WorldWideScience

Sample records for dipolar magnetic order

  1. Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies

    DEFF Research Database (Denmark)

    Varón, M.; Beleggia, M; Kasama, T

    2013-01-01

    order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μ(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm...... cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present...... nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies....

  2. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    Science.gov (United States)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  3. Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains

    International Nuclear Information System (INIS)

    Klokkenburg, M; Erne, B H; Mendelev, V; Ivanov, A O

    2008-01-01

    Theories and simulations have demonstrated that field-induced dipolar chains affect the static magnetic properties of ferrofluids. Experimental verification, however, has been complicated by the high polydispersity of the available ferrofluids, and the morphology of the dipolar chains was left to the imagination. We now present the concentration- and field-dependent magnetization of particularly well-defined ferrofluids, with a low polydispersity, three different average particle sizes, and with dipolar chains that were imaged with and without magnetic field using cryogenic transmission electron microscopy. At low concentrations, the magnetization curves obey the Langevin equation for noninteracting dipoles. Magnetization curves for the largest particles strongly deviate from the Langevin equation but quantitatively agree with a recently developed mean-field model that incorporates the field-dependent formation and alignment of flexible dipolar chains. The combination of magnetic results and in situ electron microscopy images provides original new evidence for the effect of dipolar chains on the field-dependent magnetization of ferrofluids

  4. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    Science.gov (United States)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  5. Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy

    International Nuclear Information System (INIS)

    Ohtori, Hiroyuki; Iwano, Kaoru; Takeichi, Yasuo; Ono, Kanta; Mitsumata, Chiharu; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira

    2014-01-01

    Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.

  6. Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions

    Science.gov (United States)

    Keleş, Ahmet; Zhao, Erhai

    2018-05-01

    The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.

  7. Evaluation of magnetic dipolar terms in molecules

    International Nuclear Information System (INIS)

    Muniz, R.B.; Brandi, H.S.; Maffeo, B.

    1977-01-01

    The magnetic dipolar parameter b for several values of the internuclear distance in the molecule F 2 - is evaluated. The difficulties appearing in the calculations are discussed and a manner to overcome them is presented [pt

  8. Hidden magnetism in periodically modulated one dimensional dipolar fermions

    Science.gov (United States)

    Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.

    2017-12-01

    The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.

  9. AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Gabriel T., E-mail: gtlandi@gmail.com [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Arantes, Fabiana R. [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Cornejo, Daniel R. [Instituto de Física da Universidade de São Paulo, São Paulo 05508-090 (Brazil); Bakuzis, Andris F. [Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia-GO (Brazil); Andreu, Irene; Natividad, Eva [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza 50018 (Spain)

    2017-01-01

    The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed within nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field approximation, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple technique to address the presence of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. - Highlights: We discuss the importance of the dipolar interaction in magnetic nanoparticle samples. It is shown that AC susceptibility may be used to estimate the extent of this interaction. We develop a model that accounts for particle aggregation. The theoretical model is then fitted to distinct magnetite samples.

  10. The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization

    Science.gov (United States)

    Ono, Y.; Nosé, M.; Christon, S. P.; Lui, A. T. Y.

    2009-05-01

    We statistically examine changes in the composition of two different ion species, proton and oxygen ions, in the near-Earth plasma sheet (X = -16 R E ˜ -6 R E ) during substorm-associated dipolarization. We use 10 years of energetic (9-212 keV/e) ion data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particles and ion composition (EPIC) instrument on board the Geotail spacecraft. The results are as follows: (1) Although the percentage increase in the energy density of O+ ions before and after a dipolarization exceeds that of H+ ions in the low-energy range (9-36 keV/e), this property is not evident in the high-energy range (56-212 keV/e); (2) the energy spectrum of H+ and that of O+ become harder after dipolarization in almost all events; and (3) in some events the energy spectrum of O+ becomes harder than that of H+ as reported by previous studies, and, importantly, in other events, the spectrum of H+ becomes harder than that of O+. In order to investigate what mechanism causes these observational results, we focus on magnetic field fluctuations during dipolarization. It is found that the increase of the spectrum slope is positively correlated with the power of waves whose frequencies are close to the gyrofrequency of H+ or O+, respectively (the correlation coefficient is 0.48 for H+ and 0.68 for O+). In conclusion, ions are nonadiabatically accelerated by the electric field induced by the magnetic field fluctuations whose frequencies are close to their gyrofrequencies.

  11. Nuclear dipolar magnetism around one microkelvin in calciumhydroxide

    International Nuclear Information System (INIS)

    Marks, J.

    1985-01-01

    This thesis is devoted to a study of dipolar magnetism of the proton spins in Ca(OH) 2 . First, cooling techniques are described. The energy of different spin configurations are calculated in the Weiss-field approximation. Crystallographic characteristics of Ca(OH) 2 are described, as well as a method to produce monocrystals and a method for crystal doping using 1.5 MeV electron beams. It is shown that the polarization mechanism of the proton spins in Ca(OH) 2 doped with O 2 - centra is the 'Solid Effect'. Susceptibility measurements are presented as a function of the polarization. Results imply that both at positive and at negative temperatures state ordering sets in, characterized by a plateau in the susceptibility. (Auth/G.J.P.)

  12. Long-range dipolar order and dispersion forces in polar liquids

    Science.gov (United States)

    Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene

    2017-11-01

    Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.

  13. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  14. Magnetic holes in the dipolarized magnetotail: ion and electron anisotropies

    Science.gov (United States)

    Shustov, P.; Artemyev, A.; Zhang, X. J.; Yushkov, E.; Petrukovich, A. A.

    2017-12-01

    We conduct statistics on magnetic holes observed by THEMIS spacecraft in the near-Earth magnetotail. Groups of holes are detected after dipolarizations in the quiet, equatorial plasma sheet. Magnetic holes are characterized by significant magnetic field depressions (up to 50%) and strong electron currents ( 10-50 nA/m2), with spatial scales much smaller than the ion gyroradius. These magnetic holes are populated by hot (>10 keV), transversely anisotropic electrons supporting the pressure balance. We present statistical properties of these sub-ion scale magnetic holes and discuss possible mechanisms on the hole formation.

  15. Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals

    International Nuclear Information System (INIS)

    Leon, H; Estevez-Rams, E

    2009-01-01

    A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.

  16. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    International Nuclear Information System (INIS)

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  17. Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    NARCIS (Netherlands)

    Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon

    2011-01-01

    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The

  18. Dipolar vortex structures in magnetized rotating plasma

    International Nuclear Information System (INIS)

    Liu Jixing

    1990-01-01

    Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)

  19. Asymptotic behavior of local dipolar fields in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2016-10-15

    A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.

  20. Effect of Dipolar Interactions on the Magnetization of Single-Molecule Magnets in a cubic lattice

    Science.gov (United States)

    Alcantara Ortigoza, Marisol

    2005-03-01

    Since the one-body tunnel picture of single-molecule magnets (SMM) is not always sufficient to explain the fine structure of experimental hysteresis loops, the effect of intermolecular dipolar interactions has been investigated on an ensemble of 100 3D-systems of 5X5X4 particles, each with spin S = 5, arranged in a cubic lattice. We have solved the Landau-Lifshitz-Gilbert equation for several values of the damping constant, the field sweep rate and the lattice constant. We find that the smaller the damping constant is, the stronger the maximum field needs to be to produce hysteresis. Furthermore, the shape of the hysteresis loops also depends on the damping constant. We also find that the system magnetizes and demagnetizes faster with decreasing sweep rates, resulting in smaller hysteresis loops. Variations of the lattice constant within realistic values (1.5nm and 2.5nm) show that the dipolar interaction plays an important role in magnetic hysteresis by controlling the relaxation process. Examination of temperature dependencies (0.1K and 0.7K) of the above will be presented and compared with recent experimental data on SMM.

  1. Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles

    Science.gov (United States)

    Allia, Paolo; Tiberto, Paola

    2011-12-01

    Isothermal magnetization and initial dc susceptibility of spheroidal, nearly monodisperse magnetite nanoparticles (typical diameter: 8 nm) prepared by a standard thermo-chemical route have been measured between 10 and 300 K. The samples contained magnetite nanoparticles in the form of either a dried powder (each nanoparticle being surrounded by a stable oleic acid shell as a result of the preparation procedure) or a solid dispersion in PEGDA-600 polymer; different nanoparticle (NP) concentrations in the polymer were studied. In all samples the NPs were not tightly agglomerated nor their ferromagnetic cores were directly touching. The high-temperature inverse magnetic susceptibility is always found to follow a linear law as a function of T, crossing the horizontal axis at negative temperatures ranging from 175 to about 1,000 K. The deviation from the standard superparamagnetic behavior is related to dipolar interaction among NPs; however, a careful analysis makes it hard to conclude that such a behavior originates from a dominant antiferromagnetic character of the interaction. The results are well explained considering that the studied samples are in the interacting superparamagnetic (ISP) regime. The ISP model is basically a mean field theory which allows one to straightforwardly account for the role of magnetic dipolar interaction in a NP system. The model predicts the existence of specific scaling laws for the reduced magnetization which have been confirmed in all studied samples. The interaction of each magnetic dipole moment with the local, random dipolar field produced by the other dipoles results in the presence of a large fluctuating energy term whose magnitude is comparable to the static barrier for magnetization reversal/rotation related to magnetic anisotropy. On the basis of the existing theories on thermal crossing of a barrier whose height randomly fluctuates in time it is predicted that the rate of barrier crossing is substantially driven by the rate

  2. Dispersion characteristics of electromagnetic waves in dipolar (m=±1) modes travelling along a magnetized plasma column

    International Nuclear Information System (INIS)

    Benova, E.; Ghanashev, I.; Zhelyazkov, I.

    1992-01-01

    The modelling of isotropic plasma columns sustained by travelling electromagnetic waves in the dipolar mode (angular dependence exp imφ, m=±1) shows that the m=±1 modes have identical dispersion characteristics. In the presence of an external static magnetic field, however, the modes behave rather differently. This observation arose in studying the axial structures of magnetized plasma columns surrounded by vacuum and produced by travelling electromagnetic waves in the dipolar modes. We examine the propagation of electromagnetic waves along a homogeneous cold plasma column of radius R and electron number density n immersed in an axial constant magnetic field. (author) 3 refs., 3 figs

  3. Magnetic history dependence of metastable states in thin films with dipolar interactions

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Labarta, Amilcar

    2000-01-01

    We present the results of a Monte Carlo simulation of the ground state and magnetic relaxation of a model of a thin film consisting of a two-dimensional square lattice of Heisenberg spins with perpendicular anisotropy K, exchange J and long-range dipolar interactions g. We have studied the ground state configurations of this system for a wide range of the interaction parameters J/g, K/g by means of the simulated annealing procedure, showing that the model is able to reproduce the different magnetic configurations found in real samples. We have found the existence of a certain range of K/g, J/g values for which in-plane and out-of-plane configurations are quasi-degenerated in energy. We show that when a system in this region of parameters is perturbed by an external force that is subsequently removed, different kinds of ordering may be induced depending on the followed procedure. In particular, simulations of relaxations from saturation under an AC demagnetizing field or in zero field are in qualitative agreement with recent experiments on epitaxial and granular alloy thin films, which show a wide variety of magnetic patterns depending on their magnetic history

  4. Spin Diffusion and Spin Lattice Relaxation of Dipolar Order in Solids Containing Paramagnetic Impurities

    International Nuclear Information System (INIS)

    Furman, G.B.; Panich, A.M.; Goren, S.D.

    1998-01-01

    The phenomena of spin diffusion and spin lattice relaxation of nuclear dipolar order in solids containing paramagnetic impurities (PI) is considered. We show that at the beginning of the relaxation process the diffusion vanishing regime realizes with non-exponential time dependence, R(t) ∼ exp [- (t/T 1d ) α ], where T 1d ∼ C p -1/α , C p is PI's concentration. For a homogeneous distribution of Pis and nuclear spins, α=Q/6, where Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into q-dimensional subsystems, each containing one PI, yield- ing α= (Q + q) /6. This result coincides with experimental data for CaF 2 doped with 0.8 - 10 -3 ωt % of Mn 2+ , where the non-exponential decay of the dipolar signal with α= 0.83 has been observed [3]. Fitting the experimental data yields a good agreement with T 1d = 66 ms . For another independent check of the obtained results we use dependence of the relaxation time on impurities concentration. In accordance that 1/α=1.2 , we have T 1d ∼ C p -1 '. 2 . Exactly this dependence on impurity concentration of the relaxation time has been found in the experiment. Then the relaxation regime starts as a non-exponential time dependent, proceed asymptotically to an to an exponential function of time, to so called diffusion limited relaxation regime with relaxation time T 1d D is inversely depends on impurities concentration. This kind of relaxation behavior of the dipolar order takes place in the experiment [2]. Using experimental results [2] from this two regime we can estimate the diffusion coefficient of the nuclear dipolar order in CaF 2 , which gives for typical values of impurity concentration C p ∼ 10 18 cm 3 the diffusion coefficient of dipolar order in the interval D ∼ 10 -11 -i- 10 -12 cm 2 /sec which is coincide to the case of Zeeman energy spin diffusion

  5. Imaging using long range dipolar field effects

    International Nuclear Information System (INIS)

    Gutteridge, Sarah

    2002-01-01

    The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)

  6. The effect of dipolar interaction on the magnetic isotope effect

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita

    2010-01-01

    A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...... interaction is responsible for the effect. Our calculations provide support for the proposed mechanism....

  7. Dipolar-Biased Tunneling of Magnetization in Crystals of Single Molecule Magnets

    Science.gov (United States)

    Awaga, Kunio

    2007-03-01

    The molecular cluster Mn12 has attracted much interest as a single-molecule magnet (SMM) and as a multi-redox system. It has a high-spin ground state of S=10 and a strong uniaxial magnetic anisotropy, and the combination of the two natures makes an effective potential barrier between the up and down spin states. At low temperatures, the magnetization curve exhibited a hysteresis loop and the quantum tunneling of magnetization (QTM). In the present work, we studied the structure and magnetic properties of the mixed-metal SMM, Mn11Cr, through the analysis of Mn11Cr/Mn12 mixed crystal. High-frequency EPR spectra were well explained by assuming that Mn11Cr was in a ground spin-state of S=19/2 with nearly the same EPR parameter set as for Mn12. QTM in Mn11Cr was observed with the same field interval as for Mn12. The magnetization of Mn11Cr and Mn12 in the mixed crystal can be independently manipulated by utilizing the difference between their coercive fields. The resonance fields of QTM in Mn11Cr are significantly affected by the magnetization direction of Mn12, suggesting the effect of dipolar-biased tunneling. Besides SMM, we would also like to report the unusual magnetic properties of spherical hollow nanomagnets, the electrical properties of heterocyclic thiazyl radicals, and their possible applications in spintronics and organic electronics.

  8. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  9. Evidence of magnetic dipolar interaction in micrometric powders of the Fe50Mn10Al40 system: Melted alloys

    International Nuclear Information System (INIS)

    Pérez Alcázar, G.A.; Zamora, L.E.; Tabares, J.A.; Piamba, J.F.; González, J.M.; Greneche, J.M.; Martinez, A.; Romero, J.J.; Marco, J.F.

    2013-01-01

    Powders of melted disordered Fe 50 Mn 10 Al 40 alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 μm showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: ► The effect of particle size in microsized powders of Fe 50 Mn 10 Al 40 melted disordered alloy is studied. ► Dipolar magnetic interaction between particles exists and this changes with the particle size. ► For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. ► RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  10. Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Rovigatti, L.; Tavares, J.M.; Sciortino, F.

    2015-01-01

    We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DHS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole–dipole magnetic interaction increases. It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (ρ) of DHS plays a crucial part in this transition: at a very low ρ only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of ρ. The average ring size is found to be a slower increasing function of ρ when compared to that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the ρ-dependence of the initial magnetic susceptibility (χ) when the temperature decreases. The rings due to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. - Highlights: • Found structural chain-to-ring transition at low temperature sheds the light on the no-man's-land of the phase diagram of dipolar hard sphere gas. • Particle concentration plays a crucial part: at high dilution only chains and rings are observed, otherwise different branched structures occur. • The dramatic influence of the ring formation on the concentration dependence of the initial magnetic susceptibility when temperature decreases

  11. Electron dynamics during substorm dipolarization in Mercury's magnetosphere

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    2005-11-01

    Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.

  12. Dipolar quantum gases of erbium

    International Nuclear Information System (INIS)

    Frisch, A.

    2014-01-01

    Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures

  13. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk [University of Exeter (UK), Department of Physics and Astronomy, Stoker Road, Devon, Exeter, EX4 4QL (United Kingdom)

    2017-08-10

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.

  14. Effects of dilution on the magnetic ordering of a two-dimensional lattice of dipolar magnets

    International Nuclear Information System (INIS)

    Patchedjiev, S M; Whitehead, J P; De'Bell, K

    2005-01-01

    Monte Carlo simulations are used to study the effects of dilution by random vacancies on the phenomenon of order arising from disorder in an ultrathin magnetic film. At very low concentrations of vacancies, both the collinear ordered phase observed in the undiluted system and the microvortex state are observed, and the boundary on which the reorientation transition between these states occurs is found to be consistent with the predictions of earlier work. However, even at vacancy densities as low as 0.5% there is evidence that the vacancies result in a energy landscape with a number of very nearly degenerate minima

  15. Designing Hysteresis with Dipolar Chains

    Science.gov (United States)

    Concha, Andrés; Aguayo, David; Mellado, Paula

    2018-04-01

    Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.

  16. Dipolar interaction in arrays of magnetic nanotubes

    International Nuclear Information System (INIS)

    Velázquez-Galván, Y; Martínez-Huerta, J M; Encinas, A; De La Torre Medina, J; Danlée, Y; Piraux, L

    2014-01-01

    The dipolar interaction field in arrays of nickel nanotubes has been investigated on the basis of expressions derived from the effective demagnetizing field of the assembly as well as magnetometry measurements. The model incorporates explicitly the wall thickness and aspect ratio, as well as the spatial order of the nanotubes. The model and experiment show that the interaction field in nanotubes is smaller than that in solid nanowires due to the packing fraction reduction in tubes related to their inner cavity. Finally, good agreement between the model and experiment is found for the variation of the interaction field as a function of the tube wall thickness. (paper)

  17. Laser induced magnetization switching in a TbFeCo ferrimagnetic thin film: discerning the impact of dipolar fields, laser heating and laser helicity by XPEEM

    International Nuclear Information System (INIS)

    Gierster, L.; Ünal, A.A.; Pape, L.; Radu, F.; Kronast, F.

    2015-01-01

    We investigate laser induced magnetic switching in a ferrimagnetic thin film of Tb_2_2Fe_6_9Co_9 by PEEM. Using a small laser beam with a spot size of 3–5 µm in diameter in combination with high resolution magnetic soft X-ray microscopy we are able to discriminate between different effects that govern the microscopic switching process, namely the influence of the laser heating, of the helicity dependent momentum transfer, and of the dipolar coupling. Applying a sequence of femtosecond laser pulses to a previously saturated TbFeCo film leads to the formation of ring shaped magnetic structures in which all three effects can be observed. Laser helicity assisted switching is only observed in a narrow region within the Gaussian profile of the laser spot. Whereas in the center of the laser spot we find clear evidence for thermal demagnetization and in the outermost areas magnetic switching is determined by dipolar coupling with the surrounding film. Our findings demonstrate that by reducing the laser spot size the influence of dipolar coupling on laser induced switching is becoming increasingly important. - Highlights: • With a new PEEM sample holder a laser spot size of 3–5 µm in diameter is reached. • Spatial resolved imaging of laser induced magnetization reversal. • A single femtosecond laser pulse leads to a multi-domain state in TbFeCo. • A pulse sequence results in a ring-shaped magnetic pattern caused by dipolar fields. • Laser helicity dependent effects appear only in a narrow fluence region.

  18. A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Eberstadt, Matthias; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories (United States)

    1998-10-15

    A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.

  19. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms

    Science.gov (United States)

    Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman

    2018-04-01

    We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

  20. Evidence of magnetic dipolar interaction in micrometric powders of the Fe{sub 50}Mn{sub 10}Al{sub 40} system: Melted alloys

    Energy Technology Data Exchange (ETDEWEB)

    Perez Alcazar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Zamora, L.E. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Tabares, J.A.; Piamba, J.F. [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Apdo. 155, 28230 Las Rozas, Madrid (Spain); Greneche, J.M. [LUNAM, Universite du Maine, Institut des Molecules et Materiaux du Mans, UMR CNRS 6283, 72085 Le Mans Cedex 9 (France); Martinez, A. [Instituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Spain); Romero, J.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain); Marco, J.F. [Instituto de Quimica Fisica Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-02-15

    Powders of melted disordered Fe{sub 50}Mn{sub 10}Al{sub 40} alloy were separated at different mean particle sizes as well as magnetically and structurally characterized. All the samples are BCC and show the same nanostructure. Particles larger than 250 {mu}m showed a lamellar shape compared to smaller particles, which exhibited a more regular form. All the samples are ferromagnetic at room temperature and showed reentrant spin-glass (RSG) and superparamagnetic (SP)-like behaviors between 30 and 60 K and 265 and > 280 K, respectively, as a function of frequency and particle size. The freezing temperature increases with increasing particle size while the blocking one decreases with particle size. The origin of these magnetic phenomena relies in the internal disordered character of samples and the competitive interaction of Fe and Mn atoms. The increase of their critical freezing temperature with increasing mean particle size is due to the increase of the magnetic dipolar interaction between the magnetic moment of each particle with the field produced by the other magnetic moments of their surrounding particles. - Highlights: Black-Right-Pointing-Pointer The effect of particle size in microsized powders of Fe{sub 50}Mn{sub 10}Al{sub 40} melted disordered alloy is studied. Black-Right-Pointing-Pointer Dipolar magnetic interaction between particles exists and this changes with the particle size. Black-Right-Pointing-Pointer For all the particle sizes the reentrant spin- glass and the superparamagnetic-like phases exist. Black-Right-Pointing-Pointer RSG and SP critical temperatures increase with increasing the dipolar magnetic interaction (the mean particle size).

  1. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  2. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    International Nuclear Information System (INIS)

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding

  3. Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Londoño, O., E-mail: omoscoso@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); Tancredi, P. [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), CONICET, C1063ACV Buenos Aires (Argentina); Muraca, D. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC (UFABC), Av. Dos Estados, 5001, Santo André, SP (Brazil); Mendoza Zélis, P.; Coral, D.; Fernández van Raap, M.B. [Instituto de Física, Universidad Nacional de La Plata (UNLP), CONICET, CC.67, 1900 La Plata, Buenos Aires (Argentina); Wolff, U.; Neu, V.; Damm, C. [IFW Dresden, Leibniz Institute for Solid State and Materials Research, Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Oliveira, C.L.P. de [Instituto de Física, Universidade de São Paulo, São Paulo 05314970 (Brazil); Pirota, K.R. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), CEP13083-859 Campinas, São Paulo (Brazil); and others

    2017-04-15

    Controlled magnetic granular materials with different concentrations of magnetite nanoparticles immersed in a non-conducting polymer matrix were synthesized and, their macroscopic magnetic observables analyzed in order to advance towards a better understanding of the magnetic dipolar interactions and its effects on the obtained magnetic parameters. First, by means of X-ray diffraction, transmission electron microscopy, small angle X-ray scattering and X-ray absorption fine structure an accurate study of the structural properties was carried out. Then, the magnetic properties were analyzed by means of different models, including those that consider the magnetic interactions through long-range dipolar forces as: the Interacting Superparamagnetic Model (ISP) and the Vogel-Fulcher law (V-F). In systems with larger nanoparticle concentrations, magnetic results clearly indicate that the role played by the dipolar interactions affects the magnetic properties, giving rise to obtaining magnetic and structural parameters without physical meaning. Magnetic parameters as the effective anisotropic constant, magnetic moment relaxation time and mean blocking temperature, extracted from the application of the ISP model and V-F Law, were used to simulate the zero-field-cooling (ZFC) and field-cooling curves (FC). A comparative analysis of the simulated, fitted and experimental ZFC/FC curves suggests that the current models depict indeed our dilute granular systems. Notwithstanding, for concentrated samples, the ISP model infers that clustered nanoparticles are being interpreted as single entities of larger magnetic moment and volume, effect that is apparently related to a collective and complex magnetic moment dynamics within the cluster. - Highlights: • Nanoparticle architecture into matrices determines the composite magnetic response. • Magnetically diluted or compacted systems are useful to study magnetism at nanoscale. • Particle aggregation into the matrices was examined

  4. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  5. Electron dynamics during substorm dipolarization in Mercury's magnetosphere

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    2005-11-01

    Full Text Available We examine the nonlinear dynamics of electrons during the expansion phase of substorms at Mercury using test particle simulations. A simple model of magnetic field line dipolarization is designed by rescaling a magnetic field model of the Earth's magnetosphere. The results of the simulations demonstrate that electrons may be subjected to significant energization on the time scale (several seconds of the magnetic field reconfiguration. In a similar manner to ions in the near-Earth's magnetosphere, it is shown that low-energy (up to several tens of eV electrons may not conserve the second adiabatic invariant during dipolarization, which leads to clusters of bouncing particles in the innermost magnetotail. On the other hand, it is found that, because of the stretching of the magnetic field lines, high-energy electrons (several keVs and above do not behave adiabatically and possibly experience meandering (Speiser-type motion around the midplane. We show that dipolarization of the magnetic field lines may be responsible for significant, though transient, (a few seconds precipitation of energetic (several keVs electrons onto the planet's surface. Prominent injections of energetic trapped electrons toward the planet are also obtained as a result of dipolarization. These injections, however, do not exhibit short-lived temporal modulations, as observed by Mariner-10, which thus appear to follow from a different mechanism than a simple convection surge.

