WorldWideScience

Sample records for dipolar second-order nonlinear

  1. Second order optical nonlinearity in silicon by symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cazzanelli, Massimo, E-mail: massimo.cazzanelli@unitn.it [Laboratorio IdEA, Dipartimento di Fisica, Università di Trento, via Sommarive, 14 Povo (Trento) (Italy); Schilling, Joerg, E-mail: joerg.schilling@physik.uni-halle.de [Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg, Karl-Freiherr-von-Fritsch Str. 3, 06120 Halle (Germany)

    2016-03-15

    Although silicon does not possess a dipolar bulk second order nonlinear susceptibility due to its centro-symmetric crystal structure, in recent years several attempts were undertaken to create such a property in silicon. This review presents the different sources of a second order susceptibility (χ{sup (2)}) in silicon and the connected second order nonlinear effects which were investigated up to now. After an introduction, a theoretical overview discusses the second order nonlinearity in general and distinguishes between the dipolar contribution—which is usually dominating in non-centrosymmetric structures—and the quadrupolar contribution, which even exists in centro-symmetric materials. Afterwards, the classic work on second harmonic generation from silicon surfaces in reflection measurements is reviewed. Due to the abrupt symmetry breaking at surfaces and interfaces locally a dipolar second order susceptibility appears, resulting in, e.g., second harmonic generation. Since the bulk contribution is usually small, the study of this second harmonic signal allows a sensitive observation of the surface/interface conditions. The impact of covering films, strain, electric fields, and defect states at the interfaces was already investigated in this way. With the advent of silicon photonics and the search for ever faster electrooptic modulators, the interest turned to the creation of a dipolar bulk χ{sup (2)} in silicon. These efforts have been focussing on several experiments applying an inhomogeneous strain to the silicon lattice to break its centro-symmetry. Recent results suggesting the impact of electric fields which are exerted from fixed charges in adjacent covering layers are also included. After a subsequent summary on “competing” concepts using not Si but Si-related materials, the paper will end with some final conclusions, suggesting possible future research direction in this dynamically developing field.

  2. Second-order nonlinearity induced transparency.

    Science.gov (United States)

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  3. New Chiral Bis-Dipolar 6,6'-Disubstituted-Binaphthol Derivatives for Second-Order Nonlinear Optics

    DEFF Research Database (Denmark)

    Deussen, Heinz-Josef; Boutton, Carlo; Thorup, Niels

    1998-01-01

    (S)everal chiral molecules with C-2 symmetry derived from two geometries of the binaphthol (BN) system substituted with different accepters have been synthesized in order to study the possibility of producing noncentrosymmetric crystals formed from these chiral structures. All the molecules possess...... cancel out exactly despite the noncentrosymmetry. The crystal structure of racemic 9,14-dicyanodinaphtho[2,1-d:1',2'-f][1,3]-dioxepin (2b) was found to be centrosymmetric. The new compounds were investigated for second-harmonic generation (including BN derivatives reported earlier) by the Kurtz......-Perry powder test to evaluate the second-order nonlinear optical (NLO) properties of polycrystalline samples. Although chirality ensures noncentrosymmetric crystals, only modest (approximate to 2-methyl-4-nitroaniline) or no nonlinearities were observed in the powder test, For a representative selection...

  4. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    International Nuclear Information System (INIS)

    Alloatti, L.; Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-01-01

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al 2 O 3 , B = TiO 2 , and C = HfO 2 . The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths

  5. Microscopic cascading of second-order molecular nonlinearity: New design principles for enhancing third-order nonlinearity.

    Science.gov (United States)

    Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N

    2010-04-12

    Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.

  6. Nontrivial Periodic Solutions for Nonlinear Second-Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Tieshan He

    2011-01-01

    Full Text Available This paper is concerned with the existence of nontrivial periodic solutions and positive periodic solutions to a nonlinear second-order difference equation. Under some conditions concerning the first positive eigenvalue of the linear equation corresponding to the nonlinear second-order equation, we establish the existence results by using the topological degree and fixed point index theories.

  7. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  8. Discrete second order trajectory generator with nonlinear constraints

    NARCIS (Netherlands)

    Morselli, R.; Zanasi, R.; Stramigioli, Stefano

    2005-01-01

    A discrete second order trajectory generator for motion control systems is presented. The considered generator is a nonlinear system which receives as input a raw reference signal and provides as output a smooth reference signal satisfying nonlinear constraints on the output derivatives as UM-(x) ≤

  9. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.

    Science.gov (United States)

    Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng

    2017-09-15

    Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.

  10. Large optical second-order nonlinearity of poled WO3-TeO2 glass.

    Science.gov (United States)

    Tanaka, K; Narazaki, A; Hirao, K

    2000-02-15

    Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.

  11. Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.

    2011-01-01

    Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.

  12. Riccati-parameter solutions of nonlinear second-order ODEs

    International Nuclear Information System (INIS)

    Reyes, M A; Rosu, H C

    2008-01-01

    It has been proven by Rosu and Cornejo-Perez (Rosu and Cornejo-Perez 2005 Phys. Rev. E 71 046607, Cornejo-Perez and Rosu 2005 Prog. Theor. Phys. 114 533) that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions is easy to obtain if the proposed factorization has a particular form, which happily turns out to be the case in many problems of physical interest. The method that we exemplify with a few explicitly solved cases consists in using the general solution of the Riccati equation, which contributes with one parameter to this class of parametric solutions. For these nonlinear cases, the Riccati parameter serves as a 'growth' parameter from the trivial null solution up to the particular solution found through the factorization procedure

  13. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  14. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  15. Nonlinear second order evolution inclusions with noncoercive viscosity term

    Science.gov (United States)

    Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2018-04-01

    In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.

  16. Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers.

    Science.gov (United States)

    An, Honglin; Fleming, Simon

    2005-05-02

    The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.

  17. Multi-order nonlinear diffraction in second harmonic generation

    DEFF Research Database (Denmark)

    Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw

    We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....

  18. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    Science.gov (United States)

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  19. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  20. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  1. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  2. Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming; Kurths, Juergen; Kurths, Jürgen

    This paper considers a second-order consensus problem for multiagent systems with nonlinear dynamics and directed topologies where each agent is governed by both position and velocity consensus terms with a time-varying asymptotic velocity. To describe the system's ability for reaching consensus, a

  3. EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.

  4. A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo; Popov, Bojan; Yang, Yong

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.

  5. Existence of solutions to second-order nonlinear coupled systems with nonlinear coupled boundary conditions

    Directory of Open Access Journals (Sweden)

    Imran Talib

    2015-12-01

    Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.

  6. Existence of solutions for nonlinear mixed type integrodifferential equation of second order

    Directory of Open Access Journals (Sweden)

    Haribhau Laxman Tidke

    2010-04-01

    Full Text Available In this paper, we investigate the existence of solutions for nonlinear mixed Volterra-Fredholm integrodifferential equation of second order with nonlocal conditions in Banach spaces. Our analysis is based on Leray-Schauder alternative, rely on a priori bounds of solutions and the inequality established by B. G. Pachpatte.

  7. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.

    2016-01-01

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  8. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  9. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    Science.gov (United States)

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  10. On nonlinear dynamics of a dipolar exciton BEC in two-layer graphene

    International Nuclear Information System (INIS)

    Berman, O.L.; Kezerashvili, R.Ya.; Kolmakov, G.V.

    2012-01-01

    The nonlinear dynamics of a Bose–Einstein condensate (BEC) of dipolar excitons in two-layer graphene is studied. It is demonstrated that a steady turbulent state is formed in this system. A comparison between the dynamics of the exciton BEC in two-layer graphene and those in GaAs/AlGaAs coupled quantum wells shows that turbulence is a general effect in a BEC.

  11. Long-range dipolar order and dispersion forces in polar liquids

    Science.gov (United States)

    Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene

    2017-11-01

    Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.

  12. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    Science.gov (United States)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  13. Sturm-Picone type theorems for second-order nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    Aydin Tiryaki

    2014-06-01

    Full Text Available The aim of this article is to give Sturm-Picone type theorems for the pair of second-order nonlinear differential equations $$\\displaylines{ (p_1(t|x'|^{\\alpha-1}x''+q_1(tf_1(x=0 \\cr (p_2(t|y'|^{\\alpha-1}y''+q_2(tf_2(y=0,\\quad t_1

  14. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  15. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    International Nuclear Information System (INIS)

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-01-01

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2)  ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired

  16. Electron dynamics during substorm dipolarization in Mercury's magnetosphere

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    2005-11-01

    Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.

  17. Second-order nonlinear optical microscopy of spider silk

    Science.gov (United States)

    Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.

    2017-06-01

    Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.

  18. Piezoelectric Field Enhanced Second-Order Nonlinear Optical Susceptibilities in Wurtzite GaN/AlGaN Quantum Wells

    Science.gov (United States)

    Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)

    1999-01-01

    Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.

  19. Internal crisis in a second-order non-linear non-autonomous electronic oscillator

    International Nuclear Information System (INIS)

    Stavrinides, S.G.; Deliolanis, N.C.; Miliou, A.N.; Laopoulos, Th.; Anagnostopoulos, A.N.

    2008-01-01

    The internal crisis of a second-order non-linear non-autonomous chaotic electronic circuit is studied. The phase portraits consist of two interacting sub-attractors, a chaotic and a periodic one. Maximal Lyapunov exponents were calculated, for both the periodic and the chaotic waveforms, in order to confirm their nature. Transitions between the chaotic and the periodic sub-attractors become more frequent by increasing the circuit driving frequency. The frequency distribution of the corresponding laminar lengths and their average values indicate that an internal crisis takes place in this circuit, manifested in the intermittent behaviour of the corresponding orbits

  20. Light-induced second-order nonlinear optical properties of molecular materials

    International Nuclear Information System (INIS)

    Fiorini, Celine

    1995-01-01

    We present a theoretical and experimental study of all-optical orientation. The work focusses more particularly on the realization of poled polymers for quadratic nonlinear optics. It is shown that the coherent superposition of two beams at fundamental and second harmonic frequencies results in the breaking of the former centro-symmetry of the material. The source is a Neodymium-YAG laser delivering 25 ps pulses at 1064 nm. The incident second-harmonic beam is obtained by frequency doubling in a KDP crystal. Using a phase conjugation configuration based on six-wave mixing interactions, we have Investigated in detail the mechanism of photo-induced second-harmonic generation in initially centrosymmetric materials. It is shown that the light-induced non-centro-symmetry is due to an orientational hole burning of the molecules. The process involves interference effects between one and two photon absorptions. Experiments are performed in various solutions of an azo-dye molecule (Disperse Red One). The possibility of inducing quasi-permanent second-order susceptibility in a PMMA polymer matrix doped with the azo-dye molecule of Disperse Red One is also demonstrated. The method of all-optical poling consists in a seeding type process with alternate writing and probing phases. Permanent orientation of the molecules can be described in terms of photo-isomerization processes. It leads to a poling of the molecules with a spatial modulation which is phase-matched for frequency doubling. Relevant parameters leading to an efficient polarisation of the sample are identified. A theoretical modelling of the different phenomena observed is proposed. Last part of the study is devoted to an enlarged study of the potentialities offered by this dual-frequency holography technique: orientation of octupolar molecules, polarisation of highly transparent materials. We also show that the new techniques developed during this work can also reveal to be complementary methods for nonlinear

  1. Multiple periodic solutions for a class of second-order nonlinear neutral delay equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available By means of a variational structure and Z 2 -group index theory, we obtain multiple periodic solutions to a class of second-order nonlinear neutral delay equations of the form0, au>0$"> x ″ ( t − τ + λ ( t f ( t , x ( t , x ( t − τ , x ( t − 2 τ = x ( t , λ ( t > 0 , τ > 0 .

  2. Fermat collocation method for the solutions of nonlinear system of second order boundary value problems

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this study, a numerical approach is proposed to obtain approximate solutions of nonlinear system of second order boundary value problem. This technique is essentially based on the truncated Fermat series and its matrix representations with collocation points. Using the matrix method, we reduce the problem system of nonlinear algebraic equations. Numerical examples are also given to demonstrate the validity and applicability of the presented technique. The method is easy to implement and produces accurate results.

  3. Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Minh-Duc Tran

    2015-01-01

    Full Text Available This paper presents a high-performance nonsingular terminal sliding mode control method for uncertain second-order nonlinear systems. First, a nonsingular terminal sliding mode surface is introduced to eliminate the singularity problem that exists in conventional terminal sliding mode control. By using this method, the system not only can guarantee that the tracking errors reach the reference value in a finite time with high-precision tracking performance but also can overcome the complex-value and the restrictions of the exponent (the exponent should be fractional number with an odd numerator and an odd denominator in traditional terminal sliding mode. Then, in order to eliminate the chattering phenomenon, a super-twisting higher-order nonsingular terminal sliding mode control method is proposed. The stability of the closed-loop system is established using the Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.

  4. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  5. Symmetry of the complete second-order nonlinear conductivity tensor for an unmagnetized relativistic turbulent plasma

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1983-01-01

    A new exact symmetry is proved for the complete second-order nonlinear conductivity tensor of an unmagnetized relativistic turbulent plasma. The symmetry is not limited to principal parts. If Cerenkov resonance is ignored, the new symmetry reduces to the well-known symmetry related to the Manley--Rowe relations, crossing symmetry, and nondissipation of the principal part of the nonlinear current. Also, a new utilitarian representation for the complete tensor is obtained in which all derivatives are removed and the pole structure is clearly exhibited

  6. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  7. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion

    Science.gov (United States)

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  8. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    Science.gov (United States)

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  9. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    Science.gov (United States)

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  10. Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films

    Science.gov (United States)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.

  11. Electron dynamics during substorm dipolarization in Mercury's magnetosphere

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    2005-11-01

    Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.

  12. Passive impedance-based second-order sliding mode control for non-linear teleoperators

    Directory of Open Access Journals (Sweden)

    Luis G García-Valdovinos

    2017-02-01

    Full Text Available Bilateral teleoperation systems have attracted significant attention in the last decade mainly because of technological advancements in both the communication channel and computers performance. In addition, non-linear multi-degree-of-freedom bilateral teleoperators along with state observers have become an open research area. In this article, a model-free exact differentiator is used to estimate the full state along with a chattering-free second-order sliding mode controller to guarantee a robust impedance tracking under both constant and an unknown time delay of non-linear multi-degree-of-freedom robots. The robustness of the proposed controller is improved by introducing a change of coordinates in terms of a new nominal reference similar to that used in adaptive control theory. Experimental results that validate the predicted behaviour are presented and discussed using a Phantom Premium 1.0 as the master robot and a Catalyst-5 virtual model as the slave robot. The dynamics of the Catalyst-5 system is solved online.

  13. Modulation masking produced by second-order modulators

    DEFF Research Database (Denmark)

    Füllgrabe, Christian; Moore, Brian C.J.; Demany, Laurent

    2005-01-01

    Recent studies suggest that an auditory nonlinearity converts second-order sinusoidal amplitude modulation (SAM) (i.e., modulation of SAM depth) into a first-order SAM component, which contributes to the perception of second-order SAM. However, conversion may also occur in other ways such as coch...

  14. Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids : Interacting fronts and rarefaction waves

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2011-01-01

    A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves the Hami...... is proposed. The dynamics of the rarefaction wave is approximated by a collective coordinate approach in the energy balance equation. © 2010 Springer Science+Business Media B.V.......A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...... the Hamiltonian structure, in contrast to the Kuznetsov equation, a model often used in nonlinear acoustics. An exact traveling wave front solution is derived from a generalized traveling wave assumption for the velocity potential. Numerical studies of the evolution of a number of arbitrary initial conditions...

  15. The second-order decomposition model of nonlinear irregular waves

    DEFF Research Database (Denmark)

    Yang, Zhi Wen; Bingham, Harry B.; Li, Jin Xuan

    2013-01-01

    into the first- and the second-order super-harmonic as well as the second-order sub-harmonic components by transferring them into an identical Fourier frequency-space and using a Newton-Raphson iteration method. In order to evaluate the present model, a variety of monochromatic waves and the second...

  16. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    Science.gov (United States)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  17. Spin Diffusion and Spin Lattice Relaxation of Dipolar Order in Solids Containing Paramagnetic Impurities

    International Nuclear Information System (INIS)

    Furman, G.B.; Panich, A.M.; Goren, S.D.

    1998-01-01

    The phenomena of spin diffusion and spin lattice relaxation of nuclear dipolar order in solids containing paramagnetic impurities (PI) is considered. We show that at the beginning of the relaxation process the diffusion vanishing regime realizes with non-exponential time dependence, R(t) ∼ exp [- (t/T 1d ) α ], where T 1d ∼ C p -1/α , C p is PI's concentration. For a homogeneous distribution of Pis and nuclear spins, α=Q/6, where Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into q-dimensional subsystems, each containing one PI, yield- ing α= (Q + q) /6. This result coincides with experimental data for CaF 2 doped with 0.8 - 10 -3 ωt % of Mn 2+ , where the non-exponential decay of the dipolar signal with α= 0.83 has been observed [3]. Fitting the experimental data yields a good agreement with T 1d = 66 ms . For another independent check of the obtained results we use dependence of the relaxation time on impurities concentration. In accordance that 1/α=1.2 , we have T 1d ∼ C p -1 '. 2 . Exactly this dependence on impurity concentration of the relaxation time has been found in the experiment. Then the relaxation regime starts as a non-exponential time dependent, proceed asymptotically to an to an exponential function of time, to so called diffusion limited relaxation regime with relaxation time T 1d D is inversely depends on impurities concentration. This kind of relaxation behavior of the dipolar order takes place in the experiment [2]. Using experimental results [2] from this two regime we can estimate the diffusion coefficient of the nuclear dipolar order in CaF 2 , which gives for typical values of impurity concentration C p ∼ 10 18 cm 3 the diffusion coefficient of dipolar order in the interval D ∼ 10 -11 -i- 10 -12 cm 2 /sec which is coincide to the case of Zeeman energy spin diffusion

  18. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo; Sparber, Christof

    2011-01-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  19. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo

    2011-02-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  20. Dispersion of the resonant second order nonlinearity in 2D semiconductors probed by femtosecond continuum pulses

    Directory of Open Access Journals (Sweden)

    Mohammad Mokim

    2017-10-01

    Full Text Available We demonstrate an effective microspectroscopy technique by tracing the dispersion of second order nonlinear susceptibility (χ(2 in a monolayer tungsten diselenide (WSe2. The χ(2 dispersion obtained with better than 3 meV photon energy resolution showed peak value being within 6.3-8.4×10-19 m2/V range. We estimate the fundamental bandgap to be at 2.2 eV. Sub-structure in the χ(2 dispersion reveals a contribution to the nonlinearity due to exciton transitions with exciton binding energy estimated to be at 0.7 eV.

  1. Second-order processing of four-stroke apparent motion.

    Science.gov (United States)

    Mather, G; Murdoch, L

    1999-05-01

    In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.

  2. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Asymptotic behavior of local dipolar fields in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2016-10-15

    A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.

  4. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    Science.gov (United States)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  5. Many-body formation and dissociation of a dipolar chain crystal

    International Nuclear Information System (INIS)

    You, Jhih-Shih; Wang, Daw-Wei

    2014-01-01

    We propose an experimental scheme to effectively assemble chains of dipolar gases with a uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature easily controlled by the initial lattice potential and the external field strength during processing. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation dominates the classical energy and the compressibility diverges at the phase boundary. The experimental implication of such a dipolar chain crystal and its quantum phase transition is also discussed. (paper)

  6. Application of power series to the solution of the boundary value problem for a second order nonlinear differential equation

    International Nuclear Information System (INIS)

    Semenova, V.N.

    2016-01-01

    A boundary value problem for a nonlinear second order differential equation has been considered. A numerical method has been proposed to solve this problem using power series. Results of numerical experiments have been presented in the paper [ru

  7. Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers.

    Science.gov (United States)

    Tang, Runli; Li, Zhen

    2017-01-01

    Second-order nonlinear optical (NLO) dendrimers with a special topological structure were regarded as the most promising candidates for practical applications in the field of optoelectronic materials. Dendronized hyperbranched polymers (DHPs), a new type of polymers with dendritic structures, proposed and named by us recently, demonstrated interesting properties and some advantages over other polymers. Some of our work concerning these two types of polymers are presented herein, especially focusing on the design idea and structure-property relationship. To enhance their comprehensive NLO performance, dendrimers were designed and synthesized by adjusting their isolation mode, increasing the number of the dendritic generation, modifying their topological structure, introducing isolation chromophores, and utilizing the Ar-Ar F self-assembly effect. To make full use of the advantages of both the structural integrity of dendrimers and the convenient one-pot synthesis of hyperbranched polymers, DHPs were explored by utilizing low-generation dendrons as big monomers to construct hyperbranched polymers. These selected works could provide valuable information to deeply understand the relationship between the structure and properties of functional polymers with dendritic structures, but not only limited to the NLO ones, and might contribute much to the further development of functional polymers with rational design. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies

    DEFF Research Database (Denmark)

    Varón, M.; Beleggia, M; Kasama, T

    2013-01-01

    order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μ(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm...... cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present...... nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies....

  9. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    Science.gov (United States)

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions

    Science.gov (United States)

    Keleş, Ahmet; Zhao, Erhai

    2018-05-01

    The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.

  11. Interval Oscillation Criteria of Second Order Mixed Nonlinear Impulsive Differential Equations with Delay

    Directory of Open Access Journals (Sweden)

    Zhonghai Guo

    2012-01-01

    Full Text Available We study the following second order mixed nonlinear impulsive differential equations with delay (r(tΦα(x′(t′+p0(tΦα(x(t+∑i=1npi(tΦβi(x(t-σ=e(t, t≥t0, t≠τk,x(τk+=akx(τk, x'(τk+=bkx'(τk, k=1,2,…, where Φ*(u=|u|*-1u, σ is a nonnegative constant, {τk} denotes the impulsive moments sequence, and τk+1-τk>σ. Some sufficient conditions for the interval oscillation criteria of the equations are obtained. The results obtained generalize and improve earlier ones. Two examples are considered to illustrate the main results.

  12. Distributed Consensus Tracking for Second-Order Nonlinear Multiagent Systems with a Specified Reference State

    Directory of Open Access Journals (Sweden)

    Guoguang Wen

    2014-01-01

    Full Text Available This paper mainly addresses the distributed consensus tracking problem for second-order nonlinear multiagent systems with a specified reference trajectory. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position and velocity information of its neighbors. The consensus reference is taken as a virtual leader, whose output is only its position and velocity information that is available to only a subset of a group of followers. To achieve consensus tracking, a class of nonsmooth control protocols is proposed which reply on the relative information among the neighboring agents. Then some corresponding sufficient conditions are derived. It is shown that if the communication graph associated with the virtual leader and followers is connected at each time instant, the consensus can be achieved at least globally exponentially with the proposed protocol. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Finally, numerical examples are presented to illustrate the theoretical analysis.

