WorldWideScience

Sample records for direct beam solar

  1. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  2. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  3. Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain

    2016-04-01

    Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.

  4. Walking-Beam Solar-Cell Conveyor

    Science.gov (United States)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  5. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  6. A solar simulator-pumped gas laser for the direct conversion of solar energy

    Science.gov (United States)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  7. Solar Power Beaming: From Space to Earth

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  8. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  9. Direct solar radiation on various slopes from 0 to 60 degrees north latitude.

    Science.gov (United States)

    John Buffo; Leo J. Fritschen; James L. Murphy

    1972-01-01

    Direct beam solar radiation is presented in graphical and tabular form for hourly, daily, and yearly values for seven slopes on each of 16 aspects from the Equator to 60 degrees north in 10-degree increments. Theoretical equations necessary for the calculations are given. Solar altitude and azimuth during the day and year are also presented for the same latitude.

  10. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    Science.gov (United States)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  11. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  12. Beam instability of the Z mode in the solar wind

    International Nuclear Information System (INIS)

    Krauss-Varban, D.

    1989-01-01

    The growth rate of the z mode is calculated assuming a cold magnetized background plasma and a tenuous population of hot electrons. For a weak, but nonvanishing, magnetic field the growth rate is shown to coincide with that of the electrostatic Langmuir wave, i.e., the result when the influence of the ambient magnetic field is only retained for the energetic electrons. Considering the case of a beam of hot electrons, we numerically evaluate the expression for the growth rate for several cases of solar wind plasma conditions. Solution of the full 3 x 3 dispersion determinant allows the computation of the growth rate and real frequency shift for arbitrary beam densities and magnetic field strength. The influence of the background magnetic field is discussed, and the apparent polarization of the excited waves is calculated assuming a weak density gradient between source and observer. The effect of the beam density, direction of propagation, and magnetic field on the observable polarization is discussed. copyright American Geophysical Union 1989

  13. Beam heating in solar flares - Electrons or protons?

    International Nuclear Information System (INIS)

    Brown, J.C.; Karlicky, M.; Mackinnon, A.L.; Van Den Oord, G.H.J.

    1990-01-01

    The current status of electron and proton beam models as candidates for the impulsive phase heating of solar flares is discussed in relation to observational constants and theoretical difficulties. It is concluded that, while the electron beam model for flare heating still faces theoretical and observational problems, the problems faced by low and high energy proton beam models are no less serious, and there are facets of proton models which have not yet been studied. At the present, the electron beam model remains the most viable and best developed of heating model candidates. 58 refs

  14. Direct solar-pumped lasers

    Science.gov (United States)

    Lee, J. H.; Shiu, Y. J.; Weaver, W. R.

    1980-01-01

    The feasibility of direct solar pumping of an iodine photodissociation laser at lambda = 1.315 microns was investigated. Threshold inversion density and effect of elevated temperature (up to 670 K) on the laser output were measured. These results and the concentration of solar radiation required for the solar pumped iodine laser are discussed.

  15. Ion beam analysis of Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Karydas, A.G. [International Atomic Energy Agency (IAEA), IAEA Laboratories, Nuclear Science and Instrumentation Laboratory, A-2444 Seibersdorf (Austria); Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153 10 Aghia Paraskevi, Athens Greece (Greece); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Radovic, I. Bogdanovic [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Kaufmann, C.; Rissom, T. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Jaksic, M. [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E. N. 10, Apartado 21, 2686-953 Sacavém (Portugal)

    2015-11-30

    Graphical abstract: - Highlights: • Elemental depth profiles for various CIGS thin films were quantitatively determined. • Pure absorbers, complete cell and bilayer solar cells were prepared and analyzed. • Synergistic PIXE and RBS analysis of thin solar cells using alpha beam particles. • High energy alpha beam resolved completely the Indium depth profile. • Synchrotron based Reference Free GIXRF quantitative analysis validated IBA results. - Abstract: The present work investigates the potential of ion beam analysis (IBA) techniques such as the Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE) using helium ions to provide quantitative in-depth elemental analysis of various types of Cu(In,Ga)Se{sub 2} thin films. These films with a thickness of about 2 μm are used as absorber layers in photovoltaic devices with continuously increasing the performance of this technology. The preparation process generally aims to obtain an in-depth gradient of In and Ga concentrations that optimizes the optoelectronic and electrical properties of the solar cell. The measurements were performed at directly accessible single or double layered CIGS absorbers and at buried absorbers in completed thin film solar cells. The IBA data were analyzed simultaneously in order to derive best fitted profiles that match all experimental RBS and PIXE spectra. For some samples elemental profiles deduced form synchrotron based, reference free grazing incidence X-ray fluorescence analysis were compared with the IBA results and an overall good agreement was observed within quoted uncertainties.

  16. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  17. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  18. Solar radiation on Mars: Update 1991

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  19. SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiansen; Pei, Zhongtian; Wang, Linghua; Tu, Chuanyi; Zhang, Lei [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Salem, Chadi, E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-06-01

    Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover, no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.

  20. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  1. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  2. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  3. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  4. Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet

    Science.gov (United States)

    Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.

    2017-12-01

    Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.

  5. Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent

    2017-04-01

    We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.

  6. Beam pointing direction changes in a misaligned Porro prism resonator

    Science.gov (United States)

    Lee, Jyh-Fa; Leung, Chung-Yee

    1988-07-01

    The relative change of the beam pointing direction for a misaligned Porro prism resonator has been analyzed, using an oscillation axis concept for the Porro prism resonator to find the beam direction. Expressions for the beam tilting angles are presented which show that the angular misalignment in the horizontal direction will result in beam tilting in both the horizontal and vertical directions. Good agreement between experimental and theoretical results is found.

  7. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  8. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  9. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  10. Electron-beam direct drive for rf accelerator cavities

    International Nuclear Information System (INIS)

    Nahemow, M.D.; Humphries, S. Jr.

    1987-01-01

    This paper describes a Program to Demonstrate Electron-Beam Direct Drive for Radio Frequency (RF) Linear Accelerators at the Westinghouse R and D Center. The experimental program was undertaken using an existing electron beam facility at the Westinghouse R and C Center to demonstrate the potential of the Direct Drive RF Cavities for High Power Beams concept discussed as part of a program to develop a viable alternate concept for driving RF linear accelerators

  11. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector

    International Nuclear Information System (INIS)

    Menbari, Amir; Alemrajabi, Ali Akbar; Rezaei, Amin

    2016-01-01

    Highlights: • The effect of CuO/Water on a direct absorption parabolic collector is investigated. • The power-law is used for simulating the turbulent flow into the receiver pipe. • In this collector the solar irradiance is absorbed directly and converted to heat. • Nanofluid as the working fluid improves the thermal efficiency of the collector. - Abstract: Direct absorption solar collectors (DASCs) form a new class of collectors that directly harvest sun beams via a working fluid. They offer several advantages over their conventional surface absorption counterparts such as reduced surface heat loss and increased solar irradiance absorption. The optical and thermo-physical properties of the working fluid may be improved and system efficiency may be enhanced in direct absorption solar collectors (DASCs) by introducing nanoparticles into the base fluid. The present study investigates, both analytically and experimentally, the effects of CuO/Water nanofluid on the efficiency of a direct absorption parabolic trough collector (DAPTC). The theoretical analysis of DAPTC is based on the power-law with the objective of simulating a turbulent flow into the receiver pipe. Comparison of the results obtained from the model and the experimental measurements reveals a good agreement between the two sets of data, indicating that they can be exploited to validate the numerical solution. Moreover, modeling results indicate that the average radial temperature and energy generation terms due to the solar irradiance absorbed and scattered by the nanoparticles decrease with increasing distance from the receiver pipe wall. It is also found that the solar irradiance is absorbed and converted into a significant amount of sensible heat along the length of the receiver pipe. Finally, the results of both the numerical and the experimental investigations of the DAPTC collector show that the thermal efficiency of the system improves as a result of increased nanoparticle volume fraction

  12. Compact, semi-passive beam steering prism array for solar concentrators.

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  13. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  14. Series-parallel method of direct solar array regulation

    Science.gov (United States)

    Gooder, S. T.

    1976-01-01

    A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.

  15. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  16. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    International Nuclear Information System (INIS)

    Coopersmith, Jonathan

    2010-01-01

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  17. Collisionless effects on beam-return current systems in solar flares

    Science.gov (United States)

    Vlahos, L.; Rowland, H. L.

    1985-01-01

    A theoretical study of the beam-return current system (BRCS) in solar flares shows that the precipitating electrons modify the way in which the return current (RC) is carried by the background plasma. In particular it is found that the RC is not carried by the bulk of the electrons but by a small number of high-velocity electrons. For beam/plasma densities exceeding approximately 0.001, this can reduce the effects of collisions and heating by the RC. For higher-density beams, where the RC could be unstable to current-driven instabilities, the effects of strong turbulence anomalous resistivity prevent the appearance of such instabilities. The main conclusion is that the BRCS is interconnected, and that the beam-generated strong turbulence determines how the RC is carried.

  18. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  19. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  20. Topology Control in Aerial Multi-Beam Directional Networks

    Science.gov (United States)

    2017-04-24

    Topology Control in Aerial Multi-Beam Directional Networks Brian Proulx, Nathaniel M. Jones, Jennifer Madiedo, Greg Kuperman {brian.proulx, njones...significant interference. Topology control (i.e., selecting a subset of neighbors to communicate with) is vital to reduce the interference. Good topology ...underlying challenges to topology control in multi-beam direction networks. Two topology control algorithms are developed: a centralized algorithm

  1. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  2. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  3. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  4. Solar chulha

    Energy Technology Data Exchange (ETDEWEB)

    Jadhao, P. H. [Department of Physics J.D. Institute of Engg. & Tech. Yavatmal (India); Patrikar, S. R. [Department of Physics VNIT, Nagpur (India)

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  5. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may mot be possible by other techniques

  6. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques

  7. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  8. Self-similar Lagrangian hydrodynamics of beam-heated solar flare atmospheres

    International Nuclear Information System (INIS)

    Brown, J.C.; Emslie, A.G.

    1989-01-01

    The one-dimensional hydrodynamic problem in Lagrangian coordinates (Y, t) is considered for which the specific energy input Q has a power-law dependence on both Y and t, and the initial density distribution is rho(0) which is directly proportional to Y exp gamma. In regimes where the contributions of radiation, conduction, quiescent heating, and gravitational terms in the energy equation are negligible compared to those arising from Q, the problem has a self-similar solution, with the hydrodynamic variables depending only on a single independent variable which is a combination of Y, t, and the dimensional constants of the problem. It is then shown that the problem of solar flare chromospheric heating due to collisional interaction of a beam of electrons (or protons) with a power-law energy spectrum can be approximated by such forms of Q(Y, t) and rho(0)(Y), and that other terms are negligible compared to Q over a restricted regime early in the flare. 29 refs

  9. A comparative study of direct and indirect solar drying of mango ...

    African Journals Online (AJOL)

    A comparative study of direct and indirect solar drying of mango. ... Thus, indirect solar dryer was found to be suitable for industrial or semi industrial mango drying, whereas direct solar dryer was appropriate to a family ... HOW TO USE AJOL.

  10. Two applications of direct digital down converters in beam diagnostics

    International Nuclear Information System (INIS)

    Powers, Tom; Flood, Roger; Hovater, Curt; Musson, John

    2000-01-01

    The technologies of direct digital down converters, digital frequency synthesis, and digital signal processing are being used in many commercial applications. Because of this commercialization, the component costs are being reduced to the point where they are economically viable for large scale accelerator applications. This paper will discuss two applications of these technologies to beam diagnostics. In the first application the combination of direct digital frequency synthesis and direct digital down converters are coupled with digital signal processor technology in order to maintain the stable gain environment required for a multi-electrode beam position monitoring system. This is done by injecting a CW reference signal into the electronics as part of the front-end circuitry. In the second application direct digital down converters are used to provide a novel approach to the measurement of beam intensity using cavity current monitors. In this system a pair of reference signals are injected into the cavity through an auxiliary port. The beam current is then calculated as the ratio of the beam signal divided by the average of the magnitude of the two reference signals

  11. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  12. FEL options for power beaming

    International Nuclear Information System (INIS)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S.; Vinokurov, N.A.

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P L = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  13. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  14. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    Science.gov (United States)

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  15. Direct Optimization of Printed Reflectarrays for Contoured Beam Satellite Antenna Applications

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig B.; Kim, Oleksiy S.

    2013-01-01

    An accurate and efficient direct optimization technique for the design of contoured beam reflectarrays is presented. It is based on the spectral domain method of moments assuming local periodicity and minimax optimization. Contrary to the conventional phase-only optimization techniques, the geome......An accurate and efficient direct optimization technique for the design of contoured beam reflectarrays is presented. It is based on the spectral domain method of moments assuming local periodicity and minimax optimization. Contrary to the conventional phase-only optimization techniques......, the geometrical parameters of the array elements are directly optimized to fulfill the contoured beam requirements, thus maintaining a direct relation between optimization goals and optimization variables, and hence resulting in more optimal designs. Both co- and cross-polar radiation patterns of the reflectarray...... can be optimized for multiple frequencies, polarizations, and feed illuminations. Several contoured beam reflectarrays, that radiate a high-gain beam on a European coverage, have been designed and compared to similar designs obtained using the phase-only optimization technique. The comparisons show...

  16. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  17. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  18. Correlation of total, diffuse, and direct solar radiation

    Science.gov (United States)

    Buyco, E. H.; Namkoong, D.

    1977-01-01

    Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.

  19. Intra-cavity decomposition of a dual-directional laser beam

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-01-01

    Full Text Available A method of decomposing a dual-directional laser beam into a forward propagating field and a backward propagating field for an apertured plano-concave cavity is presented. An intra-cavity aperture is a simple method of laser beam shaping as higher...

  20. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  1. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  2. Significant efficiency enhancement in thin film solar cells using laser beam-induced graphene transparent conductive electrodes

    OpenAIRE

    Thekkekara, L. V.; Cai, Bouyan

    2018-01-01

    Thin film solar cells have been attractive for decades in advanced green technology platforms due to its possibilities to be integrated with buildings and on-chip applications. However, the bottleneck issues involved to consider the current solar cells as a major electricity source includes the lower efficiencies and cost-effectiveness. We numerically demonstrate the concept of the absorption enhancement in thin-film amorphous silicon solar cells using the laser beam-induced graphene material...

  3. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    International Nuclear Information System (INIS)

    Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.

    2010-01-01

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  4. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  5. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  6. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  7. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...

  8. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results

    International Nuclear Information System (INIS)

    Jing Dengwei; Liu Huan; Zhang Xianghui; Zhao Liang; Guo Liejin

    2009-01-01

    In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.

  9. Clear sky solar insolation data for Islamabad

    International Nuclear Information System (INIS)

    Akhter, P.; Baig, A.; Mufti, A.

    1990-09-01

    Monthly average values of both integrated and instantaneous clear sky solar radiation components for Islamabad territory have been presented and discussed. The components include total, direct normal, direct horizontal, global and diffuse radiations, sun hours, number of clear days and temperature for solar energy applications. Beam irradiance values are used to get clear sky (maximum) sun hours by ab-initio. The need for replacing the conventional sunshine recorder is discussed. (author). 8 refs, 1 fig, 2 tabs

  10. Efficiency limit of solar cells with index-near-zero photon management layers

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, A.P.

    2017-05-15

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer – a transparent index-near-zero (INZ) material – applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers – and their influence on solar cell current density, open circuit voltage, and power conversion efficiency – are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  11. Efficiency limit of solar cells with index-near-zero photon management layers

    International Nuclear Information System (INIS)

    Kirk, A.P.

    2017-01-01

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer – a transparent index-near-zero (INZ) material – applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers – and their influence on solar cell current density, open circuit voltage, and power conversion efficiency – are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  12. Efficiency limit of solar cells with index-near-zero photon management layers

    Science.gov (United States)

    Kirk, A. P.

    2017-05-01

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer - a transparent index-near-zero (INZ) material - applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers - and their influence on solar cell current density, open circuit voltage, and power conversion efficiency - are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  13. A solar simulator-pumped atomic iodine laser

    Science.gov (United States)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  14. Manhattan Solar Cannon

    Science.gov (United States)

    Treffers, Richard R.; Loisos, George; Ubbelohde, Susan; Douglas, Susanna; Pintos, Eduardo; Mulherin, James; Pasley, David

    2015-01-01

    We describe a 2.4 m hexagonal solar collector atop a Manhattan office building used for a solar / arts project. The collector uses an afocal design to concentrate the sunlight into a 0.6 m diameter beam which is directed by mirrors into a 80 m long fiber optic sculpture which descends an interior stairwell. The collector is fully steerable and follows the sun each day robotically. The control system and the optical design of the collector as well as the fiber optic sculpture will be discussed.

  15. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    Science.gov (United States)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  16. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  17. Estimating the daily solar irradiation on building roofs and facades using Blender Cycles path tracing algorithm

    Directory of Open Access Journals (Sweden)

    Ilba Mateusz

    2016-01-01

    Full Text Available The paper presents the development of an daily solar irradiation algorithm with application of the free software Blender. Considerable attention was paid to the possibilities of simulation of reflections of direct and diffuse solar radiation. For this purpose, the rendering algorithm “Cycles” was used, based on the principle of bi-directional path tracing – tracing random paths of light beams. The value of global radiation in this study is the sum of four components: direct beam radiation, reflected beam radiation, diffuse radiation and reflected diffuse radiation. The developed algorithm allows calculation of solar irradiation for all elements of the 3D model created in Blender, or imported from an external source. One minute is the highest possible time resolution of the analysis, while the accuracy is dependent on the resolution of textures defined for each element of a 3D object. The analysed data is stored in the form of textures that in the algorithm are converted to the value of solar radiance. The result of the analysis is visualization, which shows the distribution of daily solar irradiation on all defined elements of the 3D model.

  18. Effect of Working Fluids on the Thermal Performance of a Bi-directional Solar Thermodiode

    International Nuclear Information System (INIS)

    Ko, Yung Joo

    2008-02-01

    (Smart Module System) were made. Six kinds of working fluids were used to investigate their effects on the thermal performance of a bi-directional solar thermo diode. Two kinds of thermo diodes were studied. The first one is the mono-directional thermo diode that allows heat flow in the desired direction but blocks in the opposite direction. The second one is the bi-directional thermo diode of which the direction of heat flow, surface absorptivity and heat capacity of the module can be adjusted for maximum energy efficiency. This hi-directional can be used both for the summer cooling and winter heating of buildings and shelters. Usually, the thermo diodes are simple beam shape, but in this study, they were redesigned a s two L-shaped loops mounted between a collector plate and a Storage tank. Rotable joints between the horizontal and inclined segments of the loop enable easy alteration of geat transfer direction. The loops and tank were filled with a working fluid for effective heat transfer when the solar thermo diode was forwarded biased. The solar thermo diode was heated by a radiant heater that consisted of 20 halogen lamps that generates a heat flux of about 1000W/m 2 on the collector surface. The working fluids used in the study were water, acetone, ethylalcohol. In addition, three kinds of silicon oil with different viscosity were studied. And three mixtures of water and ethylalcohol of different volume ratio were used. Finally, the nano fluids were also studied. Working fluids were tested with thermal conductivity values ranging from 0.1 to 0.56 W/m- .deg. C, thermal expansion coefficient values ranging from 1.8 x 10 -4 to 1.3 x 10 -3 K -1 , and kinematic viscosity values ranging from 0.65 x 10 -6 to 100 x 10 -6 m 2 /s. Through the study, it was found that the circulation point(CP) at the onset of fluid flow is very important. for a given working fluid, the heat transfer and heated stability of the system depends strongly on the circulation point of the fluid

  19. TiO2-photoanode-assisted direct solar energy harvesting and storage in a solar-powered redox cell using halides as active materials.

    Science.gov (United States)

    Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong

    2018-06-19

    The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO2 photoanode in the cathode side. Direct charging the cell by solar irradiation results in the conversion of solar energy in to chemical energy. While discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br2/Br- and I3-/I- in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5V with good round-trip efficiencies. This design is expected to be a potential alternative towards the development of affordable, inexhaustible and clean solar energy technologies.

  20. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  1. Approach to interior design for passive direct gain solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Kachadorian, C.C.

    1980-01-01

    In response to requests from buyers and builders of direct gain passive solar homes interior design criteria either specific to, or emphasized by, passive solar buildings are investigated. Problems of high sunlight penetration, secondary illumination, material selection, sound control and psychology are approached. Material deterioration, fading, glare, noise, and a sense of spacial confinement can be minimized, contributing to the appeal and saleability of passive solar homes.

  2. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    Science.gov (United States)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  3. Quasi-Airy beams along tunable propagation trajectories and directions.

    Science.gov (United States)

    Qian, Yixian; Zhang, Site

    2016-05-02

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.

  4. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  5. Calculation and mapping of direct and diffuse solar radiation in Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Knowledge of direct and diffuse solar radiation has been of vital importance in assessing the energy potential of Costa Rica. The work is focused on the calculation and plotting of contour maps of the direct and diffuse solar radiation, based in sixty-two radiometric stations scattered throughout the country. In tracing these contours have been used experimental and predicted values of direct and diffuse radiation. Additionally, direct and diffuse solar radiation is compared during the dry season and the rainy season in the six climatic regions of the country: Valle Central, North Pacific, Central Pacific, South Pacific, North Zone and Caribbean Region. Daily average levels of radiation observed directly have been from 6.1 and 10.1 MJ/m 2 , with higher values in the northern sections of the Pacific Slope, west of Valle Central and the tops of the highest mountains. The lowest values have coincided with the North Zone and Caribbean Region. The highest values of diffuse radiation have coincided with the North Zone and South Pacific. An increase in direct solar radiation by 40% is observed in the month of the dry season. (author) [es

  6. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming; Paetzold, Ulrich W; Gehlhaar, Robert; Smirnov, Vladimir; Boyen, Hans-Gerd; Tait, Jeffrey Gerhart; Conings, Bert; Zhang, Weimin; Nielsen, Christian; McCulloch, Iain; Froyen, Ludo; Heremans, Paul; Cheyns, David

    2015-01-01

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can

  7. Beam profiles in the nonwedged direction for dynamic wedges

    International Nuclear Information System (INIS)

    Lydon, J.M.; Rykers, K.L.

    1996-01-01

    One feature of the dynamic wedge is the improved flatness of the beam profile in the nonwedged direction when compared to fixed wedges. Profiles in the nonwedged direction for fixed wedges show a fall-off in dose away from the central axis when compared to the open field profile. This study will show that there is no significant difference between open field profiles and nonwedged direction profiles for dynamically wedged beams. The implications are that the dynamic wedge offers an improved dose distribution in the nonwedged direction that can be modelled by approximating the dynamically wedged field to an open field. This is possible as both the profiles and depth doses of the dynamically wedged fields match those of the open fields, if normalized to d max of the same field size. For treatment planning purposes the effective wedge factor (EWF) provides a normalization factor for the open field depth dose data set. Data will be presented to demonstrate that the EWF shows relatively little variation with depth and can be treated as being independent of field size in the nonwedged direction. (author)

  8. Human projected area factors for detailed direct and diffuse solar radiation analysis

    DEFF Research Database (Denmark)

    Kubaha, K.; Fiala, D.; Toftum, Jørn

    2004-01-01

    Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...

