WorldWideScience

Sample records for direct detection mode

  1. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  2. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  3. Sensitive and direct determination of lithium by mixed-mode chromatography and charged aerosol detection.

    Science.gov (United States)

    Dai, Lulu; Wigman, Larry; Zhang, Kelly

    2015-08-21

    A sensitive analytical method using mixed mode HPLC separation coupled with charged aerosol detection (CAD) was developed for quantitative analysis of lithium. The method is capable of separating lithium ion from different drug matrices and other ions in a single run thus eliminating the organic matrix and ionic analyte interferences without extensive sample preparation such as derivatization and extraction. The separation space and chromatographic conditions are defined by systematic studies of the retention behaviors of lithium and potential interfering ions and different type of pharmaceutical APIs (active pharmaceutical ingredients) under reversed-phase, HILIC and cation/anion exchange mechanisms. Compared to other current analytical techniques for lithium analysis, the presented method provides a new approach and demonstrates high sensitivity (0.02ng for LOD and 0.08ng for LOQ in both standard and sample solution). The method has been validated for pharmaceutical samples and can be potentially applied to biological, food and environmental samples. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Comparison of sensitivities and detection limits between direct excitation and secondary excitation modes in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Artz, B.E.; Short, M.A.

    1976-01-01

    A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix

  5. Study of matrix effects on the direct trace analysis of acidic pesticides in water using various liquid chromatographic modes coupled to tandem mass spectrometric detection.

    Science.gov (United States)

    Dijkman, E; Mooibroek, D; Hoogerbrugge, R; Hogendoorn, E; Sancho, J V; Pozo, O; Hernández, F

    2001-08-10

    This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested

  6. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  7. Infrared helioseismology - Detection of the chromospheric mode

    Science.gov (United States)

    Deming, D.; Kaeufl, H. U.; Espenak, F.; Glenar, D. A.; Hill, A. A.

    1986-01-01

    Time-series observations of an infrared solar OH absorption line profile have been obtained on two consecutive days using a laser heterodyne spectrometer to view a 2 arcsec portion of the quiet sun at disk center. A power spectrum of the line center velocity shows the well-known photospheric p-mode oscillations very prominently, but also shows a second feature near 4.3 mHz. A power spectrum of the line intensity shows only the 4.3 mHz feature, which is identified as the fundamental p-mode resonance of the solar chromosphere. The frequency of the mode is observed to be in substantial agreement with the eigenfrequency of current chromospheric models. A time series of two beam difference measurements shows that the mode is present only for horizontal wavelengths greater than 19 Mm. The period of a chromospheric p-mode resonance is directly related to the sound travel time across the chromosphere, which depends on the chromospheric temperature and geometric height. Thus, detection of this resonance will provide an important new constraint on chromospheric models.

  8. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    Science.gov (United States)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  9. Direct detection with dark mediators

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, David; Surujon, Ze' ev [C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 (United States); Tsai, Yuhsin [Physics Department, University of California Davis, Davis, CA 95616 (United States)

    2014-11-10

    We introduce dark mediator Dark Matter (dmDM) where the dark and visible sectors are connected by at least one light mediator ϕ carrying the same dark charge that stabilizes DM. ϕ is coupled to the Standard Model via an operator q{sup ¯}qϕϕ{sup ⁎}/Λ, and to dark matter via a Yukawa coupling y{sub χ}χ{sup c¯}χϕ. Direct detection is realized as the 2→3 process χN→χ{sup ¯}Nϕ at tree-level for m{sub ϕ}≲10 keV and small Yukawa coupling, or alternatively as a loop-induced 2→2 process χN→χN. We explore the direct-detection consequences of this scenario and find that a heavy O(100 GeV) dmDM candidate fakes different O(10 GeV) standard WIMPs in different experiments. Large portions of the dmDM parameter space are detectable above the irreducible neutrino background and not yet excluded by any bounds. Interestingly, for the m{sub ϕ} range leading to novel direct detection phenomenology, dmDM is also a form of Self-Interacting Dark Matter (SIDM), which resolves inconsistencies between dwarf galaxy observations and numerical simulations.

  10. Prospects for Inflationary B-Mode Detection

    Science.gov (United States)

    Kogut, Alan J.

    2011-01-01

    Measurements of the linear polarization of the cosmic microwave background provide a direct window into the physics of inflation. The experimental challenges are daunting: not only is the predicted signal faint compared to the photon noise limit, but it is hidden behind competing foregrounds from both local and cosmic sources. I will discuss the experimental response to these challenges and the prospects for eventual detection and characterization of the inflationary signal.

  11. Kepler detected gravity-mode period spacings in a red giant star

    NARCIS (Netherlands)

    Beck, P.G.; Bedding, T.R.; Mosser, B.; Stello, D.; Garcia, R.A.; Kallinger, T.; Hekker, S.; Elsworth, Y.; Frandsen, S.; Carrier, F.; de Ridder, J.; Aerts, C.; White, T.R.; Huber, D.; Dupret, M. A.; Montalban, J.; Miglio, A.; Noels, A.; Chaplin, W.J.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Gilliland, R.L.; Brown, T.M.; Kawaler, S.D.; Mathur, S.; Jenkins, J.M.

    2011-01-01

    Stellar interiors are inaccessible through direct observations. For this reason, helioseismologists made use of the Sun’s acoustic oscillation modes to tune models of its structure. The quest to detect modes that probe the solar core has been ongoing for decades. We report the detection of mixed

  12. Plasma dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.D.; Foot, R., E-mail: j.clarke5@pgrad.unimelb.edu.au, E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  13. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  14. Foreign direct investment mode choice : entry and establishment modes in transition economies

    NARCIS (Netherlands)

    Dikova, Desislava; van Witteloostuijn, Arien

    In this study, we bridge two streams of foreign direct investment literature, specifically studies on establishment mode choice (i.e., the choice between an acquisition and a greenfield establishment) and studies on entry mode choice (i.e., the choice between a wholly owned outlet and a subsidiary

  15. Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star

    DEFF Research Database (Denmark)

    Beck, P.G.; Bedding, Timothy R.; Mosser, Benoit

    2011-01-01

    Stellar interiors are inaccessible through direct observations. For this reason, helioseismologists made use of the Sun’s acoustic oscillation modes to tune models of its structure. The quest to detect modes that probe the solar core has been ongoing for decades. We report the detection of mixed...... modes penetrating all the way to the core of an evolved star from 320 days of observations with the Kepler satellite. The period spacings of these mixed modes are directly dependent on the density gradient between the core region and the convective envelope....

  16. Laser Covariance Vibrometry for Unsymmetrical Mode Detection

    National Research Council Canada - National Science Library

    Kobold, Michael C

    2006-01-01

    Simulated cross - spectral covariance (CSC) from optical return from simulated surface vibration indicates CW phase modulation may be an appropriate phenomenology for adequate classification of vehicles by structural mode...

  17. Towards Indoor Transportation Mode Detection using Mobile Sensing

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Blunck, Henrik; Kjærgaard, Mikkel Baun

    2015-01-01

    Transportation mode detection is a growing field of research, in which a variety of methods have been developed for detecting transportation modes foremost for outdoor travels. It has been employed in application areas such as public transportation, environmental footprint profiling, and context......-aware mobile assistants. For indoor travels the problem of transportation mode detection has received comparatively little attention, even though diverse transportation modes, such as biking, electric vehicles, and scooters, are used indoors, especially in large building complexes. The potential applications...... are diverse, may also extend beyond indoor variants of the above outdoor applications, and include, e.g., scheduling and progress tracking for mobile workers, management of vehicular resources, and navigation support. However, for indoor transportation mode detection, both the physical environment as well...

  18. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  19. Laser Covariance Vibrometry for Unsymmetrical Mode Detection

    Science.gov (United States)

    2006-09-01

    2 CMIF Complex Modal Indicator Function . . . . . . . . . . . . . 2 FDAC Frequency Domain Acceptance Criterion . . . . . . . . . . 2 OEM’s Original...complex modal indicator function ( CMIF ) [23] a set of singular value decomposition response functions and the frequency domain acceptance criterion...AFITGEENP03-02. 59. Phillips, Allyn W., Randall J. Allemang, and William A. Fladung. “The Complex Mode Indicator Function ( CMIF ) as a Parameter

  20. Object Detection: Current and Future Directions

    Directory of Open Access Journals (Sweden)

    Rodrigo eVerschae

    2015-11-01

    Full Text Available Object detection is a key ability required by most computer and robot vision systems. The latest research on this area has been making great progress in many directions. In the current manuscript we give an overview of past research on object detection, outline the current main research directions, and discuss open problems and possible future directions.

  1. Directional interacting whispering-gallery modes in coupled dielectric microdisks

    International Nuclear Information System (INIS)

    Ryu, Jung-Wan; Lee, Soo-Young; Kim, Chil-Min; Park, Young-Jai

    2006-01-01

    We study the optical interaction in a coupled dielectric microdisks by investigating the splitting of resonance positions of interacting whispering-gallery modes (WGM's) and their pattern change, depending on the distance between the microdisks. It is shown that the interaction between the WGM's with odd parity about the y axis becomes appreciable at a distance less than a wavelength and causes directional emissions of the resulting interacting WGM's. The directionality of the interacting WGM's can be understood in terms of an effective boundary deformation in ray dynamical analysis. We also discuss the oscillation of the splitting when the distance is greater than a wavelength

  2. Volatile organic compounds discrimination based on dual mode detection

    Science.gov (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  3. Single photon detection in the SQS mode

    International Nuclear Information System (INIS)

    Alves, M.A.; Fraga, M.M.; Lima, E.P. de; Marques, R.F.; Neves, F.; Policarpo, A.

    1997-01-01

    Results are presented concerning the detection of single UV photons in self quenching streamer detectors by photoionization of one of the gas mixture components, in this case TEA (tri ethyl-amine), whose molecules have low photoionization potential and large absorption cross section. As a UV light source, a gas scintillation counter filled with krypton was used, whose emission light spectrum, centered at approximately 150 nm, overlaps well the photoionization spectrum of TEA. The mixtures studied were argon/ethane/TEA, argon/isobutane/TEA, argon/ethane/methylal/TEA and argon/isobutane/methylal/ TEA. (author). 4 refs., 4 figs

  4. Palm vein recognition based on directional empirical mode decomposition

    Science.gov (United States)

    Lee, Jen-Chun; Chang, Chien-Ping; Chen, Wei-Kuei

    2014-04-01

    Directional empirical mode decomposition (DEMD) has recently been proposed to make empirical mode decomposition suitable for the processing of texture analysis. Using DEMD, samples are decomposed into a series of images, referred to as two-dimensional intrinsic mode functions (2-D IMFs), from finer to large scale. A DEMD-based 2 linear discriminant analysis (LDA) for palm vein recognition is proposed. The proposed method progresses through three steps: (i) a set of 2-D IMF features of various scale and orientation are extracted using DEMD, (ii) the 2LDA method is then applied to reduce the dimensionality of the feature space in both the row and column directions, and (iii) the nearest neighbor classifier is used for classification. We also propose two strategies for using the set of 2-D IMF features: ensemble DEMD vein representation (EDVR) and multichannel DEMD vein representation (MDVR). In experiments using palm vein databases, the proposed MDVR-based 2LDA method achieved recognition accuracy of 99.73%, thereby demonstrating its feasibility for palm vein recognition.

  5. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    Science.gov (United States)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  6. Solar g-modes? Comparison of detected asymptotic g-mode frequencies with solar model predictions

    Science.gov (United States)

    Wood, Suzannah Rebecca; Guzik, Joyce Ann; Mussack, Katie; Bradley, Paul A.

    2018-06-01

    After many years of searching for solar gravity modes, Fossat et al. (2017) reported detection of the nearly equally spaced high-order g-modes periods using a 15-year time series of GOLF data from the SOHO spacecraft. Here we report progress towards and challenges associated with calculating and comparing g-mode period predictions for several previously published standard solar models using various abundance mixtures and opacities, as well as the predictions for some non-standard models incorporating early mass loss, and compare with the periods reported by Fossat et al (2017). Additionally, we have a side-by-side comparison of results of different stellar pulsation codes for calculating g-mode predictions. These comparisons will allow for testing of nonstandard physics input that affect the core, including an early more massive Sun and dynamic electron screening.

  7. Biomolecule detection using a silicon nanoribbon: accumulation mode versus inversion mode

    International Nuclear Information System (INIS)

    Elfstroem, Niklas; Linnros, Jan

    2008-01-01

    Silicon nanoribbons were fabricated using standard optical lithography from silicon on insulator material with top silicon layer thicknesses of 100, 60 and 45 nm. Electrically these work as Schottky-barrier field-effect transistors and, depending on the substrate voltage, electron or hole injection is possible. The current through the nanoribbon is extremely sensitive to charge changes at the oxidized top surface and can be used for biomolecule detection in a liquid. We show that for detection of streptavidin molecules the response is larger in the accumulation mode than in the inversion mode, although not leading to higher detection sensitivity due to increased noise. The effect is attributed to the location in depth of the conducting channel, which for holes is closer to the screened surface charges of the biomolecules. Furthermore, the response increases for decreasing silicon thickness in both the accumulation mode and the inversion mode. The results are verified qualitatively and quantitatively through a two-dimensional simulation model on a cross section along the nanoribbon device

  8. Redo of Coil Spring Considering Transversal Direction Mode Tracking

    International Nuclear Information System (INIS)

    Lee, Jin Min; Jang, Junyong; Lee, Tae Hee

    2013-01-01

    When the values of design variables change, mode switching can often occur. If the mode of interest is not tracked, the frequencies and modes for design optimization may be miscalculated owing to modes that differ from the intended ones. Thus, mode tracking must be employed to identify the frequencies and modes of interest whenever the values of design variables change during optimization. Furthermore, reliability-based design optimization (Redo) must be performed for design problems with design variables containing uncertainty. In this research, we perform Redo considering the mode tracking of a compressive coil spring, i.e., a component of the joint spring that supports a compressor, with design variables containing uncertainty by using only kriging meta models based on multiple responses approach (MR A) without existing mode tracking methods. The reliability analyses for Redo are employed using kriging meta model-based Monte Carlo simulation

  9. A symmetry measure for damage detection with mode shapes

    Science.gov (United States)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  10. Development of an omni-directional shear horizontal mode magnetostrictive patch transducer

    Science.gov (United States)

    Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin

    2018-04-01

    The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.

  11. Rejuvenating direct modulation and direct detection for modern optical communications

    Science.gov (United States)

    Che, Di; Li, An; Chen, Xi; Hu, Qian; Shieh, William

    2018-02-01

    High-speed transoceanic optical fiber transmission using direct modulation (DM) and direct detection (DD) was one of the most stirring breakthroughs for telecommunication in 1990s, which drove the internet as a global phenomenon. However, the later evolution of optical coherent communications in 2000s gradually took over the long-haul applications, due to its superior optical spectral efficiency. Nowadays, DM-DD systems are dominant mainly in cost- and power-sensitive short-reach applications, because of its natural characteristics-the simplicity. This paper reviews the recent advances of DM-DD transceivers from both hardware and signal processing perspectives. It introduces a variety of modified DM and/or DD systems for 3 application scenarios: very-short-reach interconnect with little fiber channel impact; single or a few spans of fiber transmission up to several hundred km; and distance beyond the 2nd scenario. Besides the DM-DD and multi-dimension DM-DD with polarization diversity, this paper focuses on how to rejuvenate traditional DM and DD technologies in order to bridge the transmission application gap between DM-DD and coherent transceivers, using technologies such as dispersion compensation, signal field recovery from the intensity-only DD receiver, and complex direct modulation with coherent detection. More than 30 years since the birth, DM and DD still hold indispensable roles in modern optical communications.

  12. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  13. Transportation Mode Detection Based on Permutation Entropy and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available With the increasing prevalence of GPS devices and mobile phones, transportation mode detection based on GPS data has been a hot topic in GPS trajectory data analysis. Transportation modes such as walking, driving, bus, and taxi denote an important characteristic of the mobile user. Longitude, latitude, speed, acceleration, and direction are usually used as features in transportation mode detection. In this paper, first, we explore the possibility of using Permutation Entropy (PE of speed, a measure of complexity and uncertainty of GPS trajectory segment, as a feature for transportation mode detection. Second, we employ Extreme Learning Machine (ELM to distinguish GPS trajectory segments of different transportation. Finally, to evaluate the performance of the proposed method, we make experiments on GeoLife dataset. Experiments results show that we can get more than 50% accuracy when only using PE as a feature to characterize trajectory sequence. PE can indeed be effectively used to detect transportation mode from GPS trajectory. The proposed method has much better accuracy and faster running time than the methods based on the other features and SVM classifier.

  14. Discriminating dark matter candidates using direct detection

    International Nuclear Information System (INIS)

    Belanger, G.; Nezri, E.; Pukhov, A.

    2009-01-01

    We examine the predictions for both the spin-dependent and spin-independent direct detection rates in a variety of new particle physics models with dark matter candidates. We show that a determination of both spin-independent and spin-dependent amplitudes on protons and neutrons can in principle discriminate different candidates of dark matter up to a few ambiguities. We emphasize the importance of making measurements with different spin-dependent sensitive detector materials and the need for significant improvement of the detector sensitivities. Scenarios where exchange of new colored particles contributes significantly to the elastic scattering cross sections are often the most difficult to identify, the LHC should give an indication whether such scenarios are relevant for direct detection.

  15. Directly detecting isospin-violating dark matter

    Science.gov (United States)

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-03-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.

  16. Directly detecting isospin-violating dark matter

    OpenAIRE

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon–...

  17. Dark matter spin determination with directional direct detection experiments

    Science.gov (United States)

    Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.

    2018-01-01

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  18. Performance of a direct detection camera for off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shery L.Y., E-mail: shery.chang@asu.edu [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287 (United States); Dwyer, Christian [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Barthel, Juri; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-02-15

    The performance of a direct detection camera (DDC) is evaluated in the context of off-axis electron holographic experiments in a transmission electron microscope. Its performance is also compared directly with that of a conventional charge-coupled device (CCD) camera. The DDC evaluated here can be operated either by the detection of individual electron events (counting mode) or by the effective integration of many such events during a given exposure time (linear mode). It is demonstrated that the improved modulation transfer functions and detective quantum efficiencies of both modes of the DDC give rise to significant benefits over the conventional CCD cameras, specifically, a significant improvement in the visibility of the holographic fringes and a reduction of the statistical error in the phase of the reconstructed electron wave function. The DDC's linear mode, which can handle higher dose rates, allows optimisation of the dose rate to achieve the best phase resolution for a wide variety of experimental conditions. For suitable conditions, the counting mode can potentially utilise a significantly lower dose to achieve a phase resolution that is comparable to that achieved using the linear mode. The use of multiple holograms and correlation techniques to increase the total dose in counting mode is also demonstrated. - Highlights: • Performance of a direct detection camera for off-axis electron holography has been evaluated. • Better holographic fringe visibility and phase resolution are achieved using DDC. • Both counting and linear modes offered by DDC are advantageous for different dose regimes.

  19. Performance of a direct detection camera for off-axis electron holography

    International Nuclear Information System (INIS)

    Chang, Shery L.Y.; Dwyer, Christian; Barthel, Juri; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.

    2016-01-01

    The performance of a direct detection camera (DDC) is evaluated in the context of off-axis electron holographic experiments in a transmission electron microscope. Its performance is also compared directly with that of a conventional charge-coupled device (CCD) camera. The DDC evaluated here can be operated either by the detection of individual electron events (counting mode) or by the effective integration of many such events during a given exposure time (linear mode). It is demonstrated that the improved modulation transfer functions and detective quantum efficiencies of both modes of the DDC give rise to significant benefits over the conventional CCD cameras, specifically, a significant improvement in the visibility of the holographic fringes and a reduction of the statistical error in the phase of the reconstructed electron wave function. The DDC's linear mode, which can handle higher dose rates, allows optimisation of the dose rate to achieve the best phase resolution for a wide variety of experimental conditions. For suitable conditions, the counting mode can potentially utilise a significantly lower dose to achieve a phase resolution that is comparable to that achieved using the linear mode. The use of multiple holograms and correlation techniques to increase the total dose in counting mode is also demonstrated. - Highlights: • Performance of a direct detection camera for off-axis electron holography has been evaluated. • Better holographic fringe visibility and phase resolution are achieved using DDC. • Both counting and linear modes offered by DDC are advantageous for different dose regimes.

  20. DETECTING GRAVITY MODES IN THE SOLAR {sup 8} B NEUTRINO FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chièze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)

    2014-09-10

    The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the {sup 8} B neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order 2, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than 5.8 × 10{sup –4}. This study clearly shows that due to their high sensitivity to the temperature, the {sup 8} B neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the {sup 8} B neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

  1. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  2. The intriguing relationship between coiling direction and reproductive mode in benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Rao, A

    direction changes. The relationship between mode of reproduction and coiling directions in benthic foraminifera is explored. Benthic foraminiferal species Cavarotalia annectens (Paarker & Jones) in 58 samples obtained from a core off Karwar, west coast...

  3. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    International Nuclear Information System (INIS)

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-01-01

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection

  4. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  5. Direct detection of Leishmania from clinical samples.

    Science.gov (United States)

    Waitumbi, John N; Bast, Joshua; Nyakoe, Nancy; Magiri, Charles; Quintana, Miguel; Takhampunya, Ratree; Schuster, Anthony L; Van de Wyngaerde, Marshall T; McAvin, James C; Coleman, Russell E

    2017-01-01

    The ability to rapidly and accurately diagnose leishmaniasis is a military priority. Testing was conducted to evaluate diagnostic sensitivity and specificity of field-expedient Leishmania genus and visceral Leishmania specific dual-fluorogenic, hydrolysis probe (TaqMan), polymerase chain reaction assays previously established for use in vector surveillance. Blood samples of patients with confirmed visceral leishmaniasis and controls without the disease from Baringo District, Kenya, were tested. Leishmania genus assay sensitivity was 100% (14/14) and specificity was 84% (16/19). Visceral Leishmania assay sensitivity was 93% (13/14) and specificity 80% (4/5). Cutaneous leishmaniasis (CL) skin scrapes of patients from Honduras were also evaluated. Leishmania genus assay sensitivity was 100% (10/10). Visceral Leishmania assay specificity was 100% (10/10) from cutaneous leishmaniasis samples; no fluorescence above background was reported. These results show promise in a rapid, sensitive, and specific method for Leishmania direct detection from clinical samples.

  6. Coaxial direct-detection lidar-system

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical....... Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing...... frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system....

  7. Direct fast neutron detection: A status report

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Hansen, R.R.; Craig, R.A.; Hensley, W.K.; Hubbard, C.W.; Keller, P.E.; Reeder, P.L.; Sunberg, D.S.

    1997-12-01

    This report describes the status of efforts to develop direct fast-neutron detection via proton recoil within plastic scintillator. Since recording proton recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the different pulse shapes that are to be expected primarily on the basis of the slower speed of the recoiling fission neutrons. Should this effort ultimately prove successful, the resulting novel technology will have the potential to significantly lower cost and increase capability for a number of critical neutron-detection applications. Considerable progress has been made toward a clear and compelling demonstration of this new technique. An exhaustive theoretical and numerical investigation of the method has been completed. The authors have been able to better understand the laboratory results and estimate the performance that could ultimately be achieved using the proposed technique. They have assessed the performance of a number of different algorithms for discriminating between neutron and gamma ray events. The results of this assessment will be critical when the construction of low-cost, field-portable neutron detectors becomes necessary. Finally, a laboratory effort to realize effective discrimination is well underway and has resulted in partial success

  8. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    International Nuclear Information System (INIS)

    Baushev, A. N.

    2013-01-01

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute ∼12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed (∼600 km s –1 ), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow (∼20 km s –1 ). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s –1 ), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  9. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    Science.gov (United States)

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  10. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  11. Direct measurements of damping rates and stability limits for low frequency MHD modes and Alfven Eigenmodes in the JET tokamak

    International Nuclear Information System (INIS)

    Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.

    2001-01-01

    The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)

  12. Direct progeny detection techniques and random epidemiology

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Mishra, Rosaline; Sapra, B.K.

    2015-01-01

    Over the past 40 years, there has been considerable progress in the measurements methods and their application to the estimates of risks due to radon among general populations. The previous decade saw major development in this regard. It was the direct estimate of indoor radon risk from epidemiological studies in Europe and North America. These were important findings that demonstrated the presence of lung cancer risks at residential radon levels supplementing the generally used risks estimates at high exposures obtained from uranium miner's data. The residential radon epidemiological studies largely used radon concentration as a measure of exposure. The exposure to decay products, which are primarily the dose givers, are assumed to be proportional to the measured gas concentrations. Also, the presence of thoron was neglected in these studies. Although several corrections have appeared to these assessments, the question of variability of actual decay product exposures has largely remained unaddressed. In order to circumvent this limitation, passive techniques were developed to estimate the decay product concentrations directly using deposition monitors. These are based on detecting the alpha particles from decay products deposited on an absorber mounted LR-115 detectors. Known as Direct radon, and Thoron Progeny sensors (DRPS/DTPS), these have been further refined to separate fine fraction from the coarse fraction by wire-mesh capping techniques. Large number environmental calibration exercises and field data generation has been carried out on the progeny concentrations in Indian and some European environments. The development of progeny sensors offers a new tool for future epidemiology. Since in the Indian context, there exist no radon related epidemiological estimates of risk, it is time one conducts large scale studies to seek possible correlations between DRPS/DTPS data and lung cancer risks. While epidemiological studies in High background radiation areas

  13. Direct Detection of Soil-Bound Prions

    Science.gov (United States)

    Genovesi, Sacha; Leita, Liviana; Sequi, Paolo; Andrighetto, Igino; Sorgato, M. Catia; Bertoli, Alessandro

    2007-01-01

    Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrPSc) of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challanged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures. PMID:17957252

  14. Direct detection of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Sacha Genovesi

    Full Text Available Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrP(Sc of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challenged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures.

  15. Detectability of tensor modes in the presence of foregrounds

    International Nuclear Information System (INIS)

    Amarie, Mihail; Hirata, Christopher; Seljak, Uros

    2005-01-01

    In inflationary models gravitational waves are produced in the early universe and generate B-type polarization in the cosmic microwave background (CMB). Since B polarization is only generated by gravity waves it does not suffer from the usual cosmic variance. A perfect decomposition of the CMB into B-modes and E-modes would require data from the entire sky, which in practice is not possible because of the foreground contaminants. This leads to mixing of E polarization into B, which introduces cosmic variance contamination of B polarization and reduces sensitivity to gravity wave amplitude even in absence of detector noise. We present numerical results for the uncertainty in the tensor-to-scalar ratio using the Fisher matrix formalism for various resolutions and considering several cuts of the sky, using the foreground model based on dust maps and assuming 90 GHz operating frequency. We find that the usual scaling xutri((T/S))∝f sky -1/2 is significantly degraded and becomes xutri((T/S))∝f sky -2 for f sky >0.7. This dependence is affected only weakly by the choice of sky cuts. To put this into a context of what is required level of foreground cleaning, to achieve a T/S=10 -3 detection at 3σ one needs to observe 15% of the sky as opposed to naive expectation of 0.3%. To prevent contamination over this large sky area at required level one must be able to remove polarized dust emission at or better than 0.1% of unpolarized intensity, assuming the cleanest part of the sky has been chosen. To achieve T/S=10 -4 detection at 3σ one needs to observe 70% of the sky, which is only possible if dust emission is removed everywhere over this region at 0.01% level. Reaching T/S=10 -2 should be easier: 1% of the sky is needed over which polarized emission needs to be removed at 1% of unpolarized intensity if the cleanest region is chosen. These results suggest that foreground contamination may make it difficult to achieve levels below T/S=10 -3

  16. Mode of foreign entry, technology transfer, and foreign direct investment policy

    OpenAIRE

    Mattoo, Aaditya; Olarreaga, Marcelo; Saggi, Kamal

    2001-01-01

    Foreign direct investment can take place through the direct entry of foreign firms or the acquisition of existing domestic firms. Mattoo, Olarreaga, and Saggi examine the preferences of a foreign firm and the host country government with respect to these two modes of foreign direct investment in the presence of costly technology transfer. The tradeoff between technology transfer and market...

  17. Detecting free-mass common-mode motion induced by incident gravitational waves

    Science.gov (United States)

    Tobar, Michael Edmund; Suzuki, Toshikazu; Kuroda, Kazuaki

    1999-05-01

    In this paper we show that information on both the differential and common mode free-mass response to a gravitational wave can provide important information on discriminating the direction of the gravitational wave source and between different theories of gravitation. The conventional Michelson interferometer scheme only measures the differential free-mass response. By changing the orientation of the beam splitter, it is possible to configure the detector so it is sensitive to the common-mode of the free-mass motion. The proposed interferometer is an adaptation of the Fox-Smith interferometer. A major limitation to the new scheme is its enhanced sensitivity to laser frequency fluctuations over the conventional, and we propose a method of cancelling these fluctuations. The configuration could be used in parallel to the conventional differential detection scheme with a significant sensitivity and bandwidth.

  18. A two-pronged approach to detecting ICB Stoneley modes

    Science.gov (United States)

    Jasperson, H. A.; Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    Stoneley modes are special kinds of normal modes that are confined to the boundary between a fluid layer and a solid layer inside the Earth. Thus, these modes theoretically occur at the core-mantle boundary (CMB) and inner core boundary (ICB). CMB Stoneley modes were identified in observational data by Koelemeijer, et al. in 2013, but ICB Stoneley modes have remained relatively unexplored. Here we use a joint numerical and data-driven approach to identify ICB Stoneley modes from the deep 2013 Mw 8.3 Sea of Okhotsk earthquake. For the data-driven portion, we use 50 stacked traces from the USArray to identify potential occurrences of ICB Stoneley modes. Next, we verify each occurrence by comparing the spectrum to its equivalent from the shallow 2011 Mw 9.1 Tohoku earthquake. We also develop a novel computational approach to compute normal modes in a spherically symmetric non-rotating Earth building on the work of Wiggins (1976) and Buland and Gilbert (1984). We successfully resolve the clustering eigenvalue problem with non-orthogonal eigenfunctions from which Mineos suffers. By choosing the displacement/pressure formulation in the fluid outer core and handling boundary conditions properly, we remarkably project out the essential spectrum and provide the correct point spectrum. The utilization of weak variational form to perform the Rayleigh-Ritz procedure contributes to preserving the high accuracy across the solid-fluid boundary, which makes it possible to capture Stoneley modes' exponentially decaying behavior across the solid-fluid boundary, leading to more accurate and reliable eigenvalues and eigenfunctions. This allows us to compare the observation data and numerical computations. With this approach, we eliminate false signals from consideration, leaving only true ICB Stoneley mode peaks. In the future, information from these modes can be used to study the properties of the ICB and inner core.

  19. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  20. Direct and indirect detection of supersymmetric dark matter; Detection directe et indirecte de matiere sombre supersymetrique

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, F

    2001-09-01

    A substantial body of astrophysical evidence supports the existence of non-baryonic dark matter in the universe. One of the leading dark matter candidates is the neutralino predicted by the supersymmetric extensions of the standard model of particle physics. Different detectors have been designed for the detection, either indirect or direct, of the neutralino. Related to indirect detection, the present work has been performed in the context of the AMS experiment. A precursor version of the spectrometer was flown on the space shuttle Discovery in June 1998. The detector included an Aerogel Threshold Cherenkov counter (ATC) to identify antiprotons, whose spectrum may be used to infer a neutralino signal. The analysis of the ATC data is presented including an evaluation of the flight performance and a description of the optimization of the antiproton selection. An antiproton analysis is also reported. A phenomenological study allows us to investigate the discovery potential of this indirect method. This thesis also includes the development of a new detector (MACHe3) designed for direct neutralino search using a superfluid {sup 3}He bolometer operated at ultra low temperatures. The data analysis of the prototype cell is presented. A Monte Carlo simulation has been developed, in order to optimize the detector design for direct neutralino search. These results are compared with theoretical predictions of supersymmetric models, thus highlighting the discovery potential of this detector and its complementarity with existing devices. (author)

  1. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode

    Science.gov (United States)

    Pavičić, Mladen

    2013-04-01

    We show that in any quantum direct communication protocol that is based on Ψ and Φ Bell states, an eavesdropper can always tell Ψ from Φ states without altering the transmission in any way in the message mode. This renders all protocols that make use of only one Ψ state and one Φ state completely insecure in the message mode. All four-Bell-state protocols require a revision and this might be of importance for new implementations of entanglement-based cryptographic protocols. The detection rate of an eavesdropper is 25% per control transmission, i.e., a half of the rate in the two-state (ping-pong) protocol. An eavesdropper can detect control probes with certainty in the standard control transmission without a photon in the Alice-to-Bob's travel mode and with near certainty in a transmission with a fake photon in the travel mode. Resending of measured control photons via the travel mode would make an eavesdropper completely invisible.

  3. Using Smart Phone Sensors to Detect Transportation Modes

    Directory of Open Access Journals (Sweden)

    Hao Xia

    2014-11-01

    Full Text Available The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle and wait (remaining at a location for a short period; e.g., waiting at a red traffic light. These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users.

  4. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  5. Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy

    International Nuclear Information System (INIS)

    Paulo, A S; GarcIa-Sanchez, D; Perez-Murano, F; Bachtold, A; Black, J; Bokor, J; Esplandiu, M J; Aguasca, A

    2008-01-01

    We describe a method based on the use of higher order bending modes of the cantilever of a dynamic force microscope to characterize vibrations of micro and nanomechanical resonators at arbitrarily large resonance frequencies. Our method consists on using a particular cantilever eigenmode for standard feedback control in amplitude modulation operation while another mode is used for detecting and imaging the resonator vibration. In addition, the resonating sample device is driven at or near its resonance frequency with a signal modulated in amplitude at a frequency that matches the resonance of the cantilever eigenmode used for vibration detection. In consequence, this cantilever mode is excited with an amplitude proportional to the resonator vibration, which is detected with an external lock-in amplifier. We show two different application examples of this method. In the first one, acoustic wave vibrations of a film bulk acoustic resonator around 1.6 GHz are imaged. In the second example, bending modes of carbon nanotube resonators up to 3.1 GHz are characterized. In both cases, the method provides subnanometer-scale sensitivity and the capability of providing otherwise inaccessible information about mechanical resonance frequencies, vibration amplitude values and mode shapes

  6. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  7. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    Science.gov (United States)

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  8. Mode-locking of a terahertz laser by direct phase synchronization.

    Science.gov (United States)

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  9. Inverted dipole feature in directional detection of exothermic dark matter

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo

    2017-01-01

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the mean recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.

  10. Phenomenological introduction to direct dark matter detection

    International Nuclear Information System (INIS)

    Gondolo, P.

    1996-01-01

    The dark matter of our galactic halo may be constituted by elementary particles that interact weakly with with ordinary matter (WIMPs). In spite of the very low counting rates expected for these dark matter particle to scatter off nuclei in a laboratory detector, such direct WIMP searches are possible and are experimentally carried out at present. An introduction to the theoretical ingredients entering the counting rates predictions, together with a short discussion of the major theoretical uncertainties, is here presented. (author)

  11. Course 6. dark matter: direct detection

    International Nuclear Information System (INIS)

    Chardin, G.

    2000-01-01

    Determining the precise nature of dark matter is one of the main open questions of contemporary physics. The search for non-baryonic dark matter is strongly motivated by present data and 3 particle candidates: wimps (weakly interactive massive particles), axions and massive neutrinos are actively searched by several experiments (GENIUS, HDMS, CDMS, EDELWEISS, LLNL, CARRACK, SOLAX, DAMA,...). In this course the author reviews and summarizes the experimental situation and analyzes the main detection strategies developed to identify the dark matter candidates. (A.C.)

  12. Indirect detection of radiation sources through direct detection of radiolysis products

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Fischer, Larry E [Los Gatos, CA; Felter, Thomas E [Livermore, CA

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  13. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    Science.gov (United States)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  14. Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.

    2007-12-01

    Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for

  15. Mode of detection: an independent prognostic factor for women with breast cancer.

    Science.gov (United States)

    Hofvind, Solveig; Holen, Åsne; Román, Marta; Sebuødegård, Sofie; Puig-Vives, Montse; Akslen, Lars

    2016-06-01

    To investigate breast cancer survival and risk of breast cancer death by detection mode (screen-detected, interval, and detected outside the screening programme), adjusting for prognostic and predictive tumour characteristics. Information about detection mode, prognostic (age, tumour size, histologic grade, lymph node status) and predictive factors (molecular subtypes based on immunohistochemical analyses of hormone receptor status (estrogen and progesterone) and Her2 status) were available for 8344 women in Norway aged 50-69 at diagnosis of breast cancer, 2005-2011. A total of 255 breast cancer deaths were registered by the end of 2011. Kaplan-Meier method was used to estimate six years breast cancer specific survival and Cox proportional hazard model to estimate hazard ratio (HR) for breast cancer death by detection mode, adjusting for prognostic and predictive factors. Women with screen-detected cancer had favourable prognostic and predictive tumour characteristics compared with interval cancers and those detected outside the screening programme. The favourable characteristics were present for screen-detected cancers, also within the subtypes. Adjusted HR of dying from breast cancer was two times higher for women with symptomatic breast cancer (interval or outside the screening), using screen-detected tumours as the reference. Detection mode is an independent prognostic factor for women diagnosed with breast cancer. Information on detection mode might be relevant for patient management to avoid overtreatment. © The Author(s) 2015.

  16. Direct-indirect mixed implosion mode in heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Kawata, S.; Miyazawa, K.; Kikuchi, T.; Someya, T.