  13. Stability of a nonlinear second order equation under parametric bounded noise excitation

    International Nuclear Information System (INIS)

    Wiebe, Richard; Xie, Wei-Chau

    2016-01-01

    The motivation for the following work is a structural column under dynamic axial loads with both deterministic (harmonic transmitted forces from the surrounding structure) and random (wind and/or earthquake) loading components. The bounded noise used herein is a sinusoid with an argument composed of a random (Wiener) process deviation about a mean frequency. By this approach, a noise parameter may be used to investigate the behavior through the spectrum from simple harmonic forcing, to a bounded random process with very little harmonic content. The stability of both the trivial and non-trivial stationary solutions of an axially-loaded column (which is modeled as a second order nonlinear equation) under parametric bounded noise excitation is investigated by use of Lyapunov exponents. Specifically the effect of noise magnitude, amplitude of the forcing, and damping on stability of a column is investigated. First order averaging is employed to obtain analytical approximations of the Lyapunov exponents of the trivial solution. For the non-trivial stationary solution however, the Lyapunov exponents are obtained via Monte Carlo simulation as the stability equations become analytically intractable. (paper)

  14. Nonlinear Growth Models as Measurement Models: A Second-Order Growth Curve Model for Measuring Potential.

    Science.gov (United States)

    McNeish, Daniel; Dumas, Denis

    2017-01-01

    Recent methodological work has highlighted the promise of nonlinear growth models for addressing substantive questions in the behavioral sciences. In this article, we outline a second-order nonlinear growth model in order to measure a critical notion in development and education: potential. Here, potential is conceptualized as having three components-ability, capacity, and availability-where ability is the amount of skill a student is estimated to have at a given timepoint, capacity is the maximum amount of ability a student is predicted to be able to develop asymptotically, and availability is the difference between capacity and ability at any particular timepoint. We argue that single timepoint measures are typically insufficient for discerning information about potential, and we therefore describe a general framework that incorporates a growth model into the measurement model to capture these three components. Then, we provide an illustrative example using the public-use Early Childhood Longitudinal Study-Kindergarten data set using a Michaelis-Menten growth function (reparameterized from its common application in biochemistry) to demonstrate our proposed model as applied to measuring potential within an educational context. The advantage of this approach compared to currently utilized methods is discussed as are future directions and limitations.

  15. ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins.

    Science.gov (United States)

    de Wergifosse, Marc; Botek, Edith; De Meulenaere, Evelien; Clays, Koen; Champagne, Benoît

    2018-05-17

    The first hyperpolarizability (β) of six fluorescent proteins (FPs), namely, enhanced green fluorescent protein, enhanced yellow fluorescent protein, SHardonnay, ZsYellow, DsRed, and mCherry, has been calculated to unravel the structure-property relationships on their second-order nonlinear optical properties, owing to their potential for multidimensional biomedical imaging. The ONIOM scheme has been employed and several of its refinements have been addressed to incorporate efficiently the effects of the microenvironment on the nonlinear optical responses of the FP chromophore that is embedded in a protective β-barrel protein cage. In the ONIOM scheme, the system is decomposed into several layers (here two) treated at different levels of approximation (method1/method2), from the most elaborated method (method1) for its core (called the high layer) to the most approximate one (method2) for the outer surrounding (called the low layer). We observe that a small high layer can already account for the variations of β as a function of the nature of the FP, provided the low layer is treated at an ab initio level to describe properly the effects of key H-bonds. Then, for semiquantitative reproduction of the experimental values obtained from hyper-Rayleigh scattering experiments, it is necessary to incorporate electron correlation as described at the second-order Møller-Plesset perturbation theory (MP2) level as well as implicit solvent effects accounted for using the polarizable continuum model (PCM). This led us to define the MP2/6-31+G(d):HF/6-31+G(d)/IEFPCM scheme as an efficient ONIOM approach and the MP2/6-31+G(d):HF/6-31G(d)/IEFPCM as a better compromise between accuracy and computational needs. Using these methods, we demonstrate that many parameters play a role on the β response of FPs, including the length of the π-conjugated segment, the variation of the bond length alternation, and the presence of π-stacking interactions. Then, noticing the small diversity

  16. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  17. Higher-order techniques for some problems of nonlinear control

    Directory of Open Access Journals (Sweden)

    Sarychev Andrey V.

    2002-01-01

    Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.

  18. Nonlinear dynamics of fractional order Duffing system

    International Nuclear Information System (INIS)

    Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian

    2015-01-01

    In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.

  19. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-06-03

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  20. Coherent manipulation of dipolar coupled spins in an anisotropic environment

    Science.gov (United States)

    Baibekov, E. I.; Gafurov, M. R.; Zverev, D. G.; Kurkin, I. N.; Malkin, B. Z.; Barbara, B.

    2014-11-01

    We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaW O4 crystals with different concentrations of N d3 + ions.

  1. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  2. Simulation of transverse beam splitting using time-dependent dipolar or quadrupolar kicks

    CERN Document Server

    Capoani, Federico

    2017-01-01

    Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.

  3. On nonlinear differential equation with exact solutions having various pole orders

    International Nuclear Information System (INIS)

    Kudryashov, N.A.

    2015-01-01

    We consider a nonlinear ordinary differential equation having solutions with various movable pole order on the complex plane. We show that the pole order of exact solution is determined by values of parameters of the equation. Exact solutions in the form of the solitary waves for the second order nonlinear differential equation are found taking into account the method of the logistic function. Exact solutions of differential equations are discussed and analyzed

  4. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    This paper discusses the application of second order mode controls to hydraulic valve-cylinder drives with a special focus on the limitations resulting from nonlinear dynamic effects in flow control valves. Second order sliding mode algorithms appear highly attractive in the successive...

  5. Effect of second-order and fully nonlinear wave kinematics on a tension-leg-platform wind turbine in extreme wave conditions

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Borg, Michael; Robertson, Amy

    2017-01-01

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equa...... damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping....

  6. On the existence of positive periodic solutions for totally nonlinear neutral differential equations of the second-order with functional delay

    Directory of Open Access Journals (Sweden)

    Emmanuel K. Essel

    2014-01-01

    Full Text Available We prove that the totally nonlinear second-order neutral differential equation \\[\\frac{d^2}{dt^2}x(t+p(t\\frac{d}{dt}x(t+q(th(x(t\\] \\[=\\frac{d}{dt}c(t,x(t-\\tau(t+f(t,\\rho(x(t,g(x(t-\\tau(t\\] has positive periodic solutions by employing the Krasnoselskii-Burton hybrid fixed point theorem.

  7. Existence of solutions for second-order evolution inclusions

    Directory of Open Access Journals (Sweden)

    Nikolaos S. Papageorgiou

    1994-01-01

    Full Text Available In this paper we examine second-order nonlinear evolution inclusions and prove two existence theorems; one with a convex-valued orientor field and the other with a nonconvex-valued field. An example of a hyperbolic partial differential inclusion is also presented.

  8. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    International Nuclear Information System (INIS)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-01-01

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power

  9. Nonlinear second- and first-sound wave equations in 3He-4He mixtures

    International Nuclear Information System (INIS)

    Mohazzab, Masoud; Mulders, Norbert

    2000-01-01

    We derive nonlinear Burgers equations for first and second sound in mixtures of 3 He- 4 He, using a reductive perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a diffusion equation for a coupled temperature-concentration mode. The amplitude of first (second) sound generated from second (first) sound in mixtures is also derived. Our derivation includes the dependence of thermodynamical quantities on temperature, pressure, and 3 He concentration, and is valid up to a first order in terms of the isobaric expansion coefficient. We show that close to the λ line the nonlinearity of second sound in mixtures is enhanced as compared with pure 4 He

  10. Second-order generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Greenspan, E.; Gilai, D.; Oblow, E.M.

    1978-01-01

    A second-order generalized perturbation theory (GPT) for the effect of multiple system variations on a general flux functional in source-driven systems is derived. The derivation is based on a functional Taylor series in which second-order derivatives are retained. The resulting formulation accounts for the nonlinear effect of a given variation accurate to third order in the flux and adjoint perturbations. It also accounts for the effect of interaction between any number of variations. The new formulation is compared with exact perturbation theory as well as with perturbation theory for altered systems. The usefulnes of the second-order GPT formulation is illustrated by applying it to optimization problems. Its applicability to areas of cross-section sensitivity analysis and system design and evaluation is also discussed

  11. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  12. Redox control of ferrocene-based complexes with systematically extended π-conjugated connectors: switchable and tailorable second order nonlinear optics.

    Science.gov (United States)

    Wang, Wen-Yong; Ma, Na-Na; Sun, Shi-Ling; Qiu, Yong-Qing

    2014-03-14

    The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.

  13. Harmonically trapped dipolar fermions in a two-dimensional square lattice

    DEFF Research Database (Denmark)

    Larsen, Anne-Louise G.; Bruun, Georg

    2012-01-01

    We consider dipolar fermions in a two-dimensional square lattice and a harmonic trapping potential. The anisotropy of the dipolar interaction combined with the lattice leads to transitions between phases with density order of different symmetries. We show that the attractive part of the dipolar...

  14. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  15. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    Science.gov (United States)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  16. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    Science.gov (United States)

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE

  17. Second-order nonlinear optical properties of composite material of an azo-chromophore with a tricyanodiphenyl acceptor in a poly(styrene-co-methyl methacrylate) matrix

    Science.gov (United States)

    Shelkovnikov, Vladimir; Selivanova, Galina; Lyubas, Gleb; Korotaev, Sergey; Shundrina, Inna; Tretyakov, Evgeny; Zueva, Ekaterina; Plekhanov, Alexander; Mikerin, Sergey; Simanchuk, Andrey

    2017-07-01

    The composite material of new synthesized 4-((4-(N,N-n-dibutylamino) phenyl)diazenyl)-biphenyl-2,3,4-tricarbonitrile (GAS dye) in commercial poly(styrene-co-methyl methacrylate) (PSMMA) was prepared, poled and its nonlinear optical properties compared with DR1 dye were studied. High thermal stability of the composite material was revealed, and the maximal concentration of the chromophore was found to reach ∼20 wt%. The dipole moment, polarizability tensor, and first hyperpolarizability tensor of the investigated dyes were calculated by within the framework of the coupled perturbed density functional theory. A nanosecond second-harmonic generation Maker fringes technique was used which is capable of providing the magnitude of the second-order nonlinearity of optical materials at a wavelength of 1064 nm. For the tested GAS-PSMMA composite material, maximal coefficient d33 was found to be 50 pm/V. The nonlinear optical response, which was achieved here, shows possible usefulness of the GAS dye as a component for molecular design of nonlinear-optical materials with advanced characteristics.

  18. Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes†

    Science.gov (United States)

    McGrath, Nicholas A.

    2012-01-01

    Diazo compounds, which can be accessed directly from azides by deimidogenation, are shown to be extremely versatile dipoles in 1,3-dipolar cycloaddition reactions with a cyclooctyne. The reactivity of a diazo compound can be much greater or much less than its azide analog, and is enhanced markedly in polar-protic solvents. These reactivities are predictable from frontier molecular orbital energies. The most reactive diazo compound exhibited the highest known second-order rate constant to date for a dipolar cycloaddition with a cycloalkyne. These data provide a new modality for effecting chemoselective reactions in a biological context. PMID:23227302

  19. Exact Solutions for Certain Nonlinear Autonomous Ordinary Differential Equations of the Second Order and Families of Two-Dimensional Autonomous Systems

    Directory of Open Access Journals (Sweden)

    M. P. Markakis

    2010-01-01

    Full Text Available Certain nonlinear autonomous ordinary differential equations of the second order are reduced to Abel equations of the first kind ((Ab-1 equations. Based on the results of a previous work, concerning a closed-form solution of a general (Ab-1 equation, and introducing an arbitrary function, exact one-parameter families of solutions are derived for the original autonomous equations, for the most of which only first integrals (in closed or parametric form have been obtained so far. Two-dimensional autonomous systems of differential equations of the first order, equivalent to the considered herein autonomous forms, are constructed and solved by means of the developed analysis.

  20. Geometrical foundations of continuum mechanics an application to first- and second-order elasticity and elasto-plasticity

    CERN Document Server

    Steinmann, Paul

    2015-01-01

    This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity.   After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear con...

  1. Solution of second order supersymmetrical intertwining relations in Minkowski plane

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, M. V., E-mail: m.ioffe@spbu.ru; Kolevatova, E. V., E-mail: e.v.kolev@yandex.ru [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Nishnianidze, D. N., E-mail: cutaisi@yahoo.com [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Akaki Tsereteli State University, 4600 Kutaisi, Georgia (United States)

    2016-08-15

    Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.

  2. Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films

    International Nuclear Information System (INIS)

    Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng

    2014-01-01

    The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities

  3. Imaging using long range dipolar field effects

    International Nuclear Information System (INIS)

    Gutteridge, Sarah

    2002-01-01

    The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)

  4. Second-order theory for coupling 2D numerical and physical wave tanks: Derivation, evaluation and experimental validation

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2013-01-01

    , 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved...... nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment...... that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques....

  5. Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion

    International Nuclear Information System (INIS)

    Xian-Qiong, Zhong; An-Ping, Xiang

    2010-01-01

    Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the case of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity. (classical areas of phenomenology)

  6. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    International Nuclear Information System (INIS)

    Cui, Xiao; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo; Mei, Chunbo

    2017-01-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles. (paper)

  7. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    Science.gov (United States)

    Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo

    2017-04-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.

  8. Quantum states with topological properties via dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Peter, David

    2015-06-25

    This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.

  9. Nonlinear partial differential equations of second order

    CERN Document Server

    Dong, Guangchang

    1991-01-01

    This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.

  10. Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations

    Directory of Open Access Journals (Sweden)

    Rutwig Campoamor-Stursberg

    2016-03-01

    Full Text Available A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.

  11. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  12. Nonlinear spectroscopic studies of interfacial molecular ordering

    International Nuclear Information System (INIS)

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs

  13. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Ré mi; Markowich, Peter A; Sparber, Christof

    2008-01-01

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  14. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Rémi

    2008-09-29

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  15. Second order gauge invariant measure of a tidally deformed black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Nahid, E-mail: nahmadi@ut.ac.ir [Department of Physics, University of Tehran, Kargar Avenue North, Tehran 14395-547 (Iran, Islamic Republic of)

    2012-08-01

    In this paper, a Lagrangian perturbation theory for the second order treatment of small disturbances of the event horizon in Schwarzchild black holes is introduced. The issue of gauge invariance in the context of general relativistic theory is also discussed. The developments of this paper is a logical continuation of the calculations presented in [1], in which the first order coordinate dependance of the intrinsic and exterinsic geometry of the horizon is examined and the first order gauge invariance of the intrinsic geometry of the horizon is shown. In context of second order perturbation theory, It is shown that the rate of the expansion of the congruence of the horizon generators is invariant under a second order reparametrization; so it can be considered as a measure of tidal perturbation. A generally non-vanishing expression for this observable, which accomodates tidal perturbations and implies nonlinear response of the horizon, is also presented.

  16. Nonlocal symmetries of a class of scalar and coupled nonlinear ordinary differential equations of any order

    International Nuclear Information System (INIS)

    Pradeep, R Gladwin; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2011-01-01

    In this paper, we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using these nonlocal symmetries, we obtain reduction transformations and reduced equations to specific examples. We find that the reduced equations can be explicitly integrated to deduce the general solutions for these cases. We also extend this procedure to coupled higher order nonlinear ODEs with specific reference to second-order nonlinear ODEs. (paper)

  17. The lattice Boltzmann model for the second-order Benjamin–Ono equations

    International Nuclear Information System (INIS)

    Lai, Huilin; Ma, Changfeng

    2010-01-01

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations

  18. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  19. Polyharmonic boundary value problems positivity preserving and nonlinear higher order elliptic equations in bounded domains

    CERN Document Server

    Gazzola, Filippo; Sweers, Guido

    2010-01-01

    This monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on “near positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the first part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenbe...

  20. Critical Time Crystals in Dipolar Systems.

    Science.gov (United States)

    Ho, Wen Wei; Choi, Soonwon; Lukin, Mikhail D; Abanin, Dmitry A

    2017-07-07

    We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017)NATUAS0028-083610.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.

  1. Second order tidally induced flow in the inlet of a coastal lagoon

    Science.gov (United States)

    Eguiluz, Ana; Wong, Kuo-Chuin

    2005-08-01

    Current meter data obtained in Indian River Inlet and Indian River Bay, Delaware are analyzed to compute second order low-frequency tidal flow and tidally induced mean flow in the system. Results from least-squares harmonic analysis show that nonlinearly induced M4 currents in the inlet and bay occur at order 10 -1 of the M2 amplitudes, indicating weak nonlinearity in the system. Tidally rectified mean flow computed from Mm and Msf is ˜3 cm s -1, which is of the same order of magnitude as the observed mean current. The estimated low-frequency tidal flow and the tidally induced mean flow agree well with scalings computed for the inlet and with results found by Münchow et al. [Münchow, A., Masse, A.K., Garvine, R.W., 1992. Astronomical and nonlinear tidal currents in a coupled estuary shelf system. Continental Shelf Research 12, 471-498] in Delaware Bay.

  2. Growth and physicochemical properties of second-order nonlinear optical 2-amino-5-chloropyridinium trichloroacetate single crystals

    Science.gov (United States)

    Renugadevi, R.; Kesavasamy, R.

    2015-09-01

    The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.

  3. Nonlinear singular perturbation problems of arbitrary real orders

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-10-01

    Higher order asymptotic solutions of singularly perturbed nonlinear fractional integral and derivatives of order 1/2 are investigated. It is particularly shown that whilst certain asymptotic expansions are applied successfully to linear equations and particular nonlinear problems, the standard formal asymptotic expansion is appropriate for the general class of nonlinear equations. This theory is then generalised to the general equation (of order β, 0 < β < 1). (author)

  4. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models

    KAUST Repository

    Seibold, Benjamin

    2013-09-01

    Fundamental diagrams of vehicular traiic ow are generally multivalued in the congested ow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traiic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally in well-known second order models. As a particular consequence, these models intrinsically reproduce traiic phases. © American Institute of Mathematical Sciences.

  5. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models

    KAUST Repository

    Seibold, Benjamin; Flynn, Morris R.; Kasimov, Aslan R.; Rosales, Rodolfo Rubé n

    2013-01-01

    Fundamental diagrams of vehicular traiic ow are generally multivalued in the congested ow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traiic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally in well-known second order models. As a particular consequence, these models intrinsically reproduce traiic phases. © American Institute of Mathematical Sciences.

  6. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    International Nuclear Information System (INIS)

    Zhang Kaicheng; Liu Guibin; Zhu Yan

    2011-01-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.

  7. FORCED OSCILLATIONS OF SECOND ORDER SUPER-LINEAR DIFFERENTIAL EQUATION WITH IMPULSES

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    At first,by means of Kartsatos technique,we reduce the impulsive differential equation to a second order nonlinear impulsive homogeneous equation.We find some suitable impulse functions such that all the solutions to the equation are oscillatory.Several criteria on the oscillations of solutions are given.At last,we give an example to demonstrate our results.

  8. Retrieval of high-order susceptibilities of nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wang Zhi-Yu; Qiu Jin-Peng; Chen Hua; Mo Jiong-Jiong; Yu Fa-Xin

    2017-01-01

    Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime. However, existing S -parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived. Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power, high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposedapproach can be widely used in the research of active metamaterials. (paper)

  9. Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.

    Science.gov (United States)

    Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2017-06-14

    Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

  10. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    Science.gov (United States)

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  11. Oscillation criteria for third order nonlinear delay differential equations with damping

    Directory of Open Access Journals (Sweden)

    Said R. Grace

    2015-01-01

    Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.

  12. Unbounded Perturbations of Nonlinear Second-Order Difference Equations at Resonance

    Directory of Open Access Journals (Sweden)

    Ma Ruyun

    2007-01-01

    Full Text Available We study the existence of solutions of nonlinear discrete boundary value problems , , , where is the first eigenvalue of the linear problem , , , satisfies some “asymptotic nonuniform” resonance conditions, and for .

  13. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications

    International Nuclear Information System (INIS)

    Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.

    2013-01-01

    Bi 2 ZnOB 2 O 6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi 2 ZnOB 2 O 6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi 2 ZnOB 2 O 6 an excellent candidate for photonic applications

  14. Run-up on a body in waves and current. Fully nonlinear and finite-order calculations

    DEFF Research Database (Denmark)

    Büchmann, Bjarne; Ferrant, P.; Skourup, J.

    2001-01-01

    Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength...

  15. Second-order wave diffraction by a circular cylinder using scaled boundary finite element method

    International Nuclear Information System (INIS)

    Song, H; Tao, L

    2010-01-01

    The scaled boundary finite element method (SBFEM) has achieved remarkable success in structural mechanics and fluid mechanics, combing the advantage of both FEM and BEM. Most of the previous works focus on linear problems, in which superposition principle is applicable. However, many physical problems in the real world are nonlinear and are described by nonlinear equations, challenging the application of the existing SBFEM model. A popular idea to solve a nonlinear problem is decomposing the nonlinear equation to a number of linear equations, and then solves them individually. In this paper, second-order wave diffraction by a circular cylinder is solved by SBFEM. By splitting the forcing term into two parts, the physical problem is described as two second-order boundary-value problems with different asymptotic behaviour at infinity. Expressing the velocity potentials as a series of depth-eigenfunctions, both of the 3D boundary-value problems are decomposed to a number of 2D boundary-value sub-problems, which are solved semi-analytically by SBFEM. Only the cylinder boundary is discretised with 1D curved finite-elements on the circumference of the cylinder, while the radial differential equation is solved completely analytically. The method can be extended to solve more complex wave-structure interaction problems resulting in direct engineering applications.

  16. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    Science.gov (United States)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  17. Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Ren Ji; Ruan Hangyu

    2008-01-01

    We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained

  18. Nonlinear optics principles and applications

    CERN Document Server

    Rottwitt, Karsten

    2014-01-01

    IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...

  19. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  20. Spectrum of Discrete Second-Order Difference Operator with Sign-Changing Weight and Its Applications

    Directory of Open Access Journals (Sweden)

    Ruyun Ma

    2014-01-01

    Full Text Available Let T>1 be an integer, and let=1,2,…,T. We discuss the spectrum of discrete linear second-order eigenvalue problems Δ2ut-1+λmtut=0, t∈,  u0=uT+1=0, where λ≠0 is a parameter, m:→ℝ changes sign and mt≠0 on . At last, as an application of this spectrum result, we show the existence of sign-changing solutions of discrete nonlinear second-order problems by using bifurcate technique.

  1. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    Science.gov (United States)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  2. Second order sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. SECOND ORDER LEAST SQUARE ESTIMATION ON ARCH(1 MODEL WITH BOX-COX TRANSFORMED DEPENDENT VARIABLE

    Directory of Open Access Journals (Sweden)

    Herni Utami

    2014-03-01

    Full Text Available Box-Cox transformation is often used to reduce heterogeneity and to achieve a symmetric distribution of response variable. In this paper, we estimate the parameters of Box-Cox transformed ARCH(1 model using second-order leastsquare method and then we study the consistency and asymptotic normality for second-order least square (SLS estimators. The SLS estimation was introduced byWang (2003, 2004 to estimate the parameters of nonlinear regression models with independent and identically distributed errors

  4. Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials

    Science.gov (United States)

    Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan

    2018-02-01

    Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.