  9. Accurate measurement of directional emittance of solar energy materials

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugo-Le Gof, A.; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Directional emittance plays an important role in the calculation of radiative heat exchange. It partly determines the thermal insulation of single and multiple glazing and the efficiency of solar collectors. An emissiometer has been designed and built, capable for measurements of the directional

  10. Full PIC simulations of solar radio emission

    Science.gov (United States)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  11. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  12. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    Science.gov (United States)

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  13. Direct solar pumping of semiconductor lasers: A feasibility study

    Science.gov (United States)

    Anderson, Neal G.

    1992-01-01

    This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is

  14. P-N junction solar cell grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hazrati Fard, M.

    2001-01-01

    Growth of GaAs epilayers by Molecular Beam Epitaxy was accomplished for the first time in Iran. The layers were grown on GaAs (001) substrates (p+ wafer) with Si impurity for p n junction solar cell fabrication at a rate of nearly one micron per hour and 0.25 micron per quarter. Crystalline quality of grown layers had been monitored during growth by Reflection High Energy Electron Diffraction system. Doping profile and layer thickness was assessed by electrochemical C-V profiling method. Then Hall measurements were conducted on small samples both in room temperature and liquid nitrogen temperature so giving average carrier concentration and compensation ratio. The results as like: V oc , I sc , F F, η were comparable with other laboratory reports. information for obtaining good and repeatable growths was collected. Therefore, the conditions of repeatable quality growth p n junction solar cells onto GaAs (001) substrates were determined

  15. The noise power spectrum in CT with direct fan beam reconstruction

    International Nuclear Information System (INIS)

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

  16. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  17. Soft X-ray beam induced current technique

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B; Ade, H [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Queen, D; Hellman, F [Department of Physics, University of California, Berkeley, CA 94720 (United States); Kilcoyne, A L D; Tyliszczak, T, E-mail: benjamin.watts@gmail.co [Advanced Light Source, Lawrence Berkeley Nat. Lab., Berkeley, CA 94720 (United States)

    2009-09-01

    Direct mapping of the charge transport efficiency of polymer solar cell devices using a soft X-ray beam induced current (SoXBIC) method is described. By fabricating a polymer solar cell on an x-ray transparent substrate, we demonstrate the ability to map polymer composition and nanoscale structure within an operating solar cell device and to simultaneously measure the local charge transport efficiency via the short-circuit current. A simple model is calculated and compared to experimental SoXBIC data of a PFB:F8BT bulk-heterojunction device in order to gain greater insight into the device operation and physics.

  18. Decomposition and decoloration of a direct dye by electron beam radiation

    International Nuclear Information System (INIS)

    Vahdat, Ali; Bahrami, S.H.; Arami, M.; Motahari, A.

    2010-01-01

    The wastewaters released by textile industries to the environment contain hazardous compounds like toxic refractory dye stuff at high concentration. In this study, electron beam irradiation-induced decoloration and decomposition of C.I. Direct Black 22 aqueous solutions were investigated. The influences of absorbed doses and initial dye concentration on the percent of decoloration, COD and pH of the solutions are described. The results show that the direct dye solutions can be effectively degraded by electron beam irradiation.

  19. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  20. Using deep recurrent neural network for direct beam solar irradiance cloud screening

    Science.gov (United States)

    Chen, Maosi; Davis, John M.; Liu, Chaoshun; Sun, Zhibin; Zempila, Melina Maria; Gao, Wei

    2017-09-01

    Cloud screening is an essential procedure for in-situ calibration and atmospheric properties retrieval on (UV-)MultiFilter Rotating Shadowband Radiometer [(UV-)MFRSR]. Previous study has explored a cloud screening algorithm for direct-beam (UV-)MFRSR voltage measurements based on the stability assumption on a long time period (typically a half day or a whole day). To design such an algorithm requires in-depth understanding of radiative transfer and delicate data manipulation. Recent rapid developments on deep neural network and computation hardware have opened a window for modeling complicated End-to-End systems with a standardized strategy. In this study, a multi-layer dynamic bidirectional recurrent neural network is built for determining the cloudiness on each time point with a 17-year training dataset and tested with another 1-year dataset. The dataset is the daily 3-minute cosine corrected voltages, airmasses, and the corresponding cloud/clear-sky labels at two stations of the USDA UV-B Monitoring and Research Program. The results show that the optimized neural network model (3-layer, 250 hidden units, and 80 epochs of training) has an overall test accuracy of 97.87% (97.56% for the Oklahoma site and 98.16% for the Hawaii site). Generally, the neural network model grasps the key concept of the original model to use data in the entire day rather than short nearby measurements to perform cloud screening. A scrutiny of the logits layer suggests that the neural network model automatically learns a way to calculate a quantity similar to total optical depth and finds an appropriate threshold for cloud screening.

  1. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  2. Nonlinear techniques for forecasting solar activity directly from its time series

    Science.gov (United States)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  3. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  4. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  5. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles

    Science.gov (United States)

    Motohiro, Tomoyoshi; Takeda, Yasuhiko; Ito, Hiroshi; Hasegawa, Kazuo; Ikesue, Akio; Ichikawa, Tadashi; Higuchi, Kazuo; Ichiki, Akihisa; Mizuno, Shintaro; Ito, Tadashi; Yamada, Noboru; Nath Luitel, Hom; Kajino, Tsutomu; Terazawa, Hidetaka; Takimoto, Satoshi; Watanabe, Kemmei

    2017-08-01

    We have developed a compact solar-pumped laser (µSPL) employing an off-axis parabolic mirror with an aperture of 76.2 mm diameter and an yttrium aluminum garnet (YAG) ceramic rod of φ1 mm × 10 mm doped with 1% Nd and 0.1% Cr as a laser medium. The laser oscillation wavelength of 1.06 µm, just below the optical absorption edge of Si cells, is suitable for photoelectric conversion with minimal thermal loss. The concept of laser beam power feeding to an electric vehicle equipped with a photovoltaic panel on the roof was proposed by Ueda in 2010, in which the electricity generated by solar panels over the road is utilized to drive a semiconductor laser located on each traffic signal along the road. By substituting this solar-electricity-driven semiconductor laser with a solar-pumped laser, the energy loss of over 50% in converting the solar electricity to a laser beam can be eliminated. The overall feasibility of this system in an urban area such as Tokyo was investigated.

  6. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    Science.gov (United States)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  7. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    Science.gov (United States)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  8. Directionally positionable neutron beam

    International Nuclear Information System (INIS)

    Dance, W.E.; Bumgardner, H.M.

    1981-01-01

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  9. Bias-dependent high saturation solar LBIC scanning of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-06-15

    A light beam-induced current measurement system that uses concentrated solar radiation as a beam probe to map spatially distributed defects on a solar cell has been developed and tested [F.J. Vorster, E.E. van Dyk, Rev. Sci. Instrum., submitted for review]. The induced current response from a flat plate EFG Si solar cell was mapped as a function of surface position and cell bias by using a solar light beam induced current (S-LBIC) mapping system while at the same time dynamically biasing the whole cell with an external voltage. This paper examines the issues relating to transient capacitive effects as well as the electrical behaviour of typical solar cell defect mechanisms under spot illumination. By examining the bias dependence of the S-LBIC maps, various defect mechanisms of photovoltaic (PV) cells under concentrated solar irradiance may be identified. The techniques employed to interpret the spatially distributed IV curves as well as initial results are discussed. (author)

  10. Medium level of direct solar radiation and energetic potential of solar concentrator in Minas Gerais State, Brazil; Niveis medios de radiacao solar direta e potencial energetico dos concentradores solares em Minas Gerais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    Basic concepts of solar energy, technical description of solar concentrators, its orientation and methodology of direct solar radiation measurement are discussed. An comparison of different solar radiation measurements methods, its methodology and its calculation steps are reported. Calculus and tables of the electric and thermal energy generation potential, through solar concentrators, on the state of Minas Gerais are also presented. 18 figs., 90 tabs., 12 refs.

  11. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    Science.gov (United States)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  12. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  13. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Ave, Boulder, CO 80305 (United States); Allred, Joel C.; Daw, Adrian [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Cauzzi, Gianna [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Carlsson, Mats, E-mail: Adam.Kowalski@lasp.colorado.edu [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  14. Magnetosheath Propagation Time of Solar Wind Directional Discontinuities

    Science.gov (United States)

    Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.

    2018-05-01

    Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.

  15. Preparing patterned carbonaceous nanostructures directly by overexposure of PMMA using electron-beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Duan Huigao; Zhao Jianguo; Zhang Yongzhe; Xie Erqing [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Han Li [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: duanhg@gmail.com, E-mail: xieeq@lzu.edu.cn

    2009-04-01

    The overexposure process of poly(methyl methacrylate) (PMMA) was studied in detail using electron-beam lithography. It was found that PMMA films could be directly patterned without development due to the electron-beam-induced collapse of PMMA macromolecular chains. By analyzing the evolution of surface morphologies and compositions of the overexposed PMMA films, it was also found that the transformation of PMMA from positive to negative resist was a carbonization process, so patterned carbonaceous nanostructures could be prepared directly by overexposure of PMMA using electron-beam lithography. This simple one-step process for directly obtaining patterned carbonaceous nanostructures has promising potential application as a tool to make masks and templates, nanoelectrodes, and building blocks for MEMS and nanophotonic devices.

  16. Symmetry issues in a class of ion beam targets using short direct drive pulses

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Lindl, J.D.

    1986-01-01

    We address a class of modified ion beam targets where the symmetry issues are ameliorated in the regime of short bursts of direct drive pulses. Short pulses are here defined so that the fractional change in target radii of peak beam energy deposition are assumed to be small (during each such direct drive burst with a fixed beam focal radius). This requirement is actually not stringent on the temporal pulse-length. In fact we show an explicit example where this can be satisfied by a ≥ 60 ns direct drive pulse-train. A new beam placement scheme is used which systematically eliminated low order spherical harmonic asymmetries. The residual asymmetries of such pulses are studied with both simple model and numerical simulations

  17. First Evidence of pep Solar Neutrinos by Direct Detection in Borexino

    Science.gov (United States)

    Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Quirk, J.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-02-01

    We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6stat±0.3systcounts/(day·100ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×108cm-2s-1 and <7.7×108cm-2s-1 (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.

  18. FINITE ELEMENT ANALYSIS OF DEEP BEAM UNDER DIRECT AND INDIRECT LOAD

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2018-05-01

    Full Text Available This research study the effect of exist of opening in web of deep beam loaded directly and indirectly and the behavior of reinforced concrete deep beams without with and without web reinforcement, the opening size and shear span ratio (a/d was constant. Nonlinear analysis using the finite element method with ANSYS software release 12.0 program was used to predict the ultimate load capacity and crack propagation for reinforced concrete deep beams with openings. The adopted beam models depend on experimental test program of reinforced concrete deep beam with and without openings and the finite element analysis result showed a good agreement with small amount of deference in ultimate beam capacity with (ANSYS analysis and it was completely efficient to simulate the behavior of reinforced concrete deep beams. The mid-span deflection at ultimate applied load and inclined cracked were highly compatible with experimental results. The model with opening in the shear span shows a reduction in the load-carrying capacity of beam and adding the vertical stirrup has improve the capacity of ultimate beam load.

  19. a comparative study of direct and indirect solar drying of mango

    African Journals Online (AJOL)

    BARTH EKWUEME

    appropriate to a family scale traditional mango drying. ... before its marketing. Also, direct ..... measured using a digital probe thermohygrometer of ...... Comparison of direct and indirect solar drying kinetics Amelie and Brooks mango varieties.

  20. Acoustic beam splitting in a sonic crystal around a directional band gap

    International Nuclear Information System (INIS)

    Cicek Ahmet; Kaya Olgun Adem; Ulug Bulent

    2013-01-01

    Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle

  1. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    International Nuclear Information System (INIS)

    Song, P.; Liu, J.Y.; Yuan, H.M.; Oliullah, Md.; Wang, F.; Wang, Y.

    2016-01-01

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J_s_c), and open-circuit voltage (V_o_c) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J_s_c and V_o_c of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  2. Photocarrier radiometry for predicting the degradation of electrical parameters of monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.Y., E-mail: ljywlj@hit.edu.cn [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China); Yuan, H.M.; Oliullah, Md.; Wang, F. [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Y., E-mail: songpengkevin@126.com [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Robotics and System (HIT), Harbin 150001 (China)

    2016-09-15

    In this study, the monocrystalline silicon (c-Si) solar cell irradiated by 100 KeV proton beams at various fluences is investigated. A one-dimensional two-layer carrier density wave model has been developed to estimate the minority carrier lifetime of n-region and p-region of the non-irradiated c-Si solar cell by best fitting with the experimental photocarrier radiometry (PCR) signal (the amplitude and the phase). Furthermore, the lifetime is used to determine the initial defect density of the quasi-neutral region (QNR) of the solar cell to predict its I–V characteristics. The theoretically predicted short-circuit current density (J{sub sc}), and open-circuit voltage (V{sub oc}) of the non-irradiated samples are in good agreement with experiment. Then a three-region defect distribution model for the c-Si solar cell irradiated by proton beams is carried out to describe the defect density distribution according to Monte Carlo simulation results and the initial defect density of the non-irradiated sample. Finally, we find that the electrical measurements of J{sub sc} and V{sub oc} of the solar cells irradiated at different fluences using 100 KeV proton beams are consistent with the PCR predicting results.

  3. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  4. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  5. Electrical performance of the InGaP solar cell irradiated with low energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Yasuki; Okuda, Shuichi; Kojima, Takeo; Oka, Takashi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai City, Osaka (Japan); Kawakita, Shirou; Imaizumi, Mitsuru; Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki (Japan)

    2015-06-15

    The investigation of the radiation degradation characteristics of InGaP space solar cells is important. In order to understand the mechanism of the degradation by radiation the samples of the InGaP solar cell were irradiated in vacuum and at ambient temperature with electron beams from a Cockcroft-Walton type accelerator at Osaka Prefecture University. The threshold energies for recoil were obtained by theoretical calculation. The energies and the fluences of the electron beams were from 60 to 400 keV and from 3 x 10{sup 14} to 3 x 10{sup 16} cm{sup -2}, respectively. The light-current-voltage measurements were performed. The degradation of Isc caused by the defects related to the phosphorus atoms was observed and the degradation was suppressed by irradiation at an energy higher than the threshold energy for recoiling Indium atoms. At an energy of 60 keV, where the recoil does not occur, the V{sub oc} was degraded. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  7. Implementation of a Direct Link between the LHC Beam Interlock System and the LHC Beam Dumping System Re-Triggering Lines

    CERN Document Server

    Gabourin, S; Denz, R; Magnin, N; Uythoven, J; Wollmann, D; Zerlauth, M; Vatansever, V; Bartholdt, M; Bertsche, B; Zeiler, P

    2014-01-01

    To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump blocks must be guaranteed at all times. When a beam dump is demanded, the Beam Interlock System communicates this request to the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System. Both systems were built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the Trigger Synchronisation and Distribution System, a new direct link from the Beam Interlock System to the re-triggering lines of the LHC Beam Dumping System will be implemented for the start-up with beam in 2015. The link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called asynchronous beam dumps nor compromise machine availability. This paper describes the implementation choices of this link. Furthermore the results of a rel...

  8. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  9. Distributed Optimization of Multi Beam Directional Communication Networks

    Science.gov (United States)

    2017-06-30

    Distributed Optimization of Multi-Beam Directional Communication Networks Theodoros Tsiligkaridis MIT Lincoln Laboratory Lexington, MA 02141, USA...based routing. I. INTRODUCTION Missions where multiple communication goals are of in- terest are becoming more prevalent in military applications...Multilayer communications may occur within a coalition; for example, a team consisting of ground vehicles and an airborne set of assets may desire to

  10. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  11. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  12. Solar concentrator with integrated tracking and light delivery system with collimation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  13. Theoretical studies of solar pumped lasers

    Science.gov (United States)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  14. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  15. Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data

    International Nuclear Information System (INIS)

    Arpesella, C.; Di Pietro, G.; Monzani, M. E.; Back, H. O.; Hardy, S.; Joyce, M.; Manecki, S.; Raghavan, R. S.; Rountree, D.; Vogelaar, R. B.; Balata, M.; Di Credico, A.; Gazzana, S.; Korga, G.; Laubenstein, M.; Orsini, M.; Papp, L.; Razeto, A.; Tartaglia, R.; Bellini, G.

    2008-01-01

    We report the direct measurement of the 7 Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7 Be neutrinos is 49±3 stat ±4 syst counts/(day·100 ton). The hypothesis of no oscillation for 7 Be solar neutrinos is inconsistent with our measurement at the 4σ C.L. Our result is the first direct measurement of the survival probability for solar ν e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7 Be, pp, and CNO solar ν e , and the limit on the effective neutrino magnetic moment using solar neutrinos

  16. Assessment of four shadow band correction models using beam normal irradiance data from the United Kingdom and Israel

    International Nuclear Information System (INIS)

    Lopez, G.; Muneer, T.; Claywell, R.

    2004-01-01

    Diffuse irradiance is a fundamental factor for all solar resource considerations. Diffuse irradiance is accurately determined by calculation from global and beam normal (direct) measurements. However, beam solar measurements and related support can be very expensive, and therefore, shadow bands are often used, along with pyranometers, to block the solar disk. The errors that result from the use of shadow bands are well known and have been studied by many authors. The thrust of this article is to examine four recognized techniques for correcting shadow band based, diffuse irradiance and statistically evaluate their individual performance using data culled from two contrasting sites within the United Kingdom and Israel

  17. Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam

    International Nuclear Information System (INIS)

    Thomas, V.A.

    1989-01-01

    The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989

  18. E-beam direct write versus reticle/stepper technology for ASICS in small volume production

    International Nuclear Information System (INIS)

    Wheeler, M.J.

    1987-01-01

    The pros and cons of using e-beam direct writing or reticles plus optical/UV steppers in fast prototyping and the small volume production of ASICs are discussed. The main conclusion is that fast prototyping is best achieved by e-beam direct write whereas small volume production of ASICs is best done via reticles and optical/UV stepping provided that the reticles are made in-house rather than by commercial maskhouses

  19. Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells

    Science.gov (United States)

    Ali, F.; Khoshsirat, N.; Duffin, J. L.; Wang, H.; Ostrikov, K.; Bell, J. M.; Tesfamichael, T.

    2017-09-01

    Perovskite solar cells have emerged as one of the most efficient and low cost technologies for delivering of solar electricity due to their exceptional optical and electrical properties. Commercialization of the perovskite solar cells is, however, limited because of the higher cost and environmentally sensitive organic hole transport materials such as spiro-OMETAD and PEDOT:PSS. In this study, an empirical simulation was performed using the Solar Cell Capacitance Simulator software to explore the MoOx thin film as an alternative hole transport material for perovskite solar cells. In the simulation, properties of MoOx thin films deposited by the electron beam evaporation technique from high purity (99.99%) MoO3 pellets at different substrate temperatures (room temperature, 100 °C and 200 °C) were used as input parameters. The films were highly transparent (>80%) and have low surface roughness (≤2 nm) with bandgap energy ranging between 3.75 eV and 3.45 eV. Device simulation has shown that the MoOx deposited at room temperature can work in both the regular and inverted structures of the perovskite solar cell with a promising efficiency of 18.25%. Manufacturing of the full device is planned in order to utilize the MoOx as an alternative hole transport material for improved performance, good stability, and low cost of the perovskite solar cell.

  20. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation.

    Science.gov (United States)

    Kántor, Noémi; Lin, Tzu-Ping; Matzarakis, Andreas

    2014-09-01

    This study contributes to the knowledge about the capabilities of the popular "six-directional method" describing the radiation fields outdoors. In Taiwan, measurements were carried out with three orthogonally placed net radiometers to determine the mean radiant temperature (T(mrt)). The short- and long-wave radiation flux densities from the six perpendicular directions were recorded in the daylight hours of 12 days. During unobstructed direct irradiation, a specific daytime relapse was found in the temporal course of the T(mrt) values referring to the reference shapes of a standing man and also of a sphere. This relapse can be related to the short-wave fluxes reaching the body from the lateral directions. Through deeper analysis, an instrumental shortcoming of the six-directional technique was discovered. The pyranometer pairs of the same net radiometer have a 10-15-min long "blind spot" when the sun beams are nearly perpendicular to them. The blind-spot period is supposed to be shorter with steeper solar azimuth curve on the daylight period. This means that the locations with lower geographical latitude, and the summertime measurements, are affected less by this instrumental problem. A methodological shortcoming of the six-directional technique was also demonstrated. Namely, the sum of the short-wave flux densities from the lateral directions is sensitive to the orientation of the radiometers, and therefore by deviating from the original directions, the T(mrt) decrease on clear sunny days will occur in different times and will be different in extent.

  1. Coherent-phase or random-phase acceleration of electron beams in solar flares

    Science.gov (United States)

    Aschwanden, Markus J.; Benz, Arnold O.; Montello, Maria L.

    1994-01-01

    Time structures of electron beam signatures at radio wavelengths are investigated to probe correlated versus random behavior in solar flares. In particular we address the issue whether acceleration and injection of electron beams is coherently modulated by a single source, or whether the injection is driven by a stochastic (possibly spatially fragmented) process. We analyze a total of approximately = 6000 type III bursts observed by Ikarus (Zurich) in the frequency range of 100-500 MHz, during 359 solar flares with simultaneous greater than or = 25 keV hard X-ray emission, in the years 1890-1983. In 155 flares we find a total of 260 continuous type III groups, with an average number of 13 +/- 9 bursts per group, a mean duration of D = 12 +/- 14 s, a mean period of P = 2.0 +/- 1.2 s, with the highest burst rate at a frequency of nu = 310 +/- 120 MHz. Pulse periods have been measured between 0.5 and 10 s, and can be described by an exponential distribution, i.e., N(P) varies as e (exp -P/1.0s). The period shows a frequency dependence of P(nu)=46(exp-0.6)(sub MHz)s for different flares, but is invariant during a particular flare. We measure the mean period P and its standard deviation sigma (sub p) in each type III group, and quantify the degree of periodicity (or phase-coherence) by the dimensionless parameter sigma (sub p)P. The representative sample of 260 type III burst groups shows a mean periodicity of sigma (sub p/P) = 0.37 +/- 0.12, while Monte Carlo simulations of an equivalent set of truly random time series show a distinctly different value of sigma (sub p)P = 0.93 +/- 0.26. This result indicates that the injection of electron beams is coherently modulated by a particle acceleration source which is either compact or has a global organization on a timescale of seconds, in contrast to an incoherent acceleration source, which is stochastic either in time or space. We discuss the constraints on the size of the acceleration region resulting from electron beam

  2. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  3. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    Science.gov (United States)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  4. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  5. Direct emission of chirality controllable femtosecond LG01 vortex beam

    Science.gov (United States)

    Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.

    2018-05-01

    Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.

  6. Increased nuclear safety and reliability through power beaming

    International Nuclear Information System (INIS)

    Coomes, E.P.; Widrig, R.D.