    2007-01-01

    In order to realize an effective implosion, beam illumination non-uniformity on a fuel target must be suppressed less than a few percent. In this study, a direct-indirect mixture implosion mode is proposed and discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement dz from the center of a fusion reactor chamber. In a direct-driven implosion mode, dz of ∼20 μm was tolerable, and in an indirect-implosion mode, dz of ∼100 μm was allowable. In the direct-indirect mixture mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer, the radiation transport is expected to smooth the HIB illumination non-uniformity in the lateral direction. Two-dimensional implosion simulations are performed, and show that the HIB illumination non-uniformity is well smoothed in the direct-indirect mixture target. Our simulation results present that a large pellet displacement of approximately a few hundred microns is allowed in order to obtain a sufficient fusion energy output in HIF

  17. Current status of direct dark matter detection experiments

    Science.gov (United States)

    Liu, Jianglai; Chen, Xun; Ji, Xiangdong

    2017-03-01

    Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.

  18. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    Science.gov (United States)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  19. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes

    Science.gov (United States)

    Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel

    2018-05-01

    This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.

  20. Direct detection of lower hybrid wave using a reflectometer on Alcator C-Moda)

    Science.gov (United States)

    Shiraiwa, S.; Baek, S.; Dominguez, A.; Marmar, E.; Parker, R.; Kramer, G. J.

    2010-10-01

    The possibility of directly detecting a density perturbation produced by lower hybrid (LH) waves using a reflectometer is presented. We investigate the microwave scattering of reflectometer probe beams by a model density fluctuation produced by short wavelength LH waves in an Alcator C-Mod experimental condition. In the O-mode case, the maximum response of phase measurement is found to occur when the density perturbation is approximately centimeters in front of the antenna, where Bragg scattering condition is satisfied. In the X-mode case, the phase measurement is predicted to be more sensitive to the density fluctuation close to the cut-off layer. A feasibility test was carried out using a 50 GHz O-mode reflectometer on the Alcator C-Mod tokamak, and positive results including the detection of 4.6 GHz pump wave and parametric decay instabilities were obtained.

  1. Readout technologies for directional WIMP Dark Matter detection

    International Nuclear Information System (INIS)

    Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.

    2016-01-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  2. On the roles of direct feedback and error field correction in stabilizing resistive-wall modes

    International Nuclear Information System (INIS)

    In, Y.; Bogatu, I.N.; Kim, J.S.; Garofalo, A.M.; Jackson, G.L.; La Haye, R.J.; Schaffer, M.J.; Strait, E.J.; Lanctot, M.J.; Reimerdes, H.; Marrelli, L.; Martin, P.; Okabayashi, M.

    2010-01-01

    Active feedback control in the DIII-D tokamak has fully stabilized the current-driven ideal kink resistive-wall mode (RWM). While complete stabilization is known to require both low frequency error field correction (EFC) and high frequency feedback, unambiguous identification has been made about the distinctive role of each in a fully feedback-stabilized discharge. Specifically, the role of direct RWM feedback, which nullifies the RWM perturbation in a time scale faster than the mode growth time, cannot be replaced by low frequency EFC, which minimizes the lack of axisymmetry of external magnetic fields. (letter)

  3. Coherent radio-frequency detection for narrowband direct comb spectroscopy.

    Science.gov (United States)

    Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N

    2016-02-22

    We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

  4. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    Science.gov (United States)

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  5. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    Directory of Open Access Journals (Sweden)

    Keum-Won Ha

    2018-04-01

    Full Text Available Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs, the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  6. Online track detection in triggerless mode for INO

    Science.gov (United States)

    Jain, A.; Padmini, S.; Joseph, A. N.; Mahesh, P.; Preetha, N.; Behere, A.; Sikder, S. S.; Majumder, G.; Behera, S. P.

    2018-03-01

    The India based Neutrino Observatory (INO) is a proposed particle physics research project to study the atmospheric neutrinos. INO-Iron Calorimeter (ICAL) will consist of 28,800 detectors having 3.6 million electronic channels expected to activate with 100 Hz single rate, producing data at a rate of 3 GBps. Data collected contains a few real hits generated by muon tracks and the remaining noise-induced spurious hits. Estimated reduction factor after filtering out data of interest from generated data is of the order of 103. This makes trigger generation critical for efficient data collection and storage. Trigger is generated by detecting coincidence across multiple channels satisfying trigger criteria, within a small window of 200 ns in the trigger region. As the probability of neutrino interaction is very low, track detection algorithm has to be efficient and fast enough to process 5 × 106 events-candidates/s without introducing significant dead time, so that not even a single neutrino event is missed out. A hardware based trigger system is presently proposed for on-line track detection considering stringent timing requirements. Though the trigger system can be designed with scalability, a lot of hardware devices and interconnections make it a complex and expensive solution with limited flexibility. A software based track detection approach working on the hit information offers an elegant solution with possibility of varying trigger criteria for selecting various potentially interesting physics events. An event selection approach for an alternative triggerless readout scheme has been developed. The algorithm is mathematically simple, robust and parallelizable. It has been validated by detecting simulated muon events for energies of the range of 1 GeV-10 GeV with 100% efficiency at a processing rate of 60 μs/event on a 16 core machine. The algorithm and result of a proof-of-concept for its faster implementation over multiple cores is presented. The paper also

  7. A Fault Tolerant Direct Control Allocation Scheme with Integral Sliding Modes

    Directory of Open Access Journals (Sweden)

    Hamayun Mirza Tariq

    2015-03-01

    Full Text Available In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.

  8. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria

    Czech Academy of Sciences Publication Activity Database

    Malíková, L.; Veselý, V.; Seitl, Stanislav

    2016-01-01

    Roč. 89, AUG (2016), s. 99-107 ISSN 0142-1123. [International Conference on Characterisation of Crack Tip Fields /3./. Urbino, 20.04.2015-22.04.2015] Institutional support: RVO:68081723 Keywords : Near-crack-tip fields * Mixed mode * Crack propagation direction * Multi-parameter fracture criteria * Finite element analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  9. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  10. Automatic Railway Traffic Object Detection System Using Feature Fusion Refine Neural Network under Shunting Mode

    Directory of Open Access Journals (Sweden)

    Tao Ye

    2018-06-01

    Full Text Available Many accidents happen under shunting mode when the speed of a train is below 45 km/h. In this mode, train attendants observe the railway condition ahead using the traditional manual method and tell the observation results to the driver in order to avoid danger. To address this problem, an automatic object detection system based on convolutional neural network (CNN is proposed to detect objects ahead in shunting mode, which is called Feature Fusion Refine neural network (FR-Net. It consists of three connected modules, i.e., the depthwise-pointwise convolution, the coarse detection module, and the object detection module. Depth-wise-pointwise convolutions are used to improve the detection in real time. The coarse detection module coarsely refine the locations and sizes of prior anchors to provide better initialization for the subsequent module and also reduces search space for the classification, whereas the object detection module aims to regress accurate object locations and predict the class labels for the prior anchors. The experimental results on the railway traffic dataset show that FR-Net achieves 0.8953 mAP with 72.3 FPS performance on a machine with a GeForce GTX1080Ti with the input size of 320 × 320 pixels. The results imply that FR-Net takes a good tradeoff both on effectiveness and real time performance. The proposed method can meet the needs of practical application in shunting mode.

  11. Assembly of gamma radiation detection with directivity properties

    International Nuclear Information System (INIS)

    Stoica, M.; Talpalariu, C.

    2016-01-01

    An assembly of gamma radiation detection with directivity properties and small size enables the development of portable equipment or robots specialized in finding and signaling radioactively contaminated areas in case of nuclear incidents or decommissioning of nuclear installations. Directivity characteristic of the assembly of gamma radiation detection is very important when aiming to build an equipment for searching radioactively contaminated areas. In order to obtain a suitable directivity characteristics in terms of detection of gamma rays, it was necessary to construct a lead collimator with a cylindrical shape. The detector, preamplifier and amplifier pulse were placed inside the collimator and pulse discriminator circuit and power source were placed beside the collimator, all being disposed within the housing cylindrical experimental. A PIN photodiode type was used as a detector of gamma radiation. (authors)

  12. Can the Existence of Dark Energy be Directly Detected?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC /KIPAC, Menlo Park

    2011-11-23

    The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?

  13. Optimized velocity distributions for direct dark matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro; Rappelt, Andreas, E-mail: ibarra@tum.de, E-mail: andreas.rappelt@tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2017-08-01

    We present a method to calculate, without making assumptions about the local dark matter velocity distribution, the maximal and minimal number of signal events in a direct detection experiment given a set of constraints from other direct detection experiments and/or neutrino telescopes. The method also allows to determine the velocity distribution that optimizes the signal rates. We illustrate our method with three concrete applications: i) to derive a halo-independent upper limit on the cross section from a set of null results, ii) to confront in a halo-independent way a detection claim to a set of null results and iii) to assess, in a halo-independent manner, the prospects for detection in a future experiment given a set of current null results.

  14. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    Science.gov (United States)

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  15. Direct detection of antihydrogen atoms using a BGO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Y. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, 184-8588 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Kuroda, N., E-mail: kuroda@phys.c.u-tokyo.ac.jp [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Ohtsuka, M. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Leali, M.; Lodi-Rizzini, E.; Mascagna, V. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Tajima, M.; Torii, H.A. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Zurlo, N. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Matsuda, Y. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Venturelli, L. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Yamazaki, Y. [Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan)

    2016-12-21

    The ASACUSA collaboration has developed a detector consisting of a large size BGO crystal to detect an atomic antihydrogen beam, and performed the direct detection of antihydrogen atoms. Energy spectra from antihydrogen annihilation on the BGO crystal are discussed in comparison to simulation results from the GEANT4 toolkit. Background mainly originating from cosmic rays were strongly suppressed by analyzing the energy deposited in the BGO and requiring a multiplicity of charged pions. Thus antihydrogen events were identified.

  16. Direct detection of neutralino dark matter in the NMSSM

    International Nuclear Information System (INIS)

    Cerdeno, David G

    2006-01-01

    The direct detection of neutralino dark matter is analysed in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). Sizable values for the neutralino detection cross section, within the reach of dark matter detectors, are attainable, due to the exchange of very light Higgses, which have a significant singlet composition. The lightest neutralino exhibits a large singlino-Higgsino composition, and a mass in the range 50 ∼ χ -0 1 ∼< 100 GeV

  17. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  18. Working Group Report: WIMP Dark Matter Direct Detection

    International Nuclear Information System (INIS)

    Cushman, P.; Galbiati, C.; McKinsey, D. N.; Robertson, H.; Tait, T. M.P.

    2013-01-01

    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.

  19. Evading direct dark matter detection in Higgs portal models

    Energy Technology Data Exchange (ETDEWEB)

    Arcadi, Giorgio [Max Planck Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Gross, Christian, E-mail: christian.gross@helsinki.fi [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Lebedev, Oleg [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Pokorski, Stefan [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw (Poland); Toma, Takashi [Physik-Department T30d, Technische Universität München, James-Franck-Straße, D-85748 Garching (Germany)

    2017-06-10

    Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight direct detection constraints. In the framework of gauge field DM, we study how such bounds can be relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic abundance and the direct detection limits are controlled by different parameters, and the two can easily be reconciled. This simple setup realizes the idea of “secluded” dark matter naturally.

  20. Working Group Report: WIMP Dark Matter Direct Detection

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, P.; Galbiati, C.; McKinsey, D. N.; Robertson, H.; Tait, T. M.P.

    2013-10-30

    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.

  1. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  2. Super-twisting sliding mode direct torque contol of induction machine drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Blaabjerg, Frede

    2014-01-01

    This paper presents a new super-twisting sliding modes direct torque and flux controller (STSM-DTC) for induction motor (IM) drives. The STSM is a second-order (type two) variable-structure control which operates without high-frequency chattering. The proposed STSM scheme is a torque and stator...... flux magnitude controller implemented in the stator flux reference frame, and it does not employ current controllers as in conventional vector control. This controller contains a design parameter that allows the designer to balance its operation between a linear PI-like behavior and a constant......-DTC control, design and implementation details, and relevant experimental results for a sensorless IM drive. The scheme is compared to a second-order sliding mode controller and a linear PI controller. A robustness assessment against the PI controller is also included....

  3. Direct numerical simulations of mack-mode damping on porous coated cones

    Science.gov (United States)

    Lüdeke, H.; Wartemann, V.

    2013-06-01

    The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.

  4. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones

    Directory of Open Access Journals (Sweden)

    Dang-Nhac Lu

    2018-03-01

    Full Text Available In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS, that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers’ vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97

  5. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.

    Science.gov (United States)

    Lu, Dang-Nhac; Nguyen, Duc-Nhan; Nguyen, Thi-Hau; Nguyen, Ha-Nam

    2018-03-29

    In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is

  6. Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope.

    Science.gov (United States)

    Hanson, D; Hoover, S; Crites, A; Ade, P A R; Aird, K A; Austermann, J E; Beall, J A; Bender, A N; Benson, B A; Bleem, L E; Bock, J J; Carlstrom, J E; Chang, C L; Chiang, H C; Cho, H-M; Conley, A; Crawford, T M; de Haan, T; Dobbs, M A; Everett, W; Gallicchio, J; Gao, J; George, E M; Halverson, N W; Harrington, N; Henning, J W; Hilton, G C; Holder, G P; Holzapfel, W L; Hrubes, J D; Huang, N; Hubmayr, J; Irwin, K D; Keisler, R; Knox, L; Lee, A T; Leitch, E; Li, D; Liang, C; Luong-Van, D; Marsden, G; McMahon, J J; Mehl, J; Meyer, S S; Mocanu, L; Montroy, T E; Natoli, T; Nibarger, J P; Novosad, V; Padin, S; Pryke, C; Reichardt, C L; Ruhl, J E; Saliwanchik, B R; Sayre, J T; Schaffer, K K; Schulz, B; Smecher, G; Stark, A A; Story, K T; Tucker, C; Vanderlinde, K; Vieira, J D; Viero, M P; Wang, G; Yefremenko, V; Zahn, O; Zemcov, M

    2013-10-04

    Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.

  7. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct

  8. Light Magnetic Dark Matter in Direct Detection Searches

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Panci, Paolo

    2012-01-01

    We study a fermionic Dark Matter particle carrying magnetic dipole moment and analyze its impact on direct detection experiments. In particular we show that it can accommodate the DAMA, CoGeNT and CRESST experimental results. Assuming conservative bounds, this candidate is shown not to be ruled out...

  9. Direct detection of the inflationary gravitational-wave background

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Kamionkowski, Marc; Cooray, Asantha

    2006-01-01

    Inflation generically predicts a stochastic background of gravitational waves over a broad range of frequencies, from those accessible with cosmic microwave background (CMB) measurements, to those accessible directly with gravitational-wave detectors, like NASA's Big-Bang Observer (BBO) or Japan's Deci-Hertz Interferometer Gravitational-wave Observer (DECIGO), both currently under study. Here we investigate the detectability of the inflationary gravitational-wave background at BBO/DECIGO frequencies. To do so, we survey a range of slow-roll inflationary models consistent with constraints from the CMB and large-scale structure (LSS). We go beyond the usual assumption of power-law power spectra, which may break down given the 16 orders of magnitude in frequency between the CMB and direct detection, and solve instead the inflationary dynamics for four classes of inflaton potentials. Direct detection is possible in a variety of inflationary models, although probably not in any in which the gravitational-wave signal does not appear in the CMB polarization. However, direct detection by BBO/DECIGO can help discriminate between inflationary models that have the same slow-roll parameters at CMB/LSS scales

  10. Development and deployment of the Collimated Directional Radiation Detection System

    Science.gov (United States)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  11. Sol-gel matrices for direct colorimetric detection of analytes

    Science.gov (United States)

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  12. Analysis of the theoretical bias in dark matter direct detection

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2014-01-01

    Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias

  13. Direct detection of dark matter bound to the Earth

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear...

  14. Photovoltaic pumping system - Comparative study analysis between direct and indirect coupling mode

    Science.gov (United States)

    Harrag, Abdelghani; Titraoui, Abdessalem; Bahri, Hamza; Messalti, Sabir

    2017-02-01

    In this paper, P&O algorithm is used in order to improve the performance of photovoltaic water pumping system in both dynamic and static response. The efficiency of the proposed algorithm has been studied successfully using a DC motor-pump powered using controller by thirty six PV modules via DC-DC boost converter derived by a P&O MPPT algorithm. Comparative study results between the direct and indirect modes coupling confirm that the proposed algorithm can effectively improve simultaneously: accuracy, rapidity, ripple and overshoot.

  15. Dark matter directional detection in non-relativistic effective theories

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2015-01-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF 4 , CS 2 and 3 He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments

  16. Directional detection of dark matter with two-dimensional targets

    Science.gov (United States)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.

    2017-09-01

    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  17. Detecting Urban Transport Modes Using a Hybrid Knowledge Driven Framework from GPS Trajectory

    Directory of Open Access Journals (Sweden)

    Rahul Deb Das

    2016-11-01

    Full Text Available Transport mode information is essential for understanding people’s movement behavior and travel demand estimation. Current approaches extract travel information once the travel is complete. Such approaches are limited in terms of generating just-in-time information for a number of mobility based applications, e.g., real time mode specific patronage estimation. In order to detect the transport modalities from GPS trajectories, various machine learning approaches have already been explored. However, the majority of them produce only a single conclusion from a given set of evidences, ignoring the uncertainty of any mode classification. Also, the existing machine learning approaches fall short in explaining their reasoning scheme. In contrast, a fuzzy expert system can explain its reasoning scheme in a human readable format along with a provision of inferring different outcome possibilities, but lacks the adaptivity and learning ability of machine learning. In this paper, a novel hybrid knowledge driven framework is developed by integrating a fuzzy logic and a neural network to complement each other’s limitations. Thus the aim of this paper is to automate the tuning process in order to generate an intelligent hybrid model that can perform effectively in near-real time mode detection using GPS trajectory. Tests demonstrate that a hybrid knowledge driven model works better than a purely knowledge driven model and at per the machine learning models in the context of transport mode detection.

  18. An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG.

    Science.gov (United States)

    Orosco, Lorena; Laciar, Eric; Correa, Agustina Garces; Torres, Abel; Graffigna, Juan P

    2009-01-01

    Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important component in the diagnosis of epilepsy. In this study, the Empirical Mode Decomposition (EMD) method was proposed on the development of an automatic epileptic seizure detection algorithm. The algorithm first computes the Intrinsic Mode Functions (IMFs) of EEG records, then calculates the energy of each IMF and performs the detection based on an energy threshold and a minimum duration decision. The algorithm was tested in 9 invasive EEG records provided and validated by the Epilepsy Center of the University Hospital of Freiburg. In 90 segments analyzed (39 with epileptic seizures) the sensitivity and specificity obtained with the method were of 56.41% and 75.86% respectively. It could be concluded that EMD is a promissory method for epileptic seizure detection in EEG records.

  19. Using BiSON to detect solar internal g-modes

    Directory of Open Access Journals (Sweden)

    Kuszlewicz J.

    2015-01-01

    Full Text Available The unambiguous detection of individual solar internal g modes continues to elude us. With the aid of new additions to calibration procedures, as well as updated methods to combine multi-site time series more effectively, the noise and signal detection threshold levels in the low-frequency domain (where the g modes are expected to be found have been greatly improved. In the BiSON 23-year dataset these levels now rival those of GOLF, and with much greater frequency resolution available, due to the long time series, there is an opportunity to place more constraints on the upper limits of individual g mode amplitudes. Here we detail recent work dedicated to the challenges of observing low-frequency oscillations using a ground-based network, including the role of the window function as well as the effect of calibration on the low frequency domain.

  20. Analysis of Unsteady Propagation of Mode Ⅲ Crack in Arbitrary Direction in Functionally Graded Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho [Kyungpook National University, Daegu (Korea, Republic of); Cho, Sang Bong [Kyungnam University, Changwon (Korea, Republic of); Hawong, Jai Sug [Yeungnam University, Gyungsan (Korea, Republic of)

    2015-02-15

    The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode Ⅲ crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.

  1. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins

    J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens

    Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in

  2. Carotid artery B-mode ultrasound image segmentation based on morphology, geometry and gradient direction

    Science.gov (United States)

    Sunarya, I. Made Gede; Yuniarno, Eko Mulyanto; Purnomo, Mauridhi Hery; Sardjono, Tri Arief; Sunu, Ismoyo; Purnama, I. Ketut Eddy

    2017-06-01

    Carotid Artery (CA) is one of the vital organs in the human body. CA features that can be used are position, size and volume. Position feature can used to determine the preliminary initialization of the tracking. Examination of the CA features can use Ultrasound. Ultrasound imaging can be operated dependently by an skilled operator, hence there could be some differences in the images result obtained by two or more different operators. This can affect the process of determining of CA. To reduce the level of subjectivity among operators, it can determine the position of the CA automatically. In this study, the proposed method is to segment CA in B-Mode Ultrasound Image based on morphology, geometry and gradient direction. This study consists of three steps, the data collection, preprocessing and artery segmentation. The data used in this study were taken directly by the researchers and taken from the Brno university's signal processing lab database. Each data set contains 100 carotid artery B-Mode ultrasound image. Artery is modeled using ellipse with center c, major axis a and minor axis b. The proposed method has a high value on each data set, 97% (data set 1), 73 % (data set 2), 87% (data set 3). This segmentation results will then be used in the process of tracking the CA.

  3. Direct versus indirect detection of supersymmetric dark matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers the slides that were presented during the workshop 'direct versus indirect detection of supersymmetric dark matter'(about 30 contributions). This workshop intended to bring together people from the particle theory community, astrophysicists and cosmologists, as well as experimentalists involved in the detection of dark matter. The aim is to generate a discussion about current and future strategies for detection of SUSY dark matter (with focus, but not exclusively, on neutralinos). Complementarities between accelerator, direct and indirect searches as well as a comparison between the uncertainties in direct and indirect searches of dark matter, are supposed to be discussed. Among the issues which will be addressed are: -) the crucial questions related to the structure of galaxies (local dark matter density, clumping, anomalous velocity distributions, etc.) ; -) the possibilities offered by the present and future experimental facilities for direct and indirect (photon, neutrino) searches; -) the potential for the discovery of SUSY at LHC and beyond; and -) the parameterization of the SUSY breaking models beyond the minimal versions.

  4. Direct versus indirect detection of supersymmetric dark matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathers the slides that were presented during the workshop 'direct versus indirect detection of supersymmetric dark matter'(about 30 contributions). This workshop intended to bring together people from the particle theory community, astrophysicists and cosmologists, as well as experimentalists involved in the detection of dark matter. The aim is to generate a discussion about current and future strategies for detection of SUSY dark matter (with focus, but not exclusively, on neutralinos). Complementarities between accelerator, direct and indirect searches as well as a comparison between the uncertainties in direct and indirect searches of dark matter, are supposed to be discussed. Among the issues which will be addressed are: -) the crucial questions related to the structure of galaxies (local dark matter density, clumping, anomalous velocity distributions, etc.) ; -) the possibilities offered by the present and future experimental facilities for direct and indirect (photon, neutrino) searches; -) the potential for the discovery of SUSY at LHC and beyond; and -) the parameterization of the SUSY breaking models beyond the minimal versions

  5. Direct SUSY dark matter detection-theoretical rates due to the spin

    International Nuclear Information System (INIS)

    Vergados, J D

    2004-01-01

    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: (i) the coherent mode, due to the scalar interaction and (ii) the spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and in directional experiments the correlation of the event rates with the sun's motion. In standard non-directional experiments the modulation is small, less than 2 per cent. In the case of the directional event rates we would like to suggest that the experiments exploit two features of the process, which are essentially independent of the SUSY model employed, namely: (1) the forward-backward asymmetry, with respect to the sun's direction of motion, is very large and (2) the modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the earth at the maximum is direction dependent

  6. Breast density and mode of detection in relation to breast cancer specific survival: a cohort study

    International Nuclear Information System (INIS)

    Olsson, Åsa; Sartor, Hanna; Borgquist, Signe; Zackrisson, Sophia; Manjer, Jonas

    2014-01-01

    The aim of this study was to examine breast density in relation to breast cancer specific survival and to assess if this potential association was modified by mode of detection. An additional aim was to study whether the established association between mode of detection and survival is modified by breast density. The study included 619 cases from a prospective cohort, The Malmö Diet and Cancer Study. Breast density estimated qualitatively, was analyzed in relation to breast cancer death, in non-symptomatic and symptomatic women, using Cox regression calculating hazard ratios (HR) with 95% confidence intervals. Adjustments were made in several steps for; diagnostic age, tumour size, axillary lymph node involvement, grade, hormone receptor status, body mass index (baseline), diagnostic period, use of hormone replacement therapy at diagnosis and mode of detection. Detection mode in relation to survival was analyzed stratified for breast density. Differences in HR following different adjustments were analyzed by Freedmans%. After adjustment for age and other prognostic factors, women with dense, as compared to fatty breasts, had an increased risk of breast cancer death, HR 2.56:1.07-6.11, with a statistically significant trend over density categories, p = 0.04. In the stratified analysis, the effect was less pronounced in non-symptomatic women, HR 2.04:0.49-8.49 as compared to symptomatic, HR 3.40:1.06-10.90. In the unadjusted model, symptomatic women had a higher risk of breast cancer death, regardless of breast density. Analyzed by Freedmans%, age, tumour size, lymph nodes, grade, diagnostic period, ER and PgR explained 55.5% of the observed differences in mortality between non-symptomatic and symptomatic cases. Additional adjustment for breast density caused only a minor change. High breast density at diagnosis may be associated with decreased breast cancer survival. This association appears to be stronger in women with symptomatic cancers but breast density could

  7. The XENON project for dark matter direct detection at LNGS

    Science.gov (United States)

    Molinario, Andrea

    2017-12-01

    The XENON project at INFN Laboratori Nazionali del Gran Sasso, Italy, aims at dark matter direct detection with liquid xenon dual-phase time projection chambers. Latest results of XENON100 detector exclude various models of leptophilic dark matter. A search for low mass weakly interacting massive particles was also performed, lowering the energy threshold for detection to 0.7 keV for nuclear recoils. The multi-ton XENON1T detector is fully installed and operating. It is expected to reach a sensitivity a factor 100 better than XENON100 with a 2 ton·year exposure.

  8. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  9. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Da Ros, Francesco

    2013-01-01

    ), and large fabrication tolerance (20 nm) are measured. An on-chip mode multiplexing experiment is carried out on the fabricated circuit with non return-to-zero (NRZ) on-off keying (OOK) signals at 40 Gbit/s. The experimental results show clear eye diagrams and moderate power penalty for both TE0 and TE1...

  10. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.

    Science.gov (United States)

    Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A

    2012-05-01

    This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.

  11. Exploring light mediators with low-threshold direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); RWTH Aachen Univ. (Germany). Inst. for Theoretical Particle Physics and Cosmology; Kulkarni, Suchita [Oesterreichische Akademie der Wissenschaften, Vienna (Austria). Inst. fuer Hochenergiephysik; Wild, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-11-15

    We explore the potential of future cryogenic direct detection experiments to determine the properties of the mediator that communicates the interactions between dark matter and nuclei. Due to their low thresholds and large exposures, experiments like CRESST-III, SuperCDMS SNOLAB and EDELWEISS-III will have excellent capability to reconstruct mediator masses in the MeV range for a large class of models. Combining the information from several experiments further improves the parameter reconstruction, even when taking into account additional nuisance parameters related to background uncertainties and the dark matter velocity distribution. These observations may offer the intriguing possibility of studying dark matter self-interactions with direct detection experiments.

  12. Hunting electroweakinos at future hadron colliders and direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cortona, Giovanni Grilli di [SISSA - International School for Advanced Studies,Via Bonomea 265, I-34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, I-34127 Trieste (Italy)

    2015-05-07

    We analyse the mass reach for electroweakinos at future hadron colliders and their interplay with direct detection experiments. Motivated by the LHC data, we focus on split supersymmetry models with different electroweakino spectra. We find for example that a 100 TeV collider may explore Winos up to ∼7 TeV in low scale gauge mediation models or thermal Wino dark matter around 3 TeV in models of anomaly mediation with long-lived Winos. We show moreover how collider searches and direct detection experiments have the potential to cover large part of the parameter space even in scenarios where the lightest neutralino does not contribute to the whole dark matter relic density.

  13. Exploring light mediators with low-threshold direct detection experiments

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix

    2017-11-01

    We explore the potential of future cryogenic direct detection experiments to determine the properties of the mediator that communicates the interactions between dark matter and nuclei. Due to their low thresholds and large exposures, experiments like CRESST-III, SuperCDMS SNOLAB and EDELWEISS-III will have excellent capability to reconstruct mediator masses in the MeV range for a large class of models. Combining the information from several experiments further improves the parameter reconstruction, even when taking into account additional nuisance parameters related to background uncertainties and the dark matter velocity distribution. These observations may offer the intriguing possibility of studying dark matter self-interactions with direct detection experiments.

  14. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  15. The efficacy of the reverse contrast mode in digital radiography for the detection of proximal dentinal caries

    Energy Technology Data Exchange (ETDEWEB)

    Miri, Shimasadat [Dept. of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Mehrailzadeh, Sandra; Sadri, Donya [School of Dentistry, Islamic Azad University, Tehran (Iran, Islamic Republic of); Motamedi, Mahmood Reza Kalantar [Dept. of Research, School of Dentistry, Isfahan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Soltani, Parisa [Dental Students Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2015-09-15

    This study evaluated the diagnostic accuracy of the reverse contrast mode in intraoral digital radiography for the detection of proximal dentinal caries, in comparison with the original digital radiographs. Eighty extracted premolars with no clinically apparent caries were selected, and digital radiographs of them were taken separately in standard conditions. Four observers examined the original radiographs and the same radiographs in the reverse contrast mode with the goal of identifying proximal dentinal caries. Microscopic sections 5 µm in thickness were prepared from the teeth in the mesiodistal direction. Four slides prepared from each sample used as the diagnostic gold standard. The data were analyzed using SPSS (α=0.05). Our results showed that the original radiographs in order to identify proximal dentinal caries had the following values for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, respectively: 72.5%, 90%, 87.2%, 76.5%, and 80.9%. For the reverse contrast mode, however, the corresponding values were 63.1%, 89.4%, 87.1%, 73.5%, and 78.8%, respectively. The sensitivity of original digital radiograph for detecting proximal dentinal caries was significantly higher than that of reverse contrast mode (p<0.05). However, no statistically significant differences were found regarding specificity, positive predictive value, negative predictive value, or accuracy (p>0.05). The sensitivity of the original digital radiograph for detecting proximal dentinal caries was significantly higher than that of the reversed contrast images. However, no statistically significant differences were found between these techniques regarding specificity, positive predictive value, negative predictive value, or accuracy.

  16. The efficacy of the reverse contrast mode in digital radiography for the detection of proximal dentinal caries

    International Nuclear Information System (INIS)

    Miri, Shimasadat; Mehrailzadeh, Sandra; Sadri, Donya; Motamedi, Mahmood Reza Kalantar; Soltani, Parisa

    2015-01-01

    This study evaluated the diagnostic accuracy of the reverse contrast mode in intraoral digital radiography for the detection of proximal dentinal caries, in comparison with the original digital radiographs. Eighty extracted premolars with no clinically apparent caries were selected, and digital radiographs of them were taken separately in standard conditions. Four observers examined the original radiographs and the same radiographs in the reverse contrast mode with the goal of identifying proximal dentinal caries. Microscopic sections 5 µm in thickness were prepared from the teeth in the mesiodistal direction. Four slides prepared from each sample used as the diagnostic gold standard. The data were analyzed using SPSS (α=0.05). Our results showed that the original radiographs in order to identify proximal dentinal caries had the following values for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, respectively: 72.5%, 90%, 87.2%, 76.5%, and 80.9%. For the reverse contrast mode, however, the corresponding values were 63.1%, 89.4%, 87.1%, 73.5%, and 78.8%, respectively. The sensitivity of original digital radiograph for detecting proximal dentinal caries was significantly higher than that of reverse contrast mode (p<0.05). However, no statistically significant differences were found regarding specificity, positive predictive value, negative predictive value, or accuracy (p>0.05). The sensitivity of the original digital radiograph for detecting proximal dentinal caries was significantly higher than that of the reversed contrast images. However, no statistically significant differences were found between these techniques regarding specificity, positive predictive value, negative predictive value, or accuracy

  17. Inelastic Boosted Dark Matter at direct detection experiments

    OpenAIRE

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-01-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experimen...

  18. Direct Detection of Oil; Case History From Iran

    International Nuclear Information System (INIS)

    Tabatabaee, S. H.

    2007-01-01

    Iran is one of the main petroleum producers and also one of the countries which experiences contemporary geophysical techniques in Middle East region. Main aim of this study is direct detection of oil hydrocarbons by a special geophysical technique. To accomplish that, FEM, TEM and IP integrated geophysical techniques were successfully applied to measure IP phase shift which might relate to existence of oil traps. Target penetration for this prospecting is about 6 kms

  19. CONSTRAINING THE R-MODE SATURATION AMPLITUDE FROM A HYPOTHETICAL DETECTION OF R-MODE GRAVITATIONAL WAVES FROM A NEWBORN NEUTRON STAR: SENSITIVITY STUDY

    International Nuclear Information System (INIS)

    Mytidis, Antonis; Whiting, Bernard; Coughlin, Michael

    2015-01-01

    This paper consists of two related parts: in the first part we derive an expression of the moment of inertia (MOI) of a neutron star as a function of observables from a hypothetical r-mode gravitational-wave detection. For a given r-mode detection we show how the value of the MOI of a neutron star constrains the equation of state (EOS) of the matter in the core of the neutron star. Subsequently, for each candidate EOS, we derive a possible value of the saturation amplitude, α, of the r-mode oscillations on the neutron star. Additionally, we argue that an r-mode detection will provide clues about the cooling rate mechanism of the neutron star. The above physics that can be derived from a hypothetical r-mode detection constitutes our motivation for the second part of the paper. In that part we present a detection strategy to efficiently search for r-modes in gravitational-wave data. R-mode signals were injected into simulated noise colored with the advanced LIGO (aLIGO) and Einstein Telescope (ET) sensitivity curves. The r-mode waveforms used are those predicted by early theories based on polytropic EOS neutron star matter. In our best case scenario (α of order 10 −1 ), the maximum detection distance when using the aLIGO sensitivity curve is ∼1 Mpc (supernova event rate of 3–4 per century) while the maximum detection distance when using the ET sensitivity curve is ∼10 Mpc (supernova event rate of 1–2 per year)

  20. A Frequency-Weighted Energy Operator and complementary ensemble empirical mode decomposition for bearing fault detection

    Science.gov (United States)

    Imaouchen, Yacine; Kedadouche, Mourad; Alkama, Rezak; Thomas, Marc

    2017-01-01

    Signal processing techniques for non-stationary and noisy signals have recently attracted considerable attentions. Among them, the empirical mode decomposition (EMD) which is an adaptive and efficient method for decomposing signals from high to low frequencies into intrinsic mode functions (IMFs). Ensemble EMD (EEMD) is proposed to overcome the mode mixing problem of the EMD. In the present paper, the Complementary EEMD (CEEMD) is used for bearing fault detection. As a noise-improved method, the CEEMD not only overcomes the mode mixing, but also eliminates the residual of added white noise persisting into the IMFs and enhance the calculation efficiency of the EEMD method. Afterward, a selection method is developed to choose relevant IMFs containing information about defects. Subsequently, a signal is reconstructed from the sum of relevant IMFs and a Frequency-Weighted Energy Operator is tailored to extract both the amplitude and frequency modulations from the selected IMFs. This operator outperforms the conventional energy operator and the enveloping methods, especially in the presence of strong noise and multiple vibration interferences. Furthermore, simulation and experimental results showed that the proposed method improves performances for detecting the bearing faults. The method has also high computational efficiency and is able to detect the fault at an early stage of degradation.

  1. Dark matter direct detection with non-Maxwellian velocity structure

    International Nuclear Information System (INIS)

    Kuhlen, Michael; Weiner, Neal; Diemand, Jürg; Moore, Ben; Potter, Doug; Stadel, Joachim; Madau, Piero; Zemp, Marcel

    2010-01-01

    The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found

  2. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  3. Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines

    Directory of Open Access Journals (Sweden)

    E.G. Shehata

    2015-12-01

    Full Text Available In spite of its several advantages, a classic direct power control (DPC of doubly fed induction generators (DFIGs driven by variable speed wind turbines has some drawbacks. In this paper, a simple and robust total sliding mode controller (TSMC is designed to improve the classical DPC performance without complicating the overall scheme. The TSMC is designed to regulate the DFIG stator active and reactive powers. Two integral switching functions are selected for describing the switching surfaces of the active and reactive powers. Reaching phase stability problem of the classical sliding mode controller is avoided in the proposed TSMC. Neither current control loops nor accurate values of machine parameters are required in the proposed scheme. In addition, axes transformation of the stator voltage and current are eliminated. The grid side converter is controlled based on DPC principle to regulate both DC-link voltage and total reactive power. The feasibility of the proposed DPC scheme is validated through simulation studies on a 1.5 MW wind power generation system. The performance of the proposed and conventional DPC schemes is compared under different operating conditions.