  5. Heterogeneous dipolar theory of the exponential pile

    International Nuclear Information System (INIS)

    Mastrangelo, P.V.

    1981-01-01

    We present a heterogeneous theory of the exponential pile, closely related to NORDHEIM-SCALETTAR's. It is well adapted to lattice whose pitch is relatively large (D-2O, grahpite) and the dimensions of whose channels are not negligible. The anisotropy of neutron diffusion is taken into account by the introduction of dipolar parameters. We express the contribution of each channel to the total flux in the moderator by means of multipolar coefficients. In order to be able to apply conditions of continuity between the flux and their derivatives, on the side of the moderator, we develop in a Fourier series the fluxes found at the periphery of each channel. Using Wronski's relations of Bessel's functions, we express the multipolar coefficients of the surfaces of each channel, on the side of the moderator, by means of the harmonics of each flux and their derivatives. We retain only monopolar (A 0 sub(g)) and dipolar (A 1 sub(g)) coefficients; those of a higher order are ignored. We deduce from these coefficients the systems of homogeneous equations of the exponential pile with monopoles on their own and monopoles plus dipoles. It should be noted that the systems of homogeneous equations of the critical pile are contained in those of the exponential pile. In another article, we develop the calculation of monopolar and dipolar heterogeneous parameters. (orig.)

  6. Analysis of second order harmonic distortion due to transmitter non-linearity and chromatic and modal dispersion of optical OFDM SSB modulated signals in SMF-MMF fiber links

    Science.gov (United States)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2017-01-01

    Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.

  7. Second order approximation for optical polaron in the strong coupling case

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.

    1993-11-01

    Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs

  8. Pointwise second-order necessary optimality conditions and second-order sensitivity relations in optimal control

    Science.gov (United States)

    Frankowska, Hélène; Hoehener, Daniel

    2017-06-01

    This paper is devoted to pointwise second-order necessary optimality conditions for the Mayer problem arising in optimal control theory. We first show that with every optimal trajectory it is possible to associate a solution p (ṡ) of the adjoint system (as in the Pontryagin maximum principle) and a matrix solution W (ṡ) of an adjoint matrix differential equation that satisfy a second-order transversality condition and a second-order maximality condition. These conditions seem to be a natural second-order extension of the maximum principle. We then prove a Jacobson like necessary optimality condition for general control systems and measurable optimal controls that may be only ;partially singular; and may take values on the boundary of control constraints. Finally we investigate the second-order sensitivity relations along optimal trajectories involving both p (ṡ) and W (ṡ).

  9. Approximate effective nonlinear coefficient of second-harmonic generation in KTiOPO(4).

    Science.gov (United States)

    Asaumi, K

    1993-10-20

    A simplified approximate expression for the effective nonlinear coefficient of type-II second-harmonicgeneration in KTiOPO(4) was obtained by observing that the difference between the refractive indices n(x) and n(y) is 1 order of magnitude smaller than the difference between n(z) and n(y) (or n(x)). The agreement of this approximate equation with the true definition is good, with a maximum discrepancy of 4%.

  10. Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Natarajan, Anand

    2014-01-01

    . The second-order nonlinear water kinematics is developed based on a Gram Charlier series expansion using the first four stochasticmoments of thewave process. Thewave surface velocities and accelerations are expressed using a Taylor series expansion about themean sea level, which satisfies to the second...

  11. Dynamics of second order in time evolution equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    123-124, č. 1 (2015), s. 126-149 ISSN 0362-546X R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Second order evolution equations * State dependent delay * Nonlinear plate * Finite-dimensional attractor Subject RIV: BD - Theory of Information Impact factor: 1.125, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444708.pdf

  12. Contrast gain control in first- and second-order motion perception.

    Science.gov (United States)

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  13. Second Order Ideal-Ward Continuity

    Directory of Open Access Journals (Sweden)

    Bipan Hazarika

    2014-01-01

    Full Text Available The main aim of the paper is to introduce a concept of second order ideal-ward continuity in the sense that a function f is second order ideal-ward continuous if I-limn→∞Δ2f(xn=0 whenever I-limn→∞Δ2xn=0 and a concept of second order ideal-ward compactness in the sense that a subset E of R is second order ideal-ward compact if any sequence x=(xn of points in E has a subsequence z=(zk=(xnk of the sequence x such that I-limk→∞Δ2zk=0 where Δ2zk=zk+2-2zk+1+zk. We investigate the impact of changing the definition of convergence of sequences on the structure of ideal-ward continuity in the sense of second order ideal-ward continuity and compactness of sets in the sense of second order ideal-ward compactness and prove related theorems.

  14. Pap-smear Classification Using Efficient Second Order Neural Network Training Algorithms

    DEFF Research Database (Denmark)

    Ampazis, Nikolaos; Dounias, George; Jantzen, Jan

    2004-01-01

    In this paper we make use of two highly efficient second order neural network training algorithms, namely the LMAM (Levenberg-Marquardt with Adaptive Momentum) and OLMAM (Optimized Levenberg-Marquardt with Adaptive Momentum), for the construction of an efficient pap-smear test classifier. The alg......In this paper we make use of two highly efficient second order neural network training algorithms, namely the LMAM (Levenberg-Marquardt with Adaptive Momentum) and OLMAM (Optimized Levenberg-Marquardt with Adaptive Momentum), for the construction of an efficient pap-smear test classifier....... The algorithms are methodologically similar, and are based on iterations of the form employed in the Levenberg-Marquardt (LM) method for non-linear least squares problems with the inclusion of an additional adaptive momentum term arising from the formulation of the training task as a constrained optimization...

  15. Third-order nonlinear optical properties of ADP crystal

    Science.gov (United States)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  16. Binocular Combination of Second-Order Stimuli

    Science.gov (United States)

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  17. Estimates on the minimal period for periodic solutions of nonlinear second order Hamiltonian systems

    International Nuclear Information System (INIS)

    Yiming Long.

    1994-11-01

    In this paper, we prove a sharper estimate on the minimal period for periodic solutions of autonomous second order Hamiltonian systems under precisely Rabinowitz' superquadratic condition. (author). 20 refs, 1 fig

  18. Quantum phases of dipolar rotors on two-dimensional lattices.

    Science.gov (United States)

    Abolins, B P; Zillich, R E; Whaley, K B

    2018-03-14

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  19. Quantum phases of dipolar rotors on two-dimensional lattices

    Science.gov (United States)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  20. First and second order operator splitting methods for the phase field crystal equation

    International Nuclear Information System (INIS)

    Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub

    2015-01-01

    In this paper, we present operator splitting methods for solving the phase field crystal equation which is a model for the microstructural evolution of two-phase systems on atomic length and diffusive time scales. A core idea of the methods is to decompose the original equation into linear and nonlinear subequations, in which the linear subequation has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type iterative method to solve the nonlinear subequation at the implicit time level and thus a considerably large time step can be used. By combining these subequations, we achieve the first- and second-order accuracy in time. We present numerical experiments to show the accuracy and efficiency of the proposed methods

  1. Photo-physics of third-order nonlinear optical processes in organic dyes

    International Nuclear Information System (INIS)

    Delysse, Stephane

    1997-01-01

    We study some aspects of the nonlinear picosecond photo-physics in organic dyes using Kerr ellipsometry. The aim is to establish link between the photo-physics and nonlinear optics in these compounds. First, we study coherent processes directly linked to the third-order susceptibility. Thus, we measure two-photon absorption spectra of large internal charge transfer dyes. We take into account all coupling between three electronic states which can interfere to explain the particular response of some stilbene dyes. On the second hand, we expose a more photophysical approach to determine the S 1 → S n transition energies and moments using the measurement of excited state absorption cross sections. These results allow the prediction of the susceptibilities relevant to alternative nonlinear optical methods. Nevertheless, the stationary approach hides the complex relaxation processes which can take place in organic dyes. As an illustration, we study the formation and disappearance of a TICT (Twisted intramolecular charge transfer) in a pyrylium salt in solvents of increasing viscosity. (author) [fr

  2. New second order Mumford-Shah model based on Γ-convergence approximation for image processing

    Science.gov (United States)

    Duan, Jinming; Lu, Wenqi; Pan, Zhenkuan; Bai, Li

    2016-05-01

    In this paper, a second order variational model named the Mumford-Shah total generalized variation (MSTGV) is proposed for simultaneously image denoising and segmentation, which combines the original Γ-convergence approximated Mumford-Shah model with the second order total generalized variation (TGV). For image denoising, the proposed MSTGV can eliminate both the staircase artefact associated with the first order total variation and the edge blurring effect associated with the quadratic H1 regularization or the second order bounded Hessian regularization. For image segmentation, the MSTGV can obtain clear and continuous boundaries of objects in the image. To improve computational efficiency, the implementation of the MSTGV does not directly solve its high order nonlinear partial differential equations and instead exploits the efficient split Bregman algorithm. The algorithm benefits from the fast Fourier transform, analytical generalized soft thresholding equation, and Gauss-Seidel iteration. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed model.

  3. Wetting transitions: First order or second order

    International Nuclear Information System (INIS)

    Teletzke, G.F.; Scriven, L.E.; Davis, H.T.

    1982-01-01

    A generalization of Sullivan's recently proposed theory of the equilibrium contact angle, the angle at which a fluid interface meets a solid surface, is investigated. The generalized theory admits either a first-order or second-order transition from a nonzero contact angle to perfect wetting as a critical point is approached, in contrast to Sullivan's original theory, which predicts only a second-order transition. The predictions of this computationally convenient theory are in qualitative agreement with a more rigorous theory to be presented in a future publication

  4. Two (multi point nonlinear Lyapunov systems associated with an n th order nonlinear system of differential equations – existence and uniqueness

    Directory of Open Access Journals (Sweden)

    Murty K. N.

    2000-01-01

    Full Text Available This paper presents a criterion for the existence and uniqueness of solutions to two and multipoint boundary value problems associated with an n th order nonlinear Lyapunov system. A variation of parameters formula is developed and used as a tool to obtain existence and uniqueness. We discuss solution of the second order problem by the ADI method and develop a fixed point method to find the general solution of the n th order Lyapunov system. The results of Barnett (SIAM J. Appl. Anal. 24(1, 1973 are a particular case.

  5. An efficient second-order SQP method for structural topology optimization

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana; Stolpe, Mathias

    2016-01-01

    This article presents a Sequential Quadratic Programming (SQP) solver for structural topology optimization problems named TopSQP. The implementation is based on the general SQP method proposed in Morales et al. J Numer Anal 32(2):553–579 (2010) called SQP+. The topology optimization problem...... nonlinear solvers IPOPT and SNOPT. Numerical experiments on a large set of benchmark problems show good performance of TopSQP in terms of number of function evaluations. In addition, the use of second-order information helps to decrease the objective function value....

  6. Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres

    International Nuclear Information System (INIS)

    Liu Chunping

    2005-01-01

    First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed

  7. Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim [Center for Large Telescope, Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Park, Chan-Gyung [Division of Science Education and Institute of Fusion Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-09-01

    We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as the effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.

  8. Structural changes of small amplitude kinetic Alfvén solitary waves due to second-order corrections

    International Nuclear Information System (INIS)

    Choi, Cheong R.

    2015-01-01

    The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-order equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites

  9. Nonlinear electromagnetic susceptibilities of unmagnetized plasmas

    International Nuclear Information System (INIS)

    Yoon, Peter H.

    2005-01-01

    Fully electromagnetic nonlinear susceptibilities of unmagnetized plasmas are analyzed in detail. Concrete expressions of the second-order nonlinear susceptibility are found in various forms in the literature, usually in connection with the discussions of various three-wave decay processes, but the third-order susceptibilities are rarely discussed. The second-order susceptibility is pertinent to nonlinear wave-wave interactions (i.e., the decay/coalescence), whereas the third-order susceptibilities affect nonlinear wave-particle interactions (i.e., the induced scattering). In the present article useful approximate analytical expressions of these nonlinear susceptibilities that can be readily utilized in various situations are derived

  10. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the step size reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta-Chebyshev (ROCK2) methods for deterministic problems. The convergence, meansquare, and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  11. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  12. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    Science.gov (United States)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  13. Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems

    International Nuclear Information System (INIS)

    Jia Li-Xin; Dai Hao; Hui Meng

    2010-01-01

    This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method

  14. Acoustic-gravity nonlinear structures

    Directory of Open Access Journals (Sweden)

    D. Jovanović

    2002-01-01

    Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.

  15. Z-scan: A simple technique for determination of third-order optical nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)

    2015-08-28

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.

  16. Nonlinear wave chaos: statistics of second harmonic fields.

    Science.gov (United States)

    Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2017-10-01

    Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

  17. Second-order optical nonlinearities in dilute melt proton exchange waveguides in z-cut LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben; Pedersen, Kjeld

    1996-01-01

    Planar optical waveguides with different refractive indices are made in z-cut LiNbO3 with a dilute proton exchange method using a system of glycerol containing KHSO4 and lithium benzoate. The optical second-order susceptibilities of these waveguides are measured by detecting the 266 nm reflected...... second-harmonic signal generated by a 532 nm beam directed onto the waveguide surface. It is found for this kind of waveguides that in the waveguide region all the second-order susceptibilities take values of at least 90% of the original LiNbO; values for refractive index changes less than similar to 0...

  18. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    International Nuclear Information System (INIS)

    Sharma, Mamta; Tripathi, S. K.

    2015-01-01

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n 2 ) and nonlinear susceptibility (χ 3 ) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n 2 and β and is found to be of the order of 10 −7 – 10 −8 m 2 /V 2 . The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect

  19. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    Science.gov (United States)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  20. High-order nonlinear susceptibilities of He

    International Nuclear Information System (INIS)

    Liu, W.C.; Clark, C.W.

    1996-01-01

    High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. The authors have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s, within the framework of Rayleigh=Schroedinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Ponte and Shakeshaft, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used; the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals

  1. Fourth Order Nonlinear Intensity and the corresponding Refractive ...

    African Journals Online (AJOL)

    Nonlinear effects occur whenever the optical fields associated with one or more intense light such as from laser beams propagating in a crystal are large enough to produce polarization fields. This paper describes how the fourth order nonlinear intensity and the corresponding effective refractive index that is intensity ...

  2. Solution of continuous nonlinear PDEs through order completion

    CERN Document Server

    Oberguggenberger, MB

    1994-01-01

    This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.

  3. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    International Nuclear Information System (INIS)

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  4. Second-Order Science of Interdisciplinary Research

    DEFF Research Database (Denmark)

    Alrøe, Hugo Fjelsted; Noe, Egon

    2014-01-01

    require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where...... there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory...... of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem...

  5. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  6. Longitudinal expansion of field line dipolarization

    Science.gov (United States)

    Saka, O.; Hayashi, K.

    2017-11-01

    We examine the substorm expansions that started at 1155 UT 10 August 1994 in the midnight sector focusing on the longitudinal (eastward) expansion of field line dipolarization in the auroral zone. Eastward expansion of the dipolarization region was observed in all of the H, D, and Z components. The dipolarization that started at 1155 UT (0027 MLT) from 260° of geomagnetic longitude (CMO) expanded to 351°(PBQ) in about 48 min. The expansion velocity was 0.03-0.04°/s, or 1.9 km/s at 62°N of geomagnetic latitude. The dipolarization region expanding to the east was accompanied by a bipolar event at the leading edge of the expansion in latitudes equatorward of the westward electrojet (WEJ). In the midnight sector at the onset meridian, the Magnetospheric Plasma Analyzer (MAP) on board geosynchronous satellite L9 measured electrons and ions between 10 eV and 40 keV. We conclude from the satellite observations that this dipolarization was characterized by the evolution of temperature anisotropies, an increase of the electron and ion temperatures, and a rapid change in the symmetry axis of the temperature tensor. The field line dipolarization and its longitudinal expansion were interpreted in terms of the slow MHD mode triggered by the current disruption. We propose a new magnetosphere-ionosphere coupling (MI-coupling) mechanism based on the scenario that transmitted westward electric fields from the magnetosphere in association with expanding dipolarization produced electrostatic potential (negative) in the ionosphere through differences in the mobility of collisional ions and collisionless electrons. The field-aligned currents that emerged from the negative potential region are arranged in a concentric pattern around the negative potential region, upward toward the center and downward on the peripheral.

  7. Analysis of an Nth-order nonlinear differential-delay equation

    Science.gov (United States)

    Vallée, Réal; Marriott, Christopher

    1989-01-01

    The problem of a nonlinear dynamical system with delay and an overall response time which is distributed among N individual components is analyzed. Such a system can generally be modeled by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numerical simulation of that equation are performed and a comparison is made with the experimental results. Finally, a parallel is established between the first-order differential equation with delay and the Nth-order differential equation without delay.

  8. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)

    2015-06-24

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.

  9. Nonlinear Dynamics of Memristor Based 2nd and 3rd Order Oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz

    2011-05-01

    Exceptional behaviours of Memristor are illustrated in Memristor based second order (Wien oscillator) and third order (phase shift oscillator) oscillator systems in this Thesis. Conventional concepts about sustained oscillation have been argued by demonstrating the possibility of sustained oscillation with oscillating resistance and dynamic poles. Mathematical models are also proposed for analysis and simulations have been presented to support the surprising characteristics of the Memristor based oscillator systems. This thesis also describes a comparative study among the Wien family oscillators with one Memristor. In case of phase shift oscillator, one Memristor and three Memristors systems are illustrated and compared to generalize the nonlinear dynamics observed for both 2nd order and 3rd order system. Detail explanations are provided with analytical models to simplify the unconventional properties of Memristor based oscillatory systems.

  10. Stability Analysis of Fractional-Order Nonlinear Systems with Delay

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.

  11. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  12. Capillary condensation and orientational ordering of confined polar fluids.

    Science.gov (United States)

    Gramzow, Matthias; Klapp, Sabine H L

    2007-01-01

    The phase behavior and the orientational structure of polar model fluids confined to slit pores is investigated by means of density functional theory in a modified mean-field approximation. We focus on fluid states and further assume a uniform number density throughout the pore. Our results for spherical dipolar particles with additional van der Waals-like interactions (Stockmayer fluids) reveal complex fluid-fluid phase behavior involving condensation and first- and second-order isotropic-to-ferroelectric phase transitions, where the ferroelectric ordering occurs parallel to the confining walls. The relative importance of these phase transitions depends on two "tuning" parameters, that is the strength of the dipolar interactions (relative to the isotropic attractive ones) between fluid particles, and on the pore width. In particular, in narrow pores the condensation transition seen in bulk Stockmayer fluids is entirely suppressed. For dipolar hard spheres, on the other hand, the impact of confinement consists in a decrease of the isotropic-to-ferroelectric transition temperatures. We also demonstrate that the local orientational structure is inhomogeneous and anisotropic even in globally isotropic systems, in agreement with computer simulation results.

  13. Cumulative Second Harmonic Generation in Lamb Waves for the Detection of Material Nonlinearities

    International Nuclear Information System (INIS)

    Bermes, Christian; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin

    2007-01-01

    An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation, and laser interferometry for detection. The experimentally measured Lamb wave signals are processed with a short-time Fourier transformation (STFT), which yields the amplitudes at different frequencies as functions of time, allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for the alloy aluminum 1100-H14

  14. The mixed BVP for second order nonlinear ordinary differential equation at resonance

    Czech Academy of Sciences Publication Activity Database

    Mukhigulashvili, Sulkhan

    2017-01-01

    Roč. 290, 2-3 (2017), s. 393-400 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : mixed problem at resonance * nonlinear ordinary differencial equation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.742, year: 2016

  15. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  16. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  17. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  18. The third order nonlinear susceptibility of InAs at infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2008-01-01

    Nonlinear susceptibilities of the third order and coefficient of nonlinear absorption in InAs n-type with a different degree of a doping have been measured. The values of the third order nonlinear susceptibilities have derived from these measurements essentially exceed the values calculated on the basis of model featuring nonlinear susceptibility of electrons, being in conduction-band nonparabolicity. It has been shown that the observable discrepancy has been eliminated, if in calculation a dissipation of energy of electrons has been considered. Growth of efficiency at four-wave mixingin narrow-gap semiconductors has been restricted to nonlinear absorption of interacting waves

  19. Access is mainly a second-order process: SDT models whether phenomenally (first-order) conscious states are accessed by reflectively (second-order) conscious processes.

    Science.gov (United States)

    Snodgrass, Michael; Kalaida, Natasha; Winer, E Samuel

    2009-06-01

    Access can either be first-order or second-order. First order access concerns whether contents achieve representation in phenomenal consciousness at all; second-order access concerns whether phenomenally conscious contents are selected for metacognitive, higher order processing by reflective consciousness. When the optional and flexible nature of second-order access is kept in mind, there remain strong reasons to believe that exclusion failure can indeed isolate phenomenally conscious stimuli that are not so accessed. Irvine's [Irvine, E. (2009). Signal detection theory, the exclusion failure paradigm and weak consciousness-Evidence for the access/phenomenal distinction? Consciousness and Cognition.] partial access argument fails because exclusion failure is indeed due to lack of second-order access, not insufficient phenomenally conscious information. Further, the enable account conforms with both qualitative differences and subjective report, and is simpler than the endow account. Finally, although first-order access may be a distinct and important process, second-order access arguably reflects the core meaning of access generally.

  20. A Second Look at Second-Order Belief Attribution in Autism.

    Science.gov (United States)

    Tager-Flusberg, Helen; Sullivan, Kate

    1994-01-01

    Twelve students with autism and 12 with mental retardation, who had passed a first-order test of false belief, were given a second-order reasoning task. No intergroup performance differences were seen. Findings suggest that the difficulty for both groups with the second-order task lies in information processing demands rather than conceptual…

  1. Second-Order Inelastic Dynamic Analysis of 3D Semi-Rigid Steel Frames Under Earthquake Loads with Three Components

    International Nuclear Information System (INIS)

    Ozakgul, Kadir

    2008-01-01

    In this study, it has been presented an algorithm for second-order elastoplastic dynamic time-history analysis of three dimensional frames that have steel members with semirigid joints. The proposed analysis accounts for material, geometric and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. The independent hardening model has been used to describe the nonlinear behaviour of semi-rigid connections. Dynamic equation of motion has been solved by Newmark's constant acceleration method in time history domain

  2. Nonlinear optics at interfaces

    International Nuclear Information System (INIS)

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory

  3. Second-order gauge-invariant perturbations during inflation

    International Nuclear Information System (INIS)

    Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G.

    2006-01-01

    The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second-order gauge-invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second-order gauge-invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections with respect to the first order spectrum. For all scales of interest the amplitude of these spectra depends on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable

  4. Output power PDF of a saturated semiconductor optical amplifier: Second-order noise contributions by path integral method

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper; Tromborg, Bjarne

    2007-01-01

    We have developed a second-order small-signal model for describing the nonlinear redistribution of noise in a saturated semiconductor optical amplifier. In this paper, the details of the model are presented. A numerical example is used to compare the model to statistical simulations. We show that...