    1989-01-01

    Space satellites and platforms currently include self-contained power systems to supply the energy necessary to accomplish mission objectives. With power beaming, the power system is separate from the satellite and the two are connected by an energy beam. This approach is analogous to earth-based central station power generation and distribution over transmission lines to various customers. In space, power is produced by power satellites (central power generating stations) and transmitted via energy beams to individual users. Power beaming has the ability to provide an order of magnitude increase in power availability over solar-based power systems with less mass on orbit. The technologies needed for power beaming are being developed today under existing programs directed by the Strategic Defense Initiative Office, the National Aeronautics and Space Administration, and the US Department of Energy. A space power architecture based on power beaming would greatly increase the safety and reliability of employing nuclear power in space

  7. Overview and future direction for blackbody solar-pumped lasers

    Science.gov (United States)

    Deyoung, R. J.

    1988-01-01

    A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.

  8. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Reames, Donald V., E-mail: ltan@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2016-01-10

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E{sub e}), while the index of scattered/reflected electrons is nearly independent of E{sub e}. We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind.

  9. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Tan, Lun C.; Reames, Donald V.

    2016-01-01

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E e ), while the index of scattered/reflected electrons is nearly independent of E e . We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind

  10. Electromagnetic ion beam instability upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Gary, S.P.; Gosling, J.T.; Forslund, D.W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient field B, but this instability also displays significant growth at wave-vectors oblique to B, Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities

  11. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  12. Laser scanning of experimental solar cells

    Science.gov (United States)

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  13. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  14. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    Science.gov (United States)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  15. 120-keV beam direct conversion system for TFTR injectors

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    Several practical motivations exist for the development of beam direct conversion systems that are compatible with the injection systems of large experiments such as the Tokamak Fusion Test Reactor (TFTR). We present a preliminary design in which we analyze the most acute problems involved in scaling up existing designs and apparatus to fulfill TFTR requirements. Some of the questions addressed are the requirements for electron suppression, gas pumping, compactness, and power densities. A new idea is presented that allows for the handling of higher beam power. The gross savings in the capital cost of injector power supplies for the TFTR will be about $7.2 million, but the net savings will be somewhat less than this. This preliminary design has not yet revealed fundamental limitations with respect to the development of beam energy-recovery systems operating at high levels of current, voltage, and power densities

  16. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    International Nuclear Information System (INIS)

    He, H.-Q.; Wan, W.

    2012-01-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  17. Study of direct beam radiation and standardization of (Engineering) insolation data in korea. 4

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H S; Auh, C M; Lee, T K; Kim, E I; Jo, D K; Kim, H J; Kim, D H; Jeon, M S; Lee, S M; Chun, I S [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    Owing to the world-wide environmental issue and the unbalance on energy demands-offers, it is inevitable to conduct the research and development on clean alternative energy resource. The solar energy resource is recognized as one of the alternatives. A preparation for basic data should, therefore, arise for the extensive utilization of solar energy. Engineering solar (weather) data measured for at least a 30-year period should be needed for solar energy and energy conservation applications. These data should contain hourly averages of global horizontal, direct normal, and diffuse horizontal irradiation with hourly observations of other meteorological parameters such as sky cover, temperature, humidity, and wind speed. Normals, means, and extremes serving as system design data are to be selected from the 30 years basic data. However, collection of reasonable solar data has merely been carried out for global horizontal insolation since 1882 and direct normal insolation since 1991 in Korea. It still requires the considerable effort and time to square the reliability and to standardize the solar data. In parallel, the related techniques are to be developed such as data quality assessments and control, missing data and inconsistent data treatments, inter- and extra-potation techniques for the intermediate region among the weather stations. The R and D on these subject should be done advancing the practical applications. (author). 43 refs., 31 figs., 16 tabs.

  18. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  19. Design of titania nanotube structures by focused laser beam direct writing

    International Nuclear Information System (INIS)

    Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei; Ursaki, Veaceslav; Tiginyanu, Ion

    2013-01-01

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO 2 NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes

  20. Solar wind plasma structure near a 'HELIOS-Perihelion'

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1979-01-01

    The purpose of this paper is to introduce a couple of preliminary but important results obtained from HELIOS observation concerning solar wind plasma structure near a ''HELIOS-Perihelion'' among the data analyses in progress, partly in relation to laboratory plasma. Idealized profiles of the bulk velocity, density and temperature of solar wind near 0.3 AU as deduced from HELIOS A data and correlated K-coronal contours were obtained. During 1974 - 1976, the sun was in the period of declining cycle, and the coronal holes expanded to lower latitudes from northern and southern holes. There is general tendency that the northern coronal hole is somewhat larger than the southern coronal hole. In regards to solar wind velocity, there are two fast stream regions with velocity as high as 800 Km/sec. An electron spectrum measured near a HELIOS-Perihelion (0.3 AU) approximately in the solar direction is shown. Three regions can be distinguished in velocity distribution. The density contours of solar wind electrons in velocity space exhibit a narrow beam of electrons in the magnetic field direction close to the plane of observation. (Kato, T.)

  1. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    Science.gov (United States)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  2. An automatic measuring system for mapping of spectral and angular dependence of direct and diffuse solar radiation; Et automatisk maalesystem for kartlegging av vinkel- og spektralfordeling av direkte og diffus solstraaling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Oddbjoern

    1997-12-31

    In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.

  3. Future mission studies: Forecasting solar flux directly from its chaotic time series

    Science.gov (United States)

    Ashrafi, S.

    1991-01-01

    The mathematical structure of the programs written to construct a nonlinear predictive model to forecast solar flux directly from its time series without reference to any underlying solar physics is presented. This method and the programs are written so that one could apply the same technique to forecast other chaotic time series, such as geomagnetic data, attitude and orbit data, and even financial indexes and stock market data. Perhaps the most important application of this technique to flight dynamics is to model Goddard Trajectory Determination System (GTDS) output of residues between observed position of spacecraft and calculated position with no drag (drag flag = off). This would result in a new model of drag working directly from observed data.

  4. Performance of direct absorption solar collector with nanofluid mixture

    International Nuclear Information System (INIS)

    Turkyilmazoglu, Mustafa

    2016-01-01

    Highlights: • Neat approximations for temperature and solar collector efficiency are presented. • The non-adiabatic and isothermal base mechanisms optimize the surface absorption. • Heat transferring material at the bottom panel enhances the thermal efficiency. • Isothermal base panel leads to maximum thermal efficiency of the solar receiver. - Abstract: The enhancement of performance by increasing the thermal efficiency of a direct absorption solar collector based on an alumina–water nanofluid is the prime target of the present research. The base panel of the collector channel is subject to either a non adiabatic or an isothermal wall condition both of which introduce two new physical parameters. Analytical solutions for the temperature field are worked out in both cases for a two dimensional steady-state model recently outlined in the literature. The desired increase in the temperature of the heat transferring nanofluid is achieved either by slightly rising the heat transfer coefficient of the bottom panel coating or by prescribing a bottom surface temperature. As a consequence of the increase in the final outlet mean temperature, the solar collector thermal efficiency is found to be enhanced via increasing the new physical parameters as compared to the traditional adiabatic wall case. For instance, 85.63% thermal efficiency of solar collector is achievable for non adiabatic bottom panel by adding suspended aluminum nanoparticles into the pure water. Even better than this, considering isothermal base panels, 100% efficiency is attained more rapidly with lesser base temperatures in the presence of higher nanoparticle volume fractions.

  5. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  6. Effect of beam condition in variable-shaped electron-beam direct writing for 0.25 μm and below

    International Nuclear Information System (INIS)

    Hirasawa, S.; Nakajima, K.; Tamura, T.; Aizaki, N.

    1993-01-01

    The effect of incident electron-beam conditions, which are acceleration voltage and beam blur of variable-shaped electron-beam direct writing, is investigated using the deposited energy distribution to realize a fine pattern of ≤0.25 μm in trilayer resist process. The deposited energy distribution is calculated using a three-dimensional Monte Carlo method. In a trilayer resist system, a thin bottom resist layer can be used, because the contrast value derived from the Monte Carlo calculation is independent of the bottom layer thickness. The beam blur of 0.05 μm does not degrade 0.25 μm line-and-space (L/S) patterns, but seriously degrades 0.1 μm L/S patterns. Higher acceleration voltage is effective for improving the contrast. At lower acceleration voltage, the slope of the deposited energy profile defined at the resist bottom is mainly influenced by electron scattering. On the other hand, at higher acceleration voltage, the slope of deposited energy profile mainly depends on the beam blur. The 0.1 μm L/S patterns are expected to be resolved at 30 kV when there is less than 0.02 μm beam blur with trilayer resist system. The possibility of using a single layer resist process for 0.1 μm L/S pattern will be barely realized at the conditions of 50 kV and 0.02 μm beam blur

  7. The design and development of a solar tracking unit

    Science.gov (United States)

    Jones, I. W.; Miller, J. B.

    1984-01-01

    The solar tracking unit was developed to support the Laser Heterodyne Spectrometer (LHS) airborne instrument, but has application to a general class of airborne solar occultation research instruments. The unit consists of a mirror mounted on two gimbals, one of which is hollow. The mirror reflects a 7.6 cm (3.0 in.) diameter beam of sunlight through the hollow gimbal into the research instrument optical axis. A portion of the reflected sunlight is directed into a tracking telescope which uses a four quadrant silicon detector to produce the servo error signals. The colinearity of the tracker output beam and the research instrument optical axis is maintained to better than + or - 1 arc-minute. The unit is microcomputer controlled and is capable of stand alone operation, including automatic Sun acquisition or operation under the control of the research instrument.

  8. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  9. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  10. Reduction of deposition asymmetries in directly driven ion-beam and laser targets

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    The authors have developed a procedure for reducing energy-dependent asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which they propose as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driver or reactor scenarios. It also allows the use of beam currents or energy fluxes to help reduce deposition asymmetry

  11. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    Science.gov (United States)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  12. TH-CD-202-02: A Preliminary Study Evaluating Beam-Hardening Artifact Reduction On CT Direct Electron-Density Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Dolly, S; Zhao, T; Anastasio, M; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Ritter, A; Colombo, V; Raupach, R; Huenemohr, N [Siemens Healthcare GmbH, Deutschland (Germany); Mistry, N [Siemens Medical Solutions USA, Malvern, PA (United States); Yu, L [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: A prototype reconstruction algorithm that can provide direct electron density (ED) images from single energy CT scans is being currently developed by Siemens Healthcare GmbH. This feature can eliminate the need for kV specific calibration curve for radiation treatemnt planning. An added benefit is that beam-hardening artifacts are also reduced on direct-ED images due to the underlying material decomposition. This study is to quantitatively analyze the reduction of beam-hardening artifacts on direct-ED images and suggest additional clinical usages. Methods: HU and direct-ED images were reconstructed on a head phantom scanned on a Siemens Definition AS CT scanner at five tube potentials of 70kV, 80kV, 100kV, 120kV and 140kV respectively. From these images, mean, standard deviation (SD), and local NPS were calculated for regions of interest (ROI) of same locations and sizes. A complete analysis of beam-hardening artifact reduction and image quality improvement was conducted. Results: Along with the increase of tube potentials, ROI means and SDs decrease on both HU and direct-ED images. The mean value differences between HU and direct-ED images are up to 8% with absolute value of 2.9. Compared to that on HU images, the SDs are lower on direct-ED images, and the differences are up to 26%. Interestingly, the local NPS calculated from direct-ED images shows consistent values in the low spatial frequency domain for images acquired from all tube potential settings, while varied dramatically on HU images. This also confirms the beam -hardening artifact reduction on ED images. Conclusions: The low SDs on direct-ED images and relative consistent NPS values in the low spatial frequency domain indicate a reduction of beam-hardening artifacts. The direct-ED image has the potential to assist in more accurate organ contouring, and is a better fit for the desired purpose of CT simulations for radiotherapy.

  13. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    Science.gov (United States)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  14. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.

  15. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  16. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  17. Doubly slanted layer structures in holographic gelatin emulsions: solar concentrators

    International Nuclear Information System (INIS)

    Hung, Jenny; Tam, Wing Yim; Chan, Po Shan; Sun, Caiming; Ho, Choi Wing

    2010-01-01

    We have fabricated doubly slanted layer structures in holographic gelatin emulsions using a double-exposure two-beam interference from two light sources with different wavelengths. The doubly slanted layers, with different spacings and overlapping with each other, are fabricated such that they are slanted in opposite directions making a 30° angle with the holographic plate. The doubly slanted layer structures exhibit photonic stop bands corresponding to the two layered structures. More importantly, diffracted light beams from the slanted layers travel in different directions and emerge, through internal reflections, at the opposite edges of the gelatin plate. The doubly slanted layer structures could be used as solar concentrators such that sunlight is separated into different components and steered directly to photovoltaics with the corresponding wavelength sensitivities to enhance energy conversion efficiency

  18. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  19. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  20. A direct probe of dark energy interactions with a solar System laboratory

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a mission concept for direct detection of dark energy interactions with normal matter in a Solar System laboratory. Dark energy is the leading proposal to...

  1. Projected beam irradiation at low latitudes using Meteonorm database

    DEFF Research Database (Denmark)

    Hatwaambo, Sylvester; Perers, Bengt; Karlsson, Björn

    2009-01-01

    by a collector provided the projection angle lies within the acceptance angle. The Meteonorm method of calculating solar radiation on any arbitrary oriented surface uses the globally simulated meteorological databases. Meteonorm has become a valuable too for estimating solar radiation where measured solar...... radiation data is missing or irregular. In this paper we present the projected beam solar radiation at low latitudes based on the standard Meteonorm calculations. The conclusion is that there is potential in using solar concentrators at these latitudes since the projected beam radiation is more during...

  2. FMIT direct-current beam monitor

    International Nuclear Information System (INIS)

    Brousseau, A.T.; Chamberlin, D.D.

    1981-01-01

    The prototype injector section for the Fusion Materials Irradiation Test (FMIT) Facility being developed at the Los Alamos National Laboratory requires that beam parameters be noninterceptively monitored. This report describes the application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam

  3. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  4. Generation of electrical defects in ion beam assisted deposition of Cu(In,Ga)Se2 thin film solar cells

    International Nuclear Information System (INIS)

    Zachmann, H.; Puttnins, S.; Daume, F.; Rahm, A.; Otte, K.

    2011-01-01

    Thin films of Cu(In,Ga)Se 2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process. In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects. For the interpretation of the results two defect models are taken into account.

  5. Direct cryosorption pumping of an energetic hydrogen ion beam

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Ryan, P.M.; Tsai, C.C.

    1979-01-01

    Cryosorption pumps (CSP) are a prime candidate for the pumping of helium and deuterium-tritium (D-T) in tokamak divertor systems and may also see service in neutral beam injectors. However, the ability of a CSP to take high energy ions escaping from a plasma or neutral beam has not previously been demonstrated. In this study we arranged a 10-cm ion source of the type used in the Oak Ridge Tokamak (ORMAK) to inject a beam of ions directly into the inlet of a CSP. The pump contained two chevron baffles at 100K and 15K as well as a 15K cryosorption surface covered with a type 5A molecular sieve. The cryosurfaces were cooled by a closed-cycle helium refrigerator. For hydrogen ion pulses up to 11.5-keV energy and 1.3-A current, the pressure maintained during the pulse was only a few percent higher than that maintained with an equal flow of cold neutral gas. Pulse lengths of 100-300 ms were used. Calorimetric measurements showed that 40-60% of the I-V power was incident on the pump inlet. Cool-down and regeneration behavior of the pump will also be discussed

  6. Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells

    OpenAIRE

    Nematollahi, Mohammadreza; Yang, Xiaodong; Aas, Lars Martin Sandvik; Ghadyani, Zahra; Kildemo, Morten; Gibson, Ursula; Reenaas, Turid Worren

    2015-01-01

    We have investigated the structural and optical properties of Cr-doped ZnS (ZnS:Cr) thin films (0–7.5 at.% Cr) for use in intermediate band solar cells. The films were grown on Si(100) in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) equipments. Introducing Cr into ZnS resulted in Cr related subbandgap absorption, but also reduced the grain size. The sub-bandgap absorption increased with increasing Cr content, and with increasing growth temperature, but did not depend on the ...

  7. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Directory of Open Access Journals (Sweden)

    Wisut Chamsa-ard

    2017-05-01

    Full Text Available The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  8. THERMAL RESPONSE OF A SOLAR-LIKE ATMOSPHERE TO AN ELECTRON BEAM FROM A HOT JUPITER: A NUMERICAL EXPERIMENT

    International Nuclear Information System (INIS)

    Gu, P.-G.; Suzuki, Takeru K.

    2009-01-01

    We investigate the thermal response of the atmosphere of a solar-type star to an electron beam injected from a hot Jupiter by performing a one-dimensional MHD numerical experiment with nonlinear wave dissipation, radiative cooling, and thermal conduction. In our experiment, the stellar atmosphere is non-rotating and is modeled as a one-dimensional open flux tube expanding super-radially from the stellar photosphere to the planet. An electron beam is assumed to be generated from the reconnection site of the planet's magnetosphere. The effects of the electron beam are then implemented in our simulation as dissipation of the beam momentum and energy at the base of the corona where the Coulomb collisions become effective. When the sufficient energy is supplied by the electron beam, a warm region forms in the chromosphere. This warm region greatly enhances the radiative fluxes corresponding to the temperature of the chromosphere and transition region. The warm region can also intermittently contribute to the radiative flux associated with the coronal temperature due to the thermal instability. However, owing to the small area of the heating spot, the total luminosity of the beam-induced chromospheric radiation is several orders of magnitude smaller than the observed Ca II emissions from HD 179949.

  9. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  10. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  11. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  12. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  13. Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas

    Science.gov (United States)

    Wang, Jin; Peng, Wei; Liu, Song

    2017-10-01

    Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.

  14. Direct coupling of a solar-hydrogen system in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, L.G. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas (IIE), Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque tecnologico Queretaro Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico); Martinez, W. [Departamento de Materiales Solares, CIE-UNAM, Av. Xochicalco s/n, Col. Centro, 62580 Temixco, Morelos (Mexico); Cano, U.; Blud, H. [Gerencia de Energias No Convencionales, Instituto de Investigaciones Electricas (IIE), Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2007-09-15

    The scope of this article is to show the initial results obtained in the interconnection of a 2.7 kW solar panel system with a solid polymer electrolyte (SPE) electrolyzer. The Non-Conventional Energies Department (ENC) at the Electrical Research Institute (IIE) considers that the storage of this intermittent energy by a chemical element such as hydrogen can be advantageous for certain applications. One of the arguments is that unlike traditional battery systems, hydrogen presents the great advantage of not discharging its energy content as long as it is not used. The solar-hydrogen (S-H) system proposed consists of a commercial electrolyzer stack by Proton Energy Systems and a photovoltaic (PV) solar system of 36 panels (75 W each) of monocrystalline silicon (Siemens) interconnected in a configuration for 2.7 kW power at 48V{sub DC}. The complete electrolyzer (stack plus auxiliaries) has a maximum capacity of 1000lN/h of hydrogen with a power energy consumption of 8 kVA (220V{sub AC}, 32 A) and uses a stack of 25 cells of SPE with an energy consumption of 5.6 kW. We present voltage, current and energy consumption of the electrolyzer as a whole system and of the stack alone, as well as hydrogen quantification for the Hogen 40 operating in laboratory. These results allowed us to estimate the possibilities of coupling the electrolyzer stack alone, i.e. no auxiliaries nor power conditioning, with the solar PV system. Results such as I-E curves of the solar PV system obtained at different irradiances and temperatures, as well as I-E curve of SPE electrolyzer stack, gave direction for confirming that PV system configuration was sufficiently good to have the electrolyzer stack working near the maximum power point at a good range of irradiances ({proportional_to}600-800W/m{sup 2}). (author)

  15. Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method.

    Science.gov (United States)

    Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki

    2017-10-20

    Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.

  16. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  17. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    Science.gov (United States)

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  18. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  19. Shake flask decolourization of direct dye solar golden yellow R by pleurotus ostreatus

    International Nuclear Information System (INIS)

    Jilani, K.; Asghar, M.; Bhatti, H.N.; Mushtaq, Z.

    2011-01-01

    Different on site treatment technologies are in practice for industrial wastewaters but bioremediation using white rot fungi is the most attractive option due to complete degradation of the pollutants to non toxic end products. Three direct dyes (Solar golden yellow R, Solar brilliant red BA and Solar orange RSN) were decolourized using white rot fungus (WRF) Pleurotus ostreatus. The best decolourized dye Solar golden yellow R was selected for subsequent optimization studies for decolourization. Under optimum conditions Pleurotus ostreatus caused 90.32 % decolourization of 0.01 % Solar golden yellow R solution within two days of shake flask incubation at pH 3.5 and 30 deg. C temperature in Kirk's basal nutrient medium with added 1 % starch and 0.01 % ammonium sulphate as carbon and nitrogen sources, respectively. Ligninolytic enzyme activities were correlated to dye decolourization and maximum laccase activity of 356.23 U/ml was also noted in the maximally decolourized medium. (author)

  20. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    Science.gov (United States)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  1. Comparative study of direct and inverse problems of cracked beams

    Directory of Open Access Journals (Sweden)

    Mahieddine Chettah

    2018-01-01

    Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply

  2. High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1984-01-01

    Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)

  3. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.

    Science.gov (United States)

    Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka; Guillemoles, Jean-François

    2018-01-01

    Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

  4. PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zhang, Lei [Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Salem, Chadi S.; Bale, Stuart D., E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-11-10

    Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.

  5. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  6. 25  W/m2 collection efficiency solar-pumped Nd:YAG laser by a heliostat-parabolic mirror system.

    Science.gov (United States)

    Liang, D; Almeida, J; Vistas, C R

    2016-09-20

    A large aspheric fused silica lens was used to couple efficiently the concentrated solar radiation from the focal zone of a 1.5-m-diameter primary concentrator into a 4-mm-diameter, 35-mm-long Nd:YAG single-crystal rod within a conical pump cavity. Continuous-wave laser power of 29.3 W was measured, attaining 25.0  W/m2 solar laser collection efficiency, corresponding to a 19% increase over the previous record. Its laser beam figure of merit-the ratio between laser power and the product of Mx2, My2 beam quality factors-of 0.01 W is 1.6 times higher than that of a direct tracking solar laser with 30  W/m2 collection efficiency. A strong dependency of solar laser power on laser resonator cavity length was found.

  7. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  8. Overview of Small and Large-Scale Space Solar Power Concepts

    Science.gov (United States)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar

  9. Direct measurement of refracted trajectory of transmitting electron cyclotron beam through plasma on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    Takahashi Hiromi

    2015-01-01

    Full Text Available The electron-cyclotron (EC -beam refraction due to the presence of plasma was investigated in the Large Helical Device. The transmitted-EC-beam measurement system was constructed and the beam pattern on the opposite side of the irradiated surface was measured using an IR camera. Clear dependence of the EC-beam refraction on the electron density was observed and the beam shift in the toroidal direction showed good agreement with the ray-trace calculation of TRAVIS. The influence of the peripheral density profile and the thermal effect on the beam refraction were discussed.

  10. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  11. Renewable water: Direct contact membrane distillation coupled with solar ponds

    International Nuclear Information System (INIS)

    Suárez, Francisco; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.