  4. Non-destructive Patterning of Carbon Electrodes by Using the Direct Mode of Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Stratmann, Lutz; Clausmeyer, Jan; Schuhmann, Wolfgang

    2015-11-16

    Patterning of glassy carbon surfaces grafted with a layer of nitrophenyl moieties was achieved by using the direct mode of scanning electrochemical microscopy (SECM) to locally reduce the nitro groups to hydroxylamine and amino functionalities. SECM and atomic force microscopy (AFM) revealed that potentiostatic pulses applied to the working electrode lead to local destruction of the glassy carbon surface, most likely caused by etchants generated at the positioned SECM tip used as the counter electrode. By applying galvanostatic pulses, and thus, limiting the current during structuring, corrosion of the carbon surface was substantially suppressed. After galvanostatic patterning, unambiguous proof of the formation of the anticipated amino moieties was possible by modulation of the pH value during the feedback mode of SECM imaging. This patterning strategy is suitable for the further bio-modification of microstructured surfaces. Alkaline phosphatase, as a model enzyme, was locally bound to the modified areas, thus showing that the technique can be used for the development of protein microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct evidence for an orbital magnetic quadrupole twist mode in nuclei

    International Nuclear Information System (INIS)

    Reitz, B.; Frekers, D.

    2002-02-01

    The reactions 58 Ni(e,e') and 58 Ni(p,p') have been studied at kinematics favorable for the excitation of J π = 2 - states by isovector spin-flip transitions with ΔL = 1. There are states at an excitation energy E x ∼ 10 MeV which are strongly excited in electron scattering but not in proton scattering, suggesting a predominantly orbital character. This is taken as direct evidence for the so-called twist mode in nuclei in which different layers of nuclear fluid in the upper and lower hemisphere counterrotate against each other. Microscopic quasiparticle-phonon model calculations which predict sizable orbital M2 strength at his excitation energy yield indeed a current flow pattern of the strongest transitions consistent with a twist-like motion. (orig.)

  6. Directional genomic hybridization for chromosomal inversion discovery and detection.

    Science.gov (United States)

    Ray, F Andrew; Zimmerman, Erin; Robinson, Bruce; Cornforth, Michael N; Bedford, Joel S; Goodwin, Edwin H; Bailey, Susan M

    2013-04-01

    Chromosomal rearrangements are a source of structural variation within the genome that figure prominently in human disease, where the importance of translocations and deletions is well recognized. In principle, inversions-reversals in the orientation of DNA sequences within a chromosome-should have similar detrimental potential. However, the study of inversions has been hampered by traditional approaches used for their detection, which are not particularly robust. Even with significant advances in whole genome approaches, changes in the absolute orientation of DNA remain difficult to detect routinely. Consequently, our understanding of inversions is still surprisingly limited, as is our appreciation for their frequency and involvement in human disease. Here, we introduce the directional genomic hybridization methodology of chromatid painting-a whole new way of looking at structural features of the genome-that can be employed with high resolution on a cell-by-cell basis, and demonstrate its basic capabilities for genome-wide discovery and targeted detection of inversions. Bioinformatics enabled development of sequence- and strand-specific directional probe sets, which when coupled with single-stranded hybridization, greatly improved the resolution and ease of inversion detection. We highlight examples of the far-ranging applicability of this cytogenomics-based approach, which include confirmation of the alignment of the human genome database and evidence that individuals themselves share similar sequence directionality, as well as use in comparative and evolutionary studies for any species whose genome has been sequenced. In addition to applications related to basic mechanistic studies, the information obtainable with strand-specific hybridization strategies may ultimately enable novel gene discovery, thereby benefitting the diagnosis and treatment of a variety of human disease states and disorders including cancer, autism, and idiopathic infertility.

  7. The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors

    Directory of Open Access Journals (Sweden)

    Mark E. Anderson

    2015-08-01

    Full Text Available Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.

  8. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    Science.gov (United States)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault

  9. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  10. Hemagglutination detection for blood typing based on waveguide-mode sensors

    Directory of Open Access Journals (Sweden)

    Hiroki Ashiba

    2015-03-01

    Full Text Available ABO and Rh(D blood typing is one of the most important tests performed prior to blood transfusion. Although on-site blood testing is desirable for expedient blood transfusion procedure, most conventional methods and instruments lack the required usability or portability. Here, we describe a novel method, based on the detection of hemagglutination using an optical waveguide-mode sensor, for on-site use. The reflectance spectrum of blood alone and that of blood mixed with antibody reagents was measured using the waveguide-mode sensor. Differences in reflectance by agglutinated and non-agglutinated blood samples were observed at the bottom of the spectral dips; due to differences in the manner in which red blood cells interacted with the surface of the sensor chip. Following the addition of the antibody, blood types A, B, O, and AB were clearly distinguishable and Rh(D typing was also possible using the waveguide-mode sensor. Furthermore, the waveguide-mode-based measurement exhibited the potential to detect weak agglutination, which is difficult for human eyes to distinguish. Thus, this method holds great promise for application in novel on-site test instruments.

  11. Direct and indirect detection of dissipative dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Fan, JiJi; Katz, Andrey; Shelton, Jessie, E-mail: jijifan1982@gmail.com, E-mail: katz.andrey@gmail.com, E-mail: jshelton137@gmail.com [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2014-06-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.

  12. Direct and indirect detection of dissipative dark matter

    International Nuclear Information System (INIS)

    Fan, JiJi; Katz, Andrey; Shelton, Jessie

    2014-01-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints

  13. Halo-Independent Direct Detection Analyses Without Mass Assumptions

    CERN Document Server

    Anderson, Adam J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the $m_\\chi-\\sigma_n$ plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the $v_{min}-\\tilde{g}$ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from $v_{min}$ to nuclear recoil momentum ($p_R$), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call $\\tilde{h}(p_R)$. The entire family of conventional halo-independent $\\tilde{g}(v_{min})$ plots for all DM masses are directly found from the single $\\tilde{h}(p_R)$ plot through a simple re...

  14. Method of detection of transition radiation by wire chambers operating in self-quenching streamer mode

    International Nuclear Information System (INIS)

    Akopdzhanov, G.A.; Bityukov, S.I.; Dzhelyadin, R.I.; Zaitsev, A.M.; Lapin, V.V.; Saraikin, A.I.

    1984-01-01

    A method for detecting X-ray transition radiation against the background of the signal from relativistic charged particles is suggested that is based on the use of peculiarities of the development of self-queenching streamer mode. The self-qunching streamer discharge in the Xe + isobutane mixture is experimentally registered. The effect of separation of signals from the relativistic particle and from soft X-ray, is obtained

  15. Collider, direct and indirect detection of supersymmetric dark matter

    International Nuclear Information System (INIS)

    Baer, Howard; Park, Eun-Kyung; Tata, Xerxes

    2009-01-01

    We present an overview of supersymmetry (SUSY) searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the DM sector. In contrast to the minimal supergravity (mSUGRA) model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m 0 -m 1/2 plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early Universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared with generic predictions from mSUGRA. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the next-lightest-supersymmetric-particle (NLSP) is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.

  16. Direct detection of non-baryonic dark matter

    International Nuclear Information System (INIS)

    Nollez, G.

    2003-01-01

    Baryonic matter, which constitutes stars and galaxies, amounts to a few percents of the mass of the universe in agreement with the theory of the big-bang nucleosynthesis. Most of the matter in the universe (approximately 85%) is then non-baryonic and dark. One of the most favoured hypothesis is that this non-baryonic dark matter is constituted by a new type, still undiscovered, of elementary weakly interacting massive particles (wimps). These hypothetical particles would appear as thermal relics from the big-bang era during which they were created. A rich spectrum of new elementary particles is predicted by supersymmetry, the lightest of which is the neutralino. If the dark matter halo of our Milky-way is made of neutralinos, their detection in terrestrial detectors should be possible. Neutralinos are coupled to matter through the electroweak interaction, this implies that the detection rate is extraordinary low. About 10 experiments in the world are dedicated to the search after wimps. A first group of experiments (HDMS, IGEX, DAMA and Zeplin) use 'classical' detectors of nuclear physics, germanium semiconductor diodes or NaI scintillators. A second group (CDMS, Edelweiss) gathers cryogenic phonon ionisation experiments and a third group (CRESST, Rosebud) is based on cryogenic phonon-light experiments. Till now no wimps has been clearly detected, the direct detection story is obviously not concluded, most of the future experiments aim to reach a sensitivity of 10 -44 cm 2 . (A.C.)

  17. Congratulations on the direct detection of gravitational waves

    CERN Multimedia

    2016-01-01

    This week saw the announcement of an extraordinary physics result: the first direct detection of gravitational waves by the LIGO Scientific Collaboration, which includes the GEO team, and the Virgo Collaboration, using the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors located in Livingston, Louisiana, and Hanford, Washington, USA.   Albert Einstein predicted gravitational waves in a paper published 100 years ago in 1916. They are a natural consequence of the theory of general relativity, which describes the workings of gravity and was published a few months earlier. Until now, they have remained elusive. Gravitational waves are tiny ripples in space-time produced by violent gravitational phenomena. Because the fractional change in the space-time geometry can be at the level of 10-21 or smaller, extremely sophisticated, high-sensitivity instruments are needed to detect them. Recently, the Advanced LIGO detector increased its sensitivity by alm...

  18. Prospects for the direct detection of the cosmic neutrino background

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2009-01-01

    The existence of a cosmic neutrino background - the analogue of the cosmic microwave background - is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics.

  19. Optical filtering in directly modulated/detected OOFDM systems.

    Science.gov (United States)

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.

  20. Prospects for the direct detection of the cosmic neutrino background

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2009-01-01

    The existence of a cosmic neutrino background - the analogue of the cosmic microwave background - is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics. (orig.)

  1. Theoretical antineutrino detection, direction and ranging at long distances

    Energy Technology Data Exchange (ETDEWEB)

    Jocher, Glenn R., E-mail: gjocher@integrity-apps.com [Integrity Applications Incorporated, 15020 Conference Center Drive, Chantilly, VA, 20151 (United States); Bondy, Daniel A., E-mail: dbondy@integrity-apps.com [Integrity Applications Incorporated, 15020 Conference Center Drive, Chantilly, VA, 20151 (United States); Dobbs, Brian M., E-mail: Brian.M.Dobbs.ctr@nga.mil [Integrity Applications Incorporated, 15020 Conference Center Drive, Chantilly, VA, 20151 (United States); Dye, Stephen T., E-mail: sdye@phys.hawaii.edu [College of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744 (United States); Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, 96822 (United States); Georges, James A., E-mail: James.A.Georges.ctr@nga.mil [Integrity Applications Incorporated, 15020 Conference Center Drive, Chantilly, VA, 20151 (United States); Learned, John G., E-mail: jgl@phys.hawaii.edu [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, 96822 (United States); Mulliss, Christopher L., E-mail: Christopher.L.Mulliss.ctr@nga.mil [Integrity Applications Incorporated, 15020 Conference Center Drive, Chantilly, VA, 20151 (United States); Usman, Shawn, E-mail: Shawn.Usman@nga.mil [InnoVision Basic and Applied Research Office, Sensor Geopositioning Center, National Geospatial-Intelligence Agency, 7500 GEOINT Dr., Springfield, VA, 22150 (United States)

    2013-06-20

    In this paper we introduce the concept of what we call “NUDAR” (NeUtrino Direction and Ranging), making the point that measurements of the observed energy and direction vectors can be employed to passively deduce the exact three-dimensional location and thermal power of geophysical and anthropogenic neutrino sources from even a single detector. Earlier studies have presented the challenges of long-range detection, dominated by the unavoidable inverse-square falloff in neutrinos, which force the use of kiloton scale detectors beyond a few kilometers. Earlier work has also presented the case for multiple detectors, and has reviewed the background challenges. We present the most precise background estimates to date, all handled in full three dimensions, as functions of depth and geographical location. For the present calculations, we consider a hypothetical 138 kiloton detector which can be transported to an ocean site and deployed to an operational depth. We present a Bayesian estimation framework to incorporate any a priori knowledge of the reactor that we are trying to detect, as well as the estimated uncertainty in the background and the oscillation parameters. Most importantly, we fully employ the knowledge of the reactor spectrum and the distance-dependent effects of neutrino oscillations on such spectra. The latter, in particular, makes possible determination of range from one location, given adequate signal statistics. Further, we explore the rich potential of improving detection with even modest improvements in individual neutrino direction determination. We conclude that a 300 MW{sub th} reactor can indeed be geolocated, and its operating power estimated with one or two detectors in the hundred kiloton class at ranges out to a few hundred kilometers. We note that such detectors would have natural and non-interfering utility for scientific studies of geo-neutrinos, neutrino oscillations, and astrophysical neutrinos. This motivates the development of cost

  2. On the direct detection of {sup 229m}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars von der

    2017-02-03

    The measurement of time has always been an important tool in science and society. Today's most precise time and frequency measurements are performed with optical atomic clocks. However, these clocks could potentially be outperformed by a ''nuclear clock'', which employs a nuclear transition instead of an atomic shell transition for time measurement. Among the 176 000 known nuclear excited states, there is only one nuclear state that would allow for the development of a nuclear clock using currently available technology. This is the isomeric first excited state of {sup 229}Th, denoted as {sup 229m}Th. Despite 40 years of past research, no direct decay detection of this nuclear state has so far been achieved. In this thesis, measurements are described that have led to the first direct detection of the ground-state decay of {sup 229m}Th. Two decay channels (radiative decay and internal conversion) are experimentally investigated. Only the investigation of the internal conversion decay channel has led to the successful observation of the first excited isomeric nuclear state of {sup 229}Th. Based on this direct detection, a new nuclear laser excitation scheme for {sup 229m}Th is proposed. This excitation scheme circumvents the general assumed requirement of a better knowledge of the isomeric energy value, thereby paving the way for nuclear laser spectroscopy of {sup 229m}Th. Many of the presented results have so far been unpublished. This includes results of the investigation of a potential radiative decay channel of {sup 229m}Th, a negative result in the search for an isomeric decay during extraction of {sup 229}Th{sup 1+}, investigation of the isomeric decay in thorium molecules and on an MgF{sub 2}-coated surface, as well as a first report of the isomeric half-life for neutral {sup 229}Th.

  3. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Directory of Open Access Journals (Sweden)

    Zdeněk Farka

    2014-12-01

    Full Text Available Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter and passive (impedance analyzer modes of quartz crystal microbalance (QCM were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‑SMCC was most effective achieving the limit of detection (LOD 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  4. Intensity-modulated radiation therapy using static ports of tomotherapy (TomoDirect): comparison with the TomoHelical mode

    International Nuclear Information System (INIS)

    Murai, Taro; Shibamoto, Yuta; Manabe, Yoshihiko; Murata, Rumi; Sugie, Chikao; Hayashi, Akihiro; Ito, Hiroya; Miyoshi, Yoshihito

    2013-01-01

    With the new mode of Tomotherapy, irradiation can be delivered using static ports of the TomoDirect mode. The purpose of this study was to evaluate the characteristics of TomoDirect plans compared to conventional TomoHelical plans. TomoDirect and TomoHelical plans were compared in 46 patients with a prostate, thoracic wall or lung tumor. The mean target dose was used as the prescription dose. The minimum coverage dose of 95% of the target (D95%), conformity index (CI), uniformity index (UI), dose distribution in organs at risk and treatment time were evaluated. For TomoDirect, 2 to 5 static ports were used depending on the tumor location. For the prostate target volume, TomoDirect plans could not reduce the rectal dose and required a longer treatment time than TomoHelical. For the thoracic wall target volume, the V5Gy of the lung or liver was lower in TomoDirect than in TomoHelical (p = 0.02). For the lung target volume, TomoDirect yielded higher CI (p = 0.009) but smaller V5Gy of the lung (p = 0.005) than TomoHelical. Treatment time did not differ significantly between the thoracic wall and lung plans. Prostate cancers should be treated with the TomoHelical mode. Considering the risk of low-dose radiation to the lung, the TomoDirect mode could be an option for thoracic wall and lung tumors

  5. Revisiting the direct detection of dark matter in simplified models

    OpenAIRE

    Li, Tong

    2018-01-01

    In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-s...

  6. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  7. Detailed noise statistics for an optically preamplified direct detection receiver

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Durhuus, Terji

    1995-01-01

    We describe the exact statistics of an optically preamplified direct detection receiver by means of the moment generating function. The theory allows an arbitrary shaped electrical filter in the receiver circuit. The moment generating function (MGF) allows for a precise calculation of the error...... rate by using the inverse Fast Fourier transform (FFT). The exact results are compared with the usual Gaussian approximation (GA), the saddlepoint approximation (SAP) and the modified Chernoff bound (MCB). This comparison shows that the noise is not Gaussian distributed for all values of the optical...... and calculate the sensitivity degradation due to inter symbol interference (ISI)...

  8. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  9. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide

    Science.gov (United States)

    Shen, Cheng-Long; Su, Li-Xia; Zang, Jin-Hao; Li, Xin-Jian; Lou, Qing; Shan, Chong-Xin

    2017-07-01

    Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

  10. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode

    Science.gov (United States)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John

    2006-01-01

    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  11. Unstable gravitino dark matter prospects for indirect and direct detection

    International Nuclear Information System (INIS)

    Grefe, Michael

    2011-11-01

    We confront the signals expected from unstable gravitino dark matter with observations of indirect dark matter detection experiments in all possible cosmic-ray channels. For this purpose we calculate in detail the gravitino decay widths in theories with bilinear violation of R parity, particularly focusing on decay channels with three particles in the final state. Based on these calculations we predict the fluxes of gamma rays, charged cosmic rays and neutrinos expected from decays of gravitino dark matter. Although the predicted spectra could in principal explain the anomalies observed in the cosmic ray positron and electron fluxes as measured by PAMELA and Fermi LAT, we find that this possibility is ruled out by strong constraints from gamma-ray and antiproton observations. Therefore, we employ current data of indirect detection experiments to place strong constraints on the gravitino lifetime and the strength of R-parity violation. In addition, we discuss the prospects of forthcoming searches for a gravitino signal in the spectrum of cosmic-ray antideuterons, finding that they are in particular sensitive to rather low gravitino masses. Finally, we discuss in detail the prospects for detecting a neutrino signal from gravitino dark matter decays, finding that the sensitivity of neutrino telescopes like IceCube is competitive to observations in other cosmic ray channels, especially for rather heavy gravitinos. Moreover, we discuss the prospects for a direct detection of gravitino dark matter via R-parity violating inelastic scatterings off nucleons. We find that, although the scattering cross section is considerably enhanced compared to the case of elastic gravitino scattering, the expected signal is many orders of magnitude too small in order to hope for a detection in underground detectors. (orig.)

  12. Unstable gravitino dark matter prospects for indirect and direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Michael

    2011-11-15

    We confront the signals expected from unstable gravitino dark matter with observations of indirect dark matter detection experiments in all possible cosmic-ray channels. For this purpose we calculate in detail the gravitino decay widths in theories with bilinear violation of R parity, particularly focusing on decay channels with three particles in the final state. Based on these calculations we predict the fluxes of gamma rays, charged cosmic rays and neutrinos expected from decays of gravitino dark matter. Although the predicted spectra could in principal explain the anomalies observed in the cosmic ray positron and electron fluxes as measured by PAMELA and Fermi LAT, we find that this possibility is ruled out by strong constraints from gamma-ray and antiproton observations. Therefore, we employ current data of indirect detection experiments to place strong constraints on the gravitino lifetime and the strength of R-parity violation. In addition, we discuss the prospects of forthcoming searches for a gravitino signal in the spectrum of cosmic-ray antideuterons, finding that they are in particular sensitive to rather low gravitino masses. Finally, we discuss in detail the prospects for detecting a neutrino signal from gravitino dark matter decays, finding that the sensitivity of neutrino telescopes like IceCube is competitive to observations in other cosmic ray channels, especially for rather heavy gravitinos. Moreover, we discuss the prospects for a direct detection of gravitino dark matter via R-parity violating inelastic scatterings off nucleons. We find that, although the scattering cross section is considerably enhanced compared to the case of elastic gravitino scattering, the expected signal is many orders of magnitude too small in order to hope for a detection in underground detectors. (orig.)

  13. Dark matter and exotic neutrino interactions in direct detection searches

    Energy Technology Data Exchange (ETDEWEB)

    Bertuzzo, Enrico [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,R. do Matão 1371, CEP. 05508-090, São Paulo (Brazil); Deppisch, Frank F. [Department of Physics and Astronomy, University College London,London WC1E 6BT (United Kingdom); Kulkarni, Suchita [Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften,Nikolsdorfer Gasse 18, 1050 Wien (Austria); Gonzalez, Yuber F. Perez; Funchal, Renata Zukanovich [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,R. do Matão 1371, CEP. 05508-090, São Paulo (Brazil)

    2017-04-12

    We investigate the effect of new physics interacting with both Dark Matter (DM) and neutrinos at DM direct detection experiments. Working within a simplified model formalism, we consider vector and scalar mediators to determine the scattering of DM as well as the modified scattering of solar neutrinos off nuclei. Using existing data from LUX as well as the expected sensitivity of LUX-ZEPLIN and DARWIN, we set limits on the couplings of the mediators to quarks, neutrinos and DM. Given the current limits, we also assess the true DM discovery potential of direct detection experiments under the presence of exotic neutrino interactions. In the case of a vector mediator, we show that the DM discovery reach of future experiments is affected for DM masses m{sub χ}≲10 GeV or DM scattering cross sections σ{sub χ}≲10{sup −47} cm{sup 2}. On the other hand, a scalar mediator will not affect the discovery reach appreciably.

  14. Performances of a HGCDTE APD based direct detection lidar at 2 μm. Application to dial measurements

    Science.gov (United States)

    Gibert, Fabien; Dumas, Arnaud; Rothman, Johan; Edouart, Dimitri; Cénac, Claire; Pellegrino, Jessica

    2018-04-01

    A lidar receiver with a direct detection chain adapted to a HgCdTe APD based detector with electric cooling is associated to a 2.05 μm Ho :YLF pulsed dual wavelength single mode transmitter to provide the first atmospheric lidar measurements using this technology. Experiments confirm the outstanding sensitivity of the detector and hightligth its huge potential for DIAL measurements of trace gas (CO2 and H2O) in this spectral domain. Performances of coherent vs direct detection at 2.05 μm is assessed.

  15. Performances of a HGCDTE APD based direct detection lidar at 2 μm. Application to dial measurements

    Directory of Open Access Journals (Sweden)

    Gibert Fabien

    2018-01-01

    Full Text Available A lidar receiver with a direct detection chain adapted to a HgCdTe APD based detector with electric cooling is associated to a 2.05 μm Ho :YLF pulsed dual wavelength single mode transmitter to provide the first atmospheric lidar measurements using this technology. Experiments confirm the outstanding sensitivity of the detector and hightligth its huge potential for DIAL measurements of trace gas (CO2 and H2O in this spectral domain. Performances of coherent vs direct detection at 2.05 μm is assessed.

  16. Understanding WIMP-baryon interactions with direct detection: a roadmap

    International Nuclear Information System (INIS)

    Gluscevic, Vera; Peter, Annika H.G.

    2014-01-01

    We study prospects of dark-matter direct-detection searches for probing non-relativistic effective theory for WIMP-baryon scattering. We simulate a large set of noisy recoil-energy spectra for different scattering scenarios (beyond the standard momentum-independent contact interaction), for Generation 2 and futuristic experiments. We analyze these simulations and quantify the probability of successfully identifying the operator governing the scattering, if a WIMP signal is observed. We find that the success rate depends on a combination of factors: the WIMP mass, the mediator mass, the type of interaction, and the experimental energy window. For example, for a 20 GeV WIMP, Generation 2 is only likely to identify the right operator if the interaction is Coulomb-like, and is unlikely to do so in any other case. For a WIMP with a mass of 200 GeV or higher, success is almost guaranteed. We also find that, regardless of the scattering model and the WIMP parameters, a single Generation 2 experiment is unlikely to successfully discern the momentum dependence of the underlying operator on its own, but prospects improve drastically when experiments with different target materials and energy windows are analyzed jointly. Furthermore, we examine the quality of parameter estimation and degeneracies in the multi-dimensional parameter space of the effective theory. We find in particular that the resulting WIMP mass estimates can be severely biased if data are analyzed assuming the standard (momentum-independent) operator while the actual operator has momentum-dependence. Finally, we evaluate the ultimate reach of direct detection, finding that the prospects for successful operator selection prior to reaching the irreducible backgrounds are excellent, if the signal is just below the current limits, but slim if Generation 2 does not report WIMP detection

  17. Direct and dynamic detection of HIV-1 in living cells.

    Directory of Open Access Journals (Sweden)

    Jonas Helma

    Full Text Available In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research.

  18. Development of a novel gamma probe for detecting radiation direction

    Science.gov (United States)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  19. Development of a novel gamma probe for detecting radiation direction

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M.N.; Longo, M.; Donnarumma, R.; Borrazzo, C.; D'Alessio, A.; Pergola, A.; Ridolfi, S.; Vincentis, G. De

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security

  20. Halo-independent direct detection analyses without mass assumptions

    International Nuclear Information System (INIS)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-01-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ −σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min −g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v min to nuclear recoil momentum (p R ), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p R ). The entire family of conventional halo-independent g-tilde(v min ) plots for all DM masses are directly found from the single h-tilde(p R ) plot through a simple rescaling of axes. By considering results in h-tilde(p R ) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v min ) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity

  1. Heterodyne ECE diagnostic in the mode detection and disruption avoidance at TEXTOR

    International Nuclear Information System (INIS)

    Kraemer-Flecken, A.; Finken, K.H.; Larue, H.; Udintsev, V.S.; TEXTOR - team

    2003-01-01

    Disruptions cause major concerns for the operation of tokamaks. During disruption large forces act on the tokamak vessel and its interior parts. The huge amount of plasma energy deposited on the first wall components within one millisecond causes serious damage. Therefore disruptions should be avoided. One way to avoid disruptions is the operation of a tokamak in a regime which is easy to handle from the control point of view. However, the operation in the advanced scenarios or improved confinement modes is very complicated and even small deviation in one of the control parameters can cause a disruption. In this cases a method should be available to detect the disruption in advance and mitigate or even better avoid the energy quench by appropriate means. At TEXTOR we developed a method to detect the disruption precursor. The module is integrated in the plasma control system. The detection method was tested at TEXTOR for (i) combination with tangential neutral beam injection to increase the toroidal rotation profile and to tear apart the m = 2 disruption precursor by a steep rotation gradient across the island (ii) gas puff experiments with He used to mitigate the disruption effects specially to suppress the generation of the runaway electrons. The paper demonstrates the possibility to detect disruptions precursors and to avoid disruptions using two ECE-channels out of the standard electron temperature diagnostic. The system demonstrated its reliability during the last month of TEXTOR operation. The injection of co- as well as counter neutral beam to avoid the disruption was successful tested and a detailed analysis of the mode development is presented. The measured rotation profiles show the development of a step in the toroidal velocity in the vicinity of the q = 2 surface which prevents the plasma from a disruption. Furthermore detailed analysis of the frequency development of the m = 2 mode could explain the observed sudden increase in the mode frequency

  2. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  3. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, L.; Zarza, E. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, P.O. Box 22, E-04200 Tabernas, Almeria (Spain); Berenguel, M. [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, E-04120 Almeria (Spain); Camacho, E.F. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, E-41092 Sevilla (Spain)

    2006-01-15

    Electricity production using solar thermal energy is one of the main research areas at present in the field of renewable energies, these systems being characterised by the need of reliable control systems aimed at maintaining desired operating conditions in the face of changes in solar radiation, which is the main source of energy. A new prototype of solar system with parabolic trough collectors was implemented at the Plataforma Solar de Almeria (PSA, South-East Spain) to investigate the direct steam generation process under real solar conditions in the parabolic solar collector field of a thermal power plant prototype. This paper presents details and some results of the application of a control scheme designed and tested for the recirculation operation mode, for which the main objective is to obtain steam at constant temperature and pressure at the outlet of the solar field, so that changes produced in the inlet water conditions and/or solar radiation will only affect the amount of steam produced by the solar field. The steam quality and consequently the nominal efficiency of the plant are thus maintained. (author)

  4. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    Science.gov (United States)

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Detection of a new Z' in the Z' → W+W- mode at the SSC

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Gunion, J.F.; Zwirner, F.

    1987-07-01

    If a new Z' exists with mass in the TeV region, the decay rate for the mode Z' → W + W - is expected to be of the same order as the ones for Z' → e + e - or Z' → μ + μ - . This mode can be detectable at the SSC via the secondary decays WW → (jet jet)(l nu), (l = e,μ). We compare the expected signal with the backgrounds coming from continuum WW production and W jet jet production in the standard model. Using for this decay selection criteria analogous to the ones proposed for the corresponding decay of a heavy Higgs, we conclude that the signal/background ratio should be considerably larger in the Z' case. This is primarily because, for masses in the TeV range, the Z' width is very much smaller than the Higgs width

  6. Ultrafast electron microscopy integrated with a direct electron detection camera

    Directory of Open Access Journals (Sweden)

    Young Min Lee

    2017-07-01

    Full Text Available In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM, which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  7. Ultrafast electron microscopy integrated with a direct electron detection camera.

    Science.gov (United States)

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  8. From quarks to nucleons in dark matter direct detection

    Science.gov (United States)

    Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure

    2017-11-01

    We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give expressions of leading and subleading order in chiral counting. In general, a single partonic operator matches onto several nonrelativistic operators already at leading order in chiral counting. Keeping only one operator at the time in the nonrelativistic effective theory thus does not properly describe the scattering in direct detection. The matching of the axial-axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, include naively momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important.

  9. Inelastic Boosted Dark Matter at direct detection experiments

    Science.gov (United States)

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-05-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  10. Single-nanoparticle detection with slot-mode photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Kita, Shota; Lončar, Marko, E-mail: loncar@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Li, Yihang [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-29

    Optical cavities that are capable for detecting single nanoparticles could lead to great progress in early stage disease diagnostics and the study of biological interactions on the single-molecule level. In particular, photonic crystal (PhC) cavities are excellent platforms for label-free single-nanoparticle detection, owing to their high quality (Q) factors and wavelength-scale modal volumes. Here, we demonstrate the design and fabrication of a high-Q (>10{sup 4}) slot-mode PhC nanobeam cavity, which is able to strongly confine light in the slotted regions. The enhanced light-matter interaction results in an order of magnitude improvement in both refractive index sensitivity (439 nm/RIU) and single-nanoparticle sensitivity compared with conventional dielectric-mode PhC cavities. Detection of single polystyrene nanoparticles with radii of 20 nm and 30 nm is demonstrated in aqueous environments (D{sub 2}O), without additional laser and temperature stabilization techniques.

  11. ASSESSING ASTROPHYSICAL UNCERTAINTIES IN DIRECT DETECTION WITH GALAXY SIMULATIONS

    International Nuclear Information System (INIS)

    Sloane, Jonathan D.; Buckley, Matthew R.; Brooks, Alyson M.; Governato, Fabio

    2016-01-01

    We study the local dark matter velocity distribution in simulated Milky Way-mass galaxies, generated at high resolution with both dark matter and baryons. We find that the dark matter in the solar neighborhood is influenced appreciably by the inclusion of baryons, increasing the speed of dark matter particles compared to dark matter-only simulations. The gravitational potential due to the presence of a baryonic disk increases the amount of high velocity dark matter, resulting in velocity distributions that are more similar to the Maxwellian Standard Halo Model than predicted from dark matter-only simulations. Furthermore, the velocity structures present in baryonic simulations possess a greater diversity than expected from dark matter-only simulations. We show that the impact on the direct detection experiments LUX, DAMA/Libra, and CoGeNT using our simulated velocity distributions, and explore how resolution and halo mass within the Milky Way’s estimated mass range impact the results. A Maxwellian fit to the velocity distribution tends to overpredict the amount of dark matter in the high velocity tail, even with baryons, and thus leads to overly optimistic direct detection bounds on models that are dependent on this region of phase space for an experimental signal. Our work further demonstrates that it is critical to transform simulated velocity distributions to the lab frame of reference, due to the fact that velocity structure in the solar neighborhood appears when baryons are included. There is more velocity structure present when baryons are included than in dark matter-only simulations. Even when baryons are included, the importance of the velocity structure is not as apparent in the Galactic frame of reference as in the Earth frame.

  12. ASSESSING ASTROPHYSICAL UNCERTAINTIES IN DIRECT DETECTION WITH GALAXY SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, Jonathan D.; Buckley, Matthew R.; Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Governato, Fabio [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

    2016-11-01

    We study the local dark matter velocity distribution in simulated Milky Way-mass galaxies, generated at high resolution with both dark matter and baryons. We find that the dark matter in the solar neighborhood is influenced appreciably by the inclusion of baryons, increasing the speed of dark matter particles compared to dark matter-only simulations. The gravitational potential due to the presence of a baryonic disk increases the amount of high velocity dark matter, resulting in velocity distributions that are more similar to the Maxwellian Standard Halo Model than predicted from dark matter-only simulations. Furthermore, the velocity structures present in baryonic simulations possess a greater diversity than expected from dark matter-only simulations. We show that the impact on the direct detection experiments LUX, DAMA/Libra, and CoGeNT using our simulated velocity distributions, and explore how resolution and halo mass within the Milky Way’s estimated mass range impact the results. A Maxwellian fit to the velocity distribution tends to overpredict the amount of dark matter in the high velocity tail, even with baryons, and thus leads to overly optimistic direct detection bounds on models that are dependent on this region of phase space for an experimental signal. Our work further demonstrates that it is critical to transform simulated velocity distributions to the lab frame of reference, due to the fact that velocity structure in the solar neighborhood appears when baryons are included. There is more velocity structure present when baryons are included than in dark matter-only simulations. Even when baryons are included, the importance of the velocity structure is not as apparent in the Galactic frame of reference as in the Earth frame.

  13. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  14. Damage detection and quantification using mode curvature variation on framed structures: analysis of the preliminary results

    Science.gov (United States)

    Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.

    2017-04-01

    Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the

  15. Direct and Indirect Dark Matter Detection in Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Farinaldo [Federal Univ. of Paraba (Brazil)

    2013-01-01

    The Dark matter (DM) problem constitutes a key question at the interface among Particle Physics, Astrophysics and Cosmology. The observational data which have been accumulated in the last years point to an existence of non baryonic amount of DM. Since the Standard Model (SM) does not provide any candidate for such non-baryonic DM, the evidence of DM is a major indication for new physics beyond the SM. We will study in this work one of the most popular DM candidates, the so called WIMPs (Weakly Interacting Massive Particles) from a direct and indirect detection perspective. In order to approach the direct and indirect dection of DM in the context of Particle Physics in a more pedagogic way, we will begin our discussion talking about a minimal extension of the SM. Later we will work on the subject in a 3-3-1 model. Next, we will study the role of WIMPs in the Big Bang Nucleosynthesis. Lastly, we will look for indirect DM signals in the center of our galaxy using the NASA Satellite, called Fermi-LAT. Through a comprehensive analysis of the data events observed by Fermi-LAT and some background models, we will constrain the dark matter annihilation cross section for several annihilation channels and dark matter halo profiles.

  16. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  17. Dual-mode endomicroscopy for detection of epithelial dysplasia in the mouth: a descriptive pilot study

    Science.gov (United States)

    Bodenschatz, Nico; Poh, Catherine F.; Lam, Sylvia; Lane, Pierre; Guillaud, Martial; MacAulay, Calum E.

    2017-08-01

    Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.

  18. A microcontroller-based compensated optical proximity detector employing the switching-mode synchronous detection technique

    International Nuclear Information System (INIS)

    Rakshit, Anjan; Chatterjee, Amitava

    2012-01-01

    This paper describes the development of a microcontroller-based optical proximity detector that can provide a low-cost yet powerful obstacle-sensing mechanism for mobile robots. The system is developed with the switching-mode synchronous detection technique to provide satisfactory performance over a wide range of operating conditions and is developed with the facility of externally setting a threshold, for reliable operation. The system is dynamically compensated against ambient illumination variations. Experimental studies demonstrate how the minimum distance of activation can be varied with different choices of thresholds. (paper)

  19. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  20. Direct Detection of Polarized, Scattered Light from Exoplanets

    Science.gov (United States)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  1. Direct Observations of ULF and Whistler-Mode Chorus Modulation of 500eV EDI Electrons by MMS

    Science.gov (United States)

    Paulson, K. W.; Argall, M. R.; Ahmadi, N.; Torbert, R. B.; Le Contel, O.; Ergun, R.; Khotyaintsev, Y. V.; Strangeway, R. J.; Magnes, W.; Russell, C. T.

    2016-12-01

    We present here direct observations of chorus-wave modulated field-aligned 500 eV electrons using the Electron Drift Instrument (EDI) on board the Magnetospheric Multiscale mission. These periods of wave activity were additionally observed to be modulated by Pc5-frequency magnetic perturbations, some of which have been identified as drifting mirror-mode structures. The spacecraft encountered these mirror-mode structures just inside of the duskside magnetopause. Using the high sampling rate provided by EDI in burst sampling mode, we are able to observe the individual count fluctuations of field-aligned electrons in this region up to 512 Hz. We use the multiple look directions of EDI to generate both pitch angle and gyrophase plots of the fluctuating counts. Our observations often show unidirectional flow of these modulated electrons along the background field, and in some cases demonstrate gyrophase bunching in the wave region.

  2. Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.

    Science.gov (United States)

    Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua

    2017-04-01

    Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d' Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2012-02-10

    We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

  4. Mode of the short circuit in the direct current electric traction network with different feed charts of fyder area

    Directory of Open Access Journals (Sweden)

    P. Mihalichenko

    2012-12-01

    Full Text Available In the article the results of mathematical design of the system of electric traction of direct current are represented in the mode of short circuit and different feed charts of fyder area: two-sided; one-sided. Comparison of transitional electric sizes which characterize electromagnetic processes during these malfunctions is analysed and executed.