  5. Higher-order modulation instability in nonlinear fiber optics.

    Science.gov (United States)

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  6. The structure of the interface in the solvent mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Levadny, V.G.

    1987-08-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs

  7. An efficient flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...

  8. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    International Nuclear Information System (INIS)

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-01-01

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers

  9. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  10. Synthesis, characterization and third-order nonlinear optical ...

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... the past, several strategies have been evolved to enhance the third-order nonlinear ..... retical fit using the formulation given in ref. [22]. Fit param- ..... Acknowledgement. The corresponding author acknowledges the financial.

  11. Source of second order chromaticity in RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Gu, X.; Fischer, W.; Trbojevic, D.

    2011-01-01

    In this note we will answer the following questions: (1) what is the source of second order chromaticities in RHIC? (2) what is the dependence of second order chromaticity on the on-momentum β-beat? (3) what is the dependence of second order chromaticity on β* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities.

  12. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  13. Phase transitions to dipolar clusters and charge density waves in high T_c superconductors

    International Nuclear Information System (INIS)

    Saarela, M.; Kusmartsev, F.V.

    2017-01-01

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  14. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  15. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  16. An Analysis of Second-Order Autoshaping

    Science.gov (United States)

    Ward-Robinson, Jasper

    2004-01-01

    Three mechanisms can explain second-order conditioning: (1) The second-order conditioned stimulus (CS2) could activate a representation of the first-order conditioned stimulus (CS1), thereby provoking the conditioned response (CR); The CS2 could enter into an excitatory association with either (2) the representation governing the CR, or (3) with a…

  17. First and second order vortex dynamics

    International Nuclear Information System (INIS)

    Kim, Yoonbai; Lee, Kimyeong

    2002-01-01

    The low energy dynamics of vortices in self-dual Abelian Higgs theory in (2+1)-dimensional spacetime is of second order in vortex velocity and characterized by the moduli space metric. When the Chern-Simons term with a small coefficient is added to the theory, we show that a term linear in vortex velocity appears and can be consistently added to the second order expression. We provide an additional check of the first and second order terms by studying the angular momentum in field theory

  18. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.

    2016-01-01

    The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...

  19. Dipolar quantum gases of erbium

    International Nuclear Information System (INIS)

    Frisch, A.

    2014-01-01

    Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures

  20. Structure refinement of flexible proteins using dipolar couplings: Application to the protein p8MTCP1

    International Nuclear Information System (INIS)

    Demene, Helene; Ducat, Thierry; Barthe, Philippe; Delsuc, Marc-Andre; Roumestand, Christian

    2002-01-01

    The present study deals with the relevance of using mobility-averaged dipolar couplings for the structure refinement of flexible proteins. The 68-residue protein p8 MTCP1 has been chosen as model for this study. Its solution state consists mainly of three α-helices. The two N-terminal helices are strapped in a well-determined α-hairpin, whereas, due to an intrinsic mobility, the position of the third helix is less well defined in the NMR structure. To further characterize the degrees of freedom of this helix, we have measured the dipolar coupling constants in the backbone of p8 MTCP1 in a bicellar medium. We show here that including D HN dip dipolar couplings in the structure calculation protocol improves the structure of the α-hairpin but not the positioning of the third helix. This is due to the motional averaging of the dipolar couplings measured in the last helix. Performing two calculations with different force constants for the dipolar restraints highlights the inconstancy of these mobility-averaged dipolar couplings. Alternatively, prior to any structure calculations, comparing the values of the dipolar couplings measured in helix III to values back-calculated from an ideal helix demonstrates that they are atypical for a helix. This can be partly attributed to mobility effects since the inclusion of the 15 N relaxation derived order parameter allows for a better fit

  1. Multi-soliton and rogue-wave solutions of the higher-order Hirota system for an erbium-doped nonlinear fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Da-Wei [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics; Shijiazhuang Tiedao University (China). Dept. of Mathematics and Physics; Gao, Yi-Tian; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics

    2014-10-15

    The nonlinear Schroedinger (NLS) equation appears in fluid mechanics, plasma physics, etc., while the Hirota equation, a higher-order NLS equation, has been introduced. In this paper, a higher-order Hirota system is investigated, which describes the wave propagation in an erbium-doped nonlinear fiber with higher-order dispersion. By virtue of the Darboux transformation and generalized Darboux transformation, multi-soliton solutions and higher-order rogue-wave solutions are derived, beyond the published first-order consideration. Wave propagation and interaction are analyzed: (i) Bell-shape solitons, bright- and dark-rogue waves are found; (ii) the two-soliton interaction is elastic, i.e., the amplitude and velocity of each soliton remain unchanged after the interaction; (iii) the coefficient in the system affects the direction of the soliton propagation, patterns of the soliton interaction, distance, and direction of the first-order rogue-wave propagation, as well as the range and direction of the second-order rogue-wave interaction.

  2. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  3. Generalized Second-Order Parametric Optimality Conditions in Semiinfinite Discrete Minmax Fractional Programming and Second-Order Univexity

    Directory of Open Access Journals (Sweden)

    Ram Verma

    2016-02-01

    Full Text Available This paper deals with mainly establishing numerous sets of generalized second order paramertic sufficient optimality conditions for a semiinfinite discrete minmax fractional programming problem, while the results on semiinfinite discrete minmax fractional programming problem achieved based on some partitioning schemes under various types of generalized second order univexity assumptions. 

  4. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Aziz, Arsalan [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, Bashir [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2016-06-15

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.

  5. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    International Nuclear Information System (INIS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2016-01-01

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.

  6. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  7. Phase transitions to dipolar clusters and charge density waves in high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saarela, M., E-mail: Mikko.Saarela@oulu.fi [Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Kusmartsev, F.V. [Department of Physics, Loughborough University, LE11 3TU (United Kingdom)

    2017-02-15

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  8. Systemic Design for Second-Order Effects

    Directory of Open Access Journals (Sweden)

    Evan Barba

    2017-04-01

    Full Text Available Second-order effects refer to changes within a system that are the result of changes made somewhere else in the system (the first-order effects. Second-order effects can occur at different spatial, temporal, or organizational scales from the original interventions, and are difficult to control. Some organizational theorists suggest that careful management of feedback processes can facilitate controlled change from one organizational configuration to another. Recognizing that skill in managing feedback processes is a core competency of design suggests that design skills are potentially useful tools in achieving organizational change. This paper describes a case study in which a co-design methodology was used to control the second-order effects resulting from a classroom intervention to create organizational change. This approach is then theorized as the Instigator Systems approach.

  9. Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Cauchy Pradhan

    2012-01-01

    Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.

  10. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    International Nuclear Information System (INIS)

    Singh, Vijender; Aghamkar, Praveen

    2014-01-01

    We obtain a large third-order optical nonlinearity (χ (3)  ≈ 10 −10 esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm

  11. Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-03-01

    Full Text Available This article presents a new fractional-order sliding mode control (FOSMC strategy based on a linear-quadratic regulator (LQR for a class of uncertain nonlinear systems. First, input/output feedback linearization is used to linearize the nonlinear system and decouple tracking error dynamics. Second, LQR is designed to ensure that the tracking error dynamics converges to the equilibrium point as soon as possible. Based on LQR, a novel fractional-order sliding surface is introduced. Subsequently, the FOSMC is designed to reject system uncertainties and reduce the magnitude of control chattering. Then, the global stability of the closed-loop control system is analytically proved using Lyapunov stability theory. Finally, a typical single-input single-output system and a typical multi-input multi-output system are simulated to illustrate the effectiveness and advantages of the proposed control strategy. The results of the simulation indicate that the proposed control strategy exhibits excellent performance and robustness with system uncertainties. Compared to conventional integer-order sliding mode control, the high-frequency chattering of the control input is drastically depressed.

  12. Physical origin of third order non-linear optical response of porphyrin nanorods

    International Nuclear Information System (INIS)

    Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.

    2012-01-01

    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.

  13. First- and second-order processing in transient stereopsis.

    Science.gov (United States)

    Edwards, M; Pope, D R; Schor, C M

    2000-01-01

    Large-field stimuli were used to investigate the interaction of first- and second-order pathways in transient-stereo processing. Stimuli consisted of sinewave modulations in either the mean luminance (first-order stimulus) or the contrast (second-order stimulus) of a dynamic-random-dot field. The main results of the present study are that: (1) Depth could be extracted with both the first-order and second-order stimuli; (2) Depth could be extracted from dichoptically mixed first- and second-order stimuli, however, the same stimuli, when presented as a motion sequence, did not result in a motion percept. Based upon these findings we conclude that the transient-stereo system processes both first- and second-order signals, and that these two signals are pooled prior to the extraction of transient depth. This finding of interaction between first- and second-order stereoscopic processing is different from the independence that has been found with the motion system.

  14. Multiple periodic solutions to a class of second-order nonlinear mixed-type functional differential equations

    Directory of Open Access Journals (Sweden)

    Xiao-Bao Shu

    2005-01-01

    Full Text Available By means of variational structure and Z2 group index theory, we obtain multiple periodic solutions to a class of second-order mixed-type differential equations x''(t−τ+f(t,x(t,x(t−τ,x(t−2τ=0 and x''(t−τ+λ(tf1(t,x(t,x(t−τ,x(t−2τ=x(t−τ.

  15. Nonlinear noninteger order circuits and systems an introduction

    CERN Document Server

    Arena, P; Fortuna, L; Porto, D

    2001-01-01

    In this book, the reader will find a theoretical introduction to noninteger order systems, as well as several applications showing their features and peculiarities. The main definitions and results of research on noninteger order systems and modelling of physical noninteger phenomena are reported together with problems of their approximation. Control applications, noninteger order CNNs and circuit realizations of noninteger order systems are also presented.The book is intended for students and researchers involved in the simulation and control of nonlinear noninteger order systems, with partic

  16. Finite Time Control for Fractional Order Nonlinear Hydroturbine Governing System via Frequency Distributed Model

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-01-01

    Full Text Available This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS. Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.

  17. Theoretical analysis of open aperture reflection Z-scan on materials with high-order optical nonlinearities

    International Nuclear Information System (INIS)

    Petris, Adrian I.; Vlad, Valentin I.

    2010-03-01

    We present a theoretical analysis of open aperture reflection Z-scan in nonlinear media with third-, fifth-, and higher-order nonlinearities. A general analytical expression for the normalized reflectance when third-, fifth- and higher-order optical nonlinearities are excited is derived and its consequences on RZ-scan in media with high-order nonlinearities are discussed. We show that by performing RZ-scan experiments at different incident intensities it is possible to put in evidence the excitation of different order nonlinearities in the medium. Their contributions to the overall nonlinear response can be discriminated by using formulas derived by us. A RZ-scan numerical simulation using these formulas and data taken from literature, measured by another method for the third-, fifth-, and seventh-order nonlinear refractive indices of As 2 S 3 chalcogenide glass, is performed. (author)

  18. Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems

    KAUST Repository

    N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.

  19. Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems

    KAUST Repository

    N'Doye, Ibrahima

    2015-07-01

    This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.

  20. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender [Department of Applied Science, N.C. College of Engineering, Israna, Panipat 132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.in [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India)

    2014-03-17

    We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.

  1. The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail

    Science.gov (United States)

    Frühauff, D.; Glassmeier, K.-H.

    2017-11-01

    In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.

  2. Design of Robust Supertwisting Algorithm Based Second-Order Sliding Mode Controller for Nonlinear Systems with Both Matched and Unmatched Uncertainty

    Directory of Open Access Journals (Sweden)

    Marwa Jouini

    2017-01-01

    Full Text Available This paper proposes a robust supertwisting algorithm (STA design for nonlinear systems where both matched and unmatched uncertainties are considered. The main contributions reside primarily to conceive a novel structure of STA, in order to ensure the desired performance of the uncertain nonlinear system. The modified algorithm is formed of double closed-loop feedback, in which two linear terms are added to the classical STA. In addition, an integral sliding mode switching surface is proposed to construct the attractiveness and reachability of sliding mode. Sufficient conditions are derived to guarantee the exact differentiation stability in finite time based on Lyapunov function theory. Finally, a comparative study for a variable-length pendulum system illustrates the robustness and the effectiveness of the proposed approach compared to other STA schemes.

  3. Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains

    International Nuclear Information System (INIS)

    Klokkenburg, M; Erne, B H; Mendelev, V; Ivanov, A O

    2008-01-01

    Theories and simulations have demonstrated that field-induced dipolar chains affect the static magnetic properties of ferrofluids. Experimental verification, however, has been complicated by the high polydispersity of the available ferrofluids, and the morphology of the dipolar chains was left to the imagination. We now present the concentration- and field-dependent magnetization of particularly well-defined ferrofluids, with a low polydispersity, three different average particle sizes, and with dipolar chains that were imaged with and without magnetic field using cryogenic transmission electron microscopy. At low concentrations, the magnetization curves obey the Langevin equation for noninteracting dipoles. Magnetization curves for the largest particles strongly deviate from the Langevin equation but quantitatively agree with a recently developed mean-field model that incorporates the field-dependent formation and alignment of flexible dipolar chains. The combination of magnetic results and in situ electron microscopy images provides original new evidence for the effect of dipolar chains on the field-dependent magnetization of ferrofluids

  4. Presolving and regularization in mixed-integer second-order cone optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    Mixed-integer second-order cone optimization is a powerful mathematical framework capable of representing both logical conditions and nonlinear relationships in mathematical models of industrial optimization problems. What is more, solution methods are already part of many major commercial solvers...... both continuous and mixed-integer conic optimization in general, is discovered and treated. This part of the thesis continues the studies of facial reduction preceding the work of Borwein and Wolkowicz [17] in 1981, when the first algorithmic cure for these kinds of reliability issues were formulated....... An important distinction to make between continuous and mixed-integer optimization, however, is that the reliability issues occurring in mixed-integer optimization cannot be blamed on the practitioner’s formulation of the problem. Specifically, as shown, the causes for these issues may well lie within...

  5. Non-dipolar gauge links for transverse-momentum-dependent pion wave functions

    International Nuclear Information System (INIS)

    Wang, Y.M.

    2016-01-01

    I discuss the factorization-compatible definitions of transverse-momentum-dependent (TMD) pion wave functions which are fundamental theory inputs entering QCD factorization formulae for many hard exclusive processes. I will first demonstrate that the soft subtraction factor introduced to remove both rapidity and pinch singularities can be greatly reduced by making the maximal use of the freedom to construct the Wilson-line paths when defining the TMD wave functions. I will then turn to show that the newly proposed TMD definition with non-dipolar Wilson lines is equivalent to the one with dipolar gauge links and with a complicated soft function, to all orders of the perturbative expansion in the strong coupling, as far as the infrared behavior is concerned. (author)

  6. Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method

    International Nuclear Information System (INIS)

    Belendez, A; Pascual, C; Alvarez, M L; Mendez, D I; Yebra, M S; Hernandez, A

    2009-01-01

    A modified He's homotopy perturbation method is used to calculate the periodic solutions of a nonlinear pendulum. The method has been modified by truncating the infinite series corresponding to the first-order approximate solution and substituting a finite number of terms in the second-order linear differential equation. As can be seen, the modified homotopy perturbation method works very well for high values of the initial amplitude. Excellent agreement of the analytical approximate period with the exact period has been demonstrated not only for small but also for large amplitudes A (the relative error is less than 1% for A < 152 deg.). Comparison of the result obtained using this method with the exact ones reveals that this modified method is very effective and convenient.

  7. The structure of the interface in the solvent-mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.

    1988-01-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated

  8. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    Science.gov (United States)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  9. Dipolar sources of the early scalp somatosensory evoked potentials to upper limb stimulation. Effect of increasing stimulus rates.

    Science.gov (United States)

    Valeriani, M; Restuccia, D; Di Lazzaro, V; Le Pera, D; Barba, C; Tonali, P; Mauguiere, F

    1998-06-01

    Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.

  10. Higher-Order Approximations of Motion of a Nonlinear Oscillator Using the Parameter Expansion Technique

    Science.gov (United States)

    Ganji, S. S.; Domairry, G.; Davodi, A. G.; Babazadeh, H.; Seyedalizadeh Ganji, S. H.

    The main objective of this paper is to apply the parameter expansion technique (a modified Lindstedt-Poincaré method) to calculate the first, second, and third-order approximations of motion of a nonlinear oscillator arising in rigid rod rocking back. The dynamics and frequency of motion of this nonlinear mechanical system are analyzed. A meticulous attention is carried out to the study of the introduced nonlinearity effects on the amplitudes of the oscillatory states and on the bifurcation structures. We examine the synchronization and the frequency of systems using both the strong and special method. Numerical simulations and computer's answers confirm and complement the results obtained by the analytical approach. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. The solutions of this method are compared with the exact ones in order to validate the approach, and assess the accuracy of the solutions. In particular, APL-PM works well for the whole range of oscillation amplitudes and excellent agreement of the approximate frequency with the exact one has been demonstrated. The approximate period derived here is accurate and close to the exact solution. This method has a distinguished feature which makes it simple to use, and also it agrees with the exact solutions for various parameters.

  11. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  12. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  13. Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.

  14. Dynamics of second order rational difference equations with open problems and conjectures

    CERN Document Server

    Kulenovic, Mustafa RS

    2001-01-01

    This self-contained monograph provides systematic, instructive analysis of second-order rational difference equations. After classifying the various types of these equations and introducing some preliminary results, the authors systematically investigate each equation for semicycles, invariant intervals, boundedness, periodicity, and global stability. Of paramount importance in their own right, the results presented also offer prototypes towards the development of the basic theory of the global behavior of solutions of nonlinear difference equations of order greater than one. The techniques and results in this monograph are also extremely useful in analyzing the equations in the mathematical models of various biological systems and other applications. Each chapter contains a section of open problems and conjectures that will stimulate further research interest in working towards a complete understanding of the dynamics of the equation and its functional generalizations-many of them ideal for research project...

  15. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  16. Solutions to second order non-homogeneous multi-point BVPs using a fixed-point theorem

    Directory of Open Access Journals (Sweden)

    Yuji Liu

    2008-07-01

    Full Text Available In this article, we study five non-homogeneous multi-point boundary-value problems (BVPs of second order differential equations with the one-dimensional p-Laplacian. These problems have a common equation (in different function domains and different boundary conditions. We find conditions that guarantee the existence of at least three positive solutions. The results obtained generalize several known ones and are illustrated by examples. It is also shown that the approach for getting three positive solutions by using multi-fixed-point theorems can be extended to nonhomogeneous BVPs. The emphasis is on the nonhomogeneous boundary conditions and the nonlinear term involving first order derivative of the unknown. Some open problems are also proposed.

  17. A second order anti-diffusive Lagrange-remap scheme for two-component flows

    Directory of Open Access Journals (Sweden)

    Lagoutière Frédéric

    2011-11-01

    Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.

  18. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    Science.gov (United States)

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  19. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M

    2007-01-01

    We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|χ (3) |) and the linear absorption coefficient (α) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |χ (3) |/α for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape

  20. Second-order sliding mode controller with model reference adaptation for automatic train operation

    Science.gov (United States)

    Ganesan, M.; Ezhilarasi, D.; Benni, Jijo

    2017-11-01

    In this paper, a new approach to model reference based adaptive second-order sliding mode control together with adaptive state feedback is presented to control the longitudinal dynamic motion of a high speed train for automatic train operation with the objective of minimal jerk travel by the passengers. The nonlinear dynamic model for the longitudinal motion of the train comprises of a locomotive and coach subsystems is constructed using multiple point-mass model by considering the forces acting on the vehicle. An adaptation scheme using Lyapunov criterion is derived to tune the controller gains by considering a linear, stable reference model that ensures the stability of the system in closed loop. The effectiveness of the controller tracking performance is tested under uncertain passenger load, coupler-draft gear parameters, propulsion resistance coefficients variations and environmental disturbances due to side wind and wet rail conditions. The results demonstrate improved tracking performance of the proposed control scheme with a least jerk under maximum parameter uncertainties when compared to constant gain second-order sliding mode control.

  1. Linear and nonlinear low-frequency electrostatic waves in a nonuniform pair-ion-dust magnetoplasma

    International Nuclear Information System (INIS)

    Saleem, H; Shukla, P K; Eliasson, B

    2008-01-01

    Linear and nonlinear properties of the low-frequency (in comparison with the ion gyrofrequency) electrostatic oscillations in pair-ion-dust magnetoplasma are presented. In the linear limit, the Shukla-Varma mode is coupled with the ion oscillations while the nonlinearly coupled modes appear in the form of a dipolar or a monopolar vortex

  2. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  3. Higher-order quasi-phase matched second harmonic generation in periodically poled MgO-doped stoichiometric LiTaO3

    International Nuclear Information System (INIS)

    Yu, Nan Ei; Kurimura, Sunao; Kitamura, Kenji

    2005-01-01

    A periodically poled device was investigated by using fourth-order quasi-phase-matched (QPM) second harmonic generation (SHG) in MgO-doped stoichiometric lithium tantalate (LiTaO 3 ). The effective nonlinear coefficient was found be 2.4 pm/V by using fourth-order QPM SHG at the fundamental wavelength of 1064 nm. For first-order QPM SHG, the effective value of d 33 could be 9.2 pm/V. Using the sensitive higher-order QPM SHG method, we investigated the relationship between the domain duty ratio and the conversion efficiency.

  4. Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots

    Directory of Open Access Journals (Sweden)

    Si-Cong Tian

    2015-02-01

    Full Text Available Schemes for giant fifth-order nonlinearity via tunneling in both linear and triangular triple quantum dots are proposed. In both configurations, the real part of the fifth-order nonlinearity can be greatly enhanced, and simultaneously the absorption is suppressed. The analytical expression and the dressed states of the system show that the two tunnelings between the neighboring quantum dots can induce quantum interference, resulting in the giant higher-order nonlinearity. The scheme proposed here may have important applications in quantum information processing at low light level.

  5. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  6. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    Science.gov (United States)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  7. A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Eberstadt, Matthias; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories (United States)

    1998-10-15

    A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.

  8. On periodic bounded and unbounded solutions of second order nonlinear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander

    2017-01-01

    Roč. 24, č. 2 (2017), s. 241-263 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : nonlinear ordinary differential equations * periodic boundary value problem * solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2017-0009/gmj-2017-0009. xml

  9. On periodic bounded and unbounded solutions of second order nonlinear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander

    2017-01-01

    Roč. 24, č. 2 (2017), s. 241-263 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : nonlinear ordinary differential equations * periodic boundary value problem * solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2017-0009/gmj-2017-0009.xml

  10. The shooting method and multiple solutions of two/multi-point BVPs of second-order ODE

    Directory of Open Access Journals (Sweden)

    Man Kam Kwong

    2006-06-01

    Full Text Available Within the last decade, there has been growing interest in the study of multiple solutions of two- and multi-point boundary value problems of nonlinear ordinary differential equations as fixed points of a cone mapping. Undeniably many good results have emerged. The purpose of this paper is to point out that, in the special case of second-order equations, the shooting method can be an effective tool, sometimes yielding better results than those obtainable via fixed point techniques.