  6. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  7. ESR of Gd3+ in magnetically ordered Eu2CuO4

    International Nuclear Information System (INIS)

    Rettori, C.; Oseroff, S.B.; Rao, D.; Valdivia, J.A.; Barberis, G.E.; Martins, G.B.; Sarrao, J.; Fisk, Z.; Tovar, M.

    1996-01-01

    Electron spin resonance (ESR) experiments of Gd 3+ in the antiferromagnetic (AF) ordered phase (T N ) of Eu 2 CuO 4 can be interpreted in terms of four magnetically nonequivalent rare-earth sites with local internal fields H i =±310(30) Oe along the [100] and [010] directions. The internal field is well described by a dipolar magnetic field of a noncollinear AF array of 0.35(4) μ B per Cu moment aligned along the [100] and [010] directions. This is consistent with recent results of magnetic-field-dependent neutron-diffraction experiments. From the ESR and magnetic susceptibility data, the crystal field parameters for Gd 3+ and Eu 3+ in Eu 2 CuO 4 are determined. The exchange parameters between the rare earths are also estimated. copyright 1996 The American Physical Society

  8. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  9. Coherent manipulation of dipolar coupled spins in an anisotropic environment

    Science.gov (United States)

    Baibekov, E. I.; Gafurov, M. R.; Zverev, D. G.; Kurkin, I. N.; Malkin, B. Z.; Barbara, B.

    2014-11-01

    We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaW O4 crystals with different concentrations of N d3 + ions.

  10. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    Science.gov (United States)

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  11. Harmonically trapped dipolar fermions in a two-dimensional square lattice

    DEFF Research Database (Denmark)

    Larsen, Anne-Louise G.; Bruun, Georg

    2012-01-01

    We consider dipolar fermions in a two-dimensional square lattice and a harmonic trapping potential. The anisotropy of the dipolar interaction combined with the lattice leads to transitions between phases with density order of different symmetries. We show that the attractive part of the dipolar...

  12. Quadrupolar order, hidden octupolar order and tiny magnetic moment in URu2Si2

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi; Matsuura, Tamifusa; Kuroda, Yoshihiro

    2000-01-01

    Possible orders in URu 2 Si 2 are investigated using a two-channel degenerate Anderson model. The ground state of uranium ions is the non-Kramers quadrupolar doublet Γ 5 with (5f) 2 , and its relevant excited state is the Kramers dipolar doublet Γ 7 with (5f) 1 . These states mix with each other via conduction electrons. At low temperatures, the system forms renormalized bands with both quadrupole and dipole degrees of freedom due to the quadrupolar Kondo effect which slightly mixes quadrupolar Γ 5 , a primary state of uranium ions, with dipolar Γ 7 . At a certain low temperature, conduction electrons in the renormalized bands undergo quadrupolar ordering with a large quadrupolar moment. At a further lower temperature, octupolar ordering occurs, accompanied by a tiny dipolar moment which is attributed to the property of the renormalized bands with primarily the Γ 5 -character slightly mixed with the Γ 7 -character. These phenomena are well described by the 1/N-expansion method with pseudo-fermions for the non-Kramers doublet Γ 5 and slave bosons for the Kramers doublet Γ 7 . (author)

  13. Effects of the competition between the exchange and dipolar interactions in the spin-wave spectrum of two-dimensional circularly magnetized nanodots

    International Nuclear Information System (INIS)

    Mamica, S; Krawczyk, M; Lévy, J-C S

    2014-01-01

    We use a microscopic theory taking into account the dipolar and nearest-neighbour exchange interactions for exploring spin-wave excitations in two-dimensional magnetic dots in the vortex state. Normal modes of different profiles are observed: azimuthal and radial modes, as well as fundamental (quasiuniform) and highly localized modes. We examine the dependence of the frequencies and profiles of these modes on the dipolar-to-exchange interaction ratio and the size of the dot. Special attention is paid to some particular modes, including the lowest mode in the spectrum and the evolution of its profile, and the fundamental mode, the frequency of which proves almost independent of the dipolar-to-exchange interaction ratio. We also provide a selective overview of the experimental, analytical and numerical results from the literature, where different profiles of the lowest mode are reported. We attribute this diversity to the competition between the dipolar and exchange interactions. Finally, we study the hybridization of the modes, show the multi-mode hybridization and explain the selection rules. (paper)

  14. Minute splitting of magnetic excitations in CsFeCl{sub 3} due to dipolar interaction observed by polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Baehr, M [HMI, Berlin (Germany); Petitgrand, D [Laboratoire Leon Brillouin (LLB) - Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1997-04-01

    Using inelastic neutron scattering with polarisation analysis it was possible, for the first time, to observe simultaneously the two magnetic modes split due to dipolar interaction. This would not have been possible with energy resolution only. An analysis of eigenvectors was also performed. (author). 4 refs.

  15. Ultracold chromium: a dipolar quantum gas

    International Nuclear Information System (INIS)

    Pfau, T.; Stuhler, J.; Griesmaier, A.; Fattori, M.; Koch, T.

    2005-01-01

    We report on our recent achievement of a Bose-Einstein condensate in a gas of chromium atoms. Peculiar electronic and magnetic properties of chromium require the implementation of novel cooling strategies. We observe up to ∼ 10 5 condensed 52 Cr atoms after forced evaporation within a crossed optical dipole trap. Due to its large magnetic moment (6μ B ), the dipole-dipole interaction strength in chromium is comparable with the one of the van der Waals interaction. We prove the anisotropic nature of the dipolar interaction by releasing the condensate from a cigar shaped trap and observe, in time of flight measurements, the change of the aspect-ratio for different in-trap orientations of the atomic dipoles. We also report on the recent observation of 14 Feshbach resonances in elastic collisions between polarized ultra-cold 52 Cr atoms. This is the first Ballistic expansion of a dipolar quantum gas: The anisotropic interaction leads to a different expansion dynamics for the case of the magnetic dipoles aligned with the symmetry axis of the cigar shaped trap as compared with the dipoles oriented perpendicular to the axis of the cigar. The straight lines correspond to the theoretical expectation according to mean field theory without free parameters. observation of collisional Feshbach resonances in an atomic species with more than one valence electron. Moreover, such resonances constitute an important tool towards the realization of a purely dipolar interacting gas because they can be used to change strength and sign of the van der Waals interaction. (author)

  16. Dipolarization Fronts from Reconnection Onset

    Science.gov (United States)

    Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.

    2012-12-01

    Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.

  17. Pressure effects on the magnetic behaviour of copper (II) compounds: magnetic ordering of layered organic/inorganic magnets

    International Nuclear Information System (INIS)

    Levchenko, G; Varyukhin, V N; Berezhnaya, L V; Rusakov, V F

    2012-01-01

    The high hydrostatic pressure effect on the magnetic properties of the layered hybrid compounds Cu 2 (OH) 3 (C n H 2n+1 CO 2 )⋅mH 2 O with distance between magnetic layers of up to 40 Å is studied. It is shown that the temperature of the ferromagnetic ordering decreases linearly with pressure increase. From measurements of susceptibility in the paramagnetic region, using both quantum Heisenberg and Ising exchange coupling models in layers and dipole interaction between layers, the in- and interlayer interactions are deduced. The dipole interactions are calculated and are shown to coincide with the model of Ising interactions in the layers. The value and decrease of T c under pressure are mainly driven by the value and decrease of the in-plane interactions. The formation of the long range ordering in the layered sample with dipolar interaction between layers is analysed. As a conclusion it is suggested that for designing high temperature ferromagnetism in layer compounds it is enough to have large in-plane interactions of ions with specific symmetry in layers and weak dipole interactions between layers. (paper)

  18. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  19. Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters

    DEFF Research Database (Denmark)

    Kure, Mathias; Beleggia, Marco; Frandsen, Cathrine

    2017-01-01

    Magnetic nanoparticle clusters have several biomedical and engineering applications, and revealing the basic interplay between particle configuration and magnetic properties is important for tuning the clusters for specific uses. Here, we consider the nanoparticles as macrospins and use computer...... of the polyhedra, the central moment relaxes along one of the principal axes and induces partial alignment of the surrounding moments. The resulting net moment is up to nearly four times that of the single moment added. Furthermore, we model quasi-static hysteresis loops for structures with and without a central...

  20. Bose-Einstein condensation and study of inelastic collisions due to dipolar interactions

    International Nuclear Information System (INIS)

    Beaufils, Q.

    2009-01-01

    Its large magnetic moment in the ground state makes chromium a good candidate for the study of dipolar interactions in a degenerate gas. We have built an experimental setup for trapping and cooling atoms of "5"2Cr down to Bose-Einstein condensation (BEC). Evaporative cooling takes place in a purely optical trap, which is loaded from the magneto-optical trap using a novel process of continuous accumulation of metastable states. We produce a condensate of typically 15000 atoms in a time of 15 s. We have studied the possibility to bring all the Zeeman substates of a chromium BEC to degeneracy in a non-zero static magnetic field, using a radiofrequency (rf) magnetic field, and demonstrated a new process of rf-assisted dipolar relaxation. We have also studied a narrow Feshbach resonance induced by dipolar interaction, which implies a d-wave collisional channel. We analyzed this resonance in the presence of a rf magnetic field and we reinterpreted rf association of molecules as a mere Feshbach resonance between rf dressed states. Finally, we have set up an optical lattice in the perspective of studying the effects of dipole-dipole interactions in reduced dimension. (author)

  1. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. II. Dipolar, Quadrupolar, and Octupolar Topologies

    Science.gov (United States)

    Finley, Adam J.; Matt, Sean P.

    2018-02-01

    During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.

  2. Tunnel-induced Dipolar Resonances in a Double-well Potential.

    Science.gov (United States)

    Schulz, Bruno; Saenz, Alejandro

    2016-11-18

    A system of two dipolar particles that are confined in a double-well potential and interact via a realistic isotropic interaction potential is investigated as a protoype for ultracold atoms with a magnetic dipole moment or ultracold dipolar heteronuclear diatomic molecules in double-well traps or in optical lattices. The resulting energy spectrum is discussed as a function of the dipole-dipole interaction strength. The variation of the strength of the dipole-dipole interaction is found to lead to various resonance phenomena. Among those are the previously discussed inelastic confinement-induced resonances as well as the dipole-induced resonances. It is found that the double-well potential gives rise to a new type of resonances, tunnel-induced dipolar ones. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Simulation of transverse beam splitting using time-dependent dipolar or quadrupolar kicks

    CERN Document Server

    Capoani, Federico

    2017-01-01

    Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.

  4. Torsional Alfvén Waves in a Dipolar Magnetic Field

    Science.gov (United States)

    Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.

    2017-12-01

    The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.

  5. Critical Time Crystals in Dipolar Systems.

    Science.gov (United States)

    Ho, Wen Wei; Choi, Soonwon; Lukin, Mikhail D; Abanin, Dmitry A

    2017-07-07

    We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017)NATUAS0028-083610.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.

  6. Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets

    Science.gov (United States)

    Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.

    2016-10-01

    The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.

  7. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    International Nuclear Information System (INIS)

    Zhang Kaicheng; Liu Guibin; Zhu Yan

    2011-01-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.

  8. Absence of magnetic ordering and field-induced phase diagram in the gadolinium aluminum garnet

    Science.gov (United States)

    Florea, O.; Lhotel, E.; Jacobsen, H.; Knee, C. S.; Deen, P. P.

    2017-12-01

    The robustness of spin liquids with respect to small perturbations, and the way magnetic frustration can be lifted by slight changes in the balance between competing magnetic interactions, remains a rich and open issue. We address this question through the study of the gadolinium aluminum garnet Gd3Al5O12 , a related compound to the extensively studied Gd3Ga5O12 . We report on its magnetic properties at very low temperatures. We show that despite a freezing at about 300 mK, no magnetic transition is observed, suggesting the presence of a spin-liquid state down to the lowest temperatures, similarly to Gd3Ga5O12 , in spite of a larger ratio between exchange and dipolar interactions. Finally, the phase diagram as a function of field and temperature is strongly reminiscent of the one reported in Gd3Ga5O12 . This study reveals the robust nature of the spin-liquid phase for Gd ions on the garnet lattice, in stark contrast to Gd ions on the pyrochlore lattice for which a slight perturbation drives the compound into a range of magnetically ordered states.

  9. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetic, Nanjing University of Information Science and Technology, Nanjing, 210044 (China)

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  10. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power

    Science.gov (United States)

    Tan, R. P.; Carrey, J.; Respaud, M.

    2014-12-01

    Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately

  11. Many-body formation and dissociation of a dipolar chain crystal

    International Nuclear Information System (INIS)

    You, Jhih-Shih; Wang, Daw-Wei

    2014-01-01

    We propose an experimental scheme to effectively assemble chains of dipolar gases with a uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature easily controlled by the initial lattice potential and the external field strength during processing. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation dominates the classical energy and the compressibility diverges at the phase boundary. The experimental implication of such a dipolar chain crystal and its quantum phase transition is also discussed. (paper)

  12. Role of dipolar interactions on morphologies and tunnel magnetoresistance in assemblies of magnetic nanoparticles

    Science.gov (United States)

    Anand, Manish; Carrey, Julian; Banerjee, Varsha

    2018-05-01

    We undertake comprehensive simulations of 2d arrays (Lx ×Ly) of magnetic nanoparticles (MNPs) with dipole-dipole interactions by solving LLG equations. Our primary interest is to understand the correspondence between equilibrium spin (ES) morphologies and tunnel magnetoresistance (TMR) as a function of Θ - the ratio of the dipolar to the anisotropy strength, sample size Lx , aspect ratio Ar =Ly /Lx and the direction of the applied field H → = HêH . The parameter Θ is varied by choosing three distinct particles: (i) α -Fe2O3 (Θ ≃ 0) , (ii) Co (Θ ≃ 0.37) and (iii) Fe3O4 (Θ ≃ 1.28) . Our main observations are as follows: (a) For weakly interacting spins (Θ ≃ 0) , the morphology has randomly oriented magnetic moments for all sample sizes and aspect ratios. The TMR exhibits a peak value of 50% at the coercive field Hc . It is robust with respect to Lx and Ar , and isotropic with respect to êH . (b) For strong interactions (Θ > 1) , the moments order in the plane of the sample. The ES morphology comprises of magnetically aligned regions interspersed with flux closure loops. For fields along x or y, the maximum TMR amplitude decrease to ∼30%. For êH = z ̂ , it drops to ∼3%. The TMR is robust with respect to Lx and Ar and isotropic in the x and y directions only. (c) In strongly interacting samples (Θ > 1) with Lx comparable to the size of a flux closure loop, increasing Ar creates ferromagnetic chains in the sample oriented along y or - y . Consequently, for êH = y ̂ , the TMR magnitude for Ar = 1 is ∼33% while that for Ar = 32 drops to ∼16%. For êH = x ̂ on the other hand, it is ∼30% and independent of Ar . The TMR of long ribbons of MNPs has a strong dependence on Ar and is anisotropic in all three directions.

  13. The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    International Nuclear Information System (INIS)

    Mól, L.A.S.; Costa, B.V.

    2014-01-01

    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems

  14. Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere

    Science.gov (United States)

    Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.

    2017-12-01

    Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.

  15. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  16. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    Science.gov (United States)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  17. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  18. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Science.gov (United States)

    Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.

    2009-06-01

    We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  19. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  20. Heterogeneous dipolar theory of the exponential pile

    International Nuclear Information System (INIS)

    Mastrangelo, P.V.

    1981-01-01

    We present a heterogeneous theory of the exponential pile, closely related to NORDHEIM-SCALETTAR's. It is well adapted to lattice whose pitch is relatively large (D-2O, grahpite) and the dimensions of whose channels are not negligible. The anisotropy of neutron diffusion is taken into account by the introduction of dipolar parameters. We express the contribution of each channel to the total flux in the moderator by means of multipolar coefficients. In order to be able to apply conditions of continuity between the flux and their derivatives, on the side of the moderator, we develop in a Fourier series the fluxes found at the periphery of each channel. Using Wronski's relations of Bessel's functions, we express the multipolar coefficients of the surfaces of each channel, on the side of the moderator, by means of the harmonics of each flux and their derivatives. We retain only monopolar (A 0 sub(g)) and dipolar (A 1 sub(g)) coefficients; those of a higher order are ignored. We deduce from these coefficients the systems of homogeneous equations of the exponential pile with monopoles on their own and monopoles plus dipoles. It should be noted that the systems of homogeneous equations of the critical pile are contained in those of the exponential pile. In another article, we develop the calculation of monopolar and dipolar heterogeneous parameters. (orig.)

  1. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    International Nuclear Information System (INIS)

    Zhang Kai-Cheng; Liu Yong; Chi Feng

    2014-01-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Wide aperture multipole magnets of the kinematic separator COMBAS. Correcting pair of multipole magnets M3M4 (M5M6) with compensation for higher order aberrations

    International Nuclear Information System (INIS)

    Artyukh, A.G.; Gridnev, G.F.; Teterev, Yu.G.

    1999-01-01

    The high-resolving large aperture separator COMBAS has been created and commissioned. The magneto-optical structure of the separator is based on the strong focusing principle. The separator consists of eight wide aperture multipole magnets M1-M8. The magnets M1, M2, M7, M8 forming the 1 st order optics together with some higher order optical corrections and M3-M6 being dedicated to higher order corrections of the chromatic and spherical aberrations at the intermediate and exit foci of the separator. The multipole correctors M3-M6 contain the dipolar, sextupole and octupole components in their magnetic field distributions. It was the use of the rectangular dipoles M3-M6 as carriers of sextupole and octupole field components that let achieve high values of the separator angular and momentum acceptances. Measurements of the magnetic field distributions in the median planes of the pairs of magnets M3M6 (M4M5) have been performed. These measurements allowed one to analyze the magnets manufacturing quality. Based on the analysis, shimming of pole pieces of the pair of magnets M3M6 have been done. Pole surface correcting coils for the magnets M4M5 have been foreseen to compensate for small deviations (within a few percents) of the 2 nd and 3 rd order field components from the design values, which are probable due to manufacturing errors in all the magnets M1-M8. The measured magnetic field distributions are supposed to be used for particle trajectory simulations throughout the entire separator

  3. Thermal entanglement and teleportation in a dipolar interacting system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.S., E-mail: ccastro@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil); Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Av. Nestor de Mello Pita, n. 535, 45.300-000 Amargosa, BA (Brazil); Duarte, O.S.; Pires, D.P.; Soares-Pinto, D.O. [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, São Carlos, 13560-970 SP (Brazil); Reis, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil)

    2016-04-22

    Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation. - Highlights: • The effects of a dipolar interaction between two spins on their degree of entanglement and non-locality is reported. • The model presents some degree of non-locality and entanglement at a given coupling parameters. • It is shown how the magnetic anisotropies can influence the fidelity of teleportation.

  4. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY

    International Nuclear Information System (INIS)

    Fushman, David; Cowburn, David

    1999-01-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D-parallel /D-perpendicular -1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D-parallel /D-perpendicular ≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems

  5. Particle-in-cell Simulation of Dipolarization Front Associated Whistlers

    Science.gov (United States)

    Lin, D.; Scales, W.; Ganguli, G.; Crabtree, C. E.

    2017-12-01

    Dipolarization fronts (DFs) are dipolarized magnetic field embedded in the Earthward propagating bursty bulk flows (BBFs), which separates the hot, tenuous high-speed flow from the cold, dense, and slowly convecting surrounding plasma [Runov et al. 2011]. Broadband fluctuations have been observed at DFs including the electromagnetic whistler waves and electrostatic lower hybrid waves in the Very Low Frequency (VLF) range [e.g., Zhou et al. 2009, Deng et al. 2010]. There waves are suggested to be able heat electrons and play a critical role in the plasma sheet dynamics [Chaston et al., 2012, Angelopoulos et al., 2013]. However, their generation mechanism and role in the energy conversion are still under debate. The gradient scale of magnetic field, plasma density at DFs in the near-Earth magnetotail is comparable to or lower than the ion gyro radius [Runov et al., 2011, Fu et al., 2012, Breuillard et al., 2016]. Such strongly inhomogeneous configuration could be unstable to the electron-ion hybrid (EIH) instability, which arises from strongly sheared transverse flow and is in the VLF range [Ganguli et al. 1988, Ganguli et al. 2014]. The equilibrium of the EIH theory implies an anisotropy of electron temperature, which are likely to drive the whistler waves observed in DFs [Deng et al., 2010, Gary et al., 2011]. In order to better understand how the whistler waves are generated in DFs and whether the EIH theory is applicable, a fully electromagnetic particle-in-cell (EMPIC) model is used to simulate the EIH instability with similar equilibrium configurations in DF observations. The EMPIC model deals with three dimensions in the velocity space and two dimensions in the configuration space, which is quite ready to include the third configuration dimension. Simulation results will be shown in this presentation.

  6. Quantum phases of dipolar rotors on two-dimensional lattices.

    Science.gov (United States)

    Abolins, B P; Zillich, R E; Whaley, K B

    2018-03-14

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  7. Quantum phases of dipolar rotors on two-dimensional lattices

    Science.gov (United States)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  8. Observation of roton mode population in a dipolar quantum gas

    Science.gov (United States)

    Chomaz, L.; van Bijnen, R. M. W.; Petter, D.; Faraoni, G.; Baier, S.; Becher, J. H.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.

    2018-05-01

    The concept of a roton, a special kind of elementary excitation forming a minimum of energy at finite momentum, has been essential for the understanding of the properties of superfluid 4He (ref. 1). In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated2. In the realm of highly controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite their weakly interacting character3. This prospect has raised considerable interest4-12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetization axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases13.

  9. Chiral magnetism of magnetic adatoms generated by Rashba electrons

    Science.gov (United States)

    Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir

    2017-02-01

    We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin-orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction, which relates the latter to the first-order change of the former with respect to spin-orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii-Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin-orbit interaction.

  10. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    International Nuclear Information System (INIS)

    Lavín, R.; Gallardo, C.; Palma, J.L.; Escrig, J.; Denardin, J.C.