  5. Design of the scanning mode coated glass color difference online detection system

    Science.gov (United States)

    Bi, Weihong; Zhang, Yu; Wang, Dajiang; Zhang, Baojun; Fu, Guangwei

    2008-03-01

    A design of scanning mode coated glass color difference online detection system was introduced. The system consisted of color difference data acquirement part and orbit control part. The function of the color difference data acquirement part was to acquire glass spectral reflectance and then processed them to get the color difference value. Using fiber for light guiding, the reflected light from surface of glass was transmitted into light division part, and the dispersive light was imaged on linear CCD, and then the output signals from the CCD was sampled pixel by pixel, and the spectral reflectance of coated glass was obtained finally. Then, the acquired spectral reflectance signals was sent to industrial personal computer through USB interface, using standard color space and color difference formula nominated by International Commission on Illumination (CIE) in 1976 to process these signals, and the reflected color parameter and color difference of coated glass was gained in the end. The function of the orbit control part was to move the detection probe by way of transverse scanning mode above the glass strip, and control the measuring start-stop time of the color difference data acquirement part at the same time. The color difference data acquirement part of the system was put on the orbit which is after annealing area in coated glass production line, and the protected fiber probe was placed on slide of the orbit. Using single chip microcomputer to control transmission mechanism of the slide, which made the slide move by way of transverse scanning mode on the glass strip, meanwhile, the color difference data acquirement part of the system was also controlled by the single chip microcomputer, and it made the acquirement part measure color difference data when the probe reached the needed working speed and required place on the glass strip. The scanning mode coated glass color difference online detection system can measure color parameter and color difference of

  6. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    Science.gov (United States)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  7. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    Science.gov (United States)

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  8. NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION

    International Nuclear Information System (INIS)

    Brown, Robert A.; Soummer, Remi

    2010-01-01

    We report on new methods for evaluating realistic observing programs that search stars for planets by direct imaging, where observations are selected from an optimized star list and stars can be observed multiple times. We show how these methods bring critical insight into the design of the mission and its instruments. These methods provide an estimate of the outcome of the observing program: the probability distribution of discoveries (detection and/or characterization) and an estimate of the occurrence rate of planets (η). We show that these parameters can be accurately estimated from a single mission simulation, without the need for a complete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide tools to define a mission for a particular science goal; for example, a mission can be defined by the expected number of discoveries and its confidence level. We detail how an optimized star list can be built and how successive observations can be selected. Our approach also provides other critical mission attributes, such as the number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.), our methods are directly applicable to the design of such future missions and provide guidance to the mission and instrument design based on scientific performance. We illustrate our new methods with practical calculations and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004, assuming a small fraction of JWST observing time (7%), η = 0.3, and 70 observing visits, limited by starshade fuel.

  9. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    Science.gov (United States)

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Investigation of PMD in direct-detection optical OFDM with zero padding.

    Science.gov (United States)

    Li, Xiang; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan

    2013-09-09

    We investigate the polarization-mode dispersion (PMD) effect of zero padding OFDM (ZP-OFDM) in direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems. We first study the conventional equalization method for ZP-OFDM. Then an equalization method based on sorted QR decomposition is proposed to further improve the performance. It is found that the performance improvement of ZP-OFDM is due to the frequency domain oversampling (FDO) induced inter-carrier interference (ICI). Numerical simulation results show that compared with cyclic prefix OFDM (CP-OFDM), ZP-OFDM has a significantly higher tolerance to PMD in DDO-OFDM systems when the channel spectral nulls occur at certain differential group delay (DGD) values.

  11. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.

  12. Automatic detection of the macula in retinal fundus images using seeded mode tracking approach.

    Science.gov (United States)

    Wong, Damon W K; Liu, Jiang; Tan, Ngan-Meng; Yin, Fengshou; Cheng, Xiangang; Cheng, Ching-Yu; Cheung, Gemmy C M; Wong, Tien Yin

    2012-01-01

    The macula is the part of the eye responsible for central high acuity vision. Detection of the macula is an important task in retinal image processing as a landmark for subsequent disease assessment, such as for age-related macula degeneration. In this paper, we have presented an approach to automatically determine the macula centre in retinal fundus images. First contextual information on the image is combined with a statistical model to obtain an approximate macula region of interest localization. Subsequently, we propose the use of a seeded mode tracking technique to locate the macula centre. The proposed approach is tested on a large dataset composed of 482 normal images and 162 glaucoma images from the ORIGA database and an additional 96 AMD images. The results show a ROI detection of 97.5%, and 90.5% correct detection of the macula within 1/3DD from a manual reference, which outperforms other current methods. The results are promising for the use of the proposed approach to locate the macula for the detection of macula diseases from retinal images.

  13. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    Science.gov (United States)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  14. First direct detection of solar pp neutrinos by Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: Werner Maneschg on behalf of the Borexino collaboration

    2015-07-01

    According to the Standard Solar Model (SSM) the radiative energy of our Sun is produced by a series of nuclear reactions that convert hydrogen into helium. In 99% of cases these processes are supposed to start with a fusion of two protons and the emission of a positron and a low-energy neutrino. These so-called pp neutrinos vastly outnumber those emitted in other sub-reactions, but only the large volume organic liquid scintillator detector Borexino has recently succeeded to perform a spectroscopic and direct measurement of them. The present talk reviews the procedure adopted by the Borexino collaboration to detect pp neutrinos. The key requirements, i.e. unprecedented radiopurity levels at low energies and a precise spectral description of the main background arising from 14C decays, and their fulfillment are discussed. The measured pp neutrino flux is then compared with the predictions of the SSM including neutrino oscillation mechanisms, and with the solar luminosity constraint deduced from photospheric observations.

  15. Direct detection of light anapole and magnetic dipole DM

    International Nuclear Information System (INIS)

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo

    2014-01-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section

  16. Direct detection of exothermic dark matter with light mediator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts & Telecommunications,Chongqing, 400065 (China); Department of Physics, National Tsing Hua University,Hsinchu, Taiwan (China); Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan (China); Huang, Da; Lee, Chun-Hao [Department of Physics, National Tsing Hua University,Hsinchu, Taiwan (China); Wang, Qing [Department of Physics, Tsinghua University,Beijing, 100084 (China); Collaborative Innovation Center of Quantum Matter,Beijing, 100084 (China)

    2016-08-05

    We study the dark matter (DM) direct detection for the models with the effects of the isospin-violating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator. We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identify any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data.

  17. CMOS-based avalanche photodiodes for direct particle detection

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Active Pixel Sensors (APSs) in complementary metal-oxide-semiconductor (CMOS) technology are augmenting Charge-Coupled Devices (CCDs) as imaging devices and cameras in some demanding optical imaging applications. Radiation Monitoring Devices are investigating the APS concept for nuclear detection applications and has successfully migrated avalanche photodiode (APD) pixel fabrication to a CMOS environment, creating pixel detectors that can be operated with internal gain as proportional detectors. Amplification of the signal within the diode allows identification of events previously hidden within the readout noise of the electronics. Such devices can be used to read out a scintillation crystal, as in SPECT or PET, and as direct-conversion particle detectors. The charge produced by an ionizing particle in the epitaxial layer is collected by an electric field within the diode in each pixel. The monolithic integration of the readout circuitry with the pixel sensors represents an improved design compared to the current hybrid-detector technology that requires wire or bump bonding. In this work, we investigate designs for CMOS APD detector elements and compare these to typical values for large area devices. We characterize the achievable detector gain and the gain uniformity over the active area. The excess noise in two different pixel structures is compared. The CMOS APD performance is demonstrated by measuring the energy spectra of X-rays from 55 Fe

  18. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  19. The effective field theory of dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Haxton, Wick; Katz, Emanuel; Lubbers, Nicholas; Xu, Yiming

    2013-02-01

    We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets — F, Na, Ge, I, and Xe — using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.

  20. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  1. Latency and mode of error detection as reflected in Swedish licensee event reports

    Energy Technology Data Exchange (ETDEWEB)

    Svenson, Ola; Salo, Ilkka [Stockholm Univ., (Sweden). Dept. of Psychology

    2002-03-01

    Licensee event reports (LERs) from an industry provide important information feedback about safety to the industry itself, the regulators and to the public. LERs from four nuclear power reactors were analyzed to find out about detection times, mode of detection and qualitative differences in reports from different reactors. The reliability of the coding was satisfactory and measured as the covariance between the ratings from two independent judges. The results showed differences in detection time across the reactors. On the average about ten percent of the errors remained undetected for 100 weeks or more, but the great majority of errors were detected soon after their first appearance in the plant. On the average 40 percent of the errors were detected in regular tests and 40 per cent through alarms. Operators found about 10 per cent of the errors through noticing something abnormal in the plant. The remaining errors were detected in various other ways. There were qualitative differences between the LERs from the different reactors reflecting the different conditions in the plants. The number of reports differed by a magnitude 1:2 between the different plants. However, a greater number of LERs can indicate both higher safety standards (e.g., a greater willingness to report all possible events to be able to learn from them) and lower safety standards (e.g., reporting as few events as possible to make a good impression). It was pointed out that LERs are indispensable in order to maintain safety of an industry and that the differences between plants found in the analyses of this study indicate how error reports can be used to initiate further investigations for improved safety.

  2. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  3. Latency and mode of error detection as reflected in Swedish licensee event reports

    International Nuclear Information System (INIS)

    Svenson, Ola; Salo, Ilkka

    2002-03-01

    Licensee event reports (LERs) from an industry provide important information feedback about safety to the industry itself, the regulators and to the public. LERs from four nuclear power reactors were analyzed to find out about detection times, mode of detection and qualitative differences in reports from different reactors. The reliability of the coding was satisfactory and measured as the covariance between the ratings from two independent judges. The results showed differences in detection time across the reactors. On the average about ten percent of the errors remained undetected for 100 weeks or more, but the great majority of errors were detected soon after their first appearance in the plant. On the average 40 percent of the errors were detected in regular tests and 40 per cent through alarms. Operators found about 10 per cent of the errors through noticing something abnormal in the plant. The remaining errors were detected in various other ways. There were qualitative differences between the LERs from the different reactors reflecting the different conditions in the plants. The number of reports differed by a magnitude 1:2 between the different plants. However, a greater number of LERs can indicate both higher safety standards (e.g., a greater willingness to report all possible events to be able to learn from them) and lower safety standards (e.g., reporting as few events as possible to make a good impression). It was pointed out that LERs are indispensable in order to maintain safety of an industry and that the differences between plants found in the analyses of this study indicate how error reports can be used to initiate further investigations for improved safety

  4. Directional response of identifier Micro Detective ORTEC, N-type with 15% of detection efficiency

    International Nuclear Information System (INIS)

    Arbach, Mayara Nascimento; Karam, Rudnei M.; Cardoso, Domingos D.O.; Sant'anna, Viviane C.; Vellozo, Sergio de O.; Gomes, Renato G.; Amorim, Aneuri S. de; Oliveira, Luciano S.R.

    2016-01-01

    It was characterized the directional response of identifier Micro Detective ORTEC, N-type with 15% of detection efficiency by using sources of Cesium ("1"3"7Cs) with activity of 37,4 kBq and Cobalt ("6"0Co) with an activity of 41 kBq, manufactured on 04/17/2007. The work took place in distances (0,5m, 1,0m, 1,5m e 2,0m) and for the angles (0°, 45°, 60° e 90°), and the measure found in angle 0° of said evaluation was adopted as reference value; this same procedure was adopted for other distances evaluated in this work. The results achieved are provided in charts 1, 2 and 3. (author)

  5. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  6. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  7. Mixed Wino Dark Matter: consequences for direct, indirect and collider detection

    International Nuclear Information System (INIS)

    Baer, Howard; Mustafayev, Azar; Park, Eun-Kyung; Profumo, Stefano

    2005-01-01

    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that Z-tilde 2 two-body decay modes are usually closed. This means that dilepton mass edges- the starting point for cascade decay reconstruction at the CERN LHC- should be accessible over almost all of parameter space. Measurement of the m Z-tilde2 -m Z-tilde1 mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe

  8. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks

    Directory of Open Access Journals (Sweden)

    Hala Ghali

    2016-05-01

    Full Text Available Whispering Gallery Mode (WGM microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme.

  9. Superparamagnetic nanoparticle detection system by using a fundamental mode orthogonal fluxgate (FM-OFG gradiometer

    Directory of Open Access Journals (Sweden)

    Hikaru Karo

    2017-05-01

    Full Text Available A new magnetic nanoparticle detection system by using a fundamental mode orthogonal fluxgate (FM-OFG gradiometer and ac magnetizing coil has been developed. The FM-OFG gradiometer has an active canceling coil on each of its sensor heads against the common magnetic field input to avoid the saturation of the amorphous wire core by a strong ac magnetic field. In addition, the ac magnetizing coil has an adjusting capability to make ac magnetic field strength affecting each of the gradiometer heads equal, which allows us to use a high gain amplifier at the latter stage. Two types of the gradiometer are tested: one is parallel configuration in which two sensor heads are placed in parallel side by side, the other is axial configuration in which two sensor heads are placed axially. Detectable distance was investigated using a 5μL (≈100μg in Fe atomic amount magnetic nanoparticle sample. The maximum detectable distance for the parallel gradiometer is 17 mm, and that for the axial one is 18 mm.

  10. A Novel Segment-Based Approach for Improving Classification Performance of Transport Mode Detection.

    Science.gov (United States)

    Guvensan, M Amac; Dusun, Burak; Can, Baris; Turkmen, H Irem

    2017-12-30

    Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people's daily activities including transportation types and duration by taking advantage of individual's smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.

  11. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  12. Foreign direct investment as an entry mode. An application in emerging economies

    NARCIS (Netherlands)

    Sels, A.T.H.

    2006-01-01

    This dissertation examines the determinants of foreign investment entry modes in Central and Eastern Europe during transition. Utilizing various theoretical bases in industrial organization and strategy, it attempts to distill a better understanding of the ownership choice between joint ventures and

  13. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    International Nuclear Information System (INIS)

    Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-01-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems

  14. Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization

    Science.gov (United States)

    Bagherzadeh, Seyed Amin; Asadi, Davood

    2017-05-01

    In search of a precise method for analyzing nonlinear and non-stationary flight data of an aircraft in the icing condition, an Empirical Mode Decomposition (EMD) algorithm enhanced by multi-objective optimization is introduced. In the proposed method, dissimilar IMF definitions are considered by the Genetic Algorithm (GA) in order to find the best decision parameters of the signal trend. To resolve disadvantages of the classical algorithm caused by the envelope concept, the signal trend is estimated directly in the proposed method. Furthermore, in order to simplify the performance and understanding of the EMD algorithm, the proposed method obviates the need for a repeated sifting process. The proposed enhanced EMD algorithm is verified by some benchmark signals. Afterwards, the enhanced algorithm is applied to simulated flight data in the icing condition in order to detect the ice assertion on the aircraft. The results demonstrate the effectiveness of the proposed EMD algorithm in aircraft ice detection by providing a figure of merit for the icing severity.

  15. Mode identification using stochastic hybrid models with applications to conflict detection and resolution

    Science.gov (United States)

    Naseri Kouzehgarani, Asal

    2009-12-01

    Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well

  16. Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Xiong, Y. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2016-04-15

    The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognized as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.

  17. Trade, Foreign Direct Investment or Acquisition: Optimal Entry Modes for Multinationals

    OpenAIRE

    Theo Eicher; Jong Woo Kang

    2004-01-01

    We examine multinationals’ optimal entry modes into foreign markets as a function of market size, FDI fixed costs, tariffs and transport costs. Our results highlight why large countries are more likely to attract acquisition investment, while intermediate-sized countries may be served predominantly through trade, even in the presence of high tariffs. Small countries are most likely to experience either FDI or no entry. We also show how these results vary with the competition intensity in th...

  18. Accurately bi-orthogonal direct and adjoint lambda modes via two-sided Eigen-solvers

    International Nuclear Information System (INIS)

    Roman, J.E.; Vidal, V.; Verdu, G.

    2005-01-01

    This work is concerned with the accurate computation of the dominant l-modes (Lambda mode) of the reactor core in order to approximate the solution of the neutron diffusion equation in different situations such as the transient modal analysis. In a previous work, the problem was already addressed by implementing a parallel program based on SLEPc (Scalable Library for Eigenvalue Problem Computations), a public domain software for the solution of eigenvalue problems. Now, the proposed solution is extended by incorporating also the computation of the adjoint l-modes in such a way that the bi-orthogonality condition is enforced very accurately. This feature is very desirable in some types of analyses, and in the proposed scheme it is achieved by making use of two-sided eigenvalue solving software. Current implementations of some of these software, while still susceptible of improvement, show that they can be competitive in terms of response time and accuracy with respect to other types of eigenvalue solving software. The code developed by the authors has parallel capabilities in order to be able to analyze reactors with a great level of detail in a short time. (authors)

  19. Accurately bi-orthogonal direct and adjoint lambda modes via two-sided Eigen-solvers

    Energy Technology Data Exchange (ETDEWEB)

    Roman, J.E.; Vidal, V. [Valencia Univ. Politecnica, D. Sistemas Informaticos y Computacion (Spain); Verdu, G. [Valencia Univ. Politecnica, D. Ingenieria Quimica y Nuclear (Spain)

    2005-07-01

    This work is concerned with the accurate computation of the dominant l-modes (Lambda mode) of the reactor core in order to approximate the solution of the neutron diffusion equation in different situations such as the transient modal analysis. In a previous work, the problem was already addressed by implementing a parallel program based on SLEPc (Scalable Library for Eigenvalue Problem Computations), a public domain software for the solution of eigenvalue problems. Now, the proposed solution is extended by incorporating also the computation of the adjoint l-modes in such a way that the bi-orthogonality condition is enforced very accurately. This feature is very desirable in some types of analyses, and in the proposed scheme it is achieved by making use of two-sided eigenvalue solving software. Current implementations of some of these software, while still susceptible of improvement, show that they can be competitive in terms of response time and accuracy with respect to other types of eigenvalue solving software. The code developed by the authors has parallel capabilities in order to be able to analyze reactors with a great level of detail in a short time. (authors)

  20. Stereo multiplexing for direct detected optical communication systems

    NARCIS (Netherlands)

    Gaete, O.; Coelho, L.D.; Spinnler, B.; Al Fiad, M.S.A.S.; Jansen, S.L.; Hanik, N.

    2009-01-01

    We propose a novel technique that allows simultaneous detection of two modulated optical sub-carriers. A proof-of-principle experiment is described and subsequently the performance at high data rates (111Gb/s) is assessed by simulations.

  1. Correction to the crack extension direction in numerical modelling of mixed mode crack paths

    DEFF Research Database (Denmark)

    Lucht, Tore; Aliabadi, M.H.

    2007-01-01

    In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction...

  2. Discovery potential for directional dark matter detection with nuclear emulsions

    Science.gov (United States)

    Guler, A. M.; NEWSdm Collaboration

    2017-06-01

    Direct Dark Matter searches are nowadays one of the most exciting research topics. Several Experimental efforts are concentrated on the development, construction, and operation of detectors looking for the scattering of target nuclei with Weakly Interactive Massive Particles (WIMPs). In this field a new frontier can be opened by directional detectors able to reconstruct the direction of the WIMP-recoiled nucleus thus allowing to extend dark matter searches beyond the neutrino floor. Exploiting directionality would also give a proof of the galactic origin of dark matter making it possible to have a clear and unambiguous signal to background separation. The angular distribution of WIPM-scattered nuclei is indeed expected to be peaked in the direction of the motion of the Solar System in the Galaxy, i.e. toward the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on the use of gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we show the potentiality in terms of exclusion limit of a directional experiment based on the use of a solid target made by newly developed nuclear emulsions and read-out systems reaching sub-micrometric resolution.

  3. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.

    Science.gov (United States)

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-11-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. © The Author

  4. Optical manipulation of photonic defect-modes in cholesteric liquid crystals induced by direct laser-lithography

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Miura, Yusuke; Fujii, Akihiko; Ozaki, Masanori

    2008-01-01

    Manipulation of photonic defect-modes in cholesteric liquid crystals (ChLCs), which are one-dimensional pseudo photonic band-gap materials have been demonstrated by an external optical field. A structural defect in which the pitch length of the ChLC in the bulk and the defect are different was introduced by inducing local polymerization in a photo-polymerizable ChLC material by a direct laser-lithography process, and infiltrating a different ChLC material as the defect medium. When an azobenzene dye-doped ChLC was infiltrated in the defect, the trans-cis isomerization of the dye upon ultraviolet (UV) exposure caused the pitch to shorten, changing the contrast in the pitch lengths at the bulk and the defect, leading to a consequent shifting of the defect-mode. The all-optical manipulation was reversible and had high reproducibility

  5. Detection without deflection? A hypothesis for direct sensing of ...

    Indian Academy of Sciences (India)

    PRAKASH

    level, the pressure component of a sound signal is more readily detected ... gives rise to a slowly propagating travelling wave, a wave of displacement on the ..... partial pressure of gas dissolved in sea water stays constant at about the level ...... of Corti (Midwinter Meeting, Florida, Association for Research in Otolaryngology).

  6. Benchmarking of a T-wave alternans detection method based on empirical mode decomposition.

    Science.gov (United States)

    Blanco-Velasco, Manuel; Goya-Esteban, Rebeca; Cruz-Roldán, Fernando; García-Alberola, Arcadi; Rojo-Álvarez, José Luis

    2017-07-01

    T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on an every-other-beat basis of the surface electrocardiogram (ECG). It has been shown to be an informative risk stratifier for sudden cardiac death, though the lack of gold standard to benchmark detection methods has promoted the use of synthetic signals. This work proposes a novel signal model to study the performance of a TWA detection. Additionally, the methodological validation of a denoising technique based on empirical mode decomposition (EMD), which is used here along with the spectral method, is also tackled. The proposed test bed system is based on the following guidelines: (1) use of open source databases to enable experimental replication; (2) use of real ECG signals and physiological noise; (3) inclusion of randomized TWA episodes. Both sensitivity (Se) and specificity (Sp) are separately analyzed. Also a nonparametric hypothesis test, based on Bootstrap resampling, is used to determine whether the presence of the EMD block actually improves the performance. The results show an outstanding specificity when the EMD block is used, even in very noisy conditions (0.96 compared to 0.72 for SNR = 8 dB), being always superior than that of the conventional SM alone. Regarding the sensitivity, using the EMD method also outperforms in noisy conditions (0.57 compared to 0.46 for SNR=8 dB), while it decreases in noiseless conditions. The proposed test setting designed to analyze the performance guarantees that the actual physiological variability of the cardiac system is reproduced. The use of the EMD-based block in noisy environment enables the identification of most patients with fatal arrhythmias. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detecting spatio-temporal modes in multivariate data by entropy field decomposition

    International Nuclear Information System (INIS)

    Frank, Lawrence R; Galinsky, Vitaly L

    2016-01-01

    A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESPs). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and nonlinear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space–time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging. (paper)

  8. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  9. Chasing a consistent picture for dark matter direct detection searches

    NARCIS (Netherlands)

    Arina, C.

    2012-01-01

    In this paper we assess the present status of dark matter direct searches by means of Bayesian statistics. We consider three particle physics models for spin-independent dark matter interaction with nuclei: elastic, inelastic and isospin violating scattering. We briefly present the state of the art

  10. Automatic trip and mode detection with MoveSmarter: first results from the Dutch Mobile Mobility Panel

    NARCIS (Netherlands)

    Geurs, Karst Teunis; Thomas, Tom; Bijlsma, Marcel; Douhou, Salima

    2015-01-01

    This paper describes the performance of a smartphone app called MoveSmarter to automatically detect departure and arrival times, trip origins and destinations, transport modes, and travel purposes. The app is used in a three-year smartphone-based prompted-recall panel survey in which about 600

  11. Interference between direct and indirect modes in two-nucleon transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Scott, D.K.; Harvey, B.G.; Hendrie, D.L.; Jahnke, U.; Kraus, L.; Maguire, C.F.; Mahoney, J.; Terrien, Y.; Yagi, K.; Glendenning, N.K.

    1975-01-01

    Direct and indirect transitions to the lowest 2 + collective states are shown to interfere constructively in the pickup reaction 122 Sn( 16 O, 18 O) 120 Sn at 104 MeV, and destructively in the inverse stripping reaction 120 Sn( 18 O, 16 O) 122 Sn at 99 MeV

  12. Teleconnection Paths via Climate Network Direct Link Detection.

    Science.gov (United States)

    Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo

    2015-12-31

    Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.

  13. The detection of transient directional couplings based on phase synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, T; Fell, J; Lehnertz, K, E-mail: twagner@uni-bonn.d [Department of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)

    2010-05-15

    We extend recent approaches based on the concept of phase synchronization to enable the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process. We derive an index that quantifies the direction of transient interactions and assess its statistical significance using surrogate techniques. Analysing time series from noisy and chaotic systems, we demonstrate numerically the applicability and limitations of our approach. Our findings from an exemplary application to event-related brain activities underline the importance of our method for improving knowledge about the mechanisms underlying memory formation in humans.

  14. The detection of transient directional couplings based on phase synchronization

    International Nuclear Information System (INIS)

    Wagner, T; Fell, J; Lehnertz, K

    2010-01-01

    We extend recent approaches based on the concept of phase synchronization to enable the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process. We derive an index that quantifies the direction of transient interactions and assess its statistical significance using surrogate techniques. Analysing time series from noisy and chaotic systems, we demonstrate numerically the applicability and limitations of our approach. Our findings from an exemplary application to event-related brain activities underline the importance of our method for improving knowledge about the mechanisms underlying memory formation in humans.

  15. Direct detection of a microlens in the Milky Way.

    Science.gov (United States)

    Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Becker, A C; Bennett, D P; Cook, K H; Drake, A J; Freeman, K C; Geha, M; Griest, K; Keller, S C; Lehner, M J; Marshall, S L; Minniti, D; Nelson, C A; Peterson, B A; Popowski, P; Pratt, M R; Quinn, P J; Stubbs, C W; Sutherland, W; Tomaney, A B; Vandehei, T; Welch, D

    2001-12-06

    The nature of dark matter remains mysterious, with luminous material accounting for at most approximately 25 per cent of the baryons in the Universe. We accordingly undertook a survey looking for the microlensing of stars in the Large Magellanic Cloud (LMC) to determine the fraction of Galactic dark matter contained in massive compact halo objects (MACHOs). The presence of the dark matter would be revealed by gravitational lensing of the light from an LMC star as the foreground dark matter moves across the line of sight. The duration of the lensing event is the key observable parameter, but gives non-unique solutions when attempting to estimate the mass, distance and transverse velocity of the lens. The survey results to date indicate that between 8 and 50 per cent of the baryonic mass of the Galactic halo is in the form of MACHOs (ref. 3), but removing the degeneracy by identifying a lensing object would tighten the constraints on the mass in MACHOs. Here we report a direct image of a microlens, revealing it to be a nearby low-mass star in the disk of the Milky Way. This is consistent with the expected frequency of nearby stars acting as lenses, and demonstrates a direct determination of a lens mass from a microlensing event. Complete solutions such as this for halo microlensing events will probe directly the nature of the MACHOs.

  16. A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode

    KAUST Repository

    Jergic, Slobodan; Horan, Nicholas P.; Elshenawy, Mohamed; Mason, Claire E.; Urathamakul, Thitima; Ozawa, Kiyoshi; Robinson, Andrew J.; Goudsmits, Joris M H; Wang, Yao; Pan, Xuefeng; Beck, Jennifer L.; Van Oijen, Antoine M.; Huber, Thomas L.; Hamdan, Samir; Dixon, Nicholas E.

    2013-01-01

    Processive DNA synthesis by the αÉ"θ core of the Escherichia coli Pol III replicase requires it to be bound to the β 2 clamp via a site in the α polymerase subunit. How the É" proofreading exonuclease subunit influences DNA synthesis by α was not previously understood. In this work, bulk assays of DNA replication were used to uncover a non-proofreading activity of É". Combination of mutagenesis with biophysical studies and single-molecule leading-strand replication assays traced this activity to a novel β-binding site in É" that, in conjunction with the site in α, maintains a closed state of the αÉ"θ-β 2 replicase in the polymerization mode of DNA synthesis. The É"-β interaction, selected during evolution to be weak and thus suited for transient disruption to enable access of alternate polymerases and other clamp binding proteins, therefore makes an important contribution to the network of protein-protein interactions that finely tune stability of the replicase on the DNA template in its various conformational states. © 2013 European Molecular Biology Organization.

  17. A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode

    KAUST Repository

    Jergic, Slobodan

    2013-02-22

    Processive DNA synthesis by the αÉ"θ core of the Escherichia coli Pol III replicase requires it to be bound to the β 2 clamp via a site in the α polymerase subunit. How the É" proofreading exonuclease subunit influences DNA synthesis by α was not previously understood. In this work, bulk assays of DNA replication were used to uncover a non-proofreading activity of É". Combination of mutagenesis with biophysical studies and single-molecule leading-strand replication assays traced this activity to a novel β-binding site in É" that, in conjunction with the site in α, maintains a closed state of the αÉ"θ-β 2 replicase in the polymerization mode of DNA synthesis. The É"-β interaction, selected during evolution to be weak and thus suited for transient disruption to enable access of alternate polymerases and other clamp binding proteins, therefore makes an important contribution to the network of protein-protein interactions that finely tune stability of the replicase on the DNA template in its various conformational states. © 2013 European Molecular Biology Organization.

  18. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  19. Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors

    Science.gov (United States)

    Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  20. Fast and direct detection of neuronal activation with diffusion MRI

    International Nuclear Information System (INIS)

    Le Bihan, D.; Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H.

    2006-01-01

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H 2 O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some pathological

  1. Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer

    Science.gov (United States)

    Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick

    2017-12-01

    This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.

  2. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    Science.gov (United States)

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  3. Direct detection of a single photon by humans

    Science.gov (United States)

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  4. Direct detection of radicals in intact soybean nodules

    DEFF Research Database (Denmark)

    Mathieu, C; Moreau, S; Frendo, P

    1998-01-01

    Electron paramagnetic resonance spectroscopy has been employed to examine the nature of the metal ions and radicals present in intact root nodules of soybean plants grown in the absence of nitrate. The spectra obtained from nodules of different ages using this non-invasive technique show dramatic...... differences, suggesting that there are both qualitative and quantitative changes in the metal ion and radical species present. A major component of the spectra obtained from young nodules is assigned to a complex (Lb-NO) of nitric oxide (NO.) with the heme protein leghemoglobin (Lb). This Lb-NO species, which...... has not been previously detected in intact root nodules of plants grown in the absence of nitrate, is thought to be formed by reaction of nitric oxide with iron(II) leghemoglobin. The nitric oxide may be generated from arginine via a nitric oxide synthase-like activity present in the nodules...

  5. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  6. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  7. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  8. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  9. Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.

    Science.gov (United States)

    Lee, Andrew J; Endo, Masayuki; Hobbs, Jamie K; Wälti, Christoph

    2018-01-23

    Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.

  10. A detecting device with compensated directional dependence of response

    International Nuclear Information System (INIS)

    Viererbl, L.

    1988-01-01

    A scintillation detector making up for the directional dependence of response was devised. The jacket of the scintillator consists of a hollow body whose internal diameter is sufficient for the scintillator to be inserted, and of a ring whose height is lower than one-half of the largest dimension of the scintillator. The ring is accommodated at that side of the scintillator face which is more distant from the cathode of the photomultiplier. More than 90% of the material of the ring is constituted by atoms with atomic number higher than 23, whereas more than 90% of the material of the hollow body is constituted by atoms with atomic number lower than 14. (P.A.). 2 figs

  11. Theoretical interpretation of experimental data from direct dark matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Lin, Shan

    2007-10-15

    I derive expressions that allow to reconstruct the normalized one-dimensional velocity distribution function of halo WIMPs and to determine its moments from the recoil energy spectrum as well as from experimental data directly. The reconstruction of the velocity distribution function is further extended to take into account the annual modulation of the event rate. All these expressions are independent of the as yet unknown WIMP density near the Earth as well as of the WIMP-nucleus cross section. The only information about the nature of halo WIMPs which one needs is the WIMP mass. I also present a method for the determination of the WIMP mass by combining two (or more) experiments with different detector materials. This method is not only independent of the model of Galactic halo but also of that of WIMPs. (orig.)

  12. Theoretical interpretation of experimental data from direct dark matter detection

    International Nuclear Information System (INIS)

    Shan Chung-Lin

    2007-10-01

    I derive expressions that allow to reconstruct the normalized one-dimensional velocity distribution function of halo WIMPs and to determine its moments from the recoil energy spectrum as well as from experimental data directly. The reconstruction of the velocity distribution function is further extended to take into account the annual modulation of the event rate. All these expressions are independent of the as yet unknown WIMP density near the Earth as well as of the WIMP-nucleus cross section. The only information about the nature of halo WIMPs which one needs is the WIMP mass. I also present a method for the determination of the WIMP mass by combining two (or more) experiments with different detector materials. This method is not only independent of the model of Galactic halo but also of that of WIMPs. (orig.)

  13. Fast and direct detection of neuronal activation with diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, D. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), Lab. Anatomical and Functional Neuroimaging, 91 - Orsay (France); Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H. [Kyoto Univ. Graduate School of Medicine, Human Brain Research Center, Kyoto (Japan)

    2006-07-01

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H{sub 2}O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some

  14. Travel path and transport mode identification method using ''less-frequently-detected'' position data

    International Nuclear Information System (INIS)

    Shimizu, T; Yamaguchi, T; Ai, H; Katagiri, Y; Kawase, J

    2014-01-01

    This study aims to seek method on travel path and transport mode identification in case positions of travellers are detected in low frequency. The survey in which ten test travellers with GPS logger move around Tokyo city centre was conducted. Travel path datasets of each traveller in which position data are selected every five minutes are processed from our survey data. Coverage index analysis based on the buffer analysis using GIS software is conducted. The condition and possibility to identify a path and a transport mode used are discussed

  15. Search for direct $CP$ violation in $D^0 \\rightarrow h^- h^+$ modes using semileptonic $B$ decays

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    A search for direct $CP$ violation in $D^0\\rightarrow h^-h^+$ (where $h=K$ or $\\pi$) is presented using data corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected in 2011 by LHCb in $pp$ collisions at a centre-of-mass energy of 7 TeV. The analysis uses $D^0$ mesons produced in inclusive semileptonic $b$-hadron decays to the $D^0\\mu X$ final state, where the charge of the accompanying muon is used to tag the flavour of the $D^0$ meson. The difference in the $CP$-violating asymmetries between the two decay channels is measured to be \\begin{equation} \\Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(\\pi^-\\pi^+) = (0.49\\pm 0.30\\,\\rm{(stat)} \\pm 0.14\\,\\rm{(syst)})\\% \\ . \

  16. Directionality and signal amplification in cryogenic dark matter detection

    International Nuclear Information System (INIS)

    More, T.

    1996-05-01

    A mounting body of evidence suggests that most of the mass in our universe is not contained in stars, but rather exists in some non- luminous form. The evidence comes independently from astronomical observation, cosmological theory, and particle physics. All of this missing mass is collectively referred to as dark matter. In this thesis we discuss two ways to improve the performance of dark matter detectors based on the measurement of ballistic phonons. First, we address the issue of signal identification through solitons. Secondly, we discuss a method for lowering the detection threshold and improving the energy sensitivity: amplifying phonons through the evaporation of helium atoms from a superfluid film coating the target and the adsorption of the evaporated atoms onto a helium-free substrate. A phonon amplifier would also be of use in many other applications in which a few phonons are to be measured at low temperatures. Factors contributing to the low amplifier gains achieved thus far are described and proposals for avoiding them are analyzed and discussed. 101 refs., 30 figs., 2 tabs

  17. Competitive Modes for the Detection of Chaotic Parameter Regimes in the General Chaotic Bilinear System of Lorenz Type

    Science.gov (United States)

    Mallory, Kristina; van Gorder, Robert A.

    We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.

  18. Fundamental X-mode electron cyclotron current drive using remote-steering symmetric direction antenna at larger steering angles

    International Nuclear Information System (INIS)

    Idei, H.; Hanada, K.; Zushi, H.; Sato, K.N.; Sakamoto, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ohkubo, K.; Kubo, S.; Shimozuma, T.; Ito, S.; Hasegawa, M.; Nakamura, K.; Notake, T.; Hoshika, H.; Maezono, N.; Nishi, S.; Nakashima, K.

    2005-01-01

    A remote steering antenna has been newly developed for Electron Cyclotron Heating and Current Drive (ECH/ECCD) experiments on the TRIAM-1M tokamak. It is a first application of the remote steering antenna to the ECH/ECCD experiments under the conditions relevant to International Thermonuclear Experimental Reactor. Our launcher is a symmetric direction antenna with extended steering capability. The larger steering angles of 8-19 degrees are available, in addition to that near 0 degree. The output beam from the antenna is the well-defined Gaussian beam with a correct steering angle. The Gaussian content and the steering angle accuracy are 0.85 and -0.3 degrees, respectively. Antenna transmission efficiency in the high power test is evaluated as 0.95. The efficiencies at the low and high power tests are consistent with those in the calculation with higher-order modes. The difference between plasma currents increased at co- and counter-steering injections [+/-19 degrees] is clearly observed in the superposition to the Lower Hybrid Current Driven (LHCD) plasma of the fundamental X-mode injection. (author)

  19. Halo-independent direct detection of momentum-dependent dark matter

    DEFF Research Database (Denmark)

    Cherry, J. F.; Frandsen, M. T.; Shoemaker, I. M.

    2014-01-01

    We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given...... a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can...