  11. Asymptotic behavior of second-order impulsive differential equations

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2011-02-01

    Full Text Available In this article, we study the asymptotic behavior of all solutions of 2-th order nonlinear delay differential equation with impulses. Our main tools are impulsive differential inequalities and the Riccati transformation. We illustrate the results by an example.

  12. Recursive belief manipulation and second-order false-beliefs

    DEFF Research Database (Denmark)

    Braüner, Torben; Blackburn, Patrick Rowan; Polyanskaya, Irina

    2016-01-01

    it indicate that a more fundamental *conceptual change* has taken place? In this paper we extend Braüner's hybrid-logical analysis of first-order false-belief tasks to the second-order case, and argue that our analysis supports a version of the conceptual change position.......The literature on first-order false-belief is extensive, but less is known about the second-order case. The ability to handle second-order false-beliefs correctly seems to mark a cognitively significant step, but what is its status? Is it an example of *complexity only* development, or does...

  13. Calculating Second-Order Effects in MOSFET's

    Science.gov (United States)

    Benumof, Reuben; Zoutendyk, John A.; Coss, James R.

    1990-01-01

    Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.

  14. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M [Ultrafast Studies Section, Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2007-08-08

    We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|{chi}{sup (3)}|) and the linear absorption coefficient ({alpha}) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |{chi}{sup (3)}|/{alpha} for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape.

  15. Van-der-Waals interaction of atoms in dipolar Rydberg states

    Science.gov (United States)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power

  16. Nonlinear Optics of Hexaphenyl Nanofibers

    DEFF Research Database (Denmark)

    Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf

    2003-01-01

    The nonlinear optical response of films of needle-shaped para-hexaphenyl nanoaggregates on mica surfaces is investigated. Two-photon luminescence as well as optical second harmonic generation (SHG) are observed following excitation with femtosecond pulses at 770 nm. Polarization dependent...... measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...

  17. Second-Order Risk Constraints in Decision Analysis

    Directory of Open Access Journals (Sweden)

    Love Ekenberg

    2014-01-01

    Full Text Available Recently, representations and methods aimed at analysing decision problems where probabilities and values (utilities are associated with distributions over them (second-order representations have been suggested. In this paper we present an approach to how imprecise information can be modelled by means of second-order distributions and how a risk evaluation process can be elaborated by integrating procedures for numerically imprecise probabilities and utilities. We discuss some shortcomings of the use of the principle of maximising the expected utility and of utility theory in general, and offer remedies by the introduction of supplementary decision rules based on a concept of risk constraints taking advantage of second-order distributions.

  18. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  19. Mechanism and regioselectivity of 1,3-dipolar cycloaddition ...

    Indian Academy of Sciences (India)

    1,3-Dipolar cycloaddition; sulphur-centred 1,3-dipoles; regioselectivity; DFT reactivity indices;. FMO theory. 1. Introduction. Five-membered heterocyclic compounds can be gene- rated by addition of a 1,3-dipole to a dipolarophile under a 1,3-dipolar cycloaddition (1,3-DC) reaction which is well known as pericyclic reaction.

  20. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.

    Science.gov (United States)

    Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-07-15

    We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.

  1. Perturbation theories for the dipolar fluids

    International Nuclear Information System (INIS)

    Lee, L.L.; Chung, T.H.

    1983-01-01

    We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out

  2. Existence of positive solutions for nonlocal second-order boundary value problem with variable parameter in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zhang Peiguo

    2011-01-01

    Full Text Available Abstract By obtaining intervals of the parameter λ, this article investigates the existence of a positive solution for a class of nonlinear boundary value problems of second-order differential equations with integral boundary conditions in abstract spaces. The arguments are based upon a specially constructed cone and the fixed point theory in cone for a strict set contraction operator. MSC: 34B15; 34B16.

  3. Calculations on the Nonlinear Second—Order Optical Polarizabilities for Series of Donor—C60 Molecules

    Institute of Scientific and Technical Information of China (English)

    刘孝娟; 封继康; 任爱民

    2003-01-01

    The equilibrium geometries and UV-visible spectra of a series of donor-C60 molecules were obtained by means of the AM1 and INDO/CI method,on the basis of accurate geometric and electronic structures.The nonlinear second-order optical polarizabilities were calculated using the method INDO/SDCI combined with the Sum-Over-States(SOS) expression.The calculatedβ(λ=1.34μm) values are 28.81,48.56,57.33,66.99,70.85,85.84,and 142.14(×10-30 esu) for the molecules A,B,C,D,E,F and G,respectively.The frontier orbitals were plot for the representative molecules in order to exhibit the intramolecular charge transfer.The results indicate the introduction of thienylethylene can enhance the NLO response and the dimethylaniline-substituted dithienyl-ethylene-C60 (molecule G) possesses the largest NLO second-order optical polarizability.The large β values can be attributed to the charge transfer between the substituents and C60,as well as within the three-dimensional conjugated sphere of C60.

  4. European Workshop on High Order Nonlinear Numerical Schemes for Evolutionary PDEs

    CERN Document Server

    Beaugendre, Héloïse; Congedo, Pietro; Dobrzynski, Cécile; Perrier, Vincent; Ricchiuto, Mario

    2014-01-01

    This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.

  5. Two-dimensional discrete solitons in dipolar Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Gligoric, Goran; Stepic, Milutin; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2010-01-01

    We analyze the formation and dynamics of bright unstaggered solitons in the disk-shaped dipolar Bose-Einstein condensate, which features the interplay of contact (collisional) and long-range dipole-dipole (DD) interactions between atoms. The condensate is assumed to be trapped in a strong optical-lattice potential in the disk's plane, hence it may be approximated by a two-dimensional (2D) discrete model, which includes the on-site nonlinearity and cubic long-range (DD) interactions between sites of the lattice. We consider two such models, which differ by the form of the on-site nonlinearity, represented by the usual cubic term, or more accurate nonpolynomial one, derived from the underlying three-dimensional Gross-Pitaevskii equation. Similar results are obtained for both models. The analysis is focused on the effects of the DD interaction on fundamental localized modes in the lattice (2D discrete solitons). The repulsive isotropic DD nonlinearity extends the existence and stability regions of the fundamental solitons. New families of on-site, inter-site, and hybrid solitons, built on top of a finite background, are found as a result of the interplay of the isotropic repulsive DD interaction and attractive contact nonlinearity. By themselves, these solutions are unstable, but they evolve into robust breathers which exist on an oscillating background. In the presence of the repulsive contact interactions, fundamental localized modes exist if the DD interaction (attractive isotropic or anisotropic) is strong enough. They are stable in narrow regions close to the anticontinuum limit, while unstable solitons evolve into breathers. In the latter case, the presence of the background is immaterial.

  6. Scintillation camera with second order resolution

    International Nuclear Information System (INIS)

    Muehllehner, G.

    1976-01-01

    A scintillation camera for use in radioisotope imaging to determine the concentration of radionuclides in a two-dimensional area is described in which means is provided for second order positional resolution. The phototubes, which normally provide only a single order of resolution, are modified to provide second order positional resolution of radiation within an object positioned for viewing by the scintillation camera. The phototubes are modified in that multiple anodes are provided to receive signals from the photocathode in a manner such that each anode is particularly responsive to photoemissions from a limited portion of the photocathode. Resolution of radioactive events appearing as an output of this scintillation camera is thereby improved

  7. Scintillation camera with second order resolution

    International Nuclear Information System (INIS)

    1975-01-01

    A scintillation camera is described for use in radioisotope imaging to determine the concentration of radionuclides in a two-dimensional area in which means is provided for second-order positional resolution. The phototubes which normally provide only a single order of resolution, are modified to provide second-order positional resolution of radiation within an object positioned for viewing by the scintillation camera. The phototubes are modified in that multiple anodes are provided to receive signals from the photocathode in a manner such that each anode is particularly responsive to photoemissions from a limited portion of the photocathode. Resolution of radioactive events appearing as an output of this scintillation camera is thereby improved

  8. Unidirectional reflection and invisibility in nonlinear media with an incoherent nonlinearity

    Science.gov (United States)

    Mostafazadeh, Ali; Oflaz, Neslihan

    2017-11-01

    We give explicit criteria for the reflectionlessness, transparency, and invisibility of a finite-range potential in the presence of an incoherent (intensity-dependent) nonlinearity that is confined to the range of the potential. This allows us to conduct a systematic study of the effects of such a nonlinearity on a locally periodic class of finite-range potentials that display perturbative unidirectional invisibility. We use our general results to examine the effects of a weak Kerr nonlinearity on the behavior of these potentials and show that the presence of nonlinearity destroys the unidirectional invisibility of these potentials. If the strength of the Kerr nonlinearity is so weak that the first-order perturbation theory is reliable, the presence of nonlinearity does not affect the unidirectional reflectionlessness and transmission reciprocity of the potential. We show that the expected violation of the latter is a second order perturbative effect.

  9. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  10. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Tawfieq, Mahmoud; Jensen, Ole Bjarlin

    2015-01-01

    for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient singlepass concept, we generate 3.7 W...... successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other......Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept...

  11. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  12. 50 years of nonlinear optics

    International Nuclear Information System (INIS)

    Shen Yuanrang

    2011-01-01

    This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)

  13. Investigating local network interactions underlying first- and second-order processing.

    Science.gov (United States)

    Ellemberg, Dave; Allen, Harriet A; Hess, Robert F

    2004-01-01

    We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.

  14. DYNAMIC ESTIMATION FOR PARAMETERS OF INTERFERENCE SIGNALS BY THE SECOND ORDER EXTENDED KALMAN FILTERING

    Directory of Open Access Journals (Sweden)

    P. A. Ermolaev

    2014-03-01

    Full Text Available Data processing in the interferometer systems requires high-resolution and high-speed algorithms. Recurrence algorithms based on parametric representation of signals execute consequent processing of signal samples. In some cases recurrence algorithms make it possible to increase speed and quality of data processing as compared with classic processing methods. Dependence of the measured interferometer signal on parameters of its model and stochastic nature of noise formation in the system is, in general, nonlinear. The usage of nonlinear stochastic filtering algorithms is expedient for such signals processing. Extended Kalman filter with linearization of state and output equations by the first vector parameters derivatives is an example of these algorithms. To decrease approximation error of this method the second order extended Kalman filtering is suggested with additionally usage of the second vector parameters derivatives of model equations. Examples of algorithm implementation with the different sets of estimated parameters are described. The proposed algorithm gives the possibility to increase the quality of data processing in interferometer systems in which signals are forming according to considered models. Obtained standard deviation of estimated amplitude envelope does not exceed 4% of the maximum. It is shown that signal-to-noise ratio of reconstructed signal is increased by 60%.

  15. When Ethyl Isocyanoacetate Meets Isatins: A 1,3-Dipolar/Inverse 1,3-Dipolar/Olefination Reaction for Access to 3-Ylideneoxindoles.

    Science.gov (United States)

    Yuan, Wen-Kui; Cui, Tao; Liu, Wei; Wen, Li-Rong; Li, Ming

    2018-03-16

    A new CuI/1,10-phen-catalyzed reaction for the synthesis of 3-ylideneoxindoles from readily available isatins and ethyl isocyanoacetate, in which ethyl isocyanoacetate acts as a latent two-carbon donor like the Wittig reagent, is reported. A tandem procedure including 1,3-dipolar cycloaddition/inverse 1,3-dipolar ring opening/olefination allows the preparation of 3-ylideneoxindoles with broad functional group tolerance.

  16. Second order logic, set theory and foundations of mathematics

    NARCIS (Netherlands)

    Väänänen, J.A.; Dybjer, P; Lindström, S; Palmgren, E; Sundholm, G

    2012-01-01

    The question, whether second order logic is a better foundation for mathematics than set theory, is addressed. The main difference between second order logic and set theory is that set theory builds up a transfinite cumulative hierarchy while second order logic stays within one application of the

  17. Oscillation criteria for fourth-order nonlinear delay dynamic equations

    Directory of Open Access Journals (Sweden)

    Yunsong Qi

    2013-03-01

    Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples

  18. Decomposition of a symmetric second-order tensor

    Science.gov (United States)

    Heras, José A.

    2018-05-01

    In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.

  19. Oscillation criteria for third order delay nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    E. M. Elabbasy

    2012-01-01

    via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

  20. Dipolar and spinor bosonic systems

    Science.gov (United States)

    Yukalov, V. I.

    2018-05-01

    The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.

  1. Investigation of second-order hyperpolarizability of some organic compounds

    Science.gov (United States)

    Tajalli, H.; Zirak, P.; Ahmadi, S.

    2003-04-01

    In this work, we have measured the second order hyperpolarizability of some organic materials with (EFISH) method and also calculated the second order hyperpolarizability of 13 organic compound with Mopac6 software and investigated the different factors that affect the amount of second order hyperpolarizability and ways to increase it.

  2. State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available We give a state-feedback control method for fractional-order nonlinear systems subject to input saturation. First, a sufficient condition is derived for the asymptotical stability of a class of fractional-order nonlinear systems. Then based on Gronwall-Bellman lemma and a sector bounded condition of the saturation function, a linear state-feed back controller is designed. Finally, two simulation examples are presented to show the validity of the proposed method.

  3. Second-Order Footsteps Illusions

    Directory of Open Access Journals (Sweden)

    Akiyoshi Kitaoka

    2015-12-01

    Full Text Available In the “footsteps illusion”, light and dark squares travel at constant speed across black and white stripes. The squares appear to move faster and slower as their contrast against the stripes varies. We now demonstrate some second-order footsteps illusions, in which all edges are defined by colors or textures—even though luminance-based neural motion detectors are blind to such edges.

  4. Second order pedagogy as an example of second order cybernetics

    Directory of Open Access Journals (Sweden)

    Anne B. Reinertsen

    2012-07-01

    Full Text Available This article is about seeing/creating/trying out an idea of pedagogy and pedagogical/ educational research in/as/with self-reflexive, circular and diffractive perspectives and about using second order cybernetics as thinking tool. It is a move away from traditional hypothesis driven activities and a move towards data driven pedagogies and research: Teachers, teacher researchers and researchers simultaneously producing and theorizing our practices and ourselves. Deleuzian becomings- eventually becomings with data - theory - theodata is pivotal. It is a move towards a Derridean bricolage. A different science of pedagogy operating as a circular science of self-reflexivity and diffraction in search of quality again and again and again: Theopractical becomings and inspiractionresearch.

  5. Weak value amplification via second-order correlated technique

    International Nuclear Information System (INIS)

    Cui Ting; Huang Jing-Zheng; Zeng Gui-Hua; Liu Xiang

    2016-01-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. (paper)

  6. Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes

    Science.gov (United States)

    Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.

    2014-07-01

    We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.

  7. A nanolens-type enhancement in the linear and second harmonic response of a metallic dimer

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy; Biswas, Sushmita; Vaia, Richard; Urbas, Augustine

    2014-01-01

    In this paper we explore the linear and second-order nonlinear response of gold nanoparticle pairs (dimers). Despite that even-order nonlinear processes are forbidden in bulk centrosymmetric media like metals, second order nonlinear response exhibits a high degree of sensitivity for spherical nanoparticles where inversion symmetry is broken at the surface. Recent experiments demonstrate significant dependence of linear response and second-harmonic surface nonlinear response arising from the local fundamental field distribution in a dimer configuration. Our calculations are carried out taking into account high order multipolar interactions between metal nanoparticles, and demonstrate that linear and nonlinear optical responses of the dimer exhibit periodic behavior dependent on the separation distance between nanoparticles. This response increases for dimers with a large difference between particle sizes. (paper)

  8. The third-order nonlinear optical susceptibility of C{sub 60}-derived nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiangang, Wan [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jinming, Dong [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jie, Jiang [Nanjing Univ., JS (China). Dept. of Physics; Xing, D Y [Nanjing Univ., JS (China). Dept. of Physics

    1997-02-01

    Using the extended Su-Schrieffer-Heeger (SSH) model and the sum-over-state (SOS) method, we have calculated the third-order nonlinear polarizability {gamma} and its dispersion spectra for C{sub 60}-derived nanotubes, which is one of the narrowest tubes. Our numerical calculations indicate that both symmetry and size of the nanotubes have great effect on the third-order nonlinear polarizability {gamma} spectra. We find that with increasing size, both static {gamma} values and dynamical response peak values increase. When the atom number of the C{sub 60}-derived nanotubes is 140, the static {gamma} value is about 65 times larger than that of C{sub 60}, and the highest peak value of {gamma} (at 3{omega} = 3.52 eV) is about three orders larger than that of C{sub 60}. So, C{sub 60}-derived nanotubes may become a kind of good nonlinear optical materials. (orig.)

  9. Spectral dependence of third-order nonlinear optical properties in InN

    International Nuclear Information System (INIS)

    Ahn, H.; Lee, M.-T.; Chang, Y.-M.

    2014-01-01

    We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10 −10 cm 2 /W indicates InN as a potential material for all-optical switching and related applications

  10. Conservation laws and rogue waves for a higher-order nonlinear Schrödinger equation with variable coefficients in the inhomogeneous fiber

    Science.gov (United States)

    Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan

    2017-07-01

    Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.

  11. Kubo Formulas for Second-Order Hydrodynamic Coefficients

    International Nuclear Information System (INIS)

    Moore, Guy D.; Sohrabi, Kiyoumars A.

    2011-01-01

    At second order in gradients, conformal relativistic hydrodynamics depends on the viscosity η and on five additional ''second-order'' hydrodynamical coefficients τ Π , κ, λ 1 , λ 2 , and λ 3 . We derive Kubo relations for these coefficients, relating them to equilibrium, fully retarded three-point correlation functions of the stress tensor. We show that the coefficient λ 3 can be evaluated directly by Euclidean means and does not in general vanish.

  12. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  13. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  14. Third-order nonlinearity of Er3+-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL

    2010-01-01

    The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.

  15. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    Science.gov (United States)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  16. Strongly increasing solutions of cyclic systems of second order differential equations with power-type nonlinearities

    Directory of Open Access Journals (Sweden)

    Jaroslav Jaroš

    2015-01-01

    Full Text Available We consider \\(n\\-dimensional cyclic systems of second order differential equations \\[(p_i(t|x_{i}'|^{\\alpha_i -1}x_{i}'' = q_{i}(t|x_{i+1}|^{\\beta_i-1}x_{i+1},\\] \\[\\quad i = 1,\\ldots,n, \\quad (x_{n+1} = x_1 \\tag{\\(\\ast\\}\\] under the assumption that the positive constants \\(\\alpha_i\\ and \\(\\beta_i\\ satisfy \\(\\alpha_1{\\ldots}\\alpha_n \\gt \\beta_1{\\ldots}\\beta_n\\ and \\(p_i(t\\ and \\(q_i(t\\ are regularly varying functions, and analyze positive strongly increasing solutions of system (\\(\\ast\\ in the framework of regular variation. We show that the situation for the existence of regularly varying solutions of positive indices for (\\(\\ast\\ can be characterized completely, and moreover that the asymptotic behavior of such solutions is governed by the unique formula describing their order of growth precisely. We give examples demonstrating that the main results for (\\(\\ast\\ can be applied to some classes of partial differential equations with radial symmetry to acquire accurate information about the existence and the asymptotic behavior of their radial positive strongly increasing solutions.

  17. An efficient flexible-order model for 3D nonlinear water waves

    Science.gov (United States)

    Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O.

    2009-04-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.

  18. An efficient flexible-order model for 3D nonlinear water waves

    International Nuclear Information System (INIS)

    Engsig-Karup, A.P.; Bingham, H.B.; Lindberg, O.

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature

  19. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  20. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  1. New Efficient Fourth Order Method for Solving Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad

    2013-12-01

    Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

  2. Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation

    International Nuclear Information System (INIS)

    Bouard, Anne de; Debussche, Arnaud

    2006-01-01

    In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1

  3. Second-order impartiality and public sphere

    Directory of Open Access Journals (Sweden)

    Sládeček Michal

    2016-01-01

    Full Text Available In the first part of the text the distinction between first- and second-order impartiality, along with Brian Barry’s thorough elaboration of their characteristics and the differences between them, is examined. While the former impartiality is related to non-favoring fellow-persons in everyday occasions, the latter is manifested in the institutional structure of society and its political and public morality. In the second part of the article, the concept of public impartiality is introduced through analysis of two examples. In the first example, a Caledonian Club with its exclusive membership is considered as a form of association which is partial, but nevertheless morally acceptable. In the second example, the so-called Heinz dilemma has been reconsidered and the author points to some flaws in Barry’s interpretation, arguing that Heinz’s right of giving advantage to his wife’s life over property rights can be recognized through mitigating circum-stances, and this partiality can be appreciated in the public sphere. Thus, public impartiality imposes limits to the restrictiveness and rigidity of political impartiality implied in second-order morality. [Projekat Ministarstva nauke Republike Srbije, br. 179049

  4. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  5. The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization

    Science.gov (United States)

    Ono, Y.; Nosé, M.; Christon, S. P.; Lui, A. T. Y.

    2009-05-01

    We statistically examine changes in the composition of two different ion species, proton and oxygen ions, in the near-Earth plasma sheet (X = -16 R E ˜ -6 R E ) during substorm-associated dipolarization. We use 10 years of energetic (9-212 keV/e) ion data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particles and ion composition (EPIC) instrument on board the Geotail spacecraft. The results are as follows: (1) Although the percentage increase in the energy density of O+ ions before and after a dipolarization exceeds that of H+ ions in the low-energy range (9-36 keV/e), this property is not evident in the high-energy range (56-212 keV/e); (2) the energy spectrum of H+ and that of O+ become harder after dipolarization in almost all events; and (3) in some events the energy spectrum of O+ becomes harder than that of H+ as reported by previous studies, and, importantly, in other events, the spectrum of H+ becomes harder than that of O+. In order to investigate what mechanism causes these observational results, we focus on magnetic field fluctuations during dipolarization. It is found that the increase of the spectrum slope is positively correlated with the power of waves whose frequencies are close to the gyrofrequency of H+ or O+, respectively (the correlation coefficient is 0.48 for H+ and 0.68 for O+). In conclusion, ions are nonadiabatically accelerated by the electric field induced by the magnetic field fluctuations whose frequencies are close to their gyrofrequencies.

  6. Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order

    Science.gov (United States)

    Owolabi, Kolade M.

    2017-03-01

    In this paper, some nonlinear space-fractional order reaction-diffusion equations (SFORDE) on a finite but large spatial domain x ∈ [0, L], x = x(x , y , z) and t ∈ [0, T] are considered. Also in this work, the standard reaction-diffusion system with boundary conditions is generalized by replacing the second-order spatial derivatives with Riemann-Liouville space-fractional derivatives of order α, for 0 Fourier spectral method is introduced as a better alternative to existing low order schemes for the integration of fractional in space reaction-diffusion problems in conjunction with an adaptive exponential time differencing method, and solve a range of one-, two- and three-components SFORDE numerically to obtain patterns in one- and two-dimensions with a straight forward extension to three spatial dimensions in a sub-diffusive (0 reaction-diffusion case. With application to models in biology and physics, different spatiotemporal dynamics are observed and displayed.