    2015-01-01

    Highlights: • Experimental investigation of direct contact membrane distillation driven by solar ponds. • The DCMD/SGSP system treats ∼6 times the water flow treated by an AGMD/SGSP system. • Half of the energy extracted from the SGSP was used to transport water across the membrane. • Reducing heat losses through the DCMD/SGSP system would yield higher water fluxes. - Abstract: Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in

  12. Solar Pumped Lasers and Their Applications

    Science.gov (United States)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  13. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    Energy Technology Data Exchange (ETDEWEB)

    Sukrittanon, Supanee [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Liu, Ren; Pan, Janet L. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Breeden, Michael C. [Department of Nanoengineering, University of California, San Diego, La Jolla, California 92037 (United States); Jungjohann, K. L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tu, Charles W., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu; Dayeh, Shadi A., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States)

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  14. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    Science.gov (United States)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  15. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  16. Material challenges for solar cells in the twenty-first century: directions in emerging technologies

    Science.gov (United States)

    Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka

    2018-01-01

    Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots. PMID:29707072

  17. 2000W high beam quality diode laser for direct materials processing

    Science.gov (United States)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  18. First direct detection of solar pp neutrinos by Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: Werner Maneschg on behalf of the Borexino collaboration

    2015-07-01

    According to the Standard Solar Model (SSM) the radiative energy of our Sun is produced by a series of nuclear reactions that convert hydrogen into helium. In 99% of cases these processes are supposed to start with a fusion of two protons and the emission of a positron and a low-energy neutrino. These so-called pp neutrinos vastly outnumber those emitted in other sub-reactions, but only the large volume organic liquid scintillator detector Borexino has recently succeeded to perform a spectroscopic and direct measurement of them. The present talk reviews the procedure adopted by the Borexino collaboration to detect pp neutrinos. The key requirements, i.e. unprecedented radiopurity levels at low energies and a precise spectral description of the main background arising from 14C decays, and their fulfillment are discussed. The measured pp neutrino flux is then compared with the predictions of the SSM including neutrino oscillation mechanisms, and with the solar luminosity constraint deduced from photospheric observations.

  19. Echolocating bats emit a highly directional sonar sound beam in the field

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Boel Pedersen, Simon; Jakobsen, Lasse

    2009-01-01

    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild....... We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased...... and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder...

  20. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  1. Analysis of direct to diffuse partitioning of global solar irradiance at the radiometric station in Badajoz (Spain)

    Science.gov (United States)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2010-09-01

    This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the

  2. Model and trajectory optimization for an ideal laser-enhanced solar sail

    OpenAIRE

    Carzana (student TUDelft), Livio; Dachwald, Bernd; Noomen, R.

    2017-01-01

    A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (o...

  3. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  4. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    Science.gov (United States)

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Microwave energy transmission system for solar power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi

    1988-05-05

    This paper deals with a microwave wireless energy transmission system which will be required for a solar power station under investigation, particularly, it describes its foundation and future investigation. It is supposed that for realization of microwave wireless transmission techniques, it is most important to investigate the effect of strong microwave beams on a plasma environment, establish control techniques for microwave beams in which a retro-directive system is combined with a computer control system, and develop a semiconductor transmission module. Institute of Space and Astronautical Science (Japan) made an experiment on the effect of microwaves on ionospheric plasma by using an observatory rocket. The institute has planned to make an experiment on a microwave energy transmission system which is to be mounted to a small-scale space flyer unit in order to examine the control of microwave beams and 10 KW power transmission, in addition to investigation on the interaction of microwave energy beams with a plasma environment. (4 figs, 3 tabs, 20 refs)

  6. Innovative laser based solar cell scribing

    Science.gov (United States)

    Frei, Bruno; Schneeberger, Stefan; Witte, Reiner

    2011-03-01

    The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.

  7. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  8. Analysis of solar irradiation measurements at Beer Sheva, Israel from 1985 through 2013

    International Nuclear Information System (INIS)

    Evseev, Efim G.; Kudish, Avraham I.

    2015-01-01

    Highlights: • In depth analysis of long-term solar irradiation at Beer Sheva, Israel. • Construction of a typical meteorological year for global and beam irradiation. • Statistical analysis of the global and beam irradiation. • Analysis of long-term trends regarding global and beam irradiation. - Abstract: An in-depth analysis of the solar horizontal global, normal incidence beam and solar global incident on a south-facing surface tilted at 40° irradiation monitored at Beer Sheva from 1985 through 2013 has been performed. The horizontal beam irradiation, daily clearness index, daily beam index and beam fraction of the horizontal global irradiation were determined from the measured parameters. A statistical analysis, which included average, median, standard deviation, maximum and minimum values and the coefficient of variation, was performed on the parameters under investigation. The monthly frequency distribution types were determined for the solar global, normal incidence beam and solar global incident on a south-facing surface tilted at 40° irradiation based upon their corresponding skewness and kurtosis values. In addition, typical meteorological years were developed for the solar horizontal global and normal incidence beam irradiation. Beer Sheva is characterized as a site with a high incidence of clear days with global irradiation consisting of a relatively high beam fraction. A relatively steep minimum in the annual average daily normal incidence beam irradiation is observed from 1991 to 1993 and has been attributed to the eruption of Mt. Pinatubo, Philippines during June 1991. A time series analysis of the both individual monthly and annual average daily global and normal incidence irradiation indicated a slight trend of solar brightening for this region during the time interval 1985 through 2013, but in most cases they were not statistically significant based upon their p values

  9. Long-time evolution of a low-density ion beam

    International Nuclear Information System (INIS)

    Zachary, A.L.; Cohen, B.I.; Max, C.E.; Arons, J.

    1989-01-01

    With a new, orbit-averaged hybrid computer simulation code, we study a cold, fast low-density ion beam which propagates along the ambient magnetic field as it interacts with a much denser fluid background. We examine the character of the interactions as we vary the ion beam density relative to the background density over the range 1 x 10/sup -5/ to 3 x 10/sup -3/. The low beam density simulations may not be directly observable upstream of the Earth's bow shock, but they are included to help develop an understanding of the results seen in the simulations with high-beam density. However, our highest density simulation falls within the range of solar wind data. All the simulations, regardless of the relative beam density, show three distinct phases: (1) an early or ''linear'' phase; (2) an intermediate or ''trapping'' phase; and (3) a late or ''decorrelation'' phase. In the early phase, the beam excites a nearly monochromatic Alfven wave whose amplitude grows exponentially at a rate given by linear perturbation theory. The wave amplitude saturates when the linear growth rate is of the order of the trapping frequency

  10. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    International Nuclear Information System (INIS)

    Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.

    1996-01-01

    We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.37 AU Ulysses encountered seven intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning ±60 deg. from the sunward field-aligned direction. All events occurred between the forward and reverse shocks or waves bounding corotating interaction regions (CIRs). The observations support a scenario in which the sunward-moving electrons result from reflection of the prevailing antisunward field-aligned beam at magnetic field compressions downstream from the spacecraft, with wide loss cones caused by the relatively weak mirror ratio. This hypothesis requires that the field magnitude within the CIRs actually increased locally with increasing field-aligned distance from the Sun

  11. HYDRO2GEN: Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams

    Science.gov (United States)

    Druett, M. K.; Zharkova, V. V.

    2018-03-01

    Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum

  12. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  13. A Solar Position Sensor Based on Image Vision.

    Science.gov (United States)

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  14. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  15. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  16. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  17. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  18. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  19. Investigations on electron beam evaporated Cu(In{sub 0.85}Ga{sub 0.15})Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, M.; Kannan, M.D.; Prasanna, S.; Jayakumar, S.; Balasundaraprabhu, R. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore (India); Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore (India); Saroja, M. [Department of Electronics, Erode Arts College, Erode (India)

    2009-09-15

    CIGS bulk with composition of CuIn{sub 0.85}Ga{sub 0.15}Se{sub 2} was synthesized by direct reaction of elemental copper, indium, gallium and selenium. CIGS thin films were then deposited onto well-cleaned glass substrates using the prepared bulk alloy by electron beam deposition method. The structural properties of the deposited films were studied using X-ray diffraction technique. The as-deposited CIGS films were found to be amorphous. On annealing, the films crystallized with a tetragonal chalcopyrite structure. An intermediate Cu-rich phase precipitated at 200 C and dissociated at higher annealing temperatures. Average grain size calculated from the XRD spectra indicated that the films had a nano-crystalline structure and was further corroborated by AFM analysis of the sample surface. The chemical constituents present in the deposited CIGS films were identified using energy dispersive X-ray analysis. CIGS based solar cells were then fabricated on molybdenum and ITO coated glass substrates and the efficiencies have been evaluated. (author)

  20. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  2. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  3. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  4. Direct observation of the Andreev reflection of a quasiparticle beam by quantum turbulence in superfluid 3He-B

    International Nuclear Information System (INIS)

    Bradley, D.I.; Fisher, S.N.; Guenault, A.M.; Lowe, M.R.; Pickett, G.R.; Rahm, A.

    2003-01-01

    A beam of quasiparticles from a black-body radiator is directed at a localized region of quantum turbulence generated by a vibrating wire resonator driven at super-critical velocity. We are able to measure directly the fraction of the incident quasiparticle beam which is retro-reflected from the turbulence by Andreev processes. Combining these measurements with previous measurements on the spatial extent of the turbulence may allow us to infer the vortex line density

  5. Numerical simulation of nonlinear beam-plasma interaction for the application to solar radio burst

    International Nuclear Information System (INIS)

    Takakura, T.

    1981-01-01

    By the use of semi-analytical method the numerical simulations for the nonlinear scattering of axially symmetric plasma waves into plasma waves and radio waves have been made. The initial electron beam has a finite length and one-dimensional velocity distribution of power law. Induced back-scattering of plasma waves by thermal ions is strong even for a solar electron stream of rather low flux, say 2x10 11 cm -2 above 5 keV at fsub(p) of 40 MHz, which is enough to emit the observed type III bursts as the second harmonic. The ratio between the energy densities of plasma waves and thermal electrons (nkT) is of the order of 10 -6 , which may be a few orders lower than the threshold value for a caviton collapse of the plasma waves to occur. The second harmonic radio emission as attributed to the coalescence of two plasma waves, i.e. one excited by electron beam and one back-scattered by ions, is several orders higher than the fundamental radio emission caused by the scattering of plasma waves by thermal ions. (Auth.)

  6. Development of a direct solar driven diffusion absorption chiller; Entwicklung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2013-03-15

    At the ITW, a decentralized solar cooling system is developed based on the diffusion-absorption refrigeration cycle. The generator and the bubble pump of the process are integrated in a solar collector, and therefore directly heated. The main research focus after reaching a stable operation of the system is a detailed investigation of the auxiliary gas circuit. (orig.)

  7. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  8. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    Science.gov (United States)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  9. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  10. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  11. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    Science.gov (United States)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  12. Development of a direct expansion solar assisted heat pump for hot water supply

    International Nuclear Information System (INIS)

    Abdesselam Hamloui; Ong, K.S.; Than Cheok Fah; Masjuki Hassan

    2000-01-01

    Experimental investigations were conducted on the direct expansion solar assisted Heat Pump (DESAHP). Refrigerant R-22 was expanded in the solar collector which also acted as the evaporator in a conventional vapor compression refrigerating machine. The experiments were conducted under conditions of high and low solar radiation, with evaporator completely shaded from the sun, and at night. System thermal performance was determined by measuring refrigerant flow rate, temperature and pressure at numerous points in the system. The results showed that 227-l of water could be heated from 3O degree to 55 degree C in about 105 minutes. Higher water temperatures were obtained during hot sunny days. The coefficient of performance of heating, COP h , ranged from 11 to 4.7, depending upon operating conditions. The total saving of electric energy during hot sunny days was about 460 %. It means that for 1 kWh of electrical input to the system, we achieve 4.6 kWh. This percentage decreases as the evaporator temperature decreases and is a function of solar energy input. (Author)

  13. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  14. Automatic control of plants of direct steam generation with cylinder-parabolic solar collectors; Control automatico de plantas de generacion directa de vapor con colectores solares cilindro-parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela Gutierrez, L.

    2008-07-01

    The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)

  15. On the co-alignment of solar telescopes. A new approach to solar pointing

    International Nuclear Information System (INIS)

    Staiger, J

    2013-01-01

    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5'' per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5'' – 1.0'' per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.

  16. Direct UV-Written Integrated Optical Beam Combiner for Stellar Interferometry

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael; Jocou, L.

    2007-01-01

    In this paper, we report the fabrication of an optical-beam combiner for stellar interferometry by means of direct ultraviolet (UV) writing. The component is shown to have good performance (fringe contrast > 95%, total loss similar to 0.7, -40-dB crosstalk, broadband operation covering at least...... the range 1.49-1.65 mu m, and low differential chromatic dispersion). The overall performance exceeds that of similar components currently used for astronomical research. This result, combined with the fast-prototyping ability of UV writing, opens up new possibilities for the realization of highly optimized...

  17. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  18. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  19. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  20. RadSensor: Xray Detection by Direct Modulation of an Optical Probe Beam

    International Nuclear Information System (INIS)

    Lowry, M E; Bennett, C V; Vernon, S P; Bond, T; Welty, R; Behymer, E; Petersen, H; Krey, A; Stewart, R; Kobayashi, N P; Sperry, V; Stephan, P; Reinhardt, C; Simpson, S; Stratton, P; Bionta, R; McKernan, M; Ables, E; Ott, L; Bond, S; Ayers, J.; Landen, O L; Bell, P M

    2003-01-01

    We present a new x-ray detection technique based on optical measurement of the effects of x-ray absorption and electron hole pair creation in a direct band-gap semiconductor. The electron-hole pairs create a frequency dependent shift in optical refractive index and absorption. This is sensed by simultaneously directing an optical carrier beam through the same volume of semiconducting medium that has experienced an xray induced modulation in the electron-hole population. If the operating wavelength of the optical carrier beam is chosen to be close to the semiconductor band-edge, the optical carrier will be modulated significantly in phase and amplitude. This approach should be simultaneously capable of very high sensitivity and excellent temporal response, even in the difficult high-energy xray regime. At xray photon energies near 10 keV and higher, we believe that sub-picosecond temporal responses are possible with near single xray photon sensitivity. The approach also allows for the convenient and EMI robust transport of high-bandwidth information via fiber optics. Furthermore, the technology can be scaled to imaging applications. The basic physics of the detector, implementation considerations, and preliminary experimental data are presented and discussed

  1. Application of LBIC measurements for characterisation of triple junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwarikunda, N., E-mail: Nicholas.kwarikunda@live.nmmu.ac.za [Nelson Mandela Metropolitan University, P.O. BOX 77000, Port Elizabeth, 6031 (South Africa); Makerere University, P.O. BOX 7062, Kampala (Uganda); Dyk, E.E. van; Vorster, F.J. [Nelson Mandela Metropolitan University, P.O. BOX 77000, Port Elizabeth, 6031 (South Africa); Okullo, W. [Makerere University, P.O. BOX 7062, Kampala (Uganda); Munji, M.K. [Kenyatta University, P.O. BOX 43844-00100, Nairobi (Kenya)

    2014-04-15

    In this study the Light Beam Induced Current (LBIC) imaging technique was used to characterise InGaP/InGaAs/Ge triple junction solar cells. The study focused on the use of monochromatic and solar light as beam probes to obtain photocurrent response maps from which the presence of any current reducing features on the solar cell were identified. Point illuminated current voltage (I–V) curves were obtained simultaneously while LBIC scanning measurements were being made. Curve fitting using an interval division algorithm based on the single diode model was performed to extract basic point device and performance parameters to give a rough indication of the functioning of the triple junction device. Using red and blue lasers as beam probes, reverse voltage breakdown was observed on the I–V curves which could be attributed to the Ge bottom subcell not being fully activated. The extracted parameters obtained when using monochromatic and solar light beam probes showed a large variation, indicating the dependence of I–V parameters on the spectral content of the beam probe.

  2. Application of LBIC measurements for characterisation of triple junction solar cells

    International Nuclear Information System (INIS)

    Kwarikunda, N.; Dyk, E.E. van; Vorster, F.J.; Okullo, W.; Munji, M.K.

    2014-01-01

    In this study the Light Beam Induced Current (LBIC) imaging technique was used to characterise InGaP/InGaAs/Ge triple junction solar cells. The study focused on the use of monochromatic and solar light as beam probes to obtain photocurrent response maps from which the presence of any current reducing features on the solar cell were identified. Point illuminated current voltage (I–V) curves were obtained simultaneously while LBIC scanning measurements were being made. Curve fitting using an interval division algorithm based on the single diode model was performed to extract basic point device and performance parameters to give a rough indication of the functioning of the triple junction device. Using red and blue lasers as beam probes, reverse voltage breakdown was observed on the I–V curves which could be attributed to the Ge bottom subcell not being fully activated. The extracted parameters obtained when using monochromatic and solar light beam probes showed a large variation, indicating the dependence of I–V parameters on the spectral content of the beam probe.

  3. Consistency of the directionality of partially coherent beams in turbulence expressed in terms of the angular spread and the far-field average intensity

    International Nuclear Information System (INIS)

    Xiao-Wen, Chen; Xiao-Ling, Ji

    2010-01-01

    Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence. (classical areas of phenomenology)

  4. Uncoordinated MAC for Adaptive Multi-Beam Directional Networks: Analysis and Evaluation

    Science.gov (United States)

    2016-04-10

    omni-directional and cannot support the desired data rates, number of nodes, or the necessary communications ranges to support emerging applications ...cations: IS-95 and third generation CDMA applications . Prentice Hall PTR, 1999. [3] V. Jain, A. Gupta, and D. P. Agrawal, “On-demand medium access in...of medium access control for wlans with multi-beam access point,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 556–565, 2007. [18] D. Lal, V

  5. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  6. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  7. Solar-Pumped TEM₀₀ Mode Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-10-21

    Here we show a significant advance in solar-pumped laser beam brightness by utilizing a 1.0 m diameter Fresnel lens and a 3 mm diameter Nd:YAG single-crystal rod. The incoming solar radiation is firstly focused by the Fresnel lens on a solar tracker. A large aspheric lens and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation along the thin laser rod within a V-shaped pumping cavity. 2.3 W cw TEM₀₀ (M² ≤ 1.1) solar laser power is finally produced, attaining 1.9 W laser beam brightness figure of merit, which is 6.6 times higher than the previous record. For multimode operation, 8.1 W cw laser power is produced, corresponding to 143% enhancement in collection efficiency.

  8. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  9. Design and Fabrication of a Direct Natural Convection Solar Dryer for Tapioca

    Directory of Open Access Journals (Sweden)

    Diemuodeke E. OGHENERUONA

    2011-06-01

    Full Text Available Based on preliminary investigations under controlled conditions of drying experiments, a direct natural convection solar dryer was designed and fabricated to dry tapioca in the rural area. This paper describes the design considerations followed and presents the results of MS excel computed results of the design parameters. A minimum of 7.56 m2 solar collector area is required to dry a batch of 100 kg tapioca in 20 hours (two days drying period. The initial and final moisture content considered were 79 % and 10 % wet basis, respectively. The average ambient conditions are 32ºC air temperatures and 74 % relative humidity with daily global solar radiation incident on horizontal surface of 13 MJ/m2/day. The weather conditions considered are of Warri (lat. 5°30’, long. 5°41’, Nigeria. A prototype of the dryer so designed was fabricated with minimum collector area of 1.08 m2. This prototype dryer will be used in experimental drying tests under various loading conditions.

  10. Experimental Study of a Novel Direct-Expansion Variable Frequency Finned Solar/Air-Assisted Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Jing Qin

    2018-01-01

    Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.

  11. Proposal for electron beam induced remote sensing x-ray fluorescence investigation of minor bodies in the solar system

    International Nuclear Information System (INIS)

    Hrehuss, G.; Gombosi, T.I.; Naday, I.; Pogany, L.; Szegoe, K.

    1983-11-01

    The composition of the surface material of minor bodies in the solar system can be measured using a semiconductor soft x-ray spectrometer mounted on the space probe. The characteristic x-rays are excited by a 20 kV low current electron beam of a space-born electron gun. After the description of the main features of the technique, estimations on its sensitivity, supported by a model experiment, are given. The minimum fly-by distance to apply this method can be estimated as a few kilometers. (author)

  12. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    Science.gov (United States)

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bedford, J L; Webb, S

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans

  14. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  15. New directions for space solar power

    Science.gov (United States)

    Mankins, John C.

    2009-07-01

    Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.

  16. A KINETIC ALFVEN WAVE AND THE PROTON DISTRIBUTION FUNCTION IN THE FAST SOLAR WIND

    International Nuclear Information System (INIS)

    Li Xing; Lu Quanming; Chen Yao; Li Bo; Xia Lidong

    2010-01-01

    Using one-dimensional test particle simulations, the effect of a kinetic Alfven wave on the velocity distribution function (VDF) of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to numerically obtain the property of a kinetic Alfven wave (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton VDF. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton VDF: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2-1.3 Alfven speed.

  17. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  19. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine; Hou, Tung-Fu; Hsu, Po-Chien; Lin, Tse-Han; Chen, Yan-Tze; Chen, Chi-Wen; Li, Kang; Lee, K.Y.

    2015-01-01

    ). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  20. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  1. Dynamical response of the magnetotail to changes of the solar wind direction: an MHD modeling perspective

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2008-08-01

    Full Text Available We performed global MHD simulations to investigate the magnetotail response to the solar wind directional changes (Vz-variations. These changes, although small, cause significant variations of the neutral sheet shape and location even in the near and middle tail regions. They display a complicated temporal response, in which ~60 to 80% of the final shift of the neutral sheet in Z direction occurs within first 10–15 min (less for faster solar wind, whereas a much longer time (exceeding half hour is required to reach a new equilibrium. The asymptotic equilibrium shape of the simulated neutral sheet is consistent with predictions of Tsyganenko-Fairfield (2004 empirical model. To visualize a physical origin of the north-south tail motion we compared the values of the total pressure in the northern and southern tail lobes and found a considerable difference (10–15% for only 6° change of the solar wind direction used in the simulation. That difference builds up during the passage of the solar wind directional discontinuity and is responsible for the vertical shift of the neutral sheet, although some pressure difference remains in the near tail even near the new equilibrium. Surprisingly, at a given tailward distance, the response was found to be first initiated in the tail center (the "leader effect", rather than near the flanks, which can be explained by the wave propagation in the tail, and which may have interesting implications for the substorm triggering studies. The present results have serious implications for the data-based modeling, as they place constraints on the accuracy of tail magnetic configurations to be derived for specific events using data of multi-spacecraft missions, e.g. such as THEMIS.

  2. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela; Lee, Jinwoo; Crossland, Edward J. W.; Warren, Scott C.; Orilall, M. Christopher; Guldin, Stefan; Hü ttner, Sven; Ducati, Catarina; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO

  3. Solar radio emissions: 2D full PIC simulations

    Science.gov (United States)

    Pierre, H.; Sgattoni, A.; Briand, C.; Amiranoff, F.; Riconda, C.