  20. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    Science.gov (United States)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  1. Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System

    Directory of Open Access Journals (Sweden)

    Xing-bin DU

    2014-07-01

    Full Text Available To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS mode and conventional tillage direct seeding (CTDS mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0–5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5–20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.

  2. Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2015-04-21

    This work highlights the rapid detection of nitrate ester explosives and their sugar alcohol precursors by direct analysis in real time mass spectrometry (DART-MS) using an off-axis geometry. Demonstration of the effect of various parameters, such as ion polarity and in-source collision induced dissociation (CID) on the detection of these compounds is presented. Sensitivity of sugar alcohols and nitrate ester explosives was found to be greatest in negative ion mode with sensitivities ranging from hundreds of picograms to hundreds of nanograms, depending on the characteristics of the particular molecule. Altering the in-source CID potential allowed for acquisition of characteristic molecular ion spectra as well as fragmentation spectra. Additional studies were completed to identify the role of different experimental parameters on the sensitivity for these compounds. Variables that were examined included the DART gas stream temperature, the presence of a related compound (i.e., the effect of a precursor on the detection of a nitrate ester explosive), incorporation of dopant species and the role of the analysis surface. It was determined that each variable affected the response and detection of both sugar alcohols and the corresponding nitrate ester explosives. From this work, a rapid and sensitive method for the detection of individual sugar alcohols and corresponding nitrate ester explosives, or mixtures of the two, has been developed, providing a useful tool in the real-world identification of homemade explosives.

  3. Minimizing Detection Probability Routing in Ad Hoc Networks Using Directional Antennas

    Directory of Open Access Journals (Sweden)

    Towsley Don

    2009-01-01

    Full Text Available In a hostile environment, it is important for a transmitter to make its wireless transmission invisible to adversaries because an adversary can detect the transmitter if the received power at its antennas is strong enough. This paper defines a detection probability model to compute the level of a transmitter being detected by a detection system at arbitrary location around the transmitter. Our study proves that the probability of detecting a directional antenna is much lower than that of detecting an omnidirectional antenna if both the directional and omnidirectional antennas provide the same Effective Isotropic Radiated Power (EIRP in the direction of the receiver. We propose a Minimizing Detection Probability (MinDP routing algorithm to find a secure routing path in ad hoc networks where nodes employ directional antennas to transmit data to decrease the probability of being detected by adversaries. Our study shows that the MinDP routing algorithm can reduce the total detection probability of deliveries from the source to the destination by over 74%.

  4. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon.

    Science.gov (United States)

    Kumar, Prashant; Fennell, Paul; Britter, Rex

    2008-08-25

    There have been many studies concerning dispersion of gaseous pollutants from vehicles within street canyons; fewer address the dispersion of particulate matter, particularly particle number concentrations separated into the nucleation (10-30 nm or N10-30) or accumulation (30-300 nm or N30-300) modes either separately or together (N10-300). This study aimed to determine the effect of wind direction and speed on particle dispersion in the above size ranges. Particle number distributions (PNDs) and concentrations (PNCs) were measured in the 5-2738 nm range continuously (and in real-time) for 17 days between 7th and 23rd March 2007 in a regular (aspect ratio approximately unity) street canyon in Cambridge (UK), using a newly developed fast-response differential mobility spectrometer (sampling frequency 0.5 Hz), at 1.60 m above the road level. The PNCs in each size range, during all wind directions, were better described by a proposed two regime model (traffic-dependent and wind-dependent mixing) than by simply assuming that the PNC was inversely proportional to the wind speed or by fitting the data with a best-fit single power law. The critical cut-off wind speed (Ur,crit) for each size range of particles, distinguishing the boundary between these mixing regimes was also investigated. In the traffic-dependent PNC region (UrUrwind speed and direction. In the wind speed dependent PNC region (UrUr>Ur,critUr,crit), concentrations were inversely proportional to Ur irrespective of any particle size range and wind directions. The wind speed demarcating the two regimes (Ur,critUr,crit) was 1.23+/-0.55 m s(-1) for N10-300, (1.47+/-0.72 m s(-1)) for N10-30 but smaller (0.78+/-0.29 m s(-1)) for N30-300.

  5. Various vibration modes in a silicon ring resonator driven by p–n diode actuators formed in the lateral direction

    Science.gov (United States)

    Tsushima, Takafumi; Asahi, Yoichi; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-06-01

    In this paper, we describe p–n diode actuators that are formed in the lateral direction on resonators. Because previously reported p–n diode actuators, which were driven by a force parallel to the electrostatic force induced in a p–n diode, were fabricated in the perpendicular direction to the surface, the fabrication process to satisfy the requirement of realizing a p–n junction set in the middle of the plate thickness has been difficult. The resonators in this work are driven by p–n diodes formed in the lateral direction, making the process easy. We have fabricated a silicon ring resonator that has in-plane vibration using p–n–p and n–p–n diode actuators formed in the lateral direction. First, we consider a space charge model that can sufficiently accurately describe the force induced in p–n diode actuators and compare it with the capacitance model used in most computer simulations. Then, we show that multiplying the vibration amplitude calculated by computer simulation by the modification coefficient of 4/3 provides the vibration amplitude in the p–n diode actuators. Good agreement of the theory with experimental results of the in-plane vibration measured for silicon ring resonators is obtained. The computer simulation is very useful for evaluating various vibration modes in resonators driven by the p–n diode actuators. The small amplitude of the p–n diode actuator measured in this work is expected to increase greatly with increased doping of the actuator.

  6. Evaluation of two methods for direct detection of Fusarium spp. in water.

    Science.gov (United States)

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Near-IR Direct Detection of Water Vapor in Tau Bootis b

    Science.gov (United States)

    2014-02-24

    unknown orbital inclination. Treating the τ Boo system as a high flux ratio double-lined spectroscopic binary permits the direct measurement of the...the atmosphere of a non-transiting hot Jupiter, τ Boo b. Key words: planets and satellites: atmospheres – techniques: spectroscopic 1. INTRODUCTION...sensitivity required for these detections. Despite the agreement between the two groups, the direct detection of exoplanets, especially τ Boo b, has

  8. The Diurnal Variation of the Wimp Detection Event Rates in Directional Experiments

    CERN Document Server

    Vergados, J D

    2009-01-01

    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Modern particle theories naturally provide viable cold dark matter candidates with masses in the GeV-TeV region. Supersymmetry provides the lightest supersymmetric particle (LSP), theories in extra dimensions supply the lightest Kaluza-Klein particle (LKP) etc. The nature of dark matter can only be unraveled only by its direct detection in the laboratory. All such candidates will be called WIMPs (Weakly Interacting Massive Particles). In any case the direct dark matter search, which amounts to detecting the recoiling nucleus, following its collision with WIMP, is central to particle physics and cosmology. In this work we briefly review the theoretical elements relevant to the direct dark matter detection experiments, paying particular attention to directional experiments. i.e experiments in which, not only the energy but the direction of the recoiling nucleus is ob...

  9. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  10. Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei

    DEFF Research Database (Denmark)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  11. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  12. A baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness

    International Nuclear Information System (INIS)

    Zhu Wenrui; Yang Haigang; Gao Tongqiang; Liu Fei; Cheng Xiaoyan; Zhang Dandan

    2013-01-01

    This paper proposes a baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness for use in the electronic toll collection system. A double-mode detection method, including amplitude detection and frequency detection, is proposed to reject interference and reduce false wake-ups. An improved closed-loop band-pass filter and a DC offset cancellation technique are also newly introduced to enhance the sensitivity robustness. The circuit is fabricated in TSMC 0.18 μm 3.3 V CMOS technology with an area of 0.12 mm 2 . Measurement results show that the sensitivity is −54.5 dBm with only a ±0.95 dBm variation from the 1.8 to 3.3 V power supply, and that the temperature variation of the sensitivity is ±1.4 dBm from −50 to 100°C. The current consumption is 1.4 to 1.7 μA under a 1.8 to 3.3 V power supply. (semiconductor integrated circuits)

  13. Marine neurotoxins: state of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood.

    Science.gov (United States)

    Nicolas, Jonathan; Hendriksen, Peter J M; Gerssen, Arjen; Bovee, Toine F H; Rietjens, Ivonne M C M

    2014-01-01

    Marine biotoxins can accumulate in fish and shellfish, representing a possible threat for consumers. Many marine biotoxins affect neuronal function essentially through their interaction with ion channels or receptors, leading to different symptoms including paralysis and even death. The detection of marine biotoxins in seafood products is therefore a priority. Official methods for control are often still using in vivo assays, such as the mouse bioassay. This test is considered unethical and the development of alternative assays is urgently required. Chemical analyses as well as in vitro assays have been developed to detect marine biotoxins in seafood. However, most of the current in vitro alternatives to animal testing present disadvantages: low throughput and lack of sensitivity resulting in a high number of false-negative results. Thus, there is an urgent need for the development of new in vitro tests that would allow the detection of marine biotoxins in seafood products at a low cost, with high throughput combined with high sensitivity, reproducibility, and predictivity. Mode of action based in vitro bioassays may provide tools that fulfil these requirements. This review covers the current state of the art of such mode of action based alternative assays to detect neurotoxic marine biotoxins in seafood. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection.

    Science.gov (United States)

    Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won

    2011-10-15

    In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Dual Mode Sensing with Low-Profile Piezoelectric Thin Wafer Sensors for Steel Bridge Crack Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Lingyu Yu

    2012-01-01

    Full Text Available Monitoring of fatigue cracking in steel bridges is of high interest to many bridge owners and agencies. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In this paper, we presented a dual mode sensing methodology integrating acoustic emission and ultrasonic wave inspection based on the use of low-profile piezoelectric wafer active sensors (PWAS. After introducing the research background and piezoelectric sensing principles, PWAS crack detection in passive acoustic emission mode is first presented. Their acoustic emission detection capability has been validated through both static and compact tension fatigue tests. With the use of coaxial cable wiring, PWAS AE signal quality has been improved. The active ultrasonic inspection is conducted by the damage index and wave imaging approach. The results in the paper show that such an integration of passive acoustic emission detection with active ultrasonic sensing is a technological leap forward from the current practice of periodic and subjective visual inspection and bridge management based primarily on history of past performance.

  16. Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers.

    Science.gov (United States)

    Siegle, Tobias; Kellerer, Jonas; Bonenberger, Marielle; Krämmer, Sarah; Klusmann, Carolin; Müller, Marius; Kalt, Heinz

    2018-02-05

    We compare different excitation and collection configurations based on free-space optics and evanescently coupled tapered fibers for both lasing and fluorescence emission from dye-doped doped polymeric whispering gallery mode (WGM) micro-disk lasers. The focus of the comparison is on the lasing threshold and efficiency of light collection. With the aid of optical fibers, we localize the pump energy to the cavity-mode volume and reduce the necessary pump energy to achieve lasing by two orders of magnitude. When using fibers for detection, the collection efficiency is enhanced by four orders of magnitude compared to a free-space read-out perpendicular to the resonator plane. By enhancing the collection efficiency we are able to record a pronounced modulation of the dye fluorescence under continuous wave (cw) pumping conditions evoked by coupling to the WGMs. Alternatively to fibers as a collection tool, we present a read-out technique based on the detection of in-plane radiated light. We show that this method is especially beneficial in an aqueous environment as well as for size-reduced micro-lasers where radiation is strongly pronounced. Furthermore, we show that this technique allows for the assignment of transverse electric (TE) and transverse magnetic (TM) polarization to the observed fundamental modes in a water environment by performing polarization-dependent photoluminescence (PL) spectroscopy. We emphasize the importance of the polarization determination for sensing applications and verify expected differences in the bulk refractive index sensitivity for TE and TM WGMs experimentally.

  17. Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles.

    Science.gov (United States)

    Chava, Anil K; Bandyopadhyay, Sumi; Chatterjee, Mitali; Mandal, Chitra

    2004-01-01

    Protozoan parasites including Plasmodia, Leishmania, Trypanosoma, Entamoeba, Trichomonas and others cause diseases in humans and domestic livestock having far-reaching socio-economic implications. They show remarkable propensity to survive within hostile environments encountered during their life cycle, and the identification of molecules that enable them to survive in such milieu is a subject of intense research. Currently available knowledge of the parasite cell surface architecture and biochemistry indicates that sialic acid and its principle derivatives are major components of the glycocalyx and assist the parasite to interact with its external environment through functions ranging from parasite survival, infectivity and host-cell recognition. This review highlights the present state of knowledge with regard to parasite sialobiology with an emphasis on its mode(s) of acquisition and their emerging biological roles, notably as an anti-recognition molecule thereby aiding the pathogen to evade host defense mechanisms.

  18. Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

    International Nuclear Information System (INIS)

    Buchmueller, Oliver; Dolan, Matthew J.; Malik, Sarah A.; McCabe, Christopher

    2015-01-01

    We introduce a Minimal Simplified Dark Matter (MSDM) framework to quantitatively characterise dark matter (DM) searches at the LHC. We study two MSDM models where the DM is a Dirac fermion which interacts with a vector and axial-vector mediator. The models are characterised by four parameters: m DM , M med, g DM and g q , the DM and mediator masses, and the mediator couplings to DM and quarks respectively. The MSDM models accurately capture the full event kinematics, and the dependence on all masses and couplings can be systematically studied. The interpretation of mono-jet searches in this framework can be used to establish an equal-footing comparison with direct detection experiments. For theories with a vector mediator, LHC mono-jet searches possess better sensitivity than direct detection searches for light DM masses (≲5 GeV). For axial-vector mediators, LHC and direct detection searches generally probe orthogonal directions in the parameter space. We explore the projected limits of these searches from the ultimate reach of the LHC and multi-ton xenon direct detection experiments, and find that the complementarity of the searches remains. In conclusion, we provide a comparison of limits in the MSDM and effective field theory (EFT) frameworks to highlight the deficiencies of the EFT framework, particularly when exploring the complementarity of mono-jet and direct detection searches

  19. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)

    Science.gov (United States)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.

    2012-10-01

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

  20. Determination of Optimal Imaging Mode for Ultrasonographic Detection of Subdermal Contraceptive Rods: Comparison of Spatial Compound, Conventional, and Tissue Harmonic Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jin; Seo, Kyung; Song, Ho Taek; Park, Ah Young; Kim, Yaena; Yoon, Choon Sik [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Suh, Jin Suck; Kim, Ah Hyun [Dept. of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ryu, Jeong Ah [Dept. of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Park, Jeong Seon [Dept. of Radiology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2012-09-15

    To determine which mode of ultrasonography (US), among the conventional, spatial compound, and tissue-harmonic methods, exhibits the best performance for the detection of Implanon with respect to generation of posterior acoustic shadowing (PAS). A total of 21 patients, referred for localization of impalpable Implanon, underwent US, using the three modes with default settings (i.e., wide focal zone). Representative transverse images of the rods, according to each mode for all patients, were obtained. The resulting 63 images were reviewed by four observers. The observers provided a confidence score for the presence of PAS, using a five-point scale ranging from 1 (definitely absent) to 5 (definitely present), with scores of 4 or 5 for PAS being considered as detection. The average scores of PAS, obtained from the three different modes for each observer, were compared using one-way repeated measure ANOVA. The detection rates were compared using a weighted least square method. Statistically, the tissue harmonic mode was significantly superior to the other two modes, when comparing the average scores of PAS for all observers (p < 0.00-1). The detection rate was also highest for the tissue harmonic mode (p < 0.001). Tissue harmonic mode in US appears to be the most suitable in detecting subdermal contraceptive implant rods.

  1. Determination of Optimal Imaging Mode for Ultrasonographic Detection of Subdermal Contraceptive Rods: Comparison of Spatial Compound, Conventional, and Tissue Harmonic Imaging Methods

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Seo, Kyung; Song, Ho Taek; Park, Ah Young; Kim, Yaena; Yoon, Choon Sik; Suh, Jin Suck; Kim, Ah Hyun; Ryu, Jeong Ah; Park, Jeong Seon

    2012-01-01

    To determine which mode of ultrasonography (US), among the conventional, spatial compound, and tissue-harmonic methods, exhibits the best performance for the detection of Implanon with respect to generation of posterior acoustic shadowing (PAS). A total of 21 patients, referred for localization of impalpable Implanon, underwent US, using the three modes with default settings (i.e., wide focal zone). Representative transverse images of the rods, according to each mode for all patients, were obtained. The resulting 63 images were reviewed by four observers. The observers provided a confidence score for the presence of PAS, using a five-point scale ranging from 1 (definitely absent) to 5 (definitely present), with scores of 4 or 5 for PAS being considered as detection. The average scores of PAS, obtained from the three different modes for each observer, were compared using one-way repeated measure ANOVA. The detection rates were compared using a weighted least square method. Statistically, the tissue harmonic mode was significantly superior to the other two modes, when comparing the average scores of PAS for all observers (p < 0.00-1). The detection rate was also highest for the tissue harmonic mode (p < 0.001). Tissue harmonic mode in US appears to be the most suitable in detecting subdermal contraceptive implant rods.

  2. Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Dawood, Mohammad; Kraxner, Peter; Schäfers, Michael; Schober, Otmar; Schäfers, Klaus P

    2010-12-01

    Respiratory motion of organs during PET scans is known to degrade PET image quality, potentially resulting in blurred images, attenuation artefacts and erroneous tracer quantification. List mode-based gating has been shown to reduce these pitfalls in cardiac PET. This study evaluates these intrinsic gating methods for tumour PET scans. A total of 34 patients with liver or lung tumours (14 liver tumours and 27 lung tumours in all) underwent a 15-min single-bed list mode PET scan of the tumour region. Of these, 15 patients (8 liver and 11 lung tumours in total) were monitored by a video camera registering a marker on the patient's abdomen, thus capturing the respiratory motion for PET gating (video method). Further gating information was deduced by dividing the list mode stream into 200-ms frames, determining the number of coincidences (sensitivity method) and computing the axial centre of mass of the measured count rates in the same frames (centre of mass method). Additionally, these list mode-based methods were evaluated using only coincidences originating from the tumour region by segmenting the tumour in sinogram space (segmented sensitivity/centre of mass method). Measured displacement of the tumours between end-expiration and end-inspiration and the increase in apparent uptake in the gated images served as a measure for the exactness of gating. To estimate the accuracy, a thorax phantom study with moved activity sources simulating small tumours was also performed. All methods resolved the respiratory motion with varying success. The best results were seen in the segmented centre of mass method, on average leading to larger displacements and uptake values than the other methods. The simple centre of mass method performed worse in terms of displacements due to activities moving into the field of view during the respiratory cycle. Both sensitivity- and video-based methods lead to similar results. List mode-driven PET gating, especially the segmented centre of mass

  3. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-01-01

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans

  4. Giant Gold Nanowire Vesicle-Based Colorimetric and SERS Dual-Mode Immunosensor for Ultrasensitive Detection of Vibrio parahemolyticus.

    Science.gov (United States)

    Guo, Zhiyong; Jia, Yaru; Song, Xinxin; Lu, Jing; Lu, Xuefei; Liu, Baoqing; Han, Jiaojiao; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2018-05-15

    Conventional methods for the detection of Vibrio parahemolyticus (VP) usually need tedious, labor-intensive processes, and have low sensitivity, which further limits their practical applications. Herein, we developed a simple and efficient colorimetry and surface-enhanced Raman scattering (SERS) dual-mode immunosensor for sensitive detection of VP, by employing giant Au vesicles with anchored tiny gold nanowires (AuNW) as a smart probe. Due to the larger specific surface and special hollow structure of giant Au vesicles, silver staining would easily lead to vivid color change for colorimetric analysis and further amplify SERS signals. The t-test was further used to determine if two sets of data from colorimetry and SERS were significantly different from each other. The result shows that there was no significant difference between data from the two methods. Two sets of data can mutually validate each other and avoid false positive and negative detection. The designed colorimetry-SERS dual-mode sensor would be very promising in various applications such as food safety inspection, personal healthcare, and on-site environmental monitoring.

  5. Fractal mechanism for characterizing singularity of mode shape for damage detection

    Energy Technology Data Exchange (ETDEWEB)

    Cao, M. S. [Department of Engineering Mechanics, Hohai University, Nanjing 210098 (China); Ostachowicz, W. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-952 Gdansk (Poland); Faculty of Automotive and Construction Machinery, Warsaw University of Technology, Narbutta 84, 02-524 Warsaw (Poland); Bai, R. B., E-mail: bairunbo@gmail.com [Department of Engineering Mechanics, Shandong Agricultural University, Taian 271000 (China); Radzieński, M. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-952 Gdansk (Poland)

    2013-11-25

    Damage is an ordinary physical phenomenon jeopardizing structural safety; damage detection is an ongoing interdisciplinary issue. Waveform fractal theory has provided a promising resource for detecting damage in plates while presenting a concomitant problem: susceptibility to false features of damage. This study proposes a fractal dimension method based on affine transformation to address this problem. Physical experiments using laser measurement demonstrate that this method can substantially eliminate false features of damage and accurately identify complex cracks in plates, providing a fundamental mechanism that brings the merits of waveform fractal theory into full play in structural damage detection applications.

  6. A comparison of directed search target detection versus in-scene target detection in Worldview-2 datasets

    Science.gov (United States)

    Grossman, S.

    2015-05-01

    Since the events of September 11, 2001, the intelligence focus has moved from large order-of-battle targets to small targets of opportunity. Additionally, the business community has discovered the use of remotely sensed data to anticipate demand and derive data on their competition. This requires the finer spectral and spatial fidelity now available to recognize those targets. This work hypothesizes that directed searches using calibrated data perform at least as well as inscene manually intensive target detection searches. It uses calibrated Worldview-2 multispectral images with NEF generated signatures and standard detection algorithms to compare bespoke directed search capabilities against ENVI™ in-scene search capabilities. Multiple execution runs are performed at increasing thresholds to generate detection rates. These rates are plotted and statistically analyzed. While individual head-to-head comparison results vary, 88% of the directed searches performed at least as well as in-scene searches with 50% clearly outperforming in-scene methods. The results strongly support the premise that directed searches perform at least as well as comparable in-scene searches.

  7. Binding mode dependent signaling for the detection of Cu2 +: An experimental and theoretical approach with practical applications

    Science.gov (United States)

    Ghosh, Soumen; Khan, Mehebub Ali; Ganguly, Aniruddha; Masum, Abdulla Al; Alam, Md. Akhtarul; Guchhait, Nikhil

    2018-02-01

    Two amido-schiff bases (3-Hydroxy-naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide and Naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide) have been synthesized having a common structural unit and only differs by a -OH group in the naphthalene ring. Both of them can detect Cu2 + ion selectively in semi-aqueous medium in distinctly different output modes (one detects Cu2 + by naked-eye color change where as the other detects Cu2 + by fluorescence enhancement). The difference in the binding of Cu 2 + with the compounds is the reason for this observation. The detection limit is found to be micromolar region for compound which contains -OH group whereas the compound without -OH group detects copper in nano-molar region. DFT calculations have been performed in order to demonstrate the structure of the compounds and their copper complexes. Practical utility has been explored by successful paper strip response of both the compounds. The biological applications have been evaluated in RAW 264.7.

  8. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  9. Loop-induced dark matter direct detection signals from gamma-ray lines

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Haisch, Ulrich; Kahlhoefer, Felix

    2012-01-01

    Improved limits as well as tentative claims for dark matter annihilation into gamma-ray lines have been presented recently. We study the direct detection cross section induced from dark matter annihilation into two photons in a model-independent fashion, assuming no additional couplings between...... dark matter and nuclei. We find a striking non-standard recoil spectrum due to different destructively interfering contributions to the dark matter nucleus scattering cross section. While in the case of s-wave annihilation the current sensitivity of direct detection experiments is insufficient...... to compete with indirect detection searches, for p-wave annihilation the constraints from direct searches are comparable. This will allow to test dark matter scenarios with p-wave annihilation that predict a large di-photon annihilation cross section in the next generation of experiments....

  10. Effectiveness of direct and indirect radionuclide cystography in detecting vesicoureteral reflux

    International Nuclear Information System (INIS)

    Conway, J.J.; Kruglik, G.D.

    1976-01-01

    A modified of the direct radionuclide cystography technique to include filling, voiding, and postvoiding phases of the examination permitted a simulated comparison between direct and indirect radionuclide cystography. One hundred thirty-seven examples of reflux were documented with this technique. Of these, 96 instances of reflux (70 percent) were recorded during two or more phases and thus would have been detected by either technique. Twenty-nine examples (21 percent) were only detected during filling and thus would have been missed by the indirect radionuclide technique and by some roentgenographic techniques. Only 12 examples (9 percent) were detected during the voiding phase only. The modified direct method of radionuclide cystography, which continuously monitors the urinary tracts during filling, voiding, and postvoiding, is offered as the best current technique for assessing visicoureteral reflus

  11. Halo-independent direct detection of momentum-dependent dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, John F. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Frandsen, Mads T.; Shoemaker, Ian M., E-mail: jcherry@lanl.gov, E-mail: frandsen@cp3-origins.net, E-mail: shoemaker@cp3-origins.net [CP3-Origins and the Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

    2014-10-01

    We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can be constrained to be ∼< 10 MeV for DM in the 20-1000 GeV range in a halo-independent manner.

  12. Halo-independent direct detection of momentum-dependent dark matter

    International Nuclear Information System (INIS)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2014-01-01

    We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can be constrained to be ∼< 10 MeV for DM in the 20-1000 GeV range in a halo-independent manner

  13. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Miguel Hernaez

    2017-12-01

    Full Text Available The influence of graphene oxide (GO over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  14. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  15. Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiutao Lou

    2013-01-01

    Full Text Available Temperature-corrected oxygen measurements were performed by using multi-mode diode laser correlation spectroscopy at temperatures ranging between 300 and 473 K. The experiments simulate in situ monitoring of oxygen in coal-combustion exhaust gases at the tail of the flue. A linear relationship with a correlation coefficient of −0.999 was found between the evaluated concentration and the gas temperature. Temperature effects were either auto-corrected by keeping the reference gas at the same conditions as the sample gas, or rectified by using a predetermined effective temperature-correction coefficient calibrated for a range of absorption wavelengths. Relative standard deviations of the temperature-corrected oxygen concentrations obtained by different schemes and at various temperatures were estimated, yielding a measurement precision of 0.6%.

  16. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics

    International Nuclear Information System (INIS)

    Matthews, John A.J.; Gold, Michael S.

    2016-01-01

    This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.

  17. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, John A.J. [Univ. of New Mexico, Albuquerque, NM (United States); Gold, Michael S. [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-08-11

    This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.

  18. Closing in on mass-degenerate dark matter scenarios with antiprotons and direct detection

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan

    2012-01-01

    Over the last years both cosmic-ray antiproton measurements and direct dark matter searches have proved particularly effective in constraining the nature of dark matter candidates. The present work focusses on these two types of constraints in a minimal framework which features a Majorana fermion as the dark matter particle and a scalar that mediates the coupling to quarks. Considering a wide range of coupling schemes, we derive antiproton and direct detection constraints using the latest data and paying close attention to astrophysical and nuclear uncertainties. Both signals are strongly enhanced in the presence of degenerate dark matter and scalar masses, but we show that the effect is especially dramatic in direct detection. Accordingly, the latest direct detection limits take the lead over antiprotons. We find that antiproton and direct detection data set stringent lower limits on the mass splitting, reaching 19% at a 300 GeV dark matter mass for a unity coupling. Interestingly, these limits are orthogonal to ongoing collider searches at the Large Hadron Collider, making it feasible to close in on degenerate dark matter scenarios within the next years

  19. Closing in on mass-degenerate dark matter scenarios with antiprotons and direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-07-15

    Over the last years both cosmic-ray antiproton measurements and direct dark matter searches have proved particularly effective in constraining the nature of dark matter candidates. The present work focusses on these two types of constraints in a minimal framework which features a Majorana fermion as the dark matter particle and a scalar that mediates the coupling to quarks. Considering a wide range of coupling schemes, we derive antiproton and direct detection constraints using the latest data and paying close attention to astrophysical and nuclear uncertainties. Both signals are strongly enhanced in the presence of degenerate dark matter and scalar masses, but we show that the effect is especially dramatic in direct detection. Accordingly, the latest direct detection limits take the lead over antiprotons. We find that antiproton and direct detection data set stringent lower limits on the mass splitting, reaching 19% at a 300 GeV dark matter mass for a unity coupling. Interestingly, these limits are orthogonal to ongoing collider searches at the Large Hadron Collider, making it feasible to close in on degenerate dark matter scenarios within the next years.

  20. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  1. Detection of two-mode compression and degree of entanglement in continuous variables in parametric scattering of light

    International Nuclear Information System (INIS)

    Rytikov, G. O.; Chekhova, M. V.

    2008-01-01

    Generation of 'twin beams' (of light with two-mode compression) in single-pass optical parametric amplifier (a crystal with a nonzero quadratic susceptibility) is considered. Radiation at the output of the nonlinear crystal is essentially multimode, which raises the question about the effect of the detection volume on the extent of suppression of noise from the difference photocurrent of the detectors. In addition, the longitudinal as well as transverse size of the region in which parametric transformation takes place is of fundamental importance. It is shown that maximal suppression of noise from difference photocurrent requires a high degree of entanglement of two-photon light at the outlet of the parametric amplifier, which is defined by Federov et al. [Phys. Rev. A 77, 032336 (2008)] as the ratio of the intensity distribution width to the correlation function width. The detection volume should be chosen taking into account both these quantities. Various modes of single-pass generation of twin beams (noncollinear frequency-degenerate and collinear frequency-nondegenerate synchronism of type I, as well as collinear frequency-degenerate synchronism of type II) are considered in connection with the degree of entanglement

  2. Computer-aided detection of lung nodules on multidetector CT in concurrent-reader and second-reader modes: A comparative study

    International Nuclear Information System (INIS)

    Matsumoto, Sumiaki; Ohno, Yoshiharu; Aoki, Takatoshi; Yamagata, Hitoshi; Nogami, Munenobu; Matsumoto, Keiko; Yamashita, Yoshiko; Sugimura, Kazuro

    2013-01-01

    Purpose: To compare the reading times and detection performances of radiologists in concurrent-reader and second-reader modes of computer-aided detection (CAD) for lung nodules on multidetector computed tomography (CT). Materials and Methods: Fifty clinical multidetector CT datasets containing nodules up to 20 mm in diameter were retrospectively collected. For the detection and rating of non-calcified nodules larger than 4 mm in diameter, 6 radiologists (3 experienced radiologists and 3 resident radiologists) independently interpreted these datasets twice, once with concurrent-reader CAD and once with second-reader CAD. The reference standard of nodules in the datasets was determined by the consensus of two experienced chest radiologists. The reading times and detection performances in the two modes of CAD were statistically compared, where jackknife free-response receiver operating characteristic (JAFROC) analysis was used for the comparison of detection performances. Results: Two hundreds and seven nodules constituted the reference standard. Reading time was significantly shorter in the concurrent-reader mode than in the second-reader mode, with the mean reading time for the 6 radiologists being 132 s with concurrent-reader CAD and 210 s with second-reader CAD (p < 0.01). JAFROC analysis revealed no significant difference between the detection performances in the two modes, with the average figure-of-merit value for the 6 radiologists being 0.70 with concurrent-reader CAD and 0.72 with second-reader CAD (p = 0.35). Conclusion: In CAD for lung nodules on multidetector CT, the concurrent-reader mode is more time-efficient than the second-reader mode, and there can be no significant difference between the two modes in terms of detection performance of radiologists

  3. Development of a direct PCR assay to detect Taenia multiceps eggs isolated from dog feces.

    Science.gov (United States)

    Wang, Ning; Wang, Yu; Ye, Qinghua; Yang, Yingdong; Wan, Jie; Guo, Cheng; Zhan, Jiafei; Gu, Xiaobin; Lai, Weimin; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2018-02-15

    Taenia multiceps is a tapeworm that leads to the death of livestock, resulting in major economic losses worldwide. The adult stage of this parasite invades the small intestine of dogs and other canids. In the present study, we developed a direct PCR assay to detect T. multiceps eggs isolated from dog feces to help curb further outbreaks. The genomic DNA was rapidly released using a lysis buffer and the PCR reaction was developed to amplify a 433-bp fragment of the T. multiceps mitochondrial gene encoding NADH dehydrogenase subunit 5 (nad5) from eggs isolated from dog feces. The procedure could be completed within 3 h, including flotation. The sensitivity of the assay was determined by detecting DNA from defined numbers of eggs, and the specificity was determined by detecting DNA from other intestinal tapeworm and roundworm species that commonly infect dogs. In addition, 14 taeniid-positive fecal samples determined by the flotation technique were collected and further evaluated by the regular PCR and our direct PCR. The results showed that the direct PCR developed herein was sensitive enough to detect the DNA from as few as 10 T. multiceps eggs and that no cross-reactions with other tapeworm and roundworm were observed, suggesting its high sensitivity and specificity for T. multiceps detection. Moreover, 14 taeniid-positive samples were screened by the regular PCR and direct PCR, with detection rates of 78.6% and 85.7%, respectively. In conclusion, the direct PCR assay developed in the present study has high sensitivity and specificity to identify T. multiceps eggs isolated from dog feces and therefore could represent an invaluable tool to identify T. multiceps outbreaks and would contribute to future clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Experimental Results of Ground Disturbance Detection Using Uncooled Infrared Imagers in Wideband and Multispectral Modes

    Science.gov (United States)

    2012-02-01

    Pyranometer Heat exchange rate and apparent temperature contrast are governed by factors such as solar radiation and air temperatures, we must...condition resulting in a high apparent temperature contrast which favors detection. The solar radiation was measured by a CMP11 pyranometer manufactured...a stage about 150 inches from the ground where it pointed downward viewing the sand boxes and the two black bodies. The pyranometer was positioned

  5. Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system.

    Science.gov (United States)

    Baoutina, A; Coldham, T; Bains, G S; Emslie, K R

    2010-08-01

    As clinical gene therapy has progressed toward realizing its potential, concern over misuse of the technology to enhance performance in athletes is growing. Although 'gene doping' is banned by the World Anti-Doping Agency, its detection remains a major challenge. In this study, we developed a methodology for direct detection of the transferred genetic material and evaluated its feasibility for gene doping detection in blood samples from athletes. Using erythropoietin (EPO) as a model gene and a simple in vitro system, we developed real-time PCR assays that target sequences within the transgene complementary DNA corresponding to exon/exon junctions. As these junctions are absent in the endogenous gene due to their interruption by introns, the approach allows detection of trace amounts of a transgene in a large background of the endogenous gene. Two developed assays and one commercial gene expression assay for EPO were validated. On the basis of ability of these assays to selectively amplify transgenic DNA and analysis of literature on testing of gene transfer in preclinical and clinical gene therapy, it is concluded that the developed approach would potentially be suitable to detect gene doping through gene transfer by analysis of small volumes of blood using regular out-of-competition testing.

  6. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  7. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode

    Energy Technology Data Exchange (ETDEWEB)

    Akhrymuk, Ivan; Frolov, Ilya; Frolova, Elena I., E-mail: evfrolova@UAB.edu

    2016-01-15

    Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus–host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellular pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5. - Highlights: • Both RIG-I and MDA5 detect alphavirus replication. • Alphavirus-induced transcriptional shutoff affects type I IFN induction. • Sensing of alphavirus replication by RIG-I and MDA5 depends on their concentrations. • High basal level of RIG-I and MDA5 allows IFN induction by pathogenic alphaviruses. • This dependence determines the discrepancy between the in vivo and in vitro data.

  8. A performance comparison of direct- and indirect-detection flat-panel imagers

    International Nuclear Information System (INIS)

    Partridge, M.; Hesse, B.-M.; Mueller, L.

    2002-01-01

    A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512x512 pixel, 400 μm pitch, arrays of a-Si:H p-i-n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10-15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0±0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with a half-life of between 3.3 and 3.8 frames. Both systems are demonstrated to have a pronounced sensitivity to low-energy multiply scattered photons, although this is shown to be effectively filtered out using a 2 mm copper build-up plate. The direct-detection system, with the 2 mm Cu build-up, shows greater sensitivity to scattered radiation than the indirect system. The spatial resolutions of both systems were effectively equal with an f 50 of 0.25 mm -1 when pixels are binned 2x2, although a slight contribution from optical scattering in the phosphor screen is seen for the indirect-detection system. The quantum efficiency of the direct-detection system is a factor of 0.45 lower than that of the indirect-detection system. The application of these detectors to megavoltage CT is discussed, with the conclusion that the indirect-detection system is to be preferred

  9. Analysis of Current-mode Detectors For Resonance Detection In Neutron Optics Time Reversal Symmetry Experiment

    Science.gov (United States)

    Forbes, Grant; Noptrex Collaboration

    2017-09-01

    One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.

  10. Less-simplified models of dark matter for direct detection and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Arghya [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute,Allahabad - 211019 (India); Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J. [National Centre for Nuclear Research,Hoża 69, 00-681 Warsaw (Poland)

    2016-04-29

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators’ mass. We derive the strongest limits for combinations of vector + scalar, vector + “squark”, and “squark” + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  11. Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder

    NARCIS (Netherlands)

    Haasnoot, W.; Olieman, K.; Cazemier, G.; Verheijen, R.

    2001-01-01

    The low prices of some nonmilk proteins make them attractive as potential adulterants in dairy products. An optical biosensor (BIACORE 3000) was used to develop a direct and combined biosensor immunoassay (BIA) for the simultaneous detection of soy, pea, and soluble wheat proteins in milk powders.

  12. 16-level differential phase shift keying (D16PSK) in direct detection optical communication systems

    DEFF Research Database (Denmark)

    Sambaraju, R.; Tokle, Torger; Jensen, J.B.