  7. On realization of nonlinear systems described by higher-order differential equations

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1987-01-01

    We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the

  8. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral densit...

  9. Quantum simulation and quantum information processing with molecular dipolar crystals

    International Nuclear Information System (INIS)

    Ortner, M.

    2011-01-01

    In this thesis interactions between dipolar crystals and neutral atoms or separated molecules have been investigated. They were motivated to realize new kinds of lattice models in mixtures of atoms and polar molecules where an MDC functions as an underlying periodic lattice structure for the second species. Such models bring out the peculiar features of MDC's, that include a controllable, potentially sub-optical wavelength periodicity and strong particle phonon interactions. Only stable collisional configurations have been investigated, excluding chemical reactions between the substituents, and crystal distortions beyond the scope of perturbation theory. The system was treated in the polaron picture where particles of the second species are dressed by surrounding crystal phonons. To describe the competition between coherent and incoherent dynamics of the polarons, a master equation in the Brownian motion limit was used with phonons treated as a thermal heat bath. It was shown analytically that in a wide range of realistic parameters the corrections to the coherent time evolution are small, and that the dynamics of the dressed particles can be described by an effective extended Hubbard model with controllable system parameters. The last chapter of this thesis contains a proposal for QIP with cold polar molecules that, in contrast to previous works, uses an MDC as a quantum register. It was motivated by the unique features of dipolar molecules and to exploit the peculiar physical conditions in dipolar crystals. In this proposal the molecular dipole moments were tailored by non-local fields to include a small, switchable, state-dependent dipole moment in addition to the large internal state independent moment that stabilizes the crystal. It was shown analytically that a controllable, non-trivial phonon-mediated interaction can be generated that exceeds non-trivial, direct dipole-dipole couplings. The addressability problem due to high crystal densities was overcome by

  10. Stability and bifurcation of numerical discretization of a second-order delay differential equation with negative feedback

    International Nuclear Information System (INIS)

    Ding Xiaohua; Su Huan; Liu Mingzhu

    2008-01-01

    The paper analyzes a discrete second-order, nonlinear delay differential equation with negative feedback. The characteristic equation of linear stability is solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The existence of local Hopf bifurcations is investigated, and the direction and stability of periodic solutions bifurcating from the Hopf bifurcation of the discrete model are determined by the Hopf bifurcation theory of discrete system. Finally, some numerical simulations are performed to illustrate the analytical results found

  11. The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control

    Science.gov (United States)

    Kashchenko, Sergey A.

    2016-12-01

    The dynamics of second-order equations with nonlinear delayed feedback and a large coefficient of a delayed equation is investigated using asymptotic methods. Based on special methods of quasi-normal forms, a new construction is elaborated for obtaining the main terms of asymptotic expansions of asymptotic residual solutions. It is shown that the dynamical properties of the above equations are determined mostly by the behavior of the solutions of some special families of parabolic boundary value problems. A comparative analysis of the dynamics of equations with the delayed feedback of three types is carried out.

  12. 'Second' Ehrenfest equation for second order phase transition under hydrostatic pressure

    Science.gov (United States)

    Moin, Ph. B.

    2018-02-01

    It is shown that the fundamental conditions for the second-order phase transitions ? and ?, from which the two Ehrenfest equations follow (the 'usual' and the 'second' ones), are realised only at zero hydrostatic pressure (?). At ? the volume jump ΔV at the transition is proportional to the pressure and to the jump of the compressibility ΔζV, whereas the entropy jump ΔS is proportional to the pressure and to the jump of the thermal expansion coefficient ΔαV. This means that at non-zero hydrostatic pressure the phase transition is of the first order and is described by the Clausius-Clapeyron equation. At small pressure this equation coincides with the 'second' Ehrenfest equation ?. At high P, the Clausius-Clapeyron equation describes qualitatively the caused by the crystal compression positive curvature of the ? dependence.

  13. Second-Order Conditioning in "Drosophila"

    Science.gov (United States)

    Tabone, Christopher J.; de Belle, J. Steven

    2011-01-01

    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  14. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  15. A porous flow model of flank eruptions on Mt. Etna: second-order perturbation theory

    Directory of Open Access Journals (Sweden)

    N. Cenni

    1997-06-01

    Full Text Available A porous flow model for magma migration from a deep source within a volcanic edifice is developed. The model is based on the assumption that an isotropic and homogeneous system of fractures allows magma migration from one localized feeding dyke up to the surface of the volcano. The maximum level that magma can reach within the volcano (i.e., the «free surface» of magma, where fluid pressure equals the atmospheric pressure is reproduced through a second-order perturbation approach to the non-linear equations governing the migration of incompressible fluids through a porous medium. The perturbation parameter is found to depend on the ratio of the volumic discharge rate at the source (m3/s divided by the product of the hydraulic conductivity of the medium (m1/s times the square of the source depth. The second-order corrections for the free surface of Mt. Etna are found to be small but not negligible; from the comparison between first-order and second-order free surfaces it appears that the former is higher near the summit, slightly lower at intermediate altitudes and slightly higher far away from the axis of the volcano. Flank eruptions in the southern sector are found to be located in regions where the topography is actually lower than the theoretical free surface of magma. In this sector, modulations in the eruption site density correlate well with even minor differences between free surface and topography. In the northern and western sectors similar good fits are found, while the NE rift and the eastern sector seem to require mechanisms or structures respectively favouring and inhibiting magma migration.

  16. A second-order class-D audio amplifier

    OpenAIRE

    Cox, Stephen M.; Tan, M.T.; Yu, J.

    2011-01-01

    Class-D audio amplifiers are particularly efficient, and this efficiency has led to their ubiquity in a wide range of modern electronic appliances. Their output takes the form of a high-frequency square wave whose duty cycle (ratio of on-time to off-time) is modulated at low frequency according to the audio signal. A mathematical model is developed here for a second-order class-D amplifier design (i.e., containing one second-order integrator) with negative feedback. We derive exact expression...

  17. Further results on global state feedback stabilization of nonlinear high-order feedforward systems.

    Science.gov (United States)

    Xie, Xue-Jun; Zhang, Xing-Hui

    2014-03-01

    In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation

    KAUST Repository

    Ma, Xiaohua

    2011-03-01

    Achiral nonlinear optical (NLO) chromophores 1,3-diazaazulene derivatives, 2-(4â€-aminophenyl)-6-nitro-1,3-diazaazulene (APNA) and 2-(4â€-N,N-diphenylaminophenyl)-6-nitro-1,3-diazaazulene (DPAPNA), were synthesized with high yield. Despite the moderate static first hyperpolarizabilities (β0) for both APNA [(136 ± 5) à - 10-30 esu] and DPAPNA [(263 ± 20) à - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown that the APNA crystallization driven cooperatively by the strong H-bonding network and the dipolar electrostatic interactions falls into the noncentrosymmetric P2 12121 space group, and that the helical supramolecular assembly is solely responsible for the efficient SHG response. To the contrary, the DPAPNA crystal with centrosymmetric P-1 space group is packed with antiparalleling dimmers, and is therefore completely SHG-inactive. 1,3-Diazaazulene derivatives are suggested to be potent building blocks for SHG-active chiral crystals, which are advantageous in high thermal stability, excellent near-infrared transparency and high degree of designing flexibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Optical crystals based on 1,3-diazaazulene derivatives are reported as the first example of organic nonlinear optical crystal whose second harmonic generation activity is found to originate solely from the chirality of their helical supramolecular orientation. The strong H-bond network forming between adjacent choromophores is found to act cooperatively with dipolar electrostatic interactions in driving the chiral crystallization of this material. Copyright © 2011 Wiley Periodicals, Inc.

  19. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    Science.gov (United States)

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  20. Nonlinear absorption and receptivity of the third order in InAs infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2005-01-01

    Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves

  1. ON THE INSTABILITY OF SOLUTIONS TO A NONLINEAR VECTOR DIFFERENTIAL EQUATION OF FOURTH ORDER

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.

  2. Third-order nonlinear differential operators preserving invariant subspaces of maximal dimension

    International Nuclear Information System (INIS)

    Qu Gai-Zhu; Zhang Shun-Li; Li Yao-Long

    2014-01-01

    In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order quadratic operators with constant coefficients is obtained. One example is given to derive special solutions for evolution equations with third-order quadratic operators. (general)

  3. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  4. Nonlinearly deformed W∞ algebra and second hamiltonian structure of KP hierarchy

    International Nuclear Information System (INIS)

    Yu Feng; Wu Yongshi

    1992-01-01

    The characteristic nonlinearity of W N algebras, appropriate for their many applications in two-dimensional quantum physics, is lost in the usual large-N limits. In this paper we search for nonlinear extensions of the Virasoro algebra that incorporate all higher-spin currents with spin s≥2. We show that under certain natural homogeneity requirements, the Jacobi identities lead to a unique nonlinear, centerless deformation of classical w ∞ and W ∞ . The latter, which we call dW/dt ∞ , constitutes a universal W-algebra which is very likely to contain all W N algebras by reduction. Also it is closely related to the linear W 1+∞ by a set of interesting recursion relations, which suggests the isomorphism of dW/dt ∞ to the second hamiltonian structure of the KP hierarchy proposed by Dickey. The implications for the symmetries in two-dimensional quantum gravity and noncritical c≤1 strings in the context of the KP approach are discussed. (orig.)

  5. First order and second order fermi acceleration of energetic charged particles by shock waves

    International Nuclear Information System (INIS)

    Webb, G.M.

    1983-01-01

    Steady state solutions of the cosmic ray transport equation describing first order Fermi acceleration of energetic charged particles at a plane shock (without losses) and second order Fermi acceleration in the downstream region of the shock are derived. The solutions for the isotropic part of the phase space distribution function are expressible as eigenfunction expansions, being superpositions of series of power law momentum spectra, with the power law indices being the roots of an eigenvalue equation. The above exact analytic solutions are for the case where the spatial diffusion coefficient kappa is independent of momentum. The solutions in general depend on the shock compression ratio, the modulation parameters V 1 L/kappa 1 , V 2 L/kappa 2 (V is the plasma velocity, kappa is the energetic particle diffusion coefficient, and L a characteristic length over which second order Fermi acceleration is effective) in the upstream and downstream regions of the shock, respectively, and also on a further dimensionless parameter, zeta, characterizing second order Fermi acceleration. In the limit as zeta→0 (no second order Fermi acceleration) the power law momentum spectrum characteristic of first order Fermi acceleration (depending only on the shock compression ratio) obtained previously is recovered. Perturbation solutions for the case where second order Fermi effects are small, and for realistic diffusion coefficients (kappainfinityp/sup a/, a>0, p = particle momentum), applicable at high momenta, are also obtained

  6. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  7. Skyrme interaction to second order in nuclear matter

    Science.gov (United States)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  8. Bulk quadrupole and interface dipole contribution for second harmonic generation in Si(111)

    International Nuclear Information System (INIS)

    Reitböck, Cornelia; Stifter, David; Alejo-Molina, Adalberto; Hingerl, Kurt; Hardhienata, Hendradi

    2016-01-01

    The second harmonic generation (SHG) response was measured for arbitrarily oriented linear input polarization on Si(111) surfaces in rotational anisotropy experiments. We show for the first time, using the simplified bond hyperpolarizability model (SBHM), that the observed angular shifts of the nonlinear peaks and symmetry features—related to changes in the input polarization—help to identify the corresponding interface dipolar and bulk quadrupolar SHG sources, yielding excellent agreement with the experiment. Additionally, we evaluate for the s-in/p-out (sp) and p-in/p-out (pp)-polarization SHG intensities the contributions from the individual Si bonds. Furthermore, a relation between the four parameters arising from SBHM and six coefficients of the phenomenological SHG theory needed to reproduce experimental data is established. (paper)

  9. On holographic entanglement entropy with second order excitations

    Science.gov (United States)

    He, Song; Sun, Jia-Rui; Zhang, Hai-Qing

    2018-03-01

    We study the low-energy corrections to the holographic entanglement entropy (HEE) in the boundary CFT by perturbing the bulk geometry up to second order excitations. Focusing on the case that the boundary subsystem is a strip, we show that the area of the bulk minimal surface can be expanded in terms of the conserved charges, such as mass, angular momentum and electric charge of the AdS black brane. We also calculate the variation of the energy in the subsystem and verify the validity of the first law-like relation of thermodynamics at second order. Moreover, the HEE is naturally bounded at second order perturbations if the cosmic censorship conjecture for the dual black hole still holds.

  10. Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng

    2004-01-01

    Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair

  11. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  12. First- and second-order charged particle optics

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1984-07-01

    Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures

  13. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    International Nuclear Information System (INIS)

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-01-01

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

  14. Second-Order Learning Methods for a Multilayer Perceptron

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Purehvdorzh, B.; Puzynin, I.V.

    1994-01-01

    First- and second-order learning methods for feed-forward multilayer neural networks are studied. Newton-type and quasi-Newton algorithms are considered and compared with commonly used back-propagation algorithm. It is shown that, although second-order algorithms require enhanced computer facilities, they provide better convergence and simplicity in usage. 13 refs., 2 figs., 2 tabs

  15. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  16. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation

    CERN Document Server

    Petráš, Ivo

    2011-01-01

    "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...

  17. Second-order Cosmological Perturbations Engendered by Point-like Masses

    Energy Technology Data Exchange (ETDEWEB)

    Brilenkov, Ruslan [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A‐6020 Innsbruck (Austria); Eingorn, Maxim, E-mail: ruslan.brilenkov@gmail.com, E-mail: maxim.eingorn@gmail.com [North Carolina Central University, CREST and NASA Research Centers, 1801 Fayetteville St., Durham, NC 27707 (United States)

    2017-08-20

    In the ΛCDM framework, presenting nonrelativistic matter inhomogeneities as discrete massive particles, we develop the second‐order cosmological perturbation theory. Our approach relies on the weak gravitational field limit. The derived equations for the second‐order scalar, vector, and tensor metric corrections are suitable at arbitrary distances, including regions with nonlinear contrasts of the matter density. We thoroughly verify fulfillment of all Einstein equations, as well as self‐consistency of order assignments. In addition, we achieve logical positive results in the Minkowski background limit. Feasible investigations of the cosmological back-reaction manifestations by means of relativistic simulations are also outlined.

  18. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  19. Quadrupolar order, hidden octupolar order and tiny magnetic moment in URu2Si2

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi; Matsuura, Tamifusa; Kuroda, Yoshihiro

    2000-01-01

    Possible orders in URu 2 Si 2 are investigated using a two-channel degenerate Anderson model. The ground state of uranium ions is the non-Kramers quadrupolar doublet Γ 5 with (5f) 2 , and its relevant excited state is the Kramers dipolar doublet Γ 7 with (5f) 1 . These states mix with each other via conduction electrons. At low temperatures, the system forms renormalized bands with both quadrupole and dipole degrees of freedom due to the quadrupolar Kondo effect which slightly mixes quadrupolar Γ 5 , a primary state of uranium ions, with dipolar Γ 7 . At a certain low temperature, conduction electrons in the renormalized bands undergo quadrupolar ordering with a large quadrupolar moment. At a further lower temperature, octupolar ordering occurs, accompanied by a tiny dipolar moment which is attributed to the property of the renormalized bands with primarily the Γ 5 -character slightly mixed with the Γ 7 -character. These phenomena are well described by the 1/N-expansion method with pseudo-fermions for the non-Kramers doublet Γ 5 and slave bosons for the Kramers doublet Γ 7 . (author)

  20. DISPL-1, 2. Order Nonlinear Partial Differential Equation System Solution for Kinetics Diffusion Problems

    International Nuclear Information System (INIS)

    Leaf, G.K.; Minkoff, M.

    1982-01-01

    1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code

  1. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  2. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  3. The known unknowns: neural representation of second-order uncertainty, and ambiguity

    Science.gov (United States)

    Bach, Dominik R.; Hulme, Oliver; Penny, William D.; Dolan, Raymond J.

    2011-01-01

    Predictions provided by action-outcome probabilities entail a degree of (first-order) uncertainty. However, these probabilities themselves can be imprecise and embody second-order uncertainty. Tracking second-order uncertainty is important for optimal decision making and reinforcement learning. Previous functional magnetic resonance imaging investigations of second-order uncertainty in humans have drawn on an economic concept of ambiguity, where action-outcome associations in a gamble are either known (unambiguous) or completely unknown (ambiguous). Here, we relaxed the constraints associated with a purely categorical concept of ambiguity and varied the second-order uncertainty of gambles continuously, quantified as entropy over second-order probabilities. We show that second-order uncertainty influences decisions in a pessimistic way by biasing second-order probabilities, and that second-order uncertainty is negatively correlated with posterior cingulate cortex activity. The category of ambiguous (compared to non-ambiguous) gambles also biased choice in a similar direction, but was associated with distinct activation of a posterior parietal cortical area; an activation that we show reflects a different computational mechanism. Our findings indicate that behavioural and neural responses to second-order uncertainty are distinct from those associated with ambiguity and may call for a reappraisal of previous data. PMID:21451019

  4. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    International Nuclear Information System (INIS)

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  5. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil)

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  6. On holographic entanglement entropy with second order excitations

    Directory of Open Access Journals (Sweden)

    Song He

    2018-03-01

    Full Text Available We study the low-energy corrections to the holographic entanglement entropy (HEE in the boundary CFT by perturbing the bulk geometry up to second order excitations. Focusing on the case that the boundary subsystem is a strip, we show that the area of the bulk minimal surface can be expanded in terms of the conserved charges, such as mass, angular momentum and electric charge of the AdS black brane. We also calculate the variation of the energy in the subsystem and verify the validity of the first law-like relation of thermodynamics at second order. Moreover, the HEE is naturally bounded at second order perturbations if the cosmic censorship conjecture for the dual black hole still holds.

  7. Structures and dynamics in a two-dimensional dipolar dust particle system

    Science.gov (United States)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  8. The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    International Nuclear Information System (INIS)

    Mól, L.A.S.; Costa, B.V.

    2014-01-01

    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems

  9. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  10. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms

    Science.gov (United States)

    Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman

    2018-04-01

    We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

  11. Tunnel-induced Dipolar Resonances in a Double-well Potential.

    Science.gov (United States)

    Schulz, Bruno; Saenz, Alejandro

    2016-11-18

    A system of two dipolar particles that are confined in a double-well potential and interact via a realistic isotropic interaction potential is investigated as a protoype for ultracold atoms with a magnetic dipole moment or ultracold dipolar heteronuclear diatomic molecules in double-well traps or in optical lattices. The resulting energy spectrum is discussed as a function of the dipole-dipole interaction strength. The variation of the strength of the dipole-dipole interaction is found to lead to various resonance phenomena. Among those are the previously discussed inelastic confinement-induced resonances as well as the dipole-induced resonances. It is found that the double-well potential gives rise to a new type of resonances, tunnel-induced dipolar ones. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Jacobian projection reduced-order models for dynamic systems with contact nonlinearities

    Science.gov (United States)

    Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.

    2018-02-01

    In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.

  13. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  14. Oscillation criteria for first-order forced nonlinear difference equations

    OpenAIRE

    Grace Said R; Agarwal Ravi P; Smith Tim

    2006-01-01

    Some new criteria for the oscillation of first-order forced nonlinear difference equations of the form Δx(n)+q1(n)xμ(n+1) = q2(n)xλ(n+1)+e(n), where λ, μ are the ratios of positive odd integers 0 <μ < 1 and λ > 1, are established.

  15. First-principles prediction of optical second-order harmonic generation in the endohedral N-C{sub 60} compound

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. P.; Strubbe, David A.; Louie, Steven G.; George, Thomas F. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States) and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Biochemistry and Department of Physics and Astronomy, Office of the Chancellor and Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)

    2011-08-15

    Non-linear-optical properties in C{sub 60} have attracted enormous attention for over two decades. The endohedral complex N-C{sub 60}, with its remarkable thermal stability and spin-quartet ground state, is a candidate for future room-temperature quantum computing, but there has been no investigation of its non-linear-optical properties. Here, a first-principles calculation shows that N-C{sub 60} is a promising material for nanoscale and ultrafast modulations. Excitation by a pump laser pulse of the nitrogen-atom vibration inside the C{sub 60} cage transiently breaks inversion symmetry and can enable second-harmonic generation (SHG) from a probe pulse. Unlike the SHG observed in C{sub 60} thin films, this harmonic signal is switched on and off periodically every 345 fs. For an fcc crystal of N-C{sub 60}, the second-order susceptibility {chi}{sup (2)} is on the order of 10{sup -8} esu, similar to commercially used nonlinear materials.

  16. Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere

    Science.gov (United States)

    Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.

    2017-12-01

    Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.

  17. Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall technical objective of the Phase I effort is to develop a nonlinear aeroelastic solver utilizing the FUN3D generated nonlinear aerodynamic Reduced Order...

  18. Second-Order Assortative Mixing in Social Networks

    DEFF Research Database (Denmark)

    Zhou, Shi; Cox, Ingemar; Hansen, Lars Kai

    2017-01-01

    In a social network, the number of links of a node, or node degree, is often assumed as a proxy for the node’s importance or prominence within the network. It is known that social networks exhibit the (first-order) assortative mixing, i.e. if two nodes are connected, they tend to have similar node...... degrees, suggesting that people tend to mix with those of comparable prominence. In this paper, we report the second-order assortative mixing in social networks. If two nodes are connected, we measure the degree correlation between their most prominent neighbours, rather than between the two nodes...... themselves. We observe very strong second-order assortative mixing in social networks, often significantly stronger than the first-order assortative mixing. This suggests that if two people interact in a social network, then the importance of the most prominent person each knows is very likely to be the same...

  19. SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim; Gong, Jinn-Ouk

    2012-01-01

    We present the growing mode solutions of cosmological perturbations to the second order in the matter-dominated era. We also present several gauge-invariant combinations of perturbation variables to the second order in the most general fluid context. Based on these solutions, we study the Newtonian correspondence of relativistic perturbations to the second order. In addition to the previously known exact relativistic/Newtonian correspondence of density and velocity perturbations to the second order in the comoving gauge, here we show that in the sub-horizon limit we have the correspondences for density, velocity, and potential perturbations in the zero-shear gauge and in the uniform-expansion gauge to the second order. Density perturbation in the uniform-curvature gauge also shows the correspondence to the second order in the sub-horizon scale. We also identify the relativistic gravitational potential that shows exact correspondence to the Newtonian one to the second order.

  20. Order and chaos in the nonlinear response of driven nuclear spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E; Derighetti, B; Holzner, R; Ravani, M [Zurich Univ. (Switzerland). Inst. fuer Physik

    1984-01-01

    The authors report on observations of ordered and chaotic behavior of a nonlinear system of strongly polarized nuclear spins inside the tuning coil of an NMR detector. The combined system: spins plus LC-circuit, may act as a nonlinear bistable absorber or a spin-flip laser, depending on the sign of the nuclear spin polarization. For the NMR laser experimental evidence is presented for limit-cycle behavior, sequences of bifurcations which lead to chaos, intermittency, multistability, and pronounced hysteresis effects. The experimental facts are compared with computer solutions of appropriate Bloch equations for the macroscopic order parameters.