    2012-01-01

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: ► Angular dependence of the coercivity and remanence of Co nanowire arrays. ► Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. ► Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  11. MMS observations of magnetic reconnection signatures of dissipating ion inertial-scale flux ropes associated with dipolarization events

    Science.gov (United States)

    Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scale flux ropes embedded within DFs observed during MMS first tail season. MMS high-resolution plasma measurements indicate that these earthward flux ropes embedded in DFs have a mean bulk flow velocity and diameter of 250 km/s and 1000 km ( 2‒3 ion inertial length λi), respectively. Magnetic reconnection signatures preceding the flux rope/DF encounter were also observed. As the southward-pointing magnetic field in the leading edge of the flux rope reconnects with the northward-pointing geomagnetic field, the characteristic quadrupolar Hall magnetic field in the ion diffusion region and electron outflow jets in the north-south direction are observed. Our results strongly suggest that the earthward moving flux ropes brake and gradually dissipate due to magnetic reconnection with the near Earth magnetic field. We have also examined the occurrence rate of these dissipating flux ropes/DF events as a function of downtail distances.

  12. Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium

    DEFF Research Database (Denmark)

    Aikawa, K.; Frisch, A.; Mark, M.

    2014-01-01

    We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...

  13. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=Te/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  14. Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization

    Science.gov (United States)

    Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.

    2018-05-01

    The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a

  15. Pressure and compressibility factor of bidisperse magnetic fluids

    Science.gov (United States)

    Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.

    2018-04-01

    In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.

  16. Arrays of dipolar molecular rotors in Tris(o-phenylenedioxy) cyclotriphosphazene.

    Science.gov (United States)

    Zhao, Ke; Dron, Paul I; Kaleta, Jiří; Rogers, Charles T; Michl, Josef

    2014-01-01

    Regular two-dimensional or three-dimensional arrays of mutually interacting dipolar molecular rotors represent a worthy synthetic objective. Their dielectric properties, including possible collective behavior, will be a sensitive function of the location of the rotors, the orientation of their axes, and the size of their dipoles. Host-guest chemistry is one possible approach to gaining fine control over these factors. We describe the progress that has been achieved in recent years using tris (o-phenylenedioxy)cyclotriphosphazene as a host and a series of rod-shaped dipolar molecular rotors as guests. Structures of both surface and bulk inclusion compounds have been established primarily by solid-state nuclear magnetic resonance (NMR) and powder X-ray diffraction (XRD) techniques. Low-temperature dielectric spectroscopy revealed rotational barriers as low as 1.5 kcal/mol, but no definitive evidence for collective behavior has been obtained so far.

  17. Fluctuation and dipolar interaction effects on the pinning of domain walls

    International Nuclear Information System (INIS)

    Chui, S.T.

    2001-01-01

    We discuss the effect of the dipolar interaction on the pinning of domain walls. Domain walls are usually pinned near the boundaries between grains. Magnetic charges accumulated at the domain wall make the wall more unstable and easier to depin. We discuss how the grain-orientation and thermal fluctuations affect these magnetic charges and hence the depinning of the domain walls. Our results are illustrated by finite temperature Monte Carlo simulation on periodic arrays of large cells separated by walls consisting of faces of pyramids

  18. Characterizing Ion Flows Across a Dipolarization Front

    Science.gov (United States)

    Arnold, H.; Drake, J. F.; Swisdak, M.

    2017-12-01

    In light of the Magnetospheric Multiscale Mission (MMS) moving to study predominately symmetric magnetic reconnection in the Earth's magnetotail, it is of interest to investigate various methods for determining the relative location of the satellites with respect to the x line or a dipolarization front. We use a 2.5 dimensional PIC simulation to explore the dependence of various characteristics of a front, or flux bundle, on the width of the front in the dawn-dusk direction. In particular, we characterize the ion flow in the x-GSM direction across the front. We find a linear relationship between the width of a front, w, and the maximum velocity of the ion flow in the x-GSM direction, Vxi, for small widths: Vxi/VA=w/di*1/2*(mVA2)/Ti*Bz/Bxwhere m, VA, di, Ti, Bz, and Bx are the ion mass, upstream Alfven speed, ion inertial length, ion temperature, and magnetic fields in the z-GSM and x-GSM directions respectively. However, once the width reaches around 5 di, the relationship gradually approaches the well-known theoretical limit for ion flows, the upstream Alfven speed. Furthermore, we note that there is a reversal in the Hall magnetic field near the current sheet on the positive y-GSM side of the front. This reversal is most likely due to conservation of momentum in the y-GSM direction as the ions accelerate towards the x-GSM direction. This indicates that while the ions are primarily energized in the x-GSM direction by the front, they transfer energy to the electromagnetic fields in the y-GSM direction. The former energy transfer is greater than the latter, but the reversal of the Hall magnetic field drags the frozen-in electrons along with it outside of the front. These simulations should better able researchers to determine the relative location of a satellite crossing a dipolarization front.

  19. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    International Nuclear Information System (INIS)

    Chiolerio, Alessandro; Allia, Paolo; Graziano, Mariagrazia

    2012-01-01

    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  20. Anisotropic magnetic phase diagram of Kondo-Lattice compound Ce3Pd20Ge6 with quadrupolar ordering

    International Nuclear Information System (INIS)

    Kitagawa, Jiro; Takeda, Naoya; Ishikawa, Masayasu; Yoshida, Toshiya; Ishiguro, Akiko; Kimura, Noriaki; Komatsubara, Takemi

    1999-01-01

    We have measured the specific heat and the electrical resistivity of Ce 3 Pd 20 Ge 6 in magnetic fields up to 4T applied along three principal directions. The compound shows the large negative magnetoresistance in the quadrupolar phase. The coefficient of the electronic specific heat and T 2 -coefficient of the electrical resistivity are considerably reduced at 4T. The magnetic phase diagram constructed from these measurements suggests the existence of a highly anisotropic interaction between the electric quadrupolar moments and the magnetic dipolar moments. (author)

  1. Magnetic dipolar interaction in two-dimensional complex plasmas

    International Nuclear Information System (INIS)

    Feldmann, J D; Kalman, G J; Rosenberg, M

    2006-01-01

    Various interactions can play a role between the mesoscopic dust grains of a complex plasma. We study a system composed of dust grains that have both an electric charge and a permanent magnetic dipole moment. It is assumed that the grains occupy lattice sites, as dictated by their Coulomb interaction. In addition, they possess a spin degree of freedom (orientation of magnetic dipole moment) that is not constrained by the Coulomb interaction, thus allowing for the possibility of equilibrium orientational ordering and 'wobbling' about the equilibrium orientations. As a result, collective modes develop. We identify in-plane and out-of-plane wobbling modes and discuss their dispersion characteristics both in the ferromagnetic and in the anti-ferromagnetic ground state

  2. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    Energy Technology Data Exchange (ETDEWEB)

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  3. Longitudinal expansion of field line dipolarization

    Science.gov (United States)

    Saka, O.; Hayashi, K.

    2017-11-01

    We examine the substorm expansions that started at 1155 UT 10 August 1994 in the midnight sector focusing on the longitudinal (eastward) expansion of field line dipolarization in the auroral zone. Eastward expansion of the dipolarization region was observed in all of the H, D, and Z components. The dipolarization that started at 1155 UT (0027 MLT) from 260° of geomagnetic longitude (CMO) expanded to 351°(PBQ) in about 48 min. The expansion velocity was 0.03-0.04°/s, or 1.9 km/s at 62°N of geomagnetic latitude. The dipolarization region expanding to the east was accompanied by a bipolar event at the leading edge of the expansion in latitudes equatorward of the westward electrojet (WEJ). In the midnight sector at the onset meridian, the Magnetospheric Plasma Analyzer (MAP) on board geosynchronous satellite L9 measured electrons and ions between 10 eV and 40 keV. We conclude from the satellite observations that this dipolarization was characterized by the evolution of temperature anisotropies, an increase of the electron and ion temperatures, and a rapid change in the symmetry axis of the temperature tensor. The field line dipolarization and its longitudinal expansion were interpreted in terms of the slow MHD mode triggered by the current disruption. We propose a new magnetosphere-ionosphere coupling (MI-coupling) mechanism based on the scenario that transmitted westward electric fields from the magnetosphere in association with expanding dipolarization produced electrostatic potential (negative) in the ionosphere through differences in the mobility of collisional ions and collisionless electrons. The field-aligned currents that emerged from the negative potential region are arranged in a concentric pattern around the negative potential region, upward toward the center and downward on the peripheral.

  4. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, R. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Facultad de Ingenieria, Universidad Diego Portales, UDP, Ejercito 441, Santiago (Chile); Gallardo, C.; Palma, J.L. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Escrig, J. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile); Denardin, J.C., E-mail: jcdenardin@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile)

    2012-08-15

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: Black-Right-Pointing-Pointer Angular dependence of the coercivity and remanence of Co nanowire arrays. Black-Right-Pointing-Pointer Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Black-Right-Pointing-Pointer Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  5. Influence of static and dynamic dipolar fields in bulk YIG/thin film NiFe systems probed via spin rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)

    2017-03-15

    The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.

  6. Magnetic short range order and the exchange coupling in magnets

    International Nuclear Information System (INIS)

    Antropov, V.P.

    2006-01-01

    We discuss our recent results of time-dependent density functional simulations of magnetic properties of Fe and Ni at finite temperatures. These results indicated that a strong magnetic short range order is responsible for the magnetic properties of elementary Ni and any itinerant magnet in general. We demonstrated that one can use the value of the magnetic short range order parameter to produce new quantitative classification of magnets. We also discuss the nature of the exchange coupling and its connection with the short range order. The spin-wave like propagating and diffusive excitations in paramagnetic localized systems with small short range order have been predicted while in the itinerant systems the short range order is more complicated. The possible smallness of the quantum factor in the itinerant magnets with short range order is discussed

  7. Cooling-history effects on magnetic relaxation through quantum tunneling

    Science.gov (United States)

    Fernandez, Julio; Alonso, Juan

    2003-03-01

    Magnetic clusters, such as Fe8 and Mn_12, that make up the core of large organometallic molecules, behave at low temperatures as large single spins S. In crystals, magnetic anisotropy energies U inhibit magnetic relaxation of these spins, which can then proceed at very small temperatures (at k_BT tunneling (MQT). Magnetic dipolar interactions then play an essential role. We study how an Ising system of spins that interact through magnetic dipolar fields relaxes. A spin is allowed to flip, at rate Γ, only if the magnetic field h acting on it is within some tunnel window -hw < h< h_w. We let (1) this system be initially held for some time at some temperature Ta that is above both the long-range ordering temperature and T ˜ U/S, and (2) apply a magnetic field at t=0, inmediately after the system is quenched to T < 0.1U/S. This is somewhat as in the experiments of Wernsdorfer et al on Fe_8. The time evolution of the magnetiztion m and field distributions after the field is applied at t=0 is studied. For small applied fields H, m ˜= hw HF(Γ t). In addition, F(Γ t)˜= cΓ t for Γ t < 1 and F(Γ t)˜= cΓ t for 1 <Γ t < (h_d/h_w)^2, where hd is a nearest neighbor dipolar field. We will show how c depends on the cooling protocol. Finally, m saturates at m_s˜= 0.13\\varepsilon_aH.

  8. Magnetic ordering in TmGa

    DEFF Research Database (Denmark)

    Cadogan, J.M.; Stewart, G.A.; Muños Pérez, S.

    2014-01-01

    We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and 169Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order...... of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears...... to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The 169Tm hyperfine magnetic field...

  9. The structure of the interface in the solvent mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Levadny, V.G.

    1987-08-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs

  10. Curie temperature and magnetic phase transition of nanostructured ultrathin Fe/GaAs (001). Size dependence and relevance of dipolar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Roland

    2009-07-01

    In the present work the impact of lateral patterning of ultrathin ferromagnetic films down to the nanometer range on the magnetic phase transition has been investigated. In this respect on the one hand a size effect on the Curie temperature and, referring to that, the relevance of dipolar coupling were a matter of particular interest. On the other hand the characteristics of the critical behavior itself, becoming apparent by the accurate evaluation of the curvature shape of the magnetization as a function of temperature at T{sub c}, were analyzed with regard to potential and expected size effects. The investigation of similar nanostructures with respect to an effect on Curie temperature respectively phase transition may draw up a correlation. Therefore more than hundred samples were fabricated for this work extensively by means of MBE (Molecular Beam Epitaxy) and ESL (Electron Beam Epitaxy) methods, measured by MOKE (Magneto-Optical Kerr Effect) technique and systematically evaluated. (orig.)

  11. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  12. Phase transitions to dipolar clusters and charge density waves in high T_c superconductors

    International Nuclear Information System (INIS)

    Saarela, M.; Kusmartsev, F.V.

    2017-01-01

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  13. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  14. 4f and 5d magnetism in samarium

    International Nuclear Information System (INIS)

    Stunault, A.; Bernhoeft, N.; Vettier, C.; Dumesnil, K.; Dufour, C.

    2001-01-01

    We report on resonant magnetic X-ray scattering studies of a samarium epitaxial film at the samarium L 3 edge. We observe one quadrupolar resonance below the edge, reflecting the polarization of the 4f electrons, and two dipolar resonances above the edge, related to the polarization of the 5d band. We demonstrate, by following the thermal evolution of resonant magnetic intensities of both types, that the polarization of the 4f and 5d electrons present exactly the same temperature dependence, even very close to the ordering temperature, in agreement with the RKKY model for long-range magnetic order in rare earths

  15. Structure refinement of flexible proteins using dipolar couplings: Application to the protein p8MTCP1

    International Nuclear Information System (INIS)

    Demene, Helene; Ducat, Thierry; Barthe, Philippe; Delsuc, Marc-Andre; Roumestand, Christian

    2002-01-01

    The present study deals with the relevance of using mobility-averaged dipolar couplings for the structure refinement of flexible proteins. The 68-residue protein p8 MTCP1 has been chosen as model for this study. Its solution state consists mainly of three α-helices. The two N-terminal helices are strapped in a well-determined α-hairpin, whereas, due to an intrinsic mobility, the position of the third helix is less well defined in the NMR structure. To further characterize the degrees of freedom of this helix, we have measured the dipolar coupling constants in the backbone of p8 MTCP1 in a bicellar medium. We show here that including D HN dip dipolar couplings in the structure calculation protocol improves the structure of the α-hairpin but not the positioning of the third helix. This is due to the motional averaging of the dipolar couplings measured in the last helix. Performing two calculations with different force constants for the dipolar restraints highlights the inconstancy of these mobility-averaged dipolar couplings. Alternatively, prior to any structure calculations, comparing the values of the dipolar couplings measured in helix III to values back-calculated from an ideal helix demonstrates that they are atypical for a helix. This can be partly attributed to mobility effects since the inclusion of the 15 N relaxation derived order parameter allows for a better fit

  16. Supra Arcade Downflows with XRT Informed by Dipolarization Fronts with THEMIS

    Science.gov (United States)

    Kobelski, Adam; Savage, Sabrina L.; Malaspina, David M.

    2016-01-01

    Magnetic reconnection can rapidly reconfigure the magnetic field of the corona, accelerating plasma through the site of reconnection. Ambiguities due to the nature of remote sensing have complicated the interpretation of observations of the inflowing and outflowing plasma in reconnecting regions. In particular, the interpretation of sunward moving density depletions above flare arcades (known as Supra Arcade Downflows - SADs) is still debated. Hinode/XRT has provided a wealth of observations for SADs and helped inform our current understanding of these structures. SADs have been interpreted as wakes behind newly reconnected and outflowing loops (Supra Arcade Downflowing Loops - SADLs). Models have shown the plausibility of this interpretation, though this interpretation has not yet been fully accepted. We present here observations of newly reconnected outflowing loops observed via in situ instruments in the magnetosphere. These observations, provided by five THEMIS spacecraft, show that around retracting loops (dipolarization fronts in this context) similar dynamic temperature and density structures are found as seen in SADs. We compare data from multiple SADs and dipolarization fronts to show that the observational signatures implied in the corona can be directly observed in similar plasma regimes in the magnetosphere, strongly favoring the interpretation of SADs as wakes behind retracting loops.

  17. NMR studies on 1,3-dipolar cycloaddition of nitrile oxides to norbornenes

    International Nuclear Information System (INIS)

    Gucma, Mirosław; Gołębiewski, W. Marek; Krawczyk, Maria

    2013-01-01

    The 1,3-dipolar cycloaddition reaction of nitrile oxides to norbornenes substituted with an acrylate-derived moiety was examined. Only adducts to norbornene system were formed with a good exo selectivity and complete site-selectivity. Structures of the products were elucidated by an extensive application of electrospray ionization-mass spectrometry (ESI-MS) and 2D 1 H and 13 C nuclear magnetic resonance (NMR). (author)

  18. NMR studies on 1,3-dipolar cycloaddition of nitrile oxides to norbornenes

    Energy Technology Data Exchange (ETDEWEB)

    Gucma, Miroslaw; Golebiewski, W. Marek; Krawczyk, Maria, E-mail: golebiewski@ipo.waw.pl [Institute of Industrial Organic Chemistry, Warsaw (Poland)

    2013-05-15

    The 1,3-dipolar cycloaddition reaction of nitrile oxides to norbornenes substituted with an acrylate-derived moiety was examined. Only adducts to norbornene system were formed with a good exo selectivity and complete site-selectivity. Structures of the products were elucidated by an extensive application of electrospray ionization-mass spectrometry (ESI-MS) and 2D {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR). (author)

  19. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  20. Synchronization of spin torque nano-oscillators through dipolar interactions

    International Nuclear Information System (INIS)

    Chen, Hao-Hsuan; Wu, Jong-Ching; Horng, Lance; Lee, Ching-Ming; Chang, Ching-Ray; Chang, Jui-Hang

    2014-01-01

    In an array of spin-torque nano-oscillators (STNOs) that combine a perpendicular polarized fixed layer with strong in-plane anisotropy in the free layers, magnetic dipolar interactions can effectively phase-lock the array, thus further enhancing the power of the output microwave signals. We perform a qualitative analysis of the synchronization of an array based on the Landau-Lifshitz-Gilbert equation, with a spin-transfer torque that assumes strong in-plane anisotropy. Finally, we present the numerical results for four coupled STNOs to provide further evidence for the proposed theory

  1. Synchronization of spin torque nano-oscillators through dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hao-Hsuan, E-mail: d95222014@ntu.edu.tw; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw; Horng, Lance [Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China); Lee, Ching-Ming [Graduate School of Materials Science, National Yunlin University of Science and Technology, Douliou, 64002, Taiwan (China); Chang, Ching-Ray, E-mail: crchang@phys.ntu.edu.tw; Chang, Jui-Hang [Department of Physics and Center for Quantum Sciences and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-04-07

    In an array of spin-torque nano-oscillators (STNOs) that combine a perpendicular polarized fixed layer with strong in-plane anisotropy in the free layers, magnetic dipolar interactions can effectively phase-lock the array, thus further enhancing the power of the output microwave signals. We perform a qualitative analysis of the synchronization of an array based on the Landau-Lifshitz-Gilbert equation, with a spin-transfer torque that assumes strong in-plane anisotropy. Finally, we present the numerical results for four coupled STNOs to provide further evidence for the proposed theory.

  2. Advances in studying order and dynamics in condensed matter by NMR

    International Nuclear Information System (INIS)

    Voda, M.A.

    2006-01-01

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  3. Advances in studying order and dynamics in condensed matter by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Voda, M.A.

    2006-07-13

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  4. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo; Sparber, Christof

    2011-01-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  5. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo

    2011-02-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  6. Magnetic anisotropy in the incommensurate ScFe{sub 4}Al{sub 8} system

    Energy Technology Data Exchange (ETDEWEB)

    Rećko, K., E-mail: k.recko@uwb.edu.pl [Faculty of Physics, University of Białystok, K. Ciołkowskiego 1L, 15-245 Białystok (Poland); Dobrzyński, L. [National Centre for Nuclear Research, A. Soltan 7, 05-400 Otwock-Świerk (Poland); Waliszewski, J.; Szymański, K. [Faculty of Physics, University of Białystok, K. Ciołkowskiego 1L, 15-245 Białystok (Poland)

    2015-08-15

    Neutron scattering and magnetization data are used for estimation of the spin ordering in ScFe{sub 4}Al{sub 8}. Results of experimental measurements are compared with the ground state configurations obtained by simulated annealing algorithms. The origins of the magnetocrystalline anisotropy of the scandium intermetallic alloy and the conditions of the coexistence of two different magnetic modulations as a function of the exchange integrals are discussed. The influence of the dipolar interactions for the noncollinearity and incommensurability in ScFe{sub 4}Al{sub 8} was determined. - Highlights: • We found dipolar and DM interactions as the anisotropy origins of 3d–3d–3p alloy. • We covered the explanation of incommensurability and noncollinearity of ScFe{sub 4}Al{sub 8}. • We discussed the magnetism resulting from competitiveness of exchange effects.

  7. Phase transitions to dipolar clusters and charge density waves in high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saarela, M., E-mail: Mikko.Saarela@oulu.fi [Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Kusmartsev, F.V. [Department of Physics, Loughborough University, LE11 3TU (United Kingdom)

    2017-02-15

    We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.

  8. The effect of temperature on the magnetization reversal mechanism in sintered PrFeB

    International Nuclear Information System (INIS)

    Crew, D. C.; Lewis, L. H.; Welch, D. O.; Pourarian, F.

    2000-01-01

    To understand the effects of nucleation fields and intergranular dipolar interactions on the magnetization reversal mechanism, recoil curves from the major hysteresis loop have been measured on a sample of sintered PrFeB as a function of temperature from 150 to 300 K. At room temperature the reversible magnetization behavior indicates a reversal mechanism of nucleation of domain walls whose motion after nucleation is resisted by dipolar fields. As the temperature is reduced, the coercivity, and hence the nucleation field, is observed to increase while the dipolar fields, dependent on microstructure and saturation magnetization, remain approximately constant. These temperature-dependent changes in the relative magnitudes of the dipolar field and nucleation field cause the reversible magnetization behavior to change from domain wall motion to rotation. This change in behavior is attributed to the supposition that at temperatures where the nucleation field exceeds the dipolar field, once nucleated, domain walls are swept out of the material. (c) 2000 American Institute of Physics

  9. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  10. Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations

    Science.gov (United States)

    Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'braking).

  11. Magnetization reversal processes in bonded magnets made from a mixture of Nd–(Fe,Co)–B and strontium ferrite powders

    International Nuclear Information System (INIS)

    Dospial, M.; Plusa, D.

    2013-01-01

    Isotropic epoxy-resin bonded magnets composed of different amounts of Magnequench MQP-B and strontium ferrite powders have been prepared using a compression molding technique. The magnetic parameters for magnets with different amounts of strontium ferrite and magnetization reversal processes have been studied by the measurement of the initial magnetization curves, the major hysteresis loops measured at a field up to 14 T and sets of recoil loops. The enhancement of μ 0 M R and μ 0 H C is observed in comparison with the calculated values. From the recoil loops the field dependences of the reversible, irreversible and total magnetization components and the differential susceptibilities were derived. From the dependence of the irreversible magnetization component versus an applied field it was deduced that the main mechanism of magnetization reversal process is the pinning of domain walls in MQP-B and strontium ferrite grains. The interactions between the magnetic particles and grains have been examined by the analysis of the δM plot. The δM behavior of magnets with ferrite has been interpreted as being composed of magnetizing exchange coupling and demagnetizing dipolar interactions. - Highlights: ► SrFe 12 O 19 addition causes a decrease in the H c , J R and (BH) max . ► H c and J R changes are not in agreement with dilution law. ► Main mechanism of the coercivity is the pinning of domain walls. ► In both magnets from pure powders dominant role plays long range dipolar interactions. ► Dipolar and exchange interaction are simultaneously present in hybrids but the dipolar are weaker.

  12. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  13. Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts

    Science.gov (United States)

    Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang

    2017-05-01

    Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.

  14. Non-dipolar gauge links for transverse-momentum-dependent pion wave functions

    International Nuclear Information System (INIS)

    Wang, Y.M.