    2006-01-01

    Optical 16-level differential phase shift keying (D16PSK) carrying four bits for every symbol is proposed for direct detection optical communication systems. Transmitter and receiver schematics are presented, and the receiver sensitivity is discussed. We numerically investigate the impact...

  13. Less-simplified models of dark matter for direct detection and the LHC

    International Nuclear Information System (INIS)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-01-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators’ mass. We derive the strongest limits for combinations of vector + scalar, vector + “squark”, and “squark” + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  14. Less-simplified models of dark matter for direct detection and the LHC

    Science.gov (United States)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  15. Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments

    CERN Document Server

    Malik, Sarah A.; Araujo, Henrique; Belyaev, A.; Bœhm, Céline; Brooke, Jim; Buchmueller, Oliver; Davies, Gavin; De Roeck, Albert; de Vries, Kees; Dolan, Matthew J.; Ellis, John; Fairbairn, Malcolm; Flaecher, Henning; Gouskos, Loukas; Khoze, Valentin V.; Landsberg, Greg; Newbold, Dave; Papucci, Michele; Sumner, Timothy; Thomas, Marc; Worm, Steven

    2015-01-01

    In this White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.

  16. Signatures of Earth-scattering in the direct detection of Dark Matter

    DEFF Research Database (Denmark)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation...

  17. Direct detection of dark matter in models with a light Z'

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; Sarkar, Subir

    2011-01-01

    We discuss the direct detection signatures of dark matter interacting with nuclei via a Z' mediator, focussing on the case where both the dark matter and the $Z'$ have mass of a few GeV. Isospin violation (i.e. different couplings to protons and neutrons) arises naturally in this scenario...

  18. A performance comparison of direct- and indirect-detection flat-panel imagers

    CERN Document Server

    Partridge, M; Müller, L

    2002-01-01

    A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512x512 pixel, 400 mu m pitch, arrays of a-Si:H p-i-n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10-15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0+-0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with...

  19. Direct 13C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA

    International Nuclear Information System (INIS)

    Fürtig, Boris; Schnieders, Robbin; Richter, Christian; Zetzsche, Heidi; Keyhani, Sara; Helmling, Christina; Kovacs, Helena; Schwalbe, Harald

    2016-01-01

    In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond 1 H detection. Here, we develop 13 C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for 13 C direct detection allows correlations of donor–acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed 13 C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.

  20. Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.

    Science.gov (United States)

    Shui, Peng-Lang; Wang, Fu-Ping

    2017-07-13

    Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.

  1. Detection of directional eye movements based on the electrooculogram signals through an artificial neural network

    International Nuclear Information System (INIS)

    Erkaymaz, Hande; Ozer, Mahmut; Orak, İlhami Muharrem

    2015-01-01

    The electrooculogram signals are very important at extracting information about detection of directional eye movements. Therefore, in this study, we propose a new intelligent detection model involving an artificial neural network for the eye movements based on the electrooculogram signals. In addition to conventional eye movements, our model also involves the detection of tic and blinking of an eye. We extract only two features from the electrooculogram signals, and use them as inputs for a feed-forwarded artificial neural network. We develop a new approach to compute these two features, which we call it as a movement range. The results suggest that the proposed model have a potential to become a new tool to determine the directional eye movements accurately

  2. Progress in low light-level InAs detectors- towards Geiger-mode detection

    Science.gov (United States)

    Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey

    2017-05-01

    InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.

  3. Leakage detection in galvanized iron pipelines using ensemble empirical mode decomposition analysis

    Science.gov (United States)

    Amin, Makeen; Ghazali, M. Fairusham

    2015-05-01

    There are many numbers of possible approaches to detect leaks. Some leaks are simply noticeable when the liquids or water appears on the surface. However many leaks do not find their way to the surface and the existence has to be check by analysis of fluid flow in the pipeline. The first step is to determine the approximate position of leak. This can be done by isolate the sections of the mains in turn and noting which section causes a drop in the flow. Next approach is by using sensor to locate leaks. This approach are involves strain gauge pressure transducers and piezoelectric sensor. the occurrence of leaks and know its exact location in the pipeline by using specific method which are Acoustic leak detection method and transient method. The objective is to utilize the signal processing technique in order to analyse leaking in the pipeline. With this, an EEMD method will be applied as the analysis method to collect and analyse the data.

  4. Evidence of conversion from Z-mode waves to the electromagnetic L-O mode waves at the plasmapause detected by JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Oya, Hiroshi; Morioka, Akira

    1982-01-01

    JIKIKEN satellite that has the initial perigee and apogee of 250 km and 30,050 km, respectively, and has an inclination of -31 0 has passed through critical regions where the AKR spectra were carved out by the plasma surounding the satellite, at least five times during a period from January 31, 1979, to June 21, 1980. On all these occasions the usual type of AKR spectra are disclosed to show cutoff phenomena at the local Z-cutoff frequency indicating a continuation crossing over the local X-cutoff frequency from the high frequency side down to the Z mode wave frequency range rather than to be cut at the local X-cutoff frequency; i.e., the AKR waves consist of the spectra that continuously cover the frequency range corresponding to Z-mode and L-O mode waves when the observation is made near the source region. The most posible mechanism that can give cinsistent interpretations to this spectra characteristics is the mode conversion theory; i.e., the plasma waves generated in the form of the hybrid mode waves in the source regions is converted into the Z-mode wave which propagates towards dense plasma regions where the wave frequency coincides with the local plasma frequency and a part of the energy of Z-mode waves is transported to the L-O mode waves that can escape towards outer space. This conversion mechanism gives also a self-consistent interpretation of previously presented evidences reported as the cutoff phenomena of AKR near the local electron cyclotron frequency, using the mechanism of the propagation of the Z-mode waves. There is no confliction between the conversion mechanism of the AKR generation and the previous polarization observation carried out by the Voyager spacecrafts because there remains wide variety of the selection of the source region that are pertinent to give the possiblity of the LH polarization waves as the results of the conversion of the radiation waves from the Z-mode to the L-O mode in the northern polar regions. (author)

  5. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Mejri-Omrani, Nawel [ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay (France); BAE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan (France); Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d' Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis (Tunisia); Miodek, Anna; Zribi, Becem [ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay (France); Marrakchi, Mouna [Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d' Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis (Tunisia); Université de Tunis El Manar, Higher Institute of Applied Biological Sciences (ISSBAT), 1006 Tunis (Tunisia); Hamdi, Moktar [Université de Carthage, National Institute of Applied Sciences and Technology (INSAT) Laboratoire d' Ecologie et de Technologie Microbiennes (LETMi), 1080 Tunis (Tunisia); Marty, Jean-Louis [BAE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan (France); Korri-Youssoufi, Hafsa, E-mail: hafsa.korri-youssoufi@u-psud.fr [ICMMO, CNRS, Université Paris-Saclay, Equipe de Chimie Bio-organique et Bio-inorganique, Bâtiment 420, 91405 Orsay (France)

    2016-05-12

    Ochratoxin A (OTA) is a carcinogenic mycotoxin that contaminates food such as cereals, wine and beer; therefore it represents a risk for human health. Consequently, the allowed concentration of OTA in food is regulated by governmental organizations and its detection is of major agronomical interest. In the current study we report the development of an electrochemical aptasensor able to directly detect trace OTA without any amplification procedure. This aptasensor was constructed by coating the surface of a gold electrode with a film layer of modified polypyrrole (PPy), which was thereafter covalently bound to polyamidoamine dendrimers of the fourth generation (PAMAM G4). Finally, DNA aptamers that specifically binds OTA were covalently bound to the PAMAM G4 providing the aptasensor, which was characterized by using both Atomic Force Microscopy (AFM) and Surface Plasmon Resonance (SPR) techniques. The study of OTA detection by the constructed electrochemical aptasensor was performed using Electrochemical Impedance Spectroscopy (EIS) and revealed that the presence of OTA led to the modification of the electrical properties of the PPy layer. These modifications could be assigned to conformational changes in the folding of the aptamers upon specific binding of OTA. The aptasensor had a dynamic range of up to 5 μg L{sup −1} of OTA and a detection limit of 2 ng L{sup −1} of OTA, which is below the OTA concentration allowed in food by the European regulations. The efficient detection of OTA by this electrochemical aptasensor provides an unforeseen platform that could be used for the detection of various small molecules through specific aptamer association. - Highlights: • Development of innovative platform for direct and ultra-sensitive toxins detection. • Aptasensor based on modified conductive polypyrrole layer. • We demonstrate the conformation change of aptamer upon toxin binding. • We highlight that detection was obtained by modification of charge of

  6. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  7. Confirmation of the detection of B modes in the Planck polarization maps

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, H. U.

    2018-01-01

    One of the main problems of extracting the cosmic microwave background (CMB) from submm/mm observations is correcting for the galactic components, mainly synchrotron, free–free, and thermal dust emission, with the required accuracy. Through a series of papers, it has been demonstrated that this t......One of the main problems of extracting the cosmic microwave background (CMB) from submm/mm observations is correcting for the galactic components, mainly synchrotron, free–free, and thermal dust emission, with the required accuracy. Through a series of papers, it has been demonstrated...... that this task can be fulfilled by means of simple neural networks with high confidence. The main purpose of this paper is to demonstrate that the CMB BB power spectrum detected in the Planck 2015 polarization maps is present in the improved Planck 2017 maps with higher signal‐to‐noise ratio. Two features have...

  8. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    International Nuclear Information System (INIS)

    Harzalla, S.; Chabaat, M.; Belgacem, F. Bin Muhammad

    2014-01-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented

  9. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    Energy Technology Data Exchange (ETDEWEB)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  10. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  11. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  12. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  13. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    International Nuclear Information System (INIS)

    Caballero, David; Martinez, Elena; Bausells, Joan; Errachid, Abdelhamid; Samitier, Josep

    2012-01-01

    Highlights: ► An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. ► Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. ► Silicon nitride offers multiple advantages compared to other common materials. ► The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3 N 4 ) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3 N 4 -based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2 /Si 3 N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 −13 –10 −7 M were detected, showing a sensitivity of 0.128 Ω μM −1 and a limit of detection of 10 −14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins

  14. Online fault detection of permanent magnet demagnetization for IPMSMs by nonsingular fast terminal-sliding-mode observer.

    Science.gov (United States)

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-12-05

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.

  15. Detection of ℓ = 4 and ℓ = 5 modes in 12 years of solar VIRGO-SPM data—tests on Kepler observations of 16 Cyg A and B

    International Nuclear Information System (INIS)

    Lund, Mikkel Nørup; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen; Handberg, Rasmus; Aguirre, Victor Silva

    2014-01-01

    We present the detection of ℓ = 4 and ℓ = 5 modes in power spectra of the Sun, constructed from 12 yr full-disk VIRGO-SPM data sets. A method for enhancing the detectability of these modes in asteroseismic targets is presented and applied to Kepler data of the two solar analogues 16 Cyg A and B. For these targets, we see indications of a signal from ℓ = 4 modes, while nothing is yet seen for ℓ = 5 modes. We further simulate the power spectra of these stars and from this we estimate that it should indeed be possible to see such indications of ℓ = 4 modes at the present length of the data sets. In the simulation process, we briefly look into the apparent misfit between observed and calculated mode visibilities. We predict that firm detections of at least ℓ = 4 should be possible in any case at the end of the Kepler mission. For ℓ = 5, we do not predict any firm detections from Kepler data.

  16. A comparison of photographic, replication and direct clinical examination methods for detecting developmental defects of enamel

    Directory of Open Access Journals (Sweden)

    Pakshir Hamid-Reza

    2011-04-01

    Full Text Available Abstract Background Different methods have been used for detecting developmental defects of enamel (DDE. This study aimed to compare photographic and replication methods with the direct clinical examination method for detecting DDE in children's permanent incisors. Methods 110 8-10-year-old schoolchildren were randomly selected from an examined sample of 335 primary Shiraz school children. Modified DDE index was used in all three methods. Direct examinations were conducted by two calibrated examiners using flat oral mirrors and tongue blades. Photographs were taken using a digital SLR camera (Nikon D-80, macro lens, macro flashes, and matt flash filters. Impressions were taken using additional-curing silicon material and casts made in orthodontic stone. Impressions and models were both assessed using dental loupes (magnification=x3.5. Each photograph/impression/cast was assessed by two calibrated examiners. Reliability of methods was assessed using kappa agreement tests. Kappa agreement, McNemar's and two-sample proportion tests were used to compare results obtained by the photographic and replication methods with those obtained by the direct examination method. Results Of the 110 invited children, 90 were photographed and 73 had impressions taken. The photographic method had higher reliability levels than the other two methods, and compared to the direct clinical examination detected significantly more subjects with DDE (P = 0.002, 3.1 times more DDE (P Conclusion The photographic method was much more sensitive than direct clinical examination in detecting DDE and was the best of the three methods for epidemiological studies. The replication method provided less information about DDE compared to photography. Results of this study have implications for both epidemiological and detailed clinical studies on DDE.

  17. Enzyme-functionalized thin-cladding long-period fiber grating in transition mode at dispersion turning point for sugar-level and glucose detection

    Science.gov (United States)

    Badmos, Abdulyezir A.; Sun, Qizhen; Sun, Zhongyuan; Zhang, Junxi; Yan, Zhijun; Lutsyk, Petro; Rozhin, Alex; Zhang, Lin

    2017-02-01

    Enzyme-functionalized dual-peak long-period fiber grating (LPFG) inscribed in 80-μm-cladding B/Ge codoped single-mode fiber is presented for sugar-level and specific glucose detection. Before enzyme functionalization, the dual-peak LPFG was employed for refractive index sensing and sugar-level detection and high sensitivities of ˜4298.20 nm/RIU and 4.6696 nm/% were obtained, respectively. Glucose detection probe was attained by surface functionalization of the dual-peak LPFG via covalent binding with aminopropyl triethoxysilane used as a binding site. Optical micrographs confirmed the presence of enzyme. The surface-functionalized dual-peak LPFG was tested with D-(+)-glucose solution of different concentrations. While the peak 2 at the longer wavelength was suitable only to measure lower glucose concentration (0.1 to 1.6 mg/ml) recording a high sensitivity of 12.21±0.19 nm/(mg/ml), the peak 1 at the shorter wavelength was able to measure a wider range of glucose concentrations (0.1 to 3.2 mg/ml) exhibiting a maximum resonance wavelength shift of 7.12±0.12 nm/mg/ml. The enzyme-functionalized dual-peak LPFG has the advantage of direct inscription of highly sensitive grating structures in thin-cladding fibre without etching, and most significantly, its sensitivity improvement of approximately one order of magnitude higher than previously reported LPFG and excessively tilted fibre grating (Ex-TFG) for glucose detection.

  18. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection

    International Nuclear Information System (INIS)

    Wu Ping; Shao Qian; Hu Yaojuan; Jin Juan; Yin Yajing; Zhang Hui; Cai Chenxin

    2010-01-01

    The direct electrochemistry of glucose oxidase (GOx) integrated with graphene was investigated. The voltammetric results indicated that GOx assembled on graphene retained its native structure and bioactivity, exhibited a surface-confined process, and underwent effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.68 s -1 . This work also developed a novel approach for glucose detection based on the electrocatalytic reduction of oxygen at the GOx-graphene/GC electrode. The assembled GOx could electrocatalyze the reduction of dissolved oxygen. Upon the addition of glucose, the reduction current decreased, which could be used for glucose detection with a high sensitivity (ca. 110 ± 3 μA mM -1 cm -2 ), a wide linear range (0.1-10 mM), and a low detection limit (10 ± 2 μM). The developed approach can efficiently exclude the interference of commonly coexisting electroactive species due to the use of a low detection potential (-470 mV, versus SCE). Therefore, this study has not only successfully achieved DET reaction of GOx assembled on graphene, but also established a novel approach for glucose detection and provided a general route for fabricating graphene-based biosensing platform via assembling enzymes/proteins on graphene surface.

  19. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    Science.gov (United States)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  20. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography.

    Science.gov (United States)

    Wunderlich, Adam; Noo, Frédéric

    2008-05-21

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction.

  1. Direct detection of light dark matter and solar neutrinos via color center production in crystals

    OpenAIRE

    Budnik, Ranny; Cheshnovsky, Ori; Slone, Oren; Volansky, Tomer

    2018-01-01

    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10) MeV through nuclear scattering...

  2. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography

    International Nuclear Information System (INIS)

    Wunderlich, Adam; Noo, Frederic

    2008-01-01

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction

  3. Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM

    International Nuclear Information System (INIS)

    Bélanger, G.; Hugonie, C.; Pukhov, A.

    2009-01-01

    We reexamine the constrained version of the Next-to-Minimal Supersymmetric Standard Model with semi universal parameters at the GUT scale (CNMSSM). We include constraints from collider searches for Higgs and susy particles, upper bound on the relic density of dark matter, measurements of the muon anomalous magnetic moment and of B-physics observables as well as direct searches for dark matter. We then study the prospects for direct detection of dark matter in large scale detectors and comment on the prospects for discovery of heavy Higgs states at the LHC

  4. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    Science.gov (United States)

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  5. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    Energy Technology Data Exchange (ETDEWEB)

    Midey, Anthony J., E-mail: anthony.midey@excellims.com; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-12-04

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K{sub 0}, have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL{sup −1} levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL{sup −1} levels without extensive

  6. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    International Nuclear Information System (INIS)

    Midey, Anthony J.; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-01-01

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K 0 , have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL −1 levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL −1 levels without extensive sample handling

  7. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  8. Direct detection of saponins in crude extracts of soapnuts by FTIR.

    Science.gov (United States)

    Almutairi, Meshari Saad; Ali, Muhammad

    2015-01-01

    Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.

  9. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack

    Energy Technology Data Exchange (ETDEWEB)

    Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Arico, A.S.; Antonucci, V. [CNR - ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia sopra Contesse n. 5 - 98126 S. Lucia - Messina (Italy)

    2010-12-01

    This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm{sup -2}), obtained with a thin SPSf membrane (70 {mu}m) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm{sup -2}. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g{sup -1}) was 2.8 x 10{sup -2} S cm{sup -1}. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements. (author)

  10. Direct observation of current in type-I edge-localized-mode filaments on the ASDEX upgrade tokamak

    DEFF Research Database (Denmark)

    Vianello, N.; Zuin, M.; Cavazzana, R.

    2011-01-01

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result...

  11. Double contrast-enhanced ultrasonography in the detection of periampullary cancer: Comparison with B-mode ultrasonography and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting [Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Medical Ultrasonics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Su, Zhong-zhen; Wang, Ping; Wu, Tao [Department of Medical Ultrasonics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Tang, Wen [Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Xu, Er-jiao; Ju, Jin-xiu [Department of Medical Ultrasonics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Quan, Xian-yue, E-mail: quanxianyue2014@163.com [Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Zheng, Rong-qin, E-mail: zhengrq@mail.sysu.edu.cn [Department of Medical Ultrasonics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou (China)

    2016-11-15

    Purpose: To investigate the value of double contrast-enhanced ultrasonography (DCEUS) in the detection of periampullary cancer. Materials and methods: Ninety-nine patients with surgery or biopsy-proven periampullary cancer who underwent both DCEUS and magnetic resonance imaging (MRI) examinations before operation were enrolled in our study. DCEUS in which intravenous microbubbles were used in combination with oral contrast agent and MRI were performed preoperatively to make a detection diagnosis of periampullary cancer. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of DCEUS, B-mode ultrasonography (BUS) and MRI were calculated and compared. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of BUS, DCEUS and MRI in the detection. Stratified analyses were performed for different pathological types and different sizes of periampullary lesions. The inter- and intra-observer reliability of DCEUS for cancer detection was also investigated. Result: There were no significant differences in sensitivity, specificity, PPV, NPV or accuracy between DCEUS and MRI (all P > 0.05). ROC analysis showed that the accuracy of DCEUS or MRI was higher than that of BUS (P < 0.001), while no significant differences were noted in the accuracy between DCEUS and MR. In the 76 cases of periampullary cancer, DCEUS appeared to be superior to BUS for ampullary carcinoma, duodenum carcinoma and for lesions with an average diameter of less than 3 cm. DCEUS appeared equal to BUS in other groups. No significant differences were noted between DCEUS and MRI in the stratified analysis. A considerably well agreement between DCEUS and MRI was obtained using Kappa analysis (k = 0.649, P < 0.001). The intra- and inter-observer reproducibility were both good for detection of periampullary cancer by DCEUS, with a Kappa values of 0.783 (P < 0.01) and 0.732 (P < 0.01), respectively. Conclusion: DCEUS provides an

  12. Analyzing of singlet fermionic dark matter via the updated direct detection data

    Energy Technology Data Exchange (ETDEWEB)

    Ettefaghi, M.M.; Moazzemi, R. [University of Qom, Department of Physics, Qom (Iran, Islamic Republic of)

    2017-05-15

    We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and a new singlet one. Furthermore, we restudy the direct detection constraints with the updated and new experimental data. As an important conclusion, this model is completely excluded by recent XENON100, PandaX II and LUX data. (orig.)

  13. Simplified dark matter models with charged mediators: prospects for direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Sandick, Pearl; Sinha, Kuver; Teng, Fei [Department of Physics and Astronomy, University of Utah,Salt Lake City, UT 84112 (United States)

    2016-10-05

    We consider direct detection prospects for a class of simplified models of fermionic dark matter (DM) coupled to left and right-handed Standard Model fermions via two charged scalar mediators with arbitrary mixing angle α. DM interactions with the nucleus are mediated by higher electromagnetic moments, which, for Majorana DM, is the anapole moment. After giving a full analytic calculation of the anapole moment, including its α dependence, and matching with limits in the literature, we compute the DM-nucleon scattering cross-section and show the LUX and future LZ constraints on the parameter space of these models. We then compare these results with constraints coming from Fermi-LAT continuum and line searches. Results in the supersymmetric limit of these simplified models are provided in all cases. We find that future direct detection experiments will be able to probe most of the parameter space of these models for O(100−200) GeV DM and lightest mediator mass ≲O(5%) larger than the DM mass. The direct detection prospects dwindle for larger DM mass and larger mass gap between the DM and the lightest mediator mass, although appreciable regions are still probed for O(200) GeV DM and lightest mediator mass ≲O(20%) larger than the DM mass. The direct detection bounds are also attenuated near certain “blind spots' in the parameter space, where the anapole moment is severely suppressed due to cancellation of different terms. We carefully study these blind spots and the associated Fermi-LAT signals in these regions.

  14. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  15. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  16. Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots

    International Nuclear Information System (INIS)

    Qu, Fei; Sun, Zhe; Liu, Dongya; Zhao, Xianen; You, Jinmao

    2016-01-01

    The authors describe dual-emission carbon nanodots containing blue emitters (BE; peak emission at 385 nm under 315 nm excitation) and yellow emitters (YE; peak emission at 530 nm under 365 nm excitation), and how they can be applied to direct and indirect determination of tetracyclines (TCs). The direct detection scheme is based on the finding that tetracycline (TET), oxytetracycline, chlortetracycline and doxycycline quench the two emissions of the carbon dots. While direct determination is rapid and convenient, it cannot differentiate between TCs. The indirect detection scheme, in contrast, is based on the finding that Al (III) ions enhance the fluorescence of the YE in the carbon dots, and that they cause a blue shift in emission. It is, however, known that TET forms a strong complex with Al (III), and this can inhibit the interaction between Al (III) and the YE, so that the fluorescence of YE is not enhanced and blue-shifted by Al (III) in the presence of TET. This finding is exploited in a fluorescence turn-on/off assay for TET that can distinguish TET from other TCs. The linear range of indirect determination for TET extends from 1 nM to 30 μM, and the limit of detection is 0.52 nM. The indirect method was successfully applied to the determination of TET in spiked milk, fish and pork, and recoveries ranged from 91.7 to 102 %. (author)

  17. You can hide but you have to run: direct detection with vector mediators

    Energy Technology Data Exchange (ETDEWEB)

    D’Eramo, Francesco [Department of Physics, University of California Santa Cruz,1156 High St., Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St., Santa Cruz, CA 95064 (United States); Kavanagh, Bradley J. [Laboratoire de Physique Théorique et Hautes Energies, CNRS, UMR 7589,4 Place Jussieu, F-75252, Paris (France); Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA,Orme des Merisiers batiment 774, F-91191 Gif-sur-Yvette Cedex (France); Panci, Paolo [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie,98 bis Boulevard Arago, Paris 75014 (France)

    2016-08-18

    We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some cases the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Finally, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.

  18. Detection of Low Molecular Weight Adulterants in Beverages by Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Sisco, Edward; Dake, Jeffrey

    2016-04-14

    Direct Analysis in Real Time Mass Spectrometry (DART-MS) has been used to detect the presence of non-narcotic adulterants in beverages. The non-narcotic adulterants that were examined in this work incorporated a number low molecular weight alcohols, acetone, ammonium hydroxide, and sodium hypochlorite. Analysis of the adulterants was completed by pipetting 1 µL deposits onto glass microcapillaries along with an appropriate dopant species followed by introduction into the DART gas stream. It was found that detection of these compounds in the complex matrices of common beverages (soda, energy drinks, etc.) was simplified through the use of a dopant species to allow for adduct formation with the desired compound(s) of interest. Other parameters that were investigated included DART gas stream temperature, in source collision induced dissociation, ion polarity, and DART needle voltage. Sensitivities of the technique were found to range from 0.001 % volume fraction to 0.1 % volume fraction, comparable to traditional analyses completed using headspace gas chromatography mass spectrometry (HS-GC/MS). Once a method was established using aqueous solutions, , fifteen beverages were spiked with each of the nine adulterants, to simulate real world detection, and in nearly all cases the adulterant could be detected either in pure form, or complexed with the added dopant species. This technique provides a rapid way to directly analyze beverages believed to be contaminated with non-narcotic adulterants at sensitivities similar to or exceeding those of traditional confirmatory analyses.

  19. Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor.

    Science.gov (United States)

    Small, Leo J; Nenoff, Tina M

    2017-12-27

    High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. Herein, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I 2 by a metal-organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I 2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I 2 . Furthermore, equivalent circuit modeling of the impedance data indicates a >10 5 × decrease in ZIF-8 resistance when 116 wt % I 2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. This report demonstrates how selective I 2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >10 5 × changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.

  20. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    Directory of Open Access Journals (Sweden)

    Jnnifer A. Sánchez

    2014-05-01

    Full Text Available Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%, II: nheA, hblC (2%, III: hblC, cytK (41.2%, IV: hblC (47%. Of 75 cassava starch samples, 44% were contaminated with toxigenic B. cereus and four different toxigenic consortia were determined: I: nheA, hblC, cytK (48.5%, II: nheA, hblC, cytK, cesB (3%, III: hblC, cytK (30.3%, IV: hblC (18.2%. In general, in dietary complement for children only enterotoxigenic consortia were detected while in cassava starch the enterotoxigenic consortia predominated over the emetic. Multiplex PCR was useful to detect toxigenic B. cereus contamination allowing direct and imultaneous detection of all toxin genes in foods. This study is the first in Colombia to evaluate toxigenic B. cereus, providing information of importance for microbiological risk evaluation in dried foods.

  1. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  2. Direct inference of SNP heterozygosity rates and resolution of LOH detection.

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2007-11-01

    Full Text Available Single nucleotide polymorphisms (SNPs have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.

  3. Impact of functional MRI data preprocessing pipeline on default-mode network detectability in patients with disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Adrian eAndronache

    2013-08-01

    Full Text Available An emerging application of resting-state functional MRI is the study of patients with disorders of consciousness (DoC, where integrity of default-mode network (DMN activity is associated to the clinical level of preservation of consciousness. Due to the inherent inability to follow verbal instructions, arousal induced by scanning noise and postural pain, these patients tend to exhibit substantial levels of movement. This results in spurious, non-neural fluctuations of the blood-oxygen level-dependent (BOLD signal, which impair the evaluation of residual functional connectivity. Here, the effect of data preprocessing choices on the detectability of the DMN was systematically evaluated in a representative cohort of 30 clinically and etiologically heterogeneous DoC patients and 33 healthy controls. Starting from a standard preprocessing pipeline, additional steps were gradually inserted, namely band-pass filtering, removal of co-variance with the movement vectors, removal of co-variance with the global brain parenchyma signal, rejection of realignment outlier volumes and ventricle masking. Both independent-component analysis (ICA and seed-based analysis (SBA were performed, and DMN detectability was assessed quantitatively as well as visually. The results of the present study strongly show that the detection of DMN activity in the sub-optimal fMRI series acquired on DoC patients is contingent on the use of adequate filtering steps. ICA and SBA are differently affected but give convergent findings for high-grade preprocessing. We propose that future studies in this area should adopt the described preprocessing procedures as a minimum standard to reduce the probability of wrongly inferring that DMN activity is absent.

  4. On Moderator Detection in Anchoring Research: Implications of Ignoring Estimate Direction

    Directory of Open Access Journals (Sweden)

    Nathan N. Cheek

    2018-05-01

    Full Text Available Anchoring, whereby judgments assimilate to previously considered standards, is one of the most reliable effects in psychology. In the last decade, researchers have become increasingly interested in identifying moderators of anchoring effects. We argue that a drawback of traditional moderator analyses in the standard anchoring paradigm is that they ignore estimate direction—whether participants’ estimates are higher or lower than the anchor value. We suggest that failing to consider estimate direction can sometimes obscure moderation in anchoring tasks, and discuss three potential analytic solutions that take estimate direction into account. Understanding moderators of anchoring effects is essential for a basic understanding of anchoring and for applied research on reducing the influence of anchoring in real-world judgments. Considering estimate direction reduces the risk of failing to detect moderation.

  5. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    Science.gov (United States)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  6. Direct detection of cancer biomarkers in blood using a "place n play" modular polydimethylsiloxane pump.

    Science.gov (United States)

    Zhang, Honglian; Li, Gang; Liao, Lingying; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong

    2013-01-01

    Cancer biomarkers have significant potential as reliable tools for the early detection of the disease and for monitoring its recurrence. However, most current methods for biomarker detection have technical difficulties (such as sample preparation and specific detector requirements) which limit their application in point of care diagnostics. We developed an extremely simple, power-free microfluidic system for direct detection of cancer biomarkers in microliter volumes of whole blood. CEA and CYFRA21-1 were chosen as model cancer biomarkers. The system automatically extracted blood plasma from less than 3 μl of whole blood and performed a multiplex sample-to-answer assay (nano-ELISA (enzyme-linked immunosorbent assay) technique) without the use of external power or extra components. By taking advantage of the nano-ELISA technique, this microfluidic system detected CEA at a concentration of 50 pg/ml and CYFRA21-1 at a concentration of 60 pg/ml within 60 min. The combination of PnP polydimethylsiloxane (PDMS) pump and nano-ELISA technique in a single microchip system shows great promise for the detection of cancer biomarkers in a drop of blood.

  7. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    Science.gov (United States)

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  8. Direct and long-term detection of gene doping in conventional blood samples.

    Science.gov (United States)

    Beiter, T; Zimmermann, M; Fragasso, A; Hudemann, J; Niess, A M; Bitzer, M; Lauer, U M; Simon, P

    2011-03-01

    The misuse of somatic gene therapy for the purpose of enhancing athletic performance is perceived as a coming threat to the world of sports and categorized as 'gene doping'. This article describes a direct detection approach for gene doping that gives a clear yes-or-no answer based on the presence or absence of transgenic DNA in peripheral blood samples. By exploiting a priming strategy to specifically amplify intronless DNA sequences, we developed PCR protocols allowing the detection of very small amounts of transgenic DNA in genomic DNA samples to screen for six prime candidate genes. Our detection strategy was verified in a mouse model, giving positive signals from minute amounts (20 μl) of blood samples for up to 56 days following intramuscular adeno-associated virus-mediated gene transfer, one of the most likely candidate vector systems to be misused for gene doping. To make our detection strategy amenable for routine testing, we implemented a robust sample preparation and processing protocol that allows cost-efficient analysis of small human blood volumes (200 μl) with high specificity and reproducibility. The practicability and reliability of our detection strategy was validated by a screening approach including 327 blood samples taken from professional and recreational athletes under field conditions.

  9. An empirical strategy to detect bacterial transcript structure from directional RNA-seq transcriptome data.

    Science.gov (United States)

    Wang, Yejun; MacKenzie, Keith D; White, Aaron P

    2015-05-07

    As sequencing costs are being lowered continuously, RNA-seq has gradually been adopted as the first choice for comparative transcriptome studies with bacteria. Unlike microarrays, RNA-seq can directly detect cDNA derived from mRNA transcripts at a single nucleotide resolution. Not only does this allow researchers to determine the absolute expression level of genes, but it also conveys information about transcript structure. Few automatic software tools have yet been established to investigate large-scale RNA-seq data for bacterial transcript structure analysis. In this study, 54 directional RNA-seq libraries from Salmonella serovar Typhimurium (S. Typhimurium) 14028s were examined for potential relationships between read mapping patterns and transcript structure. We developed an empirical method, combined with statistical tests, to automatically detect key transcript features, including transcriptional start sites (TSSs), transcriptional termination sites (TTSs) and operon organization. Using our method, we obtained 2,764 TSSs and 1,467 TTSs for 1331 and 844 different genes, respectively. Identification of TSSs facilitated further discrimination of 215 putative sigma 38 regulons and 863 potential sigma 70 regulons. Combining the TSSs and TTSs with intergenic distance and co-expression information, we comprehensively annotated the operon organization in S. Typhimurium 14028s. Our results show that directional RNA-seq can be used to detect transcriptional borders at an acceptable resolution of ±10-20 nucleotides. Technical limitations of the RNA-seq procedure may prevent single nucleotide resolution. The automatic transcript border detection methods, statistical models and operon organization pipeline that we have described could be widely applied to RNA-seq studies in other bacteria. Furthermore, the TSSs, TTSs, operons, promoters and unstranslated regions that we have defined for S. Typhimurium 14028s may constitute valuable resources that can be used for

  10. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, D.M., E-mail: dieter.schlosser@pnsensor.de [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Huth, M.; Hartmann, R. [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Abboud, A.; Send, S. [Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); Conka-Nurdan, T. [Türkisch-Deutsche Universität, Sakinkaya Cad. 86, Beykoz, 34820 Istanbul (Turkey); Shokr, M.; Pietsch, U. [Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); Strüder, L. [PNSensor GmbH, Sckellstraße 3, 81667 München (Germany); Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany)

    2016-01-01

    By combining a low noise fully depleted pnCCD detector with a CsI(Tl) scintillator, an energy-dispersive area detector can be realized with a high quantum efficiency (QE) in the range from below 1 keV to above 100 keV. In direct detection mode the pnCCD exhibits a relative energy resolution of 1% at 122 keV and spatial resolution of less than 75 µm, the pixel size of the pnCCD. In the indirect detection mode, i.e. conversion of the incoming X-rays in the scintillator, the measured energy resolution was about 9–13% at 122 keV, depending on the depth of interaction in the scintillator, while the position resolution, extracted with the help of simulations, was 30 µm only. We show simulated data for incident photons of 122 keV and compare the various interaction processes and relevant physical parameters to experimental results obtained with a radioactive {sup 57}Co source. - Highlights: • Position and energy resolving pnCCD+CsI(Tl) detector for energies from 1-150 keV • Detection in the pnCCD (122keV): 1% energy and <75µm spatial resolution • Detection in the scintillator (122keV): 9-12% energy and ~30µm spatial resolution.

  11. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples

    Energy Technology Data Exchange (ETDEWEB)

    Otero, Paz; Alfonso, Amparo [Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain); Alfonso, Carmen [CIFGA Laboratorio, Plaza de Santo Domingo, 1, 27001 Lugo (Spain); Araoz, Romulo; Molgo, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Developpement UPR3294, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex (France); Vieytes, Mercedes R. [Departamento de Fisiologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo (Spain); Botana, Luis M., E-mail: luis.botana@usc.es [Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain)

    2011-09-09

    Highlights: {yields} A direct assay based in the binding of nAChR to spirolide toxins by FP is described. {yields} A direct relationship between FP and 13-desMeC in the range of 10-500 nM is obtained. {yields} FP is dependent on the 13, 19-didesMeC in a higher concentration range than 13-desMeC. {yields} FP assay is a sensitive method to detect and quantify 13-desMeC in mussel samples. - Abstract: In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 {mu}g kg{sup -1} meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication.

  12. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples

    International Nuclear Information System (INIS)

    Otero, Paz; Alfonso, Amparo; Alfonso, Carmen; Araoz, Romulo; Molgo, Jordi; Vieytes, Mercedes R.; Botana, Luis M.

    2011-01-01

    Highlights: → A direct assay based in the binding of nAChR to spirolide toxins by FP is described. → A direct relationship between FP and 13-desMeC in the range of 10-500 nM is obtained. → FP is dependent on the 13, 19-didesMeC in a higher concentration range than 13-desMeC. → FP assay is a sensitive method to detect and quantify 13-desMeC in mussel samples. - Abstract: In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 μg kg -1 meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication.

  13. Directional support value of Gaussian transformation for infrared small target detection.

    Science.gov (United States)

    Yang, Changcai; Ma, Jiayi; Qi, Shengxiang; Tian, Jinwen; Zheng, Sheng; Tian, Xin

    2015-03-20

    Robust small target detection is one of the key techniques in IR search and tracking systems for self-defense or attacks. In this paper we present a robust solution for small target detection in a single IR image. The key ideas of the proposed method are to use the directional support value of Gaussian transform (DSVoGT) to enhance the targets, and use the multiscale representation provided by DSVoGT to reduce the false alarm rate. The original image is decomposed into sub-bands in different orientations by convolving the image with the directional support value filters, which are deduced from the weighted mapped least-squares-support vector machines (LS-SVMs). Based on the sub-band images, a support value of Gaussian matrix is constructed, and the trace of this matrix is then defined as the target measure. The corresponding multiscale correlations of the target measures are computed for enhancing target signal while suppressing the background clutter. We demonstrate the advantages of the proposed method on real IR images and compare the results against those obtained from standard detection approaches, including the top-hat filter, max-mean filter, max-median filter, min-local-Laplacian of Gaussian (LoG) filter, as well as LS-SVM. The experimental results on various cluttered background images show that the proposed method outperforms other detectors.