    2016-12-01

    Solar radio emissions are electromagnetic waves observed at the local plasma frequency and/or at twice the plasma frequency. To describe their origin a multi-stage model has been proposed by Ginzburg & Zhelezniakov (1958) and further developed by several authors, which consider a succession of non-linear three-wave interaction processes. Electron beams accelerated by solar flares travel in the interplanetary plasma and provide the free energy for the development of plasma instabilities. The model describes how part of the free energy of these beams can be transformed in a succession of plasma waves and eventually into electromagnetic waves. Following the work of Thurgood & Tsiklauri (2015) we performed several 2D Particle In Cell simulations. The simulations follow the entire set of processes from the electron beam propagation in the background plasma to the generation of the electromagnetic waves in particular the 2ωp emission, including the excitation of the low frequency waves. As suggested by Thurgood & Tsiklauri (2015) it is possible to identify regimes where the radiation emission can be directly linked to the electron beams. Our attention was devoted to estimate the conversion efficiency from electron kinetic energy to the em energy, and the growth rate of the several processes which can be identified. We studied the emission angles of the 2ωpradiation and compared them with the theoretical predictions of Willes et. al. (1995). We also show the role played by some numerical parameters i.e. the size and shape of the simulation box. This work is the first step to prepare laser-plasma experiments. V. L. Ginzburg, V. V. Zhelezniakov On the Possible Mechanisms of Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma) Soviet Astronomy, Vol. 2, p.653 (1958) J. O. Thurgood and D. Tsiklauri Self-consistent particle-in-cell simulations of funda- mental and harmonic plasma radio emission mechanisms. Astronomy & Astrophysics 584, A83 (2015). A. Willes, P

  4. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  5. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    Science.gov (United States)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  6. Direct nano-patterning of graphene with helium ion beams

    International Nuclear Information System (INIS)

    Naitou, Y.; Iijima, T.; Ogawa, S.

    2015-01-01

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO 2 /Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He + ). Doses of 2.0 × 10 16  He +  cm −2 from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He + in a non-monotonic fashion. Increasing the dose from 2.0 × 10 16 to 5.0 × 10 16  He +  cm −2 improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10 17  He +  cm −2 degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices

  7. MESSENGER Spacecraft Phase Scintillation due to Plasma ductting effect on RF beam propagation at Superior Solar Conjunction

    Science.gov (United States)

    Mosavi, N.; Sequeira, H.; Copeland, D.; Menyuk, C.

    2017-12-01

    We investigate the evolution of a radio frequency (RF) X-band signal as it propagates through the solar corona turbulence in superior solar conjunction at low Sun-Earth-Probe (SEP) angles.Data that was obtained during several MESSENGER (MErcury Surface, Space ENivornment, GEochmeisty, and Ranging) conjunctions reveal a short-term and long-term effect. Amplitude scintillation is evident on a short time scale. Phase scintillations are stronger, but occur over a longer time scale. We examine different possible phenomena in the solar plasma that could be the source of the different time scales of the amplitude and phase scintillations. We propose a theoretical model in which the amplitude scintillations are due to local fluctuations of the index of refraction that scatter the RF signal. These rapidly varying fluctuations randomly attenuate the signal without affecting its phase. By contrast, we propose a model in which phase fluctuations are due to long ducts in the solar plasma, streaming from the sun, that trap some parts of the RF signal. These ducts act as waveguides, changing the phase velocity of the RF beam as it travels a zigzag path inside a duct. When the radiated wave exits from a duct, its phase is changed with respect to the signal that did not pass through the duct, which can lead to destructive interference and carrier suppression. The trapping of the wave is random in nature and can be either a fast or slow process. The predictions of this model are consistent with observations.

  8. Studies on reducing the thermal loads of solar-pumped solid state lasers; Taiyoko reiki laser no netsufuka teigen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K; Yugami, H; Naito, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    It was intended to reduce the thermal loads of solar-pumped solid state lasers (highly densified solar light is irradiated directly onto a laser medium to cause excitation. No electric power is required for the excitation.). For this purpose, experiments were performed by using a selective permeation film. Solar light includes wavelengths not effective for excitation, which causes heat generation and thermal loads such as lens heating effect and thermal stress compounded refraction, degrading the laser beam quality. The Nd:YAG was used as a laser medium, and a multi-layered film (composed of SiO2 and TiO2) which cuts wavelength below 500 nm as a selective permeation film to cut light having wavelengths not required for excitation. A laser transmitting experiment revealed that the slope efficiency is improved by 27% as compared to not using the film. Beam fluctuation was improved to 45%. Using the selective permeation film has realized more efficient conversion of the solar light into a beam with better quality. The results for calculation of heat lens effect by using temperature distribution simulation showed good agreement with experimental values. Using the selective permeation film can suppress the maximum temperature of a laser rod to 68%, as well as the thermal stress. 9 figs., 2 tabs.

  9. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, NorEddine; Kim, Young-Deuk

    2017-01-01

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid

  10. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  11. Characterization of a free-air ionization chamber in direct X-ray beams as used in mammography

    International Nuclear Information System (INIS)

    Lima, Mateus Hilario de

    2014-01-01

    At this work stability and characterization tests were undertaken on a Victoreen free-air ionization chamber, model 481. The tests were realized using direct X-ray beams as a contribution for its establishment as a primary standard system of the quantity air kerma. The characterization tests were: saturation curve, ion collection efficiency, polarity effect, response linearity with the air kerma rate and response linearity with the chamber volume variation. The ion collection efficiency allowed the determination of the ion recombination factor. Most of the test results showed agreement with the limits established by international standards. Furthermore, the air attenuation factors for the mammography beams with aluminum and molybdenum filters were obtained. The factors for photon transmission and scattering at the diaphragm edges were also determined for mammography beams with aluminum filter and for the standard beam with molybdenum filter. (author)

  12. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  13. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  14. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  15. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  16. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Berman, Abigail T.; James, Sara St.; Rengan, Ramesh

    2015-01-01

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  17. Assessment Of The Viability Of Kaduna City Climate For Year Round Use Of Direct Solar Thermal Cooking Fuel In Housing

    Directory of Open Access Journals (Sweden)

    Boumann Ephraim Sule

    2017-10-01

    Full Text Available Solar energy obtained from the sun is the world most abundant and cheapest source of energy as a cooking fuel. It comes in two forms Concentrated Solar Thermal direct conversion of solar energy to heat that cooks and Solar Photovoltaic PV a conversion of solar energy to electrical then to heat energy the former technology is simple and far cheaper. Despite all these architectural and engineering researches is yet to capture it for indoor cooking because of inability to cook year round due the claimed hindrances by weather condition such as clouds rainfall wind dusty atmosphere and many others. This paper attempted to look into the possibility of cooking year round in Kaduna city. It collected and analyzed ten years climatic data from three different meteorological stations strategically located round the city this showed a low solar radiation in the month of August. It further compared the result with a literature review of solar cooking carried in the same month the findings showed at the peak of each weather hindrance a another element overrides it to give enough minimum energy for cooking a meals. This paper has therefore pointed the potentials of Kaduna city climate for year round use of concentrated solar thermal as a cooking fuel in residential building and further recommends the architectural collaboration with engineers for the direct capturing of solar rays into residential dwelling as a sustainable cooking fuel.

  18. Effect of working fluids on the performance of a novel direct vapor generation solar organic Rankine cycle system

    International Nuclear Information System (INIS)

    Li, Jing; Alvi, Jahan Zeb; Pei, Gang; Ji, Jie; Li, Pengcheng; Fu, Huide

    2016-01-01

    Highlights: • A novel, flexible direct vapor generation solar ORC is proposed. • Technical feasibility of the system is discussed. • Fluid effect on collector efficiency is explored. • The system is more efficient than solar ORC with HTF. - Abstract: A novel solar organic Rankine cycle (ORC) system with direct vapor generation (DVG) is proposed. A heat storage unit is embedded in the ORC to guarantee the stability of power generation. Compared with conventional solar ORCs, the proposed system avoids the secondary heat transfer intermediate and shows good reaction to the fluctuation of solar radiation. The technical feasibility of the system is discussed. Performance is analyzed by using 17 dry and isentropic working fluids. Fluid effects on the efficiencies of ORC, collectors and the whole system are studied. The results indicate that the collector efficiency generally decreases while the ORC and system efficiencies increase with the increment in fluid critical temperature. At evaporation temperature of 120 °C and solar radiation of 800 Wm −2 , the ORC, collector and overall thermal efficiencies of R236fa are 10.59, 56.14 and 5.08% while their values for Benzene are 12.5, 52.58 and 6.57% respectively. The difference between collector efficiencies using R236fa and Benzene gets larger at lower solar radiation. The heat collection is strongly correlated with latent and sensible heat of the working fluid. Among the fluids, R123 exhibits the highest overall performance and seems to be suitable for the proposed system in the short term.

  19. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    Science.gov (United States)

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  20. Performance investigation of a solar-assisted direct contact membrane distillation system

    KAUST Repository

    Kim, Youngdeuk

    2013-01-01

    This paper presents a solar-assisted direct contact membrane distillation (DCMD) system with novel energy recovery concepts for a continuous 24-h-a-day operation. A temperature modulating scheme is introduced to the solar-thermal system that supplies feed seawater to the DCMD modules. This scheme attenuates extreme temperature fluctuations of the feed water by storing the collected energy during solar-peak hours and reutilizing it throughout the day. Thus, the energy savings is realized yet the feed seawater temperature is maintained within the desired range. Additionally, the system employs heat recovery from the permeate and brine streams to the feed seawater. The simulations for such a system with a shell-and-tube type DCMD modules are carried out to examine the spatial property variations and the sensitivity of system performance (i.e., transmembrane pressure, permeate flux and performance ratio) to the operating conditions (inlet temperature and flow rate) and the fiber dimensions (fiber length and packing density). It is found that there are trade-offs between mean permeate flux and performance ratio with respect to permeate inlet temperature and flow rate and between total distillate production and performance ratio with respect to packing density. For the solar-assisted DCMD system having evacuated-tube collectors of 3360m2 with 160m3 seawater storage tanks and 50 DCMD modules, the annual solar fraction and the collector efficiency are found to be 77% and 53%, respectively, whilst the overall permeate production capacity is 31m3/day. The overall specific thermal energy consumption of the DCMD system with heat recovery is found to be 436kWh/m3 and it is about 43% lower as compared to the system without heat recovery. It is observed that the specific thermal energy consumption decreases significantly by 55% with increased collector area from 1983m2 to 3360m2 whereas the specific electrical energy consumption increases slightly by 16%. © 2012 Elsevier B.V.

  1. Solar energy utilization in the direct photocarboxylation of 2,3-dihydrofuran using CO2.

    Science.gov (United States)

    Aresta, Michele; Dibenedetto, Angela; Baran, Tomasz; Wojtyła, Szymon; Macyk, Wojciech

    2015-01-01

    The conversion of CO2 into high energy products (fuels) and the direct carboxylation of C-H bonds require a high energy input. Energy cannot be derived from fossil carbon, in this case. Solar energy can be used instead, with a low environmental impact and good profit. We have studied the use of white light or solar energy in the photoreduction of CO2 and in photocarboxylation reactions, using different semiconductors modified at their surface. Two examples of reduction of CO2 to methanol and CO will be shortly discussed, and two cases of carboxylation of organic substrates. The case of carboxylation of 2,3-dihydrofuran will be discussed in detail.

  2. SiO2 Antireflection Coatings Fabricated by Electron-Beam Evaporation for Black Monocrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2014-01-01

    Full Text Available In this work we prepared double-layer antireflection coatings (DARC by using the SiO2/SiNx:H heterostructure design. SiO2 thin films were deposited by electron-beam evaporation on the conventional solar cell with SiNx:H single-layer antireflection coatings (SARC, while to avoid the coverage of SiO2 on the front side busbars, a steel mask was utilized as the shelter. The thickness of the SiNx:H as bottom layer was fixed at 80 nm, and the varied thicknesses of the SiO2 as top layer were 105 nm and 122 nm. The results show that the SiO2/SiNx:H DARC have a much lower reflectance and higher external quantum efficiency (EQE in short wavelengths compared with the SiNx:H SARC. A higher energy conversion efficiency of 17.80% was obtained for solar cells with SiO2 (105 nm/SiNx:H (80 nm DARC, an absolute conversion efficiency increase of 0.32% compared with the conventional single SiNx:H-coated cells.

  3. Polymeric flat focal field arrayed waveguide grating using electron-beam direct writing

    Science.gov (United States)

    Lu, Si; Yan, Yingbai; Jin, Guofan; Wong, W. H.; Pun, E. Y. B.

    2004-06-01

    A four-channel 400-GHz spacing flat focal field arrayed waveguide grating (AWG) demultiplexer is designed based on polymeric optical waveguide. The waveguide core-layer material is a newly developed negative tone epoxy Novolak resin (ENR) polymer with ultravoilet (UV) cured resin Norland optical adhesive 61 (NOA61) as the cladding layer. The device is fabricated using electron-beam direct writing, which has less processing steps than the reported polymeric AWGs. The experimental result is presented.

  4. Molecular beam epitaxy of InP single junction and InP/In0.53Ga0.47As monolithically integrated tandem solar cells using solid phosphorous source material

    International Nuclear Information System (INIS)

    Delaney, A.; Chin, K.; Street, S.; Newman, F.; Aguilar, L.; Ignatiev, A.; Monier, C.; Velela, M.; Freundlich, A.

    1998-01-01

    This work reports the first InP solar cells, InP/In 0.53 Ga 0.47 As tandem solar cells and InP tunnel junctions to be grown using a solid phosphorous source cracker cell in a molecular beam epitaxy system. High p-type doping achieved with this system allowed for the development of InP tunnel junctions. These junctions which allow for improved current matching in subsequent monolithically integrated tandem devices also do not absorb photons which can be utilized in the InGaAs structure. Photocurrent spectral responses compared favorably to devices previously grown in a chemical beam epitaxy system. High resolution x-ray scans demonstrated good lattice matching between constituent parts of the tandem cell. AM0 efficiencies of both InP and InP/InGaAs tandem cells are reported

  5. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  6. Direct nano-patterning of graphene with helium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Naitou, Y., E-mail: yu-naitou@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Iijima, T.; Ogawa, S. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-01-19

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO{sub 2}/Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He{sup +}). Doses of 2.0 × 10{sup 16 }He{sup + }cm{sup −2} from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He{sup +} in a non-monotonic fashion. Increasing the dose from 2.0 × 10{sup 16} to 5.0 × 10{sup 16 }He{sup + }cm{sup −2} improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10{sup 17 }He{sup + }cm{sup −2} degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices.

  7. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  8. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  9. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  10. The search for and analysis of direct samples of early Solar System aqueous fluids.

    Science.gov (United States)

    Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo

    2017-05-28

    We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  11. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  12. Beam-beam depolarization in SPEAR and PEP

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this note some approximate estimates are made of depolarization due to beam-beam forces in SPEAR and PEP, using the results of a calculation by Kondratenko. The model assumes head-on collisions between bunches of Gaussian distribution in the transverse directions; the force on the weak-beam particle is taken to be a δ-function at the interaction point. 1 ref

  13. Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking

    Science.gov (United States)

    2017-03-03

    Multi-beam directional systems are a novel approach to networking which leverage recent advances in physical layer technology, allowing formation of...for a programmatic method for setting up emulation experiments. Rather than hard code all of the underlying pieces for EMANE (such as the over-the-air

  14. Direct Coupling of Electron Beam Irradiation and Polymer Extrusion for a Continuous Polymer Modification in Molten State

    International Nuclear Information System (INIS)

    Stephan, M.

    2006-01-01

    The new approach of an e-beam initiating of chemical reactions in polymers in molten state results in some innovative results. High temperature, intensive macromolecular mobility and the absence of any crystallinity are some reasons for achieving unexpected structures, processing behaviour and properties changes in such treated thermoplastics and rubbers. Examples are a much more effective crosslinking of polyethylene and special rubbers, long chain branching of polypropylene or a partial crosslinking of polysulfone. Additionally, most of these modification effects are also achievable by a direct coupling of electron beam irradiation and conventional polymer extrusion processing for a continuous polymer modification in molten state. For realizing this unique processing technique a special MOBILE RADIATION FACILITY (MOBRAD1/T) was designed, constructed and manufactured in the IPF Dresden at which a lab-scale single screw extruder was adapted direct to an electron beam accelerator to realize a prompt irradiation of extruded polymer melt profiles before there solidification. Surprisingly, as a result of these short-time-melt reactions some effective and new polymer modification effects were found and will be presented

  15. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Brillas, Enric

    2014-01-01

    Highlights: • Assessment of an autonomous solar pre-pilot plant for solar photoelectro-Fenton. • Total decolorization and 96-97% mineralization for solutions of Direct Yellow 4 diazo dye at pH 3.0. • More rapid dye decay and mineralization at 0.50 mmol dm −3 Fe 2+ and maximum current of 5.0 A. • 11 aromatics, 22 hydroxylated derivatives and 9 carboxylic acids detected as intermediates. • Release of NH 4 + and SO 4 2− as main inorganic ions. - Abstract: Here, an overview on the advances in solar photoelectro-Fenton (SPEF) is initially presented to show that it is the more potent electrochemical advanced oxidation process based on Fenton's reaction chemistry to remove organic pollutants from waters, due to the synergistic action of generated hydroxyl radicals and solar irradiation. As a novel advance for SPEF, an autonomous solar pre-pilot plant is proposed to make an energetically inexpensive process that can be viable at industrial level. The plant of 10 dm 3 capacity contained a Pt/air-diffusion cell with 90.2 cm 2 electrode area, coupled to a solar compound parabolic collectors (CPCs) photoreactor of 1.57 dm 3 irradiation volume and to a solar photovoltaic panel that provides a maximum average current of 5.0 A. The oxidation ability of this plant was assessed by studying the degradation of Direct Yellow 4 (DY4) diazo dye, which involved the predominant destruction of organics by ·OH formed from Fenton's reaction between H 2 O 2 generated at the cathode and added Fe 2+ , along with the photolysis of Fe(III)-carboxylate complexes with sunlight in the CPCs photoreactor. The effect of Fe 2+ and dye contents as well as current on decolorization rate, substrate decay and mineralization rate was examined. About 96-97% mineralization was rapidly attained using 0.50 mmol dm −3 Fe 2+ and up to 0.32 mmol dm −3 DY4 at 5.0 A. The DY4 decay always obeyed a pseudo-first-order kinetics. Eleven aromatic products, twenty two hydroxylated derivatives

  16. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  17. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  18. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  19. Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection

    International Nuclear Information System (INIS)

    Narasimhan, Vinayak; Jiang, Dongyue; Park, Sung-Yong

    2016-01-01

    Highlights: • We present an arrayed tunable prism panel enabling wide tracking and high solar concentration. • A microfluidic technology allows a low-cost, lightweight and precise solar tracking system. • Our prism panel enables high solar concentration up to 2032× factor. • Various liquid prism configurations (stacked prism arrays) and optical materials are considered. • Their impacts on solar beam steering, reflection losses and beam concentration are studied. - Abstract: We present the design and optical analyses of an arrayed microfluidic tunable prism panel that enables wide solar tracking and high solar concentration while minimizing energy loss. Each of the liquid prism modules is implemented by a microfluidic (i.e. non-mechanical) technology based on electrowetting for adaptive solar beam steering. Therefore the proposed platform offers a low-cost, lightweight and precise solar tracking system while obviating the need for bulky and heavy mechanical moving parts essentially required for a conventional motor-driven solar tracker. In this paper, various liquid prism configurations in terms of design (single, double, triple and quad-stacked prism arrays) as well as optical materials are considered and their impact on optical performance aspects such as solar beam steering, reflection losses and beam concentration is studied. Our system is able to achieve a wide solar tracking covering the whole-day movement of the Sun and a reflection loss below 4.4% with a Rayleigh’s film for a quad-stacked prism configuration. Furthermore, an arrayed prism panel is proposed to increase the aperture area and thus allows for the collection of large amounts of sunlight. Our simulation study based on the optical design software, ZEMAX, indicates that the prism panel is capable of high solar concentration up to 2032× factor even without conventional solar tracking devices. We also deal with dispersion characteristics of the materials and their corresponding effect on

  20. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  1. Arbitrary Control of Polarization and Intensity Profiles of Diffraction-Attenuation-Resistant Beams along the Propagation Direction

    Science.gov (United States)

    Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo

    2018-02-01

    We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SOP) and intensity that can be controlled on demand along the propagation direction. This control is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the frozen waves method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three scenarios. In the first, the SOP of a horizontally polarized beam evolves to radial polarization and is then changed to vertical polarization, with the beam intensity held constant. In the second, we simultaneously control the SOP and the longitudinal intensity profile, which is chosen such that the beam's central ring can be switched off over predefined space regions, thus generating multiple foci with different SOPs and at different intensity levels along the propagation. Finally, the ability to control the SOP while overcoming attenuation inside lossy fluids is shown experimentally. We envision our proposed method to be of great interest for many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.

  2. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  3. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  4. Work Station For Inverting Solar Cells

    Science.gov (United States)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  5. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2013-01-01

    Full Text Available CuInSe2 (CIS thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD for crystallinity and field-emission scanning electron microscopy (FESEM for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1, (2 2 0/(2 0 4, and (3 1 2/(1 1 6 planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

  6. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  7. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  8. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    Science.gov (United States)

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  9. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems

    International Nuclear Information System (INIS)

    He, Qinbo; Wang, Shuangfeng; Zeng, Shequan; Zheng, Zhaozhi

    2013-01-01

    Highlights: • The factors affecting the transmittance of Cu–H 2 O nanofluids were studied with UV–Vis–NIR spectrophotometer. • The optical properties of Cu–H 2 O nanofluids were studied through the theoretical model. • The Cu–H 2 O nanofluids can enhance the absorption ability for solar energy. - Abstract: In this article, Cu–H 2 O nanofluids were prepared through two-step method. The transmittance of nanofluids over solar spectrum (250–2500 nm) was measured by the UV–Vis–NIR spectrophotometer based on integrating sphere principle. The factors influencing transmittance of nanofluids, such as particle size, mass fraction and optical path were investigated. The extinction coefficients measured experimentally were compared with the theoretical calculation value. Meanwhile, the photothermal properties of nanofluids were also investigated. The experimental results show that the transmittance of Cu–H 2 O nanofluids is much less than that of deionized water, and decreases with increasing nanoparticle size, mass fraction and optical depth. The highest temperature of Cu–H 2 O nanofluids (0.1 wt.%) can increased up to 25.3% compared with deionized water. The good absorption ability of Cu–H 2 O nanofluids for solar energy indicates that it is suitable for direct absorption solar thermal energy systems

  10. POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE

    Energy Technology Data Exchange (ETDEWEB)

    Benford, James N. [Microwave Sciences, 1041 Los Arabis Lane, Lafayette, CA 94549 (United States); Benford, Dominic J., E-mail: jimbenford@gmail.com [NASA’s Goddard Space Flight Center, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2016-07-10

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  11. DEPENDENCE OF SOLAR-WIND POWER SPECTRA ON THE DIRECTION OF THE LOCAL MEAN MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Podesta, J. J.