    2016-01-01

    I discuss the factorization-compatible definitions of transverse-momentum-dependent (TMD) pion wave functions which are fundamental theory inputs entering QCD factorization formulae for many hard exclusive processes. I will first demonstrate that the soft subtraction factor introduced to remove both rapidity and pinch singularities can be greatly reduced by making the maximal use of the freedom to construct the Wilson-line paths when defining the TMD wave functions. I will then turn to show that the newly proposed TMD definition with non-dipolar Wilson lines is equivalent to the one with dipolar gauge links and with a complicated soft function, to all orders of the perturbative expansion in the strong coupling, as far as the infrared behavior is concerned. (author)

  15. The structure of the interface in the solvent-mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.

    1988-01-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated

  16. Characterization and modeling of multi-dipolar microwave plasmas: application to multi-dipolar plasma assisted sputtering; Caracterisation et modelisation des plasmas micro-onde multi-dipolaires: application a la pulverisation assistee par plasma multi-dipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.V

    2006-12-15

    The scaling up of plasma processes in the low pressure range remains a question to be solved for their rise at the industrial level. One solution is the uniform distribution of elementary plasma sources where the plasma is produced via electron cyclotron resonance (ECR) coupling. These elementary plasma sources are made up of a cylindrical permanent magnet (magnetic dipole) set at the end of a coaxial microwave line. Although of simple concept, the optimisation of these dipolar plasma sources is in fact a complex problem. It requires the knowledge, on one hand, of the configurations of static magnetic fields and microwave electric fields, and, on the other hand, of the mechanisms of plasma production in the region of high intensity magnetic field (ECR condition), and of plasma diffusion. Therefore, the experimental characterisation of the operating ranges and plasma parameters has been performed by Langmuir probes and optical emission spectroscopy on different configurations of dipolar sources. At the same time, in a first analytical approach, calculations have been made on simple magnetic field configurations, motion and trajectory of electrons in these magnetic fields, and the acceleration of electrons by ECR coupling. Then, the results have been used for the validation of the numerical modelling of the electron trajectories by using a hybrid PIC (particle-in-cell) / MC (Monte Carlo) method. The experimental study has evidenced large operating domains, between 15 and 200 W of microwave power, and from 0.5 to 15 mtorr argon pressure. The analysis of plasma parameters has shown that the region of ECR coupling is localised near the equatorial plane of the magnet and dependent on magnet geometry. These characterizations, applied to a cylindrical reactor using 48 sources, have shown that densities between 10{sup 11} and 10{sup 12} cm{sup -3} could be achieved in the central part of the volume at a few mtorr argon pressures. The modelling of electron trajectories near

  17. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  18. Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate.

    Science.gov (United States)

    Liu, Yu; Begin-Colin, Sylvie; Pichon, Benoît P; Leuvrey, Cedric; Ihiawakrim, Dris; Rastei, Mircea; Schmerber, Guy; Vomir, Mircea; Bigot, Jean Yves

    2014-10-21

    The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.

  19. Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes†

    Science.gov (United States)

    McGrath, Nicholas A.

    2012-01-01

    Diazo compounds, which can be accessed directly from azides by deimidogenation, are shown to be extremely versatile dipoles in 1,3-dipolar cycloaddition reactions with a cyclooctyne. The reactivity of a diazo compound can be much greater or much less than its azide analog, and is enhanced markedly in polar-protic solvents. These reactivities are predictable from frontier molecular orbital energies. The most reactive diazo compound exhibited the highest known second-order rate constant to date for a dipolar cycloaddition with a cycloalkyne. These data provide a new modality for effecting chemoselective reactions in a biological context. PMID:23227302

  20. Characteristics of high-latitude precursor flows ahead of dipolarization fronts

    Science.gov (United States)

    Li, Jia-Zheng; Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Liu, Jiang; Pan, Dong-Xiao; Zong, Qiu-Gang

    2017-05-01

    Dipolarization fronts (DFs), earthward propagating structures in the magnetotail current sheet characterized by sharp enhancements of northward magnetic field, are capable of converting electromagnetic energy into particle kinetic energy. The ions previously accelerated and reflected at the DFs can contribute to plasma flows ahead of the fronts, which have been identified as DF precursor flows in both the near-equatorial plasma sheet and far from it, near the plasma sheet boundary. Using observations from the THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, we show that the earthward particle and energy flux enhancements ahead of DFs are statistically larger farther away from the neutral sheet (at high latitudes) than in the near-equatorial region. High-latitude particle and energy fluxes on the DF dawnside are found to be significantly greater than those on the duskside, which is opposite to the dawn-dusk asymmetries previously found near the equatorial region. Using forward and backward tracing test-particle simulations, we then explain and reproduce the observed latitude-dependent characteristics of DF precursor flows, providing a better understanding of ion dynamics associated with dipolarization fronts.

  1. Dipolar ferromagnets and glasses (invited)

    International Nuclear Information System (INIS)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  2. Mechanism and regioselectivity of 1,3-dipolar cycloaddition ...

    Indian Academy of Sciences (India)

    1,3-Dipolar cycloaddition; sulphur-centred 1,3-dipoles; regioselectivity; DFT reactivity indices;. FMO theory. 1. Introduction. Five-membered heterocyclic compounds can be gene- rated by addition of a 1,3-dipole to a dipolarophile under a 1,3-dipolar cycloaddition (1,3-DC) reaction which is well known as pericyclic reaction.

  3. Perturbation theories for the dipolar fluids

    International Nuclear Information System (INIS)

    Lee, L.L.; Chung, T.H.

    1983-01-01

    We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out

  4. Ferro electricity from magnetic order by neutron measurement

    International Nuclear Information System (INIS)

    Kenzelmann, M.

    2009-01-01

    Magnetic insulators with competing exchange interactions can give rise to strong fluctuations and qualitatively new ground states. The proximity of such systems to quantum critical points can lead to strong cross-coupling between magnetic long-range order and the nuclear lattice. Case in point is a new class of multiferroic materials in which the magnetic and ferroelectric order parameters are directly coupled, and a magnetic field can suppress or switch the electric polarization [1]. Our neutron measurements reveal that ferro electricity is induced by magnetic order and emerges only if the magnetic structure creates a polar axis [2-5]. Our measurements provide evidence that commensurate magnetic order can produce ferro electricity with large electric polarization [6]. The spin dynamics and the field-temperature phase diagram of the ordered phases provide evidence that competing ground states are essential for ferro electricity. (author)

  5. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  6. When Ethyl Isocyanoacetate Meets Isatins: A 1,3-Dipolar/Inverse 1,3-Dipolar/Olefination Reaction for Access to 3-Ylideneoxindoles.

    Science.gov (United States)

    Yuan, Wen-Kui; Cui, Tao; Liu, Wei; Wen, Li-Rong; Li, Ming

    2018-03-16

    A new CuI/1,10-phen-catalyzed reaction for the synthesis of 3-ylideneoxindoles from readily available isatins and ethyl isocyanoacetate, in which ethyl isocyanoacetate acts as a latent two-carbon donor like the Wittig reagent, is reported. A tandem procedure including 1,3-dipolar cycloaddition/inverse 1,3-dipolar ring opening/olefination allows the preparation of 3-ylideneoxindoles with broad functional group tolerance.

  7. Dipolar and spinor bosonic systems

    Science.gov (United States)

    Yukalov, V. I.

    2018-05-01

    The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.

  8. Nuclear signals in magnetically ordered media

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1993-01-01

    The book contains a review of theoretical and experimental investigations in the field of nuclear magnetism in magnetically ordered media. The semiclassical theory of nuclear spins motion is developed that takes into consideration three main features of magnetically ordered media: Suhl-Nakamura interaction, quadrupole interaction and microscopic inhomogeneity of nuclear frequencies. The detailed classification of nuclear spin echo signals is given for standard conditions of experiments, when the Suhl-Nakamura interaction is small in comparison with the NMR line width. The extremal states of the electron - nuclear magnetic system are described in detail: the coexistence of NMR and FMR, nuclear ferromagnetism and NMR at fast remagnetization of a ferromagnet. 157 refs., 20 figs

  9. Magnetic Excitations and Magnetic Ordering in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Chapellier, M.; Mackintosh, A. R.

    1975-01-01

    The dispersion relations for magnetic excitons propagating on the hexagonal sites of double-hcp Pr provide clear evidence for a pronounced anisotropy in the exchange. The energy of the excitations decreases rapidly as the temperature is lowered, but becomes almost constant below about 7 K......, in agreement with a random-phase-approximation calculation. No evidence of magnetic ordering has been observed above 0.4 K, although the exchange is close to the critical value necessary for an antiferromagnetic state....

  10. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  11. Nuclear magnetic ordering in PrNi5

    International Nuclear Information System (INIS)

    Kubota, M.

    1980-11-01

    The specific heat of the hyperfine enhanced nuclear magnetic system PrNi 5 has been measured from 0.2 mK to 100 mK and in magnetic fields up to 6 T. The system was found to order at (0.40+-0.02) mK. From the study of the measured thermodynamic quantities in various magnetic fields, we obtain various information, the order at T=0 K is ferromagnetic, the hyperfine enhancement factor 1+K=(12.2+-0.5), the enhanced nuclear magnetic moment is (0.027+-0.004)μsub(B) and a nuclear exchange parameter μsub(j)Ksup(N)sub(ij)/ksub(B)=(0.20+-0.04) mK. The nature of the interactions which cause the ordering is discussed, together with the magnetic properties of the system deduced from the analysis. (orig.)

  12. Magnetic ordering in arrays of one-dimensional nanoparticle chains

    International Nuclear Information System (INIS)

    Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J

    2009-01-01

    The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.

  13. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  14. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets

    International Nuclear Information System (INIS)

    Capel, H.

    1964-01-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [fr

  15. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  16. BaZr.sub.0.5./sub.Ti.sub.0.5./sub.O.sub.3./sub.: Lead-free relaxor ferroelectric or dipolar glass

    Czech Academy of Sciences Publication Activity Database

    Filipič, C.; Kutnjak, Z.; Pirc, R.; Canu, G.; Petzelt, Jan

    2016-01-01

    Roč. 93, č. 22 (2016), 1-7, č. článku 224105. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : relaxor ferroelectric * dipolar glass * dielectric relaxation * Edwards-Anderson parameter Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  17. Organization dependent collective magnetic properties of secondary nanostructures with differential spatial ordering and magnetic easy axis orientation

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, K. [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India); Sarma, D.D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Deb, P., E-mail: pdeb@tezu.ernet.in [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India)

    2016-06-15

    Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (γ-Fe{sub 2}O{sub 3}), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non-monotonic field dependence of ZFC peak temperature (T{sub peak}). The lowest value of the blocking temperature (T{sub B}) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine. - Highlights: • Three organization states of magnetic nanoparticles were developed. • Aggregation enhances the H{sub c} and M{sub r}/M{sub s,} while spherical clustering shows opposite. • Organization morphology hardly effects on FC memory effect. • Developed secondary systems can have renewed application potentials in wide spectrum.

  18. Evidence for several dipolar quasi-invariants in liquid crystals

    Science.gov (United States)

    Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.

  19. Quantum states with topological properties via dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Peter, David

    2015-06-25

    This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.

  20. NMR magnetization exchange dynamics for three spin-1/2 systems

    International Nuclear Information System (INIS)

    Demco, D.E.; Filip, X.; Filip, C.

    1997-01-01

    The magnetization exchange dynamics in one-dimensional NMR exchange experiments performed with static samples is analyzed for the relevant case of three spin systems. The magnetization decays recorded in the experiments performed with different chemical shift filters for the short mixing times are derived analytically. In this regime the decay rates depend on the dipolar coupling between the spins belonging to different functional groups. The predictions of the theoretical model are compared with the magnetization exchange data obtained for cross-linked poly(styrene-co-butadiene) samples. The residual dipolar coupling between the functional CH- and CH2-groups of butadiene are measured from the magnetization exchange experiments in the short mixing time regime. (authors)

  1. Structures and dynamics in a two-dimensional dipolar dust particle system

    Science.gov (United States)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  2. How systems of single-molecule magnets magnetize at low temperatures

    Science.gov (United States)

    Fernández, Julio F.; Alonso, Juan J.

    2004-01-01

    We model magnetization processes that take place through tunneling in crystals of single-molecule magnets, such as Mn12 and Fe8. These processes take place when a field H is applied after quenching to very low temperatures. Magnetic dipolar interactions and spin-flipping rules are essential ingredients of the model. The results obtained follow from Monte Carlo simulations and from the stochastic model we propose for dipole field diffusion. Correlations established before quenching are shown to later drive the magnetization process. We also show that in simple cubic lattices, m∝√(t) at time t after H is applied, as observed in Fe8, but only for 1+2log10(hd/hw) time decades, where hd is some near-neighbor magnetic dipolar field, and a spin reversal can occur only if the magnetic field acting on it is within some field window (-hw,hw). However, the √(t) behavior is not universal. For bcc and fcc lattices, m∝tp, but p≃0.7. An expression for p in terms of lattice parameters is derived. At later times the magnetization levels off to a constant value. All these processes take place at approximately constant magnetic energy if the annealing energy ɛa is larger than the tunneling window’s energy width (i.e., if ɛa≳gμBhwS). Thermal processes come in only later on to drive further magnetization growth.

  3. Numerical simulation of dipolar magnetic field inflation due to equatorial ring-current

    International Nuclear Information System (INIS)

    Kajimura, Yoshihiro; Funaki, Ikkoh; Shinohara, Iku; Usui, Hideyuki; Matsumoto, Masaharu; Yamakawa, Hiroshi

    2014-01-01

    Magneto Plasma Sail (MPS) is one of the next generation space propulsion systems which generates a propulsive force using the interaction between the solar wind plasma and an artificial inflated magnetosphere generated by a superconductive coil. In the MPS system, the magnetosphere as a sail must be inflated by the plasma injection from the spacecraft in order to obtain the thrust gain. In the present study, the magnetic inflation concept is numerically tested by so-called ion one-component plasma model. As a simulation result, the magnetic moment of the system is drastically increased up to 45 times that of the coil current at plasma-β = 20 and r Li /L (radius of gyro motion / characteristics length of the magnetic field) = 0.01, and this is the first successful magnetosphere inflation obtained by numerical simulation. Corresponding maximum thrust gain is also estimated to be about 45. (author)

  4. Single-molecule magnets ``without'' intermolecular interactions

    Science.gov (United States)

    Wernsdorfer, W.; Vergnani, L.; Rodriguez-Douton, M. J.; Cornia, A.; Neugebauer, P.; Barra, A. L.; Sorace, L.; Sessoli, R.

    2012-02-01

    Intermolecular magnetic interactions (dipole-dipole and exchange) affect strongly the magnetic relaxation of crystals of single-molecule magnets (SMMs), especially at low temperature, where quantum tunneling of the magnetization (QTM) dominates. This leads to complex many-body problems [l]. Measurements on magnetically diluted samples are desirable to clearly sort out the behaviour of magnetically-isolated SMMs and to reveal, by comparison, the effect of intermolecular interactions. Here, we diluted a Fe4 SMM into a diamagnetic crystal lattice, affording arrays of independent and iso-oriented magnetic units. We found that the resonant tunnel transitions are much sharper, the tunneling efficiency changes significantly, and two-body QTM transitions disappear. These changes have been rationalized on the basis of a dipolar shuffling mechanism and of transverse dipolar fields, whose effect has been analyzed using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on the SMM behaviour and disclose the magnetic response of truly-isolated giant spins in a diamagnetic crystalline environment.[4pt] [1] W. Wernsdorfer, at al, PRL 82, 3903 (1999); PRL 89, 197201 (2002); Nature 416, 406 (2002); IS Tupitsyn, PCE Stamp, NV Prokof'ev, PRB 69, 132406 (2004).

  5. Magnetic nanoparticles: synthesis, ordering and properties

    International Nuclear Information System (INIS)

    Vazquez, M.; Luna, C.; Morales, M.P.; Sanz, R.; Serna, C.J.; Mijangos, C.

    2004-01-01

    Polyol methods to synthesize nanoparticles and their arrays are firstly described. Magnetic nanoparticles self-assemble under particular conditions into spherical superstructures, like CoNi nanoparticles, or planar structures with hexagonal ordering, like FePt nanoparticles. Particles and their arrays are structurally analysed by techniques like TEM, X-ray, etc. Magnetic characterization is firstly performed by VSM magnetomer as a function of the nanoparticles size paying particular attention to the transition from multidomain to single-domain structures. Later on, magnetic exchange coupling effects are discussed including the temperature dependence of magnetic parameters as coercive and exchange bias fields, as well as the influence of field or zero-field cooling processes. Finally, magnetic polymers consisting of magnetic nanoparticles embedded into PVC polymeric matrix are prepared and magnetically analysed

  6. Equilibrium phases of dipolar lattice bosons in the presence of random diagonal disorder

    Science.gov (United States)

    Zhang, C.; Safavi-Naini, A.; Capogrosso-Sansone, B.

    2018-01-01

    Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a controlled manner. In an effort to understand the interplay between disorder, dipolar interactions, and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo simulations by the worm algorithm. We study the ground-state phase diagram at a fixed half-integer filling factor for which the clean system is either a superfluid at a lower dipolar interaction strength or a checkerboard solid at a larger dipolar interaction strength. We find that, even for weak dipolar interactions, superfluidity is destroyed in favor of a Bose glass at a relatively low disorder strength. Interestingly, in the presence of disorder, superfluidity persists for values of the dipolar interaction strength for which the clean system is a checkerboard solid. At a fixed disorder strength, as the dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction is further increased, the system eventually develops extended checkerboard patterns in the density distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible for a finite residual compressibility, are present in the density distribution. Finally, we study the robustness of the superfluid phase against thermal fluctuations.

  7. Magnetization relaxation of single molecule magnets after field cooling

    Science.gov (United States)

    Fernandez, Julio F.; Alonso, Juan J.

    2004-03-01

    Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_wmagnetic dipole field drift.

  8. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  9. A new approach for applying residual dipolar couplings as restraints in structure elucidation

    International Nuclear Information System (INIS)

    Meiler, Jens; Blomberg, Niklas; Nilges, Michael; Griesinger, Christian

    2000-01-01

    Residual dipolar couplings are useful global structural restraints. The dipolar couplings define the orientation of a vector with respect to the alignment tensor. Although the size of the alignment tensor can be derived from the distribution of the experimental dipolar couplings, its orientation with respect to the coordinate system of the molecule is unknown at the beginning of structure determination. This causes convergence problems in the simulated annealing process. We therefore propose a protocol that translates dipolar couplings into intervector projection angles, which are independent of the orientation of the alignment tensor with respect to the molecule. These restraints can be used during the whole simulated annealing protocol

  10. Cluster Observations of Multiple Dipolarization Fronts

    Science.gov (United States)

    Hwang, Kyoung-Joo; Goldstein, Melvyn L.; Lee, Ensang; Pickett, Jolene S.

    2011-01-01

    We present Cluster observations of a series of dipolarization fronts (DF 1 to 6) at the central current sheet in Earth's magnetotail. The velocities of fast earthward flow following behind each DF 1-3, are comparable to the Alfven velocity, indicating that the flow bursts might have been generated by bursty reconnection that occurred tailward of the spacecraft. Based on multi-spacecraft timing analysis, DF normals are found to propagate mainly earthward at $160-335$ km/s with a thickness of 900-1500 km, which corresponds to the ion inertial length or gyroradius scale. Each DF is followed by significant fluctuations in the $x$ and $y$ components of the magnetic field whose peaks are found 1-2 minutes after the DF passage. These $(B_{x},B_{y} )$-fluctuations propagate dawnward (mainly) and earthward. Strongly enhanced field-aligned beams are observed coincidently with $(B_{x},B_{y})$ fluctuations, while an enhancement of cross-tail currents is associated with the DFs. From the observed pressure imbalance and flux-tube entropy changes between the two regions separated by the DF, we speculate that interchange instability destabilizes the DFs and causes the deformation of the mid-tail magnetic topology. This process generates significant field-aligned currents, and might power the auroral brightening in the ionosphere. However, this event is neither associated with the main substorm auroral breakup nor the poleward expansion, which might indicate that the observed multiple DFs have been dissipated before they reach the inner plasma sheet boundary.

  11. Induced alignment and measurement of dipolar couplings of an SH2 domain through direct binding with filamentous phage

    International Nuclear Information System (INIS)

    Dahlke Ojennus, Deanna; Mitton-Fry, Rachel M.; Wuttke, Deborah S.

    1999-01-01

    Large residual 15 N- 1 H dipolar couplings have been measured in a Src homology II domain aligned at Pf1 bacteriophage concentrations an order of magnitude lower than used for induction of a similar degree of alignment of nucleic acids and highly acidic proteins. An increase in 1 H and 15 N protein linewidths and a decrease in T 2 and T 1 ρ relaxation time constants implicates a binding interaction between the protein and phage as the mechanism of alignment. However, the associated increased linewidth does not preclude the accurate measurement of large dipolar couplings in the aligned protein. A good correlation is observed between measured dipolar couplings and predicted values based on the high resolution NMR structure of the SH2 domain. The observation of binding-induced protein alignment promises to broaden the scope of alignment techniques by extending their applicability to proteins that are able to interact weakly with the alignment medium

  12. The evolution of polar caps in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  13. Hybrid superconducting-magnetic memory device using competing order parameters.

    Science.gov (United States)

    Baek, Burm; Rippard, William H; Benz, Samuel P; Russek, Stephen E; Dresselhaus, Paul D

    2014-05-28

    In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

  14. Optimization of permanent-magnet undulator magnets ordering using simulated annealing algorithm

    International Nuclear Information System (INIS)

    Chen Nian; He Duohui; Li Ge; Jia Qika; Zhang Pengfei; Xu Hongliang; Cai Genwang

    2005-01-01

    Pure permanent-magnet undulator consists of many magnets. The unavoidable remanence divergence of these magnets causes the undulator magnetic field error, which will affect the functional mode of the storage ring and the quality of the spontaneous emission spectrum. Optimizing permanent-magnet undulator magnets ordering using simulated annealing algorithm before installing undulator magnets, the first field integral can be reduced to 10 -6 T·m, the second integral to 10 -6 T·m 2 and the peak field error to less than 10 -4 . The optimized results are independent of the initial solution. This paper gives the optimizing process in detail and puts forward a method to quickly calculate the peak field error and field integral according to the magnet remanence. (authors)

  15. Evolution of the magnetic field structure of the Crab pulsar.

    Science.gov (United States)

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  16. Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn4 single-molecule magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Vinslava, A.; Christou, G.

    2005-12-01

    A Mn4 single-molecule magnet (SMM), with a well-isolated spin ground state of S=9/2 , is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions, (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, and (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest-neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.

  17. Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets

    OpenAIRE

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-01-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the pr...

  18. Highly ordered FEPT and FePd magnetic nano-structures: Correlated structural and magnetic studies

    International Nuclear Information System (INIS)

    Lukaszew, Rosa Alejandra; Cebollada, Alfonso; Clavero, Cesar; Garcia-Martin, Jose Miguel

    2006-01-01

    The micro-structure of epitaxial FePt and FePd films grown on MgO (0 0 1) substrates is correlated to their magnetic behavior. The FePd films exhibit high chemical ordering and perpendicular magnetic anisotropy. On the other hand FePt films exhibit low chemical ordering, with nano-grains oriented in two orthogonal directions, forcing the magnetization to remain in the plane of the films

  19. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  20. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    Science.gov (United States)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron

  1. The radiofrequency magnetic dipole discharge

    Energy Technology Data Exchange (ETDEWEB)

    Martines, E., E-mail: emilio.martines@igi.cnr.it; Zuin, M.; Cavazzana, R.; Fassina, A.; Spolaore, M. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Marcante, M. [Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Povo, TN (Italy); TIFPA, Trento Institute for Fundamental Physics and Applications INFN, 38123 Trento (Italy)

    2016-05-15

    This paper describes a novel and simple concept of plasma source, which is able to produce a radiofrequency magnetized discharge with minimal power requirements. The source is based on the magnetron concept and uses a permanent magnet as an active electrode. The dipolar field produced by the magnet confines the electrons, which cause further ionization, thus producing a toroidally shaped plasma in the equatorial region around the electrode. A plasma can be ignited with such scheme with power levels as low as 5 W. Paschen curves have been built for four different working gases, showing that in Helium or Neon, plasma breakdown is easily obtained also at atmospheric pressure. The plasma properties have been measured using a balanced Langmuir probe, showing that the electron temperature is around 3–4 eV and higher in the cathode proximity. Plasma densities of the order of 10{sup 16 }m{sup −3} have been obtained, with a good positive scaling with applied power. Overall, the electron pressure appears to be strongly correlated with the magnetic field magnitude in the measurement point.