  14. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    Science.gov (United States)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  15. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  16. Direct tissue blot immunoassay for detection of Xylella fastidiosa in olive trees

    Directory of Open Access Journals (Sweden)

    Khaled DJELOUAH

    2015-01-01

    Full Text Available A direct tissue blot immunoassay (DTBIA technique has been compared with ELISA and PCR for detection of Xylella fastidiosa in olive trees from Apulia (southern Italy. Fresh cross-sections of young twigs and leaf petioles were printed onto nitrocellulose membranes and analyzed in the laboratory. Analyses of a first group of 61 samples gave similar efficiency for the three diagnostic techniques for detection the bacterium (24 positive and 36 negative samples, except for a single sample which was positive only with DTBIA and PCR. Similar results were obtained by separately analyzing suckers and twigs collected from different sectors of tree canopies of a second group of 20 olive trees (ten symptomatic and ten symptomless. In this second test the three diagnostic techniques confirmed the irregular distribution of the bacterium in the tree canopies and erratic detectability of the pathogen in the young suckers. It is therefore necessary to analyse composite samples per tree which should be prepared with twigs collected from different sides of the canopy. The efficiency comparable to ELISA and PCR, combined with the advantages of easier handling, speed and cost, make DTBIA a valid alternative to ELISA in large-scale surveys for occurrence of X. fastidiosa. Moreover, the printing of membranes directly in the field prevents infections spreading to Xylella-free areas, through movement of plant material with pathogen vectors for laboratory testing.

  17. Direct RNA-based detection of CTX-M β-lactamases in human blood samples.

    Science.gov (United States)

    Stein, Claudia; Makarewicz, Oliwia; Pfeifer, Yvonne; Brandt, Christian; Pletz, Mathias W

    2015-05-01

    Bloodstream infections with ESBL-producers are associated with increased mortality, which is due to delayed appropriate treatment resulting in clinical failure. Current routine diagnostics for detection of bloodstream infections consists of blood culture followed by species identification and susceptibility testing. In attempts to improve and accelerate diagnostic procedures, PCR-based methods have been developed. These methods focus on species identification covering only a limited number of ESBL coding genes. Therefore, they fail to cover the steadily further evolving genetic diversity of clinically relevant β-lactamases. We have recently designed a fast and novel RNA targeting method to detect and specify CTX-M alleles from bacterial cultures, based on an amplification-pyrosequencing approach. We further developed this assay towards a diagnostic tool for clinical use and evaluated its sensitivity and specificity when applied directly to human blood samples. An optimized protocol for mRNA isolation allows detection of specific CTX-M groups from as little as 100 CFU/mL blood via reverse transcription, amplification, and pyrosequencing directly from human EDTA blood samples as well as from pre-incubated human blood cultures with a turnaround time for test results of <7 h. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Hybrid PAPR reduction scheme with Huffman coding and DFT-spread technique for direct-detection optical OFDM systems

    Science.gov (United States)

    Peng, Miao; Chen, Ming; Zhou, Hui; Wan, Qiuzhen; Jiang, LeYong; Yang, Lin; Zheng, Zhiwei; Chen, Lin

    2018-01-01

    High peak-to-average power ratio (PAPR) of the transmit signal is a major drawback in optical orthogonal frequency division multiplexing (OOFDM) system. In this paper, we propose and experimentally demonstrate a novel hybrid scheme, combined the Huffman coding and Discrete Fourier Transmission-Spread (DFT-spread), in order to reduce high PAPR in a 16-QAM short-reach intensity-modulated and direct-detection OOFDM (IMDD-OOFDM) system. The experimental results demonstrated that the hybrid scheme can reduce the PAPR by about 1.5, 2, 3 and 6 dB, and achieve 1.5, 1, 2.5 and 3 dB receiver sensitivity improvement compared to clipping, DFT-spread and Huffman coding and original OFDM signals, respectively, at an error vector magnitude (EVM) of -10 dB after transmission over 20 km standard single-mode fiber (SSMF). Furthermore, the throughput gain can be of the order of 30% by using the hybrid scheme compared with the cases of without applying the Huffman coding.

  19. Kerr-Lens Mode-Locked Femtosecond Yb:GdYSiO5 Laser Directly Pumped by a Laser Diode

    Directory of Open Access Journals (Sweden)

    Jiangfeng Zhu

    2015-10-01

    Full Text Available We demonstrate the first Kerr-lens mode-locked operation in a diode-pumped Yb:GdYSiO5 oscillator. Under a diode pump power of 5 W, 141 fs pulses with an average power of 237 mW were obtained at a repetition rate of 118 MHz. The central wavelength was at 1094 nm with a bandwidth of 10.1 nm. Shorter pulses were obtained by adjusting the cavity to operate at a shorter wavelength, resulting in 55 fs pulse duration at the central wavelength of 1054 nm with a bandwidth of 23.5 nm.

  20. Multispectral Detection with Metal-Dielectric Filters: An Investigation in Several Wavelength Bands with Temporal Coupled-Mode Theory

    Science.gov (United States)

    Lesmanne, Emeline; Espiau de Lamaestre, Roch; Boutami, Salim; Durantin, Cédric; Dussopt, Laurent; Badano, Giacomo

    2016-09-01

    Multispectral infrared (IR) detection is of great interest to enhance our ability to gather information from a scene. Filtering is a low-cost alternative to the complex multispectral device architectures to which the IR community has devoted much attention. Multilayer dielectric filters are standard in industry, but they require changing the thickness of at least one layer to tune the wavelength. Here, we pursue an approach based on apertures in a metallic layer of fixed thickness, in which the filtered wavelengths are selected by varying the aperture geometry. In particular, we study filters made of at least one sheet of resonating apertures in metal embedded in dielectrics. We will discuss two interesting problems that arise when one attempts to design such filters. First, metallic absorption must be taken into account. Second, the form and size of the pattern is limited by lithography. We will present some design examples and an attempt at explaining the filtering behavior based on the temporal coupled mode theory. That theory models the filter as a resonator interacting with the environment via loss channels. The transmission is solely determined by the loss rates associated with those channels. This model allows us to give a general picture of the filtering performance and compare their characteristics at different wavelength bands.

  1. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides

    International Nuclear Information System (INIS)

    Simonian, A.L.; Good, T.A.; Wang, S.-S.; Wild, J.R.

    2005-01-01

    Neurotoxic organophosphates (OP) have found widespread use in the environment for insect control. In addition, there is the increasing threat of use of OP based chemical warfare agents in both ground based warfare and terrorist attacks. Together, these trends necessitate the development of simple and specific methods for discriminative detection of ultra low quantities of OP neurotoxins. In our previous investigations a new biosensor for the direct detection of organophosphorus neurotoxins was pioneered. In this system, the enzymatic hydrolysis of OP neurotoxins by organophosphate hydrolase (OPH) generated two protons in each hydrolytic turnover through reactions in which P-X bonds are cleaved. The sensitivity of this biosensor was limited due to the potentiometric method of detection. Recently, it was reported that a change in fluorescence properties of a fluorophore in the vicinity of gold nanoparticles might be used for detection of nanomolar concentrations of DNA oligonucleotides. The detection strategy was based on the fact that an enhancement or quenching of fluorescence intensity is a function of the distances between the gold nanoparticle and fluorophore. While these reports have demonstrated the use of nanoparticle-based sensors for the detection of target DNA, we observed that the specificity of enzyme-substrate interactions could be exploited in similar systems. To test the feasibility of this approach, OPH-gold nanoparticle conjugates were prepared, then incubated with a fluorescent enzyme inhibitor or decoy. The fluorescence intensity of the decoy was sensitive to the proximity of the gold nanoparticle, and thus could be used to indicate that the decoy was bound to the OPH. Then different paraoxon concentrations were introduced to the OPH-nanoparticle-conjugate-decoy mixtures, and normalized ratio of fluorescence intensities were measured. The greatest sensitivity to paraoxon was obtained when decoys and OPH-gold nanoparticle conjugates were present at

  2. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys.

    Science.gov (United States)

    Li, Peipei; Zhao, Zhenjun; Wang, Ying; Xing, Hua; Parker, Daniel M; Yang, Zhaoqing; Baum, Elizabeth; Li, Wenli; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Li, Shuying; Yan, Guiyun; Cui, Liwang; Fan, Qi

    2014-05-08

    Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. The FP-PCR method had a detection limit of ~0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies.

  3. A direct detection of Escherichia coli genomic DNA using gold nanoprobes

    Directory of Open Access Journals (Sweden)

    Padmavathy

    2012-02-01

    Full Text Available Abstract Background In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications. Among the nanomaterials, gold nanoparticles (AuNPs have been extensively used mainly because of its optical property and ability to get functionalized with a variety of biomolecules. Results We report a protocol for the use of gold nanoparticles functionalized with single stranded oligonucleotide (AuNP- oligo probe as visual detection probes for rapid and specific detection of Escherichia coli. The AuNP- oligo probe on hybridization with target DNA containing complementary sequences remains red whereas test samples without complementary DNA sequences to the probe turns purple due to acid induced aggregation of AuNP- oligo probes. The color change of the solution is observed visually by naked eye demonstrating direct and rapid detection of the pathogenic Escherichia coli from its genomic DNA without the need for PCR amplification. The limit of detection was ~54 ng for unamplified genomic DNA. The method requires less than 30 minutes to complete after genomic DNA extraction. However, by using unamplified enzymatic digested genomic DNA, the detection limit of 11.4 ng was attained. Results of UV-Vis spectroscopic measurement and AFM imaging further support the hypothesis of aggregation based visual discrimination. To elucidate its utility in medical diagnostic, the assay was validated on clinical strains of pathogenic Escherichia coli obtained from local hospitals and spiked urine samples. It was found to be 100% sensitive and proves to

  4. New Fpg probe chemistry for direct detection of recombinase polymerase amplification on lateral flow strips.

    Science.gov (United States)

    Powell, Michael L; Bowler, Frank R; Martinez, Aurore J; Greenwood, Catherine J; Armes, Niall; Piepenburg, Olaf

    2018-02-15

    Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings. Copyright © 2017. Published by Elsevier Inc.

  5. Detection of antibodies in human serum using trimellityl-erythrocytes: direct and indirect haemagglutination and haemolysis.

    Science.gov (United States)

    Turner, E S; Pruzansky, J J; Patterson, R; Zeiss, C R; Roberts, M

    1980-02-01

    Utilizing trimellityl-erythrocytes (TM-E), antibodies were detected in sera of seven workers with trimellitic anhydride (TMA) induced airway syndromes by direct haemagglutination, indirect haemagglutination with anti-human IgG, IgA or IgM or by haemolysis. Detectable levels of antibody were obtained with all three methods. The most sensitive technique was indirect haemagglutination using anti-IgG. When added as an inhibitor, TM-human serum albumin produced a 10- to 800-fold reduction in titres. TM-ovalbumin of similar epitope density was less inhibitory and sodium trimellitate the least inhibitory on a molar basis. All of the assays using haptenized human red cells were also capable of detecting anti-TM antibodies in Rhesus monkeys whose airways had been exposed to TMA. These assays are useful for detecting anti-TM antibodies and may also be adapted to demonstrate antibodies induced against other inhaled haptens in sera of environmentally exposed individuals or in animal models of such exposure.

  6. Direct detection of singlet dark matter in classically scale-invariant standard model

    Directory of Open Access Journals (Sweden)

    Kazuhiro Endo

    2015-10-01

    Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  7. Towards understanding thermal history of the Universe through direct and indirect detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Roszkowski, Leszek; Trojanowski, Sebastian [National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw (Poland); Turzyński, Krzysztof, E-mail: leszek.roszkowski@ncbj.gov.pl, E-mail: sebastian.trojanowski@uci.edu, E-mail: Krzysztof-Jan.Turzynski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland)

    2017-10-01

    We examine the question to what extent prospective detection of dark matter by direct and indirect- detection experiments could shed light on what fraction of dark matter was generated thermally via the freeze-out process in the early Universe. By simulating putative signals that could be seen in the near future and using them to reconstruct WIMP dark matter properties, we show that, in a model- independent approach this could only be achieved in a thin sliver of the parameter space. However, with additional theoretical input the hypothesis about the thermal freeze-out as the dominant mechanism for generating dark matter can potentially be verified. We illustrate this with two examples: an effective field theory of dark matter with a vector messenger and a higgsino or wino dark matter within the MSSM.

  8. Detection system qualification for direct measurement of thyroid internal contamination by radioiodine

    International Nuclear Information System (INIS)

    Tiberi, V.; Battisti, P.; Gualdrini, G.

    1999-01-01

    The work deals with a detection system qualification for direct measurements of thyroid internal contamination by radioiodine. The isotopes 131 I and 125 I are the most frequently used in nuclear medicine. Because of their volatility they are very dangerous for thyroid contamination by inhalation. The system has been projected to be easily and fast used and above all transportable where the control is necessary. These characteristic make it able to realise supervision programs of internal contamination by radioiodine. In fact due the very high control frequencies (each 15 days for 131 I), these programs are usually very expensive and demanding when they are executed in external measurement laboratories. The following steps are described: devices presentation, calculation of energy and efficiency parameters, minimum detectable activity, time system reliability, best operative conditions in the measurements. At the end an application example of the system is reported [it

  9. Iodine-125 radioimmunoassay for the direct detection of benzodiazepines in blood and urine

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, C.P.; Stead, A.H.; Mason, P.A.; Law, B.; Moffat, A.C.; McBrien, M.; Cosby, S.

    1986-05-01

    A radioimmunoassay (RIA) for the direct detection of benzodiazepines in blood and urine is described. It is based on a commercially available antiserum and an easily synthesised radio-iodinated derivative of clonazepam that allows the use of relatively simple gamma-counting procedures. The assay can detect low therapeutic levels of all of the benzodiazepines currently available in the UK in 50-..mu..l samples of blood and urine (1-50 ng ml/sup -1/, depending on the drug); no prior sample preparation is required. It is inexpensive, rapid, simple to perform and is broadly specific for the benzodiazepine class of drugs. The assay offers a most suitable means of screening large numbers of samples of forensic interest for the presence of the benzodiazepines.

  10. An iodine-125 radioimmunoassay for the direct detection of benzodiazepines in blood and urine

    International Nuclear Information System (INIS)

    Goddard, C.P.; Stead, A.H.; Mason, P.A.; Law, B.; Moffat, A.C.; McBrien, M.; Cosby, S.

    1986-01-01

    A radioimmunoassay (RIA) for the direct detection of benzodiazepines in blood and urine is described. It is based on a commercially available antiserum and an easily synthesised radio-iodinated derivative of clonazepam that allows the use of relatively simple gamma-counting procedures. The assay can detect low therapeutic levels of all of the benzodiazepines currently available in the UK in 50-μl samples of blood and urine (1-50 ng ml -1 , depending on the drug); no prior sample preparation is required. It is inexpensive, rapid, simple to perform and is broadly specific for the benzodiazepine class of drugs. The assay offers a most suitable means of screening large numbers of samples of forensic interest for the presence of the benzodiazepines. (author)

  11. The impact of baryons on the direct detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Chris [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Savage, Christopher; Freese, Katherine [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm (Sweden); Valluri, Monica [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stinson, Gregory S. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Bailin, Jeremy, E-mail: ckelso@unf.edu, E-mail: chris@savage.name, E-mail: mvalluri@umich.edu, E-mail: ktfreese@umich.edu, E-mail: stinson@mpia.de, E-mail: jbailin@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-08-01

    The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.

  12. Rapid detection of NBOME's and other NPS on blotter papers by direct ATR-FTIR spectrometry.

    Science.gov (United States)

    Coelho Neto, José

    2015-07-01

    Blotter paper is among the most common forms of consumption of new psychotropic substances (NPS), formerly referred as designer drugs. In many cases, users are misled to believe they are taking LSD when, in fact, they are taking newer and less known drugs like the NBOMEs or other substituted phenethylamines. We report our findings in quick testing of blotter papers for illicit substances like NBOMEs and other NPS by taking ATR-FTIR spectra directly from blotters seized on the streets, without any sample preparation. Both sides (front and back) of each blotter were tested. Collected data were analyzed by single- and multi-component spectral matching and submitted to chemometric discriminant analysis. Our results showed that, on 66.7% of the cases analyzed, seized blotters contained one or more types of NBOMEs, confirming the growing presence of this novel substances on the market. Matching IR signals were detected on both or just one side of the blotters and showed variable strength. Although no quantitative analysis was made, detection of these substances by the proposed approach serves as indication of variable and possibly higher dosages per blotter when compared to LSD, which showed to be below the detection limit of the applied method. Blotters containing a mescaline-like compound, later confirmed by GC-MS and LC-MS to be MAL (methallylescaline), a substance very similar to mescaline, were detected among the samples tested. Validity of direct ATR-FTIR testing was confirmed by checking the obtained results against independent GC-MS or LC-MS results for the same cases/samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Defect detection and classification of machined surfaces under multiple illuminant directions

    Science.gov (United States)

    Liao, Yi; Weng, Xin; Swonger, C. W.; Ni, Jun

    2010-08-01

    Continuous improvement of product quality is crucial to the successful and competitive automotive manufacturing industry in the 21st century. The presence of surface porosity located on flat machined surfaces such as cylinder heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas between critical mating surfaces, thus causing damage to the engine or transmission. Therefore 100% inline inspection plays an important role for improving product quality. Although the techniques of image processing and machine vision have been applied to machined surface inspection and well improved in the past 20 years, in today's automotive industry, surface porosity inspection is still done by skilled humans, which is costly, tedious, time consuming and not capable of reliably detecting small defects. In our study, an automated defect detection and classification system for flat machined surfaces has been designed and constructed. In this paper, the importance of the illuminant direction in a machine vision system was first emphasized and then the surface defect inspection system under multiple directional illuminations was designed and constructed. After that, image processing algorithms were developed to realize 5 types of 2D or 3D surface defects (pore, 2D blemish, residue dirt, scratch, and gouge) detection and classification. The steps of image processing include: (1) image acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) defect classification. An artificial machined surface and an actual automotive part: cylinder head surface were tested and, as a result, microscopic surface defects can be accurately detected and assigned to a surface defect class. The cycle time of this system can be sufficiently fast that implementation of 100% inline inspection is feasible. The field of view of this system is 150mm×225mm and the surfaces larger than the field of view can be stitched together in software.

  14. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    Science.gov (United States)

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  16. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  17. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  18. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    OpenAIRE

    Jnnifer A. Sánchez; Margarita M. Correa; Ángel E. Aceves Dies; Laura M. Castañeda Sandoval

    2014-01-01

    Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%), II: nheA, hbl...

  19. Method of shaping of direction-characterization of sensitivity of ionizing radiation detection probe

    International Nuclear Information System (INIS)

    Czarnecki, J.; Jaszczuk, J.; Kruczyk, M.; Slapa, M.; Wroblewski, T.

    1986-01-01

    A method of shaping of direction-characterization of sensitivity of the ionizing radiation detection probe, especially equipped with small gamma detectors is described. Two detectors are placed coaxially in the bases of the cylindrical shield. One of them is uncovered in the highest degree and the second is not covered to a maximum. The signals from them are processed on the standarized sequences of electrical impulses (taking into account the heights and the widths of the amplitude). 2 figs., 1 tab. (A.S.)

  20. LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; Preston, Anthony

    2012-01-01

    We study the interactions of a new spin-1 mediator that connects the Standard Model to dark matter. We constrain its decay channels using monojet and monophoton searches, as well as searches for resonances in dijet, dilepton and diboson final states including those involving a possible Higgs. We...... then interpret the resulting limits as bounds on the cross-section for dark matter direct detection without the need to specify a particular model. For mediator masses between 300 and 1000 GeV these bounds are considerably stronger than the ones obtained under the assumption that the mediator can be integrated...

  1. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains

    Science.gov (United States)

    Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G.

    2017-08-01

    The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L . Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.

  2. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate.

    Science.gov (United States)

    Xu, Shicai; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Yang, Cheng; Liu, Mei; Chen, Chuansong; Zhang, Chao

    2014-04-25

    We demonstrate that continuous, uniform graphene films can be directly synthesized on quartz substrates using a two-temperature-zone chemical vapor deposition system and that their layers can be controlled by adjusting the precursor partial pressure. Raman spectroscopy and transmission electron microscopy confirm the formation of monolayer graphene with a grain size of ∼100 nm. Hall measurements show a room-temperature carrier mobility above 1500 cm2 V(-1) s(-1). The optical transmittance and conductance of the graphene films are comparable to those of transferred metal-catalyzed graphene. The method avoids the complicated and skilled post-growth transfer process and allows the graphene to be directly incorporated into a fully functional biosensor for label-free detection of adenosine triphosphate (ATP). This device shows a fast response time of a few milliseconds and achieves a high sensitivity to ATP molecules over a very wide range from 0.002 to 5 mM.

  3. Prospects for direct detection of dark matter in an effective theory approach

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2014-01-01

    We perform the first comprehensive analysis of the prospects for direct detection of dark matter with future ton-scale detectors in the general 11-dimensional effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. The theory includes 8 momentum and velocity dependent dark matter-nucleon interaction operators, besides the familiar spin-independent and spin-dependent operators. From a variegated sample of 27 benchmark points selected in the parameter space of the theory, we simulate independent sets of synthetic data for ton-scale Germanium and Xenon detectors. From the synthetic data, we then extract the marginal posterior probability density functions and the profile likelihoods of the model parameters. The associated Bayesian credible regions and frequentist confidence intervals allow us to assess the prospects for direct detection of dark matter at the 27 benchmark points. First, we analyze the data assuming the knowledge of the correct dark matter nucleon-interaction type, as it is commonly done for the familiar spin-independent and spin-dependent interactions. Then, we analyze the simulations extracting the dark matter-nucleon interaction type from the data directly, in contrast to standard analyses. This second approach requires an extensive exploration of the full 11-dimensional parameter space of the dark matter-nucleon effective theory. Interestingly, we identify 5 scenarios where the dark matter mass and the dark matter-nucleon interaction type can be reconstructed from the data simultaneously. We stress the importance of extracting the dark matter nucleon-interaction type from the data directly, discussing the main challenges found addressing this complex 11-dimensional problem

  4. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    International Nuclear Information System (INIS)

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-01-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp 2 hybridization to Thr403 O γ , the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs

  5. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Corona, Angela; Steinmann, Casper

    2018-01-01

    is a long and expensive process that can be speeded up by in silico methods. In the present study, a structure-guided screening is coupled with a similarity-based search on the Specs database to identify a new class of HIV-1 RNase H inhibitors. Out of the 45 compounds selected for experimental testing, 15...... inhibited the RNase H function below 100 μM with three hits exhibiting IC50 values active compound, AA, inhibits HIV-1 RNase H with an IC50 of 5.1 μM and exhibits a Mg-independent mode of inhibition. Site-directed mutagenesis studies provide valuable insight into the binding mode of newly...

  6. Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series

    Directory of Open Access Journals (Sweden)

    Lee Joon

    2012-04-01

    Full Text Available Abstract Background The detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomedical applications featuring small sample size and presence of outliers. Methods With respect to detection of increased coupling strength, we compared three transfer entropy estimation techniques using both simulated time series and respiratory recordings from lambs. The following estimation methods were analyzed: fixed-binning with ranking, kernel density estimation (KDE, and the Darbellay-Vajda (D-V adaptive partitioning algorithm extended to three dimensions. In the simulated experiment, sample size was varied from 50 to 200, while coupling strength was increased. In order to introduce outliers, the heavy-tailed Laplace distribution was utilized. In the lamb experiment, the objective was to detect increased respiratory-related chemosensitivity to O2 and CO2 induced by a drug, domperidone. Specifically, the separate influence of end-tidal PO2 and PCO2 on minute ventilation (V˙E before and after administration of domperidone was analyzed. Results In the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. In the lamb experiment, D-V partitioning resulted in the statistically strongest increase in transfer entropy post-domperidone for PO2→V˙E. In addition, D-V partitioning was the only method that could detect an increase in transfer entropy for PCO2→V˙E, in agreement with experimental findings. Conclusions Transfer entropy is capable of detecting directional coupling changes in non-linear biomedical time series analysis featuring a small number of observations and presence of outliers. The results

  7. Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART).

    Science.gov (United States)

    Gómez-Ríos, Germán Augusto; Gionfriddo, Emanuela; Poole, Justen; Pawliszyn, Janusz

    2017-07-05

    The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.

  8. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  9. Direct Index Method of Beam Damage Location Detection Based on Difference Theory of Strain Modal Shapes and the Genetic Algorithms Application

    Directory of Open Access Journals (Sweden)

    Bao Zhenming

    2012-01-01

    Full Text Available Structural damage identification is to determine the structure health status and analyze the test results. The three key problems to be solved are as follows: the existence of damage in structure, to detect the damage location, and to confirm the damage degree or damage form. Damage generally changes the structure physical properties (i.e., stiffness, mass, and damping corresponding with the modal characteristics of the structure (i.e., natural frequencies, modal shapes, and modal damping. The research results show that strain mode can be more sensitive and effective for local damage. The direct index method of damage location detection is based on difference theory, without the modal parameter of the original structure. FEM numerical simulation to partial crack with different degree is done. The criteria of damage location detection can be obtained by strain mode difference curve through cubic spline interpolation. Also the genetic algorithm box in Matlab is used. It has been possible to identify the damage to a reasonable level of accuracy.

  10. On the Existence of Low-Mass Dark Matter and its Direct Detection

    Science.gov (United States)

    Bateman, James; McHardy, Ian; Merle, Alexander; Morris, Tim R.; Ulbricht, Hendrik

    2015-01-01

    Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic Microwave Background (CMB). This indirect evidence implies that DM accounts for as much as 84.5% of all matter in our Universe, yet it has so far evaded all attempts at direct detection, leaving such confirmation and the consequent discovery of its nature as one of the biggest challenges in modern physics. Here we present a novel form of low-mass DM χ that would have been missed by all experiments so far. While its large interaction strength might at first seem unlikely, neither constraints from particle physics nor cosmological/astronomical observations are sufficient to rule out this type of DM, and it motivates our proposal for direct detection by optomechanics technology which should soon be within reach, namely, through the precise position measurement of a levitated mesoscopic particle which will be perturbed by elastic collisions with χ particles. We show that a recently proposed nanoparticle matter-wave interferometer, originally conceived for tests of the quantum superposition principle, is sensitive to these collisions, too. PMID:25622565

  11. On the Existence of Low-Mass Dark Matter and its Direct Detection

    Science.gov (United States)

    Bateman, James; McHardy, Ian; Merle, Alexander; Morris, Tim R.; Ulbricht, Hendrik

    2015-01-01

    Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic Microwave Background (CMB). This indirect evidence implies that DM accounts for as much as 84.5% of all matter in our Universe, yet it has so far evaded all attempts at direct detection, leaving such confirmation and the consequent discovery of its nature as one of the biggest challenges in modern physics. Here we present a novel form of low-mass DM χ that would have been missed by all experiments so far. While its large interaction strength might at first seem unlikely, neither constraints from particle physics nor cosmological/astronomical observations are sufficient to rule out this type of DM, and it motivates our proposal for direct detection by optomechanics technology which should soon be within reach, namely, through the precise position measurement of a levitated mesoscopic particle which will be perturbed by elastic collisions with χ particles. We show that a recently proposed nanoparticle matter-wave interferometer, originally conceived for tests of the quantum superposition principle, is sensitive to these collisions, too.

  12. Anisotropic dark matter distribution functions and impact on WIMP direct detection

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Schwetz, Thomas; Catena, Riccardo

    2013-01-01

    Dark matter N-body simulations suggest that the velocity distribution of dark matter is anisotropic. In this work we employ a mass model for the Milky Way whose parameters are determined from a fit to kinematical data. Then we adopt an ansatz for the dark matter phase space distribution which allows to construct self-consistent halo models which feature a degree of anisotropy as a function of the radius such as suggested by the simulations. The resulting velocity distributions are then used for an analysis of current data from dark matter direct detection experiments. We find that velocity distributions which are radially biased at large galactocentric distances (up to the virial radius) lead to an increased high velocity tail of the local dark matter distribution. This affects the interpretation of data from direct detection experiments, especially for dark matter masses around 10 GeV, since in this region the high velocity tail is sampled. We find that the allowed regions in the dark matter mass-cross section plane as indicated by possible hints for a dark matter signal reported by several experiments as well as conflicting exclusion limits from other experiments shift in a similar way when the halo model is varied. Hence, it is not possible to improve the consistency of the data by referring to anisotropic halo models of the type considered in this work

  13. Direct detection of second harmonic and its use in alanine/EPR dosimetry

    International Nuclear Information System (INIS)

    Chen, F.; Guzman, C.S.; Graeff, C.F.O.; Baffa, O.

    2001-01-01

    In this work, the possible use of the second harmonic EPR signal from irradiated alanine for low radiation dose (∼1 Gy) was explored, aiming applications to HDR brachytherapy and teletherapy. The second harmonic signal was directly detected after overmodulation. A batch of DL-alanine/paraffin small cylindrical pellets was made. A VARIAN E-4 X-Band EPR spectrometer with optimized operation parameters like microwave power and modulation amplitude to obtain a signal with the highest amplitude was used. The modulation frequency and modulation amplitude were 100 kHz and 1.25 mT (to overmodulate the signal) respectively. The second harmonic signal was directly detected at twice the modulation frequency. One group of dosimeters was irradiated with a 192 Ir brachytherapy source and the other in a 10 MeV X-rays linear accelerator, both group at a dose range: 0.5 - 15 Gy. The second harmonic signal showed better resolution than the first harmonic one making possible a more easy localization of the signal. Moreover, for both types of radiation, the dose-response curve showed a good linear behavior for the dose range indicated. (author)

  14. On the direct detection of multi-component dark matter: sensitivity studies and parameter estimation

    Science.gov (United States)

    Herrero-Garcia, Juan; Scaffidi, Andre; White, Martin; Williams, Anthony G.

    2017-11-01

    We study the case of multi-component dark matter, in particular how direct detection signals are modified in the presence of several stable weakly-interacting-massive particles. Assuming a positive signal in a future direct detection experiment, stemming from two dark matter components, we study the region in parameter space where it is possible to distinguish a one from a two-component dark matter spectrum. First, we leave as free parameters the two dark matter masses and show that the two hypotheses can be significantly discriminated for a range of dark matter masses with their splitting being the critical factor. We then investigate how including the effects of different interaction strengths, local densities or velocity dispersions for the two components modifies these conclusions. We also consider the case of isospin-violating couplings. In all scenarios, we show results for various types of nuclei both for elastic spin-independent and spin-dependent interactions. Finally, assuming that the two-component hypothesis is confirmed, we quantify the accuracy with which the parameters can be extracted and discuss the different degeneracies that occur. This includes studying the case in which only a single experiment observes a signal, and also the scenario of having two signals from two different experiments, in which case the ratios of the couplings to neutrons and protons may also be extracted.

  15. Elemental speciation via high-performance liquid chromatography combined with inductively coupled plasma atomic emission spectroscopic detection: application of a direct injection nebulizer

    International Nuclear Information System (INIS)

    LaFreniere, K.E; Fassel, V.A.; Eckels, D.E.

    1987-01-01

    An evaluation is presented of a direct injection nebulizer (DIN) interfaced to a high-performance liquid chromatograph (HPLC) with inductively coupled plasma atomic emission spectroscopic (ICP-AES) detection for simultaneous multielement speciation. The limits of detection (LODs) obtained with the DIN interface in the HPLC mode were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of 4. In addition, the DIN allowed for the direct injection into the ICP of a variety of common HPLC solvents (up to 100% methanol, acetonitrile, methyl isobutyl ketone, pyridine, and water). The HPLC-DIN-ICP-AES system was compared to other HPLC-atomic spectroscopic detection techniques and was found to offer substantial improvement over the alternative on-line, detection methods in terms of LODs. Representative applications of the HPLC-DIN-ICP-AES system to the elemental speciation of coal process streams, shale oil, solvent refined coal, and crude oil are presented

  16. Detectability of planetary rings around super-earths by direct infrared imaging

    International Nuclear Information System (INIS)

    Morel, Carine

    2013-01-01

    Super-Earths, of which more than 80 have already been discovered, draw a lot of attention. With masses between those of the Earth and Neptune, they are ideal targets for searching for bio-signatures. All the gas giants of the solar system have a ring system, and even the Earth is suspected to have had rings in the past; their presence around super-Earths is thus expected and could give information on the formation process of these planets. The characterization of Super-Earths and their environment has thus become an important goal of modern astronomy. They are still difficult to study because of their small size, but the potential presence of planetary rings can make them easier to observe by the transit method and by direct imaging. This PhD evaluates the possibilities of detecting and characterizing rings around super-Earths by direct infrared imaging with the ELT-METIS instrument. To do this, a model to simulate the thermal emission of a super-Earth and its rings is developed. It is then used to study the influence of physical parameters and orientation of the rings and of planetary orbit on their detectability. The results show that ELT-METIS will be able to detect rings similar to the B and C rings of Saturn, extended within the Roche limit. The super-Earths surrounded by rings will be observable in middle orbit, between about 0.4 and 1 AU, around hot stars within 20 pc of the Sun. It is also shown that the photometric monitoring along the orbit of a super-Earth surrounded by rings should help constrain some of their physical characteristics. (author) [fr

  17. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands.

    Science.gov (United States)

    Jehee, Ivo; van der Veer, Charlotte; Himschoot, Michelle; Hermans, Mirjam; Bruisten, Sylvia

    2017-12-01

    Trichomonas vaginalis is the most common sexually transmitted parasitical infection worldwide. T. vaginalis can carry a virus: Trichomonas vaginalis virus (TVV). To date, four TVV species have been described. Few studies have investigated TVV prevalence and its clinical importance. We have developed a nested reverse-transcriptase PCR, with novel, type specific primers to directly detect TVV RNA in T. vaginalis positive clinical samples. A total of 119T. vaginalis positive clinical samples were collected in Amsterdam and "s-Hertogenbosch, the Netherlands, from 2012 to 2016. For all samples T. vaginalis was genotyped using multi-locus sequence typing. The T. vaginalis positive samples segregated into a two-genotype population: type I (n=64) and type II (n=55). All were tested for TVV with the new TVV PCR. We detected 3 of the 4 TVV species. Sequencing of the amplified products showed high homology with published TVV genomes (82-100%). Half of the T. vaginalis clinical samples (n=60, 50.4%) were infected with one or more TVV species, with a preponderance for TVV infections in T. vaginalis type I (n=44, 73.3%). Clinical data was available for a subset of samples (n=34) and we observed an association between testing positive for (any) TVV and reporting urogenital symptoms (p=0.023). The nested RT-PCR allowed for direct detection of TVV in T. vaginalis positive clinical samples. This may be helpful in studies and clinical settings, since T. vaginalis disease and/or treatment outcome may be influenced by the protozoa"s virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of Piezoelectric DNA-Based Biosensor for Direct Detection of Mycobacterium Tuberculosis in Clinical Specimens

    Directory of Open Access Journals (Sweden)

    Thongchai KAEWPHINIT

    2010-02-01

    Full Text Available This study was focused on establishment of piezoelectric biosensor for direct detection of Mycobacterium tuberculosis (MTB in clinical specimens. The quartz crystal immobilized via 3-mercaptopropionic acid (MPA/avidin/DNA biotinylated probe on gold surface and hybridization of the DNA target to DNA biotinylated probe. The optimal concentration of MPA, avidin and 5’-biotinylated DNA probe for immobilization of specific DNA probe on gold surface were 15 mM, 0.1 mg/ml and 1.5 μM, respectively. The detection of genomic DNA digestion in the range from 0.5 to 30 μg/ml. The fabricated biosensor was evaluated through an examination of 200 samples. No cross hybridization were observed against M. avium complex (MAC and other microorganism. This target DNA preparation without amplification will reduce time consuming, costs, and the tedious step of amplification. This study can be extended to develop the new method which is high sensitivity, specificity, cheap, easy to use, and rapid for detection of MTB in many fields.

  19. A survey of direct inversion methods having possible application to tunnel detection

    International Nuclear Information System (INIS)

    Mager, R.D.

    1985-01-01

    Within recent years there has been considerable interest in the development of geophysical methods for the location of hidden underground tunnels and cavities. Consideration of this problem has been motivated by military applications, such as the detection of shallow man-made tunnels and arm caches, as well as civilian applications such as detection of limestone cavities in karst terrain and the mapping of abandoned mine workings. There are also applications for in-situ coal gasification and for the monitoring of nuclear waste disposal sites. The most reliable method presently used to map these underground anomalies has been direct detection by closely spaced drilling. However, the high cost of drilling renders this method impractical except for detailed and localized mapping, and certainly unfeasible for any type of broad-scale reconnaissance activity. Largely motivated by petroleum and mineral exploration needs, however, the seismic industry has seen a virtual revolution in acquisition and processing techniques within the past ten years. Paralleling these developments have been corresponding developments in acoustical imaging and non-destructive testing. Researchers in the field of inverse scattering have produced a number of new methods for target imaging from backscattered reflection data

  20. Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    Science.gov (United States)

    Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2017-09-28

    Nucleic acid-based technologies have been applied to numerous biomedical applications. As a novel material for target detection, DNA has been used to construct a barcode system with a range of structures. This paper reports multi-functionalized DNA nanospheres (DNANSs) by rolling circle amplification (RCA) with several functionalized nucleotides. DNANSs with a barcode system were designed to exhibit fluorescence for coding enhanced signals and contain biotin for more functionalities, including targeting through the biotin-streptavidin (biotin-STA) interaction. Functionalized deoxynucleotide triphosphates (dNTPs) were mixed in the RCA process and functional moieties can be expressed on the DNANSs. The anti-epidermal growth factor receptor antibodies (anti-EGFR Abs) can be conjugated on DNANSs for targeting cancer cells specifically. As a proof of concept, the potential of the multi-functional DNANS barcode was demonstrated by direct cell detection as a simple detection method. The DNANS barcode provides a new route for the simple and rapid selective recognition of cancer cells.

