DIRAC optimized workload management
Paterson, S K
2008-01-01
The LHCb DIRAC Workload and Data Management System employs advanced optimization techniques in order to dynamically allocate resources. The paradigms realized by DIRAC, such as late binding through the Pilot Agent approach, have proven to be highly successful. For example, this has allowed the principles of workload management to be applied not only at the time of user job submission to the Grid but also to optimize the use of computing resources once jobs have been acquired. Along with the central application of job priorities, DIRAC minimizes the system response time for high priority tasks. This paper will describe the recent developments to support Monte Carlo simulation, data processing and distributed user analysis in a consistent way across disparate compute resources including individual PCs, local batch systems, and the Worldwide LHC Computing Grid. The Grid environment is inherently unpredictable and whilst short-term studies have proven to deliver high job efficiencies, the system performance over ...
DIRAC pilot framework and the DIRAC Workload Management System
International Nuclear Information System (INIS)
Casajus, Adrian; Graciani, Ricardo; Paterson, Stuart; Tsaregorodtsev, Andrei
2010-01-01
DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot Jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, Pilot Jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach.
DIRAC pilot framework and the DIRAC Workload Management System
Energy Technology Data Exchange (ETDEWEB)
Casajus, Adrian; Graciani, Ricardo [Universitat de Barcelona (Spain); Paterson, Stuart [CERN (Switzerland); Tsaregorodtsev, Andrei, E-mail: adria@ecm.ub.e, E-mail: graciani@ecm.ub.e, E-mail: stuart.paterson@cern.c, E-mail: atsareg@in2p3.f [CPPM Marseille (France)
2010-04-01
DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot Jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, Pilot Jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach.
MPI support in the DIRAC Pilot Job Workload Management System
International Nuclear Information System (INIS)
Tsaregorodtsev, A; Hamar, V
2012-01-01
Parallel job execution in the grid environment using MPI technology presents a number of challenges for the sites providing this support. Multiple flavors of the MPI libraries, shared working directories required by certain applications, special settings for the batch systems make the MPI support difficult for the site managers. On the other hand the workload management systems with Pilot Jobs became ubiquitous although the support for the MPI applications in the Pilot frameworks was not available. This support was recently added in the DIRAC Project in the context of the GISELA Latin American Grid Initiative. Special services for dynamic allocation of virtual computer pools on the grid sites were developed in order to deploy MPI rings corresponding to the requirements of the jobs in the central task queue of the DIRAC Workload Management System. Pilot Jobs using user space file system techniques install the required MPI software automatically. The same technique is used to emulate shared working directories for the parallel MPI processes. This makes it possible to execute MPI jobs even on the sites not supporting them officially. Reusing so constructed MPI rings for execution of a series of parallel jobs increases dramatically their efficiency and turnaround. In this contribution we describe the design and implementation of the DIRAC MPI Service as well as its support for various types of MPI libraries. Advantages of coupling the MPI support with the Pilot frameworks are outlined and examples of usage with real applications are presented.
Extension of the DIRAC workload management system to allow use of distributed windows resources
International Nuclear Information System (INIS)
Li, Y Y; Harrison, K; Parker, M A; Lyutsarev, V; Tsaregorodtsev, A
2008-01-01
The DIRAC Workload Management System of the LHCb experiment allows coordinated use of globally distributed computing power and data storage. The system was initially deployed on the Linux platforms, where it has been used very successfully both for collaboration-wide production activities and for single-user physics studies. To increase the resources available to LHCb, DIRAC has been extended so that it also allows use of Microsoft Windows machines. As DIRAC is mostly written in Python, a large part of the code base was already platform independent, but Windows-specific solutions have had to be found in areas such as certificate-based authentication and secure file transfers, where .NetGridFTP has been used. In addition, new code has been written to deal with the way that jobs are run and monitored under Windows, enabling interaction with Microsoft Windows Compute Cluster Server 2003 on sets of machines were this is available. The result is a system that allows users transparent access to Linux and Windows distributed resources. This paper gives details of the Windows-specific developments for DIRAC; outlines the experience gained in deploying the system at a number of sites, and reports on the performance achieved running the LHCb data-processing applications
Topology-optimized dual-polarization Dirac cones
Lin, Zin; Christakis, Lysander; Li, Yang; Mazur, Eric; Rodriguez, Alejandro W.; Lončar, Marko
2018-02-01
We apply a large-scale computational technique, known as topology optimization, to the inverse design of photonic Dirac cones. In particular, we report on a variety of photonic crystal geometries, realizable in simple isotropic dielectric materials, which exhibit dual-polarization Dirac cones. We present photonic crystals of different symmetry types, such as fourfold and sixfold rotational symmetries, with Dirac cones at different points within the Brillouin zone. The demonstrated and related optimization techniques open avenues to band-structure engineering and manipulating the propagation of light in periodic media, with possible applications to exotic optical phenomena such as effective zero-index media and topological photonics.
Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
Evaluating and optimizing the NERSC workload on Knights Landing
Energy Technology Data Exchange (ETDEWEB)
Barnes, T; Cook, B; Deslippe, J; Doerfler, D; Friesen, B; He, Y; Kurth, T; Koskela, T; Lobet, M; Malas, T; Oliker, L; Ovsyannikov, A; Sarje, A; Vay, JL; Vincenti, H; Williams, S; Carrier, P; Wichmann, N; Wagner, M; Kent, P; Kerr, C; Dennis, J
2017-01-30
NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.
Power Optimization of Multimode Mobile Embedded Systems with Workload-Delay Dependency
Directory of Open Access Journals (Sweden)
Hoeseok Yang
2016-01-01
Full Text Available This paper proposes to take the relationship between delay and workload into account in the power optimization of microprocessors in mobile embedded systems. Since the components outside a device continuously change their values or properties, the workload to be handled by the systems becomes dynamic and variable. This variable workload is formulated as a staircase function of the delay taken at the previous iteration in this paper and applied to the power optimization of DVFS (dynamic voltage-frequency scaling. In doing so, a graph representation of all possible workload/mode changes during the lifetime of a device, Workload Transition Graph (WTG, is proposed. Then, the power optimization problem is transformed into finding a cycle (closed walk in WTG which minimizes the average power consumption over it. Out of the obtained optimal cycle of WTG, one can derive the optimal power management policy of the target device. It is shown that the proposed policy is valid for both continuous and discrete DVFS models. The effectiveness of the proposed power optimization policy is demonstrated with the simulation results of synthetic and real-life examples.
Casajús Ramo, A
2006-01-01
DIRAC is the LHCb Workload and Data Management System. Based on a service-oriented architecture, it enables generic distributed computing with lightweight Agents and Clients for job execution and data transfers. DIRAC implements a client-server architecture exposing server methods through XML Remote Procedure Call (XML-RPC) protocol. DIRAC is mostly coded in python. DIRAC security infrastructure has been designed to be a completely generic XML-RPC transport over a SSL tunnel. This new security layer is able to handle standard X509 certificates as well as grid-proxies to authenticate both sides of the connection. Serve and client authentication relies over OpenSSL and py-Open SSL, but to be able to handle grid proxies some modifications have been added to those libraries. DIRAC security infrastructure handles authorization and authorization as well as provides extended capabilities like secure connection tunneling and file transfer. Using this new security infrastructure all LHCb users can safely make use o...
International Nuclear Information System (INIS)
Casajus Ramo, A; Graciani Diaz, R; Tsaregorodtsev, A
2012-01-01
The DIRAC framework for distributed computing has been designed as a flexible and modular solution that can be adapted to the requirements of any community. Users interact with DIRAC via command line, using the web portal or accessing resources via the DIRAC python API. The current DIRAC API requires users to use a python version valid for DIRAC. Some communities have developed their own software solutions for handling their specific workload, and would like to use DIRAC as their back-end to access distributed computing resources easily. Many of these solutions are not coded in python or depend on a specific python version. To solve this gap DIRAC provides a new language agnostic API that any software solution can use. This new API has been designed following the RESTful principles. Any language with libraries to issue standard HTTP queries may use it. GSI proxies can still be used to authenticate against the API services. However GSI proxies are not a widely adopted standard. The new DIRAC API also allows clients to use OAuth for delegating the user credentials to a third party solution. These delegated credentials allow the third party software to query to DIRAC on behalf of the users. This new API will further expand the possibilities communities have to integrate DIRAC into their distributed computing models.
Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.
2005-09-01
Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.
LHCbDIRAC as Apache Mesos microservices
Haen, Christophe; Couturier, Benjamin
2017-01-01
The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. A...
Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.
2014-01-01
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions ...
International Nuclear Information System (INIS)
Casajus, A; Ciba, K; Fernandez, V; Graciani, R; Hamar, V; Mendez, V; Poss, S; Sapunov, M; Stagni, F; Tsaregorodtsev, A; Ubeda, M
2012-01-01
The DIRAC Project was initiated to provide a data processing system for the LHCb Experiment at CERN. It provides all the necessary functionality and performance to satisfy the current and projected future requirements of the LHCb Computing Model. A considerable restructuring of the DIRAC software was undertaken in order to turn it into a general purpose framework for building distributed computing systems that can be used by various user communities in High Energy Physics and other scientific application domains. The CLIC and ILC-SID detector projects started to use DIRAC for their data production system. The Belle Collaboration at KEK, Japan, has adopted the Computing Model based on the DIRAC system for its second phase starting in 2015. The CTA Collaboration uses DIRAC for the data analysis tasks. A large number of other experiments are starting to use DIRAC or are evaluating this solution for their data processing tasks. DIRAC services are included as part of the production infrastructure of the GISELA Latin America grid. Similar services are provided for the users of the France-Grilles and IBERGrid National Grid Initiatives in France and Spain respectively. The new communities using DIRAC started to provide important contributions to its functionality. Among recent additions can be mentioned the support of the Amazon EC2 computing resources as well as other Cloud management systems; a versatile File Replica Catalog with File Metadata capabilities; support for running MPI jobs in the pilot based Workload Management System. Integration with existing application Web Portals, like WS-PGRADE, is demonstrated. In this paper we will describe the current status of the DIRAC Project, recent developments of its framework and functionality as well as the status of the rapidly evolving community of the DIRAC users.
Physician workload in primary care: what is the optimal size of practices? A cross-sectional study.
Wensing, M.J.P.; Hombergh, P. van den; Akkermans, R.P.; Doremalen, J.H.M. van; Grol, R.P.T.M.
2006-01-01
OBJECTIVE: To determine the impact of practice size and scope of services on average physician workload in primary care practices in The Netherlands, and to examine the associations between average physician workload, average assistant volume and organisational practice characteristics. METHODS:
DIRAC in Large Particle Physics Experiments
Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC
2017-10-01
The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
LHCbDIRAC as Apache Mesos microservices
Haen, Christophe; Couturier, Benjamin
2017-10-01
The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called “frameworks” The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an architecture brings a greater flexibility in the deployment of LHCbDirac services, allowing for easier deployment maintenance and scaling of services on demand (e..g LHCbDirac relies on 138 services and 116 agents). Higher reliability is also easier, as clustering is part of the toolset, which allows constraints on the location of the services. This paper describes the investigations carried out to package the LHCbDIRAC and DIRAC components into Docker containers and orchestrate them using the previously described set of tools.
DIRAC data production management
Smith, A C
2008-01-01
The LHCb Computing Model describes the dataflow for all stages in the processing of real and simulated events, and defines the role of LHCb associated Tier-1 and Tier-2 computing centers. The WLCG 'Dress Rehearsal' exercise aims to allow LHC experiments to deploy the full chain of their Computing Models, making use of all underlying WLCG services and resources, in preparation for real data taking. During this exercise simulated RAW physics data, matching the properties of eventual real data, will be uploaded from the LHCb Online storage system to Grid enabled storage. This data will then be replicated to LHCb Tier-1 centers and subsequently processed (reconstructed and stripped). The product of this processing is user analysis data that are distributed to all LHCb Tier-1 centers. DIRAC, LHCbs Workload and Data Management System, supports the implementation of the Computing Model in a data driven, real time and coordinated fashion.
Smith, A C
2007-01-01
The LHCb experiment being built to utilize CERN’s flagship Large Hadron Collider will generate data to be analysed by a community of over 600 physicists worldwide. DIRAC, LHCb’s Workload and Data Management System, facilitates the use of underlying EGEE Grid resources to generate, process and analyse this data in the distributed environment. The Data Management System, presented here, provides real-time, data-driven distribution in accordance with LHCb’s Computing Model. The data volumes produced by the LHC experiments are unprecedented, rendering individual institutes and even countries, unable to provide the computing and storage resources required to make full use of the produced data. EGEE Grid resources allow the processing of LHCb data possible in a distributed fashion and LHCb’s Computing Model is based on this approach. Data Management in this environment requires reliable and high-throughput transfer of data, homogeneous access to storage resources and the cataloguing of data replicas, all of...
DIRAC: data production management
International Nuclear Information System (INIS)
Smith, A C; Tsaregorodtsev, A
2008-01-01
The LHCb Computing Model describes the dataflow for all stages in the processing of real and simulated events, and defines the role of LHCb associated Tier-1 and Tier-2 computing centers. The WLCG 'Dress Rehearsal' exercise aims to allow LHC experiments to deploy the full chain of their Computing Models, making use of all underlying WLCG services and resources, in preparation for real data taking. During this exercise simulated RAW physics data, matching the properties of eventual real data, will be uploaded from the LHCb Online storage system to Grid enabled storage. This data will then be replicated to LHCb Tier-1 centers and subsequently processed (reconstructed and stripped). The product of this processing is user analysis data that are distributed to all LHCb Tier-1 centers. DIRAC, LHCbs Workload and Data Management System, supports the implementation of the Computing Model in a data driven, real time and coordinated fashion. In this paper the LHCb Computing Model will be reviewed and the DIRAC components providing the needed functionality to support the Computing Model will be detailed. An evaluation of the preparedness for real data taking will also be given
DIRAC: data production management
Energy Technology Data Exchange (ETDEWEB)
Smith, A C [CERN, CH-1211, Geneva (Switzerland); Tsaregorodtsev, A [CPPM, Marseille (France)], E-mail: a.smith@cern.ch, E-mail: atsareg@in2p3.fr
2008-07-15
The LHCb Computing Model describes the dataflow for all stages in the processing of real and simulated events, and defines the role of LHCb associated Tier-1 and Tier-2 computing centers. The WLCG 'Dress Rehearsal' exercise aims to allow LHC experiments to deploy the full chain of their Computing Models, making use of all underlying WLCG services and resources, in preparation for real data taking. During this exercise simulated RAW physics data, matching the properties of eventual real data, will be uploaded from the LHCb Online storage system to Grid enabled storage. This data will then be replicated to LHCb Tier-1 centers and subsequently processed (reconstructed and stripped). The product of this processing is user analysis data that are distributed to all LHCb Tier-1 centers. DIRAC, LHCbs Workload and Data Management System, supports the implementation of the Computing Model in a data driven, real time and coordinated fashion. In this paper the LHCb Computing Model will be reviewed and the DIRAC components providing the needed functionality to support the Computing Model will be detailed. An evaluation of the preparedness for real data taking will also be given.
International Nuclear Information System (INIS)
Gomez, F.; Adeva, B.; Afanasev, L.; Benayoun, M.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Constantinescu, S.; Doudarev, A.; Dreossi, D.; Drijard, D.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Goldin, D.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Hosek, R.; Iliescu, M.; Jabitski, M.; Kalinina, N.; Karpoukhine, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Koulikov, A.; Kouptsov, A.; Krouglov, V.; Krouglova, L.; Kuroda, K.-I.; Lanaro, A.; Lapshine, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Rykaline, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Trusov, S.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P.
2001-01-01
The main objective of DIRAC experiment is the measurement of the lifetime τ of the exotic hadronic atom consisting of π + and π - mesons. The lifetime of this atom is determined by the decay mode π + π - → π 0 π 0 due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference |a 0 - a 2 | for isospin 0 and 2 (respectively), a measurement of τ with an accuracy of 10% will allow a determination of |a 0 - a 2 | at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies
Energy Technology Data Exchange (ETDEWEB)
Gomez, F.; Adeva, B.; Afanasev, L.; Benayoun, M.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Constantinescu, S.; Doudarev, A.; Dreossi, D.; Drijard, D.; Ferro-Luzzi, M.; Gallas, M.V.; Gerndt, J.; Giacomich, R.; Gianotti, P.; Goldin, D.; Gorin, A.; Gortchakov, O.; Guaraldo, C.; Hansroul, M.; Hosek, R.; Iliescu, M.; Jabitski, M.; Kalinina, N.; Karpoukhine, V.; Kluson, J.; Kobayashi, M.; Kokkas, P.; Komarov, V.; Koulikov, A.; Kouptsov, A.; Krouglov, V.; Krouglova, L.; Kuroda, K.-I.; Lanaro, A.; Lapshine, V.; Lednicky, R.; Leruste, P.; Levisandri, P.; Lopez Aguera, A.; Lucherini, V.; Maki, T.; Manuilov, I.; Montanet, L.; Narjoux, J.-L.; Nemenov, L.; Nikitin, M.; Nunez Pardo, T.; Okada, K.; Olchevskii, V.; Pazos, A.; Pentia, M.; Penzo, A.; Perreau, J.-M.; Petrascu, C.; Plo, M.; Ponta, T.; Pop, D.; Riazantsev, A.; Rodriguez, J.M.; Rodriguez Fernandez, A.; Rykaline, V.; Santamarina, C.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tarasov, A.; Tauscher, L.; Tobar, M.J.; Trusov, S.; Vazquez, P.; Vlachos, S.; Yazkov, V.; Yoshimura, Y.; Zrelov, P
2001-04-01
The main objective of DIRAC experiment is the measurement of the lifetime {tau} of the exotic hadronic atom consisting of {pi}{sup +} and {pi}{sup -} mesons. The lifetime of this atom is determined by the decay mode {pi}{sup +} {pi}{sup -} {yields} {pi}{sup 0} {pi}{sup 0} due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference |a{sub 0} - a{sub 2}| for isospin 0 and 2 (respectively), a measurement of {tau} with an accuracy of 10% will allow a determination of |a{sub 0} - a{sub 2}| at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies.
Prototype of a production system for Cherenkov Telescope Array with DIRAC
International Nuclear Information System (INIS)
Arrabito, L; Bregeon, J; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A
2015-01-01
The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production system prototype has been developed, based on the two main DIRAC components, i.e. the Workload Management and Data Management Systems. After three years of successful exploitation of this prototype, for simulations and analysis, we proved that DIRAC provides suitable functionalities needed for the CTA data processing. Based on these results, the CTA development plan aims to achieve an operational production system, based on the DIRAC Workload Management System, to be ready for the start of CTA operation phase in 2017-2018. One more important challenge consists of the development of a fully automatized execution of the CTA workflows. For this purpose, we have identified a third DIRAC component, the so-called Transformation System, which offers very interesting functionalities to achieve this automatisation. The Transformation System is a ’data-driven’ system, allowing to automatically trigger data-processing and data management operations according to pre
DIRAC distributed secure framework
International Nuclear Information System (INIS)
Casajus, A; Graciani, R
2010-01-01
DIRAC, the LHCb community Grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by users to a MyProxy service, and DIRAC retrieves new short delegated proxies when necessary. This contribution discusses the details of the implementation of this security infrastructure in DIRAC.
Evaluation of NoSQL databases for DIRAC monitoring and beyond
Mathe, Z.; Casajus Ramo, A.; Stagni, F.; Tomassetti, L.
2015-12-01
Nowadays, many database systems are available but they may not be optimized for storing time series data. Monitoring DIRAC jobs would be better done using a database optimised for storing time series data. So far it was done using a MySQL database, which is not well suited for such an application. Therefore alternatives have been investigated. Choosing an appropriate database for storing huge amounts of time series data is not trivial as one must take into account different aspects such as manageability, scalability and extensibility. We compared the performance of Elasticsearch, OpenTSDB (based on HBase) and InfluxDB NoSQL databases, using the same set of machines and the same data. We also evaluated the effort required for maintaining them. Using the LHCb Workload Management System (WMS), based on DIRAC as a use case we set up a new monitoring system, in parallel with the current MySQL system, and we stored the same data into the databases under test. We evaluated Grafana (for OpenTSDB) and Kibana (for ElasticSearch) metrics and graph editors for creating dashboards, in order to have a clear picture on the usability of each candidate. In this paper we present the results of this study and the performance of the selected technology. We also give an outlook of other potential applications of NoSQL databases within the DIRAC project.
Photoconductivity in Dirac materials
International Nuclear Information System (INIS)
Shao, J. M.; Yang, G. W.
2015-01-01
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity
LHCb: Analysing DIRAC's Behavior using Model Checking with Process Algebra
Remenska, Daniela
2012-01-01
DIRAC is the Grid solution designed to support LHCb production activities as well as user data analysis. Based on a service-oriented architecture, DIRAC consists of many cooperating distributed services and agents delivering the workload to the Grid resources. Services accept requests from agents and running jobs, while agents run as light-weight components, fulfilling specific goals. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check for changes in the service states, and react to these accordingly. A characteristic of DIRAC's architecture is the relatively low complexity in the logic of each agent; the main source of complexity lies in their cooperation. These agents run concurrently, and communicate using the services' databases as a shared memory for synchronizing the state transitions. Although much effort is invested in making DIRAC reliable, entities occasionally get into inconsistent states, leadi...
Dirac, Weyl, Majorana, a review
International Nuclear Information System (INIS)
Uschersohn, J.
1982-05-01
The Dirac equation and the properties of Dirac matrices are presented and discussed. A large number of representations of the Dirac matrices is identified. Special emphasis is put on aspects rarely treated or neglected in textbooks
LHCb: Pilot Framework and the DIRAC WMS
Graciani, R; Casajus, A
2009-01-01
DIRAC, the LHCb community Grid solution, has pioneered the use of pilot jobs in the Grid. Pilot jobs provide a homogeneous interface to an heterogeneous set of computing resources. At the same time, pilot jobs allow to delay the scheduling decision to the last moment, thus taking into account the precise running conditions at the resource and last moment requests to the system. The DIRAC Workload Management System provides one single scheduling mechanism for jobs with very different profiles. To achieve an overall optimisation, it organizes pending jobs in task queues, both for individual users and production activities. Task queues are created with jobs having similar requirements. Following the VO policy a priority is assigned to each task queue. Pilot submission and subsequent job matching are based on these priorities following a statistical approach. Details of the implementation and the security aspects of this framework will be discussed.
Indian Academy of Sciences (India)
IAS Admin
Pauli exclusion principle, Fermi–. Dirac statistics, identical and in- distinguishable particles, Fermi gas. Fermi–Dirac Statistics. Derivation and Consequences. S Chaturvedi and Shyamal Biswas. (left) Subhash Chaturvedi is at University of. Hyderabad. His current research interests include phase space descriptions.
Dimock, J.
2010-01-01
We give an alternate definition of the free Dirac field featuring an explicit construction of the Dirac sea. The treatment employs a semi-infinite wedge product of Hilbert spaces. We also show that the construction is equivalent to the standard Fock space construction.
Indian Academy of Sciences (India)
IAS Admin
We present an account of the work of Niels Bohr and Paul Dirac, their interactions and personal- ities. 1. Introduction. In this essay I would like to convey to my readers some- thing about the personalities and work of Niels Bohr and Paul Dirac, juxtaposed against one another. Let me hope that the portraits I will paint of these ...
International Nuclear Information System (INIS)
Rodrigues, R. de Lima
2007-01-01
In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education. P A M Dirac. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 8 August 2003 pp 102-110 Classics. XI. The Relation between Mathematics and Physics · P A M Dirac · More Details Fulltext PDF ...
DEFF Research Database (Denmark)
Østergaard, Helle; Jepsen, Jørgen Riis; Berg-Beckhoff, Gabriele
2016-01-01
-reported occupational and health data. Questions covering the physical workload were related to seven different work situations and a score summing up the workload was developed for the analysis of the relative impact on different groups of fishermen. Results: Almost all fishermen (96.2%) were familiar to proper...... health. To address the specific areas of fishing with the highest workload, future investments in assistive devices to ease the demanding work and reduce the workload, should particularly address deckhands and less mechanized vessels....
Job monitoring on DIRAC for Belle II distributed computing
Kato, Yuji; Hayasaka, Kiyoshi; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo
2015-12-01
We developed a monitoring system for Belle II distributed computing, which consists of active and passive methods. In this paper we describe the passive monitoring system, where information stored in the DIRAC database is processed and visualized. We divide the DIRAC workload management flow into steps and store characteristic variables which indicate issues. These variables are chosen carefully based on our experiences, then visualized. As a result, we are able to effectively detect issues. Finally, we discuss the future development for automating log analysis, notification of issues, and disabling problematic sites.
Three Dimensional Dirac Semimetals
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Shin, Sanghyun
workload while optimally utilizing limited resources, various aircraft rerouting strategies for Air Traffic Management (ATM) have been proposed. However, the number of rerouting tools available to address these issues for the center-level and the National Airspace System (NAS) are relatively less compared with the tools for the sector-level and terminal airspace. Additionally, previous works consider the airspace containing the weather as no-fly zones instead of reduced-traffic zones and do not explicitly consider controller workload when generating aircraft trajectories to avoid the weather-affected airspace, thereby reducing the overall performance of the airspace. In this thesis, a new rerouting algorithm for the center-level airspace is proposed to address these problems by introducing a feedback loop connecting a tactical rerouting algorithm with a strategic rerouting algorithm using dynamic programming and a modified A* algorithm respectively. This helps reduce the computational cost significantly while safely handling a large number of aircraft. In summary, this thesis suggests the ways in which the NAS's performance can be further improved, thereby supporting various concepts envisioned by the Next Generation Air Transportation System (NextGen) and providing vital information which can be used for suitable economic and environmental advantages.
Monti, Dalida
1996-01-01
Relativamente poco noto al gran pubblico, il premio Nobel Paul Adrien Maurice Dirac appartiene a quel gruppo di uomini di ingegno che nei primi decenni del secolo contribuirono a dare alla nostra concezione del mondo fisico la sua impronta attuale. Assolutamente cruciali, per una valutazione dell'opera di Dirac, sono gli anni compresi tra il 1925 e il 1931: un periodo in cui il fisico fornisce la prima spiegazione chiara e coerente delle proprietà di spin dell'elettrone (equazione di Dirac) e perviene, in forza della pura deduzione matematica, alla scoperta dell'esistenza dell'elettrone positivo o positrone.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1988-04-15
It was Paul Dirac who cast quantum mechanics into the form we now use, and many generations of theoreticians openly acknowledge his influence on their thinking. When Dirac died in 1984, St. John's College, Cambridge, his base for most of his lifetime, instituted an annual lecture in his memory at Cambridge. The first lecture, in 1986, attracted two heavyweights - Richard Feynman and Steven Weinberg. Far from using the lectures as a platform for their own work, in the Dirac tradition they presented stimulating material on deep underlying questions.
International Nuclear Information System (INIS)
Anon.
1988-01-01
It was Paul Dirac who cast quantum mechanics into the form we now use, and many generations of theoreticians openly acknowledge his influence on their thinking. When Dirac died in 1984, St. John's College, Cambridge, his base for most of his lifetime, instituted an annual lecture in his memory at Cambridge. The first lecture, in 1986, attracted two heavyweights - Richard Feynman and Steven Weinberg. Far from using the lectures as a platform for their own work, in the Dirac tradition they presented stimulating material on deep underlying questions
Measuring perceived mental workload in children.
Laurie-Rose, Cynthia; Frey, Meredith; Ennis, Aristi; Zamary, Amanda
2014-01-01
Little is known about the mental workload, or psychological costs, associated with information processing tasks in children. We adapted the highly regarded NASA Task Load Index (NASA-TLX) multidimensional workload scale (Hart & Staveland, 1988) to test its efficacy for use with elementary school children. We developed 2 types of tasks, each with 2 levels of demand, to draw differentially on resources from the separate subscales of workload. In Experiment 1, our participants were both typical and school-labeled gifted children recruited from 4th and 5th grades. Results revealed that task type elicited different workload profiles, and task demand directly affected the children's experience of workload. In general, gifted children experienced less workload than typical children. Objective response time and accuracy measures provide evidence for the criterion validity of the workload ratings. In Experiment 2, we applied the same method with 1st- and 2nd-grade children. Findings from Experiment 2 paralleled those of Experiment 1 and support the use of NASA-TLX with even the youngest elementary school children. These findings contribute to the fledgling field of educational ergonomics and attest to the innovative application of workload research. Such research may optimize instructional techniques and identify children at risk for experiencing overload.
DIRAC distributed computing services
International Nuclear Information System (INIS)
Tsaregorodtsev, A
2014-01-01
DIRAC Project provides a general-purpose framework for building distributed computing systems. It is used now in several HEP and astrophysics experiments as well as for user communities in other scientific domains. There is a large interest from smaller user communities to have a simple tool like DIRAC for accessing grid and other types of distributed computing resources. However, small experiments cannot afford to install and maintain dedicated services. Therefore, several grid infrastructure projects are providing DIRAC services for their respective user communities. These services are used for user tutorials as well as to help porting the applications to the grid for a practical day-to-day work. The services are giving access typically to several grid infrastructures as well as to standalone computing clusters accessible by the target user communities. In the paper we will present the experience of running DIRAC services provided by the France-Grilles NGI and other national grid infrastructure projects.
Casajus Ramo, A.; Graciani Diaz, R.
2012-12-01
DIRAC framework for distributed computing has been designed as a group of collaborating components, agents and servers, with persistent database back-end. Components communicate with each other using DISET, an in-house protocol that provides Remote Procedure Call (RPC) and file transfer capabilities. This approach has provided DIRAC with a modular and stable design by enforcing stable interfaces across releases. But it made complicated to scale further with commodity hardware. To further scale DIRAC, components needed to send more queries between them. Using RPC to do so requires a lot of processing power just to handle the secure handshake required to establish the connection. DISET now provides a way to keep stable connections and send and receive queries between components. Only one handshake is required to send and receive any number of queries. Using this new communication mechanism DIRAC now provides a new type of component called Executor. Executors process any task (such as resolving the input data of a job) sent to them by a task dispatcher. This task dispatcher takes care of persisting the state of the tasks to the storage backend and distributing them among all the Executors based on the requirements of each task. In case of a high load, several Executors can be started to process the extra load and stop them once the tasks have been processed. This new approach of handling tasks in DIRAC makes Executors easy to replace and replicate, thus enabling DIRAC to further scale beyond the current approach based on polling agents.
International Nuclear Information System (INIS)
Casajus Ramo, A; Graciani Diaz, R
2012-01-01
DIRAC framework for distributed computing has been designed as a group of collaborating components, agents and servers, with persistent database back-end. Components communicate with each other using DISET, an in-house protocol that provides Remote Procedure Call (RPC) and file transfer capabilities. This approach has provided DIRAC with a modular and stable design by enforcing stable interfaces across releases. But it made complicated to scale further with commodity hardware. To further scale DIRAC, components needed to send more queries between them. Using RPC to do so requires a lot of processing power just to handle the secure handshake required to establish the connection. DISET now provides a way to keep stable connections and send and receive queries between components. Only one handshake is required to send and receive any number of queries. Using this new communication mechanism DIRAC now provides a new type of component called Executor. Executors process any task (such as resolving the input data of a job) sent to them by a task dispatcher. This task dispatcher takes care of persisting the state of the tasks to the storage backend and distributing them among all the Executors based on the requirements of each task. In case of a high load, several Executors can be started to process the extra load and stop them once the tasks have been processed. This new approach of handling tasks in DIRAC makes Executors easy to replace and replicate, thus enabling DIRAC to further scale beyond the current approach based on polling agents.
Evaluation of NoSQL databases for DIRAC monitoring and beyond
Mathe, Z; Stagni, F; Tomassetti, L
2015-01-01
Nowadays, many database systems are available but they may not be optimized for storing time series data. Monitoring DIRAC jobs would be better done using a database optimised for storing time series data. So far it was done using a MySQL database, which is not well suited for such an application. Therefore alternatives have been investigated. Choosing an appropriate database for storing huge amounts of time series data is not trivial as one must take into account different aspects such as manageability, scalability and extensibility. We compared the performance of Elasticsearch, OpenTSDB (based on HBase) and InfluxDB NoSQL databases, using the same set of machines and the same data. We also evaluated the effort required for maintaining them. Using the LHCb Workload Management System (WMS), based on DIRAC as a use case we set up a new monitoring system, in parallel with the current MySQL system, and we stored the same data into the databases under test. We evaluated Grafana (for OpenTSDB) and Kibana (for Elas...
Energy Technology Data Exchange (ETDEWEB)
Abel, Steven [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; CERN, Geneva (Switzerland); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-02-15
A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)
International Nuclear Information System (INIS)
Abel, Steven; Goodsell, Mark
2011-02-01
A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)
International Nuclear Information System (INIS)
Thaller, B.
1992-01-01
This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics
Endsley, Patricia
2017-02-01
The purpose of this scoping review was to survey the most recent (5 years) acute care, community health, and mental health nursing workload literature to understand themes and research avenues that may be applicable to school nursing workload research. The search for empirical and nonempirical literature was conducted using search engines such as Google Scholar, PubMed, CINAHL, and Medline. Twenty-nine empirical studies and nine nonempirical articles were selected for inclusion. Themes that emerged consistent with school nurse practice include patient classification systems, environmental factors, assistive personnel, missed nursing care, and nurse satisfaction. School nursing is a public health discipline and population studies are an inherent research priority but may overlook workload variables at the clinical level. School nurses need a consistent method of population assessment, as well as evaluation of appropriate use of assistive personnel and school environment factors. Assessment of tasks not directly related to student care and professional development must also be considered in total workload.
Analysis of DIRAC's behavior using model checking with process algebra
International Nuclear Information System (INIS)
Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof; Diaz, Ricardo Graciani
2012-01-01
DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.
Analysis of DIRAC's behavior using model checking with process algebra
Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof
2012-12-01
DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.
DIRAC reliable data management for LHCb
Smith, A C
2008-01-01
DIRAC, LHCb's Grid Workload and Data Management System, utilizes WLCG resources and middleware components to perform distributed computing tasks satisfying LHCb's Computing Model. The Data Management System (DMS) handles data transfer and data access within LHCb. Its scope ranges from the output of the LHCb Online system to Grid-enabled storage for all data types. It supports metadata for these files in replica and bookkeeping catalogues, allowing dataset selection and localization. The DMS controls the movement of files in a redundant fashion whilst providing utilities for accessing all metadata. To do these tasks effectively the DMS requires complete self integrity between its components and external physical storage. The DMS provides highly redundant management of all LHCb data to leverage available storage resources and to manage transient errors in underlying services. It provides data driven and reliable distribution of files as well as reliable job output upload, utilizing VO Boxes at LHCb Tier1 sites ...