  1. Equilibrium phases of dipolar lattice bosons in the presence of random diagonal disorder

    Science.gov (United States)

    Zhang, C.; Safavi-Naini, A.; Capogrosso-Sansone, B.

    2018-01-01

    Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a controlled manner. In an effort to understand the interplay between disorder, dipolar interactions, and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo simulations by the worm algorithm. We study the ground-state phase diagram at a fixed half-integer filling factor for which the clean system is either a superfluid at a lower dipolar interaction strength or a checkerboard solid at a larger dipolar interaction strength. We find that, even for weak dipolar interactions, superfluidity is destroyed in favor of a Bose glass at a relatively low disorder strength. Interestingly, in the presence of disorder, superfluidity persists for values of the dipolar interaction strength for which the clean system is a checkerboard solid. At a fixed disorder strength, as the dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction is further increased, the system eventually develops extended checkerboard patterns in the density distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible for a finite residual compressibility, are present in the density distribution. Finally, we study the robustness of the superfluid phase against thermal fluctuations.

  2. Application of Homotopy-Perturbation Method to Nonlinear Ozone Decomposition of the Second Order in Aqueous Solutions Equations

    DEFF Research Database (Denmark)

    Ganji, D.D; Miansari, Mo; B, Ganjavi

    2008-01-01

    In this paper, homotopy-perturbation method (HPM) is introduced to solve nonlinear equations of ozone decomposition in aqueous solutions. HPM deforms a di¢ cult problem into a simple problem which can be easily solved. The effects of some parameters such as temperature to the solutions are consid......In this paper, homotopy-perturbation method (HPM) is introduced to solve nonlinear equations of ozone decomposition in aqueous solutions. HPM deforms a di¢ cult problem into a simple problem which can be easily solved. The effects of some parameters such as temperature to the solutions...

  3. Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Rana, A.; Ravichandran, R. [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828 (Korea, Republic of); Park, J. H.; Myong, R. S., E-mail: myong@gnu.ac.kr [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828 (Korea, Republic of); Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 52828 (Korea, Republic of)

    2016-08-15

    The second-order non-Navier-Fourier constitutive laws, expressed in a compact algebraic mathematical form, were validated for the force-driven Poiseuille gas flow by the deterministic atomic-level microscopic molecular dynamics (MD). Emphasis is placed on how completely different methods (a second-order continuum macroscopic theory based on the kinetic Boltzmann equation, the probabilistic mesoscopic direct simulation Monte Carlo, and, in particular, the deterministic microscopic MD) describe the non-classical physics, and whether the second-order non-Navier-Fourier constitutive laws derived from the continuum theory can be validated using MD solutions for the viscous stress and heat flux calculated directly from the molecular data using the statistical method. Peculiar behaviors (non-uniform tangent pressure profile and exotic instantaneous heat conduction from cold to hot [R. S. Myong, “A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation,” Phys. Fluids 23(1), 012002 (2011)]) were re-examined using atomic-level MD results. It was shown that all three results were in strong qualitative agreement with each other, implying that the second-order non-Navier-Fourier laws are indeed physically legitimate in the transition regime. Furthermore, it was shown that the non-Navier-Fourier constitutive laws are essential for describing non-zero normal stress and tangential heat flux, while the classical and non-classical laws remain similar for shear stress and normal heat flux.

  4. Second harmonic generation in resonant optical structures

    Science.gov (United States)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  5. 4-N, N-bis(4-methoxylphenyl) aniline substituted anthraquinone: X-ray crystal structures, theoretical calculations and third-order nonlinear optical properties

    Science.gov (United States)

    Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen

    2017-08-01

    In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.

  6. Dipolar interaction in arrays of magnetic nanotubes

    International Nuclear Information System (INIS)

    Velázquez-Galván, Y; Martínez-Huerta, J M; Encinas, A; De La Torre Medina, J; Danlée, Y; Piraux, L

    2014-01-01

    The dipolar interaction field in arrays of nickel nanotubes has been investigated on the basis of expressions derived from the effective demagnetizing field of the assembly as well as magnetometry measurements. The model incorporates explicitly the wall thickness and aspect ratio, as well as the spatial order of the nanotubes. The model and experiment show that the interaction field in nanotubes is smaller than that in solid nanowires due to the packing fraction reduction in tubes related to their inner cavity. Finally, good agreement between the model and experiment is found for the variation of the interaction field as a function of the tube wall thickness. (paper)

  7. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  8. Scaling parallels in the non-Debye dielectric relaxation of ionic glasses and dipolar supercooled liquids

    International Nuclear Information System (INIS)

    Sidebottom, D.L.; Green, P.F.; Brow, R.K.

    1997-01-01

    We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion σ(ω)∝ω n , where n∼0.67, but frequently the dielectric response is analyzed using the electrical modulus M * (ω)=1/var-epsilon * (ω), where var-epsilon * (ω)=var-epsilon(ω)-iσ(ω)/ω is the complex permittivity. We reexamine two specific examples where the shape of M * (ω) changes in response to changes in (a) temperature and (b) ion concentration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes in the shape of M * (ω) occur in the absence of changes in the scaling properties of σ(ω), for which n remains constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which var-epsilon * (ω) likewise exhibits changes in shape on approach to the glass transition. Guided by similarities of M * (ω) in ionic glasses and var-epsilon * (ω) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon and co-workers for var-epsilon * (ω) of dipolar relaxation also appears valid for M * (ω) in the ionic case. While this suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how the dielectric response can be scaled in a linear manner using an alternative data representation. copyright 1997 The American Physical Society

  9. On nonlinear control design for autonomous chaotic systems of integer and fractional orders

    International Nuclear Information System (INIS)

    Ahmad, Wajdi M.; Harb, Ahmad M.

    2003-01-01

    In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations

  10. A new approach for applying residual dipolar couplings as restraints in structure elucidation

    International Nuclear Information System (INIS)

    Meiler, Jens; Blomberg, Niklas; Nilges, Michael; Griesinger, Christian

    2000-01-01

    Residual dipolar couplings are useful global structural restraints. The dipolar couplings define the orientation of a vector with respect to the alignment tensor. Although the size of the alignment tensor can be derived from the distribution of the experimental dipolar couplings, its orientation with respect to the coordinate system of the molecule is unknown at the beginning of structure determination. This causes convergence problems in the simulated annealing process. We therefore propose a protocol that translates dipolar couplings into intervector projection angles, which are independent of the orientation of the alignment tensor with respect to the molecule. These restraints can be used during the whole simulated annealing protocol

  11. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    Science.gov (United States)

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  12. Lagrange-Noether method for solving second-order differential equations

    Institute of Scientific and Technical Information of China (English)

    Wu Hui-Bin; Wu Run-Heng

    2009-01-01

    The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is,firstly,to write the second-order differential equations completely or partially in the form of Lagrange equations,and secondly,to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.

  13. Nonlinear susceptibility: A direct test of the quadrupolar Kondo effect in UBe13

    International Nuclear Information System (INIS)

    Ramirez, A.P.; Chandra, P.; Coleman, P.; Fisk, Z.; Smith, J.L.; Ott, H.R.

    1994-01-01

    We present the nonlinear susceptibility as a direct test of the quadrupolar Kondo scenario for heavy fermion behavior, and apply it to the case of cubic crystal-field symmetry. Within a single-ion model we compute the nonlinear susceptibility resulting from low-lying Γ 3 (5f 2 ) and Kramers (5f 3 ) doublets. We find that nonlinear susceptibility measurements on single-crystal UBe 13 are inconsistent with a quadrupolar (5f 2 ) ground state of the uranium ion; the experimental data indicate that the low-lying magnetic excitations of UBe 13 are predominantly dipolar in character

  14. Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order

    Science.gov (United States)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Khan, Umar; Ahmed, Naveed

    In this work, we have implemented a direct method, known as Khater method to establish exact solutions of nonlinear partial differential equations of fractional order. Number of solutions provided by this method is greater than other traditional methods. Exact solutions of nonlinear fractional order Sharma Tasso-Olever (STO) equation are expressed in terms of kink, travelling wave, periodic and solitary wave solutions. Modified Riemann-Liouville derivative and Fractional complex transform have been used for compatibility with fractional order sense. Solutions have been graphically simulated for understanding the physical aspects and importance of the method. A comparative discussion between our established results and the results obtained by existing ones is also presented. Our results clearly reveal that the proposed method is an effective, powerful and straightforward technique to work out new solutions of various types of differential equations of non-integer order in the fields of applied sciences and engineering.

  15. Second-order analysis of structured inhomogeneous spatio-temporal point processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for first general inhomogeneous spatio-temporal point processes and second inhomogeneous spatio-temporal Cox processes. Assuming...... spatio-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates e.g. to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio......-temporal Gaussian process. Another concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data (the UK 2001 epidemic foot and mouth disease data)....

  16. Periodic solutions of certain third order nonlinear differential systems with delay

    International Nuclear Information System (INIS)

    Tejumola, H.O.; Afuwape, A.U.

    1990-12-01

    This paper investigates the existence of 2π-periodic solutions of systems of third-order nonlinear differential equations, with delay, under varied assumptions. The results obtained extend earlier works of Tejumola and generalize to third order systems those of Conti, Iannacci and Nkashama as well as DePascale and Iannacci and Iannacci and Nkashama. 16 refs

  17. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  18. Induced alignment and measurement of dipolar couplings of an SH2 domain through direct binding with filamentous phage

    International Nuclear Information System (INIS)

    Dahlke Ojennus, Deanna; Mitton-Fry, Rachel M.; Wuttke, Deborah S.

    1999-01-01

    Large residual 15 N- 1 H dipolar couplings have been measured in a Src homology II domain aligned at Pf1 bacteriophage concentrations an order of magnitude lower than used for induction of a similar degree of alignment of nucleic acids and highly acidic proteins. An increase in 1 H and 15 N protein linewidths and a decrease in T 2 and T 1 ρ relaxation time constants implicates a binding interaction between the protein and phage as the mechanism of alignment. However, the associated increased linewidth does not preclude the accurate measurement of large dipolar couplings in the aligned protein. A good correlation is observed between measured dipolar couplings and predicted values based on the high resolution NMR structure of the SH2 domain. The observation of binding-induced protein alignment promises to broaden the scope of alignment techniques by extending their applicability to proteins that are able to interact weakly with the alignment medium

  19. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  20. Probabilistic Sophistication, Second Order Stochastic Dominance, and Uncertainty Aversion

    OpenAIRE

    Simone Cerreia-Vioglio; Fabio Maccheroni; Massimo Marinacci; Luigi Montrucchio

    2010-01-01

    We study the interplay of probabilistic sophistication, second order stochastic dominance, and uncertainty aversion, three fundamental notions in choice under uncertainty. In particular, our main result, Theorem 2, characterizes uncertainty averse preferences that satisfy second order stochastic dominance, as well as uncertainty averse preferences that are probabilistically sophisticated.

  1. Second-order polarization-mode dispersion in photonic crystal fibers

    DEFF Research Database (Denmark)

    Larsen, T; Bjarklev, Anders Overgaard; Peterson, A

    2003-01-01

    We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber.......We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber....

  2. Triazol-substituted titanocenes by strain-driven 1,3-dipolar cycloadditions

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2014-07-01

    Full Text Available An operationally simple, convenient, and mild strategy for the synthesis of triazole-substituted titanocenes via strain-driven 1,3-dipolar cycloadditions between azide-functionalized titanocenes and cyclooctyne has been developed. It features the first synthesis of titanocenes containing azide groups. These compounds constitute ‘second-generation’ functionalized titanocene building blocks for further synthetic elaboration. Our synthesis is modular and large numbers of the complexes can in principle be prepared in short periods of time. Some of the triazole-substituted titanocenes display high cyctotoxic activity against BJAB cells. Comparison of the most active complexes allows the identification of structural features essential for biological activity.

  3. Higher Order Continuous SI Engine Observers

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert; Houbak, Niels

    1992-01-01

    A nonlinear compensator for the fuel film dynamics and a second order nonlinear observer for a spark ignition engine are presented in this paper. The compensator and observer are realized as continuous differential equations and an especially designed integration algorithm is used to integrate them...

  4. Parasupersymmetry and N-fold supersymmetry in quantum many-body systems. I: General formalism and second order

    International Nuclear Information System (INIS)

    Tanaka, Toshiaki

    2007-01-01

    We propose an elegant formulation of parafermionic algebra and parasupersymmetry of arbitrary order in quantum many-body systems without recourse to any specific matrix representation of parafermionic operators and any kind of deformed algebra. Within our formulation, we show generically that every parasupersymmetric quantum system of order p consists of N-fold supersymmetric pairs with N≤p and thus has weak quasi-solvability and isospectral property. We also propose a new type of non-linear supersymmetries, called quasi-parasupersymmetry, which is less restrictive than parasupersymmetry and is different from N-fold supersymmetry even in one-body systems though the conserved charges are represented by higher-order linear differential operators. To illustrate how our formulation works, we construct second-order parafermionic algebra and three simple examples of parasupersymmetric quantum systems of order 2, one is essentially equivalent to the one-body Rubakov-Spiridonov type and the others are two-body systems in which two supersymmetries are folded. In particular, we show that the first model admits a generalized 2-fold superalgebra

  5. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-01-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear

  6. Method to render second order beam optics programs symplectic

    International Nuclear Information System (INIS)

    Douglas, D.; Servranckx, R.V.

    1984-10-01

    We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs

  7. Computation of nonlinear water waves with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.; Bingham, Harry

    2005-01-01

    Computational highlights from a recently developed high-order Boussinesq model are shown. The model is capable of treating fully nonlinear waves (up to the breaking point) out to dimensionless depths of (wavenumber times depth) kh \\approx 25. Cases considered include the study of short......-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...

  8. Nonlinear Optics: Materials, Fundamentals, and Applications. Postdeadline papers

    Science.gov (United States)

    1992-08-01

    The Nonlinear Optics: Materials, Fundamentals, and Applications conference was held on 17-21 Aug. 1992. The following topics were addressed: subpicosecond time resolved four-wave mixing spectroscopy in heteroepitaxial ZnSe thin layers; anisotropic two-photon transition in GaAs/AlGaAs multiple quantum well waveguides; two picosecond, narrow-band, tunable, optical parametric systems using BBO and LBO; second generation in an optically active liquid: experimental observation of a fourth-order optical nonlinearity due to molecular chirality; optical image recognition system implemented with a 3-D memory disk; phase-matched second-harmonic generation in waveguides of polymeric Langmuir-Blodgett films; fluence dependent dynamics observed in the resonant third-order optical response of C60 and C70 films; temporal modulation of spatial optical solitons: a variational approach; measurements of light-scattering noise during two-wave mixing in a Kerr medium; excess noise introduced by beam propagation through an atomic vapor; an approach to all-optical switching based on second-order nonlinearities; multilayer, nonlinear ARROW waveguides for surface emitted sum-frequency mixing; energy scaling of SBS phase conjugate mirrors to 4J; vector versus scalar theory for the double phase conjugate mirror; cross-talk and error probability in counter-beam lambda-multiplexed digital holograms; and modal growth of SHG in doped silica thin film waveguides.

  9. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    Science.gov (United States)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  10. Optical rogue waves generation in a nonlinear metamaterial

    Science.gov (United States)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  11. Drag Effect in Double-Layer Dipolar Fermi Gases

    International Nuclear Information System (INIS)

    Tanatar, B; Renklioglu, B; Oktel, M O

    2014-01-01

    We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system

  12. Solitons and rogue waves for a higher-order nonlinear Schroedinger-Maxwell-Bloch system in an erbium-doped fiber

    International Nuclear Information System (INIS)

    Su, Chuan-Qi; Gao, Yi-Tian; Yu, Xin; Xue, Long; Aviation Univ. of Air Force, Liaoning

    2015-01-01

    Under investigation in this article is a higher-order nonlinear Schroedinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.

  13. Large third-order optical nonlinearity of silver colloids in silica glasses synthesized by ion implantation

    International Nuclear Information System (INIS)

    Ghosh, Binita; Chakraborty, Purushottam

    2011-01-01

    Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.

  14. Theory of plasmonic effects in nonlinear optics: the case of graphene

    Science.gov (United States)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration

    The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).

  15. Conformal conservation laws for second-order scalar fields

    International Nuclear Information System (INIS)

    Blakeskee, J.S.; Logan, J.D.

    1976-01-01

    It is considered an action integral over space-time whose Lagrangian depends upon a scalar field an upon derivatives of the field function up to second order. From invariance identities obtained by the authors in an earlier work it is shown how a new proof of Noether's theorem for this second-order problem follows in the multiple integral case. Finally, conservation laws are written down in the case that the given action integral be invariant under the fifteen-parameter special conformal group

  16. Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios

    Science.gov (United States)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-05-01

    In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.

  17. Higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials

    OpenAIRE

    Kim, Dae San; Kim, Taekyun

    2013-01-01

    In this paper, we investigate some properties of higher-order Cauchy of the second kind and poly-Cauchy of the second mixed type polynomials with umbral calculus viewpoint. From our investigation, we derive many interesting identities of higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials.

  18. Chaos control of third-order phase-locked loops using backstepping nonlinear controller

    International Nuclear Information System (INIS)

    Harb, Ahmad M.; Harb, Bassam A.

    2004-01-01

    Previous study showed that a third-order phase-locked loop (PLL) with sinusoidal phase detector characteristics experienced a Hopf bifurcation point as well as chaotic behavior. As a result, this behavior drives the PLL to the out-of-lock (unstable) state. The analysis was based on a modern nonlinear theory such as bifurcation and chaos. The main goal of this paper is to control this chaotic behavior. A nonlinear controller based on the theory of backstepping is designed. The study showed the effectiveness of the designed nonlinear controller in controlling the undesirable unstable behavior and pulling the PLL back to the in-lock state

  19. Optimality Conditions in Differentiable Vector Optimization via Second-Order Tangent Sets

    International Nuclear Information System (INIS)

    Jimenez, Bienvenido; Novo, Vicente

    2004-01-01

    We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditions when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given

  20. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    Science.gov (United States)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  1. 1/N-expansion of the non-linear σ-model: The first three orders

    International Nuclear Information System (INIS)

    Flyvbjerg, H.; Varsted, S.

    1990-01-01

    The two-point function of the O(N)-symmetric non-linear σ-model is expanded in 1/N, keeping terms of three leading orders. The mass gap and the magnetic susceptibility are obtained from the two-point function. They are evaluated on square lattices for N=3 and N=4. The systematic errors of the 1/N-series truncated after the first, second, or third term are found by using recent high precision Monte Carlo results as bench marks. For all three truncations, we find systematic errors which are smaller than the expected magnitude of neglected terms, both for the mass gap and for the susceptibility. This result is uniform in the inverse coupling β, and valid for N as small as 3. We conclude that the 1/N-series approach the exact results as rapidly as one could ever hope for. (orig.)

  2. Neural network construction of flow of a viscoelastic fluid of a second order between two eccentric spheres

    International Nuclear Information System (INIS)

    Elbakry, M.Y.; El-Helly, M.; Elbakry, M.Y.

    2010-01-01

    Neural networks are widely for solving many scientific linear and non-linear problems. In this work ,we used the artificial neural network (ANN) to simulate and predict the torque and force acting on the outer stationary sphere due to steady state motion of the second order fluid between two eccentric spheres by a rotating inner sphere with an angular velocity Ω. the (ANN) model has been trained based on the experimental data to produce the torque and force at different eccentricities. The experimental and trained torque and force are compared. The designed ANN shows a good match to the experimental data.

  3. Nonlinear Effects in Three-minute Oscillations of the Solar Chromosphere. I. An Analytical Nonlinear Solution and Detection of the Second Harmonic

    International Nuclear Information System (INIS)

    Chae, Jongchul; Litvinenko, Yuri E.

    2017-01-01

    The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D 2 and H α lines.

  4. Nonlinear Effects in Three-minute Oscillations of the Solar Chromosphere. I. An Analytical Nonlinear Solution and Detection of the Second Harmonic

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand)

    2017-08-01

    The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.

  5. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  6. Designing Hysteresis with Dipolar Chains

    Science.gov (United States)

    Concha, Andrés; Aguayo, David; Mellado, Paula

    2018-04-01

    Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.

  7. Ablation and optical third-order nonlinearities in Ag nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos Torres-Torres

    2010-11-01

    Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser

  8. Handbook of Nonlinear Partial Differential Equations

    CERN Document Server

    Polyanin, Andrei D

    2011-01-01

    New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They

  9. Nonlinear saturation controller for vibration supersession of a nonlinear composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Y. S. [Menofia University, Menouf (Egypt); Amer, Y. A. [Zagazig University, Zagazig (Egypt)

    2014-08-15

    In this paper, a study for nonlinear saturation controller (NSC) is presented that used to suppress the vibration amplitude of a structural dynamic model simulating nonlinear composite beam at simultaneous sub-harmonic and internal resonance excitation. The absorber exploits the saturation phenomenon that is known to occur in dynamical systems with quadratic non-linearities of the feedback gain and a two-to-one internal resonance. The analytical solution for the system and the nonlinear saturation controller are obtained using method of multiple time scales perturbation up to the second order approximation. All possible resonance cases were extracted at this approximation order and studied numerically. The stability of the system at the worst resonance case (Ω = 2ω{sub s} and ω{sub s} =2ω{sub C}) is investigated using both frequency response equations and phase-plane trajectories. The effects of different parameters on the system and the controller are studied numerically. The effect of some types of controller on the system is investigated numerically. The simulation results are achieved using Matlab and Maple programs.

  10. Second-order accurate volume-of-fluid algorithms for tracking material interfaces

    International Nuclear Information System (INIS)

    Pilliod, James Edward; Puckett, Elbridge Gerry

    2004-01-01

    We introduce two new volume-of-fluid interface reconstruction algorithms and compare the accuracy of these algorithms to four other widely used volume-of-fluid interface reconstruction algorithms. We find that when the interface is smooth (e.g., continuous with two continuous derivatives) the new methods are second-order accurate and the other algorithms are first-order accurate. We propose a design criteria for a volume-of-fluid interface reconstruction algorithm to be second-order accurate. Namely, that it reproduce lines in two space dimensions or planes in three space dimensions exactly. We also introduce a second-order, unsplit, volume-of-fluid advection algorithm that is based on a second-order, finite difference method for scalar conservation laws due to Bell, Dawson and Shubin. We test this advection algorithm by modeling several different interface shapes propagating in two simple incompressible flows and compare the results with the standard second-order, operator-split advection algorithm. Although both methods are second-order accurate when the interface is smooth, we find that the unsplit algorithm exhibits noticeably better resolution in regions where the interface has discontinuous derivatives, such as at corners

  11. Ultracold chromium: a dipolar quantum gas

    International Nuclear Information System (INIS)

    Pfau, T.; Stuhler, J.; Griesmaier, A.; Fattori, M.; Koch, T.