    2009-01-01

    Wavelet analysis can be used to measure the power spectrum of solar-wind fluctuations along a line in any direction (θ, φ) with respect to the local mean magnetic field B 0 . This technique is applied to study solar-wind turbulence in high-speed streams in the ecliptic plane near solar minimum using magnetic field measurements with a cadence of eight vectors per second. The analysis of nine high-speed streams shows that the reduced spectrum of magnetic field fluctuations (trace power) is approximately azimuthally symmetric about B 0 in both the inertial range and dissipation range; in the inertial range the spectra are characterized by a power-law exponent that changes continuously from 1.6 ± 0.1 in the direction perpendicular to the mean field to 2.0 ± 0.1 in the direction parallel to the mean field. The large uncertainties suggest that the perpendicular power-law indices 3/2 and 5/3 are both consistent with the data. The results are similar to those found by Horbury et al. at high heliographic latitudes. Comparisons between solar-wind observations and the theories of strong incompressible MHD turbulence developed by Goldreich and Sridhar and Boldyrev are not rigorously justified because these theories only apply to turbulence with vanishing cross-helicity although the normalized cross-helicity of solar-wind turbulence is not negligible. Assuming these theories can be generalized in such a way that the three-dimensional wavevector spectra have similar functional forms when the cross-helicity is nonzero, then for the interval of Ulysses data analyzed by Horbury et al. the ratio of the spectra perpendicular and parallel to B 0 is more consistent with the Goldreich and Sridhar scaling P perpendicular /P || ∝ ν 1/3 than with the Boldyrev scaling ν 1/2 . The analysis of high-speed streams in the ecliptic plane does not yield a reliable measurement of this scaling law. The transition from a turbulent MHD-scale energy cascade to a kinetic Alfven wave (KAW

  12. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    Science.gov (United States)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  13. Simple Moving Voltage Average Incremental Conductance MPPT Technique with Direct Control Method under Nonuniform Solar Irradiance Conditions

    Directory of Open Access Journals (Sweden)

    Amjad Ali

    2015-01-01

    Full Text Available A new simple moving voltage average (SMVA technique with fixed step direct control incremental conductance method is introduced to reduce solar photovoltaic voltage (VPV oscillation under nonuniform solar irradiation conditions. To evaluate and validate the performance of the proposed SMVA method in comparison with the conventional fixed step direct control incremental conductance method under extreme conditions, different scenarios were simulated. Simulation results show that in most cases SMVA gives better results with more stability as compared to traditional fixed step direct control INC with faster tracking system along with reduction in sustained oscillations and possesses fast steady state response and robustness. The steady state oscillations are almost eliminated because of extremely small dP/dV around maximum power (MP, which verify that the proposed method is suitable for standalone PV system under extreme weather conditions not only in terms of bus voltage stability but also in overall system efficiency.

  14. Transmission characteristics of Bessel-Gaussian vortex beams propagating along both longitudinal and transverse directions in a subway tunnel

    Science.gov (United States)

    Wang, Xiaohui; Song, Yingxiong

    2018-02-01

    By exploiting the non-Kolmogorov model and Rytov approximation theory, a propagation model of Bessel-Gaussian vortex beams (BGVB) propagating in a subway tunnel is derived. Based on the propagation model, a model of orbital angular momentum (OAM) mode probability distribution is established to evaluate the propagation performance when the beam propagates along both longitudinal and transverse directions in the subway tunnel. By numerical simulations and experimental verifications, the influences of the various parameters of BGVB and turbulence on the OAM mode probability distribution are evaluated, and the results of simulations are consistent with the experimental statistics. The results verify that the middle area of turbulence is more beneficial for the vortex beam propagation than the edge; when the BGVB propagates along the longitudinal direction in the subway tunnel, the effects of turbulence on the OAM mode probability distribution can be decreased by selecting a larger anisotropy parameter, smaller coherence length, larger non-Kolmogorov power spectrum coefficient, smaller topological charge number, deeper subway tunnel, lower train speed, and longer wavelength. When the BGVB propagates along the transverse direction, the influences can be also mitigated by adopting a larger topological charge number, less non-Kolmogorov power spectrum coefficient, smaller refractive structure index, shorter wavelength, and shorter propagation distance.

  15. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  16. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  17. Model and trajectory optimization for an ideal laser-enhanced solar sail

    NARCIS (Netherlands)

    Carzana (student TUDelft), Livio; Dachwald, Bernd; Noomen, R.

    2017-01-01

    A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The

  18. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  19. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  20. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    localized in the corona propagating in radial direction along magnetic field lines with an average velocity of 0.23c. A nonuniform propagation velocity is revealed. A new beam model is presented that explains the nonuniform motion of the radio source as a propagation effect of an electron ensemble with a spread velocity distribution and rules out a monoenergetic electron distribution. The coronal electron number density is derived in the region from 1.5 to 2.5 R⊙ and fitted with the newly developed density model. It determines the plasma density for the interplanetary space between Sun and Earth. The values correspond to a 1.25- and 5-fold Newkirk model for harmonic and fundamental emission, respectively. In comparison to data from other radio instruments the LOFAR data shows a high sensitivity and resolution in space, time and frequency. The new results from LOFAR's high resolution imaging spectroscopy are consistent with current theories of solar type III radio bursts and demonstrate its capability to track fast moving radio sources in the corona. LOFAR solar data is found to be a valuable source for solar radio physics and opens a new window for studying plasma processes associated with highly energetic electrons in the solar corona.

  1. Source of the backstreaming ion beams in the foreshock region

    International Nuclear Information System (INIS)

    Tanaka, M.; Goodrich, C.C.; Winske, D.; Papadopoulos, K.

    1983-01-01

    A new source mechanism is proposed for the 'reflected' ion beams observed in the foreshock region of the earth's bow shock. In our model the beams originate in the magnetosheath downstream of the qausi-perpendicular portion of the shock. The quasi-perpendicular shock transition is characterized by two downstream ion populations including high-energy gyrating ions in addition to the directly transmitted anisotropic ions. We show by particle simulations that this highly anisotropic downstream ion distribution (T/sub perpendicular//T/sub parallel/ >>1) can excite electromagnetic ion cyclotron waves which, in turn, pitch angle scatter the gyrating ions in a few ion gyroperiods. As a result, some ions acquire large parallel velocities and move fast enough along the convecting downstream magnetic field to escape back across the bow shock into the upstream region. The distribution of escaping ions calculated by using the pitch-angle-scattered ions, as a source, becomes a beam with a large temperature anisotropy T/sub perpendicular/ approx.3--5 T/sub parallel/ and a mean velocity along the magnetic field of about twice that of the solar wind velocity. A significant result is the presence of the maximum angle theta/sub n/B = theta/sub c/ above which no ions can escape, where theta/sub n/B is the angle between the shock normal and the interplanetary magnetic field. A wide peak of constant escaping ion flux is formed below theta/sub c/ whose number density is 1--2% of that of the solar wind. These results are in general agreement with the ISEE observations of the 'reflected' ions

  2. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Ekiz, Seyma; Pankow, Robert M.

    2017-01-01

    Although direct arylation polymerization (DArP) has recently emerged as an alternative to traditional cross-coupling methods like Suzuki polymerization, the evaluation of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. Because even the presence of minute...

  3. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  4. High performance CaS solar-blind ultraviolet photodiodes fabricated by seed-layer-assisted growth

    International Nuclear Information System (INIS)

    He, Qing Lin; Lai, Ying Hoi; Sou, Iam Keong; Liu, Yi; Beltjens, Emeline; Qi, Jie

    2015-01-01

    CaS, with a direct bandgap of 5.38 eV, is expected to be a strong candidate as the active-layer of high performance solar-blind UV photodiodes that have important applications in both civilian and military sectors. Here, we report that a seed-layer-assisted growth approach via molecular beam epitaxy can result in high crystalline quality rocksalt CaS thin films on zincblende GaAs substrates. The Au/CaS/GaAs solar-blind photodiodes demonstrated , more than five orders in its visible rejection power, a photoresponse of 36.8 mA/w at zero bias and a corresponding quantum efficiency as high as 19% at 235 nm

  5. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  6. An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053

    Science.gov (United States)

    Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  7. AN INVESTIGATION OF THE SOURCES OF EARTH-DIRECTED SOLAR WIND DURING CARRINGTON ROTATION 2053

    Energy Technology Data Exchange (ETDEWEB)

    Fazakerley, A. N.; Harra, L. K.; Van Driel-Gesztelyi, L., E-mail: a.fazakerley@ucl.ac.uk [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode ’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  8. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    Science.gov (United States)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  10. Study on direct-contact phase-change liquid immersion cooling dense-array solar cells under high concentration ratios

    International Nuclear Information System (INIS)

    Kang, Xue; Wang, Yiping; Huang, Qunwu; Cui, Yong; Shi, Xusheng; Sun, Yong

    2016-01-01

    Highlights: • Direct-contact phase-change liquid immersion cooling for solar cells was proposed. • A self-regulating system investigated the feasibility in temperature control. • Temperature was well controlled between 87.3 °C and 88.5 °C. • Surface heat transfer coefficient was up to 23.49 kW/(m"2·K) under 398.4×. • A model illustrated the interface function was the main reason to affect light. - Abstract: A new cooling method by directly immersing the solar cells into phase-change liquid was put forward to cool dense-array solar cells in high concentrating photovoltaic system. A self-running system was built to study the feasibility of temperature control and the effect of bubbles generated by ethanol phase change under concentration ratio ranged between 219.8× and 398.4×. The results show that the cooling system is self-regulating without consuming extra energy and ethanol flow rate reaches up to 180.6 kg/(s·m"2) under 398.4×. The temperature of solar cells distributes in the range between 87.3 °C and 88.5 °C, the surface heat transfer coefficient of electric heating plate is up to 23.49 kW/(m"2·K) under 398.4×. The bubble effect on electrical performance of triple-junction solar cells is reported and the results show that I_s_c and P_m_a_x decline 10.2% and 7.3%, respectively. A model based on bubble images illustrates that light loss at the interface between ethanol and bubble is the main reason to cut down the electrical performance.

  11. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2010-03-15

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)

  12. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    International Nuclear Information System (INIS)

    Velazquez, N.; Garcia-Valladares, O.; Sauceda, D.; Beltran, R.

    2010-01-01

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency.

  13. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  14. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  15. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    International Nuclear Information System (INIS)

    Zaher, A; Thiery, F; Grieu, S; Traoré, A; N’goran, Y

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking. (paper)

  16. Electron Beam Propagation in a Plasma

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1988-06-01

    Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.

  17. Simulation of the beam halo from the beam-beam interaction in LEP

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.

    1994-02-01

    The luminosity lifetimes of e + e - colliders are often dominated by the halo produced by the beam-beam interaction. They have developed a simulation technique to model this halo using the flux across boundaries in amplitude space to decrease the CPU time by a factor of one-hundred or more over 'brute force' tracking. It allows simulation of density distributions and halos corresponding to realistic lifetimes. Reference 1 shows the agreement with brute force tracking in a number of cases and the importance of beam-beam resonances in determining the density distribution of large amplitudes. this research is now directed towards comparisons with operating colliders and studies of the combined effects of lattice and beam-beam nonlinearities. LEP offers an ideal opportunity for both, and in this paper they are presenting the first results of LEP simulations

  18. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  19. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  20. Reflection of the solar wind ions at the earth's bow shock: energization

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.; Russell, C.T.

    1983-01-01

    The energies of the field-aligned proton beams observed upstream of the earth's bow shock are tested, on a statistical basis, against a simple reflection model. The comparison is carried out using both plasma and magnetic field data collected by the ISEE 2 spacecraft. The observations refer to the period from November 5 to December 20, 1977. According to this model, some of the solar wind protons incident upon the earth's shock front when reflected upstream gain energy by displacement parallel to the interplanetary electric field. The energy gained in the reflection can be described as a function of the angles between the interplanetary magnetic field, the solar wind bulk velocity, and the local shock normal. The task of finding these angles, i.e., the expected source point of the reflected ions at the earth's shock front, has been resolved using both the measured magnetic field direction and actual beam trajectory. The latter method, which takes into account the ion drift velocity, leads to a better agreement between theory and observations when far from the shock. In particular, it allows us to check the energies of the field-aligned beams even when they are observed far from the earth's bow shock (at distances up to 10-15 R/sub E/). We confirm, on a statistical basis, the test of the model recently carried out using the Los Alamos National Laboratory/Max-Planck-extraterrestrische observations on ISEE 1 and 2. We infer that reflected beams can sometimes propagate far upstream of the earth's bow shock without changing their energy properties

  1. The Effects of Solar Irradience and Ambient Temperature on Solar ...

    African Journals Online (AJOL)

    Solar energy is abundant. It is however low grade energy and cannot be easily used in the form it occurs for work. Converting solar energy directly to electricity, using solar photovoltaic (PV) modules is however a low efficiency process. Optimizing this conversion, especially in the face of the high cost of solar panels, is thus ...

  2. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  3. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  4. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  5. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Ahn, S.H. [University of Tennessee, Knoxville (UTK); Allmond, James M [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Bardayan, Daniel W [ORNL; Baugher, T. [Michigan State University, East Lansing; Bazin, D. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Beene, James R [ORNL; Berryman, J. S. [Michigan State University, East Lansing; Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK)/Sungkyunkwan University, Korea; Cizewski, J. A. [Rutgers University; Gade, A. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Galindo-Uribarri, Alfredo {nmn} [ORNL; Garcia-Ruiz, R.F. [Instituut voor Kernen Stralingsfysica, KU Leuven, B-3001, Leuven, Belgium; Grzywacz, Robert Kazimierz [ORNL; Howard, Meredith E [ORNL; Kozub, R. L. [Tennessee Technological University (TTU); Liang, J Felix [ORNL; Manning, Brett M [ORNL; Matos, M. [Louisiana State University; McDaniel, S. [Michigan State University, East Lansing; Miller, D. [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Padgett, S [University of Tennessee, Knoxville (UTK); Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Pain, Steven D [ORNL; Pittman, S. T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Radford, David C [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [ORNL; Smith, Michael Scott [ORNL; Stracener, Daniel W [ORNL; Stroberg, S. [Michigan State University, East Lansing; Tostevin, Jeffrey A [ORNL; Varner Jr, Robert L [ORNL; Weisshaar, D. [Michigan State University, East Lansing; Wimmer, K. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL)/Central Michigan University; Winkler, R. [Michigan State University, East Lansing

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  6. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.

    Science.gov (United States)

    Marozas, J A; Hohenberger, M; Rosenberg, M J; Turnbull, D; Collins, T J B; Radha, P B; McKenty, P W; Zuegel, J D; Marshall, F J; Regan, S P; Sangster, T C; Seka, W; Campbell, E M; Goncharov, V N; Bowers, M W; Di Nicola, J-M G; Erbert, G; MacGowan, B J; Pelz, L J; Yang, S T

    2018-02-23

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3  Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

  7. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result has shown that the power of 18. W and 100. W LED luminaires can be controlled accurately with error at 2-5%. A solar LED street lighting system using constant-power and dimming control was designed and built for field test in a remote area. The long-term performance was satisfactory and no any failure since the installation. Since no high-power capacitor is used in the present constant-power control circuit, a longer lifetime is expected. © 2012 Elsevier Ltd.

  8. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  9. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  10. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  11. Two kinds of Airy-related beams

    International Nuclear Information System (INIS)

    Xu, Yiqing; Zhou, Guoquan; Zhang, Lijun; Ru, Guoyun

    2015-01-01

    Two kinds of Airy-related beams are introduced in this manuscript. The normalized intensity distribution in the x-direction of the two kinds of Airy-related beams is close to that of the Gaussian beam. The normalized intensity distribution in the y-direction of the two kinds of Airy-related beams is close to that of the second-order and the third-order elegant Hermite–Gaussian beams, respectively. Analytical expressions of the two kinds of Airy-related beams passing through an ABCD paraxial optical system are derived. The beam propagation factors for the two kinds of Airy-related beams are 1.933 and 2.125, respectively. Analytical expressions of the beam half widths and the kurtosis parameters of the two kinds of Airy-related beams passing through an ABCD paraxial optical system are also presented. As a numerical example, the propagation properties of the two kinds of Airy-related beams are demonstrated in free space. Moreover, the comparison between the two kinds of Airy-related beams and their corresponding elegant Hermite–Gaussian beams along the two transverse directions are performed in detail. Upon propagation, the former kind of Airy-related beam will evolve from the central bright beam into the dark hollow beam. Contrarily, the latter kind of Airy-related beam will evolve from the dark hollow beam into the central bright beam. These two kinds of Airy-related beams can be used to describe specially distributed beams. (paper)

  12. Quantitative assessment of the ion-beam irradiation induced direct damage of nucleic acid bases through FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); University of Science and Technology of China, Hefei 230029, Anhui (China); Su, Xi; Yao, Guohua; Lu, Yilin; Ke, Zhigang; Liu, Jinghua; Wu, Yuejin; Yu, Zengliang [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China)

    2014-07-01

    Energetic particles exist ubiquitously in nature, and when they hit DNA molecules in organisms, they may induce critical biological effects such as mutation. It is however still a challenge to measure directly and quantitatively the damage imposed by the energetic ions on target DNA molecules. In this work we attempted to employ Fourier transformation infrared (FTIR) spectroscopy to assess the ion-induced direct damage of four nucleic acid bases, namely, thymine (T), cytosine (C), guanine (G), and adenine (A), which are the building blocks of DNA molecules. The samples were prepared as thin films, irradiated by argon ion-beams at raised ion fluences, and in the meantime measured by FTIR spectroscopy for the damage in a quasi-in-situ manner. It was found that the low-energy ion-beam induced radiosensitivity of the four bases shows the sequence G > T > C > A, wherein the possible mechanism was also discussed.

  13. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  14. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    International Nuclear Information System (INIS)

    Montgomery, Edward E. IV

    2010-01-01

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  15. Demonstration of direct energy recovery of full energy ions at 40 keV on a PLT/ISX beam system

    International Nuclear Information System (INIS)

    Stirling, W.L.; Barber, G.C.; Dagenhart, W.K.

    1980-01-01

    The desire for multisecond beams in the 80-keV/nucleon energy range at 10 MW/module has emphasized the need for technological advances in several areas. At such beam energies, as much as 75% of the initial beam energy is retained in the unneutralized ion components. As a result, two questions immediately come to mind: how can one dispose of this energy; or better still, how can one efficiently recover this energy. The conventional way of treating such a problem is to deflect the ions out of the neutral beam and onto water-cooled plates or beam dumps. This method has worked satisfactorily for 40-keV/nucleon beams in excess of 1.5 MW and approx. 0.5 s. However, the power per unit area to be disposed of in the high power, multisecond beams mentioned above is beyond present-day technology. We have proposed and demonstrated a unique solution to this problem which not only removes the need for beam dumps but also returns from 50 to 80% of the energy contained in the full energy ion component directly and dynamically to the high voltage supply. In fact, the energy in the residual ion component is not expended. The tests were made on a PLT/ISX type beam line at 40 keV/nucleon of about 800 kW and 0.1 s

  16. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m 2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 deg. C to 50.5 deg. C in 94 min with average ambient temperature 20.6 deg. C and average solar radiation intensity 955 W/m 2 . And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 deg. C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system

  17. Enhanced laser beam coupling to a plasma

    International Nuclear Information System (INIS)

    Steiger, A.D.; Woods, C.H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma. 10 claims, 2 figures

  18. CIGS thin films, solar cells, and submodules fabricated using a rf-plasma cracked Se-radical beam source

    International Nuclear Information System (INIS)

    Ishizuka, Shogo; Yamada, Akimasa; Shibata, Hajime; Fons, Paul; Niki, Shigeru

    2011-01-01

    Coevaporated Cu(In,Ga)Se 2 (CIGS) film growth using a rf-plasma cracked Se-radical beam (R-Se) source leads to a significant reduction in the amount of raw Se source material wasted during growth and exhibits unique film properties such as highly dense, smooth surfaces and large grain size. R-Se grown CIGS solar cells also show concomitant unique properties different from conventional evaporative Se (E-Se) source grown CIGS cells. In the present work, the impact of modified surfaces, interfaces, and bulk crystal properties of R-Se grown CIGS films on the solar cell performance was studied. When a R-Se source was used, Na diffusion into CIGS layers was enhanced while a remarkable diffusion of elemental Ga and Se into Mo back contact layers was observed. Improvements in the bulk crystal quality as manifested by large grain size and increased Na concentration with the use of a R-Se source is expected to be effective to improve photovoltaic performance. Using a R-Se source for the growth of CIGS absorber layers at a relatively low growth temperature, we have successfully demonstrated a monolithically integrated submodule efficiency of 15.0% (17 cells, aperture area of 76.5 cm 2 ) on 0.25-mm thick soda-lime glass substrates.

  19. Electromagnetic radiation from beam-plasma instabilities

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Whelan, D.A.

    1982-01-01

    This chapter investigates the mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves. Electromagnetic radiation arises from both natural beam-plasma systems (e.g., type III solar bursts and kilometric radiation), and from man-made electron beams injected from rockets and spacecraft. A pulsed magnetized discharge plasma is produced with a 1 m diam. oxide-coated cathode and the discussed experiment is performed in the quiescent afterglow. The primary beam-plasma instability involves the excitation of electrostatic plasma waves. Electromagnetic radiation from the beam-plasma system is observed with microwave antennas outside the plasma (all probes removed) or with coax-fed dipoles which can be inserted radially and axially into the plasma. The physical process of mode coupling by which electromagnetic radiation is generated in an electrostatic beam-plasma instability is identified. The results are relevant to beam injection experiments from rockets or satellites into space plasmas. The limited penetration of the beam current into the plasma due to instabilities is demonstrated

  20. ONSETS AND SPECTRA OF IMPULSIVE SOLAR ENERGETIC ELECTRON EVENTS OBSERVED NEAR THE EARTH

    International Nuclear Information System (INIS)

    Kontar, Eduard P.; Reid, Hamish A. S.

    2009-01-01

    Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.

  1. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  2. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet

    Science.gov (United States)

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-02-01

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 103 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

  3. Cladding of Ni superalloy powders on AISI 4140 steel with concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J.; Lopez, V.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, Madrid (Spain); Martinez, D. [Plataforma Solar de Almeria, Tabernas Almeria (Spain)

    1998-05-12

    The present work deals with Ni alloy cladding on AISI 4140 steel samples made with high power density concentrated solar beams. The quality of the cladding is high concerning the adherence, low dilution and high hardness of the coating. Some considerations are presented concerning the future of high power density beams related to SUrface Modification of Metallic mAterials with SOLar Energy (SUMMA cum SOLE)

  4. The Solar Ultraviolet Environment at the Ocean.

    Science.gov (United States)

    Mobley, Curtis D; Diffey, Brian L

    2018-05-01

    Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for 10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.

  5. YBa2Cu3O7 nanobridges fabricated by direct-write electron beam lithography

    International Nuclear Information System (INIS)

    Wendt, J.R.; Martens, J.S.; Ashby, C.I.H.; Plut, T.A.; Hietala, V.M.; Tigges, C.P.; Ginley, D.S.; Siegal, M.P.; Phillips, J.M.; Hohenwarter, G.K.G.

    1992-01-01

    A direct method for nondamaging, nanometer-scale patterning of high T c superconductor thin films is presented. We have fabricated superconducting nanobridges in high-quality, epitaxial thin-film YBa 2 Cu 3 O 7 (YBCO) by combining direct-write electron beam lithography and an improved aqueous etchant. Weak links with both length and width dimensions less than 20 nm have exhibited critical currents at 77 K of 4--20 μA and I cRn products of 10--100 μV which compare favorably with results for other YBCO junction technologies. We have used this technique in the fabrication of a shock-wave pulse former as an initial demonstration of its applicability to monolithic superconductive electronics

  6. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  7. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.