  2. The radiofrequency magnetic dipole discharge

    Science.gov (United States)

    Martines, E.; Zuin, M.; Marcante, M.; Cavazzana, R.; Fassina, A.; Spolaore, M.

    2016-05-01

    This paper describes a novel and simple concept of plasma source, which is able to produce a radiofrequency magnetized discharge with minimal power requirements. The source is based on the magnetron concept and uses a permanent magnet as an active electrode. The dipolar field produced by the magnet confines the electrons, which cause further ionization, thus producing a toroidally shaped plasma in the equatorial region around the electrode. A plasma can be ignited with such scheme with power levels as low as 5 W. Paschen curves have been built for four different working gases, showing that in Helium or Neon, plasma breakdown is easily obtained also at atmospheric pressure. The plasma properties have been measured using a balanced Langmuir probe, showing that the electron temperature is around 3-4 eV and higher in the cathode proximity. Plasma densities of the order of 1016 m-3 have been obtained, with a good positive scaling with applied power. Overall, the electron pressure appears to be strongly correlated with the magnetic field magnitude in the measurement point.

  3. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  4. Interlayer exchange coupling, dipolar coupling and magnetoresistance in Fe/MgO/Fe trilayers with a subnanometer MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kozioł-Rachwał, A. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Skowroński, W.; Frankowski, M. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Chęciński, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ziętek, S.; Rzeszut, P. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ślęzak, M.; Matlak, K.; Ślęzak, T. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Stobiecki, T. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Korecki, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków (Poland)

    2017-02-15

    Fe/MgO/Fe trilayers with a subnanometer MgO tunnel barrier were grown by molecular beam epitaxy. Longitudinal magnetooptic Kerr effect measurements confirmed the existence of the antiferromagnetic interlayer exchange coupling (IEC) between the Fe layers for 2 Åmagnetic characterization, the sample was patterned into circular-shaped pillars with diameters ranging from 200 nm to 520 nm. We showed that the dipolar coupling that appeared after the nanofabrication process modified the effective coupling between layers, and we determined dependence of the dipolar coupling on the pillar diameter. Finally, magnetoresistance (MR) was measured as a function of MgO thickness (d{sub MgO}), and a non-zero MR was found for the MgO as thin as 3.4 Å. Extrapolation of the MR (d{sub MgO}) dependence to MR=0 allowed us to determine the length of the pinholes in our sample, which was estimated to be (3.2±0.5) Å. - Highlights: • Strong antiferromagnetic (AFM) interlayer exchange coupling (IEC) between Fe layers in Fe/MgO/Fe. • After nanofabrication the effective AFM IEC is enhanced due to the dipolar coupling. • The dipolar coupling that appeared after the nanofabrication process modified the effective coupling between layers. • Non-zero magnetoresistance values registered for the Fe/MgO/Fe trilayers with the MgO spacers as thin as 3.4 Å.

  5. Magnetic short range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1976-01-01

    Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi

  6. Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System

    Science.gov (United States)

    Rovny, Jared; Blum, Robert L.; Barrett, Sean E.

    2018-05-01

    A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.

  7. Magnetic order of Nd5Pb3 single crystals

    Science.gov (United States)

    Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.

    2018-04-01

    We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1  =  44 K and T N2  =  8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  8. Application of the annihilation and creation operators in magnetic resonance problems

    International Nuclear Information System (INIS)

    Nosel, W.

    1981-01-01

    Application of the annihilation and creation operators in the following problems is presented: in the resonance of the free spins in rotating and oscillating magnetic field, in the influence of the nonresonance magnetic fields on magnetic resonance, in the thermodynamics of the spins with dipolar interaction and in the nuclear magnetic relaxation. (author)

  9. Magnetic structure of Fe-based amorphous and thermal annealed microwires

    International Nuclear Information System (INIS)

    Olivera, J.; Provencio, M.; Prida, V.M.; Hernando, B.; Santos, J.D.; Perez, M.J.; Gorria, P.; Sanchez, M.L.; Belzunce, F.J.

    2005-01-01

    The magnetic structure of amorphous and thermal annealed glass coated microwires is studied by thermomagnetic, DSC, and Bitter domain pattern techniques. The long-range dipolar interaction between parallel aligned microwires and the appearance of large Barkhausen jumps steps in the axially magnetized loops are discussed in terms of reversal magnetization process

  10. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  11. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  12. Magnetic fields in Earth-like exoplanets and implications for habitability around M-dwarfs.

    Science.gov (United States)

    López-Morales, Mercedes; Gómez-Pérez, Natalia; Ruedas, Thomas

    2011-12-01

    We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (EPS Lett 250:561-571, 2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M ⊕, for at least part of the planets' lifetime. For slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M [symbol in text]. Applying our calculations to confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~18, 15 and 13 M [symbol in text], respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on rotation rate, but also on their formation history, thermal state, age, composition, and the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of planets in the Habitable Zone of M-dwarfs.

  13. Magnetic quasi-long-range ordering in nematic systems due to competition between higher-order couplings

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2018-05-01

    Critical properties of the two-dimensional X Y model involving solely nematic-like terms of the second and third orders are investigated by spin-wave analysis and Monte Carlo simulation. It is found that, even though neither of the nematic-like terms alone can induce magnetic ordering, their coexistence and competition leads to an extended phase of the magnetic quasi-long-range-order phase, wedged between the two nematic-like phases induced by the respective couplings. Thus, except for the multicritical point, at which all the phases meet, for any finite value of the coupling parameters ratio there are two phase transition: one from the paramagnetic phase to one of the two nematic-like phases followed by another one at lower temperatures to the magnetic phase. The finite-size scaling analysis indicates that the phase transitions between the magnetic and nematic-like phases belong to the Ising and three-state Potts universality classes. Inside the competition-induced algebraic magnetic phase, the spin-pair correlation function is found to decay even much more slowly than in the standard X Y model with purely magnetic interactions. Such a magnetic phase is characterized by an extremely low vortex-antivortex pair density attaining a minimum close to the point at which the two couplings are of about equal strength.

  14. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    Science.gov (United States)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  15. Theory of field induced incommensurability: CsFeCl3

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1986-01-01

    Using correlation theory for the singlet-doublet magnet CsFeCl3 in a magnetic field, a field induced incommensurate ordering along K-M is predicted without invoking dipolar effects. A fully self-consistent RPA theory gives Hc=44 kG in agreement with experiments at T=1.3K. Correlation and dipolar...

  16. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings

    International Nuclear Information System (INIS)

    Barrientos, Laura G.; Dolan, Caroline; Gronenborn, Angela M.

    2000-01-01

    Media employed for imparting partial alignment onto solute molecules have recently attracted considerable attention, since they permit the measurement of NMR parameters for solute biomolecules commonly associated with solid state NMR. Here we characterize a medium which is based on a quasi-ternary surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide. We demonstrate that dilute solutions of this system can exist in liquid crystalline phases which orient in the magnetic field and allow the measurement of residual dipolar couplings under a variety of conditions. The present system is extremely versatile and robust, tolerating different buffer conditions, temperature ranges and concentrations

  17. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    Science.gov (United States)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  18. Fast magnetization tunneling in tetranickel(II) single-molecule magnets.

    Science.gov (United States)

    Yang, En-Che; Wernsdorfer, Wolfgang; Zakharov, Lev N; Karaki, Yoshitomo; Yamaguchi, Akira; Isidro, Rose M; Lu, Guo-Di; Wilson, Samuel A; Rheingold, Arnold L; Ishimoto, Hidehiko; Hendrickson, David N

    2006-01-23

    A series of Ni(4) cubane complexes with the composition [Ni(hmp)(ROH)Cl](4) complexes 1-4 where R= -CH(3) (complex 1), -CH(2)CH(3) (complex 2), -CH(2)CH(2)(C(4)H(9)) (complex 3), -CH(2)CH(2)CH(2)(C(6)H(11)) (complex 4), hmp(-) is the anion of 2-hydroxymethylpyridine, t-Buhmp(-) is the anion of 4-tert-butyl-2-hydroxymethylpyridine, and dmb is 3,3-dimethyl-1-butanol] and [Ni(hmp)(dmb)Br](4) (complex 5) and [Ni(t-Buhmp)(dmb)Cl](4) (complex 6) were prepared. All six complexes were characterized by dc magnetic susceptibility data to be ferromagnetically coupled to give an S = 4 ground state with significant magnetoanisotropy (D approximately equal to -0.6 cm(-1)). Magnetization hysteresis measurements carried out on single crystals of complexes 1-6 establish the single-molecule magnet (SMM) behavior of these complexes. The exchange bias observed in the magnetization hysteresis loops of complexes 1 and 2 is dramatically decreased to zero in complex 3, where the bulky dmb ligand is employed. Fast tunneling of magnetization is observed for the high-symmetry (S(4) site symmetry) Ni(4) complexes in the crystal of complex 3, and the tunneling rate can even be enhanced by destroying the S(4) site symmetry, as is the case for complex 4, where there are two crystallographically different Ni(4) molecules, one with C(2) and the other with C(1) site symmetry. Magnetic ordering temperatures due to intermolecular dipolar and magnetic exchange interactions were determined by means of very low-temperature ac susceptibility measurements; complex 1 orders at 1100 mK, complex 3 at 290 mK, complex 4 at approximately 80 mK, and complex 6 at lower temperatures for those complexes with the bulkiest ligands.

  19. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, M.

    2012-01-01

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used...... to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field...... in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O-2 mixtures was almost similar with that by positive ions reaching 700 nm/min. (C) 2012 American Institute of Physics...

  20. Cluster analysis in systems of magnetic spheres and cubes

    Energy Technology Data Exchange (ETDEWEB)

    Pyanzina, E.S., E-mail: elena.pyanzina@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Gudkova, A.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Donaldson, J.G. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube. - Highlights: • A comparison of the degree of self-assembly in systems of magnetic spheres and cubes. • Spheres are more likely to form larger clusters than cubes. • Differences in microstructure will manifest in the magnetic response of each system.

  1. Single-chain magnet features in 1D [MnR4TPP][TCNE] compounds

    International Nuclear Information System (INIS)

    Balanda, Maria; Tomkowicz, Zbigniew; Rams, Michal; Haase, Wolfgang

    2011-01-01

    Molecular chains of antiferrimagnetically coupled Mn III -ion (S = 2) and TCNE (tetracyanoethylene) radical moments (s = 1/2 ) show different behaviour depending on group R substituted to TPP (tetraphenylporphyrin) and on the substitution site. The compound with R = F in Ortho position is a Single-Chain Magnet (SCM) with blocking temperature T b = 6.6K, while that with R = F in Meta position shows both blocking (T b = 5.4 K) and magnetic ordering transition (T c = 10 K). For bulky groups R = OC n H 2n+1 , the magnetically ordered phase is observed (T c ∼ 22 K), which does not however prevent slow relaxation at T c of 2 T at 2.3 K is like that of SCM. The frequency dependent AC susceptibility in the superimposed DC field reveals common features of all systems. The energy of intrachain ferromagnetic coupling between effective spin units 3/2, relevant at low temperatures, is determined for all compounds and the interchain dipolar coupling is estimated. It is concluded that slow relaxation is inherent for all quasi one-dimensional compounds and for the magnetically ordered ones shows up in the high enough magnetic field.

  2. Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations

    Science.gov (United States)

    Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis

    2014-12-01

    Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.

  3. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Elfimova, E.A.; Zverev, V.S.; Sindt, J.O.; Camp, P.J.

    2017-01-01

    Using computer simulations and a mean-field theoretical approach, we study how the growth in dipolar interparticle correlations manifests itself in the frequency-dependent initial magnetic susceptibility of a ferrofluid. Our recently developed theory gives the correct single-particle Debye-theory results in the low-concentration, non-interacting regime; and it yields the exact leading-order contributions from interparticle correlations. The susceptibility spectra are analysed in terms of the low-frequency behaviours of the real and imaginary parts, and the position of the peak in the imaginary part. By comparing the theoretical predictions to the results from Brownian dynamics simulations, it is possible to identify the conditions where correlations are important, but where self-assembly has not developed. We also provide a qualitative explanation for the behaviour of spectra beyond the mean-field limit. - Highlights: • The interparticle interaction influences the dynamic susceptibility spectra of magnetic fluids. • The imaginary part maximum shifts to lower frequencies due to the dipolar interparticle interaction. • Chain formation should influence the susceptibility spectrum by shifting the absorption peak to lower frequencies.

  4. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.O., E-mail: alexey.ivanov@urfu.ru [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Kantorovich, S.S. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Faculty of Physics, University of Vienna, Sensengasse 8, 1090 Vienna (Austria); Elfimova, E.A.; Zverev, V.S. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Sindt, J.O. [School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Camp, P.J. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom)

    2017-06-01

    Using computer simulations and a mean-field theoretical approach, we study how the growth in dipolar interparticle correlations manifests itself in the frequency-dependent initial magnetic susceptibility of a ferrofluid. Our recently developed theory gives the correct single-particle Debye-theory results in the low-concentration, non-interacting regime; and it yields the exact leading-order contributions from interparticle correlations. The susceptibility spectra are analysed in terms of the low-frequency behaviours of the real and imaginary parts, and the position of the peak in the imaginary part. By comparing the theoretical predictions to the results from Brownian dynamics simulations, it is possible to identify the conditions where correlations are important, but where self-assembly has not developed. We also provide a qualitative explanation for the behaviour of spectra beyond the mean-field limit. - Highlights: • The interparticle interaction influences the dynamic susceptibility spectra of magnetic fluids. • The imaginary part maximum shifts to lower frequencies due to the dipolar interparticle interaction. • Chain formation should influence the susceptibility spectrum by shifting the absorption peak to lower frequencies.

  5. Independent EEG sources are dipolar.

    Directory of Open Access Journals (Sweden)

    Arnaud Delorme

    Full Text Available Independent component analysis (ICA and blind source separation (BSS methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA; best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison.

  6. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    Science.gov (United States)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  7. Order-parameter tensor description of HPr in a medium of oriented bicelles.

    Science.gov (United States)

    van Lune, Franciska; Manning, Linda; Dijkstra, Klaas; Berendsen, Herman J C; Scheek, Ruud M

    2002-07-01

    Residual dipolar couplings between 15N and 1H nuclear spins in HPr were used to determine the protein's orientation in a medium of bicelles, oriented by a magnetic field. In the case of wild-type HPr the protein's non-spherical shape can explain its orientation in this medium. In the case of the F48W mutant it was found that at least one other mechanism contributes to the observed orientation of the protein, to a degree that depends on the concentration of phosphate ions in the medium. We propose that the F48W mutant has a weak affinity towards the bicelle-surfaces that decreases with increasing phosphate concentrations. We used an order-parameter description to analyse this situation and to determine the axis of main order and the sign of the order parameter pertaining to this additional orientation mechanism.

  8. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Zhang, Xiao-Fei; Han, Wei; Jiang, Hai-Feng; Liu, Wu-Ming; Saito, Hiroki; Zhang, Shou-Gang

    2016-01-01

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point out that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.

  9. Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    Science.gov (United States)

    Bjerlin, J.; Bengtsson, J.; Deuretzbacher, F.; Kristinsdóttir, L. H.; Reimann, S. M.

    2018-02-01

    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially nonlocalized few-fermion state into a localized state with strong intertrap pairing. With an instant, nonadiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions.

  10. Nuclear magnetic ordering in silver

    International Nuclear Information System (INIS)

    Lefmann, K.

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of 109 Ag. The critical temperature is found to 700 pK, and the critical field is 100 μT. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs

  11. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2015-01-01

    Full Text Available Localized magnetic hyperthermia using magnetic nanoparticles (MNPs under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed.

  12. Calculation of the Ruderman-Kittel interaction and magnetic ordering in copper

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Wang, X.-W.; Harmon, B. N.

    1986-01-01

    Using first principles energy bands and wave functions the authors find the Rudermann-Kittel interaction having a more predominant nearest neighbour coupling than expected for free electrons. Using the correlation theory and including dipolar interactions they find the most probable structure to ...

  13. Second order optical nonlinearity in silicon by symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cazzanelli, Massimo, E-mail: massimo.cazzanelli@unitn.it [Laboratorio IdEA, Dipartimento di Fisica, Università di Trento, via Sommarive, 14 Povo (Trento) (Italy); Schilling, Joerg, E-mail: joerg.schilling@physik.uni-halle.de [Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg, Karl-Freiherr-von-Fritsch Str. 3, 06120 Halle (Germany)

    2016-03-15

    Although silicon does not possess a dipolar bulk second order nonlinear susceptibility due to its centro-symmetric crystal structure, in recent years several attempts were undertaken to create such a property in silicon. This review presents the different sources of a second order susceptibility (χ{sup (2)}) in silicon and the connected second order nonlinear effects which were investigated up to now. After an introduction, a theoretical overview discusses the second order nonlinearity in general and distinguishes between the dipolar contribution—which is usually dominating in non-centrosymmetric structures—and the quadrupolar contribution, which even exists in centro-symmetric materials. Afterwards, the classic work on second harmonic generation from silicon surfaces in reflection measurements is reviewed. Due to the abrupt symmetry breaking at surfaces and interfaces locally a dipolar second order susceptibility appears, resulting in, e.g., second harmonic generation. Since the bulk contribution is usually small, the study of this second harmonic signal allows a sensitive observation of the surface/interface conditions. The impact of covering films, strain, electric fields, and defect states at the interfaces was already investigated in this way. With the advent of silicon photonics and the search for ever faster electrooptic modulators, the interest turned to the creation of a dipolar bulk χ{sup (2)} in silicon. These efforts have been focussing on several experiments applying an inhomogeneous strain to the silicon lattice to break its centro-symmetry. Recent results suggesting the impact of electric fields which are exerted from fixed charges in adjacent covering layers are also included. After a subsequent summary on “competing” concepts using not Si but Si-related materials, the paper will end with some final conclusions, suggesting possible future research direction in this dynamically developing field.

  14. Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix.

    Science.gov (United States)

    Vergnani, Luca; Barra, Anne-Laure; Neugebauer, Petr; Rodriguez-Douton, Maria Jesus; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Cornia, Andrea

    2012-03-12

    Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties

    International Nuclear Information System (INIS)

    Esquinazi, P.; Barzola-Quiquia, J.; Spemann, D.; Rothermel, M.; Ohldag, H.; Garcia, N.; Setzer, A.; Butz, T.

    2010-01-01

    We discuss recently obtained data using different experimental methods including magnetoresistance measurements that indicate the existence of metal-free high-temperature magnetic order in graphite. Intrinsic as well as extrinsic difficulties to trigger magnetic order by irradiation of graphite are discussed in view of recently published theoretical work.

  16. Magnetic order in PrBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Nutley, M.P.; Boothroyd, A.T.

    1994-01-01

    We have studied the magnetic ordering of the Cu and Pr ions in PrBa2Cu3O6+x by neutron diffraction on single crystals with different oxygen contents. Two types of Cu ordering were observed, qualitatively similar to the anti-ferromagnetic phases reported in some studies of YBa2Cu3O6+x. A third...... magnetic structure was observed below 15K, which we believe corresponds to the magnetic ordering of the Pr sub-lattice....

  17. Field dipolarization in Saturn's magnetotail with planetward ion flows and energetic particle flow bursts: Evidence of quasi-steady reconnection.

    Science.gov (United States)

    Jackman, C M; Thomsen, M F; Mitchell, D G; Sergis, N; Arridge, C S; Felici, M; Badman, S V; Paranicas, C; Jia, X; Hospodarksy, G B; Andriopoulou, M; Khurana, K K; Smith, A W; Dougherty, M K

    2015-05-01

    We present a case study of an event from 20 August (day 232) of 2006, when the Cassini spacecraft was sampling the region near 32 R S and 22 h LT in Saturn's magnetotail. Cassini observed a strong northward-to-southward turning of the magnetic field, which is interpreted as the signature of dipolarization of the field as seen by the spacecraft planetward of the reconnection X line. This event was accompanied by very rapid (up to ~1500 km s -1 ) thermal plasma flow toward the planet. At energies above 28 keV, energetic hydrogen and oxygen ion flow bursts were observed to stream planetward from a reconnection site downtail of the spacecraft. Meanwhile, a strong field-aligned beam of energetic hydrogen was also observed to stream tailward, likely from an ionospheric source. Saturn kilometric radiation emissions were stimulated shortly after the observation of the dipolarization. We discuss the field, plasma, energetic particle, and radio observations in the context of the impact this reconnection event had on global magnetospheric dynamics.

  18. Single-chain magnet features in 1D [MnR{sub 4}TPP][TCNE] compounds

    Energy Technology Data Exchange (ETDEWEB)

    Balanda, Maria [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Tomkowicz, Zbigniew; Rams, Michal [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Haase, Wolfgang, E-mail: Maria.Balanda@ifj.edu.pl [Institute of Physical Chemistry, Darmstadt University of Technology, 64287 Darmstadt (Germany)

    2011-07-06

    Molecular chains of antiferrimagnetically coupled Mn{sup III}-ion (S = 2) and TCNE (tetracyanoethylene) radical moments (s = 1/2 ) show different behaviour depending on group R substituted to TPP (tetraphenylporphyrin) and on the substitution site. The compound with R = F in Ortho position is a Single-Chain Magnet (SCM) with blocking temperature T{sub b} = 6.6K, while that with R = F in Meta position shows both blocking (T{sub b} = 5.4 K) and magnetic ordering transition (T{sub c} = 10 K). For bulky groups R = OC{sub n}H{sub 2n+1}, the magnetically ordered phase is observed (T{sub c} {approx} 22 K), which does not however prevent slow relaxation at T <8 K. Magnetic hysteresis with coercive field H{sub c} of 2 T at 2.3 K is like that of SCM. The frequency dependent AC susceptibility in the superimposed DC field reveals common features of all systems. The energy of intrachain ferromagnetic coupling between effective spin units 3/2, relevant at low temperatures, is determined for all compounds and the interchain dipolar coupling is estimated. It is concluded that slow relaxation is inherent for all quasi one-dimensional compounds and for the magnetically ordered ones shows up in the high enough magnetic field.

  19. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  20. TmCd quadrupolar ordering and magnetic interactions

    International Nuclear Information System (INIS)

    Aleonard, R.; Morin, P.

    1979-01-01

    The paramagnetic compound TmCd crystallizes with the CsCl-type structure. Its Jahn-Teller behavior was first observed by Luethi and coworkers. We analyze here various physical properties with a pure-harmonic-elasticity model. The structural transition between cubic and tetragonal phases is now fully described (first-order character and temperature of occurrence) as well as the magnetic susceptibility, magnetization process, specific-heat, elastic-constant, and strain data. The relevant Hamiltonian takes into account the second-order magnetoelastic coupling and the quadrupolar exchange in addition to the cubic crystal field and the Heisenberg bilinear interactions. TmCd appears to be closely related to isomorphous TmZn and completes the illustration of the competition between bilinear and quadrupolar interactions occurring in some rare-earth intermetallics. In these two compounds, the quadrupolar exchange is many times stronger than the magnetoelastic coupling and the quadrupolar ordering then drives the structural transition. This situation is opposite to that occurring in (actual) Jahn-Teller compounds

  1. Magnetic anisotropy and order parameter in nanostructured CoPt particles

    Science.gov (United States)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2013-10-01

    The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.

  2. Nuclear magnetic ordering in silver

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of {sup 109}Ag. The critical temperature is found to 700 pK, and the critical field is 100 {mu}T. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs.

  3. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.

    2016-01-01

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  4. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  5. High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields

    International Nuclear Information System (INIS)

    Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J

    2009-01-01

    We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.