  1. Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)

    Science.gov (United States)

    Generazio, Edward R.

    2015-01-01

    Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that there is 95% confidence that the POD is greater than 90% (90/95 POD). Design of experiments for validating probability of detection capability of nondestructive evaluation (NDE) systems (DOEPOD) is a methodology that is implemented via software to serve as a diagnostic tool providing detailed analysis of POD test data, guidance on establishing data distribution requirements, and resolving test issues. DOEPOD demands utilization of observance of occurrences. The DOEPOD capability has been developed to provide an efficient and accurate methodology that yields observed POD and confidence bounds for both Hit-Miss or signal amplitude testing. DOEPOD does not assume prescribed POD logarithmic or similar functions with assumed adequacy over a wide range of flaw sizes and inspection system technologies, so that multi-parameter curve fitting or model optimization approaches to generate a POD curve are not required. DOEPOD applications for supporting inspector qualifications is included.

  2. Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

    Czech Academy of Sciences Publication Activity Database

    Malíková, L.; Veselý, V.; Seitl, Stanislav

    2015-01-01

    Roč. 9, č. 33 (2015), s. 25-32 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Near-crack-tip fields * Williams expansion * Crack propagation direction * Multi-parameter fracture criteria * Finite element analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.c [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic); Rohde, V.; Mueller, H.W.; Herrmann, A. [Institute of Plasma Physics, Association EURATOM/IPP, Garching (Germany); Ionita, C.; Schrittwieser, R.; Mehlmann, F. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OAW (Austria); Stoeckel, J.; Horacek, J.; Brotankova, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic)

    2009-06-15

    Experimental investigations of the plasma potential and electric field were performed for ELMy H-mode plasmas in the vicinity of the limiter shadow of ASDEX Upgrade. A fast reciprocating probe with a probe head containing four ball-pen probes (BPPs) [J. Adamek et al., Czech. J. Phys. 54 (2004) C95 - C99.] was used on the midplane manipulator. Different gradients of the plasma potential were observed during ELMs and in between them. The temporal resolution of the direct plasma potential measurements with BPP was determined by using power-spectra analysis.

  4. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  5. A Plasma Based OES-CRDS Dual-mode Portable Spectrometer for Trace Element Detection: Emission and Ringdown Measurements of Mercury

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan; Wang, Chuji

    2012-10-01

    Design and development of a plasma based optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode portable spectrometer for in situ monitoring of trace elements is described. A microwave plasma torch (MPT) has been utilized, which serves both as an atomization and excitation source for the two modes, viz. OES and CRDS, of the spectrometer. Operation of both modes of the instrument is demonstrated with initial measurements of elemental mercury (Hg). A detection limit of 44 ng mL-1 for Hg at 253.65 nm was determined with the emission mode of the instrument. Severe radiation trapping of 253.65 nm line hampers the measurement of Hg in higher concentration region (> 50 μg ml-1). Therefore, a different wavelength, 365.01 nm, is suggested to measure Hg in that region. Ringdown measurements of the metastable 6s6p ^3P0 state of Hg in the plasma using a 404.65 nm palm size diode laser was conducted to demonstrate the CRDS mode of the instrument. Along with being portable, dual-mode, and self-calibrated, the instrument is capable of measuring a wide range of concentration ranging from sub ng mL-1 to several μg ml-1 for a number of elements.

  6. Markov chain Monte Carlo analysis to constrain dark matter properties with directional detection

    International Nuclear Information System (INIS)

    Billard, J.; Mayet, F.; Santos, D.

    2011-01-01

    Directional detection is a promising dark matter search strategy. Indeed, weakly interacting massive particle (WIMP)-induced recoils would present a direction dependence toward the Cygnus constellation, while background-induced recoils exhibit an isotropic distribution in the Galactic rest frame. Taking advantage of these characteristic features, and even in the presence of a sizeable background, it has recently been shown that data from forthcoming directional detectors could lead either to a competitive exclusion or to a conclusive discovery, depending on the value of the WIMP-nucleon cross section. However, it is possible to further exploit these upcoming data by using the strong dependence of the WIMP signal with: the WIMP mass and the local WIMP velocity distribution. Using a Markov chain Monte Carlo analysis of recoil events, we show for the first time the possibility to constrain the unknown WIMP parameters, both from particle physics (mass and cross section) and Galactic halo (velocity dispersion along the three axis), leading to an identification of non-baryonic dark matter.

  7. Detection of the Magnetic Easy Direction in Steels Using Induced Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Edgard M. Silva

    2016-12-01

    Full Text Available Conventional manufacturing processes cause plastic deformation that leads to magnetic anisotropy in processed materials. A deeper understanding of materials characterization under rotational magnetization enables engineers to optimize the overall volume, mass, and performance of devices such as electrical machines in industry. Therefore, it is important to find the magnetic easy direction of the magnetic domains in a simple and straightforward manner. The Magnetic easy direction can be obtained through destructive tests such as the Epstein frame method and the Single Sheet Tester by taking measurements in regions of irreversible magnetization usually called domains. In the present work, samples of rolled SAE 1045 steel (formed by perlite and ferrite microstructures were submitted to induced magnetic fields in the reversibility region of magnetic domains to detect the magnetic easy direction. The magnetic fields were applied to circular samples with different thicknesses and angles varying from 0° to 360° with steps of 45°. A square sample with a fixed thickness was also tested. The results showed that the proposed non-destructive approach is promising to evaluate the magnetic anisotropy in steels independently of the geometry of the sample. The region studied presented low induction losses and was affected by magnetic anisotropy, which did not occur in other works that only took into account regions of high induction losses.

  8. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

    Science.gov (United States)

    DAMPE Collaboration; Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M. S.; Chang, J.; Chen, D. Y.; Chen, H. F.; Chen, J. L.; Chen, W.; Cui, M. Y.; Cui, T. S.; D'Amone, A.; de Benedittis, A.; De Mitri, I.; di Santo, M.; Dong, J. N.; Dong, T. K.; Dong, Y. F.; Dong, Z. X.; Donvito, G.; Droz, D.; Duan, K. K.; Duan, J. L.; Duranti, M.; D'Urso, D.; Fan, R. R.; Fan, Y. Z.; Fang, F.; Feng, C. Q.; Feng, L.; Fusco, P.; Gallo, V.; Gan, F. J.; Gao, M.; Gao, S. S.; Gargano, F.; Garrappa, S.; Gong, K.; Gong, Y. Z.; Guo, D. Y.; Guo, J. H.; Hu, Y. M.; Huang, G. S.; Huang, Y. Y.; Ionica, M.; Jiang, D.; Jiang, W.; Jin, X.; Kong, J.; Lei, S. J.; Li, S.; Li, X.; Li, W. L.; Li, Y.; Liang, Y. F.; Liang, Y. M.; Liao, N. H.; Liu, H.; Liu, J.; Liu, S. B.; Liu, W. Q.; Liu, Y.; Loparco, F.; Ma, M.; Ma, P. X.; Ma, S. Y.; Ma, T.; Ma, X. Q.; Ma, X. Y.; Marsella, G.; Mazziotta, M. N.; Mo, D.; Niu, X. Y.; Peng, X. Y.; Peng, W. X.; Qiao, R.; Rao, J. N.; Salinas, M. M.; Shang, G. Z.; H. Shen, W.; Shen, Z. Q.; Shen, Z. T.; Song, J. X.; Su, H.; Su, M.; Sun, Z. Y.; Surdo, A.; Teng, X. J.; Tian, X. B.; Tykhonov, A.; Vagelli, V.; Vitillo, S.; Wang, C.; Wang, H.; Wang, H. Y.; Wang, J. Z.; Wang, L. G.; Wang, Q.; Wang, S.; Wang, X. H.; Wang, X. L.; Wang, Y. F.; Wang, Y. P.; Wang, Y. Z.; Wen, S. C.; Wang, Z. M.; Wei, D. M.; Wei, J. J.; Wei, Y. F.; Wu, D.; Wu, J.; Wu, L. B.; Wu, S. S.; Wu, X.; Xi, K.; Xia, Z. Q.; Xin, Y. L.; Xu, H. T.; Xu, Z. L.; Xu, Z. Z.; Xue, G. F.; Yang, H. B.; Yang, P.; Yang, Y. Q.; Yang, Z. L.; Yao, H. J.; Yu, Y. H.; Yuan, Q.; Yue, C.; Zang, J. J.; Zhang, C.; Zhang, D. L.; Zhang, F.; Zhang, J. B.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, P. F.; Zhang, S. X.; Zhang, W. Z.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. Q.; Zhang, Y. L.; Zhang, Y. P.; Zhang, Z.; Zhang, Z. Y.; Zhao, H.; Zhao, H. Y.; Zhao, X. F.; Zhou, C. Y.; Zhou, Y.; Zhu, X.; Zhu, Y.; Zimmer, S.

    2017-12-01

    High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.

  9. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  10. Detection of irradiated poultry products using the direct epifluorescence filter technique

    International Nuclear Information System (INIS)

    Copin, M.P.; Bourgeois, C.

    1992-01-01

    Food irradiation has developed during the last few years. Nevertheless this development would be larger if there was a recognized method to detect whether a foodstuff had been irradiated. BETTS et al. (1988) suggested a method based on the comparison of an aerobic plate count (APC) with a count obtained using the Direct Epifluorescence Filter Technique (DEFT). They showed that the APC of an irradiated product was considerably lower than that obtained by the DEFT; in this case the DEFT count gave an indication of the number of viable microbial population in the product before irradiation; the APC of a non irradiated product was very well correlated with the DEFT count. In the present work both methods were tested on deep frozen mechanically deboned chicken meat (MDCM) and fresh chicken meat. The fluorochrome used for the DEFT was acridine orange; the mesophilic microflora was counted on 'Plate Count Agar'. According to the results obtained with the deep frozen MDCM, aerobic plate counts and DEFT counts are very similar during 100 days of storage when the product has not been irradiated; if it has been irradiated the difference between the two counts is high (about two logarithmic units). With this method it is thus possible to detect an irradiated product and to know the number of viable microbial cells in the irradiated product before the treatment. The method was tested on fresh chicken meat stored at 4 deg C. At the beginning of the storage period, it is possible to detect irradiated products, but at the end the method fails. In the latter case, irradiation can be detected, but it would be impossible to say that a product had not been irradiated. This method is potentially applicable to deep frozen products, more than to fresh products

  11. Detecting paraprotein interference on a direct bilirubin assay by reviewing the photometric reaction data.

    Science.gov (United States)

    García-González, Elena; Aramendía, Maite; González-Tarancón, Ricardo; Romero-Sánchez, Naiara; Rello, Luis

    2017-07-26

    The direct bilirubin (D-Bil) assay on the AU Beckman Coulter instrumentation can be interfered by paraproteins, which may result in spurious D-Bil results. In a previous work, we took advantage of this fact to detect this interference, thus helping with the identification of patients with unsuspected monoclonal gammopathies. In this work, we investigate the possibility to detect interference based on the review of the photometric reactions, regardless of the D-Bil result. The D-Bil assay was carried out in a set of 2164 samples. It included a group of 164 samples with paraproteins (67 of which caused interference on the assay), as well as different groups of samples for which high absorbance background readings could also be expected (i.e. hemolyzed, lipemic, or icteric samples). Photometric reaction data were reviewed and receiver operating characteristics (ROC) curves were used to establish a cut-off for absorbance that best discriminates interference. The best cut-off was 0.0100 for the absorbance at the first photometric point of the complementary wavelength in the blank cuvette. Once the optimal cut-off for probable interference was selected, all samples analyzed in our laboratory that provided absorbance values above this cut-off were further investigated to try to discover paraproteins. During a period of 6 months, we detected 44 samples containing paraproteins, five of which belonged to patients with non-diagnosed monoclonal gammopathies. Review of the photometric reaction data permits the systematic detection of paraprotein interference on the D-Bil AU assay, even for samples for which reasonable results are obtained.

  12. Direct Detection of The Lyman Continuum of Star-forming Galaxies at z~3

    Science.gov (United States)

    Vasei, Kaveh; Siana, Brian; Shapley, Alice; Alavi, Anahita; Rafelski, Marc

    2018-01-01

    Star-forming galaxies are widely believed to be responsible for the reionization of the Universe and much of the ionizing background at z>3. Therefore, there has been much interest in quantifying the escape fraction of the Lyman continuum (LyC) radiation of the star-forming galaxies. Yet direct detection of LyC has proven to be exceptionally challenging. Despite numerous efforts only 7 galaxies at z2 have been robustly confirmed as LyC leakers. To avoid these challenges many studies use indirect methods to infer the LyC escape fraction. We tested these indirect methods by attempting to detect escaping LyC with a 10-orbit Hubble near-UV (F275W) image that is just below the Lyman limit at the redshift of the Cosmic Horseshoe (a lensed galaxy at z=2.4). We concluded that the measured escape fraction is lower, by more than a factor of five, than the expected escape fraction based on the indirect methods. This emphasizes that indirect determinations should only be interpreted as upper-limits. We also investigated the deepest near-UV Hubble images of the SSA22 field to detect LyC leakage from a large sample of candidate star-forming galaxies at z~3.1, whose redshift was obtained by deep Keck/LRIS spectroscopy and for which Keck narrow-band imaging was showing possible LyC leakage. The high spatial resolution of Hubble images is crucial to confirm our detections are clean from foreground contaminating galaxies, and also to ascertain the escape fraction of our final candidates. We identify five clean LyC emitting star-forming galaxies. The follow up investigation of these galaxies will significantly increase our knowledge of the LyC escape fraction and the mechanisms allowing for LyC escape.

  13. Mode of primary cancer detection as an indicator of screening practice for second primary cancer in cancer survivors: a nationwide survey in Korea

    Directory of Open Access Journals (Sweden)

    Suh Beomseok

    2012-11-01

    Full Text Available Abstract Background While knowledge and risk perception have been associated with screening for second primary cancer (SPC, there are no clinically useful indicators to identify who is at risk of not being properly screened for SPC. We investigated whether the mode of primary cancer detection (i.e. screen-detected vs. non-screen-detected is associated with subsequent completion of all appropriate SPC screening in cancer survivors. Methods Data were collected from cancer patients treated at the National Cancer Center and nine regional cancer centers across Korea. A total of 512 cancer survivors older than 40, time since diagnosis more than 2 years, and whose first primary cancer was not advanced or metastasized were selected. Multivariate logistic regression was used to examine factors, including mode of primary cancer detection, associated with completion of all appropriate SPC screening according to national cancer screening guidelines. Results Being screen-detected for their first primary cancer was found to be significantly associated with completion of all appropriate SPC screening (adjusted odds ratio, 2.13; 95% confidence interval, 1.36–3.33, after controlling for demographic and clinical variables. Screen-detected cancer survivors were significantly more likely to have higher household income, have other comorbidities, and be within 5 years since diagnosis. Conclusions The mode of primary cancer detection, a readily available clinical information, can be used as an indicator for screening practice for SPC in cancer survivors. Education about the importance of SPC screening will be helpful particularly for cancer survivors whose primary cancer was not screen-detected.

  14. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    Science.gov (United States)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  15. Laser Noise and its Impact on the Performance of Intensity-Modulation with Direct-Detection Analog Photonic Links

    National Research Council Canada - National Science Library

    Urick, Vincent J; Devgan, Preetpaul S; McKinney, Jason D; Dexter, James L

    2007-01-01

    The equations for radio-frequency gain, radio-frequency noise figure, compression dynamic range and spurious-free dynamic range are derived for an analog photonic link employing intensity modulation and direct detection...

  16. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    Science.gov (United States)

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  17. Quantitative radioautographic determination of brain tyrosine hydroxylase after direct transfer into nitro-cellulose and immunochemical detection

    International Nuclear Information System (INIS)

    Weissmann, D.; Labatut, R.; Gillon, J.Y.

    1988-01-01

    An improved quantitative immuno chemical determination of tyrosine hydroxylase brain concentrations was designed by using direct transfer into nitro-cellulose from 20 μm thick brain sections followed by immuno-detection and quantitative radioautography [fr

  18. Development of an integrated sampler based on direct 222Rn/220Rn progeny sensors in flow-mode for estimating unattached/attached progeny concentration

    International Nuclear Information System (INIS)

    Mishra, Rosaline; Sapra, B.K.; Mayya, Y.S.

    2009-01-01

    A flow-mode integrated sampler consisting of a wire-mesh and filter-paper array along with passive solid state nuclear track detectors has been developed for estimating unattached and attached fraction of 222 Rn/ 220 Rn progeny concentration. The essential element of this sampler is the direct 222 Rn/ 220 Rn progeny sensor (DRPS/DTPS), which is an absorber-mounted-LR115 type nuclear track detector that selectively registers the alpha particles emitted from the progeny deposited on its surface. During sampling at a specified flow-rate, the unattached progeny is captured on the wire-mesh; while the attached progeny gets transmitted and is captured on the filter-paper. The alpha particles emitted by the deposited progeny atoms are registered on the sensors placed at a specified distance facing the wire-mesh and the filter-paper, respectively. The various steps involved in the development of this flow-mode direct progeny sampler such as the optimization of the sampling rate and the distance between the sensor and the deposition substrate are discussed. The sensitivity factor of the DTPS-loaded sampler for 220 Rn progeny deposited on the wire-mesh and filter-paper is found to be 23.77 ± 0.64 (track cm -2 h -1 ) (Bq m -3 ) -1 and 22.30 ± 0.18 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively; while that of DRPS-loaded sampler for 222 Rn progeny deposition, is 3.03 ± 0.14 (track cm -2 h -1 ) (Bq m -3 ) -1 and 2.08 ± 0.07 (track cm -2 h -1 ) (Bq m -3 ) -1 , respectively. The highlight of this flow-mode sampler is its high sensitivity and that it utilizes the passive technique for estimating the unattached and attached progeny concentration, thus doing away with the alpha counting procedures.

  19. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  20. Do pathological parameters differ with regard to breast density and mode of detection in breast cancer? The Malmö Diet and Cancer Study.

    Science.gov (United States)

    Sartor, Hanna; Borgquist, Signe; Hartman, Linda; Zackrisson, Sophia

    2015-02-01

    Our aim was to study how breast density relates to tumor characteristics in breast cancer with emphasis on mode of detection. Among 17,035 women in the Malmö Diet and Cancer Study 826 incident cases have been diagnosed (1991-2007). Data on tumor characteristics, mode of detection, and density at diagnosis were collected. Associations between density and tumor characteristics were analyzed using logistic and ordinal logistic regression models yielding OR and 95% CI. Adjustments for age at diagnosis, BMI at baseline, and the mode of detection, were performed. In denser breasts, large tumor size was more frequent (ORadj 1.59 (1.26-2.01)) as was lymph node involvement (ORadj 1.32 (1.00-1.74)). Further, the higher the density, the lower the grade (ORadj 0.73 (0.53-1.02) for having higher grade), in screening-detected invasive breast cancer. Our findings stress the importance of considering the impact of density in mammography image interpretation and the possible associations with tumor aggressiveness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improved security detection strategy in quantum secure direct communication protocol based on four-particle Green-Horne-Zeilinger state

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Nie, Jin-Rui; Li, Rui-Fan [Beijing Univ. of Posts and Telecommunications, Beijing (China). School of Computer; Jing, Bo [Beijing Univ. of Posts and Telecommunications, Beijing (China). School of Computer; Beijing Institute of Applied Meteorology, Beijing (China). Dept. of Computer Science

    2012-06-15

    To enhance the efficiency of eavesdropping detection in the quantum secure direct communication protocol, an improved quantum secure direct communication protocol based on a four-particle Green-Horne-Zeilinger (GHZ) state is presented. In the protocol, the four-particle GHZ state is used to detect eavesdroppers, and quantum dense coding is used to encode the message. In the security analysis, the method of entropy theory is introduced, and two detection strategies are compared quantitatively by using the constraint between the information that the eavesdroppers can obtain and the interference that has been introduced. If the eavesdropper wants to obtain all the information, the detection rate of the quantum secure direct communication using an Einstein-Podolsky-Rosen (EPR) pair block will be 50% and the detection rate of the presented protocol will be 87%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol proposed is more secure than the others. (orig.)

  2. The detection of irradiated foods using the Direct Epifluorescent Filter Technique

    International Nuclear Information System (INIS)

    Betts, R.P.; Bankes, P.; Stringer, M.F.; Farr, L.

    1988-01-01

    A method was evaluated which has the potential to detect a food sample which has been irradiated. The technique will give an indication of the total number of viable micro-organisms present before irradiation. It is based on the comparison of an aerobic plate count (APC) with a count obtained using the Direct Epifluorescent Filter Technique (DEFT). When the APC of an irradiated sample was compared with the DEFT count on the same sample, the APC was considerably lower than that obtained by DEFT. The count of orange fluorescing cells after irradiation, however, correlated well with an APC of the same sample before irradiation. For the samples examined the DEFT count determined the viable microbial population in the sample before irradiation. The difference between the APC and the DEFT count gave the number of organisms rendered non-viable by the process. (author)

  3. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    Science.gov (United States)

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  4. First direct detection limits on sub-GeV dark matter from XENON10.

    Science.gov (United States)

    Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer

    2012-07-13

    The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15  kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)dark-matter candidates with masses well below the GeV scale.

  5. Hypercharged dark matter and direct detection as a probe of reheating.

    Science.gov (United States)

    Feldstein, Brian; Ibe, Masahiro; Yanagida, Tsutomu T

    2014-03-14

    The lack of new physics at the LHC so far weakens the argument for TeV scale thermal dark matter. On the other hand, heavier, nonthermal dark matter is generally difficult to test experimentally. Here we consider the interesting and generic case of hypercharged dark matter, which can allow for heavy dark matter masses without spoiling testability. Planned direct detection experiments will be able to see a signal for masses up to an incredible 1010  GeV, and this can further serve to probe the reheating temperature up to about 109  GeV, as determined by the nonthermal dark matter relic abundance. The Z-mediated nature of the dark matter scattering may be determined in principle by comparing scattering rates on different detector nuclei, which in turn can reveal the dark matter mass. We will discuss the extent to which future experiments may be able to make such a determination.

  6. Signatures of Earth-scattering in the direct detection of Dark Matter

    DEFF Research Database (Denmark)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation...... of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards...... the detector. Taking into account a realistic model of the Earth and allowing for a range of DM-nucleon interactions, we present the EarthShadow code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth...

  7. arXiv Inelastic Boosted Dark Matter at Direct Detection Experiments

    CERN Document Server

    Giudice, Gian F.; Park, Jong-Chul; Shin, Seodong

    2018-05-10

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  8. Model-independent determination of the WIMP mass from direct dark matter detection data

    International Nuclear Information System (INIS)

    Drees, Manuel; Shan, Chung-Lin

    2008-01-01

    Weakly interacting massive particles (WIMPs) are one of the leading candidates for dark matter. We develop a model-independent method for determining the mass m χ of the WIMP by using data (i.e. measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP–nucleus cross section. However, it requires positive signals from at least two detectors with different target nuclei. In a background-free environment, m χ ∼50 GeV could in principle be determined with an error of ∼35% with only 2 × 50 events; in practice, upper and lower limits on the recoil energy of signal events, imposed to reduce backgrounds, can increase the error. The method also loses precision if m χ significantly exceeds the mass of the heaviest target nucleus used

  9. Direct Measurement of Trace Elemental Mercury in Hydrocarbon Matrices by Gas Chromatography with Ultraviolet Photometric Detection.

    Science.gov (United States)

    Gras, Ronda; Luong, Jim; Shellie, Robert A

    2015-11-17

    We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is 98% over this range.

  10. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  11. FARADAY CUP AWARD: High Sensitivity Tune Measurement using Direct Diode Detection

    CERN Document Server

    Gasior, M

    2012-01-01

    Direct Diode Detection (3D) is a technique developed at CERN initially for the LHC tune measurement system, to reach a sensitivity allowing observation of beam betatron oscillations with amplitudes below a micrometre. In this technique simple peak diode detectors are used to convert short beam pulses from a beam position pick-up into slowly varying signals. Their DC components, constituting a large background related to beam offsets, are suppressed by series capacitors, while the small signals related to beam oscillations are passed to the subsequent stages for amplification and filtering. As the demodulated beam oscillation signals are already in the kHz range, their processing is simple and they can be digitised with high resolution audio ADCs. This paper presents the history as well as the adventures of the 3D development and prototyping, along with some technical details. It documents a very efficient collaboration between CERN and Brookhaven National Laboratory (BNL), with contributions from other labora...

  12. A multifunctional molecularly imprinted polymer-based biosensor for direct detection of doxycycline in food samples

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Sun, Yi

    2018-01-01

    In this study, we developed a new type of multifunctional molecularly imprinted polymer (MIP) composite as an all-in-one biosensor for the low-cost, rapid and sensitive detection of doxycycline in pig plasma. The MIP composite consisted of a magnetic core for ease of manipulation, and a shell...... of fluorescent MIPs for selective recognition of doxycycline. By simply incorporating a small amount of fluorescent monomer (fluorescein-Oacrylate), the fluorescent MIP layer was successfully grafted onto the magnetic core via a surface imprinting technique. The resultant MIP composites showed significant....... The multifunctional MIP composites were used to directly extract doxycycline from spiked pig plasma samples and quantify the antibiotics based on the quenched fluorescence signals. Recoveries of doxycycline were found in the range of 88–107%....

  13. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou

    2017-01-01

    A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.

  14. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    International Nuclear Information System (INIS)

    Phuong Dinh Tam; Mai Anh Tuan; Tran Trung; Nguyen Duc Chien

    2009-01-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  15. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Phuong Dinh Tam; Mai Anh Tuan [International Training Institute for Materials Science (Viet Nam); Tran Trung [Department of Electrochemistry, Hung-Yen University of Technology and Education (Viet Nam); Nguyen Duc Chien [Institute of Engineering Physics, Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam)], E-mail: tr_trunghut@yahoo.com

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  16. A method of simulating intensity modulation-direct detection WDM systems

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YAO Jian-quan; LI En-bang

    2005-01-01

    In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.

  17. High speed direct imaging of thin metal film ablation by movie-mode dynamic transmission electron microscopy

    Science.gov (United States)

    Hihath, Sahar; Santala, Melissa K.; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus

    2016-03-01

    Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.

  18. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Mascagni, Daniela Branco Tavares [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Miyazaki, Celina Massumi [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil); Cruz, Nilson Cristino da [São Paulo State University - UNESP, Sorocaba, São Paulo (Brazil); Leite de Moraes, Marli [Federal University of São Paulo, Unifesp, Campus São José dos Campos, SP (Brazil); Riul, Antonio [University of Campinas - Unicamp, Campinas, São Paulo (Brazil); Ferreira, Marystela, E-mail: marystela@ufscar.br [Federal University of São Carlos, UFSCar, Campus Sorocaba, SP (Brazil)

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L{sup ‐1} and sensitivity of 2.47 μA·cm{sup −2}·mmol{sup −1}·L for glucose with the (GPDDA/GPSS){sub 1}/(GPDDA/GOx){sub 2} architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  19. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection

    International Nuclear Information System (INIS)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; Cruz, Nilson Cristino da; Leite de Moraes, Marli; Riul, Antonio; Ferreira, Marystela

    2016-01-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4 μmol·L ‐1 and sensitivity of 2.47 μA·cm −2 ·mmol −1 ·L for glucose with the (GPDDA/GPSS) 1 /(GPDDA/GOx) 2 architecture, whose thickness was 19.80 ± 0.28 nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. - Highlights: • Direct electrochemistry of glucose oxidase at functionalized reduced graphene oxide. • Thickness (layer-by-layer) LbL film determined by Surface Plasmon Resonance (SPR). • Selective determination of glucose in the presence of several interferents. • Real sample test: commercial oral electrolyte solution and lactose-free milk.

  20. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  1. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    Science.gov (United States)

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  2. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection.

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-06

    If dark matter (DM) particles are lighter than a few   MeV/c^{2} and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {m_{e},σ_{e}}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10-10^{3}  eV. After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σ_{e} in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  3. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.

    Science.gov (United States)

    Mascagni, Daniela Branco Tavares; Miyazaki, Celina Massumi; da Cruz, Nilson Cristino; de Moraes, Marli Leite; Riul, Antonio; Ferreira, Marystela

    2016-11-01

    We report an electrochemical glucose biosensor made with layer-by-layer (LbL) films of functionalized reduced graphene oxide (rGO) and glucose oxidase (GOx). The LbL assembly using positively and negatively charged rGO multilayers represents a simple approach to develop enzymatic biosensors. The electron transport properties of graphene were combined with the specificity provided by the enzyme. rGO was obtained and functionalized using chemical methods, being positively charged with poly(diallyldimethylammonium chloride) to form GPDDA, and negatively charged with poly(styrene sulfonate) to form GPSS. Stable aqueous dispersions of GPDDA and GPSS are easily obtained, enabling the growth of LbL films on various solid supports. The use of graphene in the immobilization of GOx promoted Direct Electron Transfer, which was evaluated by Cyclic Voltammetry. Amperometric measurements indicated a detection limit of 13.4μmol·L(-1) and sensitivity of 2.47μA·cm(-2)·mmol(-1)·L for glucose with the (GPDDA/GPSS)1/(GPDDA/GOx)2 architecture, whose thickness was 19.80±0.28nm, as determined by Surface Plasmon Resonance (SPR). The sensor may be useful for clinical analysis since glucose could be detected even in the presence of typical interfering agents and in real samples of a lactose-free milk and an electrolyte solution to prevent dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    Science.gov (United States)

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  5. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  6. Direct-detection optical OFDM superchannel for long-reach PON using pilot regeneration.

    Science.gov (United States)

    Hu, Rong; Yang, Qi; Xiao, Xiao; Gui, Tao; Li, Zhaohui; Luo, Ming; Yu, Shaohua; You, Shanhong

    2013-11-04

    We demonstrate a novel long-reach PON downstream scheme based on the regenerated pilot assisted direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) superchannel transmission. We use the optical comb source to form DDO-OFDM superchannel, and reserve the center carrier as a seed pilot. The seed pilot is further tracked and reused to generate multiple optical carriers at the local exchange. Each regenerated pilot carrier is selected to beat with an adjacent OFDM sub-band at ONU, so that the electrical bandwidth limitation can be much released compared to the conventional DDO-OFDM superchannel detection. With the proposed proof-of-concept architecture, we experimentally demonstrated a 116.7 Gb/s superchannel OFDM-PON system with transmission reach of 100 km, and 1:64 splitting ratio. We analyze the impact of carrier-to-sideband power ratio (CSPR) on system performance. The experiment result shows that, 5 dB power margin is still remained at ONU using such technique.

  7. Identification of Dark Matter particles with LHC and direct detection data

    CERN Document Server

    Bertone, Gianfranco; Fornasa, Mattia; de Austri, Roberto Ruiz; Trotta, Roberto

    2010-01-01

    Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if Weakly Interacting Massive Particles (WIMPs) are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe. We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection (DD) data, by making a simple Ansatz on the WIMP local density, i.e. by assuming that the local density scales with the cosmological relic abundance. We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino LSP in the stau co-annihilation region. Our results show that future ton-scale DD experiments will allow to break degeneracies in the SUSY parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.

  8. Probing GeV-scale MSSM neutralino dark matter in collider and direct detection experiments

    Science.gov (United States)

    Duan, Guang Hua; Wang, Wenyu; Wu, Lei; Yang, Jin Min; Zhao, Jun

    2018-03-01

    Given the recent constraints from the dark matter (DM) direct detections, we examine a light GeV-scale (2-30 GeV) neutralino DM in the alignment limit of the Minimal Supersymmetric Standard Model (MSSM). In this limit without decoupling, the heavy CP-even scalar H plays the role of the Standard Model (SM) Higgs boson while the other scalar h can be rather light so that the DM can annihilate through the h resonance or into a pair of h to achieve the observed relic density. With the current collider and cosmological constraints, we find that such a light neutralino DM above 6 GeV can be excluded by the XENON-1T (2017) limits while the survivied parameter space below 6 GeV can be fully tested by the future germanium-based light dark matter detections (such as CDEX), by the Higgs coupling precison measurements or by the production process e+e- → hA at an electron-positron collider (Higgs factory).

  9. Peaked signals from dark matter velocity structures in direct detection experiments

    Science.gov (United States)

    Lang, Rafael F.; Weiner, Neal

    2010-06-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

  10. Direct immune-detection of cortisol by chemiresistor graphene oxide sensor.

    Science.gov (United States)

    Kim, Yo-Han; Lee, Kyungmin; Jung, Hunsang; Kang, Hee Kyung; Jo, Jihoon; Park, In-Kyu; Lee, Hyun Ho

    2017-12-15

    In this study, a biosensor to detect a stress biomarker of cortisol using cortisol monoclonal antibody (c-Mab) covalently immobilized on reduced graphene oxide (rGO) channel as electrical sensing element was demonstrated. Highly specific immune-recognition between the c-Mab and the cortisol was identified and characterized on a basis of resistance change at the rGO channel based chemiresistor sensor achieving the limit of detection of 10pg/mL (27.6 pM). In addition, cortisol concentrations of real human salivary sample and buffer solution of rat adrenal gland acute slices, which could secret the cortisol induced by adrenocorticotropic hormone (ACTH), were directly measured by the chemiresistor corresponding to the specific sensing of the cortisol. The rGO chemiresistor could selectively measure the cortisol levels in spite of diverse neuroendocrine's existence. The potential perspective of this study can be a protocol of new cortisol sensor development, which will be applicable to point-of-care testing (POCT) targeted for salivary cortisol, in vitro psychobiological study on cortisol induction, and implantable sensor chip in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-01

    If dark matter (DM) particles are lighter than a few MeV /c2 and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {me,σe}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10 -103 eV . After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σe in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  12. Peaked signals from dark matter velocity structures in direct detection experiments

    International Nuclear Information System (INIS)

    Lang, Rafael F.; Weiner, Neal

    2010-01-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E R . The peaks of such signals are typically fairly broad, with ΔE R /E peak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape

  13. Direct detection of chicken genomic DNA for gender determination by thymine-DNA glycosylase.

    Science.gov (United States)

    Porat, N; Bogdanov, K; Danielli, A; Arie, A; Samina, I; Hadani, A

    2011-02-01

    1. Birds, especially nestlings, are generally difficult to sex by morphology and early detection of chick gender in ovo in the hatchery would facilitate removal of unwanted chicks and diminish welfare objections regarding culling after hatch. 2. We describe a method to determine chicken gender without the need for PCR via use of Thymine-DNA Glycosylase (TDG). TDG restores thymine (T)/guanine (G) mismatches to cytosine (C)/G. We show here, that like DNA Polymerase, TDG can recognise, bind and function on a primer hybridised to chicken genomic DNA. 3. The primer contained a T to mismatch a G in a chicken genomic template and the T/G was cleaved with high fidelity by TDG. Thus, the chicken genomic DNA can be identified without PCR amplification via direct and linear detection. Sensitivity was increased using gender specific sequences from the chicken genome. 4. Currently, these are laboratory results, but we anticipate that further development will allow this method to be used in non-laboratory settings, where PCR cannot be employed.

  14. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  15. Optimisation of a direct plating method for the detection and enumeration of Alicyclobacillus acidoterrestris spores.

    Science.gov (United States)

    Henczka, Marek; Djas, Małgorzata; Filipek, Katarzyna

    2013-01-01

    A direct plating method for the detection and enumeration of Alicyclobacillus acidoterrestris spores has been optimised. The results of the application of four types of growth media (BAT agar, YSG agar, K agar and SK agar) regarding the recovery and enumeration of A. acidoterrestris spores were compared. The influence of the type of applied growth medium, heat shock conditions, incubation temperature, incubation time, plating technique and the presence of apple juice in the sample on the accuracy of the detection and enumeration of A. acidoterrestris spores was investigated. Among the investigated media, YSG agar was the most sensitive medium, and its application resulted in the highest recovery of A. acidoterrestris spores, while K agar and BAT agar were the least suitable media. The effect of the heat shock time on the recovery of spores was negligible. When there was a low concentration of spores in a sample, the membrane filtration method was superior to the spread plating method. The obtained results show that heat shock carried out at 80°C for 10 min and plating samples in combination with membrane filtration on YSG agar, followed by incubation at 46°C for 3 days provided the optimal conditions for the detection and enumeration of A. acidoterrestris spores. Application of the presented method allows highly efficient, fast and sensitive identification and enumeration of A. acidoterrestris spores in food products. This methodology will be useful for the fruit juice industry for identifying products contaminated with A. acidoterrestris spores, and its practical application may prevent economic losses for manufacturers. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Direct Detection of Protein Biomarkers in Human Fluids Using Site-Specific Antibody Immobilization Strategies

    Directory of Open Access Journals (Sweden)

    Maria Soler

    2014-01-01

    Full Text Available Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure ur