Bog, Anja
2014-01-01
This book introduces a new benchmark for hybrid database systems, gauging the effect of adding OLAP to an OLTP workload and analyzing the impact of commonly used optimizations in historically separate OLTP and OLAP domains in mixed-workload scenarios.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
International Nuclear Information System (INIS)
Joshipura, A.S.; Rindani, S.D.
1991-01-01
The consequences of imposing an exact L e +L τ -L μ symmetry on a 6x6 matrix describing neutrino masses are discussed. The presence of right-handed neutrinos avoids the need of introducing any SU(2) Higgs triplet. Hence the conflict with the CERN LEP data on the Z width found in earlier models with L e +L τ -L μ symmetry is avoided. The L e +L τ -L μ symmetry provides an interesting realization of a recent proposal of Glashow to accommodate the 17-keV Dirac neutrino in the SU(2)xU(1) theory. All the neutrinos in this model are Dirac particles. The solar-neutrino problem can be solved in an extension of the model which generates a large (∼10 -11 μ B ) magnetic moment for the electron neutrino
Sheka, Elena F.
2016-01-01
The paper presents the author view on spin-rooted properties of graphene supported by numerous experimental and calculation evidences. Dirac fermions of crystalline graphene and local spins of graphene molecules are suggested to meet a strict demand - different orbitals for different spins- which leads to a large spectrum of effects caused by spin polarization of electronic states. The consequent topological non-triviality, making graphene topological insulator, and local spins, imaging graph...
Vigne, R.; Schikuta, E.; Garonne, V.; Stewart, G.; Barisits, M.; Beermann, T.; Lassnig, M.; Serfon, C.; Goossens, L.; Nairz, A.; Atlas Collaboration
2014-06-01
Rucio is the successor of the current Don Quijote 2 (DQ2) system for the distributed data management (DDM) system of the ATLAS experiment. The reasons for replacing DQ2 are manifold, but besides high maintenance costs and architectural limitations, scalability concerns are on top of the list. Current expectations are that the amount of data will be three to four times as it is today by the end of 2014. Further is the availability of more powerful computing resources pushing additional pressure on the DDM system as it increases the demands on data provisioning. Although DQ2 is capable of handling the current workload, it is already at its limits. To ensure that Rucio will be up to the expected workload, a way to emulate it is needed. To do so, first the current workload, observed in DQ2, must be understood in order to scale it up to future expectations. The paper discusses how selected core concepts are applied to the workload of the experiment and how knowledge about the current workload is derived from various sources (e.g. analysing the central file catalogue logs). Finally a description of the implemented emulation framework, used for stress-testing Rucio, is given.
Vigne, R; The ATLAS collaboration; Garonne, V; Stewart, G; Barisits, M; Beermann, T; Lassnig, M; Serfon, C; Goossens, L; Nairz, A
2013-01-01
Rucio is the successor of the current Don Quijote 2 (DQ2) system for the distributed data management (DDM) system of the ATLAS experiment. The reasons for replacing DQ2 are manifold, but besides high maintenance costs and architectural limitations, scalability concerns are on top of the list. Current expectations are that the amount of data will be three to four times as it is today by the end of 2014. Further is the availability of more powerful computing resources pushing additional pressure on the DDM system as it increases the demands on data provisioning. Although DQ2 is capable of handling the current workload, it is already at its limits. To ensure that Rucio will be up to the expected workload, a way to emulate it is needed. To do so, first the current workload, observed in DQ2, must be understood in order to scale it up to future expectations. The paper discusses how selected core concepts are applied to the workload of the experiment and how knowledge about the current workload is derived from vario...
International Nuclear Information System (INIS)
Vigne, R; Schikuta, E; Garonne, V; Stewart, G; Barisits, M; Beermann, T; Lassnig, M; Serfon, C; Goossens, L; Nairz, A
2014-01-01
Rucio is the successor of the current Don Quijote 2 (DQ2) system for the distributed data management (DDM) system of the ATLAS experiment. The reasons for replacing DQ2 are manifold, but besides high maintenance costs and architectural limitations, scalability concerns are on top of the list. Current expectations are that the amount of data will be three to four times as it is today by the end of 2014. Further is the availability of more powerful computing resources pushing additional pressure on the DDM system as it increases the demands on data provisioning. Although DQ2 is capable of handling the current workload, it is already at its limits. To ensure that Rucio will be up to the expected workload, a way to emulate it is needed. To do so, first the current workload, observed in DQ2, must be understood in order to scale it up to future expectations. The paper discusses how selected core concepts are applied to the workload of the experiment and how knowledge about the current workload is derived from various sources (e.g. analysing the central file catalogue logs). Finally a description of the implemented emulation framework, used for stress-testing Rucio, is given.
Vigne, R; The ATLAS collaboration; Garonne, V; Stewart, G; Barisits, M; Beermann, T; Serfon, C; Goossens, L; Nairz, A
2014-01-01
Rucio is the successor of the current Don Quijote 2 (DQ2) system for the distributed data management (DDM) system of the ATLAS experiment. The reasons for replacing DQ2 are manifold, but besides high maintenance costs and architectural limitations, scalability concerns are on top of the list. Current expectations are that the amount of data will be three to four times as it is today by the end of 2014. Further is the availability of more powerful computing resources pushing additional pressure on the DDM system as it increases the demands on data provisioning. Although DQ2 is capable of handling the current workload, it is already at its limits. To ensure that Rucio will be up to the expected workload, a way to emulate it is needed. To do so, first the current workload, observed in DQ2, must be understood in order to scale it up to future expectations. The paper discusses how selected core concepts are applied to the workload of the experiment and how knowledge about the current workload is derived from vario...
Potential scattering of Dirac particles
International Nuclear Information System (INIS)
Thaller, B.
1981-01-01
A quantum mechanical interpretation of the Dirac equation for particles in external electromagnetic potentials is discussed. It is shown that a consequent development of the Stueckelberg-Feynman theory into a probabilistic interpretation of the Dirac equation corrects some prejudices concerning negative energy states, Zitterbewegung and bound states in repulsive potentials and yields the connection between propagator theory and scattering theory. Limits of the Dirac equation, considered as a wave mechanical equation, are considered. (U.K.)
Analysis of DIRAC's behavior using model checking with process algebra
Remenska, Daniela; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Diaz, Ricardo Graciani; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof
2012-01-01
DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple, the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike con...
O'Bryan, Linda; Krueger, Janelle; Lusk, Ruth
2002-03-01
Kindred Healthcare, Inc., the nation's largest full-service network of long-term acute care hospitals, initiated a 3-year strategic plan to re-evaluate its workload management system. Here, follow the project's most important and difficult phase--designing and implementing the patient classification system.
International Nuclear Information System (INIS)
Leo, Stefano de; Rotelli, Pietro
2009-01-01
We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each ''particle'' (wave packet) contribution. (orig.)
International Nuclear Information System (INIS)
Ferreira, P.L.; Palladino, B.E.
1985-01-01
The problem of a Dirac particle in stationary motion on S 2 - a two dimensional sphere embedded in Euclidean space E 3 - is discussed. It provides a particularly simple case of an exactly solvable constrained Dirac particle whose properties are here studied, with emphasis on its magnetic moment. (Author) [pt
LHCb: DIRAC Secure Distributed Platform
Casajus, A
2009-01-01
DIRAC, the LHCb community grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by us...
Strategic workload management and decision biases in aviation
Raby, Mireille; Wickens, Christopher D.
1994-01-01
Thirty pilots flew three simulated landing approaches under conditions of low, medium, and high workload. Workload conditions were created by varying time pressure and external communications requirements. Our interest was in how the pilots strategically managed or adapted to the increasing workload. We independently assessed the pilot's ranking of the priority of different discrete tasks during the approach and landing. Pilots were found to sacrifice some aspects of primary flight control as workload increased. For discrete tasks, increasing workload increased the amount of time in performing the high priority tasks, decreased the time in performing those of lowest priority, and did not affect duration of performance episodes or optimality of scheduling of tasks of any priority level. Individual differences analysis revealed that high-performing subjects scheduled discrete tasks earlier in the flight and shifted more often between different activities.
Stagni, F.; McNab, A.; Luzzi, C.; Krzemien, W.; Consortium, DIRAC
2017-10-01
In the last few years, new types of computing models, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are in the form of opportunistic ones. Most but not all of these new infrastructures are based on virtualization techniques. In addition, some of them, present opportunities for multi-processor computing slots to the users. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to provide the transparent, uniform interface has become essential. The transparent access to the underlying resources is realized by implementing the pilot model. DIRAC’s newest generation of generic pilots (the so-called Pilots 2.0) are the “pilots for all the skies”, and have been successfully released in production more than a year ago. They use a plugin mechanism that makes them easily adaptable. Pilots 2.0 have been used for fetching and running jobs on every type of resource, being it a Worker Node (WN) behind a CREAM/ARC/HTCondor/DIRAC Computing element, a Virtual Machine running on IaaC infrastructures like Vac or BOINC, on IaaS cloud resources managed by Vcycle, the LHCb High Level Trigger farm nodes, and any type of opportunistic computing resource. Make a machine a “Pilot Machine”, and all diversities between them will disappear. This contribution describes how pilots are made suitable for different resources, and the recent steps taken towards a fully unified framework, including monitoring. Also, the cases of multi-processor computing slots either on real or virtual machines, with the whole node or a partition of it, is discussed.
The Dirac equation for accountants
International Nuclear Information System (INIS)
Ord, G.N.
2006-01-01
In the context of relativistic quantum mechanics, derivations of the Dirac equation usually take the form of plausibility arguments based on experience with the Schroedinger equation. The primary reason for this is that we do not know what wavefunctions physically represent, so derivations have to rely on formal arguments. There is however a context in which the Dirac equation in one dimension is directly related to a classical generating function. In that context, the derivation of the Dirac equation is an exercise in counting. We provide this derivation here and discuss its relationship to quantum mechanics
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
In a model quantum theory of interacting mesons, the motion of certain conserved particle-like structures is discussed. It is shown how collective coordinates may be introduced to describe them, leading, in lowest approximation, to a Dirac equation. (author)
Alternatives to the Dirac equation
International Nuclear Information System (INIS)
Girvin, S.M.; Brownstein, K.R.
1975-01-01
Recent work by Biedenharn, Han, and van Dam (BHvD) has questioned the uniqueness of the Dirac equation. BHvD have obtained a two-component equation as an alternate to the Dirac equation. Although they later show their alternative to be unitarily equivalent to the Dirac equation, certain physical differences were claimed. BHvD attribute the existence of this alternate equation to the fact that their factorizing matrices were position-dependent. To investigate this, we factor the Klein-Gordon equation in spherical coordinates allowing the factorizing matrices to depend arbitrarily upon theta and phi. It is shown that despite this additional freedom, and without involving any relativistic covariance, the conventional four-component Dirac equation is the only possibility
Workload measurement: diagnostic imaging
Energy Technology Data Exchange (ETDEWEB)
Nuss, Wayne [The Prince Charles Hospital, Chermside, QLD (Australia). Dept. of Medical Imaging
1993-06-01
Departments of medical imaging, as with many other service departments in the health industry, are being asked to develop performance indicators. No longer are they assured that annual budget allocations will be forthcoming without justification or some output measurement indicators that will substantiate a claim for a reasonable share of resources. The human resource is the most valuable and the most expensive to any department. This paper provides a brief overview of the research and implementation of a radiographer workload measurement system that was commenced in the Brisbane North Health Region. 2 refs., 10 tabs.
CERN Bulletin
2010-01-01
When a group of physicists entered the Main Auditorium, during the evening of 29 June, they felt they had opened a time portal. Paul Dirac in front of a blackboard showing his formula. ©Sandra Hoogeboom An attentive audience, dressed in early 1900 costumes, were watching a lecture by the elusive Paul Dirac, presenting for the first time his famous formula on the blackboard. Paul Adrien Maurice Dirac (1902-1984) was a British mathematical physicist at Cambridge, and one of the "fathers" of quantum mechanics. When he first wrote it, in 1928, Dirac was not sure what his formula really meant. As demonstrated by Andersson four year later, what Dirac had written on the blackboard was the first definition of a positron, hence he is credited with having anticipated the existence of antimatter. The actor John Kohl performs as Paul Dirac. ©Sandra Hoogeboom What the group of puzzled physicists were really observing when they entered the CERN Auditorium was the shoo...
WBDOC Weekly Workload Status Report
Social Security Administration — Weekly reports of workloads processed in the Wilkes Barre Data Operation Center. Reports on quantities of work received, processed, pending and average processing...
DIRAC: reliable data management for LHCb
International Nuclear Information System (INIS)
Smith, A C; Tsaregorodtsev, A
2008-01-01
DIRAC, LHCb's Grid Workload and Data Management System, utilizes WLCG resources and middleware components to perform distributed computing tasks satisfying LHCb's Computing Model. The Data Management System (DMS) handles data transfer and data access within LHCb. Its scope ranges from the output of the LHCb Online system to Grid-enabled storage for all data types. It supports metadata for these files in replica and bookkeeping catalogues, allowing dataset selection and localization. The DMS controls the movement of files in a redundant fashion whilst providing utilities for accessing all metadata. To do these tasks effectively the DMS requires complete self integrity between its components and external physical storage. The DMS provides highly redundant management of all LHCb data to leverage available storage resources and to manage transient errors in underlying services. It provides data driven and reliable distribution of files as well as reliable job output upload, utilizing VO Boxes at LHCb Tier1 sites to prevent data loss. This paper presents several examples of mechanisms implemented in the DMS to increase reliability, availability and integrity, highlighting successful design choices and limitations discovered
LHCb: LHCbDirac is a DIRAC extension to support LHCb specific workflows
Stagni, Federico
2012-01-01
We present LHCbDIRAC, an extension of the DIRAC community Grid solution to handle the LHCb specificities. The DIRAC software has been developed for many years within LHCb only. Nowadays it is a generic software, used by many scientific communities worldwide. Each community wanting to take advantage of DIRAC has to develop an extension, containing all the necessary code for handling their specific cases. LHCbDIRAC is an actively developed extension, implementing the LHCb computing model and workflows. LHCbDIRAC extends DIRAC to handle all the distributed computing activities of LHCb. Such activities include real data processing (reconstruction, stripping and streaming), Monte-Carlo simulation and data replication. Other activities are groups and user analysis, data management, resources management and monitoring, data provenance, accounting for user and production jobs. LHCbDIRAC also provides extensions of the DIRAC interfaces, including a secure web client, python APIs and CLIs. While DIRAC and LHCbDIRAC f...
Bowyer, Kyle
2012-01-01
Student workload is a contributing factor to students deciding to withdraw from their study before completion of the course, at significant cost to students, institutions and society. The aim of this paper is to create a basic workload model for a group of undergraduate students studying business law units at Curtin University in Western…
Workload Control with Continuous Release
Phan, B. S. Nguyen; Land, M. J.; Gaalman, G. J. C.
2009-01-01
Workload Control (WLC) is a production planning and control concept which is suitable for the needs of make-to-order job shops. Release decisions based on the workload norms form the core of the concept. This paper develops continuous time WLC release variants and investigates their due date
Quasi-Dirac neutrino oscillations
Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin
2018-05-01
Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
A new Dirac cone material: a graphene-like Be3C2 monolayer.
Wang, Bing; Yuan, Shijun; Li, Yunhai; Shi, Li; Wang, Jinlan
2017-05-04
Two-dimensional (2D) materials with Dirac cones exhibit rich physics and many intriguing properties, but the search for new 2D Dirac materials is still a current hotspot. Using the global particle-swarm optimization method and density functional theory, we predict a new stable graphene-like 2D Dirac material: a Be 3 C 2 monolayer with a hexagonal honeycomb structure. The Dirac point occurs exactly at the Fermi level and arises from the merging of the hybridized p z bands of Be and C atoms. Most interestingly, this monolayer exhibits a high Fermi velocity in the same order of graphene. Moreover, the Dirac cone is very robust and retains even included spin-orbit coupling or external strain. These outstanding properties render the Be 3 C 2 monolayer a promising 2D material for special electronics applications.
Psychophysical workload in the operating room: primary surgeon versus assistant.
Rieger, Annika; Fenger, Sebastian; Neubert, Sebastian; Weippert, Matthias; Kreuzfeld, Steffi; Stoll, Regina
2015-07-01
Working in the operating room is characterized by high demands and overall workload of the surgical team. Surgeons often report that they feel more stressed when operating as a primary surgeon than in the function as an assistant which has been confirmed in recent studies. In this study, intra-individual workload was assessed in both intraoperative functions using a multidimensional approach that combined objective and subjective measures in a realistic work setting. Surgeons' intraoperative psychophysiologic workload was assessed through a mobile health system. 25 surgeons agreed to take part in the 24-hour monitoring by giving their written informed consent. The mobile health system contained a sensor electronic module integrated in a chest belt and measuring physiological parameters such as heart rate (HR), breathing rate (BR), and skin temperature. Subjective workload was assessed pre- and postoperatively using an electronic version of the NASA-TLX on a smartphone. The smartphone served as a communication unit and transferred objective and subjective measures to a communication server where data were stored and analyzed. Working as a primary surgeon did not result in higher workload. Neither NASA-TLX ratings nor physiological workload indicators were related to intraoperative function. In contrast, length of surgeries had a significant impact on intraoperative physical demands (p NASA-TLX sum score (p < 0.01; η(2) = 0.287). Intra-individual workload differences do not relate to intraoperative role of surgeons when length of surgery is considered as covariate. An intelligent operating management that considers the length of surgeries by implementing short breaks could contribute to the optimization of intraoperative workload and the preservation of surgeons' health, respectively. The value of mobile health systems for continuous psychophysiologic workload assessment was shown.
The Dirac medals of the ICTP. 1993
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-12-31
The Dirac Medals of the International Centre for Theoretical Physics (ICTP) were instituted in 1985. These are awarded yearly to outstanding physicists, on Dirac`s birthday - 8th August- for contributions to theoretical physics. The document includes the lectures of the three Dirac Medalists for 1993: Professor Sergio Ferrara, Professor Daniel Z. Freedman, and Professor Peter van Nieuwenhuizen. A separate abstract was prepared for each lecture
Memory and subjective workload assessment
Staveland, L.; Hart, S.; Yeh, Y. Y.
1986-01-01
Recent research suggested subjective introspection of workload is not based upon specific retrieval of information from long term memory, and only reflects the average workload that is imposed upon the human operator by a particular task. These findings are based upon global ratings of workload for the overall task, suggesting that subjective ratings are limited in ability to retrieve specific details of a task from long term memory. To clarify the limits memory imposes on subjective workload assessment, the difficulty of task segments was varied and the workload of specified segments was retrospectively rated. The ratings were retrospectively collected on the manipulations of three levels of segment difficulty. Subjects were assigned to one of two memory groups. In the Before group, subjects knew before performing a block of trials which segment to rate. In the After group, subjects did not know which segment to rate until after performing the block of trials. The subjective ratings, RTs (reaction times) and MTs (movement times) were compared within group, and between group differences. Performance measures and subjective evaluations of workload reflected the experimental manipulations. Subjects were sensitive to different difficulty levels, and recalled the average workload of task components. Cueing did not appear to help recall, and memory group differences possibly reflected variations in the groups of subjects, or an additional memory task.
A Dirac algebraic approach to supersymmetry
International Nuclear Information System (INIS)
Guersey, F.
1984-01-01
The power of the Dirac algebra is illustrated through the Kaehler correspondence between a pair of Dirac spinors and a 16-component bosonic field. The SO(5,1) group acts on both the fermion and boson fields, leading to a supersymmetric equation of the Dirac type involving all these fields. (author)
Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones
Assili, Mohamed; Haddad, Sonia
2013-01-01
We theoretically study the effect of the motion and the merging of Dirac cone on the interlayer magnetoresistance in multilayer graphene like systems. This merging, which could be induced by a uniaxial strain, gives rise in monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase where Dirac points disappear. Based on a universal Hamiltonian proposed to describe the motion and the merging of Dirac points in two dimensional Dirac electron cr...
The LHCb Experience on the Grid from the DIRAC Accounting Data
Puig, A; Graciani, R; Casajús, A
2011-01-01
DIRAC is the software framework developed by LHCb to manage all its computing operations on the Grid. Since 2003 it has been used for large scale Monte Carlo simulation productions and for user analysis of these data. Since the end of 2009, with the start-up of LHC, DIRAC also takes care of the distribution, reconstruction, selection and analysis of the physics data taken by the detector apparatus. During 2009, DIRAC executed almost 5 million jobs for LHCb. In order to execute this workload slightly over 6 million of pilot jobs were submitted, out of which approximately one third were aborted by the Grid infrastructure. In 2010, thanks to their improved efficiency, DIRAC pilots are able, on average, to match and execute between 2 and 3 LHCb jobs during their lifetime, largely reducing the load on the Grid infrastructure. Given the large amount of submitted jobs and used resources, it becomes essential to store detailed information about their execution to track the behaviour of the system. The DIRAC Accountin...
Dirac, Prof. Paul Adrien Maurice
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Dirac, Prof. Paul Adrien Maurice Nobel Laureate (Physics) - 1933. Date of birth: 8 August 1902. Date of death: 20 October 1984. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year ...
Dirac, Jordan and quantum fields
International Nuclear Information System (INIS)
Darrigol, O.
1985-01-01
The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood [fr
about the Dirac Delta Function(?)
Indian Academy of Sciences (India)
V Balakrishnan is in the. Department of ... and sweet as befits this impatient age. It said (in its en- ... to get down to real work by shutting down the system and reverting to ... the Dirac delta function" - but do note the all-important question mark in ...
Superconductivity in doped Dirac semimetals
Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2016-07-01
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
Dirac Magnons in Honeycomb Ferromagnets
Directory of Open Access Journals (Sweden)
Sergey S. Pershoguba
2018-01-01
Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in
Dirac Magnons in Honeycomb Ferromagnets
Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.
2018-01-01
The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation
Psychological workload and body weight
DEFF Research Database (Denmark)
Overgaard, Dorthe; Gyntelberg, Finn; Heitmann, Berit L
2004-01-01
on the association between obesity and psychological workload. METHOD: We carried out a review of the associations between psychological workload and body weight in men and women. In total, 10 cross-sectional studies were identified. RESULTS: The review showed little evidence of a general association between...... adjustment for education. For women, there was no evidence of a consistent association. CONCLUSION: The reviewed articles were not supportive of any associations between psychological workload and either general or abdominal obesity. Future epidemiological studies in this field should be prospective......BACKGROUND: According to Karasek's Demand/Control Model, workload can be conceptualized as job strain, a combination of psychological job demands and control in the job. High job strain may result from high job demands combined with low job control. Aim To give an overview of the literature...
Graphene based d-character Dirac Systems
Li, Yuanchang; Zhang, S. B.; Duan, Wenhui
From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.
Halogenated arsenenes as Dirac materials
International Nuclear Information System (INIS)
Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin
2016-01-01
Highlights: • We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. • All fully-halogenated arsenene except As_2I_2 would spontaneously form and stable in defending the thermal fluctuation in room temperature. - Abstract: Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155–3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.
The time-of-flight detector of the DIRAC experiment
International Nuclear Information System (INIS)
Adeva, B.; Gallas, M.V.; Gomez, F.; Lopez-Agueera, A.; Nunez-Pardo, T.; Plo, M.; Rodriguez, A.M.; Rodriguez, X.M.; Saborido, J.J.; Santamarina, C.; Tobar, M.J.; Vazquez, P.
2002-01-01
The construction and performance of a large area time-of-flight detector for the DIRAC experiment at CERN is reported. With an average time resolution of 123 ps per counter at rates up to 1 MHz, it allows excellent separation of pπ - from π + π - pairs up to 4.6 GeV/c momentum, as well as of Coulomb-correlated pion pairs from accidentals. The optimization of scintillator material, photomultiplier performance and readout electronics is described
DIRAC: Secure web user interface
International Nuclear Information System (INIS)
Casajus Ramo, A; Sapunov, M
2010-01-01
Traditionally the interaction between users and the Grid is done with command line tools. However, these tools are difficult to use by non-expert users providing minimal help and generating outputs not always easy to understand especially in case of errors. Graphical User Interfaces are typically limited to providing access to the monitoring or accounting information and concentrate on some particular aspects failing to cover the full spectrum of grid control tasks. To make the Grid more user friendly more complete graphical interfaces are needed. Within the DIRAC project we have attempted to construct a Web based User Interface that provides means not only for monitoring the system behavior but also allows to steer the main user activities on the grid. Using DIRAC's web interface a user can easily track jobs and data. It provides access to job information and allows performing actions on jobs such as killing or deleting. Data managers can define and monitor file transfer activity as well as check requests set by jobs. Production managers can define and follow large data productions and react if necessary by stopping or starting them. The Web Portal is build following all the grid security standards and using modern Web 2.0 technologies which allow to achieve the user experience similar to the desktop applications. Details of the DIRAC Web Portal architecture and User Interface will be presented and discussed.
Double Dirac cones in phononic crystals
Li, Yan
2014-07-07
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Data Management System of the DIRAC Project
Haen, Christophe; Tsaregorodtsev, Andrei
2015-01-01
The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...
The DIRAC Data Management System (poster)
Haen, Christophe
2015-01-01
The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. The DIRAC DMS is in use by several user communities now. The contribution will present the experience of the LHCb exper...
Double Dirac cones in phononic crystals
Li, Yan; Wu, Ying; Mei, Jun
2014-01-01
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Workload analyse of assembling process
Ghenghea, L. D.
2015-11-01
The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.
The Dirac medals of the ICTP. 1993
International Nuclear Information System (INIS)
1995-01-01
The Dirac Medals of the International Centre for Theoretical Physics (ICTP) were instituted in 1985. These are awarded yearly to outstanding physicists, on Dirac's birthday - 8th August- for contributions to theoretical physics. The document includes the lectures of the three Dirac Medalists for 1993: Professor Sergio Ferrara, Professor Daniel Z. Freedman, and Professor Peter van Nieuwenhuizen. A separate abstract was prepared for each lecture
The workload analysis in welding workshop
Wahyuni, D.; Budiman, I.; Tryana Sembiring, M.; Sitorus, E.; Nasution, H.
2018-03-01
This research was conducted in welding workshop which produces doors, fences, canopies, etc., according to customer’s order. The symptoms of excessive workload were seen from the fact of employees complaint, requisition for additional employees, the lateness of completion time (there were 11 times of lateness from 28 orders, and 7 customers gave complaints). The top management of the workshop assumes that employees’ workload was still a tolerable limit. Therefore, it was required workload analysis to determine the number of employees required. The Workload was measured by using a physiological method and workload analysis. The result of this research can be utilized by the workshop for a better workload management.
Single-Pilot Workload Management
Rogers, Jason; Williams, Kevin; Hackworth, Carla; Burian, Barbara; Pruchnicki, Shawn; Christopher, Bonny; Drechsler, Gena; Silverman, Evan; Runnels, Barry; Mead, Andy
2013-01-01
Integrated glass cockpit systems place a heavy cognitive load on pilots (Burian Dismukes, 2007). Researchers from the NASA Ames Flight Cognition Lab and the FAA Flight Deck Human Factors Lab examined task and workload management by single pilots. This poster describes pilot performance regarding programming a reroute while at cruise and meeting a waypoint crossing restriction on the initial descent.
Curriculum Change Management and Workload
Alkahtani, Aishah
2017-01-01
This study examines the ways in which Saudi teachers have responded or are responding to the challenges posed by a new curriculum. It also deals with issues relating to workload demands which affect teachers' performance when they apply a new curriculum in a Saudi Arabian secondary school. In addition, problems such as scheduling and sharing space…
File-System Workload on a Scientific Multiprocessor
Kotz, David; Nieuwejaar, Nils
1995-01-01
Many scientific applications have intense computational and I/O requirements. Although multiprocessors have permitted astounding increases in computational performance, the formidable I/O needs of these applications cannot be met by current multiprocessors a their I/O subsystems. To prevent I/O subsystems from forever bottlenecking multiprocessors and limiting the range of feasible applications, new I/O subsystems must be designed. The successful design of computer systems (both hardware and software) depends on a thorough understanding of their intended use. A system designer optimizes the policies and mechanisms for the cases expected to most common in the user's workload. In the case of multiprocessor file systems, however, designers have been forced to build file systems based only on speculation about how they would be used, extrapolating from file-system characterizations of general-purpose workloads on uniprocessor and distributed systems or scientific workloads on vector supercomputers (see sidebar on related work). To help these system designers, in June 1993 we began the Charisma Project, so named because the project sought to characterize 1/0 in scientific multiprocessor applications from a variety of production parallel computing platforms and sites. The Charisma project is unique in recording individual read and write requests-in live, multiprogramming, parallel workloads (rather than from selected or nonparallel applications). In this article, we present the first results from the project: a characterization of the file-system workload an iPSC/860 multiprocessor running production, parallel scientific applications at NASA's Ames Research Center.
International Nuclear Information System (INIS)
Karbstein, Felix
2009-01-01
We introduce a new method for dealing with fermionic quantum field theories amenable to a mean-field-type approximation. In this work we focus on the relativistic Hartree approximation. Our aim is to integrate out the Dirac sea and derive a no-sea effective theory'' with positive energy single particle states only. As the derivation of the no-sea effective theory involves only standard Feynman diagrams, our approach is quite general and not restricted to particular space-time dimensions. We develop and illustrate the approach in the ''large N'' limit of the Gross-Neveu model family in 1+1 dimensions. As the Gross-Neveu model has been intensely studied and several analytical solutions are known for this model, it is an ideal testing ground for our no-sea effective theory approach. The chiral Gross-Neveu model, also referred to as 1+1 dimensional Nambu-Jona-Lasinio model, turns out to be of particular interest. In this case, we explicitly derive a consistent effective theory featuring both elementary ''π meson'' fields and (positive energy) ''quark'' fields, starting from a purely fermionic quantum field theory. In the second part of this work, we apply our approach to the Walecka model in 1+1 and 3+1 dimensions. As the Dirac sea caused considerable difficulties in attempts to base nuclear physics on field theoretic models like the Walecka model, mean-field calculations were typically done without the sea. We confront several of these mean-field theory results with our no-sea effective theory approach. The potential of our approach is twofold. While the no-sea effective theory can be utilized to provide new analytical insights in particular parameter regimes, it also sheds new light on more fundamental issues as the explicit emergence of effective, Dirac-sea induced multi-fermion interactions in an effective theory with positive energy states only. (orig.)
Monday Morning Workload Reports (FY15 - 17)
Department of Veterans Affairs — The Monday Morning Workload Report (MMWR) displays a snapshot of the Veterans Benefits Administration’s (VBA) workload as of a specified date, typically the previous...
Dirac tensor with heavy photon
Energy Technology Data Exchange (ETDEWEB)
Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2012-01-15
For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)
The Dirac equation in classical statistical mechanics
International Nuclear Information System (INIS)
Ord, G.N.
2002-01-01
The Dirac equation, usually obtained by 'quantizing' a classical stochastic model is here obtained directly within classical statistical mechanics. The special underlying space-time geometry of the random walk replaces the missing analytic continuation, making the model 'self-quantizing'. This provides a new context for the Dirac equation, distinct from its usual context in relativistic quantum mechanics
Dirac and Weyl semimetals with holographic interactions
Jacobs, V.P.J.
2015-01-01
Dirac and Weyl semimetals are states of matter exhibiting the relativistic physics of, respectively, the Dirac and Weyl equation in a three-dimensional bulk material. These three-dimensional semimetals have recently been realized experimentally in various crystals. Theoretically, especially the
A fractional Dirac equation and its solution
International Nuclear Information System (INIS)
Muslih, Sami I; Agrawal, Om P; Baleanu, Dumitru
2010-01-01
This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.
New solitons connected to the Dirac equation
International Nuclear Information System (INIS)
Grosse, H.
1984-01-01
Imposing isospectral invariance for the one dimensional Dirac operator leads to systems of nonlinear partial differential equations. By constructing reflectionless potentials of the Dirac equation we obtain a new type of solitons for a system of modified Korteweg-de Vries equations. (Author)
Effects of acceleration through the Dirac sea
International Nuclear Information System (INIS)
Hacyan, S.
1986-01-01
The effects of acceleration through massive scalar and spin-1/2 fields are investigated. It is shown that the density-of-states factor in a uniformly accelerated frame takes a complicated form, but the energy spectrum exhibits a Bose-Einstein or Fermi-Dirac distribution function. In particular, the Dirac sea shows thermal-like effects
Semi-Dirac points in phononic crystals
Zhang, Xiujuan; Wu, Ying
2014-01-01
of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso
Operator Workload: Comprehensive Review and Evaluation of Operator Workload Methodologies
1989-06-01
E. A (1979), Measurement end scaing of workload In oornple performance. Aviation, Space and Environmental Medicine , 50, 376-381. Ctoow, S. L... Medicine , 53, 1087-1072. Harris, R. M., Glenn, F., laveocchia, H. P., & 7ak"d, A, (1986). Human Operndor Simulator. In W. Karwoski (Ed.), Trends in...McGiothlin, W. (1974). Effects of marihuana on auditory signal detection. Psychopharmacologia, 40, 137-145. Mulder, I. J. M., & Mulder, G. (1987
LHCbDIRAC as Apache Mesos microservices
Couturier, Ben
2016-01-01
The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and ran on virtual machines (VM) or bare metal hardware. Due to the increased load of work, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called "framework". The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an arc...
Dirac operators on coset spaces
International Nuclear Information System (INIS)
Balachandran, A.P.; Immirzi, Giorgio; Lee, Joohan; Presnajder, Peter
2003-01-01
The Dirac operator for a manifold Q, and its chirality operator when Q is even dimensional, have a central role in noncommutative geometry. We systematically develop the theory of this operator when Q=G/H, where G and H are compact connected Lie groups and G is simple. An elementary discussion of the differential geometric and bundle theoretic aspects of G/H, including its projective modules and complex, Kaehler and Riemannian structures, is presented for this purpose. An attractive feature of our approach is that it transparently shows obstructions to spin- and spin c -structures. When a manifold is spin c and not spin, U(1) gauge fields have to be introduced in a particular way to define spinors, as shown by Avis, Isham, Cahen, and Gutt. Likewise, for manifolds like SU(3)/SO(3), which are not even spin c , we show that SU(2) and higher rank gauge fields have to be introduced to define spinors. This result has potential consequences for string theories if such manifolds occur as D-branes. The spectra and eigenstates of the Dirac operator on spheres S n =SO(n+1)/SO(n), invariant under SO(n+1), are explicitly found. Aspects of our work overlap with the earlier research of Cahen et al
Fei, Fucong; Bo, Xiangyan; Wang, Pengdong; Ying, Jianghua; Chen, Bo; Liu, Qianqian; Zhang, Yong; Sun, Zhe; Qu, Fanming; Zhang, Yi; Li, Jian; Song, Fengqi; Wan, Xiangang; Wang, Baigeng; Wang, Guanghou
2017-01-01
Topological semimetal is a topic of general interest in material science. Recently, a new kind of topological semimetal called type-II Dirac semimetal with tilted Dirac cones is discovered in PtSe2 family. However, the further investigation is hindered due to the huge energy difference from Dirac points to Fermi level and the irrelevant conducting pockets at Fermi surface. Here we characterize the optimized type-II Dirac dispersions in a metastable 1T phase of IrTe2. Our strategy of Pt doping...