  6. MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Wolfson, Richard; Drake, Christina; Kennedy, Max

    2012-01-01

    The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s –1 . Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

  7. Dipolar Excitation of a Perfectly Electrically Conducting Spheroid in a Lossless Medium at the Low-Frequency Regime

    Directory of Open Access Journals (Sweden)

    Panayiotis Vafeas

    2018-01-01

    Full Text Available The electromagnetic vector fields, which are scattered off a highly conductive spheroid that is embedded within an otherwise lossless medium, are investigated in this contribution. A time-harmonic magnetic dipolar source, located nearby and operating at low frequencies, serves as the excitation primary field, being arbitrarily orientated in the three-dimensional space. The main idea is to obtain an analytical solution of this scattering problem, using the appropriate system of spheroidal coordinates, such that a possibly fast numerical estimation of the scattered fields could be useful for real data inversion. To this end, incident and scattered as well as total fields are written in a rigorous low-frequency manner in terms of positive integral powers of the real-valued wave number of the exterior environment. Then, the Maxwell-type problem is converted to interconnected Laplace’s or Poisson’s equations, complemented by the perfectly conducting boundary conditions on the spheroidal object and the necessary radiation behavior at infinity. The static approximation and the three first dynamic contributors are sufficient for the present study, while terms of higher orders are neglected at the low-frequency regime. Henceforth, the 3D scattering boundary value problems are solved incrementally, whereas the determination of the unknown constant coefficients leads either to concrete expressions or to infinite linear algebraic systems, which can be readily solved by implementing standard cut-off techniques. The nonaxisymmetric scattered magnetic and electric fields follow and they are obtained in an analytical compact fashion via infinite series expansions in spheroidal eigenfunctions. In order to demonstrate the efficiency of our analytical approach, the results are degenerated so as to recover the spherical case, which validates this approach.

  8. New Developments in Spin Labels for Pulsed Dipolar EPR

    Directory of Open Access Journals (Sweden)

    Alistair J. Fielding

    2014-10-01

    Full Text Available Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR techniques allow small magnetic couplings to be measured (e.g., <50 MHz providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.

  9. Functionalization of Graphene via 1,3-Dipolar Cycloaddition

    NARCIS (Netherlands)

    Quintana, Mildred; Spyrou, Konstantinos; Grzelczak, Marek; Browne, Wesley R.; Rudolf, Petra; Prato, Maurizio

    Few-layer graphenes (FLG) produced by dispersion and exfoliation of graphite in N-methylpyrrolidone were successfully functionalized using the 1,3-dipolar cycloaddition of azomethine ylides. The amino functional groups attached to graphene sheets were quantified by the Kaiser test. These amino

  10. Dipolar fluid-wall systems. Beyond the image potential

    International Nuclear Information System (INIS)

    Boudh-hir, M.E.

    1989-02-01

    The case of dipolar fluid in front of an ideal wall is examined. The surface-fluid system is introduced as a limit case of a binary mixture Using the diagrammatic development, the expansion of the one-particle distribution function is given. 16 refs

  11. Capillary condensation and orientational ordering of confined polar fluids.

    Science.gov (United States)

    Gramzow, Matthias; Klapp, Sabine H L

    2007-01-01

    The phase behavior and the orientational structure of polar model fluids confined to slit pores is investigated by means of density functional theory in a modified mean-field approximation. We focus on fluid states and further assume a uniform number density throughout the pore. Our results for spherical dipolar particles with additional van der Waals-like interactions (Stockmayer fluids) reveal complex fluid-fluid phase behavior involving condensation and first- and second-order isotropic-to-ferroelectric phase transitions, where the ferroelectric ordering occurs parallel to the confining walls. The relative importance of these phase transitions depends on two "tuning" parameters, that is the strength of the dipolar interactions (relative to the isotropic attractive ones) between fluid particles, and on the pore width. In particular, in narrow pores the condensation transition seen in bulk Stockmayer fluids is entirely suppressed. For dipolar hard spheres, on the other hand, the impact of confinement consists in a decrease of the isotropic-to-ferroelectric transition temperatures. We also demonstrate that the local orientational structure is inhomogeneous and anisotropic even in globally isotropic systems, in agreement with computer simulation results.

  12. Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites

    DEFF Research Database (Denmark)

    Mørup, Steen; Christiansen, Gunnar Dan

    1993-01-01

    Magnetic interaction between ultrafine particles may result in superferromagnetism, i.e., ordering of the magnetic moments of particles which would be superparamagnetic if they were noninteracting. In this article we discuss the influence of the magnetic anisotropy on the temperature dependence o...

  13. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    Science.gov (United States)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  14. Monte Carlo simulation of magnetic multi-core nanoparticles

    International Nuclear Information System (INIS)

    Schaller, Vincent; Wahnstroem, Goeran; Sanz-Velasco, Anke; Enoksson, Peter; Johansson, Christer

    2009-01-01

    In this paper, a Monte Carlo simulation is carried out to evaluate the equilibrium magnetization of magnetic multi-core nanoparticles in a liquid and subjected to a static magnetic field. The particles contain a magnetic multi-core consisting of a cluster of magnetic single-domains of magnetite. We show that the magnetization of multi-core nanoparticles cannot be fully described by a Langevin model. Inter-domain dipolar interactions and domain magnetic anisotropy contribute to decrease the magnetization of the particles, whereas the single-domain size distribution yields an increase in magnetization. Also, we show that the interactions affect the effective magnetic moment of the multi-core nanoparticles.

  15. Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.

    2011-01-01

    Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.

  16. Self-organized patterns of macroscopic quantum tunneling in molecular magnets.

    Science.gov (United States)

    Garanin, D A; Chudnovsky, E M

    2009-03-06

    We study low temperature resonant spin tunneling in molecular magnets induced by a field sweep with account of dipole-dipole interactions. Numerical simulations uncovered formation of self-organized patterns of the magnetization and of the ensuing dipolar field that provide resonant conditions inside a finite volume of the crystal. This effect is robust with respect to disorder and should be relevant to the dynamics of the magnetization steps observed in molecular magnets.

  17. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  18. Thermodynamics of Dipolar Chain Systems

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.

    2012-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....

  19. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  20. Structure-independent cross-validation between residual dipolar couplings originating from internal and external orienting media

    International Nuclear Information System (INIS)

    Barbieri, Renato; Bertini, Ivano; Lee, Yong-Min; Luchinat, Claudio; Velders, Aldrik H.

    2002-01-01

    Lanthanide-substituted calcium binding proteins are known to partially orient in high magnetic fields. Orientation provides residual dipolar couplings (rdc's). Two of these systems, Tm 3+ - and Dy 3+ -substituted calbindin D 9k , dissolved in an external orienting medium (nonionic liquid crystalline phase) provide rdc values which are the sum of those induced by the lanthanides and by the liquid crystalline phase on the native calcium binding protein. This structure-independent check shows the innocence of the orienting medium with respect to the structure of the protein in solution. Furthermore, the simultaneous use of lanthanide substitution and external orienting media provides a further effective tool to control and tune the orientation tensor

  1. Statistical mechanics of molecular fluids. The RHNC theory applied to hard dipolar spheres

    International Nuclear Information System (INIS)

    Lombardero, M.; Lado, F.; Abascal, J.L.F.; Lago, S.; Enciso, E.

    1988-01-01

    The RHNC (reference hipernetted chain) equation, together with an optimization criterion which extremalizes the Helmholtz free energy, is used to obtain structural, thermodynamic, and dielectric properties of a system made up of hard dipolar spheres. The comparison with simulation results is made in the same boundary conditions and then the properties of an infinite system are evaluated for a variaty of states at different densities and dipolar moments. (Author)

  2. Field quality analysis to monitor the industrial series production of the dipole magnets for the Large Hadron Collider

    CERN Document Server

    Pauletta, S; Todesco, Ezio

    2002-01-01

    In superconducting accelerator magnets, the field quality is mainly determined by conductor position inside the coil. For the LHC, the dipolar field homogeneity must be assured up to 10-5 of the main field component, imposing strict manufacturing tolerances. Magnetic measurements at room temperature provide a fast and economical way to find out assembly errors or the use of faulty components. In order to compute control bounds for the industrial series production, the magnetic measurements performed at room temperature on 27 pre-series collared coils have been statistically analyzed in this work. An automatic tool has been implemented to single out anomalous values of the magnetic field in the measurements. Such cases have been analyzed using a magnetostatic code to work out errors in the manufacturing process and the possible cures.

  3. VLA observations of dwarf M flare stars and magnetic stars

    Science.gov (United States)

    Willson, R. F.; Lang, K. R.; Foster, P.

    1988-01-01

    The VLA has been used to search for 6 cm emission from 16 nearby dwarf M stars, leading to the detection of only one of them - Gliese 735. The dwarf M flare stars AD Leonis and YZ Canis Minoris were also monitored at 6 cm and 20 cm wavelength in order to study variability. Successive oppositely circularly polarized bursts were detected from AD Leo at 6 cm, suggesting the presence of magnetic fields of both magnetic polarities. An impulsive 20-cm burst from YZ CMi preceded slowly varying 6-cm emission. The VLA was also used, unsuccessfully, to search for 6-cm emission from 13 magnetic Ap stars, all of which exhibit kG magnetic fields. Although the Ap magnetic stars have strong dipolar magnetic fields, the failure to detect gyroresonant radiation suggests that these stars do not have hot, dense coronae. The quiescent microwave emission from GL 735 is probably due to nonthermal radiation, since unusually high (H = 50 kG or greater) surface magnetic fields are inferred under the assumption that the 6-cm radiation is the gyroresonant radiation of thermal electrons.

  4. 1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides.

    Science.gov (United States)

    Aronoff, Matthew R; Gold, Brian; Raines, Ronald T

    2016-04-01

    The diazo group has untapped utility in chemical biology. The tolerance of stabilized diazo groups to cellular metabolism is comparable to that of azido groups. However, chemoselectivity has been elusive, as both groups undergo 1,3-dipolar cycloadditions with strained alkynes. Removing strain and tuning dipolarophile electronics yields diazo group selective 1,3-dipolar cycloadditions that can be performed in the presence of an azido group. For example, diazoacetamide but not its azido congener react with dehydroalanine residues, as in the natural product nisin.

  5. Magnetic dichroism and spin structure of antiferromagnetic NiO(001) films

    NARCIS (Netherlands)

    Altieri, S; Finazzi, M; Hsieh, HH; Lin, HJ; Chen, CT; Hibma, T; Valeri, S; Sawatzky, GA

    2003-01-01

    We find that Ni L-2 edge x-ray magnetic linear dichroism is fully reversed for NiO(001) films on materials with reversed lattice mismatch. We relate this phenomenon to a preferential stabilization of magnetic S domains with main spin component either in or out of the plane, via dipolar interactions.

  6. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  7. Magnetic and superconducting order in some random pseudobinary compounds

    International Nuclear Information System (INIS)

    Dongen, J.C.M. van.

    1982-01-01

    This thesis presents the results of a study on the magnetic and superconducting ordering phenomena in some random pseudobinary compounds. In the investigations ternary systems are utilised in which two of the elements form a binary intermetallic compound, e.g. PdH, GdCu and YCo 2 . A third element is then randomly substituted into one of the sublattices without changing the basic intermetallic compound structure. In chapter II a study is presented on the Kondo effect and spin-glass freezing of the magnetic impurities Cr, Mn, and Fe in superconducting palladium hydride. Chapter III contains a study on crystal structure transformations and magnetic ordering phenomena in GdCusub(1-x)Gasub(x) and related pseudobinary compounds. In Chapter IV experiments on the magnetic properties and the electrical resistivity of the transition metal Laves phase compounds Y(Cosub(1-x)Fesub(x)) 2 , Y(Irsub(1-x)Fesub(x)) 2 and Hf(Cosub(1-x)Fesub(x)) 2 are described. (Auth.)

  8. Neutron scattering studies on magnetic excitations in complex ordered manganites

    International Nuclear Information System (INIS)

    Senff, D.

    2007-09-01

    This thesis deals with magnetic excitations in three different Manganese oxides, single-layered LaSrMnO 4 , charge- and orbital-ordered La 1/2 Sr 3/2 MnO 4 , and multiferroic TbMnO 3 , which are studied by means of inelastic neutron scattering. The properties of the first system, LaSrMnO 4 , are governed by the complex interplay of orbital, spin, and lattice degrees of freedom typical for the physics of manganites. The magnetic low-temperature behavior is quite unusual, and the comprehensive analysis of the spin-wave spectrum of LaSrMnO 4 suggests a heterogenous ground state with ferromagnetic orbital polarons embedded in an antiferromagnetic background. The doped system La 1/2 Sr 3/2 MnO 4 exhibits a stable charge- and orbital-ordered state, which today is discussed very controversially, as it is of great relevance for the colossal increase of electric conductivity at the metal-insulator transition in perovskite manganites. Analyzing the spin-wave dispersion of the ordered state, we find an excellent agreement with classical predictions by Goodenough and reject a recent alternative proposal. The different strength of the ferromagnetic and antiferromagnetic exchange in the CE-type ordering leads to the conclusion that the magnetic state has to be considered as a weak AFM coupling of stable FM elements. This thesis is further supported by the thermal evolution of the ordered state, revealing anisotropic correlations and the close competition of FM and AFM correlations above the Neel transition, as well as by the doping dependence of the charge- and orbital-ordered state, which is interpreted on the basis of a different response of the magnetic system with respect to additional electrons or holes. In the orthorhombic perovskite TbMnO 3 the electric polarization is closely coupled to the magnetic degrees of freedom via a complex, non-collinear magnetic ordering. Precisely characterizing the different magnon excitations allows to identify all relevant modes of the

  9. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F., E-mail: spizzo@fe.infn.it [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia and CNISM, Università di Perugia, I-06123 Perugia (Italy); Chinni, F.; Bonfiglioli, E. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Gerardino, A. [Istituto di Fotonica e Nanotecnologie, CNR, I-00156 Roma (Italy); Barucca, G. [Dipartimento SIMAU, Università Politecnica delle Marche, I-60131 Ancona (Italy); Bisero, D.; Fin, S.; Del Bianco, L. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy)

    2016-02-15

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size ~140 nm and center-to-center distance ~200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm{sup 2}) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5–300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T~200 K and, at each temperature, the exchange field H{sub EX} measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of H{sub EX} and of the coercivity H{sub C} are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, H{sub EX}~90 Oe and H{sub C}~180 Oe in the dots and H{sub EX}~1270 Oe and H{sub C}~860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T~100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised. - Highlights: • Exchange bias in 140 nm-sized IrMn(3 nm)/NiFe(3 nm) dots much weaker than in a film. • Glassy magnetic nature of the IrMn phase and collective spin freezing at T<100 K

  10. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    International Nuclear Information System (INIS)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Gerardino, A.; Barucca, G.; Bisero, D.; Fin, S.; Del Bianco, L.

    2016-01-01

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size ~140 nm and center-to-center distance ~200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm"2) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5–300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T~200 K and, at each temperature, the exchange field H_E_X measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of H_E_X and of the coercivity H_C are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, H_E_X~90 Oe and H_C~180 Oe in the dots and H_E_X~1270 Oe and H_C~860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T~100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised. - Highlights: • Exchange bias in 140 nm-sized IrMn(3 nm)/NiFe(3 nm) dots much weaker than in a film. • Glassy magnetic nature of the IrMn phase and collective spin freezing at T<100 K • Confinement of IrMn magnetic

  11. Dipolar sources of the early scalp somatosensory evoked potentials to upper limb stimulation. Effect of increasing stimulus rates.

    Science.gov (United States)

    Valeriani, M; Restuccia, D; Di Lazzaro, V; Le Pera, D; Barba, C; Tonali, P; Mauguiere, F

    1998-06-01

    Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.

  12. Development of magnetic order in superconducting systems

    International Nuclear Information System (INIS)

    Moncton, D.E.; Shirane, G.; Thomlinson, W.

    1979-08-01

    Two different classes of rare-earth (RE) ternary superconductors (RERh 4 B 4 and REMo 6 S 8 , X=S, Se) have provided the first instances in which chemically ordered sublattices of magnetic ions exist in superconductors. Neutron scattering studies show that simple, conventional antiferromagnetism coexists with superconductivity in a number of systems, while destruction of superconductivity occurs with the onset of ferromagnetism. The magnetic structural details are summarized for the coexistent antiferromagnets, and review measurements on the superconducting → ferromagnetic transition in ErRh 4 B 4

  13. Spontaneous Magnetization in the Dipolar Ising Ferromagnet LiTbF4

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Holmes, L. M.; Krebs Larsen, F.

    1975-01-01

    The spontaneous magnetization μ in Bohr magnetons below TC=2.874 K in LiTbF4 has been measured by magnetic Bragg scattering of neutrons. The data were normalized by comparing the magnetic Bragg scattering to the nuclear Bragg scattering at T>TC. The nuclear structure factors as well...

  14. Atom-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Zyryanova, A.N.

    1999-01-01

    Experimental results on magnetic susceptibility of nonstoichiometric hafnium carbide HfC y (0.6 0.71 , HfC 0.78 and HfC 0.83 in the range of 870-930 K the anomalies are revealed which are associated with superstructure short-range ordering in a non-metallics sublattice. It is shown that a short-range order in HfC 0.71 and HfC 0.78 carbides corresponds to Hf 3 C 2 ordered phase, and in HfC 0.83 carbide - to Hf 6 C 5 ordered phase. HfC 0.78 carbide is found to possesses zero magnetic susceptibility in temperature range 910-980 K [ru

  15. The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail

    Science.gov (United States)

    Frühauff, D.; Glassmeier, K.-H.

    2017-11-01

    In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.

  16. Cluster analysis in systems of magnetic spheres and cubes

    Science.gov (United States)

    Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.

  17. Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene

    KAUST Repository

    Shi, Xueliang

    2015-10-08

    Quinoidal thia-acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2-sulfur migration was observed during the Friedel-Crafts alkylation reaction. The analogues display a closed-shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole-dipole and [C-H⋯π]/[C-H⋯S] interactions.

  18. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.

  19. Quantum-well exciton dipolar interaction: Polarization-dependence and Z-LT splitting

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    We calculate the exciton dipolar interaction in a semiconductor quantum well. The explicit polarization-dependence, i.e, the dependence on both the exciton dipole moment μ-vector and its inplane wavevector k-vector is derived. The obtained results for the three modes (L, T and Z modes) of the long-range part of the dipolar interaction satisfy the polarization sum rule for any parameters. In the long wavelength limit there is a Z-LT splitting which decreases as the well width increases reflecting a crossover from strict 2D to quasi-2D. A rough crossover from quasi-2D to 3D is also described. (author). 18 refs, 4 figs

  20. An initial boundary value problem for modeling a piezoelectric dipolar body

    Science.gov (United States)

    Marin, Marin; Öchsner, Andreas

    2018-03-01

    This study deals with the first initial boundary value problem in elasticity of piezoelectric dipolar bodies. We consider the most general case of an anisotropic and inhomogeneous elastic body having a dipolar structure. For two different types of restrictions imposed on the problem data, we prove two results regarding the uniqueness of solution, by using a different but accessible method. Then, the mixed problem is transformed in a temporally evolutionary equation on a Hilbert space, conveniently constructed based on the problem data. With the help of a known result from the theory of semigroups of operators, the existence and uniqueness of the weak solution for this equation are proved.

  1. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  2. Cluster and Double Star observations of dipolarization

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    2005-11-01

    Full Text Available We studied two types of dipolarization events with different IMF conditions when Cluster and Double Star (TC-1 were located in the same local time sector: 7 August 2004, 18:00-24:00 UT, during a disturbed southward/northward IMF interval, and 14 August 2004, 21:00-24:00 UT, when the IMF was stably northward. Cluster observed dipolarization as well as fast flows during both intervals, but this was not the case for TC-1. For both events the satellites crossed near the conjugate location of the MIRACLE stations. By using multi-point analysis techniques, the direction/speed of the propagation is determined using Cluster and is then compared with the disturbances at TC-1 to discuss its spatial/temporal scale. The propagation direction of the BZ disturbance at Cluster was mainly dawnward with a tailward component for 7 August and with a significant Earthward component for 14 August associated with fast flows. We suggest that the role of the midtail fast flows can be quite different in the dissipation process depending on the condition of the IMF and resultant configuration of the tail.

  3. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  4. Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals

    Science.gov (United States)

    Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.

    2018-04-01

    Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.

  5. Toward Monte Carlo simulation of general cases of static muon spin relaxation in disordered magnetic materials: long-range magnetic order in alloys

    International Nuclear Information System (INIS)

    Noakes, D.R.

    2001-01-01

    Monte Carlo simulations of zero-field (ZF) muon spin relaxation (μSR) functions generated by long-range-ordered states with disorder are presented, for the completely static limit. Understanding of this is necessary before Monte Carlo simulation of the effect of short-range magnetic ordering on μSR in spin glasses can begin. Alloy disorder, controlled by the magnetic ion concentration parameter f m , and partial ordering of each moment, controlled by the order parameter f o , are considered. Qualitatively different behavior is seen depending on whether the dense moment, perfect-order limit ( f m =1, f o =1) field at the muon site is non-zero, or cancels (as can happen in high-symmetry materials). Around the edges of the two-dimensional ( f m ,f o ) parameter space, four limit cases with qualitatively different behavior are identified: (A) f o →0, the random frozen spin glass for arbitrary magnetic ion concentration; (B) f o →1, nearly perfect magnetic ordering in a alloy of arbitrary magnetic ion concentration; (C) f m →0, magnetic order developing (as f o increases) in a dilute magnetic alloy; (D) f m →1, magnetic order developing (as f o increases) in a dense magnetic material. Case A was discussed in a previous publication. The results for case D answer the question of how the Gaussian Kubo-Toyabe relaxation function for perfect disorder develops into an oscillating function as magnetic order develops in a material. Case C indicates that the effects of magnetic ordering in the dilute moment limit produce only subtle effects in ZF-μSR spectra that would be difficult to unambiguously identify as due to ordering in a real-world experiment. Case B generates complicated multi-frequency behavior

  6. Stepwise π-extension of meso-alkylidenyl porphyrins through sequential 1,3-dipolar cycloaddition and redox reactions.

    Science.gov (United States)

    Park, Dowoo; Jeong, Seung Doo; Ishida, Masatoshi; Lee, Chang-Hee

    2014-08-25

    Several regioselectively π-extended, pyrrole fused porphyrinoids have been synthesized by the 1,3-dipolar cycloaddition of meso-alkylidene-(benzi)porphyrins. Pd(II) complexes gave oxidation resistant, bis-pyrrole fused adducts. The repeated 1,3-dipolar cycloaddition followed by oxidation-reduction of pentaphyrin analogs afforded π-extended porphyrin analogs.

  7. Self-assembly and flux closure studies of magnetic nanoparticle rings

    DEFF Research Database (Denmark)

    Wei, Alexander; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2011-01-01

    Thermoremanent magnetic nanoparticles (MNPs) can self-assemble into rings through dipolar interactions, when dispersed under appropriate conditions. Analysis of individual MNP rings and clusters by off-axis electron holography reveals bistable flux closure (FC) states at ambient temperatures...

  8. Ginsburg-Landau theory of two antagonistic order parameters: magnetism and superconductivity

    International Nuclear Information System (INIS)

    Suhl, H.

    1978-01-01

    An attempt is made to construct a Ginsburg-Landau theory of so-called magnetic superconductors. Two order parameters, the magnetization field and the gap function, are introduced in such a way as to inhibit each others growth. It is found that the non-local character of the superconducting order parameter must be taken into account in any evaluation of effects of the critical magnetic fluctuations. Some predictions are made within the limits of Ornstein-Zoernicke-like fluctuation theory and some comparison is made with available data. (Auth.)

  9. Phosphorus nuclear magnetic resonance imaging in solid bone

    International Nuclear Information System (INIS)

    Li, Limin.