    2015-09-21

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  8. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    Science.gov (United States)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  9. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2012-07-01

    In the present work, investigations are made to study performance characteristics of solar flat plate collector with different selective surface coatings. Flat plate collector is one of the important solar energy trapping device which uses air or water as working fluid. Of the many solar collector concepts presently being developed, the relative simple flat plate solar collector has found the widest application so far. Its characteristics are known, and compared with other collector types, it is the easiest and least expensive to fabricate, install, and maintain. Moreover, it is capable of using both the diffuse and the direct beam solar radiation. For residential and commercial use, flat plate collectors can produce heat at sufficiently high temperatures to heat swimming pools, domestic hot water, and buildings; they also can operate a cooling unit, particularly if the incident sunlight is increased by the use of reflector. Temperatures up to 70 C are easily attained by flat plate collectors. With very careful engineering using special surfaces, reflectors to increase the incident radiation and heat resistant materials, higher operating temperatures are feasible.

  10. The inconstant solar constant

    International Nuclear Information System (INIS)

    Willson, R.C.; Hudson, H.

    1984-01-01

    The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots

  11. Accelerator beam application in science and industry

    International Nuclear Information System (INIS)

    Hagiwara, M.

    1996-01-01

    Various accelerator beams are being used widely in science and industry. The area of their applications is so wide and rapidly expanding. This paper focuses on recent efforts made in the field of radiation chemistry, especially in materials development using electron and ion beams. Concerning the applications of electron beams, synthesis of SiC fibers, improvement of radiation resistance of polytetrafluoroethylene (PTFE) and preparation of an adsorbent for uranium recovery from sea water were described. In the synthesis of SiC, the electron beams were used effectively to cross-link precursor fibers to prevent their deformation upon heating for their pyrolysis to SiC fibers. The improvement of radiation resistance of PTFE was resulted successfully by its crosslinking. As to the preparation of the adsorbent for uranium recovery, chelating resins containing amidoxime groups were shown to work as a good adsorbent of uranium from sea water. The Takasaki Radiation Chemistry Research Establishment of JAERI completed the accelerator facility named TIARA for R and D of ion beam applications three years ago. Some results were presented on the studies about radiation effects on solar cells and LSIs for space use and synthesis of functional materials. Radiation resistance of solar cells was tested with both electron and proton beams using a beam scanning technique for the irradiation to a wide area, and ultra-fast transient current induced by heavy ion microbeam was measured for studies on mechanisms of single event upset (SEU) in LSIs. In the synthesis of organic functional materials, a temperature responsive particle track membrane was developed. Techniques for RBS and NRA using heavy ion beams were established for analyzing structures of multi-layered materials. Single crystalline thin film of diamond was successfully formed on Si substrate under the deposition of mass separated C-12 ions of 100 eV. (author)

  12. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  13. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  14. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  15. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    Science.gov (United States)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  16. Solar power from space: the worldwide grid of the future

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Recent interest in the feasibility and prospects for generating large amounts of electricity from space-based solar power systems is reviewed. The interest is generated by reports which suggest that sun-surfacing solar arrays in stationary earth orbit at an altitude 22,300 miles would not only be unaffected by the Earth's day-night cycle, cloud cover and atmospheric dust, but would also receive some eight times as much sunlight as solar collectors at the Earth's surface. The prediction is that relevant technology will be perfected to the point where by the middle of the 21. century a large share of the world's demand for electricity will be met by a series of very large space-based solar photovoltaic arrays. Several billion watts of power could be beamed to the Earth at microwave radio frequencies for collection by wide area rectifying ground antennas for conversion to electricity via transmitters connected to the photovoltaic arrays. A chronological account of development of this concept of beaming solar power from space shows that the idea has been around since the 1880s, gaining more and more credibility with each advance in space science . The moon, too, has been suggested as an ideal site for developing large-scale solar power systems that beam microwave energy to Earth. The lunar soil could supply silicon to build solar arrays, and metals such as iron and aluminum, for support structures and electric wiring. NASA is actively pursuing this line of inquiry, especially since all the problems involved with solar energy generation on earth, are absent on the moon.While a breakthrough is not imminent, the significant progress achieved to date in demonstrating the feasibility of wireless power transmission from space provides good reason for continuing to pursue this line of investigation

  17. A beam profile monitor for heavy ion beams at high impact energies

    International Nuclear Information System (INIS)

    Hausmann, A.; Stiebing, K.E.; Bethge, K.; Froehlich, O.; Koehler, E.; Mueller, A.; Rueschmann, G.

    1994-01-01

    A beam profile monitor for heavy ion beams has been developed for the use in experiments at the Heavy Ion Synchrotron SIS at Gesellschaft fuer Schwerionenforschung Darmstadt (GSI). Four thin scintillation fibres are mounted on one wheel and scan the ion beam sequentially in two linearly independent directions. They are read out via one single photomultiplier common to all four fibres into one time spectrum, which provides all information about beam position, beam extension, time structure and lateral homogeneity of the beam. The system operates in a wide dynamic range of beam intensities. ((orig.))

  18. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    Science.gov (United States)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  19. Characterization of Cr-O cermet solar selective coatings deposited by using direct-current magnetron sputtering technology

    International Nuclear Information System (INIS)

    Lee, Kil Dong

    2006-01-01

    Cr-O (Cr-CrO) cermet solar selective coatings with a double cermet layer film structure were prepared by using a special direct-current (dc) magnetron sputtering technology. The typical film structure from the surface to the bottom substrate was an Al 2 O 3 anti-reflection layer on a double Cr-O cermet layer on an Al metal infrared reflection layer. The deposited Cr-O cermet solar selective coating had an absorptance of α = 0.93 - 0.95 and an emittance of ε = 0.09 - 0.10(100 .deg. C). The absorption layers of the Cr-O cermet coatings deposited on glass and silicon substrates were identified as being amorphous by using X-ray diffraction (XRD). Atomic force microscopy (AFM) showed that Cr-O cermet layers were very smooth and that their grain sizes were very small. The result of thermal stability test showed that the Cr-O cermet solar selective coating was stable for use at temperatures of under 400 .deg. C.

  20. Design of ultrahigh brightness solar-pumped disk laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2012-09-10

    To significantly improve the solar-pumped laser beam brightness, a multi-Fresnel lens scheme is proposed for side-pumping either a single-crystal Nd:YAG or a core-doped ceramic Sm(3+) Nd:YAG disk. Optimum laser system parameters are found through ZEMAX and LASCAD numerical analysis. An ultrahigh laser beam figure of merit B of 53 W is numerically calculated, corresponding to a significant enhancement of more than 180 times over the previous record. 17.7 W/m(2) collection efficiency is also numerically attained. The strong thermal effects that have hampered present-day rod-type solar-pumped lasers can also be largely alleviated.

  1. Preparation of MgB2 superconducting microbridges by focused ion beam direct milling

    Science.gov (United States)

    Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li

    2017-01-01

    MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.

  2. Internal plasma state of the high speed solar wind at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Abraham--Shrauner, B.; Asbridge, J.R.; Bame, S.J.

    1976-01-01

    The character of particle velocity distributions in the high speed solar wind is presented. It is found that electron distribution shapes differ from simple bi-Maxwellians in that a hot, strongly beamed, high energy electron component is always present and is observed to move relative to a distinct low energy electron component along the magnetic field direction, B, away from the sun. The velocity difference between hot and cold electron components appears, at times, to be strongly correlated with the local Alfven speed. This correlation suggests that the solar wind heat flux is being limited some of the time in the neighborhood of 1 AU. Proton velocity distributions are also best described in terms of two relatively convecting, unresolved components. The velocity of the lower density proton beam component is generally larger than that of the main component and the temperature of the main component perpendicular to B is typically 2 to 3 times larger than its parallel temperature. Alpha particles as a whole generally move faster than the protons along B and have a temperature which is, on the average, 6 times higher than the temperature of the total proton population. Evidence is presented which supports the idea that the two-component proton structure observed in high speed regions is intimately related to fine scale velocity variations at 1 AU, and hence by inference, to prominent spatial and/or temporal structures present throughout that part of the corona from which the solar wind evolves

  3. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    Science.gov (United States)

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  4. Solar Shading System Based on Daylight Directing Glass Lamellas

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Santos, Inês; Svendsen, Svend

    2008-01-01

    The overheating problems in office buildings must be solved with efficient solar shadings in order to reduce the energy demand for cooling and ventilation. At the same time the solar shading should not reduce the daylight level in the building on overcast days because it would result in a lower...

  5. Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, Michael, E-mail: michael.corazza@gmail.com [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Simonsen, Søren B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gnaegi, Helmut [Diatome Ltd., Biel-Bienne (Switzerland); Thydén, Karl T.S.; Krebs, Frederik C.; Gevorgyan, Suren A. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark)

    2016-12-15

    Highlights: • Comparison of flexible solar cell sections prepared by ultramicrotomy and by FIB. • Energy filtered TEM analysis of phase separation in the P3HT:PCBM active layer. • Imaging of aging effects on solar cell cross section prepared by ultramicrotomy. • Ultramicrotomy provides great details while FIB better preserves the structure. - Abstract: The challenge of preparing cross sections of organic photovoltaics (OPV) suitable for transmission electron microscopy (TEM) and scanning TEM (STEM) is addressed. The samples were polymer solar cells fabricated using roll-to-roll (R2R) processing methods on a flexible polyethylene terephthalate (PET) substrate. Focused ion beam (FIB) and ultramicrotomy were used to prepare the cross sections. The differences between the samples prepared by ultramicrotomy and FIB are addressed, focusing on the advantages and disadvantages of each technique. The sample prepared by ultramicrotomy yielded good resolution, enabling further studies of phase separation of P3HT:PCBM by means of energy filtered TEM (EFTEM). The sample prepared by FIB shows good structure preservation, but reduced resolution due to non-optimal thicknesses achieved after treatment. Degradation studies of samples prepared by ultramicrotomy are further discussed, which reveal particular effects of the ISOS-L-3 aging test (85 °C, 50% R.H., 0.7 Sun) onto the sample, especially pronounced in the silver layer.

  6. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    Science.gov (United States)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  7. Direct observations of the charge states of low energy solar particles

    Science.gov (United States)

    Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1974-01-01

    The charge states of carbon and oxygen of solar origin have been measured directly in interplanetary space. At 100 keV per nucleon the C(+5)/C(+6) and O(+7)/O(+8) ratios are 1.8 and 1.6, respectively. Abundance ratios of low energy heavy nuclei to He are found which are significantly larger than the corresponding photospheric values. The enhancement of O/He is 35, and both Si/He and Fe/He are overabundant by a factor of 100. To explain these observations a mechanism is proposed which first preferentially accelerates heavy ions and is followed by either storage of these ions in the coronal regions or strong adiabatic deceleration.

  8. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  9. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  10. Electron beam interaction with space plasmas.

    Science.gov (United States)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  11. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  12. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  13. Improve beam position stability of SSRF BL15U beamline by using beam intensity feedback

    International Nuclear Information System (INIS)

    Li Guoqiang; Liang Dongxu; Yan Fen; Li Aiguo; Yu Xiaohan

    2013-01-01

    Background: The shaking of micro-focus spot in the vertical direction is found during the energy scan experiments, such as XAFS scan. The beam position of vertical direction changes obviously with the energy. Purpose: In order to make the beam position shaking amplitude less than 1/10 of the beam size. Methods: The beam position stability of SSRF BL15U beamline is improved by using beam intensity feedback. The feedback system include beam intensity monitor of the beamline and fine adjust mechanism of pitch 2 (the pitch angle of the second crystal of the double crystal monochromator). The feedback control of the beam position is realized by adjusting the pitch 2 to fix beam intensity at its maximum value. Results: The test results show that the vertical beam vibration below 10 Hz frequency is significantly reduced and also the beam position stability during photon energy scan is improved by more than 5 times. Conclusions: By adopting the new feedback systems, the stability of the beam spot on the specimen stage was dramatically improved which achieved the anticipated target. (authors)

  14. Radiolytic preparation of thin Au film directly on resin substrate using high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@upst.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd., 5-3 Ozushima, Izumiohtsu, Osaka 595-0074 (Japan); Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-04-01

    A novel method for preparing thin Au films directly on resin substrates using an electron beam was developed. The thin Au films were prepared on a resin substrate by the reduction of Au ions in an aqueous solution via irradiation with a high-energy electron beam (4.8 MeV). This reduction method required 7 s of the irradiation time of the electron beam. Furthermore, no reductant or catalyst was needed. As the concentration of Au ions in the precursor solution was increased, the amount of Au deposited on the resin substrate increased, too, and the structure of the prepared Au film changed. As a result, the film color changed as well. Cross-sectional scanning electron microscope images of the thus-prepared Au film indicated that the Au films were consisted of two layers: a particle layer and a bottom bulk layer. There was strong adhesion between the Au films and the underlying resin substrates. This was confirmed by the tape-peeling test and through ultrasonic cleaning. After both processes, Au remained on the resin substrates, while most of the particle-like moieties were removed. This indicated that the thin Au films prepared via irradiation with a high-energy electron beam adhered strongly to the resin substrates. - Highlights: • A thin gold (Au) film was formed by EBIRM for the first time. • The irradiation time of the electron beam was less than 10 s. • Thin Au films were obtained without reductant or catalyst. • Au films were consisted of two layers: a particle layer and a bottom bulk layer. • There was strong adhesion between the bottom bulk layer and the underlying resin substrates.

  15. Information content of sky intensity and polarization measurements at right angles to the solar direction

    Science.gov (United States)

    Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.

    1978-01-01

    The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.

  16. Rocksalt MgS solar blind ultra-violet detectors

    Directory of Open Access Journals (Sweden)

    Ying-Hoi Lai

    2012-03-01

    Full Text Available Studies using in-situ Auger electron spectroscopy and reflection high energy electron diffraction, and ex-situ high resolution X-ray diffraction and electron backscatter diffraction reveal that a MgS thin film grown directly on a GaAs (100 substrate by molecular beam epitaxy adopts its most stable phase, the rocksalt structure, with a lattice constant of 5.20 Å. A Au/MgS/n+-GaAs (100 Schottky-barrier photodiode was fabricated and its room temperature photoresponse was measured to have a sharp fall-off edge at 235 nm with rejection of more than three orders at 400 nm and higher than five orders at 500 nm, promising for various solar-blind UV detection applications.

  17. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  18. Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations

    Directory of Open Access Journals (Sweden)

    B. Lavraud

    2010-01-01

    Full Text Available Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs in the vicinity of corotating interaction regions (CIRs during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used, but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream, as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1 the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2 that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to

  19. Utilization of solar energy by means of photovoltaic cells on a captive balloon. Sonnenstrahlenenergienutzung durch photovoltaische Zellen auf Fesselballon

    Energy Technology Data Exchange (ETDEWEB)

    Scheib, A.

    1988-02-25

    For the use of solar energy photovoltaic cells are used which are deposited on the envelope of a captive balloon which floats over the ground according to the hot air principle in a sufficient height free of atmospheric influences (about 10 km) and whose stay ropes are used for the transfer of generated electric power. The part of the envelope of the balloon equipped with solar cells is to be made as a plane surface and this solar cell surface can be positioned by means of a variation of the free stay rope lengths controlled automatically in an optimal way according to the sun beam direction. In connection with the absence of atmospheric influences, a generation of maximum energy in great constancy during nearly the whole daytime, is made possible.

  20. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Duke University Medical Center (United States)

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  1. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    International Nuclear Information System (INIS)

    Wu, Q.

    2015-01-01

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics

  2. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  3. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  4. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  5. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    Science.gov (United States)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  6. Direct fourier methods in 3D-reconstruction from cone-beam data

    International Nuclear Information System (INIS)

    Axelsson, C.

    1994-01-01

    The problem of 3D-reconstruction is encountered in both medical and industrial applications of X-ray tomography. A method able to utilize a complete set of projections complying with Tuys condition was proposed by Grangeat. His method is mathematically exact and consists of two distinct phases. In phase 1 cone-beam projection data are used to produce the derivative of the radon transform. In phase 2, after interpolation, the radon transform data are used to reconstruct the three-dimensional object function. To a large extent our method is an extension of the Grangeat method. Our aim is to reduce the computational complexity, i.e. to produce a faster method. The most taxing procedure during phase 1 is computation of line-integrals in the detector plane. By applying the direct Fourier method in reverse for this computation, we reduce the complexity of phase 1 from O(N 4 ) to O(N 3 logN). Phase 2 can be performed either as a straight 3D-reconstruction or as a sequence of two 2D-reconstructions in vertical and horizontal planes, respectively. Direct Fourier methods can be applied for the 2D- and for the 3D-reconstruction, which reduces the complexity of phase 2 from O(N 4 ) to O(N 3 logN) as well. In both cases, linogram techniques are applied. For 3D-reconstruction the inversion formula contains the second derivative filter instead of the well-known ramp-filter employed in the 2D-case. The derivative filter is more well-behaved than the 2D ramp-filter. This implies that less zeropadding is necessary which brings about a further reduction of the computational efforts. The method has been verified by experiments on simulated data. The image quality is satisfactory and independent of cone-beam angles. For a 512 3 volume we estimate that our method is ten times faster than Grangeats method

  7. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states

    NARCIS (Netherlands)

    Moerland, R.J.; Weppelman, I.G.C.; Garming, M.W.H.; Kruit, P.; Hoogenboom, J.P.

    2016-01-01

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial

  8. Heat transference in flat solar collectors considering speed and wind direction; Transferencia de calor en colectores solares planos considerando velocidad y direccion del viento

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. C.; Rodriguez, P. A.; Salgado, R.; Venegas, M.; Lecuona, A.

    2008-07-01

    Thermal solar collector performance depends on the process temperature but also on environmental variables like solar radiation, ambient temperature, wind speed and wind direction. collector operating design parameters like insulating and optical characteristics will affect also its performance. An unsteady energy balance on the collector developing a numerical method has been carried out to evaluate thermal losses. The numerical results are validated with experimental data from the facility placed at UC3M. these data, together with environmental variables, enable to calculate experimentally the collector performance to be compared with normalization curve and model prediction. The latest ones adjust more accurately to experimental than those from normalization curve. The main causes for this discrepancy are optical degradation of the collector due to aging and the wind effects. (Author)

  9. Prediction of diffuse solar irradiance using machine learning and multivariable regression

    International Nuclear Information System (INIS)

    Lou, Siwei; Li, Danny H.W.; Lam, Joseph C.; Chan, Wilco W.H.

    2016-01-01

    Highlights: • 54.9% of the annual global irradiance is composed by its diffuse part in HK. • Hourly diffuse irradiance was predicted by accessible variables. • The importance of variable in prediction was assessed by machine learning. • Simple prediction equations were developed with the knowledge of variable importance. - Abstract: The paper studies the horizontal global, direct-beam and sky-diffuse solar irradiance data measured in Hong Kong from 2008 to 2013. A machine learning algorithm was employed to predict the horizontal sky-diffuse irradiance and conduct sensitivity analysis for the meteorological variables. Apart from the clearness index (horizontal global/extra atmospheric solar irradiance), we found that predictors including solar altitude, air temperature, cloud cover and visibility are also important in predicting the diffuse component. The mean absolute error (MAE) of the logistic regression using the aforementioned predictors was less than 21.5 W/m"2 and 30 W/m"2 for Hong Kong and Denver, USA, respectively. With the systematic recording of the five variables for more than 35 years, the proposed model would be appropriate to estimate of long-term diffuse solar radiation, study climate change and develope typical meteorological year in Hong Kong and places with similar climates.

  10. Workshop on Direct Contact Heat Transfer at the Solar Energy Research Institute

    CERN Document Server

    Boehm, R

    1988-01-01

    to increase the use of direct contact processes, the National Science Foundation sup­ ported a workshop on direct contact heat transfer at the Solar Energy Research Insti­ tute in the summer of 1985. We served as organizers for this workshop, which em­ phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi­ tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten­ tial that could be realized if the information to be obtained through the proposed research activities were available.

  11. On Possibility of Direct Asteroid Deflection by Electric Solar Wind Sail

    Science.gov (United States)

    Merikallio, Sini; Janhunen, Pekka

    2010-05-01

    The Electric Solar Wind Sail (E-sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets and ion engines) in terms of produced lifetime-integrated impulse per propulsion system mass. Here we analyze the problem of using the E-sail for directly deflecting an Earth-threatening asteroid. The problem then culminates into how to attach the E-sail device to the asteroid. We assess a number of alternative attachment strategies and arrive at a recommendation of using the gravity tractor method because of its workability for a wide variety of asteroid types. We also consider possible techniques to scale up the E-sail force beyond the baseline one Newton level to deal with more imminent or larger asteroid or cometary threats. As a baseline case we consider a 3 million ton asteroid which can be deflected with a baseline 1 N E-sail in 5-10 years. Once developed, the E-sail would appear to provide a safe and reasonably low-cost way of deflecting dangerous asteroids and other heavenly bodies in cases where the collision threat becomes known several years in advance.

  12. Investigation of beam effect on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kotai, E. E-mail: kotai@rmki.kfki.hu; Paszti, F.; Szilagyi, E

    2000-03-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction.

  13. Investigation of beam effect on porous silicon

    International Nuclear Information System (INIS)

    Kotai, E.; Paszti, F.; Szilagyi, E.

    2000-01-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction

  14. Estimating Hourly Beam and Diffuse Solar Radiation in an Alpine Valley: A Critical Assessment of Decomposition Models

    Directory of Open Access Journals (Sweden)

    Lavinia Laiti

    2018-03-01

    Full Text Available Accurate solar radiation estimates in Alpine areas represent a challenging task, because of the strong variability arising from orographic effects and mountain weather phenomena. These factors, together with the scarcity of observations in elevated areas, often cause large modelling uncertainties. In the present paper, estimates of hourly mean diffuse fraction values from global radiation data, provided by a number (13 of decomposition models (chosen among the most widely tested in the literature, are evaluated and compared with observations collected near the city of Bolzano, in the Adige Valley (Italian Alps. In addition, the physical factors influencing diffuse fraction values in such a complex orographic context are explored. The average accuracy of the models were found to be around 27% and 14% for diffuse and beam radiation respectively, the largest errors being observed under clear sky and partly cloudy conditions, respectively. The best performances were provided by the more complex models, i.e., those including a predictor specifically explaining the radiation components’ variability associated with scattered clouds. Yet, these models return non-negligible biases. In contrast, the local calibration of a single-equation logistical model with five predictors allows perfectly unbiased estimates, as accurate as those of the best-performing models (20% and 12% for diffuse and beam radiation, respectively, but at much smaller computational costs.

  15. Solar concentrator with integrated tracking and light delivery system with summation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  16. Demonstration of direct energy recovery of full-energy ions at 40 keV on a PLT/ISX beam system

    International Nuclear Information System (INIS)

    Stirling, W.L.; Barber, G.C.; Dagenhart, W.K.