Energy Technology Data Exchange (ETDEWEB)
Karbstein, Felix
2009-07-08
We introduce a new method for dealing with fermionic quantum field theories amenable to a mean-field-type approximation. In this work we focus on the relativistic Hartree approximation. Our aim is to integrate out the Dirac sea and derive a no-sea effective theory'' with positive energy single particle states only. As the derivation of the no-sea effective theory involves only standard Feynman diagrams, our approach is quite general and not restricted to particular space-time dimensions. We develop and illustrate the approach in the ''large N'' limit of the Gross-Neveu model family in 1+1 dimensions. As the Gross-Neveu model has been intensely studied and several analytical solutions are known for this model, it is an ideal testing ground for our no-sea effective theory approach. The chiral Gross-Neveu model, also referred to as 1+1 dimensional Nambu-Jona-Lasinio model, turns out to be of particular interest. In this case, we explicitly derive a consistent effective theory featuring both elementary ''{pi} meson'' fields and (positive energy) ''quark'' fields, starting from a purely fermionic quantum field theory. In the second part of this work, we apply our approach to the Walecka model in 1+1 and 3+1 dimensions. As the Dirac sea caused considerable difficulties in attempts to base nuclear physics on field theoretic models like the Walecka model, mean-field calculations were typically done without the sea. We confront several of these mean-field theory results with our no-sea effective theory approach. The potential of our approach is twofold. While the no-sea effective theory can be utilized to provide new analytical insights in particular parameter regimes, it also sheds new light on more fundamental issues as the explicit emergence of effective, Dirac-sea induced multi-fermion interactions in an effective theory with positive energy states only. (orig.)
Paul Dirac: the purest soul in physics
International Nuclear Information System (INIS)
Berry, M.
1998-01-01
Paul Dirac published the first of his papers on ''The Quantum Theory of the Electron'' seventy years ago this month. Published in the Proceedings of the Royal Society (London) in February and March 1928, the papers contained one of the greatest leaps of imagination in 20th century physics. The Dirac equation, derived in those papers, is one of the most important equations in physics. Dirac showed that the simplest wave satisfying the requirements of quantum mechanics and relativity was not a simple number but had four components. He found that the logic that led to the theory was, although deeply sophisticated, in a sense beautifully simple. Much later, when someone asked him ''How did you find the Dirac equation?'' he is said to have replied: ''I found it beautiful''. In addition to explaining the magnetic and spin properties of the electron, the equation also predicts the existence of antimatter. Because Dirac was a quiet man - famously quiet, indeed - he is not well known outside physics, although this is slowly changing. In 1995 a plaque to Dirac was unveiled at Westminster Abbey in London and last year Institute of Physics Publishing, which is based in Bristol, named its new building Dirac House. In this article the author recalls the achievements of the greatest physicists of the 20th century. (UK)
Dirac fermions in blue-phosphorus
International Nuclear Information System (INIS)
Li, Yuanchang; Chen, Xiaobin
2014-01-01
We propose that Dirac cones can be engineered in phosphorene with fourfold-coordinated phosphorus atoms. The key is to separate the energy levels of the in-plane (s, p x , and p y ) and out-of-plane (p z ) oribtals through the sp 2 configuration, yielding respective σ- and π-character Dirac cones, and then quench the latter. As a proof-of-principle study, we create σ-character Dirac cones in hydrogenated and fluorinated phosphorene with a honeycomb lattice. The obtained Dirac cones are at K-points, slightly anisotropic, with Fermi velocities of 0.91 and 1.23 times that of graphene along the ΓK and KM direction, and maintain good linearity up to ∼2 eV for holes. A substantive advantage of a σ-character Dirac cone is its convenience in tuning the Dirac gap via in-plane strain. Our findings pave the way for development of high-performance electronic devices based on Dirac materials. (letter)
Dirac cones in isogonal hexagonal metallic structures
Wang, Kang
2018-03-01
A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
The Dirac equation and its solutions
Energy Technology Data Exchange (ETDEWEB)
Bagrov, Vladislav G. [Tomsk State Univ., Tomsk (Russian Federation). Dept. of Quantum Field Theroy; Gitman, Dmitry [Sao Paulo Univ. (Brazil). Inst. de Fisica; P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Univ., Tomsk (Russian Federation). Faculty of Physics
2013-07-01
The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.
The Dirac equation and its solutions
Bagrov, Vladislav G
2014-01-01
Dirac equations are of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly.In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.
Counter-diabatic driving for Dirac dynamics
Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi
2018-03-01
In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.
Quantum geometry of the Dirac fermions
International Nuclear Information System (INIS)
Korchemskij, G.P.
1989-01-01
The bosonic path integral formalism is developed for Dirac fermions interacting with a nonabelian gauge field in the D-dimensional Euclidean space-time. The representation for the effective action and correlation functions of interacting fermions as sums over all bosonic paths on the complex projective space CP 2d-1 , (2d=2 [ D 2] is derived where all the spinor structure is absorbed by the one-dimensional Wess-Zumino term. It is the Wess-Zumino term that ensures all necessary properties of Dirac fermions under quantization. i.e., quantized values of the spin, Dirac equation, Fermi statistics. 19 refs
The Dirac equation and its solutions
International Nuclear Information System (INIS)
Bagrov, Vladislav G.; Gitman, Dmitry; P.N. Lebedev Physical Institute, Moscow; Tomsk State Univ., Tomsk
2013-01-01
The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.
Scalar potentials and the Dirac equation
International Nuclear Information System (INIS)
Bergerhoff, B.; Soff, G.
1994-01-01
The Dirac equation is solved for various types of scalar potentials. Energy eigenvalues and normalized bound-state wave functions are calculated analytically for a scalar 1/r-potential as well as for a mixed scalar and Coulomb 1/r-potential. Also continuum wave functions for positive and negative energies are derived. Similarly, we investigate the solutions of the Dirac equation for a scalar square-well potential. Relativistic wave functions for scalar Yukawa and exponential potentials are determined numerically. Finally, we also discuss solutions of the Dirac equation for scalar linear and quadratic potentials which are frequently used to simulate quark confinement. (orig.)
Wigner function for the Dirac oscillator in spinor space
International Nuclear Information System (INIS)
Ma Kai; Wang Jianhua; Yuan Yi
2011-01-01
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained. (authors)
Workload Characterization of a Leadership Class Storage Cluster
Energy Technology Data Exchange (ETDEWEB)
Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL; Shipman, Galen M [ORNL; Dillow, David A [ORNL; Zhang, Zhe [ORNL; Settlemyer, Bradley W [ORNL
2010-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the scientific workloads of the world s fastest HPC (High Performance Computing) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). Spider provides an aggregate bandwidth of over 240 GB/s with over 10 petabytes of RAID 6 formatted capacity. OLCFs flagship petascale simulation platform, Jaguar, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, and the distribution of read requests to write requests for the storage system observed over a period of 6 months. From this study we develop synthesized workloads and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution.
Dirac equation in magnetic-solenoid field
Energy Technology Data Exchange (ETDEWEB)
Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)
2004-07-01
We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)
SU(4) proprerties of the Dirac equation
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.
1985-09-01
The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequent properties are displayed in the continuum as well as in the lattice description [pt
New symmetries for the Dirac equation
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.
1990-01-01
The Dirac equation in four dimension is studied describing fermions, both as 4 x 4 matrices and differential forms. It is discussed in both formalisms its properties under transformations of the group SU(4). (A.C.A.S.) [pt
On the level order for Dirac operators
International Nuclear Information System (INIS)
Grosse, H.
1987-01-01
We start from the Dirac operator for the Coulomb potential and prove within first order perturbation theory that degenerate levels split in a definite way depending on the sign of the Laplacian of the perturbing potential. 9 refs. (Author)
Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.
Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin
2017-01-01
In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.
The CMS workload management system
Energy Technology Data Exchange (ETDEWEB)
Cinquilli, M. [CERN; Evans, D. [Fermilab; Foulkes, S. [Fermilab; Hufnagel, D. [Fermilab; Mascheroni, M. [CERN; Norman, M. [UC, San Diego; Maxa, Z. [Caltech; Melo, A. [Vanderbilt U.; Metson, S. [Bristol U.; Riahi, H. [INFN, Perugia; Ryu, S. [Fermilab; Spiga, D. [CERN; Vaandering, E. [Fermilab; Wakefield, Stuart [Imperial Coll., London; Wilkinson, R. [Caltech
2012-01-01
CMS has started the process of rolling out a new workload management system. This system is currently used for reprocessing and Monte Carlo production with tests under way using it for user analysis. It was decided to combine, as much as possible, the production/processing, analysis and T0 codebases so as to reduce duplicated functionality and make best use of limited developer and testing resources. This system now includes central request submission and management (Request Manager), a task queue for parcelling up and distributing work (WorkQueue) and agents which process requests by interfacing with disparate batch and storage resources (WMAgent).
The CMS workload management system
International Nuclear Information System (INIS)
Cinquilli, M; Mascheroni, M; Spiga, D; Evans, D; Foulkes, S; Hufnagel, D; Ryu, S; Vaandering, E; Norman, M; Maxa, Z; Wilkinson, R; Melo, A; Metson, S; Riahi, H; Wakefield, S
2012-01-01
CMS has started the process of rolling out a new workload management system. This system is currently used for reprocessing and Monte Carlo production with tests under way using it for user analysis. It was decided to combine, as much as possible, the production/processing, analysis and T0 codebases so as to reduce duplicated functionality and make best use of limited developer and testing resources. This system now includes central request submission and management (Request Manager); a task queue for parcelling up and distributing work (WorkQueue) and agents which process requests by interfacing with disparate batch and storage resources (WMAgent).
Data acquisition software for DIRAC experiment
International Nuclear Information System (INIS)
Ol'shevskij, V.G.; Trusov, S.V.
2000-01-01
The structure and basic processes of data acquisition software of DIRAC experiment for the measurement of π + π - atom life-time are described. The experiment is running on PS accelerator of CERN. The developed software allows one to accept, record and distribute to consumers up to 3 Mbytes of data in one accelerator supercycle of 14.4 s duration. The described system is used successfully in the DIRAC experiment starting from 1998 year
New exact solutions of the Dirac equation
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.
1980-01-01
Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely
Deuteron stripping reactions using dirac phenomenology
Hawk, E. A.; McNeil, J. A.
2001-04-01
In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.
Solvable linear potentials in the Dirac equation
International Nuclear Information System (INIS)
Dominguez-Adame, F.; Gonzalez, M.A.
1990-01-01
The Dirac equation for some linear potentials leading to Schroedinger-like oscillator equations for the upper and lower components of the Dirac spinor have been solved. Energy levels for the bound states appear in pairs, so that both particles and antiparticles may be bound with the same energy. For weak coupling, the spacing between levels is proportional to the coupling constant while in the strong limit those levels are depressed compared to the nonrelativistic ones
Leptons as systems of Dirac particles
International Nuclear Information System (INIS)
Borstnik, N.M.; Kaluza, M.
1988-03-01
Charged leptons are treated as systems of three equal independent Dirac particles in an external static effective potential which has a vector and a scalar term. The potential is constructed to reproduce the experimental mass spectrum of the charged leptons. The Dirac covariant equation for three interacting particles is discussed in order to comment on the magnetic moment of leptons. (author). 9 refs, 2 figs, 4 tabs
Dirac equation on a curved surface
Energy Technology Data Exchange (ETDEWEB)
Brandt, F.T., E-mail: fbrandt@usp.br; Sánchez-Monroy, J.A., E-mail: antosan@usp.br
2016-09-07
The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein–Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles. - Highlights: • The thin-layer method is employed to derive the Dirac equation on a curved surface. • A geometric potential is absent at least to first-order in the perturbative expansion. • The effects of the extrinsic curvature are included to rescue the non-relativistic limit. • The resulting Dirac equation is consistent with the Heisenberg uncertainty principle.
Mathe, Z.; Casajus Ramo, A.; Lazovsky, N.; Stagni, F.
2015-12-01
For many years the DIRAC interware (Distributed Infrastructure with Remote Agent Control) has had a web interface, allowing the users to monitor DIRAC activities and also interact with the system. Since then many new web technologies have emerged, therefore a redesign and a new implementation of the DIRAC Web portal were necessary, taking into account the lessons learnt using the old portal. These new technologies allowed to build a more compact, robust and responsive web interface that enables users to have better control over the whole system while keeping a simple interface. The web framework provides a large set of “applications”, each of which can be used for interacting with various parts of the system. Communities can also create their own set of personalised web applications, and can easily extend already existing ones with a minimal effort. Each user can configure and personalise the view for each application and save it using the DIRAC User Profile service as RESTful state provider, instead of using cookies. The owner of a view can share it with other users or within a user community. Compatibility between different browsers is assured, as well as with mobile versions. In this paper, we present the new DIRAC Web framework as well as the LHCb extension of the DIRAC Web portal.
Dirac Fermions in an Antiferromagnetic Semimetal
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.
Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.
Directory of Open Access Journals (Sweden)
Nur Azemil
2017-09-01
Full Text Available Development of manufacturing and service institutions can not be separated from the role of human resources. Human resources have an important role in fulfilling vision and mission. University of A is one of the private educational institutions in East Java to achieve the goal must be managed properly that can be utilized optimally, this can be done by analyzing workload and performance or optimizing the number of employees. The purpose this research is measure workload and effect the employee’s performance. Measurement of workload is using National Aeronautics and Space Administration-Task Load Index (NASA-TLX method, NASA-TLX method is rating multidimentional subjective mental workload that divides the workload based on the average load of 6 dimensions, and the measurement of performance is using questionnaire with 5 scales by likert scale. The results showed that employees who have Medium workload is 8%, High workload is 84% and Very high workload is 8%. The result of the questionnaire showed the category of employee’s performance, simply performance is 24% and satisfactory performance is 76%. From the statistical test by using Chi Square method, it is known that the value = 5,9915 and = 2,2225, the result shows < , then is accepted and is rejected. Thus, there is influence between the workload of employees and the employees’s performance.
Viability of Dirac phase leptogenesis
International Nuclear Information System (INIS)
Anisimov, Alexey; Blanchet, Steve; Di Bari, Pasquale
2008-01-01
We discuss the conditions for a non-vanishing Dirac phase δ and mixing angle θ 13 , sources of CP violation in neutrino oscillations, to be uniquely responsible for the observed matter–antimatter asymmetry of the Universe through leptogenesis. We show that this scenario, that we call δ-leptogenesis, is viable when the degenerate limit for the heavy right-handed (RH) neutrino spectrum is considered. We derive an interesting joint condition on sinθ 13 and the absolute neutrino mass scale that can be tested in future neutrino oscillation experiments. In the limit of the hierarchical heavy RH neutrino spectrum, we strengthen the previous result that δ-leptogenesis is only very marginally allowed, even when the production from the two heavier RH neutrinos is taken into account. An improved experimental upper bound on sinθ 13 and/or an account of quantum kinetic effects could completely rule out this option in the future. Therefore, δ-leptogenesis can be also regarded as motivation for models with degenerate heavy neutrino spectrum
Designing workload analysis questionnaire to evaluate needs of employees
Astuti, Rahmaniyah Dwi; Navi, Muhammad Abdu Haq
2018-02-01
Incompatibility between workload with work capacity is one of main problem to make optimal result. In case at the office, there are constraints to determine workload because of non-repetitive works. Employees do work based on the targets set in a working period. At the end of the period is usually performed an evaluation of employees performance to evaluate needs of employees. The aims of this study to design a workload questionnaire tools to evaluate the efficiency level of position as indicator to determine needs of employees based on the Indonesian State Employment Agency Regulation on workload analysis. This research is applied to State-Owned Enterprise PT. X by determining 3 positions as a pilot project. Position A is held by 2 employees, position B is held by 7 employees, and position C is held by 6 employees. From the calculation result, position A has an efficiency level of 1,33 or "very good", position B has an efficiency level of 1.71 or "enough", and position C has an efficiency level of 1.03 or "very good". The application of this tools giving suggestion the needs of employees of position A is 3 people, position B is 5 people, and position C is 6 people. The difference between the number of employees and the calculation result is then analyzed by interviewing the employees to get more data about personal perception. It can be concluded that this workload evaluation tools can be used as an alternative solution to evaluate needs of employees in office.
First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals
Mei, Jun; Wu, Ying; Chan, C. T.; Zhang, Zhao-Qing
2012-01-01
By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.
First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals
Mei, Jun
2012-07-24
By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.
Volfson, Boris
2013-09-01
The hypothesis of transition from a chaotic Dirac Sea, via highly unstable positronium, into a Simhony Model of stable face-centered cubic lattice structure of electrons and positrons securely bound in vacuum space, is considered. 13.75 Billion years ago, the new lattice, which, unlike a Dirac Sea, is permeable by photons and phonons, made the Universe detectable. Many electrons and positrons ended up annihilating each other producing energy quanta and neutrino-antineutrino pairs. The weak force of the electron-positron crystal lattice, bombarded by the chirality-changing neutrinos, may have started capturing these neutrinos thus transforming from cubic crystals into a quasicrystal lattice. Unlike cubic crystal lattice, clusters of quasicrystals are "slippery" allowing the formation of centers of local torsion, where gravity condenses matter into galaxies, stars and planets. In the presence of quanta, in a quasicrystal lattice, the Majorana neutrinos' rotation flips to the opposite direction causing natural transformations in a category comprised of three components; two others being positron and electron. In other words, each particle-antiparticle pair "e-" and "e+", in an individual crystal unit, could become either a quasi- component "e- ve e+", or a quasi- component "e+ - ve e-". Five-to-six six billion years ago, a continuous stimulation of the quasicrystal aetherial lattice by the same, similar, or different, astronomical events, could have triggered Hebbian and anti-Hebbian learning processes. The Universe may have started writing script into its own aether in a code most appropriate for the quasicrystal aether "hardware": Eight three-dimensional "alphabet" characters, each corresponding to the individual quasi-crystal unit shape. They could be expressed as quantum Turing machine qubits, or, alternatively, in a binary code. The code numerals could contain terminal and nonterminal symbols of the Chomsky's hierarchy, wherein, the showers of quanta, forming the
A Workload-Adaptive and Reconfigurable Bus Architecture for Multicore Processors
Directory of Open Access Journals (Sweden)
Shoaib Akram
2010-01-01
Full Text Available Interconnection networks for multicore processors are traditionally designed to serve a diversity of workloads. However, different workloads or even different execution phases of the same workload may benefit from different interconnect configurations. In this paper, we first motivate the need for workload-adaptive interconnection networks. Subsequently, we describe an interconnection network framework based on reconfigurable switches for use in medium-scale (up to 32 cores shared memory multicore processors. Our cost-effective reconfigurable interconnection network is implemented on a traditional shared bus interconnect with snoopy-based coherence, and it enables improved multicore performance. The proposed interconnect architecture distributes the cores of the processor into clusters with reconfigurable logic between clusters to support workload-adaptive policies for inter-cluster communication. Our interconnection scheme is complemented by interconnect-aware scheduling and additional interconnect optimizations which help boost the performance of multiprogramming and multithreaded workloads. We provide experimental results that show that the overall throughput of multiprogramming workloads (consisting of two and four programs can be improved by up to 60% with our configurable bus architecture. Similar gains can be achieved also for multithreaded applications as shown by further experiments. Finally, we present the performance sensitivity of the proposed interconnect architecture on shared memory bandwidth availability.
Semi-Dirac points in phononic crystals
Zhang, Xiujuan
2014-01-01
A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in
Workload modelling for data-intensive systems
Lassnig, Mario
This thesis presents a comprehensive study built upon the requirements of a global data-intensive system, built for the ATLAS Experiment at CERN's Large Hadron Collider. First, a scalable method is described to capture distributed data management operations in a non-intrusive way. These operations are collected into a globally synchronised sequence of events, the workload. A comparative analysis of this new data-intensive workload against existing computational workloads is conducted, leading to the discovery of the importance of descriptive attributes in the operations. Existing computational workload models only consider the arrival rates of operations, however, in data-intensive systems the correlations between attributes play a central role. Furthermore, the detrimental effect of rapid correlated arrivals, so called bursts, is assessed. A model is proposed that can learn burst behaviour from captured workload, and in turn forecast potential future bursts. To help with the creation of a full representative...
Strain engineering of Dirac cones in graphyne
Energy Technology Data Exchange (ETDEWEB)
Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra, E-mail: pandey@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Si, Mingsu [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2014-05-26
6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.
impact of workload induced stress on the professional effectiveness
African Journals Online (AJOL)
PROF EKWUEME
aids, evaluation of students, learning motivation, classroom management, supervision of co-curricular activities and ... of workload. KEYWORDS; Stress, Workload, Professional effectiveness, Teachers, Cross River State .... determining the relationship between workload ..... adapted to cope with the stress that could have.
Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones
International Nuclear Information System (INIS)
Assili, M; Haddad, S
2013-01-01
We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT) 2 I 3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed. (paper)
Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones
Assili, M.; Haddad, S.
2013-09-01
We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.
Assili, M; Haddad, S
2013-09-11
We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.
Dirac operator on spaces with conical singularities
International Nuclear Information System (INIS)
Chou, A.W.
1982-01-01
The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained
LHCb: Monitoring the DIRAC Distribution System
Nandakumar, R; Santinelli, R
2009-01-01
DIRAC is the LHCb gateway to any computing grid infrastructure (currently supporting WLCG) and is intended to reliably run large data mining activities. The DIRAC system consists of various services (which wait to be contacted to perform actions) and agents (which carry out periodic activities) to direct jobs as required. An important part of ensuring the reliability of the infrastructure is the monitoring and logging of these DIRAC distributed systems. The monitoring is done collecting information from two sources - one is from pinging the services or by keeping track of the regular heartbeats of the agents, and the other from the analysis of the error messages generated by both agents and services and collected by the logging system. This allows us to ensure that he components are running properly and to collect useful information regarding their operations. The process status monitoring is displayed using the SLS sensor mechanism which also automatically allows one to plot various quantities and also keep ...
DIRAC - Distributed Infrastructure with Remote Agent Control
Tsaregorodtsev, A; Closier, J; Frank, M; Gaspar, C; van Herwijnen, E; Loverre, F; Ponce, S; Graciani Diaz, R.; Galli, D; Marconi, U; Vagnoni, V; Brook, N; Buckley, A; Harrison, K; Schmelling, M; Egede, U; Bogdanchikov, A; Korolko, I; Washbrook, A; Palacios, J P; Klous, S; Saborido, J J; Khan, A; Pickford, A; Soroko, A; Romanovski, V; Patrick, G N; Kuznetsov, G; Gandelman, M
2003-01-01
This paper describes DIRAC, the LHCb Monte Carlo production system. DIRAC has a client/server architecture based on: Compute elements distributed among the collaborating institutes; Databases for production management, bookkeeping (the metadata catalogue) and software configuration; Monitoring and cataloguing services for updating and accessing the databases. Locally installed software agents implemented in Python monitor the local batch queue, interrogate the production database for any outstanding production requests using the XML-RPC protocol and initiate the job submission. The agent checks and, if necessary, installs any required software automatically. After the job has processed the events, the agent transfers the output data and updates the metadata catalogue. DIRAC has been successfully installed at 18 collaborating institutes, including the DataGRID, and has been used in recent Physics Data Challenges. In the near to medium term future we must use a mixed environment with different types of grid mid...
Use of EEG workload indices for diagnostic monitoring of vigilance decrement.
Kamzanova, Altyngul T; Kustubayeva, Almira M; Matthews, Gerald
2014-09-01
A study was run to test which of five electroencephalographic (EEG) indices was most diagnostic of loss of vigilance at two levels of workload. EEG indices of alertness include conventional spectral power measures as well as indices combining measures from multiple frequency bands, such as the Task Load Index (TLI) and the Engagement Index (El). However, it is unclear which indices are optimal for early detection of loss of vigilance. Ninety-two participants were assigned to one of two experimental conditions, cued (lower workload) and uncued (higher workload), and then performed a 40-min visual vigilance task. Performance on this task is believed to be limited by attentional resource availability. EEG was recorded continuously. Performance, subjective state, and workload were also assessed. The task showed a vigilance decrement in performance; cuing improved performance and reduced subjective workload. Lower-frequency alpha (8 to 10.9 Hz) and TLI were most sensitive to the task parameters. The magnitude of temporal change was larger for lower-frequency alpha. Surprisingly, higher TLI was associated with superior performance. Frontal theta and El were influenced by task workload only in the final period of work. Correlational data also suggested that the indices are distinct from one another. Lower-frequency alpha appears to be the optimal index for monitoring vigilance on the task used here, but further work is needed to test how diagnosticity of EEG indices varies with task demands. Lower-frequency alpha may be used to diagnose loss of operator alertness on tasks requiring vigilance.
DIRAC - The Distributed MC Production and Analysis for LHCb
Tsaregorodtsev, A
2004-01-01
DIRAC is the LHCb distributed computing grid infrastructure for MC production and analysis. Its architecture is based on a set of distributed collaborating services. The service decomposition broadly follows the ARDA project proposal, allowing for the possibility of interchanging the EGEE/ARDA and DIRAC components in the future. Some components developed outside the DIRAC project are already in use as services, for example the File Catalog developed by the AliEn project. An overview of the DIRAC architecture will be given, in particular the recent developments to support user analysis. The main design choices will be presented. One of the main design goals of DIRAC is the simplicity of installation, configuring and operation of various services. This allows all the DIRAC resources to be easily managed by a single Production Manager. The modular design of the DIRAC components allows its functionality to be easily extended to include new computing and storage elements or to handle new tasks. The DIRAC system al...
Cloud flexibility using DIRAC interware
International Nuclear Information System (INIS)
Albor, Víctor Fernandez; Miguelez, Marcos Seco; Silva, Juan Jose Saborido; Pena, Tomas Fernandez; Muñoz, Victor Mendez; Diaz, Ricardo Graciani
2014-01-01
Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for
Cloud flexibility using DIRAC interware
Fernandez Albor, Víctor; Seco Miguelez, Marcos; Fernandez Pena, Tomas; Mendez Muñoz, Victor; Saborido Silva, Juan Jose; Graciani Diaz, Ricardo
2014-06-01
Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for several
Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations
International Nuclear Information System (INIS)
Esteban, M.J.; Georgiev, V.; Sere, E.
1995-01-01
The Maxwell-Dirac system describes the interaction of an electron with its own electromagnetic field. We prove the existence of soliton-like solutions of Maxwell-Dirac in (3+1)-Minkowski space-time. The solutions obtained are regular, stationary in time, and localized in space. They are found by a variational method, as critical points of an energy functional. This functional is strongly indefinite and presents a lack of compactness. We also find soliton-like solutions for the Klein-Gordon-Dirac system, arising in the Yukawa model. (author). 32 refs
All-Metallic Vertical Transistors Based on Stacked Dirac Materials
Wang, Yangyang; Ni, Zeyuan; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Ye, Meng; Yu, Dapeng; Shi, Junjie; Yang, Jinbo; Lu, Jing
2014-01-01
It is an ongoing pursuit to use metal as a channel material in a field effect transistor. All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac ...
On Huygens' principle for Dirac operators associated to electromagnetic fields
Directory of Open Access Journals (Sweden)
CHALUB FABIO A.C.C.
2001-01-01
Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.
Dirac equations for generalised Yang-Mills systems
International Nuclear Information System (INIS)
Lechtenfeld, O.; Nahm, W.; Tchrakian, D.H.
1985-06-01
We present Dirac equations in 4p dimensions for the generalised Yang-Mills (GYM) theories introduced earlier. These Dirac equations are related to the self-duality equations of the GYM and are checked to be elliptic in a 'BPST' background. In this background these Dirac equations are integrated exactly. The possibility of imposing supersymmetry in the GYM-Dirac system is investigated, with negative results. (orig.)
A framework for unified Dirac gauginos
Directory of Open Access Journals (Sweden)
Benakli Karim
2017-01-01
Full Text Available We identify the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM as the minimal field content with Dirac gauginos allowing unification of gauge coupling. We stress that its parameter space describes also other most popular models as the MSSM, NMSSM and MRSSM. We discuss the generation of trilinear couplings in models of gauge mediation that has been overlooked in the past. We study the different source of Higgs mixings and constraints from the ƿ parameter. Finally, we provide new experimental limits on the masses of the scalar octets.
Dirac particle tunneling from black rings
International Nuclear Information System (INIS)
Jiang Qingquan
2008-01-01
Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.
Kapitza–Dirac effect with traveling waves
International Nuclear Information System (INIS)
Hayrapetyan, Armen G; Götte, Jörg B; Grigoryan, Karen K; Petrosyan, Rubik G
2015-01-01
We report on the possibility of diffracting electrons from light waves traveling inside a dielectric medium. We show that, in the frame of reference which moves with the group velocity of light, the traveling wave acts as a stationary diffraction grating from which electrons can diffract, similar to the conventional Kapitza–Dirac effect. To characterize the Kapitza–Dirac effect with traveling light waves, we make use of the Hamiltonian Analogy between electron optics and quantum mechanics and apply the Helmholtz–Kirchhoff theory of diffraction. (fast track communication)
Are Dirac electrons faster than light?
International Nuclear Information System (INIS)
De Angelis, G.F.
1986-01-01
This paper addresses the problem of path integral solutions of the Dirac equation. The path integral construction of the Dirac propagator which extends Fynman's checkerboard rule in more than one space dimension is discussed. A distinguished feature of such extension is the fact that the speed of a relativistic electron is actually greater than the speed of light when the space has more than one dimension. A technique employed in obtaining an extension to higher space dimension is described which consists in comparing continuity equations of quantum mechanical origin with forward Kolmogorov equations for suitable chosen classes of random processes
Patient Safety Incidents and Nursing Workload 1
Carlesi, Katya Cuadros; Padilha, Kátia Grillo; Toffoletto, Maria Cecília; Henriquez-Roldán, Carlos; Juan, Monica Andrea Canales
2017-01-01
ABSTRACT Objective: to identify the relationship between the workload of the nursing team and the occurrence of patient safety incidents linked to nursing care in a public hospital in Chile. Method: quantitative, analytical, cross-sectional research through review of medical records. The estimation of workload in Intensive Care Units (ICUs) was performed using the Therapeutic Interventions Scoring System (TISS-28) and for the other services, we used the nurse/patient and nursing assistant/patient ratios. Descriptive univariate and multivariate analysis were performed. For the multivariate analysis we used principal component analysis and Pearson correlation. Results: 879 post-discharge clinical records and the workload of 85 nurses and 157 nursing assistants were analyzed. The overall incident rate was 71.1%. It was found a high positive correlation between variables workload (r = 0.9611 to r = 0.9919) and rate of falls (r = 0.8770). The medication error rates, mechanical containment incidents and self-removal of invasive devices were not correlated with the workload. Conclusions: the workload was high in all units except the intermediate care unit. Only the rate of falls was associated with the workload. PMID:28403334
Patient Safety Incidents and Nursing Workload
Directory of Open Access Journals (Sweden)
Katya Cuadros Carlesi
Full Text Available ABSTRACT Objective: to identify the relationship between the workload of the nursing team and the occurrence of patient safety incidents linked to nursing care in a public hospital in Chile. Method: quantitative, analytical, cross-sectional research through review of medical records. The estimation of workload in Intensive Care Units (ICUs was performed using the Therapeutic Interventions Scoring System (TISS-28 and for the other services, we used the nurse/patient and nursing assistant/patient ratios. Descriptive univariate and multivariate analysis were performed. For the multivariate analysis we used principal component analysis and Pearson correlation. Results: 879 post-discharge clinical records and the workload of 85 nurses and 157 nursing assistants were analyzed. The overall incident rate was 71.1%. It was found a high positive correlation between variables workload (r = 0.9611 to r = 0.9919 and rate of falls (r = 0.8770. The medication error rates, mechanical containment incidents and self-removal of invasive devices were not correlated with the workload. Conclusions: the workload was high in all units except the intermediate care unit. Only the rate of falls was associated with the workload.
New exact solutions of the Dirac equation. 8
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Sukhomlin, N.B.; Shapovalov, V.N.
1978-01-01
The paper continues the investigation into the exact solutions of the Dirac, Klein-Gordon, and Lorentz equations for a charge in an external electromagnetic field. The fields studied do not allow for separation of variables in the Dirac equation, but solutions to the Dirac equation are obtained
Kondo effect in three-dimensional Dirac and Weyl systems
Mitchell, Andrew K.; Fritz, Lars
2015-01-01
Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a
Dirac cones beyond the honeycomb lattice : a symmetry based approach
Miert, G. van; de Morais Smith, Cristiane
2016-01-01
Recently, several new materials exhibiting massless Dirac fermions have been proposed. However, many of these do not have the typical graphene honeycomb lattice, which is often associated with Dirac cones. Here, we present a classification of these different two-dimensional Dirac systems based on
Mental workload in decision and control
Sheridan, T. B.
1979-01-01
This paper briefly reviews the problems of defining and measuring the 'mental workload' of aircraft pilots and other human operators of complex dynamic systems. Of the alternative approaches the author indicates a clear preference for the use of subjective scaling. Some recent experiments from MIT and elsewhere are described which utilize subjective mental workload scales in conjunction with human decision and control tasks in the laboratory. Finally a new three-dimensional mental workload rating scale, under current development for use by IFR aircraft pilots, is presented.
The impact of crosstalk on three-dimensional laparoscopic performance and workload.