    1990-01-01

    Phosphorus ( 31 P) nuclear magnetic resonance (NMR) double-pulse transient experiments of solid bone have shown that the spins dephased by the dipolar spin-spin interactions can be refocused with a 90 degree-β pulse sequence so that an echo is observable at some time following the second pulse. The decay time constant of the maximum echo amplitude is larger than that of the free induction decay (FID) signal from a single 90 degree pulse. Depending on the nutation angle of the second pulse, the former decay time constant is about three-five times as long as the latter one. The dipolar-echo properties of the bone may be relevant with the interpair dipolar interactions. The experiments have also show that, in general, the time for the transient signal from the double pulses to reach the maximum amplitude is not equal to the pulse separation. This can be attributed to the effect of the heteronuclear dipolar interactions. In addition, it is found experimentally that refocused gradients applied only in a time interval of the formation of an echo have the capability of phase-encoding spatial information. Based on this, a new imaging method was proposed. With the method, several 31 P images of the solid bone samples have been obtained. The picture element size is 1-1.5 mm with very good signal-to-noise ratios. The imaging ability of the refocused gradients may be relevant with the inhomogeneous local field produced by the interpair dipolar interactions

  10. Neutron scattering studies on magnetic excitations in complex ordered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Senff, D

    2007-09-15

    This thesis deals with magnetic excitations in three different Manganese oxides, single-layered LaSrMnO{sub 4}, charge- and orbital-ordered La{sub 1/2}Sr{sub 3/2}MnO{sub 4}, and multiferroic TbMnO{sub 3}, which are studied by means of inelastic neutron scattering. The properties of the first system, LaSrMnO{sub 4}, are governed by the complex interplay of orbital, spin, and lattice degrees of freedom typical for the physics of manganites. The magnetic low-temperature behavior is quite unusual, and the comprehensive analysis of the spin-wave spectrum of LaSrMnO{sub 4} suggests a heterogenous ground state with ferromagnetic orbital polarons embedded in an antiferromagnetic background. The doped system La{sub 1/2}Sr{sub 3/2}MnO{sub 4} exhibits a stable charge- and orbital-ordered state, which today is discussed very controversially, as it is of great relevance for the colossal increase of electric conductivity at the metal-insulator transition in perovskite manganites. Analyzing the spin-wave dispersion of the ordered state, we find an excellent agreement with classical predictions by Goodenough and reject a recent alternative proposal. The different strength of the ferromagnetic and antiferromagnetic exchange in the CE-type ordering leads to the conclusion that the magnetic state has to be considered as a weak AFM coupling of stable FM elements. This thesis is further supported by the thermal evolution of the ordered state, revealing anisotropic correlations and the close competition of FM and AFM correlations above the Neel transition, as well as by the doping dependence of the charge- and orbital-ordered state, which is interpreted on the basis of a different response of the magnetic system with respect to additional electrons or holes. In the orthorhombic perovskite TbMnO{sub 3} the electric polarization is closely coupled to the magnetic degrees of freedom via a complex, non-collinear magnetic ordering. Precisely characterizing the different magnon excitations

  11. Phase transitions in random uniaxial systems with dipolar interactions

    International Nuclear Information System (INIS)

    Schuster, H.G.

    1977-01-01

    The critical behaviour of random uniaxial ferromagnetic (ferroelectric) systems with both short range and long range dipolar interactions is investigated, using the field theoretic renormalization method of Brezin et al. for the free energy above and below transition point Tsub(c). The randomness is due to externally introduced fluctuations in the short range interactions (quenched case) or (and) magneto-elastic coupling to the lattice (annealed case). Strong deviations in the critical behaviour with respect to the pure systems are found. In the quenched case, e.g., the specific heat C and the coefficient f 2 (of M 3 in the equation of state, where M is the magnetization) change from C proportional to abs ln abs t abs abssup(1/3), f 2 proportional to abs ln abs t abs abs sup(1/3), f 2 proportional to abs ln abs t abs abs -1 in the pure system to C = A+- + C+-exp[-4√ 3 106 abs ln abs t abs abs], f 2 proportional to abs ln abs t abs abs sup(-1/2) (where t = (T-Tsub(c)) / Tsub(c) is the reduced temperature and A+-, C+- are constants) in the random situation. (orig.) [de

  12. Medium-range order of magnetic amorphous alloys containing rare earth metals

    International Nuclear Information System (INIS)

    Boucher, B.

    1989-01-01

    The influence of nuclear order and surface layers on the magnetic order and the existence of two characteristic lengths (ξ=2π/k∼10 3 A or 10 A) have been established. The principal conclusions of theorists: concerning the abscence of infinite ferromagnetic clusters and the correlated spin glass or ferromagnet with wandering axis models are verified. The published results seem to indicate the existence of a critical temperature. The role of 3d ions in the magnetic ordering has not been extensively studied; it seems that the presence of 3d ions leads smaller correlation lengths. The Lorentzian scattering term correspond not only to spin waves but also to a static order. The origin of the L 3/2 scattering term observed in severals cases is discussed. It would be very useful to carry out measurements at lower q values so as to obtain more detailed informations concerning the nuclear or magnetic medium range order

  13. Magnetic ordering and spin-reorientation transitions in TbCo3B2

    International Nuclear Information System (INIS)

    Dubman, Moshe; Caspi, El'ad N.; Ettedgui, Hanania; Keller, Lukas; Melamud, Mordechai; Shaked, Hagai

    2005-01-01

    The magnetic structure of the compound TbCo 3 B 2 has been studied in the temperature range 1.5 K≤T≤300 K by means of neutron powder diffraction, magnetization, magnetic ac susceptibility, and heat capacity measurements. The compound is of hexagonal symmetry and is paramagnetic at 300 K, undergoes a magnetic Co-Co ordering transition at ∼170 K, and a second magnetic Tb-Tb ordering transition at ∼30 K. The latter induces a spin-reorientation transition, in which the magnetic axis rotates from the c axis toward the basal plane. Below this transition a symmetry decrease (γ magnetostriction) sets in, leading to an orthorhombic distortion of the crystal lattice. The crystal and magnetic structures and interactions and their evolution with temperature are discussed using a microscopic physical model

  14. Magnetic ordering in PrBa2Cu3-yAlyO6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Boothroyd, A.T.; Chen, C.K.

    1996-01-01

    The magnetic ordering in single crystals of PrBa2CU3O6+x has been investigated by elastic neutron scattering over the full range of temperatures for reduced and oxygenated crystals. The crystals were grown in alumina crucibles and therefore contained dissolved aluminum on the Cu(1) site. Both...... aluminum and oxygen contents were analyzed in detail in order to establish their effects on the magnetic ordering, Our crystals exhibited Pr ordering and the two types of antiferromagnetic Cu ordering frequently reported in related compounds, but our results differ in several respects from previous studies...... axis, we find the moment to be aligned well away from the c axis, in agreement with recent Yb-170(3+) Mossbauer spectroscopy results. Ridges of scattering indicative of 2D magnetic ordering were seen in both oxygenated and reduced crystals, though we believe different magnetic moments are responsible...

  15. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru; Kun, Ferenc; Ito, Nobuyasu

    2009-01-01

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1

  16. Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures

    KAUST Repository

    Velazquez-Rizo, Martin

    2017-01-01

    In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed

  17. First order reversal curve analysis on NdFeB nanocomposite ribbons subjected to Joule heating treatments

    Energy Technology Data Exchange (ETDEWEB)

    Pampillo, L.G. [INTECIN-Instituto de Tecnologias y ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850 (C1063ACV), C. A. B. A. (Argentina); Saccone, F.D., E-mail: fsaccone@fi.uba.ar [INTECIN-Instituto de Tecnologias y ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850 (C1063ACV), C. A. B. A. (Argentina); Knobel, M. [Instituto de Fisica Gleb Wataghin-Departamento de Fisica de Materia Condensada-Universidade Estadual de Campinas, Cidade Universitaria Zeferino Vaz, Barao Geraldo 13083-970, Campinas, Sao Paulo (Brazil); Sirkin, H.R.M. [INTECIN-Instituto de Tecnologias y ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850 (C1063ACV), C. A. B. A. (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Nd-lean amorphous precursors subjected to Joule heating. Black-Right-Pointing-Pointer Exchange-spring magnets. Black-Right-Pointing-Pointer FORC diagrams of irreversible switching fields. Black-Right-Pointing-Pointer This last techniques helped us to verify the optimized treatments conditions. - Abstract: Amorphous precursors with composition Nd{sub 4.5}Fe{sub 72-x}Co{sub 3+x}Cr{sub 2}Al{sub 1}B{sub 17.5} (x = 0, 2, 7, 12) were thermally treated by the Joule heating technique with a linearly varying electrical current. The crystallization kinetics was followed by monitoring the resistance of the ribbons during the heating up to the final applied current. Crystallized nanostructured phases coexist with an amorphous matrix, as it was observed by means of Moessbauer Spectroscopy and X-ray diffraction. The irreversible magnetic response of the Joule heated ribbons was analyzed by the First Order Reversal Curves (FORC) diagram technique. For the optimal treatments, associated with the higher maximum energy products for each sample composition, it was found that the main interaction is of a strongly dipolar characteristic. Over annealed samples show a FORC diagram that gives into account of softening, due to grain growth, for those phases precipitated at the first crystallization stage. When it is measured at 20 K, the hardest magnetic sample (Fe = 72 at.%, Co = 3 at.%, I{sub final} = 0.5 A), exhibits a diagram with characteristics corresponding to dipolar interactions of soft phases. This fact is consistent with an enhancement of the exchange length due to the increase in the soft phase stiffness as it is expected at low temperatures.

  18. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C. E-mail: dejulian@padova.infm.it; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D' Acapito, F

    2001-04-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu{sub 50}Ni{sub 50} nanoparticles are similar to those of the Cu{sub 60}Ni{sub 40} bulk alloy. The crystal structure of Co{sub x}Ni{sub 1-x} (0{<=}x{<=}1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10{sup 16} ions/cm{sup 2} total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy.

  19. Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix

    International Nuclear Information System (INIS)

    De Julian Fernandez, C.; Sangregorio, C.; Mattei, G.; Maurizio, C.; Battaglin, G.; Gonella, F.; Lascialfari, A.; Lo Russo, S.; Gatteschi, D.; Mazzoldi, P.; Gonzalez, J.M.; D'Acapito, F.

    2001-01-01

    A comparative study of the magnetic properties of Co and Ni based alloy nanoparticles (Ni-Co, Ni-Cu and Co-Cu) formed in a silica matrix by ion implantation is presented. Different ion doses and implantation sequences were realized in order to obtain different nanostructures. The structural and magnetic properties observed for the Cu 50 Ni 50 nanoparticles are similar to those of the Cu 60 Ni 40 bulk alloy. The crystal structure of Co x Ni 1-x (0≤x≤1) nanoparticles is similar to that of the corresponding bulk alloy. The magnetic properties depend on the ion-implanted dose and on the alloy composition. The samples prepared by implanting a 15x10 16 ions/cm 2 total dose contain nanoparticles, which are superparamagnetic at room temperature and their magnetic behavior is influenced by dipolar interparticle interactions. The magnetization of the CoNi samples at high magnetic field is larger than that of the corresponding bulk alloy and follows the same composition dependence of that quantity measured in the alloy

  20. Magnetic ordering and frustration in hexagonal UNi{sub 4}B

    Energy Technology Data Exchange (ETDEWEB)

    Mentink, S A.M. [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.; Drost, A [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Nieuwenhuys, G J [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.; Frikkee, E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Menovsky, A A [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.

    1994-05-01

    We have determined unusual magnetic ordering of the hexagonal intermetallic uranium compound UNi{sub 4}B via neutron diffraction. In the easy basal plane the U-moments have triangular symmetry with antiferromagnetic interactions. Along the hard c axis ferromagnetic coupling occurs. Below T{sub N} = 20 K only two out of every three U-moments of 1.2 {mu}{sub B} order in vortex-like arrangements around the third paramagnetic spin. This novel magnetic structure is related to the occurrence of a crystallographic superstructure. Previously observed anomalies in bulk properties below T{sub N} are attributed to unconventional spin-wave excitations associated with this type of ordering. (orig.).

  1. On magnetic ordering in silicon made amorphous by ion implantation

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.N.; Polyakov, S.M.

    1978-01-01

    Temperature dependences of the EPR intensity for silicon irradiated with the neon and argon ions at (2-4)x10 17 cm -2 doses have been studied. Paramagnetic defects with 2.0055 g-factor were recorded. Intensity jump associated with the transformation of the irradiated layer part to ferromagnetic state is observed at approximately 140 K. Paramagnetic centre distributions at temperatures above and lower the magnetic ordering temperature have heen investigated. It has been found, that ferromagnetic ordering is observed in a layer with the defect concentrations (3-7)x10 20 cm -3 , located at a depth > 100 A. Magnetic-ordered layer thickness is proportional to the incident ion energy

  2. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    Directory of Open Access Journals (Sweden)

    Sakae Meguro

    2016-05-01

    Full Text Available An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  3. Soft-edged magnet models for higher-order beam-optics map codes

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    2004-01-01

    Continuously varying surface and volume source-density distributions are used to model magnetic fields inside of cylindrical volumes. From these distributions, a package of subroutines computes on-axis generalized gradients and their derivatives at arbitrary points on the magnet axis for input to the numerical map-generating subroutines of the Lie-algebraic map code Marylie. In the present version of the package, the magnet menu includes: (1) cylindrical current-sheet or radially thick current distributions with either open boundaries or with a surrounding cylindrical boundary with normal field lines (which models high-permeability iron), (2) Halbach-type permanent multipole magnets, either as sheet magnets or as radially thick magnets, (3) modeling of arbitrary fields inside a cylinder by use of a fictitious current sheet. The subroutines provide on-axis gradients and their z derivatives to essentially arbitrary order, although in the present third- and fifth-order Marylie only the zeroth through sixth derivatives are needed. The formalism is especially useful in beam-optics applications, such as magnetic lenses, where realistic treatment of fringe-field effects is needed

  4. Evolution of magnetic order in mechanically alloyed Al-1 at%Fe

    International Nuclear Information System (INIS)

    Sebastian, Varkey; Lakshmi, N.; Venugopalan, K.

    2007-01-01

    The evolution of ferromagnetic order in high-energy ball-milled Al-1 at% Fe before the onset of a considerable Fe-Al solid solution phase has been investigated using 57 Fe Moessbauer and bulk magnetization studies. The unmilled sample does not exhibit bulk magnetic properties and an onset of bulk magnetization is observed only after 30 min of milling, when the grain size becomes comparable to the ferromagnetic exchange length. The Curie temperatures of all the samples are less than that of pure iron. The reduction in grain size is accompanied by an increase in coercivity and reduced remanence and a decrease in T C . The effective magnetic moment per iron atom decreases with the development of a non-magnetic, Al-rich Fe-Al solution on longer milling. The clustering of Fe at grain boundaries is responsible for the observed bulk magnetic ordering. The systematic variation of the magnetic properties has been qualitatively correlated with the evolution of microstructure, reduction in grain size and enhanced inter-granular exchange coupling

  5. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam.

    Science.gov (United States)

    Sethy, Dasaratha; Chakraborty, Hirak

    2016-10-01

    The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Long-range transverse Ising model built with dipolar condensates in two-well arrays

    International Nuclear Information System (INIS)

    Li, Yongyao; Pang, Wei; Xu, Jun; Lee, Chaohong; Malomed, Boris A; Santos, Luis

    2017-01-01

    Dipolar Bose–Einstein condensates in an array of double-well potentials realize an effective transverse Ising model with peculiar inter-layer interactions, that may result under proper conditions in an anomalous first-order ferromagnetic–antiferromagnetic phase transition, and non-trivial phases due to frustration. The considered setup allows as well for the study of Kibble–Zurek defect formation, whose kink statistics follows that expected from the universality class of the mean-field one-dimensional transverse Ising model. Furthermore, random occupation of each layer of the stack leads to random effective Ising interactions and local transverse fields, that may lead to the Anderson-like localization of imbalance perturbations. (paper)

  7. Magnetic phase transitions with incommensurate structures in systems with coupled order parameters

    International Nuclear Information System (INIS)

    Izyumov, Yu.A.; Laptev, V.M.; Petrov, S.B.

    1984-01-01

    Modulated magnetic phases are investigated for the case when symmetry does not allow linear by gradients Lifshits invariants and magnetic momenta are converted by two irreducible representations. Possible phase diagrams with participation of incommensurable phases are plotted on the base of Ginsburg-Landau functional for 2 bound parameters of the order. The role of the highest harmonics in spatial distribution of the order parameters is clarified on the example of magnetic phase transitions in Er

  8. Non-equilibrium magnetic properties of Sm0.43Ca0.57MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Markovich, V.; Dolgin, B.; Puzniak, R.; Wisniewski, A.; Fita, I.; Mogilyansky, D.; Dvir, E.; Gorodetsky, G.; Jung, G.

    2014-01-01

    Highlights: • SCMO nanoparticles (15–60 nm) were prepared by glycine–nitrate method. • The charge ordering is progressively suppressed with decreasing particle size. • The dynamic properties of SCMO nanoparticles was studied. • Super spin glass state in 15 nm particles stems from dipole–dipole interactions. - Abstract: Non-equilibrium magnetic properties of the near half-doped Sm 0.43 Ca 0.57 MnO 3 nanoparticles with an average size as small as 15 nm have been investigated by measuring temperature dependence of zero field cooled (ZFC) magnetization, ac-susceptibility, time dependence of ZFC magnetization, relaxation of the remanent magnetization, and memory effects in ZFC magnetization. For the studied particles, charge ordering, characteristic for the bulk, is gradually suppressed with decreasing particle size and fully disappears in 15 nm particles, while the Néel temperature decreases slightly from 73 K for 60 nm to 58 K for 15 nm particles. It was found that dipolar interaction between 15 nm nanoparticles is enough to leads to the formation of a superspin glass state. Characteristic features of superspin glass state, such as aging and memory effects have been observed in 15 nm samples. In a difference to atomic spin glasses, no strong rejuvenation of magnetization has been observed at low temperatures

  9. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  10. Effect of simple solutes on the long range dipolar correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)

    2016-03-14

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

  11. First-Order Transitions and the Magnetic Phase Diagram of CeSb

    DEFF Research Database (Denmark)

    Lebech, Bente; Clausen, Kurt Nørgaard; Vogt, O.

    1980-01-01

    might exist in the magnetic phase diagram of CeSb at 16K for a field of approximately 0.3 T. The present study concludes that the transitions from the paramagnetic to the magnetically ordered states are of first order for fields below 0.8 T. Within the experimental accuracy no change has been observed......The high-temperature (14-17K) low-magnetic field (0-0.8 T) region of the phase diagram of the anomalous antiferromagnet CeSb has been reinvestigated by neutron diffraction in an attempt to locate a possible tricritical point. Previous neutron diffraction studies indicated that a tricritical point...

  12. The magnetic early B-type stars I: magnetometry and rotation

    Science.gov (United States)

    Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration

    2018-04-01

    The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.

  13. Spatially correlated disorder in striped precursor magnetic modulations

    International Nuclear Information System (INIS)

    Porta, Marcel; Castan, Teresa; LLoveras, Pol; Planes, Antoni; Saxena, Avadh

    2007-01-01

    We use a Ginzburg-Landau model that includes long-range dipolar interactions and spatially correlated quenched-in disorder coupled to the local magnetization to study the properties of the precursor magnetic modulations as a function of the characteristics of the disorder. We find that although the modulation pattern is very robust and does not depend on details of the pair correlation function G(r), the scaling behaviour of the characteristic length of the striped magnetic modulations depends on the behaviour of G(r) for small values of r

  14. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    International Nuclear Information System (INIS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-01-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet. (papers)

  15. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  16. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  17. Manifestation of spin selection rules on the quantum tunneling of magnetization in a single-molecule magnet.

    Science.gov (United States)

    Henderson, J J; Koo, C; Feng, P L; del Barco, E; Hill, S; Tupitsyn, I S; Stamp, P C E; Hendrickson, D N

    2009-07-03

    We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at high temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three. This is dictated by the C3 molecular symmetry, which forbids pure tunneling from the lowest metastable state. Transverse field resonances are understood by correctly orienting the Jahn-Teller axes of the individual manganese ions and including transverse dipolar fields. These factors are likely to be important for QTM in all single-molecule magnets.

  18. On the reversal of the dipolar field of the sun and its possible implication for the reversal of the earth's field

    International Nuclear Information System (INIS)

    Saito, T.; Akasofu, S.

    1987-01-01

    Changes of the neutral line on the source surface (analogous to the magnetic dip equator of the earth) during the period between 1976 and 1983 are examined on the basis of the Stanford solar magnetic field data. Instead of the standard Mercator-like projection, the neutral line is shown on a spherical surface for 16 selected Carrington rotations. In spite of great complexity of the field variations, this presentation depicts clearly a fairly systematic rotational reversal of the dipolar field on the source surface during the sunspot maximum years. It is suggested that this solar situation is somewhat analogous to the planet earth in the sense that the core surface and the earth's surface may correspond to the photosphere and the source surface, respectively. Copyright American Geophysical Union 1987

  19. Emergence of magnetic order in ultra-thin pyrochlore iridate films

    Science.gov (United States)

    Cheema, Suraj; Serrao, Claudy; Mundy, Julia; Patankar, Shreyas; Birgeneau, Robert; Orenstein, Joseph; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on thickness-dependent magnetotransport in (111) - oriented Pb2Ir2O7-x (Pb227) epitaxial thin films. For thicknesses greater than 4 nm, the magnetoresistance (MR) of metallic Pb227 is positive, linear and non-saturated up to 14 T. Meanwhile at 4 nm, the conduction turns nonmetallic and the MR becomes negative and asymmetric upon field-cooling; such traits are reminiscent of all-in-all-out (AIAO) magnetic order in the insulating pyrochlore iridates. Hysteretic low-field MR dips and trained-untrained resistivity bifurcations suggest the presence of magnetic conducting domain walls within the chiral AIAO spin structure. Beyond just AIAO order, angular-dependent MR indicates a magnetic phase space hosting 2-in-2-out (2I2O) spin ice order. Such anomalous magnetotransport calls for re-evaluation of the pyrochlore iridate phase diagram, as epitaxially strained Pb227 exhibits traits reminiscent of both the insulating magnetic and metallic spin-liquid members. Furthermore, these results open avenues for realizing topological phase predictions in (111) - oriented pyrochlore slabs of kagome-triangular iridate heterostructures. This work is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

  20. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Dai, Qilin; Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Bowden, Mark; Engelhard, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, Idaho 83401 (United States)

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  1. Sodium ordering and the control of magnetism in sodium cobaltate

    International Nuclear Information System (INIS)

    Morris, D.J.P.; Roger, M.; Tennant, D.A.; Goff, J.P.; Gutmann, M.J.; Hoffmann, J.-U.; Prabhakaran, D.; Shannon, N.; Lake, B.; Deen, P.P.

    2007-01-01

    The long-range three-dimensional ordering of Na + ions was studied in a sample of composition Na 0.75 CoO 2 using single-crystal neutron diffraction. Large-scale numerical simulations reveal the ordering principle for this system, the formation of multi-vacancy charged droplets then order long range, and the structure factors from these defect clusters are in good agreement with the observed neutron diffraction intensities. The electrostatic potential is found to be the dominant factor in determining the sodium ordering and its associated distortion field. The superstructures induce a periodic potential in the CoO 2 , giving potential wells that are larger than the single-particle hopping frequency and so able to localize holes. The results readily explain many of the observed electrical and magnetic properties, including the three dimensionality of the magnetic excitations

  2. Charged Tori in Spherical Gravitational and Dipolar Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Slaný, P.; Kovář, J.; Stuchlík, Z.; Karas, Vladimír

    2013-01-01

    Roč. 205, č. 1 (2013), 3/1-3/16 ISSN 0067-0049 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : accretion * accretion disks * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 14.137, year: 2013

  3. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    Energy Technology Data Exchange (ETDEWEB)

    Barb, Adam W., E-mail: abarb@iastate.edu; Subedi, Ganesh P. [Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology (United States)

    2016-01-15

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb{sup 3+} with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb{sup 3+}){sub 2} complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems.

  4. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    International Nuclear Information System (INIS)

    Barb, Adam W.; Subedi, Ganesh P.

    2016-01-01

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb 3+ with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb 3+ ) 2 complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems

  5. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  6. Magnetic ordering and specific heat analysis of TmPtSn

    Czech Academy of Sciences Publication Activity Database

    Vejpravová, J.; Svoboda, P.; Šebek, Josef; Janeček, M.; Komatsubara, T.