    2005-01-01

    We report on our recent achievement of a Bose-Einstein condensate in a gas of chromium atoms. Peculiar electronic and magnetic properties of chromium require the implementation of novel cooling strategies. We observe up to ∼ 10 5 condensed 52 Cr atoms after forced evaporation within a crossed optical dipole trap. Due to its large magnetic moment (6μ B ), the dipole-dipole interaction strength in chromium is comparable with the one of the van der Waals interaction. We prove the anisotropic nature of the dipolar interaction by releasing the condensate from a cigar shaped trap and observe, in time of flight measurements, the change of the aspect-ratio for different in-trap orientations of the atomic dipoles. We also report on the recent observation of 14 Feshbach resonances in elastic collisions between polarized ultra-cold 52 Cr atoms. This is the first Ballistic expansion of a dipolar quantum gas: The anisotropic interaction leads to a different expansion dynamics for the case of the magnetic dipoles aligned with the symmetry axis of the cigar shaped trap as compared with the dipoles oriented perpendicular to the axis of the cigar. The straight lines correspond to the theoretical expectation according to mean field theory without free parameters. observation of collisional Feshbach resonances in an atomic species with more than one valence electron. Moreover, such resonances constitute an important tool towards the realization of a purely dipolar interacting gas because they can be used to change strength and sign of the van der Waals interaction. (author)

  12. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  13. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  14. All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect

    Science.gov (United States)

    Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2018-05-01

    Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.

  15. Effective potentials in nonlinear polycrystals and quadrature formulae

    Science.gov (United States)

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  16. Synthesis and optical properties of azo -dye-attached novel second-order NLO polymers with high thermal stability

    Science.gov (United States)

    Ushiwata, Takami; Okamoto, Etsuya; Komatsu, Kyoji; Kaino, Toshikuni

    2001-06-01

    Novel second order nonlinear optical (NLO) polymethacrylate or polyacrylate polymers with high glass transition temperatures containing an azo dye attached as side-chain have been prepared using a new approach from polymethacrylic acid or polyacrylic acid as starting materials. Glass transition temperatures of 150 approximately 170 degree Celsius were obtained for Disperse red 1 dye attached polymethacrylic acid. These are attributed to the hydrogen bonding between the residual carboxyl groups in the starting polymers. Poled films by corona poling exhibited large NLO susceptibilities, (chi) (2)33 up to 53 pm/V at a wavelength of 1.3 micrometer. Due to the high glass transition temperatures of the polymers, long-term stability of the optical nonlinearity at 100 degrees Celsius was observed for 200 hrs or more. However residual carboxyl groups caused absorbance decrease mainly by hydrolysis of the ester bonds of the polymers investigated by UV-Vis absorption measurement. The stability of induced polar order of the NLO polymer was enhanced by using aminoalkyl chromophore and imidizing it thermally to introduce imide structure into the polymer main-chain. This imidized polymer exhibited (chi) (2)33 of 45 pm/V at a wavelength of 1.3 micrometer and maintained about 90% of the initial value after 230 hrs or more at 100 degrees Celsius.

  17. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    Science.gov (United States)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron

  18. Synthesis of 1,4-naphthoquinone derivatives using 1,3-dipolar cycloaddition and Sonogashira reactions

    Directory of Open Access Journals (Sweden)

    Wilson Silva do Nascimento

    2010-04-01

    Full Text Available Naphthoquinones are known according to their important bio-activities, such as their antitumoral and topoisomerase inhibition properties. From 2-azido (3 or 2,3-diacetylene-1,4-naphthoquinone (4 it was possible to obtain triazole derivatives (naphthoquinonic. This work describes the synthesis of two novel molecules, with triazole groups linked to 1,4-naphthoquinone using the 1,3-dipolar cycloaddition and Sonogashira reactions. The synthetic strategy followed two routes (Scheme 1. First, we synthesized the 2-bromo-1,4-naphthoquinone (2, yield 98% by using Br2 and CH3CO2H, and then used it to obtain 2-azido-1,4-naphthoquinone (3, yield 62% from compound 1, along with ethanolic solution (reflux and NaN3. Finally, we prepared 1,2,3-triazole compounds (4a, b by 1,3-dipolar cycloaddition, involving compound (3 and terminal acetylenes (phenylacetylene, a and glycoside (b using Cu(OAc2 and ascorbate, under argon atmosphere. During the second step, 2,3-dibromo-1,4-naphthoquinone was prepared using Br2/CH2Cl2 at room temperature. From compound (5 it was possible to synthesize (6, catalyzed by Pd(PPh32Cl2/CuI/Et3N, under argon atmosphere, in 40% yield. The 1,3-dipolar cycloaddition reactions involving 2-azido-1,4-naphthoquinone (3 and alkynes (a, yield 23% and b, yield 30% were conducted using the solvent system, (1:1 terc-BuOH/H2O/r.t/ 20 mol% of Cu(OAc2 and sodium ascorbate, under stirring during 24 hours. The reaction involving 2,3-dibromo-1,4-naphthoquinone (5, yield 65% and phenylacetylene was prepared using the solvent mixture (2:1 DMSO/CHCl3 and catalytic amount of CuI/Pd(PPh32Cl2. The final products were characterized by elemental analysis and spectrometric techniques (IR, NMR 1H and 13C. Two novel triazole compounds were synthesized from naphthoquinones by 1,3-dipolar cycloaddition from suitable 1,4-naphthoquinones obtained by Sonogashira couplings.

  19. AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Gabriel T., E-mail: gtlandi@gmail.com [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Arantes, Fabiana R. [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Cornejo, Daniel R. [Instituto de Física da Universidade de São Paulo, São Paulo 05508-090 (Brazil); Bakuzis, Andris F. [Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia-GO (Brazil); Andreu, Irene; Natividad, Eva [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza 50018 (Spain)

    2017-01-01

    The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed within nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field approximation, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple technique to address the presence of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. - Highlights: We discuss the importance of the dipolar interaction in magnetic nanoparticle samples. It is shown that AC susceptibility may be used to estimate the extent of this interaction. We develop a model that accounts for particle aggregation. The theoretical model is then fitted to distinct magnetite samples.

  20. Self-triggered rendezvous of gossiping second-order agents

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo; Hendrickx, Julien M.

    2013-01-01

    A recent paper by some of the authors introduced several self-triggered coordination algorithms for first-order continuous-time systems. The extension of these algorithms to second-order agents is relevant in many practical applications but presents some challenges that are tackled in this

  1. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  2. Numerical investigation of sixth order Boussinesq equation

    Science.gov (United States)

    Kolkovska, N.; Vucheva, V.

    2017-10-01

    We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.

  3. Third-order nonlinear optical properties of thin sputtered gold films

    Science.gov (United States)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  4. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2015-09-15

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  5. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta

    2015-01-01

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10 -5 cm 2 /W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  6. Punishing second-order free riders before first-order free riders: The effect of pool punishment priority on cooperation

    OpenAIRE

    Ozono, Hiroki; Kamijo, Yoshio; Shimizu, Kazumi

    2017-01-01

    Second-order free riders, who do not owe punishment cost to first-order free riders in public goods games, lead to low cooperation. Previous studies suggest that for stable cooperation, it is critical to have a pool punishment system with second-order punishment, which gathers resources from group members and punishes second-order free riders as well as first-order free riders. In this study, we focus on the priority of punishment. We hypothesize that the pool punishment system that prioritiz...

  7. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  8. Nuclear dipolar magnetism around one microkelvin in calciumhydroxide

    International Nuclear Information System (INIS)

    Marks, J.

    1985-01-01

    This thesis is devoted to a study of dipolar magnetism of the proton spins in Ca(OH) 2 . First, cooling techniques are described. The energy of different spin configurations are calculated in the Weiss-field approximation. Crystallographic characteristics of Ca(OH) 2 are described, as well as a method to produce monocrystals and a method for crystal doping using 1.5 MeV electron beams. It is shown that the polarization mechanism of the proton spins in Ca(OH) 2 doped with O 2 - centra is the 'Solid Effect'. Susceptibility measurements are presented as a function of the polarization. Results imply that both at positive and at negative temperatures state ordering sets in, characterized by a plateau in the susceptibility. (Auth/G.J.P.)

  9. Evaluation of magnetic dipolar terms in molecules

    International Nuclear Information System (INIS)

    Muniz, R.B.; Brandi, H.S.; Maffeo, B.

    1977-01-01

    The magnetic dipolar parameter b for several values of the internuclear distance in the molecule F 2 - is evaluated. The difficulties appearing in the calculations are discussed and a manner to overcome them is presented [pt

  10. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity

    Science.gov (United States)

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2012-01-01

    The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879

  11. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity.

    Science.gov (United States)

    Barbot, Antoine; Landy, Michael S; Carrasco, Marisa

    2012-08-15

    The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention--the more automatic, stimulus-driven component of spatial attention--helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention-the more voluntary, conceptually-driven component of spatial attention--affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions.

  12. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    Science.gov (United States)

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  13. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  14. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  15. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  16. Aspects of second-order analysis of structured inhomogeneous spatio-temporal processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    2012-01-01

    Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for general inhomogeneous spatio-temporal point processes and for inhomogeneous spatio-temporal Cox processes. Assuming spatio......-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio-temporal Gaussian process. Another...... concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data....

  17. Compound waves in a higher order nonlinear model of thermoviscous fluids

    DEFF Research Database (Denmark)

    Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.

    2016-01-01

    A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...

  18. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P; Sudhakar, Y N; SelvaKumar, M

    2014-01-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He–Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of β eff , n 2 and χ (3) were found to be of the order of 10 −2  cm W −1 , 10 -5  esu and 10 −7  esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications. (paper)

  19. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    Science.gov (United States)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  20. Variability and Variation in Second Language Acquisition Orders : A Dynamic Reevaluation

    NARCIS (Netherlands)

    Lowie, Wander; Verspoor, Marjolijn

    2015-01-01

    The traditional morpheme order studies in second language acquisition have tried to demonstrate the existence of a fixed order of acquisition of English morphemes, regardless of the second language learner's background. Such orders have been taken as evidence of the preprogrammed nature of language

  1. Pyrolytic Graphite as a Tunable Second order Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A study has been carried out on the neutron transmission through pyrolytic graphite (PG) crystals in order to check its applicability as an efficient tunable second order neutron filter. The neutron transmission have been calculated as a function of neutron wavelengths in the range from 0.01 nm up to 0.7 nm at various PG mosaic spread, thickness and orientation of its c-axis with respect to the beam direction The Computer package Graphite has been used to provide the required calculation. It was shown that highly aligned (10 FWHM on mosaic spread) PG crystal ∼2 cm thick, may be tuned for optimum scattering of 2 second order neutrons within some favorable wavelength intervals in the range between 0.112 and 0.425 nm by adjusting the crystal in an appropriate orientation. .However, a less quality and thinner PG was found to almost eliminate 2 second order neutrons at only tuned values of wavelength corresponding to the poison of the triple intersection points of the curves (hkl) ± and (00l)

  2. Second order guiding-center Vlasov–Maxwell equations

    DEFF Research Database (Denmark)

    Madsen, Jens

    2010-01-01

    Second order gyrogauge invariant guiding-center coordinates with strong E×B-flow are derived using the Lie transformation method. The corresponding Poisson bracket structure and equations of motion are obtained. From a variational principle the explicit Vlasov–Maxwell equations are derived...

  3. Second order bounce back boundary condition for the lattice Boltzmann fluid simulation

    International Nuclear Information System (INIS)

    Kim, In Chan

    2000-01-01

    A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method

  4. The contribution of second-order processes to (3He, n) calculations

    International Nuclear Information System (INIS)

    Brissaud, I.

    1978-01-01

    The reactions 90 Zr, 116 Cd( 3 He, n) have been analysed by adding two second-order processes to the usual one-step DWBA calculations: sequential stripping or inelastic transition followed by double stripping. These second-order contributions increase the cross sections, especially for 90 Zr, and improve the shape of the angular distribution for 116 Cd. It shows that such second-order processes cannot be omitted in the analysis of two-particle stripping reactions. (author)

  5. Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy

    International Nuclear Information System (INIS)

    Ohtori, Hiroyuki; Iwano, Kaoru; Takeichi, Yasuo; Ono, Kanta; Mitsumata, Chiharu; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira

    2014-01-01

    Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.

  6. Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals

    Science.gov (United States)

    Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng

    2015-05-01

    An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.

  7. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2016-10-23

    It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.

  8. Second-Rate Coverage of Second-Order Elections: Czech and Slovak Elections to the EP in the Media

    Directory of Open Access Journals (Sweden)

    Jan Kovář

    2010-12-01

    Full Text Available Elections to the European Parliament (EP are considered second-order national elections (SOE. The SOE model suggests that there is a qualitative difference between different types of elections depending on the perception of what is at stake. Compared to first order elections, in second order elections there is less at stake because they do not determine the composition of government. Given that voters behave differently in second-order elections, the question arises: do the media also consider second-order elections less interesting and therefore devote to them less coverage? The media play a crucial role in informing citizens about such events as elections; they function as intermediaries between the electorate and the political arena. However, little is known about how EU issues are covered in the media, particularly in the new EU member states. Conducting a content analysis and applying the second-order election model, this paper analyses TV news coverage of the 2004 and 2009 European elections in the Czech Republic and Slovakia in a comparative fashion. The findings are discussed in the light of existing research literature on the EU’s legitimacy as well as its alleged democratic and communication deficit, not least because the EU relies on the media in strengthening (albeit indirectly its legitimacy by increasing citizen awareness of its activities.

  9. On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations

    International Nuclear Information System (INIS)

    Zhestkov, S.V.

    2003-01-01

    The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)

  10. Stability and square integrability of solutions of nonlinear fourth order differential equations

    Directory of Open Access Journals (Sweden)

    Moussadek Remili

    2016-05-01

    Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.

  11. Variability and Variation in Second Language Acquisition Orders: A Dynamic Reevaluation

    Science.gov (United States)

    Lowie, Wander; Verspoor, Marjolijn

    2015-01-01

    The traditional morpheme order studies in second language acquisition have tried to demonstrate the existence of a fixed order of acquisition of English morphemes, regardless of the second language learner's background. Such orders have been taken as evidence of the preprogrammed nature of language acquisition. This article argues for a…

  12. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  13. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  14. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  15. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin

    2011-01-01

    approximations to the achieved nonlinear differential oscillation equations where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using the first order of the current approach. Compared with exact solutions, just one iteration leads us to high......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...

  16. An exactly solvable model for first- and second-order transitions

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M; Gorbunov, A A

    1998-01-01

    The possibility of an exact analytical description of first-order and second-order transitions is demonstrated using a specific microscopic model. Predictions using the exactly calculated partition function are compared with those based on the Landau and Yang-Lee approaches. The model employed is an adsorbed polymer chain with an arbitrary number of links and an external force applied to its end, for which the variation of the partition function with the adsorption interaction parameter and the magnitude of the applied force is calculated. In the thermodynamic limit, the system has one isotropic and two anisotropic, ordered phases, each of which is characterized by two order parameters and between which first-order and second-order transitions occur and a bicritical point exists. The Landau free energy is found exactly as a function of each order parameter separately and, near the bicritical point, as a function of both of them simultaneously. An exact analytical formula is found for the distribution of the complex zeros of the partition function in first-order and second-order phase transitions. Hypotheses concerning the way in which the free energy and the positions of the complex zeros scale with the number of particles N in the system are verified. (reviews of topical problems)

  17. Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type. Part II

    Directory of Open Access Journals (Sweden)

    Akira Shirai

    2015-01-01

    Full Text Available In this paper, we study the following nonlinear first order partial differential equation: \\[f(t,x,u,\\partial_t u,\\partial_x u=0\\quad\\text{with}\\quad u(0,x\\equiv 0.\\] The purpose of this paper is to determine the estimate of Gevrey order under the condition that the equation is singular of a totally characteristic type. The Gevrey order is indicated by the rate of divergence of a formal power series. This paper is a continuation of the previous papers [Convergence of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type, Funkcial. Ekvac. 45 (2002, 187-208] and [Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type, Surikaiseki Kenkyujo Kokyuroku, Kyoto University 1431 (2005, 94-106]. Especially the last-mentioned paper is regarded as part I of this paper.

  18. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  19. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs

    Directory of Open Access Journals (Sweden)

    Eman S. Alaidarous

    2013-01-01

    Full Text Available In this research paper, we present higher-order quasilinearization methods for the boundary value problems as well as coupled boundary value problems. The construction of higher-order convergent methods depends on a decomposition method which is different from Adomain decomposition method (Motsa and Sibanda, 2013. The reported method is very general and can be extended to desired order of convergence for highly nonlinear differential equations and also computationally superior to proposed iterative method based on Adomain decomposition because our proposed iterative scheme avoids the calculations of Adomain polynomials and achieves the same computational order of convergence as authors have claimed in Motsa and Sibanda, 2013. In order to check the validity and computational performance, the constructed iterative schemes are also successfully applied to bifurcation problems to calculate the values of critical parameters. The numerical performance is also tested for one-dimension Bratu and Frank-Kamenetzkii equations.

  20. Derivation and solution of a time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter

    International Nuclear Information System (INIS)

    Esrick, M.A.

    1981-01-01

    A time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter is derived from the Gor'kov equations. Three types of traveling wave solutions of the equation are discussed. The phases and amplitudes of these solutions propagate at different speeds. The first type of solution has an amplitude that propagates as a soliton and it is suggested that this solution might correspond to the recently observed propagating collective modes of the order parameter. The amplitude of the second type of solution propagates as a periodic disturbance in space and time. It is suggested that this type of solution might explain the recently observed multiple values of the superconductor energy gap as well as the spatially inhomogenous superconducting state. The third type of solution, which is of a more general character, might provide some insight into non-periodic, inhomogeneous states occuring in superconductors. It is also proposed that quasiparticle injection and microwave irradiation might generate soliton-like disturbances in superconductors

  1. Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations

    Science.gov (United States)

    Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis

    2014-12-01

    Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.

  2. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  3. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    Science.gov (United States)

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  4. Support-Vector-Machine-Based Reduced-Order Model for Limit Cycle Oscillation Prediction of Nonlinear Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2012-01-01

    Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.

  5. Nonlinear PCA: characterizing interactions between modes of brain activity.

    OpenAIRE

    Friston, K; Phillips, J; Chawla, D; Büchel, C

    2000-01-01

    This paper presents a nonlinear principal component analysis (PCA) that identifies underlying sources causing the expression of spatial modes or patterns of activity in neuroimaging time-series. The critical aspect of this technique is that, in relation to conventional PCA, the sources can interact to produce (second-order) spatial modes that represent the modulation of one (first-order) spatial mode by another. This nonlinear PCA uses a simple neural network architecture that embodies a spec...

  6. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  7. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  8. Independent EEG sources are dipolar.

    Directory of Open Access Journals (Sweden)

    Arnaud Delorme

    Full Text Available Independent component analysis (ICA and blind source separation (BSS methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA; best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison.

  9. Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres

    Science.gov (United States)

    Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael

    2018-03-01

    Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.

  10. Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Juul Rasmussen, J.; Shagalov, A.G.

    2001-01-01

    The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrodinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha (3) (alpha (3) is the coefficient...... in the third derivative term) and vanish at alpha3 -->0. The most essential, at small alpha (3), is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and also in numerical...

  11. Detecting order and lateral pressure at biomimetic interfaces using a mechanosensitive second-harmonic-generation probe.

    Science.gov (United States)

    Licari, Giuseppe; Beckwith, Joseph S; Soleimanpour, Saeideh; Matile, Stefan; Vauthey, Eric

    2018-04-04

    A planarizable push-pull molecular probe with mechanosensitive properties was investigated at several biomimetic interfaces, consisting of different phospholipid monolayers located between dodecane and an aqueous buffer solution, using the interface-specific surface-second-harmonic-generation (SSHG) technique. Whereas the SSHG spectra recorded at liquid-disordered interfaces were similar to the absorption spectra in bulk solutions, those measured at liquid-ordered phases exhibited a remarkable shift towards lower energies to an extent depending on the surface pressure of the phospholipid monolayer. On the basis of quantum-chemical calculations, this effect was accounted for by the planarization of the mechanosensitive probe. Polarization-resolved SSHG measurements revealed that the average orientation of the probe at the interface is an even more sensitive reporter of lateral pressure and order than the spectral shape. Additionally, time-resolved SSHG measurements pointed to slower dynamics upon intercalation inside the phospholipid monolayer, most likely due to the more constrained environment. This study demonstrates that the concept of mechanosensitive optical probes can be further exploited when combined with a surface-selective nonlinear optical technique.

  12. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  13. Rigorous theory of molecular orientational nonlinear optics

    International Nuclear Information System (INIS)

    Kwak, Chong Hoon; Kim, Gun Yeup

    2015-01-01

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented

  14. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  15. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    system of the second-order with nonlinearity of the type "quadratic friction" in combination with nonlinearity of the type "dry friction", was developed a software to simulate a process for providing pseudo experimental data containing random accuracy and to determine the parameters of the system. A conducted computational experiment enabled an estimate of the accuracy with which the proposed algorithm determines the parameters of the system. The illustrative numerical simulation has demonstrated that with using the proposed nonlinear dynamic system identification algorithm in frequency hodograph the accuracy of determining the coefficient values of the frequency transfer function of the second order system with a dry and quadratic friction is comparable with the range of measurement accuracy of experimental samples of this system hodograph. Well-known publications do not mention this identification method of the nonlinear dynamic systems. The nonlinear dynamical systems identification method the article describes can find application when determining parameters of various kinds of actuators. The using method of harmonic linearization and identification of dynamical systems by hodographs is promising for solving the problem of the identification of nonlinear systems with different types of nonlinearities.

  16. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    Directory of Open Access Journals (Sweden)

    Feng-Tao He

    2013-01-01

    Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.

  17. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Zhang, Xiao-Fei; Han, Wei; Jiang, Hai-Feng; Liu, Wu-Ming; Saito, Hiroki; Zhang, Shou-Gang

    2016-01-01

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point out that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.

  18. Expanded porphyrins as third order non-linear optical materials ...

    Indian Academy of Sciences (India)

    WINTEC

    function correlations ... An understanding of the structure–function corre- lations of these expanded porphyrins is an important first step for ... where χ (2) and χ (3) are the quadratic χ (2) (first- order) and χ (3) cubic (second-order) susceptibilities.

  19. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    Science.gov (United States)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  20. Massless second-order tetradic spin-3 and higher-helicity bosons

    Energy Technology Data Exchange (ETDEWEB)

    Aragone, C; La Roche, H [Universidad Simon Bolivar, Caracas (Venezuela) Dept. de Fisica

    1982-11-21

    The unique, uniform, second-order formulation of massless bosons of helicity >=3 is presented here in terms of tetradic fields. The actions we find are shown to coincide both with the first-order (tetradic) formulation of Vasiliev and with the symmetric second-order description of Fronsdal. We carefully analyse the gravitational coupling of the spin-3 field and find that tetradic spin-3 matter presents the same translational consistency problem as symmetric matter does. Furthermore, in the curved tetradic case the generalized Lorentz invariance can be restored by the addition of nominimal terms.