Sakata, Shinichiro; Grove, Philip M; Watson, Marcus O; Stevenson, Andrew R L
2017-10-01
This is the first study to explore the effects of crosstalk from 3D laparoscopic displays on technical performance and workload. We studied crosstalk at magnitudes that may have been tolerated during laparoscopic surgery. Participants were 36 voluntary doctors. To minimize floor effects, participants completed their surgery rotations, and a laparoscopic suturing course for surgical trainees. We used a counterbalanced, within-subjects design in which participants were randomly assigned to complete laparoscopic tasks in one of six unique testing sequences. In a simulation laboratory, participants were randomly assigned to complete laparoscopic 'navigation in space' and suturing tasks in three viewing conditions: 2D, 3D without ghosting and 3D with ghosting. Participants calibrated their exposure to crosstalk as the maximum level of ghosting that they could tolerate without discomfort. The Randot® Stereotest was used to verify stereoacuity. The study performance metric was time to completion. The NASA TLX was used to measure workload. Normal threshold stereoacuity (40-20 second of arc) was verified in all participants. Comparing optimal 3D with 2D viewing conditions, mean performance times were 2.8 and 1.6 times faster in laparoscopic navigation in space and suturing tasks respectively (p< .001). Comparing optimal 3D with suboptimal 3D viewing conditions, mean performance times were 2.9 times faster in both tasks (p< .001). Mean workload in 2D was 1.5 and 1.3 times greater than in optimal 3D viewing, for navigation in space and suturing tasks respectively (p< .001). Mean workload associated with suboptimal 3D was 1.3 times greater than optimal 3D in both laparoscopic tasks (p< .001). There was no significant relationship between the magnitude of ghosting score, laparoscopic performance and workload. Our findings highlight the advantages of 3D displays when used optimally, and their shortcomings when used sub-optimally, on both laparoscopic performance and workload.
Dirac's aether in relativistic quantum mechanics
International Nuclear Information System (INIS)
Petroni, N.C.; Bari Univ.; Vigier, J.P.
1984-01-01
The paper concerns Dirac's aether model, based on a stochastic covariant distribution of subquantum motions. Stochastic derivation of the relativistic quantum equations; deterministic nonlocal interpretation of the Aspect-Rapisarda experiments on the EPR paradox; and photon interference with itself; are all discussed. (U.K.)
Dirac's minimum degree condition restricted to claws
Broersma, Haitze J.; Ryjacek, Z.; Schiermeyer, I.
1997-01-01
Let G be a graph on n 3 vertices. Dirac's minimum degree condition is the condition that all vertices of G have degree at least . This is a well-known sufficient condition for the existence of a Hamilton cycle in G. We give related sufficiency conditions for the existence of a Hamilton cycle or a
International Nuclear Information System (INIS)
Ferreira, P.L.; Alcaras, J.A.C.
1980-01-01
The group theoretical properties of the Dirac groups of rank n are discussed together with the properties and construction of their IR's. The cases n even and n odd show distinct features. Furthermore, for n odd, the cases n=4K+1 and n=4K+3 exhibit some different properties too. (Author) [pt
Higher dimensional supersymmetric quantum mechanics and Dirac ...
Indian Academy of Sciences (India)
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
Applications of Dirac's Delta Function in Statistics
Khuri, Andre
2004-01-01
The Dirac delta function has been used successfully in mathematical physics for many years. The purpose of this article is to bring attention to several useful applications of this function in mathematical statistics. Some of these applications include a unified representation of the distribution of a function (or functions) of one or several…
On Kaehler's geometric description of dirac fields
International Nuclear Information System (INIS)
Goeckeler, M.; Joos, H.
1983-12-01
A differential geometric generalization of the Dirac equation due to E. Kaehler seems to be an appropriate starting point for the lattice approximation of matter fields. It is the purpose of this lecture to illustrate several aspects of this approach. (orig./HSI)
SU(4) properties of the Dirac equation
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.
1988-01-01
The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequente properties are displayed in the continuum as well as in the lattice description. (author) [pt
The Dirac operator on the Fuzzy sphere
International Nuclear Information System (INIS)
Grosse, H.
1994-01-01
We introduce the Fuzzy analog of spinor bundles over the sphere on which the non-commutative analog of the Dirac operator acts. We construct the complete set of eigenstates including zero modes. In the commutative limit we recover known results. (authors)
Mass and oscillations of Dirac neutrinos
International Nuclear Information System (INIS)
Collot, J.
1989-01-01
In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations
First level trigger of the DIRAC experiment
International Nuclear Information System (INIS)
Afanas'ev, L.G.; Karpukhin, V.V.; Kulikov, A.V.; Gallas, M.
2001-01-01
The logic of the first level trigger of the DIRAC experiment at CERN is described. A parallel running of different trigger modes with tagging of events and optional independent prescaling is realized. A CAMAC-based trigger system is completely computer controlled
Evolution kernel for the Dirac field
International Nuclear Information System (INIS)
Baaquie, B.E.
1982-06-01
The evolution kernel for the free Dirac field is calculated using the Wilson lattice fermions. We discuss the difficulties due to which this calculation has not been previously performed in the continuum theory. The continuum limit is taken, and the complete energy eigenfunctions as well as the propagator are then evaluated in a new manner using the kernel. (author)
Probabilistic solution of the Dirac equation
International Nuclear Information System (INIS)
Blanchard, P.; Combe, P.
1985-01-01
Various probabilistic representations of the 2, 3 and 4 dimensional Dirac equation are given in terms of expectation with respect to stochastic jump processes and are used to derive the nonrelativistic limit even in the presence of an external electromagnetic field. (orig.)
Poisson geometry from a Dirac perspective
Meinrenken, Eckhard
2018-03-01
We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.
State of science: mental workload in ergonomics.
Young, Mark S; Brookhuis, Karel A; Wickens, Christopher D; Hancock, Peter A
2015-01-01
Mental workload (MWL) is one of the most widely used concepts in ergonomics and human factors and represents a topic of increasing importance. Since modern technology in many working environments imposes ever more cognitive demands upon operators while physical demands diminish, understanding how MWL impinges on performance is increasingly critical. Yet, MWL is also one of the most nebulous concepts, with numerous definitions and dimensions associated with it. Moreover, MWL research has had a tendency to focus on complex, often safety-critical systems (e.g. transport, process control). Here we provide a general overview of the current state of affairs regarding the understanding, measurement and application of MWL in the design of complex systems over the last three decades. We conclude by discussing contemporary challenges for applied research, such as the interaction between cognitive workload and physical workload, and the quantification of workload 'redlines' which specify when operators are approaching or exceeding their performance tolerances.
[Nursing workloads and working conditions: integrative review].
Schmoeller, Roseli; Trindade, Letícia de Lima; Neis, Márcia Binder; Gelbcke, Francine Lima; de Pires, Denise Elvira Pires
2011-06-01
This study reviews theoretical production concerning workloads and working conditions for nurses. For that, an integrative review was carried out using scientific articles, theses and dissertations indexed in two Brazilian databases, Virtual Health Care Library (Biblioteca Virtual de Saúde) and Digital Database of Dissertations (Banco Digital de Teses), over the last ten years. From 132 identified studies, 27 were selected. Results indicate workloads as responsible for professional weariness, affecting the occurrence of work accidents and health problems. In order to adequate workloads studies indicate some strategies, such as having an adequate numbers of employees, continuing education, and better working conditions. The challenge is to continue research that reveal more precisely the relationships between workloads, working conditions, and health of the nursing team.
A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials
Gochan, Matthew; Bedell, Kevin
Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.
The GridPP DIRAC project - DIRAC for non-LHC communities
Bauer, D; Currie, R; Fayer, S; Huffman, A; Martyniak, J; Rand, D; Richards, A
2015-01-01
The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communiti...
The GridPP DIRAC project - DIRAC for non-LHC communities
Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.
2015-12-01
The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.
Identifying Dirac cones in carbon allotropes with square symmetry
Energy Technology Data Exchange (ETDEWEB)
Wang, Jinying [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang, Huaqing; Duan, Wenhui [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); State Key Laboratory for Structural Chemistry of Unstable and Stable Species and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)
2013-11-14
A theoretical study is conducted to search for Dirac cones in two-dimensional carbon allotropes with square symmetry. By enumerating the carbon atoms in a unit cell up to 12, an allotrope with octatomic rings is recognized to possess Dirac cones under a simple tight-binding approach. The obtained Dirac cones are accompanied by flat bands at the Fermi level, and the resulting massless Dirac-Weyl fermions are chiral particles with a pseudospin of S = 1, rather than the conventional S = 1/2 of graphene. The spin-1 Dirac cones are also predicted to exist in hexagonal graphene antidot lattices.
Liu, Y; Wickens, C D
1994-11-01
The evaluation of mental workload is becoming increasingly important in system design and analysis. The present study examined the structure and assessment of mental workload in performing decision and monitoring tasks by focusing on two mental workload measurements: subjective assessment and time estimation. The task required the assignment of a series of incoming customers to the shortest of three parallel service lines displayed on a computer monitor. The subject was either in charge of the customer assignment (manual mode) or was monitoring an automated system performing the same task (automatic mode). In both cases, the subjects were required to detect the non-optimal assignments that they or the computer had made. Time pressure was manipulated by the experimenter to create fast and slow conditions. The results revealed a multi-dimensional structure of mental workload and a multi-step process of subjective workload assessment. The results also indicated that subjective workload was more influenced by the subject's participatory mode than by the factor of task speed. The time estimation intervals produced while performing the decision and monitoring tasks had significantly greater length and larger variability than those produced while either performing no other tasks or performing a well practised customer assignment task. This result seemed to indicate that time estimation was sensitive to the presence of perceptual/cognitive demands, but not to response related activities to which behavioural automaticity has developed.
EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks.
Berka, Chris; Levendowski, Daniel J; Lumicao, Michelle N; Yau, Alan; Davis, Gene; Zivkovic, Vladimir T; Olmstead, Richard E; Tremoulet, Patrice D; Craven, Patrick L
2007-05-01
The ability to continuously and unobtrusively monitor levels of task engagement and mental workload in an operational environment could be useful in identifying more accurate and efficient methods for humans to interact with technology. This information could also be used to optimize the design of safer, more efficient work environments that increase motivation and productivity. The present study explored the feasibility of monitoring electroencephalo-graphic (EEG) indices of engagement and workload acquired unobtrusively and quantified during performance of cognitive tests. EEG was acquired from 80 healthy participants with a wireless sensor headset (F3-F4,C3-C4,Cz-POz,F3-Cz,Fz-C3,Fz-POz) during tasks including: multi-level forward/backward-digit-span, grid-recall, trails, mental-addition, 20-min 3-Choice Vigilance, and image-learning and memory tests. EEG metrics for engagement and workload were calculated for each 1 -s of EEG. Across participants, engagement but not workload decreased over the 20-min vigilance test. Engagement and workload were significantly increased during the encoding period of verbal and image-learning and memory tests when compared with the recognition/ recall period. Workload but not engagement increased linearly as level of difficulty increased in forward and backward-digit-span, grid-recall, and mental-addition tests. EEG measures correlated with both subjective and objective performance metrics. These data in combination with previous studies suggest that EEG engagement reflects information-gathering, visual processing, and allocation of attention. EEG workload increases with increasing working memory load and during problem solving, integration of information, analytical reasoning, and may be more reflective of executive functions. Inspection of EEG on a second-by-second timescale revealed associations between workload and engagement levels when aligned with specific task events providing preliminary evidence that second
Dirac phenomenology and hyperon-nucleus interactions
Energy Technology Data Exchange (ETDEWEB)
Mares, J; Jennings, B K [TRIUMF, Vancouver, British Columbia (Canada); Cooper, E D [Fraser Valley Univ. College, Chilliwack, British Columbia (Canada). Dept. of Physics
1993-05-01
We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of {Lambda}, {Sigma} and {identical_to} hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f{omega}y. Second, optical potentials for {Lambda} and {Sigma} scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of {Lambda} hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs.
Classical electromagnetic radiation of the Dirac electron
Lanyi, G.
1973-01-01
A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.
Dirac neutrino masses from generalized supersymmetry breaking
International Nuclear Information System (INIS)
Demir, D.A.; Everett, L.L.; Langacker, P.
2007-12-01
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1) ' ), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)
Floquet-Engineered Valleytronics in Dirac Systems.
Kundu, Arijit; Fertig, H A; Seradjeh, Babak
2016-01-08
Valley degrees of freedom offer a potential resource for quantum information processing if they can be effectively controlled. We discuss an optical approach to this problem in which intense light breaks electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and demonstrate its robustness against moderate disorder and small deviations in optical parameters.
Crucial test of the Dirac cosmologies
International Nuclear Information System (INIS)
Steigman, G.
1978-01-01
In a cosmology consistent with the Cosmological Principle (large scale, statistical isotropy and homogeneity of the universe), a Planck spectrum is not preserved as the universe evolves unless the number of photons in a comoving volume is conserved. It is shown that a large class of cosmological models based on Dirac's Large Numbers Hypothesis (LNH) violate this constraint. The observed isotropy and spectral distribution of the microwave background radiation thus provide a crucial test of such cosmologies. After reviewing the LNH, the general evolution of radiation spectra in cosmologies consistent with the cosmological principle is outlined. It is shown that the predicted deviations from a Planck spectrum for Dirac cosmologies (as well as for ''tired-light'' cosmologies) are enormous. The Planckian (or near-Planckian) spectral form for the microwave radiation provides a crucial test, failed by such cosmologies
Excitation spectrum of correlated Dirac fermions
Jalali, Z.; Jafari, S. A.
2015-04-01
Motivated by the puzzling optical conductivity measurements in graphene, we speculate on the possible role of strong electronic correlations on the two-dimensional Dirac fermions. In this work we employ the slave-particle method to study the excitations of the Hubbard model on honeycomb lattice, away from half-filling. Since the ratio U/t ≈ 3.3 in graphene is not infinite, double occupancy is not entirely prohibited and hence a finite density of doublonscan be generated. We therefore extend the Ioff-Larkin composition rule to include a finite density of doublons. We then investigate the role played by each of these auxiliary particles in the optical absorption of strongly correlated Dirac fermions.
Dirac gauginos in low scale supersymmetry breaking
International Nuclear Information System (INIS)
Goodsell, Mark D.; Tziveloglou, Pantelis
2014-01-01
It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry
Dirac operator, chirality and random matrix theory
International Nuclear Information System (INIS)
Pullirsch, R.
2001-05-01
Quantum Chromodynamics (QCD) is considered to be the correct theory which describes quarks and gluons and, thus, all strong interaction phenomena from the fundamental forces of nature. However, important properties of QCD such as the physical mechanism of color confinement and the spontaneous breaking of chiral symmetry are still not completely understood and under extensive discussion. Analytical calculations are limited, because in the low-energy regime where quarks are confined, application of perturbation theory is restricted due to the large gluon coupling. A powerful tool to investigate numerically and analytically the non-perturbative region is provided by the lattice formulation of QCD. From Monte Carlo simulations of lattice QCD we know that chiral symmetry is restored above a critical temperature. As the chiral condensate is connected to the spectral density of the Dirac operator via the Banks-Casher relation, the QCD Dirac spectrum is an interesting object for detailed studies. In search for an analytical expression of the infrared limit of the Dirac spectrum it has been realized that chiral random-matrix theory (chRMT) is a suitable tool to compare with the distribution and the correlations of the small Dirac eigenvalues. Further, it has been shown that the correlations of eigenvalues on the scale of mean level spacings are universal for complex physical systems and are given by random-matrix theory (Rm). This has been formulated as the Baghouse-Giannoni-Schmit conjecture which states that spectral correlations of a classically chaotic system are given by RMT on the quantum level. The aim of this work is to analyze the relationship between chiral phase transitions and chaos to order transitions in quantum field theories. We study the eigenvalues of the Dirac operator for Quantum Electrodynamics (QED) with compact gauge group U(1) on the lattice. This theory shows chiral symmetry breaking and confinement in the strong coupling region. Although being
Renormalization group evolution of Dirac neutrino masses
International Nuclear Information System (INIS)
Lindner, Manfred; Ratz, Michael; Schmidt, Michael Andreas
2005-01-01
There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large tan β comparable to the precision of future experiments
Dirac equation in Kerr space-time
Energy Technology Data Exchange (ETDEWEB)
Iyer, B R; Kumar, Arvind [Bombay Univ. (India). Dept. of Physics
1976-06-01
The weak-field low-velocity approximation of Dirac equation in Kerr space-time is investigated. The interaction terms admit of an interpretation in terms of a 'dipole-dipole' interaction in addition to coupling of spin with the angular momentum of the rotating source. The gravitational gyro-factor for spin is identified. The charged case (Kerr-Newman) is studied using minimal prescription for electromagnetic coupling in the locally intertial frame and to the leading order the standard electromagnetic gyro-factor is retrieved. A first order perturbation calculation of the shift of the Schwarzchild energy level yields the main interesting result of this work: the anomalous Zeeman splitting of the energy level of a Dirac particle in Kerr metric.
On an uninterpretated tensor in Dirac's theory
International Nuclear Information System (INIS)
Costa de Beauregard, O.
1989-01-01
Franz, in 1935, deduced systematically from the Dirac equation 10 tensorial equations, 5 with a mechanical interpretation, 5 with an electromagnetic interpretation, which are also consequences of Kemmer's formalism for spins 1 and 0; Durand, in 1944, operating similarly with the second order Dirac equation, obtained, 10 equations, 5 of which expressing the divergences of the Gordon type tensors. Of these equations, together with the tensors they imply, some are easily interpreted by reference to the classical theories, some other remain uniterpreted. Recently (1988) we proposed a theory of the coupling between Einstein's gravity field and the 5 Franz mechanical equations, yielding as a bonus the complete interpretation of the 5 Franz mechanical equations. This is an incitation to reexamine the 5 electromagnetic equations. We show here that two of these, together with one of the Durand equations, implying the same tensor, remain uninterpreted. This is proposed as a challenge to the reader's sagacity [fr
Transversal Dirac families in Riemannian foliations
International Nuclear Information System (INIS)
Glazebrook, J.F.; Kamber, F.W.
1991-01-01
We describe a family of differential operators parametrized by the transversal vector potentials of a Riemannian foliation relative to the Clifford algebra of the foliation. This family is non-elliptic but in certain ways behaves like a standard Dirac family in the absolute case as a result of its elliptic-like regularity properties. The analytic and topological indices of this family are defined as elements of K-theory in the parameter space. We indicate how the cohomology of the parameter space is described via suitable maps to Fredholm operators. We outline the proof of a theorem of Vafa-Witten type on uniform bounds for the eigenvalues of this family using a spectral flow argument. A determinant operator is also defined with the appropriate zeta function regularization dependent on the codimension of the foliation. With respect to a generalized coupled Dirac-Yang-Mills system, we indicate how chiral anomalies are located relative to the foliation. (orig.)
Permanent Magnet Dipole for DIRAC Design Report
Vorozhtsov, Alexey
2012-01-01
Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.
Dirac monopole without strings: monopole harmonics
International Nuclear Information System (INIS)
Wu, T.T.; Yang, C.N.
1983-01-01
Using the ideas developed in a previous paper which are borrowed from the mathematics of fiber bundles, it is shown that the wave function psi of a particle of charge Ze around a Dirac monopole of strength g should be regarded as a section. The section is without discontinuities. Thus the monopole does not possess strings of singularities in the field around it. The eigensections of the angular momentum operators are monopole harmonics which are explicitly exhibited. 7 references, 2 figures, 1 table
Dispersionless wave packets in Dirac materials
International Nuclear Information System (INIS)
Jakubský, Vít; Tušek, Matěj
2017-01-01
We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.
Dirac operators and Killing spinors with torsion
International Nuclear Information System (INIS)
Becker-Bender, Julia
2012-01-01
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Data acquisition software for DIRAC experiment
Olshevsky, V G
2001-01-01
The structure and basic processes of data acquisition software of the DIRAC experiment for the measurement of pi /sup +/ pi /sup -/ atom lifetime are described. The experiment is running on the PS accelerator of CERN. The developed software allows one to accept, record and distribute up to 3 Mbytes of data to consumers in one accelerator supercycle of 14.4 s duration. The described system is successfully in use in the experiment since its startup in 1998. (13 refs).
Data acquisition software for DIRAC experiment
Olshevsky, V.; Trusov, S.
2001-08-01
The structure and basic processes of data acquisition software of the DIRAC experiment for the measurement of π +π - atom lifetime are described. The experiment is running on the PS accelerator of CERN. The developed software allows one to accept, record and distribute up to 3 Mbytes of data to consumers in one accelerator supercycle of 14.4 s duration. The described system is successfully in use in the experiment since its startup in 1998.
Data acquisition software for DIRAC experiment
International Nuclear Information System (INIS)
Olshevsky, V.; Trusov, S.
2001-01-01
The structure and basic processes of data acquisition software of the DIRAC experiment for the measurement of π + π - atom lifetime are described. The experiment is running on the PS accelerator of CERN. The developed software allows one to accept, record and distribute up to 3 Mbytes of data to consumers in one accelerator supercycle of 14.4 s duration. The described system is successfully in use in the experiment since its startup in 1998
A comparative study of numerical methods for the overlap Dirac operator--a status report
International Nuclear Information System (INIS)
Eshof, J. van den; Frommer, A.; Lippert, Th.; Schilling, K.; Vorst, H. van der
2002-01-01
Improvements of various methods to compute the sign function of the hermitian Wilson-Dirac matrix within the overlap operator are presented. An optimal partial fraction expansion (PFE) based on a theorem of Zolotarev is given. Benchmarks show that this PFE together with removal of converged systems within a multi-shift CG appears to approximate the sign function times a vector most efficiently. A posteriori error bounds are given
SARAH 3.2: Dirac gauginos, UFO output, and more
Staub, Florian
2013-07-01
SARAH is a Mathematica package optimized for the fast, efficient and precise study of supersymmetric models beyond the MSSM: a new model can be defined in a short form and all vertices are derived. This allows SARAH to create model files for FeynArts/FormCalc, CalcHep/CompHep and WHIZARD/O'Mega. The newest version of SARAH now provides the possibility to create model files in the UFO format which is supported by MadGraph 5, MadAnalysis 5, GoSam, and soon by Herwig++. Furthermore, SARAH also calculates the mass matrices, RGEs and 1-loop corrections to the mass spectrum. This information is used to write source code for SPheno in order to create a precision spectrum generator for the given model. This spectrum-generator-generator functionality as well as the output of WHIZARD and CalcHep model files has seen further improvement in this version. Also models including Dirac gauginos are supported with the new version of SARAH, and additional checks for the consistency of the implementation of new models have been created. Program summaryProgram title:SARAH Catalogue identifier: AEIB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3 22 411 No. of bytes in distributed program, including test data, etc.: 3 629 206 Distribution format: tar.gz Programming language: Mathematica. Computer: All for which Mathematica is available. Operating system: All for which Mathematica is available. Classification: 11.1, 11.6. Catalogue identifier of previous version: AEIB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 808 Does the new version supersede the previous version?: Yes, the new version includes all known features of the previous version but also provides the new features mentioned below
Quantum transport through 3D Dirac materials
Energy Technology Data Exchange (ETDEWEB)
Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)
2015-08-15
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
Quantum transport through 3D Dirac materials
International Nuclear Information System (INIS)
Salehi, M.; Jafari, S.A.
2015-01-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect
Workload assessment for mental arithmetic tasks using the task-evoked pupillary response
Marquart, G.; de Winter, J.C.F.
2015-01-01
Pupillometry is a promising method for assessing mental workload and could
be helpful in the optimization of systems that involve human–computer
interaction. The present study focuses on replicating the studies by Ahern
(1978) and Klingner (2010), which found that for three levels of
Continuous measures of situation awareness and workload
International Nuclear Information System (INIS)
Droeivoldsmo, Asgeir; Skraaning, Gyrd jr.; Sverrbo, Mona; Dalen, Joergen; Grimstad, Tone; Andresen, Gisle
1998-03-01
This report presents methods for continuous measures for Situation Awareness and Workload. The objective has been to identify, develop and test the new measures, and compare them to instruments that require interruptions of scenarios. The new measures are: (1) the Visual Indicator of Situation Awareness (VISA); where Situation Awareness is scored from predefined areas of visual interest critical for solving scenarios. Visual monitoring of areas was recorded by eye-movement tracking. (2) Workload scores reflected by Extended Dwell Time (EDT) and the operator Activity Level. EDT was calculated from eye-movement data files, and the activity level was estimated from simulator logs. Using experimental data from the 1996 CASH NRC Alarm study and the 1997 Human Error Analysis Project/ Human-Centred Automation study, the new measurement techniques have been tested and evaluated on a preliminary basis. The results showed promising relationships between the new continuous measures of situation awareness and workload, and established instruments based upon scenario interruptions. (author)
Assessing physician job satisfaction and mental workload.
Boultinghouse, Oscar W; Hammack, Glenn G; Vo, Alexander H; Dittmar, Mary Lynne
2007-12-01
Physician job satisfaction and mental workload were evaluated in a pilot study of five physicians engaged in a telemedicine practice at The University of Texas Medical Branch at Galveston Electronic Health Network. Several previous studies have examined physician satisfaction with specific telemedicine applications; however, few have attempted to identify the underlying factors that contribute to physician satisfaction or lack thereof. One factor that has been found to affect well-being and functionality in the workplace-particularly with regard to human interaction with complex systems and tasks as seen in telemedicine-is mental workload. Workload is generally defined as the "cost" to a person for performing a complex task or tasks; however, prior to this study, it was unexplored as a variable that influences physician satisfaction. Two measures of job satisfaction were used: The Job Descriptive Index and the Job In General scales. Mental workload was evaluated by means of the National Aeronautics and Space Administration Task Load Index. The measures were administered by means of Web-based surveys and were given twice over a 6-month period. Nonparametric statistical analyses revealed that physician job satisfaction was generally high relative to that of the general population and other professionals. Mental workload scores associated with the practice of telemedicine in this environment are also high, and appeared stable over time. In addition, they are commensurate with scores found in individuals practicing tasks with elevated information-processing demands, such as quality control engineers and air traffic controllers. No relationship was found between the measures of job satisfaction and mental workload.
Spectrum of the Wilson Dirac operator at finite lattice spacings
DEFF Research Database (Denmark)
Akemann, G.; Damgaard, Poul Henrik; Splittorff, Kim
2011-01-01
We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral Perturbation Theory and chiral Random Matrix Theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator...... as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral Random Matrix Theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral Perturbation Theory. All results are obtained for fixed index...... of the Wilson Dirac operator. The low-energy constants of Wilson chiral Perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator....
Clean Energy Use for Cloud Computing Federation Workloads
Directory of Open Access Journals (Sweden)
Yahav Biran
2017-08-01
Full Text Available Cloud providers seek to maximize their market share. Traditionally, they deploy datacenters with sufficient capacity to accommodate their entire computing demand while maintaining geographical affinity to its customers. Achieving these goals by a single cloud provider is increasingly unrealistic from a cost of ownership perspective. Moreover, the carbon emissions from underutilized datacenters place an increasing demand on electricity and is a growing factor in the cost of cloud provider datacenters. Cloud-based systems may be classified into two categories: serving systems and analytical systems. We studied two primary workload types, on-demand video streaming as a serving system and MapReduce jobs as an analytical systems and suggested two unique energy mix usage for processing that workloads. The recognition that on-demand video streaming now constitutes the bulk portion of traffic to Internet consumers provides a path to mitigate rising energy demand. On-demand video is usually served through Content Delivery Networks (CDN, often scheduled in backend and edge datacenters. This publication describes a CDN deployment solution that utilizes green energy to supply on-demand streaming workload. A cross-cloud provider collaboration will allow cloud providers to both operate near their customers and reduce operational costs, primarily by lowering the datacenter deployments per provider ratio. Our approach optimizes cross-datacenters deployment. Specifically, we model an optimized CDN-edge instance allocation system that maximizes, under a set of realistic constraints, green energy utilization. The architecture of this cross-cloud coordinator service is based on Ubernetes, an open source container cluster manager that is a federation of Kubernetes clusters. It is shown how, under reasonable constraints, it can reduce the projected datacenter’s carbon emissions growth by 22% from the currently reported consumption. We also suggest operating
Wave Functions for Time-Dependent Dirac Equation under GUP
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
Shift scheduling model considering workload and worker’s preference for security department
Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT
2018-04-01
Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.
Full utilization of semi-Dirac cones in photonics
Yasa, Utku G.; Turduev, Mirbek; Giden, Ibrahim H.; Kurt, Hamza
2018-05-01
In this study, realization and applications of anisotropic zero-refractive-index materials are proposed by exposing the unit cells of photonic crystals that exhibit Dirac-like cone dispersion to rotational symmetry reduction. Accidental degeneracy of two Bloch modes in the Brillouin zone center of two-dimensional C2-symmetric photonic crystals gives rise to the semi-Dirac cone dispersion. The proposed C2-symmetric photonic crystals behave as epsilon-and-mu-near-zero materials (ɛeff≈ 0 , μeff≈ 0 ) along one propagation direction, but behave as epsilon-near-zero material (ɛeff≈ 0 , μeff≠ 0 ) for the perpendicular direction at semi-Dirac frequency. By extracting the effective medium parameters of the proposed C4- and C2-symmetric periodic media that exhibit Dirac-like and semi-Dirac cone dispersions, intrinsic differences between isotropic and anisotropic materials are investigated. Furthermore, advantages of utilizing semi-Dirac cone materials instead of Dirac-like cone materials in photonic applications are demonstrated in both frequency and time domains. By using anisotropic transmission behavior of the semi-Dirac materials, photonic application concepts such as beam deflectors, beam splitters, and light focusing are proposed. Furthermore, to the best of our knowledge, semi-Dirac cone dispersion is also experimentally demonstrated for the first time by including negative, zero, and positive refraction states of the given material.
Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators.
Miao, Lin; Wang, Z F; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y R; Zhu, Fengfeng; Fedorov, Alexei V; Sun, Z; Gao, C L; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng
2013-02-19
Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi(2)Te(3) substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi(2)Te(3) film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi(2)Se(3), where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi(2)Se(3) are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.
Fang, Michele; Linson, Eric; Suneja, Manish; Kuperman, Ethan F
2017-02-22
Excellence in Graduate Medical Education requires the right clinical environment with an appropriate workload where residents have enough patients to gain proficiency in medicine with optimal time for reflection. The Accreditation Council for Graduate Medical Education (ACGME) has focused more on work hours rather than workload; however, high resident workload has been associated with lower resident participation in education and fatigue-related errors. Recognizing the potential risks associated with high resident workload and being mindful of the costs of reducing resident workload, we sought to reduce residents' workload by adding an advanced practice provider (APP) to the surgical comanagement service (SCM) and study its effect on resident satisfaction and perceived educational value of the rotation. In Fiscal Year (FY) 2014 and 2015, an additional faculty member was added to the SCM rotation. In FY 2014, the faculty member was a staff physician, and in FY 2015, the faculty member was an APP.. Resident workload was assessed using billing data. We measured residents' perceptions of the rotation using an anonymous electronic survey tool. We compared FY2014-2015 data to the baseline FY2013. The number of patients seen per resident per day decreased from 8.0(SD 3.3) in FY2013 to 5.0(SD 1.9) in FY2014 (p value of the rotation (40.0%, 72.2%, 72.6% in FY2013, 2014, 2015 respectively, p perceived educational value and clinical experience of a medical consultation rotation.
Reducing feedback requirements of workload control
Henrich, Peter; Land, Martin; van der Zee, Durk; Gaalman, Gerard
2004-01-01
The workload control concept is known as a robust shop floor control concept. It is especially suited for the dynamic environment of small- and medium-sized enterprises (SMEs) within the make-to-order sector. Before orders are released to the shop floor, they are collected in an ‘order pool’. To
Workload Management Strategies for Online Educators
Crews, Tena B.; Wilkinson, Kelly; Hemby, K. Virginia; McCannon, Melinda; Wiedmaier, Cheryl
2008-01-01
With increased use of online education, both students and instructors are adapting to the online environment. Online educators must adjust to the change in responsibilities required to teach online, as it is quite intensive during the designing, teaching, and revising stages. The purpose of this study is to examine and update workload management…
CHROMagar Orientation Medium Reduces Urine Culture Workload
Manickam, Kanchana; Karlowsky, James A.; Adam, Heather; Lagacé-Wiens, Philippe R. S.; Rendina, Assunta; Pang, Paulette; Murray, Brenda-Lee
2013-01-01
Microbiology laboratories continually strive to streamline and improve their urine culture algorithms because of the high volumes of urine specimens they receive and the modest numbers of those specimens that are ultimately considered clinically significant. In the current study, we quantitatively measured the impact of the introduction of CHROMagar Orientation (CO) medium into routine use in two hospital laboratories and compared it to conventional culture on blood and MacConkey agars. Based on data extracted from our Laboratory Information System from 2006 to 2011, the use of CO medium resulted in a 28% reduction in workload for additional procedures such as Gram stains, subcultures, identification panels, agglutination tests, and biochemical tests. The average number of workload units (one workload unit equals 1 min of hands-on labor) per urine specimen was significantly reduced (P < 0.0001; 95% confidence interval [CI], 0.5326 to 1.047) from 2.67 in 2006 (preimplementation of CO medium) to 1.88 in 2011 (postimplementation of CO medium). We conclude that the use of CO medium streamlined the urine culture process and increased bench throughput by reducing both workload and turnaround time in our laboratories. PMID:23363839
Dynamic workload peak detection for slack management
Milutinovic, A.; Goossens, Kees; Smit, Gerardus Johannes Maria; Kuper, Jan; Kuper, J.
2009-01-01
In this paper an analytical study on dynamism and possibilities on slack exploitation by dynamic power management is presented. We introduce a specific workload decomposition method for work required for (streaming) application processing data tokens (e.g. video frames) with work behaviour patterns
van Beurden, Maurice H. P. H.; Ijsselsteijn, Wijnand A.; de Kort, Yvonne A. W.
2011-03-01
Stereoscopic displays are known to offer a number of key advantages in visualizing complex 3D structures or datasets. The large majority of studies that focus on evaluating stereoscopic displays for professional applications use completion time and/or the percentage of correct answers to measure potential performance advantages. However, completion time and accuracy may not fully reflect all the benefits of stereoscopic displays. In this paper, we argue that perceived workload is an additional valuable indicator reflecting the extent to which users can benefit from using stereoscopic displays. We performed an experiment in which participants were asked to perform a visual path-tracing task within a convoluted 3D wireframe structure, varying in level of complexity of the visualised structure and level of disparity of the visualisation. The results showed that an optimal performance (completion time, accuracy and workload), depend both on task difficulty and disparity level. Stereoscopic disparity revealed a faster and more accurate task performance, whereas we observed a trend that performance on difficult tasks stands to benefit more from higher levels of disparity than performance on easy tasks. Perceived workload (as measured using the NASA-TLX) showed a similar response pattern, providing evidence that perceived workload is sensitive to variations in disparity as well as task difficulty. This suggests that perceived workload could be a useful concept, in addition to standard performance indicators, in characterising and measuring human performance advantages when using stereoscopic displays.