    1981-01-01

    Neutral beam injection systems that employ positive ion sources presently operate at energies of about 40 to 50 keV/nucleon at 60 A [Princeton Large Torus (PLT)] or 100 A [Princeton Divertor Experiment (PDX) or the Oak Ridge National Laboratory (ORNL) Impurities Study Experiment (ISX)] with about 60% conversion efficiency. However, the desire for multisecond beams in the 80-keV/nucleon energy range at approx. 10 MW/module has emphasized the need for technological advances in several areas. At such beam energies, as much as 75% of the initial beam energy is retained in the unneutralized ion components. As a result, two questions immediately come to mind: (1) how can one dispose of this energy; or better still, (2) how can one efficiently recover this energy. We have proposed and demonstrated a unique solution to this problem that not only removes the need for beam dumps but also returns from 50 to 80% of the energy contained in the full energy ion component directly and dynamically to the high voltage supply. In fact, the energy in the residual ion component is not expended. The tests were made on a PLT/ISX-type beam line at 40 keV/nucleon with about 800 kW and 0.1 s

  17. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  18. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    Science.gov (United States)

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  19. Direct C-H Arylation Meets Perovskite Solar Cells: Sn-Free Synthesis Shortcut to High Performance Hole-Transporting Materials.

    Science.gov (United States)

    Chang, Yu-Chieh; Lee, Kun-Mu; Lai, Chia-Hsin; Liu, Ching-Yuan

    2018-03-30

    In contrast to the traditional multistep synthesis, we demonstrate herein a two-step synthesis-shortcut to triphenylamine-based hole-transporting materials (HTMs) through sequential direct C-H arylations. These hole-transporting molecules are fabricated in perovskite-based solar cells (PSCs), exhibiting promising efficiencies up to 17.69%, which is comparable to PSCs utilizing the commercially available spiro-OMeTAD as HTM. This is the first report describing the use of step-saving C-H activations/arylations in the facile synthesis of small-molecule HTMs for perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  1. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  2. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  3. A method for the direct generation of comprehensive numerical solar building transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.Y. [The Hong Kong Polytechnic University (China). Dept. of Building Services Engineering

    2003-02-01

    This paper describes a method for the direct generation of comprehensive numerical room transfer functions with any derived parameters as output, such as operative temperature or thermal load. Complex conductive, convective and radiant heat transfer processes, or any derived thermal parameters in buildings can be explicitly and precisely described by a generalized thermal network. This allows the s-transfer and z-transfer functions to be directly generated, using semi-symbolic analysis techniques, Cayley's expansion of determinant and Heaviside's expansion theorem. A simple algorithm is developed for finding the roots of the denominator in the inverse transform of the s-transfer functions, which ensures that no single root is missing. The techniques have been applied to generating the transfer functions of a passive solar room with floor heating. The example calculation demonstrates the high efficiency of the computational method. (author)

  4. A Nonlinear Autoregressive Exogenous (NARX Neural Network Model for the Prediction of the Daily Direct Solar Radiation

    Directory of Open Access Journals (Sweden)

    Zina Boussaada

    2018-03-01

    Full Text Available The solar photovoltaic (PV energy has an important place among the renewable energy sources. Therefore, several researchers have been interested by its modelling and its prediction, in order to improve the management of the electrical systems which include PV arrays. Among the existing techniques, artificial neural networks have proved their performance in the prediction of the solar radiation. However, the existing neural network models don’t satisfy the requirements of certain specific situations such as the one analyzed in this paper. The aim of this research work is to supply, with electricity, a race sailboat using exclusively renewable sources. The developed solution predicts the direct solar radiation on a horizontal surface. For that, a Nonlinear Autoregressive Exogenous (NARX neural network is used. All the specific conditions of the sailboat operation are taken into account. The results show that the best prediction performance is obtained when the training phase of the neural network is performed periodically.

  5. Deflection system for charged-particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Bates, T

    1982-01-13

    A system is described for achromatically deflecting a beam of charged particles without producing net divergence of the beam comprising three successive magnetic deflection means which deflect the beam alternately in opposite directions; the first and second deflect by angles of less than 50/sup 0/ and the third by an angle of at least 90/sup 0/. Particles with different respective energies are transversely spaced as they enter the third deflection means, but emerge completely superimposed in both position and direction and may be brought to a focus in each of two mutually perpendicular planes, a short distance thereafter. Such a system may be particularly compact, especially in the direction in which the beam leaves the system. It is suitable for deflecting a beam of electrons from a linear accelerator so producing a vertical beam of electron (or with an X-ray target, of X-rays) which can be rotated about a horizontal patient for radiation therapy.

  6. 1480 W Plts Solar Power Plant Architecture With Solar Tracker For Controlling Microcontroller-Based Solar Panel In Tigaraja Village Sub-District Of Tigadolok Regency Of Simalungun

    Directory of Open Access Journals (Sweden)

    Robert Samosir

    2017-12-01

    Full Text Available Electrical energy has become a basic need for human being. In some remote areas however electricity is unreachable and poses a taboo subject and cannot be enjoyed by local people such as in Tigaraja Village Sub-District of Tigadolok Regency of Simalungun. The sun is a renewable energy that it is beneficial for power plant use. With PLTS solar energy can be changed into the sun through the solar panel. Battery Charge Regulator BCR operates stabilizing voltage from solar panel to battery. The battery will save electrical power to be distributed for household consumption. Since battery power has direct current however Inverter operates changing its direct current into alternating current. To optimize absorption of solar energy a servo motor is used to make solar panel moving by following the suns path. Arduino Uno as direct control of solar panel using solar sensor gives current for servo motor. Then the servo motor can move in reverse and forward. Therefore Household goods like water pumps lamps and televisions have been worked when people come home from their work.

  7. Characterisation of flattening filter free (FFF) beam properties for initial beam set-up and routine QA, independent of flattened beams

    Science.gov (United States)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Thwaites, D. I.

    2018-01-01

    Flattening filter free (FFF) beams have reached widespread use for clinical treatment deliveries. The usual methods for FFF beam characterisation for their quality assurance (QA) require the use of associated conventional flattened beams (cFF). Methods for QA of FFF without the need to use associated cFF beams are presented and evaluated against current methods for both FFF and cFF beams. Inflection point normalisation is evaluated against conventional methods for the determination of field size and penumbra for field sizes from 3 cm  ×  3 cm to 40 cm  ×  40cm at depths from dmax to 20 cm in water for matched and unmatched FFF beams and for cFF beams. A method for measuring symmetry in the cross plane direction is suggested and evaluated as FFF beams are insensitive to symmetry changes in this direction. Methods for characterising beam energy are evaluated and the impact of beam energy on profile shape compared to that of cFF beams. In-plane symmetry can be measured, as can cFF beams, using observed changes in profile, whereas cross-plane symmetry can be measured by acquiring profiles at collimator angles 0 and 180. Beam energy and ‘unflatness’ can be measured as with cFF beams from observed shifts in profile with changing beam energy. Normalising the inflection points of FFF beams to 55% results in an equivalent penumbra and field size measurement within 0.5 mm of conventional methods with the exception of 40 cm  ×  40 cm fields at a depth of 20 cm. New proposed methods are presented that make it possible to independently carry out set up and QA measurements on beam energy, flatness, symmetry and field size of an FFF beam without the need to reference to an equivalent flattened beam of the same energy. The methods proposed can also be used to carry out this QA for flattened beams, resulting in universal definitions and methods for MV beams. This is presented for beams produced by an Elekta linear accelerator, but is

  8. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    Science.gov (United States)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  9. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  10. History and status of beamed power technology and applications at 2.45 Gigahertz

    Science.gov (United States)

    Brown, William C.

    1989-01-01

    Various applications of beamed power technology are discussed. An experimental microwave powered helicopter, rectenna technology, the use of the Solar Power Satellite to beam energy to Earth via microwaves, the use of cyclotron resonance devices, microwave powered airships, and electric propulsion are discussed.

  11. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  12. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  13. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  14. Charge carrier transport in Cu(In,Ga)Se2 thin-film solar-cells studied by electron beam induced current and temperature and illumination dependent current voltage analysis

    International Nuclear Information System (INIS)

    Nichterwitz, Melanie

    2012-01-01

    This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se 2 (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe 2 absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p + layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p + layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface. The p + layer leads

  15. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  16. Dose-volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2005-01-01

    Purpose: Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its utility for IMRT beam placement. Methods and Materials: The general consideration in constructing this angular ranking function is that a beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets. When volumetric structures are involved, the complication arises from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not independent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and abdominal case with and without the guidance of the angular ranking information. The qualities of the

  17. Thermodynamic limit for coherence-limited solar power conversion

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  18. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO

    International Nuclear Information System (INIS)

    Mueller, R.; Lipinski, W.; Steinfeld, A.

    2008-01-01

    A numerical and experimental investigation is carried out in a solar thermochemical reactor for the thermal dissociation of ZnO at 2000 K using concentrated solar energy. The reactor consists of a cavity-receiver lined with ZnO particles and directly exposed to high-flux irradiation. A transient heat transfer model is formulated to link the rate of radiation, convection, and conduction heat transfer to the reaction kinetics. The radiosity and Monte Carlo methods are applied to obtain the distribution of net radiative fluxes at the internal surfaces of the reactor cavity and at the surface of the ZnO bed. Validation is accomplished in terms of the calculated and measured transient temperature profiles and chemical reaction rates

  19. Beam Line and Associated Work: Operational Phase 1985-1987

    Science.gov (United States)

    1988-08-26

    ENEA FEL experiment. F. Cicci, E. Fiorentino. A. Ranieri, E. Sabie. Centro Ricerche Energia Frascati (Italy?. ....................... 169 582.25...C) knife-edge pinhole bracket (cf. Fig. 14); (D) beam stop; (E) calorimeter with an attached Si solar cell detector; (F) paddle with tilted platforms...used for T real-time signal pickup behind the slit was a standard Si solar cell, epoxied to the calorimeter case (detail . in Fig. 5). The experimental

  20. Energy performance of water hybrid PV/T collectors applied to combisystems of Direct Solar Floor type

    Energy Technology Data Exchange (ETDEWEB)

    Fraisse, G.; Johannes, K. [Laboratoire Optimisation de la Conception et Ingenierie de l' Environnement, Ecole Superieure d' Ingenieurs de Chambery, Campus Scientifique Savoie Technolac, 73376 Le Bourget du Lac Cedex (France); Menezo, C. [Centre de Thermique de Lyon, Domaine Scientifique de La Doua, Bat. Freyssinet, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2007-11-15

    The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Macon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect. Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100{sup o}C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions. (author)

  1. Development of solar concentrators for high-power solar-pumped lasers.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  2. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    , such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques...

  3. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  4. Multiple-beam laser–plasma interactions in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Myatt, J. F., E-mail: jmya@lle.rochester.edu; Zhang, J.; Maximov, A. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States); Hinkel, D. E.; Michel, P.; Moody, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  5. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography.

    Science.gov (United States)

    Wunderlich, Adam; Noo, Frédéric

    2008-05-21

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction.

  6. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography

    International Nuclear Information System (INIS)

    Wunderlich, Adam; Noo, Frederic

    2008-01-01

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction

  7. Collisionless shock formation and the prompt acceleration of solar flare ions

    Science.gov (United States)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  8. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    Science.gov (United States)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  9. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  10. Improvements in or relating to electron beam deflection arrangements

    International Nuclear Information System (INIS)

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  11. Wavelength Detuning Cross-Beam Energy Transfer Mitigation Scheme for Direct-Drive: Modeling and Evidence from National Ignition Facility Implosions

    Science.gov (United States)

    Marozas, J. A.

    2017-10-01

    Cross-beam energy transfer (CBET) has been shown to significantly reduce the laser absorption and implosion speed in direct-drive implosion experiments on OMEGA and the National Ignition Facility (NIF). Mitigating CBET assists in achieving ignition-relevant hot-spot pressures in deuterium-tritium cryogenic OMEGA implosions. In addition, reducing CBET permits lower, more hydrodynamically stable, in-flight aspect ratio ignition designs with smaller nonuniformity growth during the acceleration phase. Detuning the wavelengths of the crossing beams is one of several techniques under investigation at the University of Rochester to mitigate CBET. This talk will describe these techniques with an emphasis on wavelength detuning. Recent experiments designed and predicted using multidimensional hydrodynamic simulations including CBET on the NIF have exploited the wavelength arrangement of the NIF beam geometry to demonstrate CBET mitigation through wavelength detuning in polar-direct-drive (PDD) implosions. Shapes and trajectories inferred from time-resolved x-ray radiography of the imploding shell, scattered-light spectra, and hard x-ray spectra generated by suprathermal electrons all indicate a reduction in CBET. These results and their implications for direct-drive ignition will be presented and discussed. In addition, hydrodynamically scaled ignition-relevant designs for OMEGA implosions exploiting wavelength detuning will be presented. Changes required to the OMEGA laser to permit wavelength detuning will be discussed. Future plans for PDD on the NIF including more-uniform implosions with CBET mitigation will be explored. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Direct synthesis of platelet graphitic-nanofibres as a highly porous counter-electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Yen, Ming-Yu; Su, Ching-Yuan; Chen, Kuei-Fu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2012-03-28

    We synthesized platelet graphitic-nanofibres (GNFs) directly onto FTO glass and applied this forest of platelet GNFs as a highly porous structural counter-electrode in dye-sensitized solar cells (DSSCs). We investigated the electrochemical properties of counter-electrodes made from the highly porous structural GNFs and the photoconversion performance of the cells made with these electrodes.

  13. Solar concentrator panel and gore testing in the JPL 25-foot space simulator

    Science.gov (United States)

    Dennison, E. W.; Argoud, M. J.

    1981-01-01

    The optical imaging characteristics of parabolic solar concentrator panels (or gores) have been measured using the optical beam of the JPL 25-foot space simulator. The simulator optical beam has been characterized, and the virtual source position and size have been determined. These data were used to define the optical test geometry. The point source image size and focal length have been determined for several panels. A flux distribution of a typical solar concentrator has been estimated from these data. Aperture photographs of the panels were used to determine the magnitude and characteristics of the reflecting surface errors. This measurement technique has proven to be highly successful at determining the optical characteristics of solar concentrator panels.

  14. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... evaporation and condensation takes place over a temperature range, the efficiency of the heat exchange processes can be improved, possibly resulting also in improved overall performance of the system. This paper is aimed at evaluating the prospect of using the Kalina cycle for concentrated solar power plants...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0...

  15. 直膨式太阳能热泵系统仿真%Simulation of Direct Expansion Solar Assisted Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    汪坤海; 闫金州; 邢琳; 关欣

    2017-01-01

    随着太阳能热利用和热泵技术的成熟及商品化,直膨式太阳能热泵技术将太阳能资源的清洁性、可再生性等特点和热泵系统的节能、高效的优点相结合,极具研究价值.但是目前直膨式太阳能热泵不能产品化推广的主要限制因素是系统设计不合理、运行不稳定、整体性能不佳等问题.现以直膨式太阳能热泵系统的优化和设计匹配为研究目标,同时,建立压缩机、集热器/蒸发器、热力膨胀阀、冷凝器及储热水箱的数学模型.从理论上分析集热器中集热面积、太阳能辐照度、环境温度、压缩机容积及冷凝温度等因素对直膨式太阳能热泵系统热工性能的影响,通过系统仿真及实验研究系统的整体热力性能,并在此基础上给出改善系统性能的建议.%With the use of solar thermal energy and the development and commercialization of heat pump technology, the direct - expansion solar - assisted heat pump which combines both the clean, renewable and other properties of solar energy resources with energy-saving and high efficient advantages of heat pump system, has great research values. But now major limiting factors of the direct-expansion solar- assisted heat pump cannot be promoted include the unreasonable system design, the unstable operation, the overall poor performance and other issues. The optimization and design matching of the direct-expansion solar-assisted heat pump system are researched; at the same time, a mathematical model of the heat collector/evaporator, compressor, thermostatic expansion valve, condenser and heat storage water tank is established. The area of heat, solar irradiance, ambient temperature, volume of compressor and condensation temperature and other factors on the effect of direct expansion solar-assisted heat pump system of the thermal performance are analyzed from the theory analysis; the overall thermal performance of the system is simulated and studied with

  16. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection.

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-06

    If dark matter (DM) particles are lighter than a few   MeV/c^{2} and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {m_{e},σ_{e}}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10-10^{3}  eV. After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σ_{e} in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  17. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-01

    If dark matter (DM) particles are lighter than a few MeV /c2 and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {me,σe}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10 -103 eV . After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σe in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  18. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  19. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    self-transport of the modules from LEO to GEO, and for on-orbit stationkeeping and repositioning capability during the satellite's lifetime, this technology is also critical in technology development for SSP. The 100 kW-class technology demonstrator will utilize advanced solar power collection and generation technologies, power management and distribution, advanced thermal management, and solar electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100 kW satellite feasible for launch on one existing launch vehicle. Early SSP studies showed that a major percentage of the on-orbit mass for power-beaming satellites was from massive power converters at the solar arrays, at the bus, at the power transmitter, or at combinations of these locations. Higher voltage mays and power management and distribution (PMAD) systems reduce or eliminate the need for many of these massive power converters, and could enable direct-drive of high-voltage solar electric thrusters. Lightweight, highly efficient thermal management systems are a critical technology that must be developed and flown for SSP feasibility. Large amounts of power on satellites imply that large amounts of waste heat will need to be managed. In addition, several of the more innovative lightweight configurations proposed for SSP satellites take advantage of solar concentrators that are intractable without advanced thermal management technologies for the solar arrays. These thermal management systems include efficient interfaces with the WPT systems or other high-power technology experiments, lightweight deployable radiators that can be easily integrated into satellite buses, and efficient reliable thermal distribution systems that can pipe heat from the technology experiments to the radiators. In addition to demonstrating the integration and use of these mission

  20. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    Science.gov (United States)

    Hanoka, Jack I.

    2003-07-01

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  1. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  2. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  3. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  4. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    Science.gov (United States)

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  5. EnviroAtlas - Average Direct Normal Solar resources kWh/m2/Day by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The annual average direct normal solar resources by 12-Digit Hydrologic Unit (HUC) was estimated from maps produced by the National Renewable Energy Laboratory for...

  6. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  7. The measurement and analysis of normal incidence solar UVB radiation and its application to the photoclimatherapy protocol for psoriasis at the Dead Sea, Israel.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-01-01

    The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.

  8. High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells

    Science.gov (United States)

    Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

    2014-08-19

    Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

  9. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  10. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  11. Direct detection of light dark matter and solar neutrinos via color center production in crystals

    OpenAIRE

    Budnik, Ranny; Cheshnovsky, Ori; Slone, Oren; Volansky, Tomer

    2018-01-01

    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10) MeV through nuclear scattering...

  12. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  13. Prediction of SEP Peak Proton Intensity Based on CME Speed, Direction and Observations of Associated Solar Phenomena

    Science.gov (United States)

    Richardson, I. G.; Mays, M. L.; Thompson, B. J.; Kwon, R.; Frechette, B. P.

    2017-12-01

    We assess whether a formula obtained by Richardson et al. (Solar Phys., 289, 3059, 2014; DOI 10.1007/s11207-014-0524-8) relating the intensity of 14-24 MeV protons in a solar energetic particle event at 1 AU to the solar event location and the speed of the associated coronal mass ejection (CME), may be used to "predict" the intensity of a solar energetic particle event. Starting with a subset of several hundred CMEs in the CCMC/SWRC DONKI real-time database (http://kauai.ccmc.gsfc.nasa.gov/DONKI/) selected without consideration of whether they were associated with SEP events, we first use the CME speed and direction to predict the proton intensity at Earth or the STEREO spacecraft using this formula. Since most of these CMEs were not in fact associated with SEP events, many "false alarms" result. We then examine whether considering other phenomena which may accompany the CMEs, such as the X-ray flare intensity and the properties of type II and type III radio emissions, may help to reduce the false alarm rate. We also use CME parameters calculated from an ellipsoidal shell fit to multi-spacecraft CME shock observations for a smaller number of events to predict the SEP intensity. We calculate skill scores for each case and assess whether the Richardson et al. (2014) formula, using additional observations to reduce the false alarm rate, has any potential as a SEP prediction tool, assuming that the required observations could be acquired sufficiently rapidly following the onset of the related solar event/CME.

  14. High-Fidelity Solar Power Income Modeling for Solar-Electric UAVs: Development and Flight Test Based Verification

    OpenAIRE

    Oettershagen, Philipp

    2017-01-01

    Solar power models are a crucial element of solar-powered UAV design and performance analysis. During the conceptual design phase, their accuracy directly relates to the accuracy of the predicted performance metrics and thus the final design characteristics of the solar-powered UAV. Likewise, during the operations phase of a solar-powered UAV accurate solar power income models are required to predict and assess the solar power system performance. However, the existing literature on solar-powe...

  15. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  16. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    Science.gov (United States)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  17. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.; Portillo, C.

    2015-01-01

    Highlights: • The solar resource has been predicted for three hours at 1-min intervals. • Digital image levels and cloud motion vectors are joint for irradiance forecasting. • The three radiation components have been predicted under different sky conditions. • Diffuse and global radiation has an nRMSE value around 10% in all sky conditions. • Beam irradiance is predicted with an nRMSE value of about 15% in overcast skies. - Abstract: In the search for new techniques to predict atmospheric features that might be useful to solar power plant operators, we have carried out solar irradiance forecasting using emerging sky camera technology. Digital image levels are converted into irradiances and then the maximum cross-correlation method is applied to obtain future predictions. This methodology is a step forward in the study of the solar resource, essential to solar plant operators in adapting a plant’s operating procedures to atmospheric conditions and to improve electricity generation. The results are set out using different statistical parameters, in which beam, diffuse and global irradiances give a constant normalized root-mean-square error value over the time interval for all sky conditions. The average measure is 25.44% for beam irradiance; 11.60% for diffuse irradiance and 11.17% for global irradiance.

  18. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  19. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    Science.gov (United States)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  20. Direct Trace Element Analysis of Liquid Blood Samples by In-Air Ion Beam Analytical Techniques (PIXE-PIGE).

    Science.gov (United States)

    Huszank, Robert; Csedreki, László; Török, Zsófia

    2017-02-07

    There are various liquid materials whose elemental composition is of interest in various fields of science and technology. In many cases, sample preparation or the extraction can be complicated, or it would destroy the original environment before the analysis (for example, in the case of biological samples). However, multielement direct analysis of liquid samples can be realized by an external PIXE-PIGE measurement system. Particle-induced X-ray and gamma-ray emission spectroscopy (PIXE, PIGE) techniques were applied in external (in-air) microbeam configuration for the trace and main element determination of liquid samples. The direct analysis of standard solutions of several metal salts and human blood samples (whole blood, blood serum, blood plasma, and formed elements) was realized. From the blood samples, Na, P, S, Cl, K, Ca, Fe, Cu, Zn, and Br elemental concentrations were determined. The focused and scanned ion beam creates an opportunity to analyze very small volume samples (∼10 μL). As the sample matrix consists of light elements, the analysis is possible at ppm level. Using this external beam setup, it was found that it is possible to determine elemental composition of small-volume liquid samples routinely, while the liquid samples do not require any preparation processes, and thus, they can be analyzed directly. In the case of lower concentrations, the method is also suitable for the analysis (down to even ∼1 ppm level) but with less accuracy and longer measurement times.