result of each step is optimal but the terminal result maybe not optimal. In this paper, firstly, method of confirming the maximal effective quantity of reducing duration is designed; secondly, on the basis of above method and the method of mending the minimal cost, the main method of reducing duration directly is designed to solve time-cost tradeoff problem, and by analyzing validity of the method, the method could obtain more optimal result for the problem.
An accuracy measurement method for star trackers based on direct astronomic observation.
Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping
2016-03-07
Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.
THE CHOICE OF METHODS OF TRAINING OF BACHELORS ON DIRECTION «CONSTRUCTION»
Directory of Open Access Journals (Sweden)
Ekaterina Vladimirovna Averyanova
2015-12-01
Full Text Available Purpose: based on the analysis of active learning methods to identify how, updated know-ledge in the study of special subjects in bachelors of direction of preparation «Building».Methodology: analysis of different active learning methods in the study of special disciplines.Results: analysis data of active learning methods has shown that the obtained a ba-chelor’s of knowledge has resulted in the creation of certain conditions.Practical implications: the results of the study will be of interest teachers of special disciplines of the specialty «Construction».
Proteus: a direct forcing method in the simulations of particulate flows
Feng, Zhi-Gang; Michaelides, Efstathios E.
2005-01-01
A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method combines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method. Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle. By applying the direct forcing scheme, Proteus eliminates the need for the determination of free parameters, such as the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the "bounce-back" scheme used in the conventional LBM, the direct-forcing method provides a smoother computational boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagrangian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary nodes that are prescribed by the "bounce-back" scheme at every time step. It also makes computations for particles of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This new method has been validated by comparing its results with those from experimental measurements for a single sphere settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary conditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the particles motion is significantly hindered
ImWalkMF: Joint matrix factorization and implicit walk integrative learning for recommendation
Zhang, Chuxu
2018-01-15
Data sparsity and cold-start problems are prevalent in recommender systems. To address such problems, both the observable explicit social information (e.g., user-user trust connections) and the inferable implicit correlations (e.g., implicit neighbors computed by similarity measurement) have been introduced to complement user-item ratings data for improving the performances of traditional model-based recommendation algorithms such as matrix factorization. Although effective, (1) the utilization of the explicit user-user social relationships suffers from the weakness of unavailability in real systems such as Netflix or the issue of sparse observable content like 0.03% trust density in Epinions, thus there is no or little explicit social information that can be employed to improve baseline model in real applications; (2) the current similarity measurement approaches focus on inferring implicit correlations between a user (item) and their direct neighbors or top-k similar neighbors based on user-item ratings bipartite network, so that they fail to comprehensively unfold the indirect potential relationships among users and items. To solve these issues regarding both explicit/implicit social recommendation algorithms, we design a joint model of matrix factorization and implicit walk integrative learning, i.e., ImWalkMF, which only uses explicit ratings information yet models both direct rating feedbacks and multiple direct/indirect implicit correlations among users and items from a random walk perspective. We further propose a combined strategy for training two independent components in the proposed model based on sampling. The experimental results on two real-world sparse datasets demonstrate that ImWalkMF outperforms the traditional regularized/probabilistic matrix factorization models as well as other competitive baselines that utilize explicit/implicit social information.
How implicit motives and everyday self-regulatory abilities shape cardiovascular risk in youth.
Ewart, Craig K; Elder, Gavin J; Smyth, Joshua M
2012-06-01
Tested hypotheses from social action theory that (a) implicit and explicit measures of agonistic (social control) motives and transcendence (self-control) motives differentially predict cardiovascular risk; and (b) implicit motives interact with everyday self-regulation behaviors to magnify risk. Implicit/explicit agonistic/transcendence motives were assessed in a multi-ethnic sample of 64 high school students with the Social Competence Interview (SCI). Everyday self-regulation was assessed with teacher ratings of internalizing, externalizing, and self-control behaviors. Ambulatory blood pressure and daily activities were measured over 48 h. Study hypotheses were supported: implicit goals predicted blood pressure levels but explicit self-reported coping goals did not; self-regulation indices did not predict blood pressure directly but interacted with implicit agonistic/transcendence motives to identify individuals at greatest risk (all p ≤ 0.05). Assessment of implicit motives by SCI, and everyday self-regulation by teachers may improve identification of youth at risk for cardiovascular disease.