Shakouri, Mahmoud; Ikuma, Laura H; Aghazadeh, Fereydoun; Punniaraj, Karthy; Ishak, Sherif
2014-10-01
This paper investigates the effect of changing work zone configurations and traffic density on performance variables and subjective workload. Data regarding travel time, average speed, maximum percent braking force and location of lane changes were collected by using a full size driving simulator. The NASA-TLX was used to measure self-reported workload ratings during the driving task. Conventional lane merge (CLM) and joint lane merge (JLM) were modeled in a driving simulator, and thirty participants (seven female and 23 male), navigated through the two configurations with two levels of traffic density. The mean maximum braking forces was 34% lower in the JLM configuration, and drivers going through the JLM configuration remained in the closed lane longer. However, no significant differences in speed were found between the two merge configurations. The analysis of self-reported workload ratings show that participants reported 15.3% lower total workload when driving through the JLM. In conclusion, the implemented changes in the JLM make it a more favorable merge configuration in both high and low traffic densities in terms of optimizing traffic flow by increasing the time and distance cars use both lanes, and in terms of improving safety due to lower braking forces and lower reported workload. Copyright © 2014 Elsevier Ltd. All rights reserved.
Scaling deep learning workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing
Energy Technology Data Exchange (ETDEWEB)
Gawande, Nitin A.; Landwehr, Joshua B.; Daily, Jeffrey A.; Tallent, Nathan R.; Vishnu, Abhinav; Kerbyson, Darren J.
2017-08-24
Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors --- including NVIDIA, Intel, AMD, and IBM --- have architectural road-maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating large DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. This paper provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path or Cray Aries. Our evaluation consists of a cross section of convolutional neural net workloads: CifarNet, AlexNet, GoogLeNet, and ResNet50 topologies using the Cifar10 and ImageNet datasets. The workloads are vendor-optimized for each architecture. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and the KNL can be competitive in performance/watt. We find that NVLink facilitates scaling efficiency on GPUs. However, its importance is heavily dependent on neural network architecture. Furthermore, for weak-scaling --- sometimes encouraged by restricted GPU memory --- NVLink is less important.
Scaling Deep Learning Workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing
Energy Technology Data Exchange (ETDEWEB)
Gawande, Nitin A.; Landwehr, Joshua B.; Daily, Jeffrey A.; Tallent, Nathan R.; Vishnu, Abhinav; Kerbyson, Darren J.
2017-07-03
Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors --- including NVIDIA, Intel, AMD and IBM --- have architectural road-maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. This paper provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path. Our evaluation consists of a cross section of convolutional neural net workloads: CifarNet, CaffeNet, AlexNet and GoogleNet topologies using the Cifar10 and ImageNet datasets. The workloads are vendor optimized for each architecture. GPUs provide the highest overall raw performance. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and KNL can be competitive when considering performance/watt. Furthermore, NVLink is critical to GPU scaling.
Perceived Time as a Measure of Mental Workload
DEFF Research Database (Denmark)
Hertzum, Morten; Holmegaard, Kristin Due
2013-01-01
The mental workload imposed by systems is important to their operation and usability. Consequently, researchers and practitioners need reliable, valid, and easy-to-administer methods for measuring mental workload. The ratio of perceived time to clock time appears to be such a method, yet mental...... is a performance-related rather than task-related dimension of mental workload. We find a higher perceived time ratio for timed than untimed tasks. According to subjective workload ratings and pupil-diameter measurements the timed tasks impose higher mental workload. This finding contradicts the prospective...... paradigm, which asserts that perceived time decreases with increasing mental workload. We also find a higher perceived time ratio for solved than unsolved tasks, while subjective workload ratings indicate lower mental workload for the solved tasks. This finding shows that the relationship between...
Local moment formation in Dirac electrons
International Nuclear Information System (INIS)
Mashkoori, M; Mahyaeh, I; Jafari, S A
2015-01-01
Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V 2 D/2πγ 3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε 0 , in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands. (paper)
Characterization and Architectural Implications of Big Data Workloads
Wang, Lei; Zhan, Jianfeng; Jia, Zhen; Han, Rui
2015-01-01
Big data areas are expanding in a fast way in terms of increasing workloads and runtime systems, and this situation imposes a serious challenge to workload characterization, which is the foundation of innovative system and architecture design. The previous major efforts on big data benchmarking either propose a comprehensive but a large amount of workloads, or only select a few workloads according to so-called popularity, which may lead to partial or even biased observations. In this paper, o...
The Dirac distorted wave Born approximation
International Nuclear Information System (INIS)
Cooper, T.; Sherif, H.S.; Johansson, J.; Sawafta, R.I.
1985-02-01
The purpose of this investigation is to illuminate the assumptions which are made when one writes down a Dirac DWBA matrix element. Due to the strong nature of the nucleon-nucleon potentials it is difficult to justify some of the steps involved in the general case; however by limiting ourselves to situations where only one (interacting) nucleon is present we can side-step this difficulty. We conclude the excellent agreement with the experiment justifies, a posteriori, the procedure, however we would like to remind the reader that, at least for proton inelastic scattering to collective states, the same quality of agreement can be obtained purely within a Schrodinger formalism
Dirac gauginos, gauge mediation and unification
International Nuclear Information System (INIS)
Benakli, K.
2010-03-01
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
Total angular momentum from Dirac eigenspinors
International Nuclear Information System (INIS)
Szabados, Laszlo B
2008-01-01
The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence-free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well-defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away by the gravitational radiation is also derived
Dirac gauginos, gauge mediation and unification
Energy Technology Data Exchange (ETDEWEB)
Benakli, K. [UPMC Univ. Paris 06 (France). Laboratoire de Physique Theorique et Hautes Energies, CNRS; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-03-15
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
Dirac Gauginos, Gauge Mediation and Unification
Benakli, K
2010-01-01
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings.
Incomplete Dirac reduction of constrained Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Chandre, C., E-mail: chandre@cpt.univ-mrs.fr
2015-10-15
First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.
Dispersionless wave packets in Dirac materials
Czech Academy of Sciences Publication Activity Database
Jakubský, Vít; Tušek, M.
2017-01-01
Roč. 378, MAR (2017), s. 171-182 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GJ15-07674Y; GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum systems * wave packets * dispersion * dirac materials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016
A new measurement of workload in Web application reliability assessment
Directory of Open Access Journals (Sweden)
CUI Xia
2015-02-01
Full Text Available Web application has been popular in various fields of social life.It becomes more and more important to study the reliability of Web application.In this paper the definition of Web application failure is firstly brought out,and then the definition of Web application reliability.By analyzing data in the IIS server logs and selecting corresponding usage and information delivery failure data,the paper study the feasibility of Web application reliability assessment from the perspective of Web software system based on IIS server logs.Because the usage for a Web site often has certain regularity,a new measurement of workload in Web application reliability assessment is raised.In this method,the unit is removed by weighted average technique;and the weights are assessed by setting objective function and optimization.Finally an experiment was raised for validation.The experiment result shows the assessment of Web application reliability base on the new workload is better.
System performance optimization
International Nuclear Information System (INIS)
Bednarz, R.J.
1978-01-01
The System Performance Optimization has become an important and difficult field for large scientific computer centres. Important because the centres must satisfy increasing user demands at the lowest possible cost. Difficult because the System Performance Optimization requires a deep understanding of hardware, software and workload. The optimization is a dynamic process depending on the changes in hardware configuration, current level of the operating system and user generated workload. With the increasing complication of the computer system and software, the field for the optimization manoeuvres broadens. The hardware of two manufacturers IBM and CDC is discussed. Four IBM and two CDC operating systems are described. The description concentrates on the organization of the operating systems, the job scheduling and I/O handling. The performance definitions, workload specification and tools for the system stimulation are given. The measurement tools for the System Performance Optimization are described. The results of the measurement and various methods used for the operating system tuning are discussed. (Auth.)
Managing Teacher Workload: Work-Life Balance and Wellbeing
Bubb, Sara; Earley, Peter
2004-01-01
This book is divided into three sections. In the First Section, entitled "Wellbeing and Workload", the authors examine teacher workload and how teachers spend their time. Chapter 1 focuses on what the causes and effects of excessive workload are, especially in relation to wellbeing, stress and, crucially, recruitment and retention?…
Workload Measurement in Human Autonomy Teaming: How and Why?
Shively, Jay
2016-01-01
This is an invited talk on autonomy and workload for an AFRL Blue Sky workshop sponsored by the Florida Institute for Human Machine Studies. The presentation reviews various metrics of workload and how to move forward with measuring workload in a human-autonomy teaming environment.
Workload based order acceptance in job shop environments
Ebben, Mark; Hans, Elias W.; Olde Weghuis, F.M.; Olde Weghuis, F.M.
2005-01-01
In practice, order acceptance and production planning are often functionally separated. As a result, order acceptance decisions are made without considering the actual workload in the production system, or by only regarding the aggregate workload. We investigate the importance of a good workload
Dirac's equation and the nature of quantum field theory
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2012-01-01
This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.
Special function solutions of the free particle Dirac equation
International Nuclear Information System (INIS)
Strange, P
2012-01-01
The Dirac equation is one of the fundamental equations in physics. Here we present and discuss two novel solutions of the free particle Dirac equation. These solutions have an exact analytical form in terms of Airy or Mathieu functions and exhibit unexpected properties including an enhanced Doppler effect, accelerating wavefronts and solutions with a degree of localization. (paper)
On oscillations of neutrinos with Dirac and Majorana masses
International Nuclear Information System (INIS)
Bilenky, S.M.; Hosek, J.; Petcov, S.T.; Bylgarska Akademiya na Naukite, Sofia)
1980-01-01
Pontecorvo neutrino beam oscillations are discussed assuming both Dirac and Majorana neutrino mass terms. It is proved that none of possible experiments on neutrino oscillations, including those on effects of CP violation, can distinguish between these two possibilities. Neutrino oscillations with concomitant Dirac and Majorana mass terms are also considered
Equivalence of Dirac quantization and Schwinger's action principle quantization
International Nuclear Information System (INIS)
Das, A.; Scherer, W.
1987-01-01
We show that the method of Dirac quantization is equivalent to Schwinger's action principle quantization. The relation between the Lagrange undetermined multipliers in Schwinger's method and Dirac's constraint bracket matrix is established and it is explicitly shown that the two methods yield identical (anti)commutators. This is demonstrated in the non-trivial example of supersymmetric quantum mechanics in superspace. (orig.)
Upper-Division Student Difficulties with the Dirac Delta Function
Wilcox, Bethany R.; Pollock, Steven J.
2015-01-01
The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…
Multi-component bi-Hamiltonian Dirac integrable equations
Energy Technology Data Exchange (ETDEWEB)
Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu
2009-01-15
A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.
Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation
Directory of Open Access Journals (Sweden)
A. A. Deriglazov
2011-01-01
Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.
The algebraic manipulation program DIRAC on IBM personal computers
International Nuclear Information System (INIS)
Grozin, A.G.; Perlt, H.
1989-01-01
The version DIRAC (2.2) for IBM compatible personal computers is described. It is designed to manipulate algebraically with polynomials and tensors. After a short introduction concerning implementation and usage on personal computers an example program is given. It contains a detailed user's guide to DIRAC (2.2) and, additionally some useful applications. 4 refs
A matricial approach for the Dirac-Kahler formalism
International Nuclear Information System (INIS)
Goto, M.
1987-01-01
A matricial approach for the Dirac-Kahler formalism is considered. It is shown that the matrical approach i) brings a great computational simplification compared to the common use of differential forms and that ii) by an appropriate choice of notation, it can be extended to the lattice, including a matrix Dirac-Kahler equation. (author) [pt
Dirac in 20th century physics: a centenary assessment
International Nuclear Information System (INIS)
Sanyuk, Valerii I; Sukhanov, Alexander D
2003-01-01
Current views on Dirac's creative heritage and on his role in the formation and development of quantum physics and in shaping the physical picture of the world are discussed. Dirac's fundamental ideas in later life (1948 - 1984) and their current development are given considerable attention. (from the history of physics)
Remarks about singular solutions to the Dirac equation
International Nuclear Information System (INIS)
Uhlir, M.
1975-01-01
In the paper singular solutions of the Dirac equation are investigated. They are derived in the Lorentz-covariant way of functions proportional to static multipole fields of scalar and (or) electromagnetic fields and of regular solutions of the Dirac equations. The regularization procedure excluding divergences of total energy, momentum and angular momentum of the spinor field considered is proposed
Graphene Dirac point tuned by ferroelectric polarization field
Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao
2018-04-01
Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
Energy Technology Data Exchange (ETDEWEB)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.
Bosonic Analogue of Dirac Composite Fermi Liquid
Mross, David; Alicea, Jason; Motrunich, Olexei
The status of particle-hole symmetry has long posed a challenge to the theory of the quantum Hall effect. It is expected to be present in the half-filled Landau level, but is absent in the conventional field theory, i.e., the composite Fermi liquid. Recently, Son proposed an alternative, explicitly particle-hole symmetric theory which features composite fermions that exhibit a Dirac dispersion. In my talk, I will introduce an analogous particle-hole-symmetric metallic state of bosons at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2 Ï Berry flux, protected by particle-hole and discrete rotation symmetries. As in the Dirac composite Fermi liquid introduced by Son, breaking particle-hole symmetry recovers the familiar Chern-Simons theory. I will discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as its signatures in experiments and simulations.
Veselago focusing of anisotropic massless Dirac fermions
Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.
2018-05-01
Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.
White dwarfs, the galaxy and Dirac's cosmology
International Nuclear Information System (INIS)
Stothers, R.
1976-01-01
Reference is made to the apparent absence, or deficiency, of white dwarfs fainter than about 10 -4 L solar mass. An explanation is here proposed on the basis of Dirac's cosmological hypothesis that the gravitational constant, G, has varied with the time elapsed since the beginning of the expansion of the Universe as t -1 and the number of particles in the Universe has increases as t 2 , if the measurements are made in atomic units. For a white dwarf the Chandrasekhar mass limit is a collection of fundamental constants proportional to Gsup(-3/2) and therefore increases with time as tsup(3/2). In the 'additive' version of Dirac's theory the actual mass, M, of a relatively small object like a star remains essentially unchanged by the creation of new matter in the Universe and hence a white dwarf will become more stable with the course of time; but in the 'multiplicative' version of the theory, M increases as t 2 and may eventually exceed the Chandrasekhar limit, and if this happens, gravitational collapse of the white dwarf into an invisible black hole or neutron star will quickly occur. It is considered interesting to find whether the 'multiplicative' theory may have a bearing on the apparent deficiency of faint white dwarfs, and to consider whether there are any possible consequences for galactic evolution. This is here discussed. (U.K.)
White dwarfs, the galaxy and Dirac's cosmology
Energy Technology Data Exchange (ETDEWEB)
Stothers, R [National Aeronautics and Space Administration, Greenbelt, Md. (USA). Goddard Space Flight Center
1976-08-05
Reference is made to the apparent absence, or deficiency, of white dwarfs fainter than about 10/sup -4/L solar mass. An explanation is here proposed on the basis of Dirac's cosmological hypothesis that the gravitational constant, G, has varied with the time elapsed since the beginning of the expansion of the Universe as t/sup -1/ and the number of particles in the Universe has increases as t/sup 2/, if the measurements are made in atomic units. For a white dwarf the Chandrasekhar mass limit is a collection of fundamental constants proportional to Gsup(-3/2) and therefore increases with time as tsup(3/2). In the 'additive' version of Dirac's theory the actual mass, M, of a relatively small object like a star remains essentially unchanged by the creation of new matter in the Universe and hence a white dwarf will become more stable with the course of time; but in the 'multiplicative' version of the theory, M increases as t/sup 2/ and may eventually exceed the Chandrasekhar limit, and if this happens, gravitational collapse of the white dwarf into an invisible black hole or neutron star will quickly occur. It is considered interesting to find whether the 'multiplicative' theory may have a bearing on the apparent deficiency of faint white dwarfs, and to consider whether there are any possible consequences for galactic evolution. This is here discussed.
Combining Quick-Turnaround and Batch Workloads at Scale
Matthews, Gregory A.
2012-01-01
NAS uses PBS Professional to schedule and manage the workload on Pleiades, an 11,000+ node 1B cluster. At this scale the user experience for quick-turnaround jobs can degrade, which led NAS initially to set up two separate PBS servers, each dedicated to a particular workload. Recently we have employed PBS hooks and scheduler modifications to merge these workloads together under one PBS server, delivering sub-1-minute start times for the quick-turnaround workload, and enabling dynamic management of the resources set aside for that workload.
Shift manager workload assessment - A case study
International Nuclear Information System (INIS)
Berntson, K.; Kozak, A.; Malcolm, J. S.
2006-01-01
In early 2003, Bruce Power restarted two of its previously laid up units in the Bruce A generating station, Units 3 and 4. However, due to challenges relating to the availability of personnel with active Shift Manager licenses, an alternate shift structure was proposed to ensure the safe operation of the station. This alternate structure resulted in a redistribution of responsibility, and a need to assess the resulting changes in workload. Atomic Energy of Canada Limited was contracted to perform a workload assessment based on the new shift structure, and to provide recommendations, if necessary, to ensure Shift Managers had sufficient resources available to perform their required duties. This paper discusses the performance of that assessment, and lessons learned as a result of the work performed during the Restart project. (authors)
Workload management in the EMI project
International Nuclear Information System (INIS)
Andreetto, Paolo; Bertocco, Sara; Dorigo, Alvise; Frizziero, Eric; Gianelle, Alessio; Sgaravatto, Massimo; Zangrando, Luigi; Capannini, Fabio; Cecchi, Marco; Mezzadri, Massimo; Prelz, Francesco; Rebatto, David; Monforte, Salvatore; Kretsis, Aristotelis
2012-01-01
The EU-funded project EMI, now at its second year, aims at providing a unified, high quality middleware distribution for e-Science communities. Several aspects about workload management over diverse distributed computing environments are being challenged by the EMI roadmap: enabling seamless access to both HTC and HPC computing services, implementing a commonly agreed framework for the execution of parallel computations and supporting interoperability models between Grids and Clouds. Besides, a rigourous requirements collection process, involving the WLCG and various NGIs across Europe, assures that the EMI stack is always committed to serving actual needs. With this background, the gLite Workload Management System (WMS), the meta-scheduler service delivered by EMI, is augmenting its functionality and scheduling models according to the aforementioned project roadmap and the numerous requirements collected over the first project year. This paper is about present and future work of the EMI WMS, reporting on design changes, implementation choices and longterm vision.
Exploring Individual Differences in Workload Assessment
2014-12-26
recall their workload accurately. However, it has been shown that the bias shown in subjective ratings can actually provide insight into significant...or subconsciously and embark on load shedding, postponing a task to permit another decision action to be completed in a required timeframe (Smith...or slow heart rate or unique physiological measure will not add unnecessary bias to the data. Individual baseline measures are typically taken at the
Workload, flow, and telepresence during teleoperation
Energy Technology Data Exchange (ETDEWEB)
Draper, J.V. [Oak Ridge National Lab., TN (United States); Blair, L.M. [Human Machine Interfaces, Inc., Knoxville, TN (United States)
1996-04-01
There is much speculation about the relations among workload, flow, telepresence, and performance during teleoperation, but few data that provide evidence concerning them. This paper presents results an investigation conducted during completion of a pipe cutting task using a teleoperator at ORNL. Results show support for the hypothesis that telepresence is related to expenditure of attentional resources, and some support for the hypothesis that telepresence is related to flow. The discussion examines the results from an attentional resources perspective on teleoperation.
Identifying Dwarfs Workloads in Big Data Analytics
Gao, Wanling; Luo, Chunjie; Zhan, Jianfeng; Ye, Hainan; He, Xiwen; Wang, Lei; Zhu, Yuqing; Tian, Xinhui
2015-01-01
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we construct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represen...
Measurement of Workload: Physics, Psychophysics, and Metaphysics
Gopher, D.
1984-01-01
The present paper reviews the results of two experiments in which workload analysis was conducted based upon performance measures, brain evoked potentials and magnitude estimations of subjective load. The three types of measures were jointly applied to the description of the behavior of subjects in a wide battery of experimental tasks. Data analysis shows both instances of association and dissociation between types of measures. A general conceptual framework and methodological guidelines are proposed to account for these findings.
Forecasting Workload for Defense Logistics Agency Distribution
2014-12-01
Distribution workload ...........................18 Monthly DD Sales for the four primary supply chains ( Avn , Land, Maritime, Ind HW) plotted to...average AVN Aviation BSM Business Systems Modernization CIT consumable items transfer C&E Construction and Equipment C&T Clothing...992081.437 See Figure 2 below for the graphical output of the linear regression. Monthly DD Sales for the four primary supply chains ( Avn , Land
Workload, flow, and telepresence during teleoperation
International Nuclear Information System (INIS)
Draper, J.V.; Blair, L.M.
1996-01-01
There is much speculation about the relations among workload, flow, telepresence, and performance during teleoperation, but few data that provide evidence concerning them. This paper presents results an investigation conducted during completion of a pipe cutting task using a teleoperator at ORNL. Results show support for the hypothesis that telepresence is related to expenditure of attentional resources, and some support for the hypothesis that telepresence is related to flow. The discussion examines the results from an attentional resources perspective on teleoperation
Survey of Methods to Assess Workload
1979-08-01
thesis study which had to do with the effect of binaural beats upon performan:.e (2) found out there was a subjectively experienced quality of beats ...were forced to conclude that the neuralmechanism by which binaural beats influenced performance is not open to correct subjective evaluation. In terms of...methods for developing indicies of pilot workload, FAA Report (FAA-AN-77- 15), July 1977. 2. ,’ R. E. The effect of binaural beats on performance, J
Relationship between workload and mind-wandering in simulated driving.
Directory of Open Access Journals (Sweden)
Yuyu Zhang
Full Text Available Mental workload and mind-wandering are highly related to driving safety. This study investigated the relationship between mental workload and mind-wandering while driving. Participants (N = 40 were asked to perform a car following task in driving simulator, and report whether they had experienced mind-wandering upon hearing a tone. After driving, participants reported their workload using the NASA-Task Load Index (TLX. Results revealed an interaction between workload and mind-wandering in two different perspectives. First, there was a negative correlation between workload and mind-wandering (r = -0.459, p < 0.01 for different individuals. Second, from temporal perspective workload and mind-wandering frequency increased significantly over task time and were positively correlated. Together, these findings contribute to understanding the roles of workload and mind-wandering in driving.
Pilot Workload and Speech Analysis: A Preliminary Investigation
Bittner, Rachel M.; Begault, Durand R.; Christopher, Bonny R.
2013-01-01
Prior research has questioned the effectiveness of speech analysis to measure the stress, workload, truthfulness, or emotional state of a talker. The question remains regarding the utility of speech analysis for restricted vocabularies such as those used in aviation communications. A part-task experiment was conducted in which participants performed Air Traffic Control read-backs in different workload environments. Participant's subjective workload and the speech qualities of fundamental frequency (F0) and articulation rate were evaluated. A significant increase in subjective workload rating was found for high workload segments. F0 was found to be significantly higher during high workload while articulation rates were found to be significantly slower. No correlation was found to exist between subjective workload and F0 or articulation rate.
Performance of different radiotherapy workload models
International Nuclear Information System (INIS)
Barbera, Lisa; Jackson, Lynda D.; Schulze, Karleen; Groome, Patti A.; Foroudi, Farshad; Delaney, Geoff P.; Mackillop, William J.
2003-01-01
Purpose: The purpose of this study was to evaluate the performance of different radiotherapy workload models using a prospectively collected dataset of patient and treatment information from a single center. Methods and Materials: Information about all individual radiotherapy treatments was collected for 2 weeks from the three linear accelerators (linacs) in our department. This information included diagnosis code, treatment site, treatment unit, treatment time, fields per fraction, technique, beam type, blocks, wedges, junctions, port films, and Eastern Cooperative Oncology Group (ECOG) performance status. We evaluated the accuracy and precision of the original and revised basic treatment equivalent (BTE) model, the simple and complex Addenbrooke models, the equivalent simple treatment visit (ESTV) model, fields per hour, and two local standards of workload measurement. Results: Data were collected for 2 weeks in June 2001. During this time, 151 patients were treated with 857 fractions. The revised BTE model performed better than the other models with a mean vertical bar observed - predicted vertical bar of 2.62 (2.44-2.80). It estimated 88.0% of treatment times within 5 min, which is similar to the previously reported accuracy of the model. Conclusion: The revised BTE model had similar accuracy and precision for data collected in our center as it did for the original dataset and performed the best of the models assessed. This model would have uses for patient scheduling, and describing workloads and case complexity
Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion
Energy Technology Data Exchange (ETDEWEB)
Becker-Bender, Julia
2012-12-17
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Axial anomaly and index theorem for Dirac-Kaehler fermions
International Nuclear Information System (INIS)
Fonseca Junior, C.A.L. da.
1985-02-01
Some aspects of topological influence on gauge field theory are analysed, considering the geometry and differential topology methods. A review of concepts of differential forms, fibered spaces, connection and curvature, showing an interpretation of gauge theory in this context, is presented. The question of fermions, analysing in details the Dirac-Kaehler which fermionic particle is considered a general differential form, is studied. It is shown how the explicit expressions in function of the Dirac spinor components vary with the Dirac matrix representation. The Dirac-Kahler equation contains 4 times (in 4 dimensions) the Dirac equation, each particle being associated an ideal at left of the algebra of general differential forms. These ideals and the SU(4) symmetry among them are also studied on the point of view of spinors and, the group of reduction to one of the ideals is identified as the Cartan subalgebra of this SU(4). Finally, the axial anomaly is calculated through the functional determinant given by the Dirac-Kaehler operator. The regularization method is the Seeley's coefficients. From that results a comparison of the index theorems for the twisted complexes of signature and spin, which proportionality is given by the number of the algebra ideals contained in the Dirac-Kaehler equation and which also manifests in the respective axial anomaly equations. (L.C.) [pt
Particles and Dirac-type operators on curved spaces
International Nuclear Information System (INIS)
Visinescu, Mihai
2003-01-01
We review the geodesic motion of pseudo-classical particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. From the covariantly constant Killing-Yano tensors of this space we construct three new Dirac-type operators which are equivalent with the standard Dirac operator. Finally the Runge-Lenz operator for the Dirac equation in this background is expressed in terms of the fourth Killing-Yano tensor which is not covariantly constant. As a rule the covariantly constant Killing-Yano tensors realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. On the other hand, the not covariantly constant Killing-Yano tensors are important in generating hidden symmetries. The presence of not covariantly constant Killing-Yano tensors implies the existence of non-standard supersymmetries in point particle theories on curved background. (author)
A framework for database optimization and workload control
Directory of Open Access Journals (Sweden)
ANDRADE, T. C.
2010-06-01
Full Text Available In the planning phase of the project, the project manager is responsible for the activities of a greater responsibility is to make estimates and collect measurements of software as a way to control the development process, in addition of assist in making organizational decisions. In the context of Micro and Small Enterprises (MSEs, various restrictions typical of companies of this size make the process of estimating and measuring yet more complex. Thus, this paper proposes a simplified measurement process based on best practices of measurement and previously documented as patterns process using the PSM to assist MPEs in all steps relating to this important process.
Provenance-aware optimization of workload for distributed data production
Makatun, Dzmitry; Lauret, Jérôme; Rudová, Hana; Šumbera, Michal
2017-10-01
Distributed data processing in High Energy and Nuclear Physics (HENP) is a prominent example of big data analysis. Having petabytes of data being processed at tens of computational sites with thousands of CPUs, standard job scheduling approaches either do not address well the problem complexity or are dedicated to one specific aspect of the problem only (CPU, network or storage). Previously we have developed a new job scheduling approach dedicated to distributed data production - an essential part of data processing in HENP (preprocessing in big data terminology). In this contribution, we discuss the load balancing with multiple data sources and data replication, present recent improvements made to our planner and provide results of simulations which demonstrate the advantage against standard scheduling policies for the new use case. Multi-source or provenance is common in computing models of many applications whereas the data may be copied to several destinations. The initial input data set would hence be already partially replicated to multiple locations and the task of the scheduler is to maximize overall computational throughput considering possible data movements and CPU allocation. The studies have shown that our approach can provide a significant gain in overall computational performance in a wide scope of simulations considering realistic size of computational Grid and various input data distribution.
Topological insulators Dirac equation in condensed matter
Shen, Shun-Qing
2017-01-01
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...
New experimental proposals for testing Dirac equation
International Nuclear Information System (INIS)
Camacho, Abel; Macias, Alfredo
2004-01-01
The advent of phenomenological quantum gravity has ushered us in the search for experimental tests of the deviations from general relativity predicted by quantum gravity or by string theories, and as a by-product of this quest the possible modifications that some field equations, for instance, the motion equation of spin-1/2-particles, have already been considered. In the present Letter a modified Dirac equation, whose extra term embraces a second-order time derivative, is taken as mainstay, and three different experimental proposals to detect it are put forward. The novelty in these ideas is that two of them do not fall within the extant approaches in this context, to wit, red-shift, atomic interferometry, or Hughes-Drever type-like experiments
Topological Insulators Dirac Equation in Condensed Matters
Shen, Shun-Qing
2012-01-01
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...
Dark matter asymmetry in supersymmetric Dirac leptogenesis
International Nuclear Information System (INIS)
Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub
2013-01-01
We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis
Majorana mass term, Dirac neutrinos and selective neutrino oscillations
International Nuclear Information System (INIS)
Leung, C.N.
1987-01-01
In a theory of neutrino mixing via a Majorana mass term involving only the left-handed neutrinos there exist selection rules for neutrino oscillations if true Dirac and/or exactly zero mass eigenstates are present. In the case of three neutrino flavours no oscillation is allowed if the mass spectrum contains one Dirac and one nondegenerate Majorana massive neutrino. The origin of these selection rules and their implications are discussed and the number of possible CP-violating phases in the lepton mixing matrix when Dirac and Majorana mass eigenstates coexist is given. (orig.)
Strangest man the hidden life of Paul Dirac, quantum genius
Farmelo, Graham
2009-01-01
Paul Dirac was among the great scientific geniuses of the modern age. One of the discoverers of quantum mechanics, the most revolutionary theory of the past century, his contributions had a unique insight, eloquence, clarity, and mathematical power. His prediction of antimatter was one of the greatest triumphs in the history of physics. One of Einstein's most admired colleagues, Dirac was in 1933 the youngest theoretician ever to win the Nobel Prize in physics. Dirac's personality is legendary. He was an extraordinarily reserved loner, relentlessly literal-minded and appeared to have no empath
Energy Technology Data Exchange (ETDEWEB)
Costella, J P
1995-05-22
In this short note, it is argued that [p, q] {ne} i{Dirac_h}, contrary to the oiginal claims of Born and Jordan, and Dirac. Rather, [p, q] is equal to something that is infinitesimally different from i{Dirac_h}. While this difference is usually harmless, it does provide the solution of the Born-Jordan `trace paradox` of [p, q]. More recently, subtleties of a very similar form have been found to be of fundamental importance in quantum field theory. 3 refs.
A strong-topological-metal material with multiple Dirac cones
Ji, Huiwen; Pletikosić, I; Gibson, Q. D.; Sahasrabudhe, Girija; Valla, T.; Cava, R. J.
2015-01-01
We report a new, cleavable, strong-topological-metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone...
Dirac particle in a box, and relativistic quantum Zeno dynamics
International Nuclear Information System (INIS)
Menon, Govind; Belyi, Sergey
2004-01-01
After developing a complete set of eigenfunctions for a Dirac particle restricted to a box, the quantum Zeno dynamics of a relativistic system is considered. The evolution of a continuously observed quantum mechanical system is governed by the theorem put forth by Misra and Sudarshan. One of the conditions for quantum Zeno dynamics to be manifest is that the Hamiltonian is semi-bounded. This Letter analyzes the effects of continuous observation of a particle whose time evolution is generated by the Dirac Hamiltonian. The theorem by Misra and Sudarshan is not applicable here since the Dirac operator is not semi-bounded
Understanding I/O workload characteristics of a Peta-scale storage system
Energy Technology Data Exchange (ETDEWEB)
Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL
2015-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.
Radionuclide exercise ventriculography and levels of workload
International Nuclear Information System (INIS)
Wynchank, S.
1982-01-01
The wealth of useful information made available from the utilization of radionuclide cardiological investigations by non-invasive means is outlined and reasons for investigating results obtained under conditions of increased heart workload are explained. The lack of an accepted protocol for the determination of exercise levels is noted. A format for obtaining increasing heart loads dependent on increasing pulse rate is offered, with justification. Exercise radionuclide ventriculography examinations can be conducted which are simple, reproducible and allow appropriate levels of stress in patients who can benefit from such investigations
Fatigue and workload among Danish fishermen
DEFF Research Database (Denmark)
Remmen, Line Nørgaard; Herttua, Kimmo; Riss-Jepsen, Jørgen
2017-01-01
. Highest levels of fatigue were observed among fishermen at Danish seiners (mean 10.21), and fatigue scores decreased with more days at sea. However, none of these results were significant. Adjusted analyses showed that physical workload was significantly related to general fatigue (b = 0.20, 95% CI: 0...... was additionally significantly associated to the levels of physical and mental fatigue. Fishermen had a lower average score for all fatigue dimensions compared to those seen in general Danish working population. Prospective studies are required to assess whether the identified associations are causal....
Workload Characterization of CFD Applications Using Partial Differential Equation Solvers
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.
Pseudoclassical supergauge model for a (2 + 1) Dirac particle
International Nuclear Information System (INIS)
Gitman, D.M.; Gonsalves, A.E.; Tyhtin, I.V.
1997-01-01
A new pseudo-classical supergauge model of the Dirac particle in 2 + 1 dimensions is proposed. Two ways of its quantization are discussed. Both reproduce the minimal quantum theory of the particle. 24 refs
Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments
Iwasaki, Yoshiki; Morinari, Takao
2018-03-01
We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.
Using OSG Computing Resources with (iLC)Dirac
AUTHOR|(SzGeCERN)683529; Petric, Marko
2017-01-01
CPU cycles for small experiments and projects can be scarce, thus making use of all available resources, whether dedicated or opportunistic, is mandatory. While enabling uniform access to the LCG computing elements (ARC, CREAM), the DIRAC grid interware was not able to use OSG computing elements (GlobusCE, HTCondor-CE) without dedicated support at the grid site through so called 'SiteDirectors', which directly submit to the local batch system. This in turn requires additional dedicated effort for small experiments on the grid site. Adding interfaces to the OSG CEs through the respective grid middleware is therefore allowing accessing them within the DIRAC software without additional sitespecific infrastructure. This enables greater use of opportunistic resources for experiments and projects without dedicated clusters or an established computing infrastructure with the DIRAC software. To allow sending jobs to HTCondor-CE and legacy Globus computing elements inside DIRAC the required wrapper classes were develo...
Invariance properties of the Dirac equation with external electro ...
Indian Academy of Sciences (India)
. Introduction. The objective of this short paper is to investigate the invariance properties of the Dirac equation with external electro-magnetic field. There exists a large number of literatures on the problem beginning almost from the formulation ...
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Dirac directional emission in anisotropic zero refractive index photonic crystals.
He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen
2015-08-14
A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.
Dark matter scenarios in a constrained model with Dirac gauginos
Goodsell, Mark D.; Müller, Tobias; Porod, Werner; Staub, Florian
2015-01-01
We perform the first analysis of Dark Matter scenarios in a constrained model with Dirac Gauginos. The model under investigation is the Constrained Minimal Dirac Gaugino Supersymmetric Standard model (CMDGSSM) where the Majorana mass terms of gauginos vanish. However, $R$-symmetry is broken in the Higgs sector by an explicit and/or effective $B_\\mu$-term. This causes a mass splitting between Dirac states in the fermion sector and the neutralinos, which provide the dark matter candidate, become pseudo-Dirac states. We discuss two scenarios: the universal case with all scalar masses unified at the GUT scale, and the case with non-universal Higgs soft-terms. We identify different regions in the parameter space which fullfil all constraints from the dark matter abundance, the limits from SUSY and direct dark matter searches and the Higgs mass. Most of these points can be tested with the next generation of direct dark matter detection experiments.
Elastic gauge fields and Hall viscosity of Dirac magnons
Ferreiros, Yago; Vozmediano, María A. H.
2018-02-01
We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.
Science in culture the life of Paul Dirac
Abbott, A
2000-01-01
The life of Paul Dirac has been used as the theme of a show held underground at the Delphi experiment at CERN. The 'Oracle of Delphi' was created as an outreach project and has been extremely successful (1 p).
Large optical conductivity of Dirac semimetal Fermi arc surface states
Shi, Li-kun; Song, Justin C. W.
2017-08-01
Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.
Severity and workload related to adverse events in the ICU.
Serafim, Clarita Terra Rodrigues; Dell'Acqua, Magda Cristina Queiroz; Castro, Meire Cristina Novelli E; Spiri, Wilza Carla; Nunes, Hélio Rubens de Carvalho
2017-01-01
To analyze whether an increase in patient severity and nursing workload are correlated to a greater incidence of adverse events (AEs) in critical patients. A prospective single cohort study was performed on a sample of 138 patients hospitalized in an intensive care unit (ICU). A total of 166 AEs, occurred, affecting 50.7% of the patients. Increased patient severity presented a direct relationship to the probability of AEs occurring. However, nursing workload did not present a statistically significant relationship with the occurrence of AEs. The results cast light on the importance of using evaluation tools by the nursing personnel in order to optimize their daily activities and focus on patient safety. Analisar se o aumento da gravidade do paciente e a carga de trabalho de enfermagem está relacionado à maior incidência de Eventos Adversos (EAs) em pacientes críticos. Estudo de coorte única, prospectivo, com amostra de 138 pacientes internados em uma Unidade de Terapia Intensiva (UTI). Ao todo, foram evidenciados 166 EAs, que acometeram 50,7% dos pacientes. O aumento da gravidade do paciente apresentou relação direta com a chance de ocorrência de EAs. Entretanto, a carga de trabalho de enfermagem não apresentou relação estatisticamente significativa, na ocorrência de EAs. Os resultados permitem refletir acerca da importância da equipe de enfermagem, em utilizar instrumentos de avaliação, com o objetivo de melhorar e planejar suas ações diárias, com foco na segurança do paciente.
Academic workload management towards learning, components of academic work
Ocvirk, Aleksandra; Trunk Širca, Nada
2013-01-01
This paper deals with attributing time value to academic workload from the point of view of an HEI, management of teaching and an individual. We have conducted a qualitative study aimed at analysing documents on academic workload in terms of its definition, and at analysing the attribution of time value to components of academic work in relation to the proportion of workload devoted to teaching in the sense of ensuring quality and effectiveness of learning, and in relation to financial implic...
From a world-sheet supersymmetry to the Dirac equation
International Nuclear Information System (INIS)
Mankoc Borstnik, N.
1991-10-01
Starting from a classical action for a point particle with a local world-sheet supersymmetry, the Dirac equation follows with operators α-vector, β-vector γ-vector being defined in the Grassmann space as differential operators and having all the properties of the corresponding Dirac matrices except that α-vector and β-vector are anti-Hermitian rather than Hermitian. Such a particle interacts with an external field as expected. (author). 7 refs
The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Schulze-Halberg, Axel
2014-01-01
We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)
Topological Crystalline Insulators and Dirac Octets in Anti-perovskites
Hsieh, Timothy H.; Liu, Junwei; Fu, Liang
2014-01-01
We predict a new class of topological crystalline insulators (TCI) in the anti-perovskite material family with the chemical formula A$_3$BX. Here the nontrivial topology arises from band inversion between two $J=3/2$ quartets, which is described by a generalized Dirac equation for a "Dirac octet". Our work suggests that anti-perovskites are a promising new venue for exploring the cooperative interplay between band topology, crystal symmetry and electron correlation.
Relativistic Photoionization Computations with the Time Dependent Dirac Equation
2016-10-12
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6795--16-9698 Relativistic Photoionization Computations with the Time Dependent Dirac... Photoionization Computations with the Time Dependent Dirac Equation Daniel F. Gordon and Bahman Hafizi Naval Research Laboratory 4555 Overlook Avenue, SW...Unclassified Unlimited Unclassified Unlimited 22 Daniel Gordon (202) 767-5036 Tunneling Photoionization Ionization of inner shell electrons by laser
Dirac and Weyl fermion dynamics on two-dimensional surface
International Nuclear Information System (INIS)
Kavalov, A.R.; Sedrakyan, A.G.; Kostov, I.K.
1986-01-01
Fermions on 2-dimensional surface, embedded into a 3-dimensional space are investigated. The determinant of induced Dirac operator for the Dirac and Weyl fermions is calculated. The reparametrization-invariant effective action is determined by conformal anomaly (giving Liouville action) and also by Lorentz anomaly leading to Wess-Zumino term, the structure of which at d=3 is determined by the Hopf topological invariant of the S 3 → S 2 map
Einstein-Cartan-Dirac theory in (1+2)-dimensions
Energy Technology Data Exchange (ETDEWEB)
Dereli, Tekin [Koc University, Department of Physics, Istanbul (Turkey); Oezdemir, Nese [Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Sert, Oezcan [Pamukkale University, Department of Physics, Denizli (Turkey)
2013-01-15
Einstein-Cartan theory is formulated in (1+2) dimensions using the algebra of exterior differential forms. A Dirac spinor is coupled to gravity and the field equations are obtained by a variational principle. The space-time torsion is found to be given algebraically in terms of a quadratic spinor condensate field. Circularly symmetric, exact solutions that collapse to AdS{sub 3} geometry in the absence of the Dirac condensate are found. (orig.)
Lie algebras for the Dirac-Clifford ring
International Nuclear Information System (INIS)
Mignaco, J.A.; Linhares, C.A.
1992-01-01
It is shown in a general way that the Dirac-Clifford ring formed by the Dirac matrices and all their products, for all even and odd spacetime dimensions D, span the cumulation algebras SU(2 D/2 ) for even D and SU(2 (D- 1 )/2 ) + SU(2 (D-1)/2 ) for odd D. Some physical consequences of these results are discussed. (author)
Neural network real time event selection for the DIRAC experiment
Kokkas, P; Tauscher, Ludwig; Vlachos, S
2001-01-01
The neural network first level trigger for the DIRAC experiment at CERN is presented. Both the neural network algorithm used and its actual hardware implementation are described. The system uses the fast plastic scintillator information of the DIRAC spectrometer. In 210 ns it selects events with two particles having low relative momentum. Such events are selected with an efficiency of more than 0.94. The corresponding rate reduction for background events is a factor of 2.5. (10 refs).
The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials
Energy Technology Data Exchange (ETDEWEB)
Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu; Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2014-10-15
We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)].
The Dirac equation in the Lobachevsky space-time
International Nuclear Information System (INIS)
Paramonov, D.V.; Paramonova, N.N.; Shavokhina, N.S.
2000-01-01
The product of the Lobachevsky space and the time axis is termed the Lobachevsky space-time. The Lobachevsky space is considered as a hyperboloid's sheet in the four-dimensional pseudo-Euclidean space. The Dirac-Fock-Ivanenko equation is reduced to the Dirac equation in two special forms by passing from Lame basis in the Lobachevsky space to the Cartesian basis in the enveloping pseudo-Euclidean space
Simulation of Zitterbewegung by modelling the Dirac equation in Metamaterials
Ahrens, Sven; Jiang, Jun; Sun, Yong; Zhu, Shi-Yao
2015-01-01
We develop a dynamic description of an effective Dirac theory in metamaterials, in which the wavefunction is modeled by the corresponding electric and magnetic field in the metamaterial. This electro-magnetic field can be probed in the experimental setup, which means that the wavefunction of the effective theory is directly accessible by measurement. Our model is based on a plane wave expansion, which ravels the identification of Dirac spinors with single-frequency excitations of the electro-...
Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas
Akbari-Moghanjoughi, M.
2012-01-01
In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...
Revivals of zitterbewegung of a bound localized Dirac particle
International Nuclear Information System (INIS)
Romera, Elvira
2011-01-01
In this paper a bound localized Dirac particle is shown to exhibit a revival of the zitterbewegung (ZB) oscillation amplitude. These revivals go beyond the known quasiclassical regenerations in which the ZB oscillation amplitude is decreasing from period to period. This phenomenon is studied in a Dirac oscillator and it is shown that it is possible to set up wave packets in which there is a regeneration of the initial ZB amplitude.
Bound-state Dirac eigenvalues for scalar potentials
International Nuclear Information System (INIS)
Ram, B.; Arafah, M.
1981-01-01
The Dirac equation is solved with a linear and a quadratic scalar potential using an approach in which the Dirac equation is first transformed to a one-dimensional Schroedinger equation with an effective potential. The WKB method is used to obtain the energy eigenvalues. The eigenvalues for the quadratic scalar potential are real just as they are for the linear potential. The results with the linear potential agree well with those obtained by Critchfield. (author)
[P.A.M. Dirac and antimatter applied to medicine].
Kulenović, Fahrudin; Vobornik, Slavenka; Dalagija, Faruk
2003-01-01
Regarding to the hundredth anniversary of P. Dirac birth, it was made review on life and work of this genius in the history of physics and science generally. His ingenious scientific work, that significantly marked contemporary time, was presented in the simplest way with aim to approach more number of readers. Special accent was put on application of Dirac's ideas about antiparticles in medical practice.
Individual differences and subjective workload assessment - Comparing pilots to nonpilots
Vidulich, Michael A.; Pandit, Parimal
1987-01-01
Results by two groups of subjects, pilots and nonpilots, for two subjective workload assessment techniques (the SWAT and NASA-TLX tests) intended to evaluate individual differences in the perception and reporting of subjective workload are compared with results obtained for several traditional personality tests. The personality tests were found to discriminate between the groups while the workload tests did not. It is concluded that although the workload tests may provide useful information with respect to the interaction between tasks and personality, they are not effective as pure tests of individual differences.
How the workload impacts on cognitive cooperation: A pilot study.
Sciaraffa, Nicolina; Borghini, Gianluca; Arico, Pietro; Di Flumeri, Gianluca; Toppi, Jlenia; Colosimo, Alfredo; Bezerianos, Anastatios; Thakor, Nitish V; Babiloni, Fabio
2017-07-01
Cooperation degradation can be seen as one of the main causes of human errors. Poor cooperation could arise from aberrant mental processes, such as mental overload, that negatively affect the user's performance. Using different levels of difficulty in a cooperative task, we combined behavioural, subjective and neurophysiological data with the aim to i) quantify the mental workload under which the crew was operating, ii) evaluate the degree of their cooperation, and iii) assess the impact of the workload demands on the cooperation levels. The combination of such data showed that high workload demand impacted significantly on the performance, workload perception, and degree of cooperation.
Measuring workload in collaborative contexts: trait versus state perspectives.
Helton, William S; Funke, Gregory J; Knott, Benjamin A
2014-03-01
In the present study, we explored the state versus trait aspects of measures of task and team workload in a disaster simulation. There is often a need to assess workload in both individual and collaborative settings. Researchers in this field often use the NASATask Load Index (NASA-TLX) as a global measure of workload by aggregating the NASA-TLX's component items. Using this practice, one may overlook the distinction between traits and states. Fifteen dyadic teams (11 inexperienced, 4 experienced) completed five sessions of a tsunami disaster simulator. After every session, individuals completed a modified version of the NASA-TLX that included team workload measures.We then examined the workload items by using a between-subjects and within-subjects perspective. Between-subjects and within-subjects correlations among the items indicated the workload items are more independent within subjects (as states) than between subjects (as traits). Correlations between the workload items and simulation performance were also different at the trait and state levels. Workload may behave differently at trait (between-subjects) and state (within-subjects) levels. Researchers interested in workload measurement as a state should take a within-subjects perspective in their analyses.
Particle creation and Dirac's large number hypothesis; and Reply
International Nuclear Information System (INIS)
Canuto, V.; Adams, P.J.; Hsieh, S.H.; Tsiang, E.; Steigman, G.
1976-01-01
The claim made by Steigman (Nature; 261:479 (1976)), that the creation of matter as postulated by Dirac (Proc. R. Soc.; A338:439 (1974)) is unnecessary, is here shown to be incorrect. It is stated that Steigman's claim that Dirac's large Number Hypothesis (LNH) does not require particle creation is wrong because he has assumed that which he was seeking to prove, that is that rho does not contain matter creation. Steigman's claim that Dirac's LNH leads to nonsensical results in the very early Universe is superficially correct, but this only supports Dirac's contention that the LNH may not be valid in the very early Universe. In a reply Steigman points out that in Dirac's original cosmology R approximately tsup(1/3) and using this model the results and conclusions of the present author's paper do apply but using a variation chosen by Canuto et al (T approximately t) Dirac's LNH cannot apply. Additionally it is observed that a cosmological theory which only predicts the present epoch is of questionable value. (U.K.)
The Lorentz-Dirac equation in light of quantum theory
International Nuclear Information System (INIS)
Nikishov, A.I.
1996-01-01
To high accuracy, an electron in ultrarelativistic motion 'sees' an external field in its rest frame as a crossed field (E=H, E·H=0). In this case, quantum expressions allow the introduction of a local intensity of the radiation, which determines the radiative term of the force of radiative reaction. For γ=(1-v2)-1/2>> 1 this term is much larger than the mass term, i.e., the term with xd3do. Under these conditions, the reduced Lorentz-Dirac equation, which is obtained from the full Lorentz-Dirac equation by eliminating the terms xd3do and xe on the right side using the equation of motion without taking into account the force of radiative reaction, is equivalent to good accuracy to the original Lorentz-Dirac equation. Exact solutions to the reduced Lorentz-Dirac equation are obtained for a constant field and the field of a plane wave. For γ∼1 a local expression for the radiative term cannot be obtained quantitatively from the quantum expressions. In this case the mass (Lorentz-Dirac) terms in the original and reduced Lorentz-Dirac equations are not small compared to the radiative term. The predictions of these equations, which depend appreciably on the mass terms, are therefore less reliable
The DIRAC Data Management System and the Gaudi dataset federation
Haen, Christophe; Frank, Markus; Tsaregorodtsev, Andrei
2015-01-01
The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks.In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. This paper also focuses on the DIRAC File Catalog, for which a lot of new developments have been carried out, so that LH...
Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.
2014-10-07
Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.
Dirac equation in low dimensions: The factorization method
Energy Technology Data Exchange (ETDEWEB)
Sánchez-Monroy, J.A., E-mail: antosan@if.usp.br [Instituto de Física, Universidade de São Paulo, 05508-090, São Paulo, SP (Brazil); Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, Bogotá, D. C. (Colombia); CIF, Bogotá (Colombia)
2014-11-15
We present a general approach to solve the (1+1) and (2+1)-dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two Klein–Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials. - Highlights: • The low-dimensional Dirac equation in the presence of static potentials is solved. • The factorization method is generalized for energy-dependent Hamiltonians. • The shape invariance is generalized for energy-dependent Hamiltonians. • The stability of the Dirac sea is related to the existence of supersymmetric partner Hamiltonians.
The gLite Workload Management System
International Nuclear Information System (INIS)
Marco, Cecchi; Fabio, Capannini; Alvise, Dorigo; Antonia, Ghiselli; Alessio, Gianelle; Francesco, Giacomini; Elisabetta, Molinari; Salvatore, Monforte; Alessandro, Maraschini; Luca, Petronzio
2010-01-01
The gLite Workload Management System represents a key entry point to high-end services available on a Grid. Being designed as part of the european Grid within the six years long EU-funded EGEE project, now at its third phase, the WMS is meant to provide reliable and efficient distribution and management of end-user requests. This service basically translates user requirements and preferences into specific operations and decisions - dictated by the general status of all other Grid services - while taking responsibility to bring requests to successful completion. The WMS has become a reference implementation of the 'early binding' approach to meta-scheduling as a neat, Grid-aware solution, able to optimise resource access and to satisfy requests for computation together with data. Several added value features are provided for job submission, different job types are supported from simple batch to a variety of compounds. In this paper we outline what has been achieved to provide adequate workload and management components, suitable to be deployed in a production-quality Grid, while covering the design and development of the gLite WMS and focusing on the most recently achieved results.
Physical workload and thoughts of retirement.
Perkiö-Mäkelä, Merja; Hirvonen, Maria
2012-01-01
The aim of this paper is to present Finnish employees' opinions on continuing work until retirement pension and after the age of 63, and to find out if physical workload is related to these opinions. Altogether 39% of men and 40% of women had never had thoughts of early retirement, and 59% claimed (both men and women) that they would consider working beyond the age of 63. Own health (20%); financial gain such as salary and better pension (19%); meaningful, interesting and challenging work (15%); flexible working hours or part-time work (13%); lighter work load (13%); good work community (8%); and good work environment (6%) were stated as factors affecting the decision to continue working after the age of 63. Employees whose work involved low physical workload had less thoughts of early retirement and had considered continuing work after the age of 63 more often than those whose work involved high physical loads. Own health in particular was stated as a reason to consider continuing work by employees whose work was physically demanding.
P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation
International Nuclear Information System (INIS)
Duran, Antonio J; Gruenbaum, F Alberto
2006-01-01
The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein
CMS readiness for multi-core workload scheduling
Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.; Aftab Khan, F.; Letts, J.; Mason, D.; Verguilov, V.
2017-10-01
In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.
Dynamic cellular manufacturing system considering machine failure and workload balance
Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad
2018-02-01
Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.
CMS Readiness for Multi-Core Workload Scheduling
Energy Technology Data Exchange (ETDEWEB)
Perez-Calero Yzquierdo, A. [Madrid, CIEMAT; Balcas, J. [Caltech; Hernandez, J. [Madrid, CIEMAT; Aftab Khan, F. [NCP, Islamabad; Letts, J. [UC, San Diego; Mason, D. [Fermilab; Verguilov, V. [CLMI, Sofia
2017-11-22
In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.
Understanding quaternions and the Dirac belt trick
International Nuclear Information System (INIS)
Staley, Mark
2010-01-01
The Dirac belt trick is often employed in physics classrooms to show that a 2π rotation is not topologically equivalent to the absence of rotation whereas a 4π rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors has been achieved, or if the trick is just an amusing analogy. The goal of this paper is to demystify the belt trick and to show that it suggests an underlying four-dimensional parameter space for rotations that is simply connected. An investigation into the geometry of this four-dimensional space leads directly to the system of quaternions, and to an interpretation of three-dimensional vectors as the generators of rotations in this larger four-dimensional world. The paper also shows why quaternions are the natural extension of complex numbers to four dimensions. The level of the paper is suitable for undergraduate students of physics.
Patient Safety Incidents and Nursing Workload.
Carlesi, Katya Cuadros; Padilha, Kátia Grillo; Toffoletto, Maria Cecília; Henriquez-Roldán, Carlos; Juan, Monica Andrea Canales
2017-04-06
to identify the relationship between the workload of the nursing team and the occurrence of patient safety incidents linked to nursing care in a public hospital in Chile. quantitative, analytical, cross-sectional research through review of medical records. The estimation of workload in Intensive Care Units (ICUs) was performed using the Therapeutic Interventions Scoring System (TISS-28) and for the other services, we used the nurse/patient and nursing assistant/patient ratios. Descriptive univariate and multivariate analysis were performed. For the multivariate analysis we used principal component analysis and Pearson correlation. 879 post-discharge clinical records and the workload of 85 nurses and 157 nursing assistants were analyzed. The overall incident rate was 71.1%. It was found a high positive correlation between variables workload (r = 0.9611 to r = 0.9919) and rate of falls (r = 0.8770). The medication error rates, mechanical containment incidents and self-removal of invasive devices were not correlated with the workload. the workload was high in all units except the intermediate care unit. Only the rate of falls was associated with the workload. identificar a relação entre a carga de trabalho da equipe de enfermagem e a ocorrência de incidentes de segurança dos pacientes ligados aos cuidados de enfermagem de um hospital público no Chile. pesquisa transversal analítica quantitativa através de revisão de prontuários médicos. A estimativa da carga de trabalho em Unidade de Terapia Intensiva (UTI) foi realizada utilizando o Índice de Intervenções Terapêuticas-TISS-28 e para os outros serviços, foram utilizados os cocientes enfermeira/paciente e auxiliar de enfermagem/ paciente. Foram feitas análises univariada descritiva e multivariada. Para a análise multivariada utilizou-se análise de componentes principais e correlação de Pearson. foram analisados 879 prontuáriosclínicos de pós-alta e a carga de trabalho de 85 enfermeiros e 157
Preparing the Gaudi framework and the DIRAC WMS for multicore job submission
International Nuclear Information System (INIS)
Rauschmayr, N; Streit, A
2014-01-01
HEP applications need to adapt to the continuously increasing number of cores on modern CPUs. This must be done at different levels: the software must support parallelization, and the scheduling has to differ between multicore and singlecore jobs. The LHCb software framework (GAUDI) provides a parallel prototype (GaudiMP), based on the multiprocessing approach. It allows a reduction of the overall memory footprint and a coordinated access to data via separated reader and writer processes. A comparison between the parallel prototype and multiple independent Gaudi jobs in respect of CPU time and memory consumption will be shown. Furthermore, speedup must be predicted in order to find the limit beyond which the parallel prototype (GaudiMP) does not bring further scaling. This number must be known as it indicates the point, where new technologies must be introduced into the software framework. In order to reach further improvements in the overall throughput, scheduling strategies for mixing parallel jobs can be applied. It allows overcoming limitations in the speedup of the parallel prototype. Those changes require modifications at the level of the Workload Management System (DIRAC).
Dirac and non-Dirac conditions in the two-potential theory of magnetic charge
Scott, John; Evans, Timothy J.; Singleton, Douglas; Dzhunushaliev, Vladimir; Folomeev, Vladimir
2018-05-01
We investigate the Cabbibo-Ferrari, two-potential approach to magnetic charge coupled to two different complex scalar fields, Φ _1 and Φ _2, each having different electric and magnetic charges. The scalar field, Φ _1, is assumed to have a spontaneous symmetry breaking self-interaction potential which gives a mass to the "magnetic" gauge potential and "magnetic" photon, while the other "electric" gauge potential and "electric" photon remain massless. The magnetic photon is hidden until one reaches energies of the order of the magnetic photon rest mass. The second scalar field, Φ _2, is required in order to make the theory non-trivial. With only one field one can always use a duality rotation to rotate away either the electric or magnetic charge, and thus decouple either the associated electric or magnetic photon. In analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we perform several duality and gauge transformations, which require introducing non-Dirac conditions on the initial electric and magnetic charges. We also find that due to the symmetry breaking the usual Dirac condition is altered to include the mass of the magnetic photon. We discuss the implications of these various conditions on the charges.
Physiological Indicators of Workload in a Remotely Piloted Aircraft Simulation
2015-10-01
cognitive workload. That is, both cognitive underload and overload can negatively impact performance (Young & Stanton, 2002). One solution to...Report contains color. 14. ABSTRACT Toward preventing performance decrements associated with mental overload in remotely piloted aircraft (RPA...operations, the current research investigated the feasibility of using physiological measures to assess cognitive workload. Two RPA operators were
Situation awareness and workload in complex tactical environments
Veltman, J.A.
1999-01-01
The paper provides an example of a method to get insight into workload changes over time, executed tasks and situation awareness (SA) in complex task environments. The method is applied to measure the workload of a helicopter crew. The method has three components: 1) task analysis, 2) video
Remuneration, workload, and allocation of time in general practice.
Berg, M.J. van den; Westert, G.P.; Groenewegen, P.P.; Bakker, D.H. de; Zee, J. van der
2006-01-01
Background: General Practitioners (GPs) can cope with workload by, among others, spending more hours in patient care or by spending less time per patient. The way GPs are paid might affect the way they cope with workload. From an economical point of view, capitation payment is an incentive to
Quantifying the Workload of Subject Bibliographers in Collection Development.
Metz, Paul
1991-01-01
Discussion of the role of subject bibliographers in collection development activities focuses on an approach developed at Virginia Polytechnic and State Institute to provide a formula for estimating the collection development workload of subject bibliographers. Workload standards and matrix models of organizational structures are discussed, and…
All Things Being Equal: Observing Australian Individual Academic Workloads
Dobele, Angela; Rundle-Thiele, Sharyn; Kopanidis, Foula; Steel, Marion
2010-01-01
The achievement of greater gender equity within Australian universities is a significant issue for both the quality and the strength of Australian higher education. This paper contributes to our knowledge of academic workloads, observing individual workloads in business faculties. A multiple case study method was employed to observe individual…
Workload demand in police officers during mountain bike patrols
Takken, T.; Ribbink, A.; Heneweer, H.; Moolenaar, H.; Wittink, H.
2009-01-01
To the authors' knowledge this is the first paper that has used the training impulse (TRIMP) 'methodology' to calculate workload demand. It is believed that this is a promising method to calculate workload in a range of professions in order to understand the relationship between work demands and
TASKILLAN II - Pilot strategies for workload management
Segal, Leon D.; Wickens, Christopher D.
1990-01-01
This study focused on the strategies used by pilots in managing their workload level, and their subsequent task performance. Sixteen licensed pilots flew 42 missions on a helicopter simulation, and were evaluated on their performance of the overall mission, as well as individual tasks. Pilots were divided in four groups, defined by the presence or absence of scheduling control over tasks and the availability of intelligence concerning the type and stage of difficulties imposed during the flight. Results suggest that intelligence supported strategies that yielded significant higher performance levels, while scheduling control seemed to have no impact on performance. Both difficulty type and the stage of difficulty impacted performance significantly, with strongest effects for time stresss and difficulties imposed late in the flight.
Double Dirac Point Semimetal in Two-Dimensional Material: Ta2Se3
Ma, Yandong; Jing, Yu; Heine, Thomas
2017-01-01
Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac fe...
A simplified method for assessing cytotechnologist workload.
Vaickus, Louis J; Tambouret, Rosemary
2014-01-01
Examining cytotechnologist workflow and how it relates to job performance and patient safety is important in determining guidelines governing allowable workloads. This report discusses the development of a software tool that significantly simplifies the process of analyzing cytotechnologist workload while simultaneously increasing the quantity and resolution of the data collected. The program runs in Microsoft Excel and minimizes manual data entry and data transcription by automating as many tasks as is feasible. Data show the cytotechnologists tested were remarkably consistent in the amount of time it took them to screen a cervical cytology (Gyn) or a nongynecologic cytology (Non-Gyn) case and that this amount of time was directly proportional to the number of slides per case. Namely, the time spent per slide did not differ significantly in Gyn versus Non-Gyn cases (216 ± 3.4 seconds and 235 ± 24.6 seconds, respectively; P=.16). There was no significant difference in the amount of time needed to complete a Gyn case between the morning and the evening (314 ± 4.7 seconds and 312 ± 7.1 seconds; P=.39), but a significantly increased time spent screening Non-Gyn cases (slide-adjusted) in the afternoon hours (323 ± 20.1 seconds and 454 ± 67.6 seconds; P=.027), which was largely the result of significantly increased time spent on prescreening activities such as checking the electronic medical record (62 ± 6.9 seconds and 145 ± 36 seconds; P=.006). This Excel-based data collection tool generates highly detailed data in an unobtrusive manner and is highly customizable to the individual working environment and clinical climate. © 2013 American Cancer Society.
Workload-Aware Indexing of Continuously Moving Objects
DEFF Research Database (Denmark)
Tzoumas, Kostas; Yiu, Man Lung; Jensen, Christian Søndergaard
2009-01-01
structures can easily become performance bottlenecks. We address the need for indexing that is adaptive to the workload characteristics, called workload-aware, in order to cover the space in between maintaining an accurate index, and having no index at all. Our proposal, QU-Trade, extends R-tree type...... indexing and achieves workload-awareness by controlling the underlying index’s filtering quality. QU-Trade safely drops index updates, increasing the overlap in the index when the workload is update-intensive, and it restores the filtering capabilities of the index when the workload becomes query......-intensive. This is done in a non-uniform way in space so that the quality of the index remains high in frequently queried regions, while it deteriorates in frequently updated regions. The adaptation occurs online, without the need for a learning phase. We apply QU-Trade to the R-tree and the TPR-tree, and we offer...
Using Psychophysiological Sensors to Assess Mental Workload During Web Browsing.
Jimenez-Molina, Angel; Retamal, Cristian; Lira, Hernan
2018-02-03
Knowledge of the mental workload induced by a Web page is essential for improving users' browsing experience. However, continuously assessing the mental workload during a browsing task is challenging. To address this issue, this paper leverages the correlation between stimuli and physiological responses, which are measured with high-frequency, non-invasive psychophysiological sensors during very short span windows. An experiment was conducted to identify levels of mental workload through the analysis of pupil dilation measured by an eye-tracking sensor. In addition, a method was developed to classify mental workload by appropriately combining different signals (electrodermal activity (EDA), electrocardiogram, photoplethysmo-graphy (PPG), electroencephalogram (EEG), temperature and pupil dilation) obtained with non-invasive psychophysiological sensors. The results show that the Web browsing task involves four levels of mental workload. Also, by combining all the sensors, the efficiency of the classification reaches 93.7%.
A computerized multidimensional measurement of mental workload via handwriting analysis.
Luria, Gil; Rosenblum, Sara
2012-06-01
The goal of this study was to test the effect of mental workload on handwriting behavior and to identify characteristics of low versus high mental workload in handwriting. We hypothesized differences between handwriting under three different load conditions and tried to establish a profile that integrated these indicators. Fifty-six participants wrote three numerical progressions of varying difficulty on a digitizer attached to a computer so that we could evaluate their handwriting behavior. Differences were found in temporal, spatial, and angular velocity handwriting measures, but no significant differences were found for pressure measures. Using data reduction, we identified three clusters of handwriting, two of which differentiated well according to the three mental workload conditions. We concluded that handwriting behavior is affected by mental workload and that each measure provides distinct information, so that they present a comprehensive indicator of mental workload.
Academic context and perceived mental workload of psychology students.
Rubio-Valdehita, Susana; López-Higes, Ramón; Díaz-Ramiro, Eva
2014-01-01
The excessive workload of university students is an academic stressor. Consequently, it is necessary to evaluate and control the workload in education. This research applies the NASA-TLX scale, as a measure of the workload. The objectives of this study were: (a) to measure the workload levels of a sample of 367 psychology students, (b) to group students according to their positive or negative perception of academic context (AC) and c) to analyze the effects of AC on workload. To assess the perceived AC, we used an ad hoc questionnaire designed according to Demand-Control-Social Support and Effort-Reward Imbalance models. Using cluster analysis, participants were classified into two groups (positive versus negative context). The differences between groups show that a positive AC improves performance (p student autonomy and result satisfaction were relevant dimensions of the AC (p < .001 in all cases).
van den Oetelaar, W F J M; van Stel, H F; van Rhenen, W; Stellato, R K; Grolman, W
2016-11-10
Hospitals pursue different goals at the same time: excellent service to their patients, good quality care, operational excellence, retaining employees. This requires a good balance between patient needs and nursing staff. One way to ensure a proper fit between patient needs and nursing staff is to work with a workload management method. In our view, a nursing workload management method needs to have the following characteristics: easy to interpret; limited additional registration; applicable to different types of hospital wards; supported by nurses; covers all activities of nurses and suitable for prospective planning of nursing staff. At present, no such method is available. The research follows several steps to come to a workload management method for staff nurses. First, a list of patient characteristics relevant to care time will be composed by performing a Delphi study among staff nurses. Next, a time study of nurses' activities will be carried out. The 2 can be combined to estimate care time per patient group and estimate the time nurses spend on non-patient-related activities. These 2 estimates can be combined and compared with available nursing resources: this gives an estimate of nurses' workload. The research will take place in an academic hospital in the Netherlands. 6 surgical wards will be included, capacity 15-30 beds. The study protocol was submitted to the Medical Ethical Review Board of the University Medical Center (UMC) Utrecht and received a positive advice, protocol number 14-165/C. This method will be developed in close cooperation with staff nurses and ward management. The strong involvement of the end users will contribute to a broader support of the results. The method we will develop may also be useful for planning purposes; this is a strong advantage compared with existing methods, which tend to focus on retrospective analysis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence
Multi-objective efficiency enhancement using workload spreading in an operational data center
International Nuclear Information System (INIS)
Habibi Khalaj, Ali; Scherer, Thomas; Siriwardana, Jayantha; Halgamuge, Saman K.
2015-01-01
Highlights: • Development of the heat-flow reduced order model (HFROM) for the IBM ZRL data center. • Verification of the developed HFROM with the experimentally verified CFD model. • Multi-objective efficiency enhancement of the HFROM using particle swarm optimization. • Improving the COP of the data center’s cooling system by about 17%. • Increasing the total allocated workload of the servers by about 10%. - Abstract: The cooling systems of rapidly growing Data Centers (DCs) consume a considerable amount of energy, which is one of the main concerns in designing and operating DCs. The main source of thermal inefficiency in a typical air-cooled DC is hot air recirculation from outlets of servers into their inlets, causing hot spots and leading to performance reduction of the cooling system. In this study, a thermally aware workload spreading method is proposed for reducing the hot spots while the total allocated server workload is increased. The core of this methodology lies in developing an appropriate thermal DC model for the optimization process. Given the fact that utilizing a high-fidelity thermal model of a DC is highly time consuming in the optimization process, a three dimensional reduced order model of a real DC is developed in this study. This model, whose boundary conditions are determined based on measurement data of an operational DC, is developed based on the potential flow theory updated with the Rankine vortex to account for buoyancy and air recirculation effects inside the DC. Before evaluating the proposed method, this model is verified with a computational fluid dynamic (CFD) model simulated with the same boundary conditions. The efficient load spreading method is achieved by applying a multi-objective particle swarm optimization (MOPSO) algorithm whose objectives are to minimize the hot spot occurrences and to maximize the total workload allocated to servers. In this case study, by applying the proposed method, the Coefficient of
Dirac matrices for Chern-Simons gravity
Energy Technology Data Exchange (ETDEWEB)
Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)
2012-10-06
A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.
Relativistic space-charge-limited current for massive Dirac fermions
Ang, Y. S.; Zubair, M.; Ang, L. K.
2017-04-01
A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.
Endsley, Patricia
2017-01-01
The purpose of this scoping review was to survey the most recent (5 years) acute care, community health, and mental health nursing workload literature to understand themes and research avenues that may be applicable to school nursing workload research. The search for empirical and nonempirical literature was conducted using search engines such as…
International Nuclear Information System (INIS)
Utsumi, Takayuki; Sasaki, Akira
2000-02-01
The procedures of grasp92 code to calculate accurate (relative error nearly equal 10 -7 ) eigenvalue for the ground sate of helium atom of the Dirac-Coulomb Hamiltonian are presented. The grasp92 code, based on the multi-configuration Dirac-Fock method, is widely used to calculate the atomic properties. However, the main part of the accurate calculations, extended optimal level calculation (EOL), suffer frequently numerical instabilities due to the lack of the confident procedures. The purpose of this report is to illustrate the guideline for stable EOL calculations by calculating the most fundamental atomic system, i.e. the ground sate of helium atom ls 2 1 S 2 . This procedure could be extended for the high-precise eigenfunction calculation of more complex atomic systems, for example highly ionized atoms and high-Z atoms. (author)
Dirac equation and optical wave propagation in one dimension
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Gabriel [Catedras CONACYT, Universidad Autonoma de San Luis Potosi (Mexico); Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Universidad Autonoma de San Luis Potosi (Mexico)
2018-02-15
We show that the propagation of transverse electric (TE) polarized waves in one-dimensional inhomogeneous settings can be written in the form of the Dirac equation in one space dimension with a Lorentz scalar potential, and consequently perform photonic simulations of the Dirac equation in optical structures. In particular, we propose how the zero energy state of the Jackiw-Rebbi model can be generated in an optical set-up by controlling the refractive index landscape, where TE-polarized waves mimic the Dirac particles and the soliton field can be tuned by adjusting the refractive index. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Shot noise in systems with semi-Dirac points
International Nuclear Information System (INIS)
Zhai, Feng; Wang, Juan
2014-01-01
We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L 1∕2 . Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points
Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
Energy Technology Data Exchange (ETDEWEB)
Lin, Zeren [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); School of Physics, Peking University, Beijing 100871 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)
2015-12-07
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.
New approaches for searching for the Dirac magnetic monopole
International Nuclear Information System (INIS)
Kukhtin, V.V.; Krivokhizhin, V.G.; Stetsenko, S.G.; Cheplakov, A.P.
2012-01-01
Three new approaches, not applied earlier, are proposed to search for the Dirac monopole - an object whose existence was proposed by P.Dirac more than 80 years ago to explain the electrical charge quantization. The first approach assumes that the monopole must be accelerated by a magnetic field, and such acceleration is constant in the magnetic field which is homogeneous and constant. The conclusion about the object movement nature can be drawn by measuring the time marks for equidistant registering planes. The second approach is supposed to reconstruct the movement trajectory in the homogeneous and permanent electrical field, which is the circle or its part for the magnetic monopole. The third approach is based on the constancy of energy losses by Dirac monopole due to medium ionization in the multilayer passive dielectric tracking detectors placed in the homogeneous and permanent electrical field
Time-dependent massless Dirac fermions in graphene
Energy Technology Data Exchange (ETDEWEB)
Khantoul, Boubakeur, E-mail: bobphys@gmail.com [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom); Department of Physics, University of Jijel, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Fring, Andreas, E-mail: a.fring@city.ac.uk [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom)
2015-10-30
Using the Lewis–Riesenfeld method of invariants we construct explicit analytical solutions for the massless Dirac equation in 2+1 dimensions describing quasi-particles in graphene. The Hamiltonian of the system considered contains some explicit time-dependence in addition to one resulting from being minimally coupled to a time-dependent vector potential. The eigenvalue equations for the two spinor components of the Lewis–Riesenfeld invariant are found to decouple into a pair of supersymmetric invariants in a similar fashion as the known decoupling for the time-independent Dirac Hamiltonians. - Highlights: • An explicit analytical solution for a massless 2+1 dimensional time-dependent Dirac equation is found. • All steps of the Lewis–Riesenfeld method have been carried out.
Maxwell-Like Equations for Free Dirac Electrons
Bruce, S. A.
2018-03-01
In this article, we show that the wave equation for a free Dirac electron can be represented in a form that is analogous to Maxwell's electrodynamics. The electron bispinor wavefunction is explicitly expressed in terms of its real and imaginary components. This leads us to incorporate into it appropriate scalar and pseudo-scalar fields in advance, so that a full symmetry may be accomplished. The Dirac equation then takes on a form similar to that of a set of inhomogeneous Maxwell's equations involving a particular self-source. We relate plane wave solutions of these equations to waves corresponding to free Dirac electrons, identifying the longitudinal component of the electron motion, together with the corresponding Zitterbewegung ("trembling motion").
Dirac vacuum: Acceleration and external-field effects
International Nuclear Information System (INIS)
Jauregui, R.; Torres, M.; Hacyan, S.
1991-01-01
The quantization of the massive spin-1/2 field in Rindler coordinates is considered, including the effects of a background magnetic field. We calculate the expectation values of conserved quantities such as the stress-energy tensor, current density, and spin distribution, as detected by an accelerated observer. The ratio of the energy and particle densities is given by a Fermi-Dirac distribution, but the spectrum of these quantities takes in general a complicated form that cannot be simply interpreted as a thermal spectrum. For the free-particle case the spectrum of the energy-stress tensor has a Fermi-Dirac form only in the massless limit. In the presence of the magnetic field the Dirac vacuum is magnetized and exhibits plasmalike properties
String effects on Fermi-Dirac correlation measurements
International Nuclear Information System (INIS)
Duran Delgado, R.M.; Gustafson, G.; Loennblad, L.
2007-01-01
We investigate some recent measurements of Fermi-Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e + e - annihilation at the Z 0 peak. In hadronization models there is besides the Fermi-Dirac correlation effect also a strong dynamical (anti-) correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations that are not related to Fermi-Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to draw any firm conclusion about the source radii relevant for baryon production at LEP. (orig.)
Inverse scattering scheme for the Dirac equation at fixed energy
International Nuclear Information System (INIS)
Leeb, H.; Lehninger, H.; Schilder, C.
2001-01-01
Full text: Based on the concept of generalized transformation operators a new hierarchy of Dirac equations with spherical symmetric scalar and fourth component vector potentials is presented. Within this hierarchy closed form expressions for the solutions, the potentials and the S-matrix can be given in terms of solutions of the original Dirac equation. Using these transformations an inverse scattering scheme has been constructed for the Dirac equation which is the analog to the rational scheme in the non-relativistic case. The given method provides for the first time an inversion scheme with closed form expressions for the S-matrix for non-relativistic scattering problems with central and spin-orbit potentials. (author)
Luciano Maiani and Jean Iliopoulos awarded the Dirac Medal
2007-01-01
Luciano Maiani, when he was Director-General of CERN. Jean Iliopoulos in 1999. (©CNRS Photothèque - Julien Quideau)On 8 August, the 2007 Dirac Medal, one of the most prestigious prizes in the fields of theoretical physics and mathematics, was awarded to Luciano Maiani, professor at Rome’s La Sapienza University and former Director-General of CERN, and to Jean Iliopoulos, emeritus Director of Research at the CNRS Laboratory of Theoretical Physics. The medal was awarded to both physicists for their joint "work on the physics of the charm quark, a major contribution to the birth of the Standard Model, the modern theory of Elementary Particles." Founded by the Abdus Salam International Centre for Theoretical Physics (ICTP) in 1985, the Dirac Medal is awarded annually on 8 August, the birthday of the famous physicist Paul Dirac, winner of the 1933 Nobel Prize for Physics. It is awarded to ...
Dirac charge dynamics in graphene by infrared spectroscopy
International Nuclear Information System (INIS)
Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.
2008-01-01
A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schroedinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene
Accidental degeneracy of double Dirac cones in a phononic crystal
Chen, Ze-Guo; Ni, Xu; Wu, Ying; He, Cheng; Sun, Xiao-Chen; Zheng, Li-Yang; Lu, Ming-Hui; Chen, Yan-Feng
2014-01-01
Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.
Accidental degeneracy of double Dirac cones in a phononic crystal
Chen, Ze-Guo
2014-04-09
Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.
Electronic structure of a graphene superlattice with massive Dirac fermions
International Nuclear Information System (INIS)
Lima, Jonas R. F.
2015-01-01
We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems
Medical Emergency Workload of a Regional UK HEMS Service.
McQueen, Carl; Crombie, Nick; Cormack, Stef; Wheaton, Steve
2015-01-01
Regionalized trauma networks have been established in England to centralize specialist care at dedicated centers of excellence throughout the country. Helicopter emergency medical services (HEMS) in the West Midlands region have been redesigned to form an integrated component of such systems. The continued use of such valuable and scarce resources for medical emergencies requires evaluation. A retrospective review of mission data for a regional Air Ambulance Service in England over a two year period. Medical emergencies continue to contribute a large proportion of the overall workload of the service. Requirement for advanced interventions at the scene was rare, with less than 10% of patients attended by HEMS teams having care needs that fall beyond the scope of standard paramedic practice. Dynamic solutions are needed to ensure that HEMS support for cases of medical emergency are appropriately targeted to incidents in which clinical benefit is conferred to the patient. Intelligent tasking of appropriate resources has the potential to improve the HEMS response to medical emergencies while optimizing the availability of resources to respond to other incidents, most notably cases of major trauma. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Mental workload during brain-computer interface training.
Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G
2012-01-01
It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.
Front-line ordering clinicians: matching workforce to workload.
Fieldston, Evan S; Zaoutis, Lisa B; Hicks, Patricia J; Kolb, Susan; Sladek, Erin; Geiger, Debra; Agosto, Paula M; Boswinkel, Jan P; Bell, Louis M
2014-07-01
Matching workforce to workload is particularly important in healthcare delivery, where an excess of workload for the available workforce may negatively impact processes and outcomes of patient care and resident learning. Hospitals currently lack a means to measure and match dynamic workload and workforce factors. This article describes our work to develop and obtain consensus for use of an objective tool to dynamically match the front-line ordering clinician (FLOC) workforce to clinical workload in a variety of inpatient settings. We undertook development of a tool to represent hospital workload and workforce based on literature reviews, discussions with clinical leadership, and repeated validation sessions. We met with physicians and nurses from every clinical care area of our large, urban children's hospital at least twice. We successfully created a tool in a matrix format that is objective and flexible and can be applied to a variety of settings. We presented the tool in 14 hospital divisions and received widespread acceptance among physician, nursing, and administrative leadership. The hospital uses the tool to identify gaps in FLOC coverage and guide staffing decisions. Hospitals can better match workload to workforce if they can define and measure these elements. The Care Model Matrix is a flexible, objective tool that quantifies the multidimensional aspects of workload and workforce. The tool, which uses multiple variables that are easily modifiable, can be adapted to a variety of settings. © 2014 Society of Hospital Medicine.
Activity-based differentiation of pathologists' workload in surgical pathology.
Meijer, G A; Oudejans, J J; Koevoets, J J M; Meijer, C J L M
2009-06-01
Adequate budget control in pathology practice requires accurate allocation of resources. Any changes in types and numbers of specimens handled or protocols used will directly affect the pathologists' workload and consequently the allocation of resources. The aim of the present study was to develop a model for measuring the pathologists' workload that can take into account the changes mentioned above. The diagnostic process was analyzed and broken up into separate activities. The time needed to perform these activities was measured. Based on linear regression analysis, for each activity, the time needed was calculated as a function of the number of slides or blocks involved. The total pathologists' time required for a range of specimens was calculated based on standard protocols and validated by comparing to actually measured workload. Cutting up, microscopic procedures and dictating turned out to be highly correlated to number of blocks and/or slides per specimen. Calculated workload per type of specimen was significantly correlated to the actually measured workload. Modeling pathologists' workload based on formulas that calculate workload per type of specimen as a function of the number of blocks and slides provides a basis for a comprehensive, yet flexible, activity-based costing system for pathology.
PREFACE: International Workshop on Dirac Electrons in Solids 2015
Ogata, M.; Suzumura, Y.; Fuseya, Y.; Matsuura, H.
2015-04-01
It is our pleasure to publish the Proceedings of the International Workshop on Dirac Electrons in Solids held in University of Tokyo, Japan, for January 14-15, 2015. The workshop was organized by the entitled project which lasted from April 2012 to March 2015 with 10 theorists. It has been supported by a Grand-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The subjects discussed in the workshop include bismuth, organic conductors, graphene, topological insulators, new materials including Ca3PbO, and new directions in theory (superconductivity, orbital susceptibility, etc). The number of participants was about 70 and the papers presented in the workshop include four invited talks, 16 oral presentations, and 23 poster presentations. Dirac electron systems appear in various systems, such as graphene, quasi-two-dimensional organic conductors, bismuth, surface states in topological insulators, new materials like Ca3PbO. In these systems, characteristic transport properties caused by the linear dispersion of Dirac electrons and topological properties, have been extensively discussed. In addition to these, there are many interesting research fields such as Spin-Hall effect, orbital diamagnetism due to interband effects, Landau levels characteristic to Dirac dispersion, anomalous interlayer transport phenomena and magnetoresistance, the effects of spin-orbit interaction, and electron correlation. The workshop focused on recent developments of theory and experiment of Dirac electron systems in the above materials. We note that all papers published in this volume of Journal of Physics: Conference Series were peer reviewed. Reviews were performed by expert referees with professional knowledge and high scientific standards in this field. Editors made efforts so that the papers may satisfy the criterion of a proceedings journal published by IOP Publishing. We hope that all the participants of the workshop
Chemistry at the dirac point of graphene
Sarkar, Santanu
device mobility. To this end, we find that the organometallic hexahapto metal complexation chemistry of graphene, in which the graphene pi-band constructively hybridizes with the vacant d-orbitals of transition metals, allows the fabrication of field effect devices which retain a high degree of the mobility with enhanced on-off ratio. In summary, we find that the singular electronic structure of graphene at the Dirac point governs the chemical reactivity of graphene and this chemistry will play a vital role in propelling graphene to assume its role as the next generation electronic material beyond silicon.
Out-of-Bounds Hydrodynamics in Anisotropic Dirac Fluids
Link, Julia M.; Narozhny, Boris N.; Kiselev, Egor I.; Schmalian, Jörg
2018-05-01
We study hydrodynamic transport in two-dimensional, interacting electronic systems with merging Dirac points at charge neutrality. The dispersion along one crystallographic direction is Dirac-like, while it is Newtonian-like in the orthogonal direction. As a result, the electrical conductivity is metallic in one and insulating in the other direction. The shear viscosity tensor contains six independent components, which can be probed by measuring an anisotropic thermal flow. One of the viscosity components vanishes at zero temperature leading to a generalization of the previously conjectured lower bound for the shear viscosity to entropy density ratio.
Geometric interpretation for the Dirac field in curved space
International Nuclear Information System (INIS)
Ranganathan, D.
1987-01-01
The imposition of the condition of length invariance on a Weyl manifold that does not lead uniquely to general relativity is shown. Rather, in this limit, the Weyl vector field can be interpreted as a Dirac current. The action is also the same as the Einstein Dirac one, if and only if, the spinor field is anticommuting. The allowed interactions are greatly restricted. They are only minimal gauge couplings and Yukawa interactions with a scalar field transforming according to the rules of Utiyama [Prog. Theor. Phys. 53, 565 (1975)
Levinson theorem for Dirac particles in n dimensions
International Nuclear Information System (INIS)
Jiang Yu
2005-01-01
We study the Levinson theorem for a Dirac particle in an n-dimensional central field by use of the Green function approach, based on an analysis of the n-dimensional radial Dirac equation obtained through a simple algebraic derivation. We show that the zero-momentum phase shifts are related to the number of bound states with |E|< m plus the number of half-bound states of zero momenta--i.e., |E|=m--which are denoted by finite, but not square-integrable, wave functions
Dirac potentials in a coupled channel approach to inelastic scattering
International Nuclear Information System (INIS)
Mishra, V.K.; Clark, B.C.; Cooper, E.D.; Mercer, R.L.
1990-01-01
It has been shown that there exist transformations that can be used to change the Lorentz transformation character of potentials, which appear in the Dirac equation for elastic scattering. We consider the situation for inelastic scattering described by coupled channel Dirac equations. We examine a two-level problem where both the ground and excited states are assumed to have zero spin. Even in this simple case we have not found an appropriate transformation. However, if the excited state has zero excitation energy it is possible to find a transformation
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
International Nuclear Information System (INIS)
Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.
2010-01-01
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ 5 -Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Radiative heat transfer in 2D Dirac materials
International Nuclear Information System (INIS)
Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R
2015-01-01
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)
Rigid particle revisited: Extrinsic curvature yields the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)
2014-03-01
We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.
Zero-energy eigenstates for the Dirac boundary problem
International Nuclear Information System (INIS)
Hortacsu, M.; Rothe, K.D.; Schroer, B.
1980-01-01
As an alternative to the method of spherical compactification for the Dirac operator in instanton background fields we study the correct method of 'box-quantization': the Atiyah-Patodi-Singer spectral boundary condition. This is the only self-adjoint boundary condition which respects the charge conjugation property and the γ 5 symmetry, apart form the usual breaking due to zero modes. We point out the relevance of this approach to the computation of instanton determinants and other problems involving Dirac spinors. (orig.)
Dispersive estimates for massive Dirac operators in dimension two
Erdoğan, M. Burak; Green, William R.; Toprak, Ebru
2018-05-01
We study the massive two dimensional Dirac operator with an electric potential. In particular, we show that the t-1 decay rate holds in the L1 →L∞ setting if the threshold energies are regular. We also show these bounds hold in the presence of s-wave resonances at the threshold. We further show that, if the threshold energies are regular then a faster decay rate of t-1(log t) - 2 is attained for large t, at the cost of logarithmic spatial weights. The free Dirac equation does not satisfy this bound due to the s-wave resonances at the threshold energies.
Hole doped Dirac states in silicene by biaxial tensile strain
Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo
2013-01-01
The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.
Hole doped Dirac states in silicene by biaxial tensile strain
Kaloni, Thaneshwor P.
2013-03-11
The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.
Dirac neutrinos and hybrid inflation from string theory
International Nuclear Information System (INIS)
Antusch, Stefan; Eyton-Williams, Oliver J.; King, Steve F.
2005-01-01
We consider a possible scenario for the generation of Dirac neutrino masses motivated by type-I string theory. The smallness of the neutrino Yukawa couplings is explained by an anisotropic compactification with one compactification radius larger than the others. In addition to this we utilise small Yukawa couplings to develop strong links between the origin of neutrino masses and the physics driving inflation. We construct a minimal model which simultaneously accommodates small Dirac neutrino masses leading to bi-large lepton mixing as well as an inflationary solution to the strong CP and to the μ problem
Twisting dirac fermions: circular dichroism in bilayer graphene
Suárez Morell, E.; Chico, Leonor; Brey, Luis
2017-09-01
Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.
Subjective workload and individual differences in information processing abilities
Damos, D. L.
1984-01-01
This paper describes several experiments examining the source of individual differences in the experience of mental workload. Three sources of such differences were examined: information processing abilities, timesharing abilities, and personality traits/behavior patterns. On the whole, there was little evidence that individual differences in information processing abilities or timesharing abilities are related to perceived differences in mental workload. However, individuals with strong Type A coronary prone behavior patterns differed in both single- and multiple-task performance from individuals who showed little evidence of such a pattern. Additionally, individuals with a strong Type A pattern showed some dissociation between objective performance and the experience of mental workload.
A bio-inspired approach for the reduction of left ventricular workload.
Directory of Open Access Journals (Sweden)
Niema M Pahlevan
Full Text Available Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.
Workload composition of the organic horticulture.
Abrahão, R F; Ribeiro, I A V; Tereso, M J A
2012-01-01
This project aimed the characterization of the physical workload of the organic horticulture by determining the frequency of exposure of operators to some activity categories. To do this, an adaptation of the PATH method (Posture, Activities, Tools and Handling) was done to be used in the context of agriculture work. The approach included an evaluation of physical effort demanded to perform the tasks in the work systems from an systematic sampling of work situations from a synchronized monitoring of the heart rate; a characterization of posture repertoire adopted by workers by adapting the OWAS method; an identification of pain body areas using the Corlett diagram; and a subjective evaluation of perceived effort using the RPE Borg scale. The results of the individual assessments were cross correlated and explained from an observation of the work activity. Postural demands were more significant than cardiovascular demands for the studied tasks, and correlated positively with the expressions of bodily discomfort. It is expected that, besides the knowledge obtained of the physical effort demanded by organic horticulture, this project will be useful for the development of new technologies directed to minimize the difficulties of the human work and to raise the work productivity.
The gLite workload management system
International Nuclear Information System (INIS)
Andreetto, P; Andreozzi, S; Cecchi, M; Ciaschini, V; Dorise, A; Giacomini, F; Gianelle, A; Guarise, A; Lops, R; Martelli, V; Marzolla, M; Mezzadri, M; Molinari, E; Monforte, S; Avellino, G; Beco, S; Cavallini, A; Grandinetti, U; Krop, A; Maraschini, A
2008-01-01
The gLite Workload Management System (WMS) is a collection of components that provide the service responsible for distributing and managing tasks across computing and storage resources available on a Grid. The WMS basically receives requests of job execution from a client, finds the required appropriate resources, then dispatches and follows the jobs until completion, handling failure whenever possible. Other than single batch-like jobs, compound job types handled by the WMS are Directed Acyclic Graphs (a set of jobs where the input/output/execution of one of more jobs may depend on one or more other jobs), Parametric Jobs (multiple jobs with one parametrized description), and Collections (multiple jobs with a common description). Jobs are described via a flexible, high-level Job Definition Language (JDL). New functionality was recently added to the system (use of Service Discovery for obtaining new service endpoints to be contacted, automatic sandbox files archival/compression and sharing, support for bulk-submission and bulk-matchmaking). Intensive testing and troubleshooting allowed to dramatically increase both job submission rate and service stability. Future developments of the gLite WMS will be focused on reducing external software dependency, improving portability, robustness and usability
Tilted Dirac Cone Effect on Interlayer Magnetoresistance in α-(BEDT-TTF)2I3
Tajima, Naoya; Morinari, Takao
2018-04-01
We report the effect of Dirac cone tilting on interlayer magnetoresistance in α-(BEDT-TTF)2I3, which is a Dirac semimetal under pressure. Fitting of the experimental data by the theoretical formula suggests that the system is close to a type-II Dirac semimetal.
Multiplexing Low and High QoS Workloads in Virtual Environments
Verboven, Sam; Vanmechelen, Kurt; Broeckhove, Jan
Virtualization technology has introduced new ways for managing IT infrastructure. The flexible deployment of applications through self-contained virtual machine images has removed the barriers for multiplexing, suspending and migrating applications with their entire execution environment, allowing for a more efficient use of the infrastructure. These developments have given rise to an important challenge regarding the optimal scheduling of virtual machine workloads. In this paper, we specifically address the VM scheduling problem in which workloads that require guaranteed levels of CPU performance are mixed with workloads that do not require such guarantees. We introduce a framework to analyze this scheduling problem and evaluate to what extent such mixed service delivery is beneficial for a provider of virtualized IT infrastructure. Traditionally providers offer IT resources under a guaranteed and fixed performance profile, which can lead to underutilization. The findings of our simulation study show that through proper tuning of a limited set of parameters, the proposed scheduling algorithm allows for a significant increase in utilization without sacrificing on performance dependability.
Lee, Seul Chan; Cha, Min Chul; Hwangbo, Hwan; Mo, Sookhee; Ji, Yong Gu
2018-02-01
This study aimed at investigating the effect of two smartphone form factors (width and bottom bezel) on touch behaviors with one-handed interaction. User experiments on tapping tasks were conducted for four widths (67, 70, 72, and 74 mm) and five bottom bezel levels (2.5, 5, 7.5, 10, and 12.5 mm). Task performance, electromyography, and subjective workload data were collected to examine the touch behavior. The success rate and task completion time were collected as task performance measures. The NASA-TLX method was used to observe the subjective workload. The electromyogram signals of two thumb muscles, namely the first dorsal interosseous and abductor pollicis brevis, were observed. The task performances deteriorated with increasing width level. The subjective workload and electromyography data showed similar patterns with the task performances. The task performances of the bottom bezel devices were analyzed by using three different evaluation criteria. The results from these criteria indicated that tasks became increasingly difficult as the bottom bezel level decreased. The results of this study provide insights into the optimal range of smartphone form factors for one-handed interaction, which could contribute to the design of new smartphones. Copyright © 2017. Published by Elsevier Ltd.
Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J
2017-09-30
The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Evaluation of Mental Workload among ICU Ward's Nurses
Directory of Open Access Journals (Sweden)
Mohsen Mohammadi
2015-12-01
Conclusion: Various performance obstacles are correlated with nurses' workload, affirms the significance of nursing work system characteristics. Interventions are recommended based on the results of this study in the work settings of nurses in ICUs.
Using Statistical Process Control Methods to Classify Pilot Mental Workloads
National Research Council Canada - National Science Library
Kudo, Terence
2001-01-01
.... These include cardiac, ocular, respiratory, and brain activity measures. The focus of this effort is to apply statistical process control methodology on different psychophysiological features in an attempt to classify pilot mental workload...
Eye Tracking Metrics for Workload Estimation in Flight Deck Operation
Ellis, Kyle; Schnell, Thomas
2010-01-01
Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.
Simple grain mill boosts production and eases women's workload ...
International Development Research Centre (IDRC) Digital Library (Canada)
... grain mill boosts production and eases women's workload. 11 janvier 2013. Image ... It aims to increase the production, improve the processing, develop new ... farmer societies, women's self-help groups, and the food-processing industry.
Empirical investigation of workloads of operators in advanced control rooms
International Nuclear Information System (INIS)
Kim, Yochan; Jung, Wondea; Kim, Seunghwan
2014-01-01
This paper compares the workloads of operators in a computer-based control room of an advanced power reactor (APR 1400) nuclear power plant to investigate the effects from the changes in the interfaces in the control room. The cognitive-communicative-operative activity framework was employed to evaluate the workloads of the operator's roles during emergency operations. The related data were obtained by analyzing the tasks written in the procedures and observing the speech and behaviors of the reserved operators in a full-scope dynamic simulator for an APR 1400. The data were analyzed using an F-test and a Duncan test. It was found that the workloads of the shift supervisors (SSs) were larger than other operators and the operative activities of the SSs increased owing to the computer-based procedure. From these findings, methods to reduce the workloads of the SSs that arise from the computer-based procedure are discussed. (author)
Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.
Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang
2018-01-30
Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.
Dirac's Conception of the Magnetic Monopole, and its Modern Avatars
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 12. Dirac's Conception of the Magnetic Monopole, and its Modern Avatars. Sunil Mukhi. Volume 10 Issue 12 December 2005 pp 193-202. Fulltext. Click here to view fulltext PDF. Permanent link:
Spinors, tensors and the covariant form of Dirac's equation
International Nuclear Information System (INIS)
Chen, W.Q.; Cook, A.H.
1986-01-01
The relations between tensors and spinors are used to establish the form of the covariant derivative of a spinor, making use of the fact that certain bilinear combinations of spinors are vectors. The covariant forms of Dirac's equation are thus obtained and examples in specific coordinate systems are displayed. (author)
U matrix construction for Quantum Chromodynamics through Dirac brackets
International Nuclear Information System (INIS)
Santos, M.A. dos.
1987-09-01
A procedure for obtaining the U matrix using Dirac brackets, recently developed by Kiefer and Rothe, is applied for Quantum Chromodynamics. The correspondent interaction Lagrangian is the same obtained by Schwinger, Christ and Lee, using independent methods. (L.C.J.A.)
Dirac particle in a constant magnetic field: path integral treatment
Energy Technology Data Exchange (ETDEWEB)
Merdaci, A.; Boudiaf, N.; Chetouani, L. [Univ. Mentouri, Constantine (Algeria). Dept. de Physique
2008-05-15
The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)
Dirac particle in a constant magnetic field: path integral treatment
International Nuclear Information System (INIS)
Merdaci, A.; Boudiaf, N.; Chetouani, L.
2008-01-01
The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)
A rational interpretation of the Dirac equation for the electron
International Nuclear Information System (INIS)
Koga, T.
1975-01-01
Rationalization of the interpretation of the Dirac equation for the electron lies beyond the conventional scope of quantum mechanics. This difficulty motivates a revision of the system of quantum mechanics through which the indeterministic trait is eliminated from the system. (author)
Holographic interaction effects on transport in Dirac semimetals
Jacobs, V.P.J.; Vandoren, S.; Stoof, H.T.C.
2014-01-01
Strongly interacting Dirac semimetals are investigated using a holographic model especially geared to compute the single-particle correlation function for this case, including both interaction effects and non-zero temperature. We calculate the (homogeneous) optical conductivity at zero chemical
Common origin of neutrino mass, dark matter and Dirac leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar 751005 (India)
2016-12-01
We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.
Survey on Dirac equation in general relativity theory
International Nuclear Information System (INIS)
Paillere, P.
1984-10-01
Starting from an infinitesimal transformation expressed with a Killing vector and using systematically the formalism of the local tetrades, we show that, in the area of the general relativity, the Dirac equation may be formulated only versus the four local vectors which determine the gravitational potentials, their gradients and the 4-vector potential of the electromagnetic field [fr
Dirac electronics states in graphene systems: optical spectroscopy studies
Czech Academy of Sciences Publication Activity Database
Orlita, Milan; Potemski, M.
2010-01-01
Roč. 25, č. 6 (2010), 063001/1-063001/22 ISSN 0268-1242 R&D Projects: GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : graphene * Dirac fermions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.323, year: 2010
A new derivation of Dirac's magnetic monopole strength
International Nuclear Information System (INIS)
Panat, P V
2003-01-01
A new derivation of the strength of Dirac's magnetic monopole is presented which does not require an explicit form of the magnetic induction in terms of g, the magnetic pole strength. The derivation essentially uses a modification of Faraday's law of induction and quantization of angular momentum
LHCb : The DIRAC Web Portal 2.0
Mathe, Zoltan; Lazovsky, N; Stagni, Federico
2015-01-01
For many years the DIRAC interware (Distributed Infrastructure with Remote Agent Control) has had a web interface, allowing the users to monitor DIRAC activities and also interact with the system. Since then many new web technologies have emerged, therefore a redesign and a new implementation of the DIRAC Web portal were necessary, taking into account the lessons learnt using the old portal. These new technologies allowed to build a more compact and more responsive web interface that is robust and that enables users to have more control over the whole system while keeping a simple interface. The framework provides a large set of "applications", each of which can be used for interacting with various parts of the system. Communities can also create their own set of personalised web applications, and can easily extend already existing web applications with a minimal effort. Each user can configure and personalise the view for each application and save it using the DIRAC User Profile service as RESTful state prov...
On the representation of generalized Dirac (Clifford) algebras
International Nuclear Information System (INIS)
Srivastava, T.
1981-10-01
Some results of Brauer and Weyl and of Jordan and Wigner on irreducible representations of generalized Dirac (Clifford) algebras have been proved, adopting a new and simple approach which (i) makes the whole subject straightforward for physicists and (ii) simplifies the demonstration of the fundamental theorem of Pauli. (author)
Chiral Tricritical Point: A New Universality Class in Dirac Systems
Yin, Shuai; Jian, Shao-Kai; Yao, Hong
2018-05-01
Tricriticality, as a sister of criticality, is a fundamental and absorbing issue in condensed-matter physics. It has been verified that the bosonic Wilson-Fisher universality class can be changed by gapless fermionic modes at criticality. However, the counterpart phenomena at tricriticality have rarely been explored. In this Letter, we study a model in which a tricritical Ising model is coupled to massless Dirac fermions. We find that the massless Dirac fermions result in the emergence of a new tricritical point, which we refer to as the chiral tricritical point (CTP), at the phase boundary between the Dirac semimetal and the charge-density wave insulator. From functional renormalization group analysis of the effective action, we obtain the critical behaviors of the CTP, which are qualitatively distinct from both the tricritical Ising universality and the chiral Ising universality. We further extend the calculations of the chiral tricritical behaviors of Ising spins to the case of Heisenberg spins. The experimental relevance of the CTP in two-dimensional Dirac semimetals is also discussed.
Hydrogenated arsenenes as planar magnet and Dirac material
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shengli; Cai, Bo; Zeng, Haibo, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn [Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Hu, Yonghong [Institute of Optoelectronics and Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100 (China); Hu, Ziyu, E-mail: Huziyu@csrc.ac.cn, E-mail: zeng.haibo@njust.edu.cn [Beijing Computational Science Research Center, Beijing 100084 (China)
2015-07-13
Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.
Hydrogenated arsenenes as planar magnet and Dirac material
International Nuclear Information System (INIS)
Zhang, Shengli; Cai, Bo; Zeng, Haibo; Hu, Yonghong; Hu, Ziyu
2015-01-01
Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices
Hydrogenated arsenenes as planar magnet and Dirac material
Zhang, Shengli; Hu, Yonghong; Hu, Ziyu; Cai, Bo; Zeng, Haibo
2015-07-01
Arsenene and antimonene are predicted to have 2.49 and 2.28 eV band gaps, which have aroused intense interest in the two-dimensional (2D) semiconductors for nanoelectronic and optoelectronic devices. Here, the hydrogenated arsenenes are reported to be planar magnet and 2D Dirac materials based on comprehensive first-principles calculations. The semi-hydrogenated (SH) arsenene is found to be a quasi-planar magnet, while the fully hydrogenated (FH) arsenene is a planar Dirac material. The buckling height of pristine arsenene is greatly decreased by the hydrogenation, resulting in a planar and relatively low-mass-density sheet. The electronic structures of arsenene are also evidently altered after hydrogenating from wide-band-gap semiconductor to metallic material for SH arsenene, and then to Dirac material for FH arsenene. The SH arsenene has an obvious magnetism, mainly contributed by the p orbital of the unsaturated As atom. Such magnetic and Dirac materials modified by hydrogenation of arsenene may have potential applications in future optoelectronic and spintronic devices.
Fermi-Dirac statistics and the number theory
Kubasiak, A.; Korbicz, J.; Zakrzewski, J.; Lewenstein, M.
2005-01-01
We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.
Axial anomaly and index theorem for Dirac-Kaehler fermions
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.; Monteiro, M.A.R.
1985-01-01
We present the calculation of the axial anomaly for Dirac-Kaehler fermions in two and four dimensions applying the procedure developed by Seeley to the signature operator in the twisted complex. The result is equal to the one for the twisted spin complex times 2 n/2 (n:number of dimensions) and agrees with the expressions from the index theorem. (author) [pt
Axial anomaly and index theorem for Dirac-Kaehler fermions
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.; Rego Monteiro, M.A.
1985-01-01
We present a calculation of the axial anomaly for Dirac-Kaehler fermions in two and four dimensions applying the procedure developed by Seeley to the signature operator in the twisted complex. The result is equal to the one for the twisted spin complex times 2sup(π/2) (n: number of dimensions) and agrees with the expressions from the index theorem. (orig.)
New exact solutions of the Dirac equation. 11
International Nuclear Information System (INIS)
Bagrov, V.G.; Noskov, M.D.
1984-01-01
Investigations into determining new exact solutions of relativistic wave equations started in another paper were continued. Exact solutions of the Dirac, Klein-Gordon equations and classical relativistic equations of motion in four new types of external electromagnetic fields were found
Majorana zero modes in Dirac semimetal Josephson junctions
Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander
We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.
Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.
Owerre, S A
2017-07-31
In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM magnon edge modes.
Radiationless Zitterbewegung of Dirac particles and mass formula
International Nuclear Information System (INIS)
Noboru Hokkyo.
1987-06-01
The Zitterbewegung of the Dirac particle is given a visual representation by solving the two-component difference form of the Dirac equation. It is seen that the space-time trajectory of a Dirac particle can be pictured as a correlated whole of a network of zigzags of left- and right-handed chiral neutrino-like line elements. These zigzags can feel the curl of the external electromagnetic vector potential and give rise to the spin magnetic interaction, confirming Schroedinger's earlier intuitive picture of the spin as the orbital angular momentum of the Zitterbewegung. The network of zigzags associated with an electron splits and reunites in passing through the slits in the electron beam interference experiment. It is proposed to interpret Nambu's empirical mass formula m n =(n/2)137m e =(n/2)((h/2π)/cL), n=integer, as a radiationless condition for the Zitterbewegung of the hadronic Dirac particle of the linear spatial extension of the order of the classical electron radius L=e 2 /m e c 2 . (author). 20 refs, 4 figs
Qualitative analysis of trapped Dirac fermions in graphene
Czech Academy of Sciences Publication Activity Database
Jakubský, Vít; Krejčiřík, David
2014-01-01
Roč. 349, OCT (2014), s. 268-287 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : graphene * Dirac fermion * confinement * Varitional principle Subject RIV: BE - Theoretical Physics Impact factor: 2.103, year: 2014
Dirac fermions in nontrivial topology black hole backgrounds
International Nuclear Information System (INIS)
Gozdz, Marek; Nakonieczny, Lukasz; Rogatko, Marek
2010-01-01
We discuss the behavior of the Dirac fermions in a general spherically symmetric black hole background with a nontrivial topology of the event horizon. Both massive and massless cases are taken into account. We will conduct an analytical study of intermediate and late-time behavior of massive Dirac hair in the background of a black hole with a global monopole and dilaton black hole pierced by a cosmic string. In the case of a global monopole swallowed by a static black hole, the intermediate late-time behavior depends on the mass of the Dirac field, the multiple number of the wave mode, and the global monopole parameter. The late-time behavior is quite independent of these factors and has a decay rate proportional to t -5/6 . As far as the black hole pierced by a cosmic string is concerned, the intermediate late-time behavior depends only on the hair mass and the multipole number of the wave mode, while the late-time behavior dependence is the same as in the previous case. The main modification stems from the topology of the S 2 sphere pierced by a cosmic string. This factor modifies the eigenvalues of the Dirac operator acting on the transverse manifold.
GPs' perceptions of workload in England: a qualitative interview study.
Croxson, Caroline Hd; Ashdown, Helen F; Hobbs, Fd Richard
2017-02-01
GPs report the lowest levels of morale among doctors, job satisfaction is low, and the GP workforce is diminishing. Workload is frequently cited as negatively impacting on commitment to a career in general practice, and many GPs report that their workload is unmanageable. To gather an in-depth understanding of GPs' perceptions and attitudes towards workload. All GPs working within NHS England were eligible. Advertisements were circulated via regional GP e-mail lists and national social media networks in June 2015. Of those GPs who responded, a maximum-variation sample was selected until data saturation was reached. Semi-structured, qualitative interviews were conducted. Data were analysed thematically. In total, 171 GPs responded, and 34 were included in this study. GPs described an increase in workload over recent years, with current working days being long and intense, raising concerns over the wellbeing of GPs and patients. Full-time partnership was generally not considered to be possible, and many participants felt workload was unsustainable, particularly given the diminishing workforce. Four major themes emerged to explain increased workload: increased patient needs and expectations; a changing relationship between primary and secondary care; bureaucracy and resources; and the balance of workload within a practice. Continuity of care was perceived as being eroded by changes in contracts and working patterns to deal with workload. This study highlights the urgent need to address perceived lack of investment and clinical capacity in general practice, and suggests that managing patient expectations around what primary care can deliver, and reducing bureaucracy, have become key issues, at least until capacity issues are resolved. © British Journal of General Practice 2017.
Patient Workload Profile: National Naval Medical Center (NNMC), Bethesda, MD.
1980-06-01
AD-A09a 729 WESTEC SERVICES NC SAN DIEGOCA0S / PATIENT WORKLOAD PROFILE: NATIONAL NAVAL MEDICAL CENTER NNMC),- ETC(U) JUN 80 W T RASMUSSEN, H W...provides site workload data for the National Naval Medical Center (NNMC) within the following functional support areas: Patient Appointment...on managing medical and patient data, thereby offering the health care provider and administrator more powerful capabilities in dealing with and
The Effects of Workload Transitions in a Multitasking Environment
2016-09-13
Workload Transitions in a Multitasking Environment 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Margaret A. Bowers...DISTRIBUTION STATEMENT A: Approved for public release. The Effects of Workload Transitions in a Multitasking Environment Margaret A. Bowers1,2, James C...well as performance in a complex multitasking environment. The results of the NASA TLX and shortened DSSQ did not provide support for the position
Nursing workload for cancer patients under palliative care
Fuly, Patrícia dos Santos Claro; Pires, Livia Márcia Vidal; Souza, Claudia Quinto Santos de; Oliveira, Beatriz Guitton Renaud Baptista de; Padilha, Katia Grillo
2016-01-01
Abstract OBJECTIVE To verify the nursing workload required by cancer patients undergoing palliative care and possible associations between the demographic and clinical characteristics of the patients and the nursing workload. METHOD This is a quantitative, cross-sectional, prospective study developed in the Connective Bone Tissue (TOC) clinics of Unit II of the Brazilian National Cancer Institute José Alencar Gomes da Silva with patients undergoing palliative care. RESULTS Analysis of 197 ...
Evaluation of Mental Workload among ICU Ward's Nurses.
Mohammadi, Mohsen; Mazloumi, Adel; Kazemi, Zeinab; Zeraati, Hojat
2015-01-01
High level of workload has been identified among stressors of nurses in intensive care units (ICUs). The present study investigated nursing workload and identified its influencing perfor-mance obstacles in ICUs. This cross-sectional study was conducted, in 2013, on 81 nurses working in ICUs in Imam Khomeini Hospital in Tehran, Iran. NASA-TLX was applied for assessment of workload. Moreover, ICUs Performance Obstacles Questionnaire was used to identify performance obstacles associated with ICU nursing. Physical demand (mean=84.17) was perceived as the most important dimensions of workload by nurses. The most critical performance obstacles affecting workload included: difficulty in finding a place to sit down, hectic workplace, disorganized workplace, poor-conditioned equipment, waiting for using a piece of equipment, spending much time seeking for supplies in the central stock, poor quality of medical materials, delay in getting medications, unpredicted problems, disorganized central stock, outpatient surgery, spending much time dealing with family needs, late, inadequate, and useless help from nurse assistants, and ineffective morning rounds (P-value<0.05). Various performance obstacles are correlated with nurses' workload, affirms the significance of nursing work system characteristics. Interventions are recommended based on the results of this study in the work settings of nurses in ICUs.
EFFECTIVE INDICES FOR MONITORING MENTAL WORKLOAD WHILE PERFORMING MULTIPLE TASKS.
Hsu, Bin-Wei; Wang, Mao-Jiun J; Chen, Chi-Yuan; Chen, Fang
2015-08-01
This study identified several physiological indices that can accurately monitor mental workload while participants performed multiple tasks with the strategy of maintaining stable performance and maximizing accuracy. Thirty male participants completed three 10-min. simulated multitasks: MATB (Multi-Attribute Task Battery) with three workload levels. Twenty-five commonly used mental workload measures were collected, including heart rate, 12 HRV (heart rate variability), 10 EEG (electroencephalography) indices (α, β, θ, α/θ, θ/β from O1-O2 and F4-C4), and two subjective measures. Analyses of index sensitivity showed that two EEG indices, θ and α/θ (F4-C4), one time-domain HRV-SDNN (standard deviation of inter-beat intervals), and four frequency-domain HRV: VLF (very low frequency), LF (low frequency), %HF (percentage of high frequency), and LF/HF were sensitive to differentiate high workload. EEG α/θ (F4-C4) and LF/HF were most effective for monitoring high mental workload. LF/HF showed the highest correlations with other physiological indices. EEG α/θ (F4-C4) showed strong correlations with subjective measures across different mental workload levels. Operation strategy would affect the sensitivity of EEG α (F4-C4) and HF.
Hawking radiation of Dirac particles in the hot NUT-Kerr-Newman spacetime
International Nuclear Information System (INIS)
Ahmed, M.
1991-01-01
The Hawking radiation of charged Dirac particles on the horizons of the hot NUT-Kerr-Newman spacetime is studied in this paper. To this end, we obtain the radial decoupled Dirac equation for the electron in the hot NUT-Kerr-Newman spacetime. Next we solve the Dirac equation near the horizons. Finally, by analytic continuation, the Hawking thermal spectrum formula of Dirac particles is obtained. The problem of the Hawking evaporation of Dirac particles in the hot NUT-Kerr-Newman background is thus solved. (orig.)
A comparison of policies on nurse faculty workload in the United States.
Ellis, Peggy A
2013-01-01
This article describes nurse faculty workload policies from across the nation in order to assess current practice. There is a well-documented shortage of nursing faculty leading to an increase in workload demands. Increases in faculty workload results in difficulties with work-life balance and dissatisfaction threatening to make nursing education less attractive to young faculty. In order to begin an examination of faculty workload in nursing, existing workloads must be known. Faculty workload data were solicited from nursing programs nationwide and analyzed to determine the current workloads. The most common faculty teaching workload reported overall for nursing is 12 credit hours per semester; however, some variations exist. Consideration should be given to the multiple components of the faculty workload. Research is needed to address the most effective and efficient workload allocation for nursing faculty.
Quantitative assessment of workload and stressors in clinical radiation oncology.
Mazur, Lukasz M; Mosaly, Prithima R; Jackson, Marianne; Chang, Sha X; Burkhardt, Katharin Deschesne; Adams, Robert D; Jones, Ellen L; Hoyle, Lesley; Xu, Jing; Rockwell, John; Marks, Lawrence B
2012-08-01
Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045). Workload level and sources of stressors vary
Quantitative Assessment of Workload and Stressors in Clinical Radiation Oncology
International Nuclear Information System (INIS)
Mazur, Lukasz M.; Mosaly, Prithima R.; Jackson, Marianne; Chang, Sha X.; Burkhardt, Katharin Deschesne; Adams, Robert D.; Jones, Ellen L.; Hoyle, Lesley; Xu, Jing; Rockwell, John; Marks, Lawrence B.
2012-01-01
Purpose: Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Methods and Materials: Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). Results: A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045
Quantitative Assessment of Workload and Stressors in Clinical Radiation Oncology
Energy Technology Data Exchange (ETDEWEB)
Mazur, Lukasz M., E-mail: lukasz_mazur@ncsu.edu [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Biomedical Engineering, North Carolina State University, Raleigh, North Carolina (United States); Mosaly, Prithima R. [Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Jackson, Marianne; Chang, Sha X.; Burkhardt, Katharin Deschesne; Adams, Robert D.; Jones, Ellen L.; Hoyle, Lesley [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Xu, Jing [Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Rockwell, John; Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States)
2012-08-01
Purpose: Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Methods and Materials: Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). Results: A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045
Nursing workloads in family health: implications for universal access.
de Pires, Denise Elvira Pires; Machado, Rosani Ramos; Soratto, Jacks; Scherer, Magda dos Anjos; Gonçalves, Ana Sofia Resque; Trindade, Letícia Lima
2016-01-01
to identify the workloads of nursing professionals of the Family Health Strategy, considering its implications for the effectiveness of universal access. qualitative study with nursing professionals of the Family Health Strategy of the South, Central West and North regions of Brazil, using methodological triangulation. For the analysis, resources of the Atlas.ti software and Thematic Content Analysis were associated; and the data were interpreted based on the labor process and workloads as theorical approaches. the way of working in the Family Health Strategy has predominantly resulted in an increase in the workloads of the nursing professionals, with emphasis on the work overload, excess of demand, problems in the physical infrastructure of the units and failures in the care network, which hinders its effectiveness as a preferred strategy to achieve universal access to health. On the other hand, teamwork, affinity for the work performed, bond with the user, and effectiveness of the assistance contributed to reduce their workloads. investments on elements that reduce the nursing workloads, such as changes in working conditions and management, can contribute to the effectiveness of the Family Health Strategy and achieving the goal of universal access to health.
Realization of non-symmorphic Dirac cones in PbFCl materials
Schoop, Leslie
While most 3D Dirac semimetals require two bands with different orbital character to be protected, there is also the possibility to find 3D Dirac semimetals that are guaranteed to exist in certain space groups. Those are resulting from the non-symmoprhic symmetry of the space group, which forces the bands to degenerate at high symmetry points in the Brillouin zone. Non-symmorphic space groups can force three- four, six and eight fold degeneracies which led to the proposal to find 3D Dirac Semimetals as well as new quasiparticles in such space groups. Problematic for realizing this types of Dirac materials is that they require and odd band filling in order to have the Fermi level located at or also near by the band crossing points. Therefore, although the first prediction for using non-symmoprhic symmetry to create a Dirac material was made in 2012, it took almost four years for an experimental verification of this type of Dirac crossing. In this talk I will introduce the material ZrSiS that has, besides other Dirac features, a Dirac cone protected by non-symmorphic symmetry at about 0.5 eV below the Fermi level and was the first material where this type of Dirac cone was imaged with ARPES. I will then proceed to discuss ways to shift this crossing to the Fermi edge and finally show an experimental verification of a fourfold Dirac crossing, protected by non-symmorphic symmetry, at the Fermi energy.
New correct solutions of the Dirac equation. 5
International Nuclear Information System (INIS)
Bagrov, V.G.; Byzov, N.N.; Gitman, D.M.; Klimenko, Yu.I.; Meshkov, A.G.; Shapovalov, V.N.; Shakhmatov, V.M.
1975-01-01
Some exact solutions for the Dirac equation, Klein-Gordon equation and classical relativistic equations of motion of an electron in external electromagnetic fields of a special type are considered. When fields E vector and H vector are related by the expression H vector=[n vector E vector]+n vector H 3 , where n vector is a constant unit vector, it turns out that among fields permitting the separation of variables in the Klein-Gordon equation more than half satisfy this relationship. For such fields the solution of the Dirac equation may be simplified considerably. Four specific kinds of fields are examined. The character of electron motion in such fields is peculiar but in the mathematical aspect, part of the problem is reduced to those considered previously
Chirality correlation within Dirac eigenvectors from domain wall fermions
International Nuclear Information System (INIS)
Blum, T.; Christ, N.; Cristian, C.; Liao, X.; Liu, G.; Mawhinney, R.; Wu, L.; Zhestkov, Y.; Dawson, C.
2002-01-01
In the dilute instanton gas model of the QCD vacuum, one expects a strong spatial correlation between chirality and the maxima of the Dirac eigenvectors with small eigenvalues. Following Horvath et al. we examine this question using lattice gauge theory within the quenched approximation. We extend the work of those authors by using weaker coupling, β=6.0, larger lattices, 16 4 , and an improved fermion formulation, domain wall fermions. In contrast with this earlier work, we find a striking correlation between the magnitudes of the chirality density, |ψ † (x)γ 5 ψ(x)|, and the normal density, ψ † (x)ψ(x), for the low-lying Dirac eigenvectors
Spin-polarized gapped Dirac spectrum of unsupported silicene
Energy Technology Data Exchange (ETDEWEB)
Podsiadły-Paszkowska, A., E-mail: agata.podsiadly@gmail.com; Krawiec, M., E-mail: mariusz.krawiec@umcs.pl
2016-06-15
Highlights: • Effects of spin–orbit interaction and atomic reconstruction of silicene on its electronic properties have been studied. • Spin-polarized gapped Dirac spectrum has been revealed. • Two different AFM phases have been obtained. - Abstract: We study effects of the spin–orbit interaction and the atomic reconstruction of silicene on its electronic spectrum. As an example we consider unsupported silicene pulled off from Pb(111) substrate. Using first principles density functional theory we show that the inversion symmetry broken arrangement of atoms and the spin–orbit interaction generate a spin-polarized electronic spectrum with an energy gap in the Dirac cone. These findings are particularly interesting in view of the quantum anomalous and quantum valley Hall effects and should be observable in weakly interacting silicene-substrate systems.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Stability of Dirac Liquids with Strong Coulomb Interaction.
Tupitsyn, Igor S; Prokof'ev, Nikolay V
2017-01-13
We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.
The strangest man. The hidden life of Paul Dirac
International Nuclear Information System (INIS)
Farmelo, Graham
2016-01-01
The Strangest Man is the Costa Biography Award-winning account of Paul Dirac, the famous physicist sometimes called the British Einstein. He was one of the leading pioneers of the greatest revolution in twentieth-century science: quantum mechanics. The youngest theoretician ever to win the Nobel Prize for Physics, he was also pathologically reticent, strangely literal-minded and legendarily unable to communicate or empathize. Through his greatest period of productivity, his postcards home contained only remarks about the weather. Based on a previously undiscovered archive of family papers, Graham Farmelo celebrates Dirac's massive scientific achievement while drawing a compassionate portrait of his life and work. Farmelo shows a man who, while hopelessly socially inept, could manage to love and sustain close friendship. The Strangest Man is an extraordinary and moving human story, as well as a study of one of the most exciting times in scientific history.
Dirac bound states of anharmonic oscillator in external fields
International Nuclear Information System (INIS)
Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.
2014-01-01
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method
Performance of combined production and analysis WMS in DIRAC
Paterson, S
2010-01-01
DIRAC, the LHCb community Grid solution, uses generic pilot jobs to obtain a virtual pool of resources for the VO community. In this way agents can request the highest priority user or production jobs from a central task queue and VO policies can be applied with full knowledge of current and previous activities. In this paper the performance of the DIRAC WMS will be presented with emphasis on how the system copes with many varied job requirements. In order to ensure traceability of jobs as well as security, the actual users identity has to be established before running the actual payload workflow. Generic pilot jobs take advantage of the deployment of the gLExec utility in order to achieve this. Experience with gLExec will be described.
Phase diagram of the Dirac spectrum at nonzero chemical potential
International Nuclear Information System (INIS)
Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.
2008-01-01
The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.
How (not) to teach Lorentz covariance of the Dirac equation
International Nuclear Information System (INIS)
Nikolić, Hrvoje
2014-01-01
In the textbook proofs of the Lorentz covariance of the Dirac equation, one treats the wave function as a spinor and gamma matrices as scalars, leading to a quite complicated formalism with several pedagogic drawbacks. As an alternative, I propose to teach the Dirac equation and its Lorentz covariance by using a much simpler, but physically equivalent formalism, in which these drawbacks do not appear. In this alternative formalism, the wave function transforms as a scalar and gamma matrices as components of a vector, such that the standard physically relevant bilinear combinations do not change their transformation properties. The alternative formalism allows also a natural construction of some additional non-standard bilinear combinations with well-defined transformation properties. (paper)
Surface regulated arsenenes as Dirac materials: From density functional calculations
International Nuclear Information System (INIS)
Yuan, Junhui; Xie, Qingxing; Yu, Niannian; Wang, Jiafu
2017-01-01
Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.
Photon-Assisted Spectroscopy of Dirac Electrons in Graphene
Directory of Open Access Journals (Sweden)
Abdelrazek A. S.
2012-01-01
Full Text Available The quantum Goos-Hanchen effect in graphene is investigated. The Goos-Hanchen phase shift is derived by solving the Dirac eigenvalue differential equation. This phase shift varies with the angle of incidence of the quasiparticle Dirac fermions on the bar- rier. Calculations show that the dependence of the phase shift on the angle of incidence is sensitive to the variation of the energy gap of graphene, the applied magnetic field and the frequency of the electromagnetic waves. The present results show that the con- ducting states in the sidebands is very effective in the phase shift for frequencies of the applied electromagnetic field. This investigation is very important for the application of graphene in nanoelectronics and nanophotonics.
Three-dimensional periodic dielectric structures having photonic Dirac points
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Dark energy from pNGB mediated Dirac neutrino condensate
Directory of Open Access Journals (Sweden)
Ujjal Kumar Dey
2018-03-01
Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.
The causal perturbation expansion revisited: Rescaling the interacting Dirac sea
International Nuclear Information System (INIS)
Finster, Felix; Grotz, Andreas
2010-01-01
The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of the Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion.
Particlelike solutions of the Einstein-Dirac equations
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
1999-05-01
The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to spherically symmetric perturbations), whereas for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how the energy of the fermions and the (ADM) mass behave as functions of the rest mass of the fermions. Although gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved even for strong coupling.
A spatially homogeneous and isotropic Einstein-Dirac cosmology
Finster, Felix; Hainzl, Christian
2011-04-01
We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.
The causal perturbation expansion revisited: Rescaling the interacting Dirac sea
Finster, Felix; Grotz, Andreas
2010-07-01
The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of the Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion.
Spectral density and a family of Dirac operators
International Nuclear Information System (INIS)
Niemi, A.J.
1985-01-01
The spectral density for a class Dirac operators is investigated by relating its even and odd parts to the Riemann zeta-function and to the eta-invariant by Atiyah, Padoti and Singer. Asymptotic expansions are studied and a 'hidden' supersymmetry is revealed and used to relate the Dirac operator to a supersymmetric quantum mechanics. A general method for the computation of the odd spectral density is developed, and various applications are discussed. In particular the connection to the fermion number and a relation between the odd spectral density and some ratios of Jost functions and relative phase shifts are pointed out. Chiral symmetry breaking is investigated using methods analogous to those applied in the investigation of the fermion number, and related to supersymmetry breaking in the corresponding quantum mechanical model. (orig.)
Disordered Dirac fermions: the marriage of three different approaches
Energy Technology Data Exchange (ETDEWEB)
Bhaseen, Miraculous J. E-mail: bhaseen@thphys.ox.ac.uk; Caux, J.-S. E-mail: caux@thphys.ox.ac.uk; Kogan, Ian I. E-mail: kogan@thphys.ox.ac.uk; Tsvelik, Alexei M. E-mail: tsvelik@thphys.ox.ac.uk
2001-12-17
We compare the critical multipoint correlation functions for two-dimensional (massless) Dirac fermions in the presence of a random su(N) (non-Abelian) gauge potential, obtained by three different methods. We critically reexamine previous results obtained using the replica approach and in the limit of infinite disorder strength and compare them to new results (presented here) obtained using the supersymmetric approach to the N=2 case. We demonstrate that this menage a trois of different approaches leads to identical results. Remarkable relations between apparently different conformal field theories (CFTs) are thereby obtained. We further establish a connection between the random Dirac fermion problem and the c=-2 theory of dense polymers. The presence of the c=-2 theory may be seen in all three different treatments of the disorder.
Disordered Dirac fermions: the marriage of three different approaches
International Nuclear Information System (INIS)
Bhaseen, Miraculous J.; Caux, J.-S.; Kogan, Ian I.; Tsvelik, Alexei M.
2001-01-01
We compare the critical multipoint correlation functions for two-dimensional (massless) Dirac fermions in the presence of a random su(N) (non-Abelian) gauge potential, obtained by three different methods. We critically reexamine previous results obtained using the replica approach and in the limit of infinite disorder strength and compare them to new results (presented here) obtained using the supersymmetric approach to the N=2 case. We demonstrate that this menage a trois of different approaches leads to identical results. Remarkable relations between apparently different conformal field theories (CFTs) are thereby obtained. We further establish a connection between the random Dirac fermion problem and the c=-2 theory of dense polymers. The presence of the c=-2 theory may be seen in all three different treatments of the disorder
Three-dimensional periodic dielectric structures having photonic Dirac points
Energy Technology Data Exchange (ETDEWEB)
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Peccei-Quinn symmetry for Dirac seesaw and leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Gu, Pei-Hong [Department of Physics and Astronomy, Shanghai Jiao Tong University,800 Dongchuan Road, Shanghai 200240 (China)
2016-07-04
We extend the DFSZ invisible axion model to simultaneously explain small Dirac neutrino masses and cosmic matter-antimatter asymmetry. After the Peccei-Quinn and electroweak symmetry breaking, the effective Yukawa couplings of the Dirac neutrinos to the standard model Higgs scalar can be highly suppressed by the ratio of the vacuum expectation value of an iso-triplet Higgs scalar over the masses of some heavy gauge-singlet fermions, iso-doublet Higgs scalars or iso-triplet fermions. The iso-triplet fields can carry a zero or nonzero hypercharge. Through the decays of the heavy gauge-singlet fermions, iso-doublet scalars or iso-triplet fermions, we can obtain a lepton asymmetry in the left-handed leptons and an opposite lepton asymmetry in the right-handed neutrinos. Since the right-handed neutrinos do not participate in the sphaleron processes, the left-handed lepton asymmetry can be partially converted to a baryon asymmetry.
[Analysis on workload for hospital DOTS service].
Nagata, Yoko; Urakawa, Minako; Kobayashi, Noriko; Kato, Seiya
2014-04-01
A directly observed treatment short course (DOTS) trial was launched in Japan in the late 1990s and targeted patients with social depression at urban areas. Based on these findings, the Ministry of Health, Labour and Welfare established the Japanese DOTS Strategy in 2003, which is a comprehensive support service ensuring the adherence of tuberculosis patients to drug administration. DOTS services are initially provided at the hospital to patients with infectious tuberculosis who are hospitalized according to the Infectious Diseases Control Law. After being discharged from the hospital, the patients are referred to a public health center. However, a survey conducted in 2008 indicated that all the patients do not receive appropriate DOTS services at some hospitals. In the present study, we aimed to evaluate the protocols and workload of DOTS at hospitals that are actively involved in tuberculosis medical practice, including DOTS, to assess whether the hospital DOTS services were adequate. We reviewed a series of articles on hospital DOTS from a Japanese journal on nursing for tuberculosis patients and identified 25 activities regarding the hospital DOTS service. These 25 items were then classified into 3 categories: health education to patients, support for adherence, and coordination with the health center. In total, 20 hospitals that had > 20 authorized tuberculosis beds were selected--while considering the geographical balance, schedule of this survey, etc.--from 33 hospitals where an ex-trainee of the tuberculosis control expert training program in the Research Institute of Tuberculosis (RIT) was working and 20 hospitals that had collaborated with our previous survey on tuberculosis medical facilities. All the staff associated with the DOTS service were asked to record the total working time as well as the time spent for each activity. The data were collected and analyzed at the RIT. The working times for each activity of the DOTS service for nurses, pharmacists
Dirac equation in noncommutative space for hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C., E-mail: tadorno@nonada.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Chaichian, M., E-mail: Masud.Chaichian@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Tureanu, A., E-mail: Anca.Tureanu@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland)
2009-11-30
We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S{sub 1/2}, 2P{sub 1/2} and 2P{sub 3/2} is lifted completely, such that new transition channels are allowed.
Dirac equation in noncommutative space for hydrogen atom
International Nuclear Information System (INIS)
Adorno, T.C.; Baldiotti, M.C.; Chaichian, M.; Gitman, D.M.; Tureanu, A.
2009-01-01
We consider the energy levels of a hydrogen-like atom in the framework of θ-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S 1/2 , 2P 1/2 and 2P 3/2 is lifted completely, such that new transition channels are allowed.
Two-loop Dirac neutrino mass and WIMP dark matter
Bonilla, Cesar; Ma, Ernest; Peinado, Eduardo; Valle, Jose W.F.
2018-01-01
We propose a "scotogenic" mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two--loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical $Diracon$ that induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhan...
The overlap Dirac operator as a continued fraction
International Nuclear Information System (INIS)
Wenger, U.; Deutsches Elektronen-Synchrotron
2004-03-01
We use a continued fraction expansion of the sign-function in order to obtain a five dimensional formulation of the overlap lattice Dirac operator. Within this formulation the inverse of the overlap operator can be calculated by a single Krylov space method and nested conjugate gradient procedures are avoided. We point out that the five dimensional linear system can be made well conditioned using equivalence transformations on the continued fractions. (orig.)
A toy model for higher spin Dirac operators
International Nuclear Information System (INIS)
Eelbode, D.; Van de Voorde, L.
2010-01-01
This paper deals with the higher spin Dirac operator Q 2,1 acting on functions taking values in an irreducible representation space for so(m) with highest weight (5/2, 3/2, 1/2,..., 1/2). . This operator acts as a toy model for generalizations of the classical Rarita-Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.
General method for reducing the two-body Dirac equation
International Nuclear Information System (INIS)
Galeao, A.P.; Ferreira, P.L.
1992-01-01
A semi relativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schroedinger-type equations is also discussed. (author)
The Dirac-Kaehler equation and fermions on the lattice
International Nuclear Information System (INIS)
Becher, P.
1982-05-01
The geometrical description of spinor fields by E. Kaehler is used to formulate a consistent lattice approximation of fermions. The relation to free simple Dirac fields as well as to Susskind's description of lattice fermions is clarified. The first steps towards a quantized interacting theory are given. The correspondence between the calculus of differential forms and concepts of algebraic topology is shown to be a useful method for a completely analogous treatment of the problems in the continuum and on the lattice. (orig.)
Algebraic and Dirac-Hestenes spinors and spinor fields
International Nuclear Information System (INIS)
Rodrigues, Waldyr A. Jr.
2004-01-01
Almost all presentations of Dirac theory in first or second quantization in physics (and mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of nonhomogeneous even multivectors fields) is used. However, a careful analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski space-time as some equivalence classes of pairs (Ξ u ,ψ Ξ u ), where Ξ u is a spinorial frame field and ψ Ξ u is an appropriate sum of multivectors fields (to be specified below). The necessity of our definitions are shown by a careful analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities associated with the bilinear covariants (on Minkowski space-time) made with ASF or DHSF. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections of a vector bundle called the left spin-Clifford bundle. The bundle formulation is essential in order to be possible to produce a coherent theory for the covariant derivatives of these fields on arbitrary Riemann-Cartan space-times. The present paper contains also Appendixes A-E which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many tricks of the trade) necessary for the intelligibility of the text
Fermi-Dirac statistics plus liquid description of quark partons
International Nuclear Information System (INIS)
Buccella, F.; Migliore, G.; Tibullo, V.
1995-01-01
A previous approach with Fermi-Dirac distributions for fermion partons is here improved to comply with the expected low x behaviour of structure functions. We are so able to get a fair description of the unpolarized and polarized structure functions of the nucleons as well as of neutrino data. We cannot reach definite conclusions, but confirm our suspicion of a relationship between the defects in Gottfried and spin sum rules. (orig.)
Noncommutativity into Dirac Equation with mass dependent on the position
International Nuclear Information System (INIS)
Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva
2013-01-01
Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)
Electric-dipole-induced universality for Dirac fermions in graphene.
De Martino, Alessandro; Klöpfer, Denis; Matrasulov, Davron; Egger, Reinhold
2014-05-09
We study electric dipole effects for massive Dirac fermions in graphene and related materials. The dipole potential accommodates towers of infinitely many bound states exhibiting a universal Efimov-like scaling hierarchy. The dipole moment determines the number of towers, but there is always at least one tower. The corresponding eigenstates show a characteristic angular asymmetry, observable in tunnel spectroscopy. However, charge transport properties inferred from scattering states are highly isotropic.
Algebraic solution for the vector potential in the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Booth, H.S. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia); Centre for Mathematics and its Applications, Australian National University (Australia)]. E-mail: hbooth@wintermute.anu.edu.au; Legg, G.; Jarvis, P.D. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)
2001-07-20
The Dirac equation for an electron in an external electromagnetic field can be regarded as a singular set of linear equations for the vector potential. Radford's method of algebraically solving for the vector potential is reviewed, with attention to the additional constraints arising from non-maximality of the rank. The extension of the method to general spacetimes is illustrated by examples in diverse dimensions with both c- and a-number wavefunctions. (author)
Kuijer, P. Paul F. M.; van der Beek, Allard J.; van Dieën, Jaap H.; Visser, Bart; Frings-Dresen, Monique H. W.
2002-01-01
The effect of the number of two-wheeled containers at a gathering point on the energetic workload and the work efficiency in refuse collecting was studied in order to design an optimal gathering point for two-wheeled containers. Three sizes of gathering points were investigated, i.e. with 2, 16 and