    2003-01-01

    Roč. 328, - (2003), s. 142-144 ISSN 0921-4526 R&D Projects: GA ČR GA106/02/0943 Grant - others:GA UK(CZ) 165/01; VACUUM PRAHA(CZ) 2002 Keywords : rare-earth intermetallic compounds * magnetic ordering * specific heat Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.908, year: 2003

  7. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    Science.gov (United States)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  8. Local order and magnetism of amorphous and disordered solids

    International Nuclear Information System (INIS)

    Friedt, J.M.

    1985-01-01

    Some topics related with the magnetic properties and local order in amorphous and disordered solids studied by Moessbauer spectroscopy, EXAFS, static and dynamical susceptibilities are presented. (L.C.) [pt

  9. Order of magnetic transition and large magnetocaloric effect in Er3Co

    International Nuclear Information System (INIS)

    Jun, Shen; Jian-Feng, Wu; Jin-Liang, Zhao; Feng-Xia, Hu; Ji-Rong, Sun; Bao-Gen, Shen

    2010-01-01

    We have studied the magnetic and magnetocaloric properties of the Er 3 Co compound, which undergoes ferromagnetic ordering below the Curie temperature T C = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er 3 Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around T C is found to result from the second-order ferromagnetic-to-paramagnetic transition. The maximal value of magnetic entropy change is 24.5 J/kg·K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0–5 T. Large reversible MEC and RC indicate the potentiality of Er 3 Co as a candidate magnetic refrigerant at low temperatures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Multicomponent synthesis of spiropyrrolidine analogues derived from vinylindole/indazole by a 1,3-dipolar cycloaddition reaction

    Directory of Open Access Journals (Sweden)

    Manjunatha Narayanarao

    2016-12-01

    Full Text Available A new series of spiropyrrolidine compounds containing indole/indazole moieties as side chains have been accomplished via a one-pot multicomponent synthesis. The method uses the 1,3-dipolar cycloaddition reaction between N-alkylvinylindole/indazole and azomethine ylides, prepared in situ from cyclic/acyclic amino acids. The 1,3-dipolar cycloaddition proceeds efficiently under thermal conditions to afford the regio- and stereospecific cyclic adducts.

  11. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems

    International Nuclear Information System (INIS)

    Wang, Ken Kang-Hsin; Ye Zhen

    2003-01-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems

  12. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    Science.gov (United States)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  13. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  14. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    Science.gov (United States)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  15. Understanding the anisotropic ion distributions within magnetotail dipolarizing flux bundles

    Science.gov (United States)

    Zhou, X.; Runov, A.; Angelopoulos, V.; Birn, J.

    2017-12-01

    Dipolarizing flux bundles (DFBs), earthward-propagating structures with enhanced northward magnetic field (Bz) component, are usually believed to carry a different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, are recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFBs. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFBs, whereas for lower κ values the ions inside the DFBs become more isotropic. Here we utilize a simple, test-particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the ion anisotropy originates from successive ion reflections and reentries to the DFBs, during which the ions can be consecutively accelerated in the perpendicular direction by the DFB-carried electric field. This acceleration process may be interrupted, however, when the magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories are most stochastic outside the DFB region, which makes the reflected ions less likely to return to the DFBs for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected towards Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between the magnetotail and the inner magneosphere.

  16. Crossover phenomena in the critical range near magnetic ordering transition

    Science.gov (United States)

    Köbler, U.

    2018-05-01

    Among the most important issues of Renormalization Group (RG) theory are crossover events and relevant (or non-relevant) interactions. These terms are unknown to atomistic theories but they will be decisive for future field theories of magnetism. In this experimental study the importance of these terms for the critical dynamics above and below magnetic ordering transition is demonstrated on account of new analyses of published data. When crossover events are overlooked and critical data are fitted by a single power function of temperature over a temperature range including a crossover event, imprecise critical exponents result. The rather unsystematic and floating critical exponents reported in literature seem largely to be due to this problem. It is shown that for appropriate data analyses critical exponents are obtained that are to a good approximation rational numbers. In fact, rational critical exponents can be expected when spin dynamics is controlled by the bosons of the continuous magnetic medium (Goldstone bosons). The bosons are essentially magnetic dipole radiation generated by the precessing spins. As a result of the here performed data analyses, critical exponents for the magnetic order parameter of β = 1/2, 1/3, 1/4 and 1/6 are obtained. For the critical paramagnetic susceptibility the exponents are γ = 1 and γ = 4/3.

  17. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    Verbeek, B.H.

    1979-01-01

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  18. Design, construction and test of a corrector coil set for magnetic field homogenization of a dipolar magnet

    International Nuclear Information System (INIS)

    Pires, L.R.

    1987-01-01

    A method to improve the homogeneity of the distribution of the magnetic flux density in the gap of a dipole magnet. It is based on correcting the magnetic field by means of a system of coils, which employs etching thin copper foils, similarly as those for electronic circuits, is presented. The advantage of this method lies on its simplicity, its small space use, and its low price. The method was applied to correct the field of a dipole magnet, and it worked properly. (author) [pt

  19. Magnetism and atomic short-range order in Ni-Rh alloys

    Science.gov (United States)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  20. Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7

    Science.gov (United States)

    Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus

    Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.

  1. The Outburst Decay of the Low Magnetic Field Magnetar SGR 0418+5729

    Science.gov (United States)

    Rea, N.; Israel, G. L.; Pons, J. A.; Turolla, R.; Viganò, D.; Zane, S.; Esposito, P.; Perna, R.; Papitto, A.; Terreran, G.; Tiengo, A.; Salvetti, D.; Girart, J. M.; Palau, Aina; Possenti, A.; Burgay, M.; Göğüş, E.; Caliandro, G. A.; Kouveliotou, C.; Götz, D.; Mignani, R. P.; Ratti, E.; Stella, L.

    2013-06-01

    We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: \\dot{P}=4(1)\\times 10^{-15} s s-1, significant at a ~3.5σ confidence level. This leads to a surface dipolar magnetic field of B dip ~= 6 × 1012 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ~1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ~0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10-11 to 1.2 × 10-14 erg s-1 cm-2. Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ~550 kyr, and a dipolar magnetic field at birth of ~1014 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

  2. THE OUTBURST DECAY OF THE LOW MAGNETIC FIELD MAGNETAR SGR 0418+5729

    International Nuclear Information System (INIS)

    Rea, N.; Papitto, A.; Terreran, G.; Girart, J. M.; Palau, Aina; Caliandro, G. A.; Israel, G. L.; Pons, J. A.; Viganò, D.; Turolla, R.; Zane, S.; Esposito, P.; Tiengo, A.; Salvetti, D.; Perna, R.; Possenti, A.; Burgay, M.; Göğüş, E.; Kouveliotou, C.; Götz, D.

    2013-01-01

    We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: P-dot =4(1)×10 -15 s s –1 , significant at a ∼3.5σ confidence level. This leads to a surface dipolar magnetic field of B dip ≅ 6 × 10 12 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ∼1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ∼0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10 –11 to 1.2 × 10 –14 erg s –1 cm –2 . Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ∼550 kyr, and a dipolar magnetic field at birth of ∼10 14 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

  3. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  4. Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions

    International Nuclear Information System (INIS)

    Citro, R; Palo, S De; Orignac, E; Pedri, P; Chiofalo, M-L

    2008-01-01

    Ultracold bosonic and fermionic quantum gases confined to quasi-one-dimensional (1D) geometry are promising candidates for probing fundamental concepts of Luttinger liquid (LL) physics. They can also be exploited for devising applications in quantum information processing and precision measurements. Here, we focus on 1D dipolar Bose gases, where evidence of super-strong coupling behavior has been demonstrated by analyzing the low-energy static and dynamical structures of the fluid at zero temperature by a combined reptation quantum Monte Carlo (RQMC) and bosonization approach. Fingerprints of LL behavior emerge in the whole crossover from the already strongly interacting Tonks-Girardeau at low density to a dipolar density wave regime at high density. We have also shown that a LL framework can be effectively set up and utilized to describe this strongly correlated crossover physics in the case of confined 1D geometries after using the results for the homogeneous system in LL hydrodynamic equations within a local density approximation. This leads to the prediction of observable quantities such as the frequencies of the collective modes of the trapped dipolar gas under the more realistic conditions that could be found in ongoing experiments. The present paper provides a description of the theoretical framework in which the above results have been worked out, making available all the detailed derivations of the hydrodynamic Luttinger equations for the inhomogeneous trapped gas and of the correlation functions for the homogeneous system

  5. Non-conventional ordering studied by magnetic resonance in Fe-doped manganites

    International Nuclear Information System (INIS)

    Gutierrez, J.; Siruguri, V.; Barandiaran, J.M.; Pena, A.; Lezama, L.; Rojo, T.

    2006-01-01

    Coexistence of ferromagnetic (FM) and paramagnetic (PM) phases in La 0.7 Pb 0.3 (Mn 1-x Fe x )O 3 (0.1=< x=<0.3) manganites is studied by the electron spin resonance (ESR) technique. Doping with Fe gives rise to a progressive decrease both in the low-temperature magnetic moment and magnetic order temperature values. Obtained spectra show narrow resonance signals above Curie temperature that transform to asymmetric Dyson-like signals as temperature decreases. The evolution of line width with temperature shows minima that correlate directly with the obtained paramagnetic Curie temperatures. Analysis of spectra above and below magnetic order temperatures reveals features of complex PM to FM transitions and coexistence of both type of phases in a wide range of temperatures

  6. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  7. Born-Infeld magnetars: larger than classical toroidal magnetic fields and implications for gravitational-wave astronomy

    Science.gov (United States)

    Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.

    2018-05-01

    Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.

  8. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why?

    Directory of Open Access Journals (Sweden)

    Andrey V. Chubukov

    2016-12-01

    Full Text Available Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s^{+-} superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s^{+-} superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe_{2}As_{2} and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-based materials.

  9. Impurity effects on the magnetic ordering in chromium

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1992-05-01

    It is well-known that impurities profoundly alter the magnetic properties of chromium. While vanadium impurities suppress the Neel temperature T N , manganese impurities enhanced T N substantially. As evidenced by neutron scattering experiments, doping with as little as 0.2% vanadium changes the transition from weakly first order to second order. Young and Sokoloff explained that the first-order transition in pure chromium is caused by a charge-density wave which is the second harmonic of the spin-density wave. By examining the subtle balance between the spin-density and charge- density wave terms in the mean-field free energy, we find that the first-order transition is destroyed when the vanadium concentration exceeds about 0.15%, in agreement with experiments

  10. Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides

    International Nuclear Information System (INIS)

    Anisimov, M. A.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Samarin, N. A.; Filipov, V. B.; Shitsevalova, N. Yu.; Kuznetsov, A. V.; Sluchanko, N. E.

    2009-01-01

    The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB 6 and NdB 6 ) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB 6 and NdB 6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (-Δρ/ρ ∝ H 2 ), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB 6 and NdB 6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB 6 and NdB 6 , ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χ loc has been estimated. It has been demonstrated that, in the temperature range T N loc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χ loc ∝ (T - Θ p ) -1 .

  11. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  12. Incommensurate magnetic ordering of PrPdAl

    Energy Technology Data Exchange (ETDEWEB)

    Keller, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Doenni, A. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan). Tsukuba Lab.; Fauth, F. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    The intermetallic rare earth compound PrPdAl with ZrNiAl-type structure was investigated by means of powder neutron diffraction. PrPdAl orders below T{sub N} {approx_equal}4.2 K with an incommensurate antiferromagnetic propagation vector k = [1/2,0,{tau}], {tau}=0.398. The best fit was obtained with a sinusoidal modulation of the magnetic moments along the c-axis. (author) 2 figs., 2 refs.

  13. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Caspi, E.N.; Melamud, M.; Pinto, H.; Shaked, H.; Chmaissem, O.; Jorgensen, J.D.; Short, S.

    1999-01-01

    Complete text of publication follows. In a previous work on the (U 1-x Nd x )Co 2 Ge 2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: T N (x=0.4) = 130 K, and T N (x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  14. Glass Forming Ability in Systems with Competing Orderings

    Science.gov (United States)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2018-04-01

    Some liquids, if cooled rapidly enough to avoid crystallization, can be frozen into a nonergodic glassy state. The tendency for a material to form a glass when quenched is called "glass-forming ability," and it is of key significance both fundamentally and for materials science applications. Here, we consider liquids with competing orderings, where an increase in the glass-forming ability is signaled by a depression of the melting temperature towards its minimum at triple or eutectic points. With simulations of two model systems where glass-forming ability can be tuned by an external parameter, we are able to interpolate between crystal-forming and glass-forming behavior. We find that the enhancement of the glass-forming ability is caused by an increase in the structural difference between liquid and crystal: stronger competition in orderings towards the melting point minimum makes a liquid structure more disordered (more complex). This increase in the liquid-crystal structure difference can be described by a single adimensional parameter, i.e., the interface energy cost scaled by the thermal energy, which we call the "thermodynamic interface penalty." Our finding may provide a general physical principle for not only controlling the glass-forming ability but also the emergence of glassy behavior of various systems with competing orderings, including orderings of structural, magnetic, electronic, charge, and dipolar origin.

  15. On magnetic ordering in heavily sodium substituted hole doped lanthanum manganites

    Energy Technology Data Exchange (ETDEWEB)

    Sethulakshmi, N. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Unnimaya, A.N. [Centre for Materials for Electronic Technology (CMET), Thrissur 680581, Kerala (India); Al-Omari, I.A.; Al-Harthi, Salim [Department of Physics, Sultan Qaboos University, PC 123 Muscat (Oman); Sagar, S. [Government College for Women, Thiruvananthapuram 695014, Kerala (India); Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala (India); Srinivasan, G. [Department of Physics, Oakland University, Rochester (United States); Anantharaman, M.R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2015-10-01

    Mixed valence manganite system with monovalent sodium substituted lanthanum manganites form the basis of the present work. Lanthanum manganites belonging to the series La{sub 1−x}Na{sub x}MnO{sub 3} with x=0.5–0.9 were synthesized using modified citrate gel method. Variation of lattice parameters and unit cell volume with Na concentration were analyzed and the magnetization measurements indicated ferromagnetic ordering in all samples at room temperature. Low temperature magnetization behavior indicated that all samples exhibit antiferromagnetism along with ferromagnetism and it has also been observed that antiferromagnetic ordering dominates ferromagnetic ordering as concentration is increased. Evidence for such a magnetic inhomogeneity in these samples has been confirmed from the variation in Mn{sup 3+}/Mn{sup 4+} ion ratio from X-ray Photoelectron Spectroscopy and from the absorption peak studies using Ferromagnetic Resonance Spectroscopy. - Highlights: • Higher substitution of more than 50 percent of monovalent ion, sodium for La sites in lanthanum manganites scarce in literature. • Structural studies using XRD and further structure refinement by Rietveld refinement confirmed orthorhombic pbnm spacegroup. • Ferromagnetic behavior at room temperature with saturation magnetization decreasing with increase in sodium concentration. • M vs T measurements using FC ZFC proved coexisting FM/AFM behavior arising from exchange interactions between different valence states of Mn ions. • Disparity in ratio of Mn valence ions indicated presence of vacancies providing the role of vacancies and oxygen stoichiometry in deciding magnetic inhomogeneity.

  16. Residual dipolar couplings in sup 3 sup 1 P MAS spectra of PPh sub 3 substituted cobalt complexes

    CERN Document Server

    Szalontai, G

    2002-01-01

    Residual dipolar couplings between sup 3 sup 1 P- sup 5 sup 9 Co spin pairs were studied in sup 3 sup 1 P MAS spectra of mono- and dinuclear cobalt-triphenylphosphine complexes. These spectra can provide important information such as the scalar coupling between the dipolar phosphorus and the quadrupolar cobalt nuclei normally not available from solution phase studies. In case of complementary (NQR or x-ray) data even the relative orientation of the interacting shielding, dipolar, scalar couplings, and electric field gradient tensors or internuclear distances can be determined. Examples are shown both for well resolved and practically unresolved cases, factors which possibly control the spectral resolution are discussed in detail. (author)

  17. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    2003-01-01

    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl

  18. Neutron diffraction study of the magnetic long-range order in Tb

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1967-01-01

    Like other heavy rare-earth metals, Tb exhibits a magnetic phase with a spiral structure. This appears within the temperature region from 216 to 226deg K between the ferromagnetic phase and the paramagnetic phase. The transition between ferromagnetic and spiral structure is of first order and imp...... at 216deg K to 20.7deg at 226deg K. The temperature variation of the transverse magnetostriction has also been measured and was found to vary approximately in proportion to the square of the magnetic long-range order....

  19. Dipolar and quadrupolar defects in a transport line

    International Nuclear Information System (INIS)

    Leleux, G.; Nghiem, P.

    1991-01-01

    The defects on a transport line of linear accelerator are studied. A transport line where the elements are influenced by the design or position defects is analyzed. Only dipolar and quadrupolar defects are considered, and the coupling betwen transversal motions are excluded. The data from the literature and those calculated by transfer matrices are compared. The defects on a line are considered from an analytical point of view. Closed optical structures are also studied [fr

  20. Dynamic magnetic susceptibility of systems with long-range magnetic order

    International Nuclear Information System (INIS)

    Vannette, Matthew Dano

    2009-01-01

    The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, ?, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies (∼10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in ? which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in ? well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.

  1. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  2. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  3. Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi

    NARCIS (Netherlands)

    Pan, Y.; Nikitin, A.M.; Bay, T.V.; Huang, Y.K.; Paulsen, C.; Yan, B.H.; de Visser, A.

    2013-01-01

    We report superconductivity at Tc = 1.22 K and magnetic order at TN = 1.06\\ K in the semimetallic noncentrosymmetric half-Heusler compound ErPdBi. The upper critical field, Bc2, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T - 0 . Magnetic order is found below

  4. Magnetic order, hysteresis, and phase coexistence in magnetoelectric LiCoPO4

    DEFF Research Database (Denmark)

    Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric

    2017-01-01

    The magnetic phase diagram of magnetoelectric LiCoPO4 is established using neutron diffraction and magnetometry in fields up to 25.9 T applied along the crystallographic b axis. For fields greater than 11.9 T, the magnetic unit cell triples in size with propagation vector Q = (0, 1...... ≈ to (0, 1/2,0) appear for increasing fields in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5-21.0 T....../3,0). A magnetized elliptic cycloid is formed with spins in the (b, c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ to (0, 1/4,0) and Q...

  5. Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order

    International Nuclear Information System (INIS)

    Pelka, R; Balanda, M; Pinkowicz, D; Drath, O; Nitek, W; Sieklucka, B; Rams, M; Majcher, A

    2011-01-01

    Isostructural series of chemical formula {[M II (pirazol) 4 ] 2 [Nb IV (CN) 8 ]· 4H 2 O} n (M II = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.

  6. Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order

    Science.gov (United States)

    Pełka, R.; Pinkowicz, D.; Drath, O.; Bałanda, M.; Rams, M.; Majcher, A.; Nitek, W.; Sieklucka, B.

    2011-07-01

    Isostructural series of chemical formula {[MII(pirazol)4]2[NbIV(CN)8]· 4H2O}n (MII = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.

  7. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  8. Tris-o-phenylenedioxycyclotriphosphazene (TPP) Inclusion Compounds Containing a Dipolar Molecular Rotor

    Czech Academy of Sciences Publication Activity Database

    Kobr, L.; Zhao, K.; Shen, Y.; Shoemaker, R. K.; Rogers, C. T.; Michl, Josef

    2014-01-01

    Roč. 14, č. 2 (2014), s. 559-568 ISSN 1528-7483 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : aromatic nanochannels * single-molecule * dynamics Subject RIV: CC - Organic Chemistry Impact factor: 4.891, year: 2014

  9. Role of lower hybrid waves in ion heating at dipolarization fronts

    Science.gov (United States)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  10. Explicit higher order symplectic integrator for s-dependent magnetic field

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D.S.

    2001-01-01

    We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings

  11. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  12. Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1-xCox)2As2

    DEFF Research Database (Denmark)

    Larsen, Jacob; Uranga, B. Mencia; Stieber, G.

    2015-01-01

    We have studied the magnetic and superconducting properties of Ba(Fe1-xCox)2As2 as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist...... and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can...... slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments....

  13. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Science.gov (United States)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  14. Moessbauer spectroscopic studies of magnetically ordered biological materials

    International Nuclear Information System (INIS)

    Dickson, D.P.E.

    1987-01-01

    This paper discusses recent work showing the application of Moessbauer spectroscopy to the study of the properties of the magnetically ordered materials which occur in a variety of biological systems. These materials display a diversity of behaviour which provides good examples of the various possibilities which can arise with iron-containing particles of different compositions and sizes. (orig.)

  15. Thermodynamics of Dipolar Chain Systems

    International Nuclear Information System (INIS)

    Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S.

    2013-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments. (author)

  16. Physics of Substorm Growth Phase, Onset, and Dipolarization

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng

    2003-10-22

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.

  17. Physics of Substorm Growth Phase, Onset, and Dipolarization

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    2003-01-01

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m 2 as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization

  18. Van-der-Waals interaction of atoms in dipolar Rydberg states

    Science.gov (United States)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power

  19. Finite-size corrections in simulation of dipolar fluids

    Science.gov (United States)

    Belloni, Luc; Puibasset, Joël

    2017-12-01

    Monte Carlo simulations of dipolar fluids are performed at different numbers of particles N = 100-4000. For each size of the cubic cell, the non-spherically symmetric pair distribution function g(r,Ω) is accumulated in terms of projections gmnl(r) onto rotational invariants. The observed N dependence is in very good agreement with the theoretical predictions for the finite-size corrections of different origins: the explicit corrections due to the absence of fluctuations in the number of particles within the canonical simulation and the implicit corrections due to the coupling between the environment around a given particle and that around its images in the neighboring cells. The latter dominates in fluids of strong dipolar coupling characterized by low compressibility and high dielectric constant. The ability to clean with great precision the simulation data from these corrections combined with the use of very powerful anisotropic integral equation techniques means that exact correlation functions both in real and Fourier spaces, Kirkwood-Buff integrals, and bridge functions can be derived from box sizes as small as N ≈ 100, even with existing long-range tails. In the presence of dielectric discontinuity with the external medium surrounding the central box and its replica within the Ewald treatment of the Coulombic interactions, the 1/N dependence of the gmnl(r) is shown to disagree with the, yet well-accepted, prediction of the literature.

  20. Exploring strain-promoted 1,3-dipolar cycloadditions of end functionalized polymers

    NARCIS (Netherlands)

    Ledin, Petr A; Kolishetti, Nagesh; Hudlikar, Manish S; Boons, Geert-Jan

    2014-01-01

    Strain-promoted 1,3-dipolar cycloaddition of cyclooctynes with 1,3-dipoles such as azides, nitrones, and nitrile oxides, are of interest for the functionalization of polymers. In this study, we have explored the use of a 4-dibenzocyclooctynol (DIBO)-containing chain transfer agent in reversible

  1. Solid-state NMR detection of 14N-13C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.

    Science.gov (United States)

    Middleton, David A

    2011-02-01

    Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.

  2. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Ré mi; Markowich, Peter A; Sparber, Christof

    2008-01-01

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  3. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Rémi

    2008-09-29

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  4. Evidence of the extended orientational order in amorphous alloys obtained from magnetic measurements

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Tejada, J.

    1993-01-01

    Magnetic measurements of R-Fe-B (R = rare earth) amorphous alloys show that magnetic anisotropy axes are correlated on the scale ∼ 100 A. The X-ray study of these materials does not reveal any positional correlations beyond the 10 A scale. These observations support theoretical suggestions that the orientational order in amorphous systems can be much more extended than the positional order. (orig.)

  5. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    International Nuclear Information System (INIS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm 0.65 Ca 0.35 MnO 3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario

  6. Neutron Diffraction Studies of Nuclear Magnetic Ordering in Copper

    DEFF Research Database (Denmark)

    Jyrkkiö, T.A.; Huiku, M.T.; Siemensmeyer, K.

    1989-01-01

    for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized...... to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation...

  7. Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order

    Energy Technology Data Exchange (ETDEWEB)

    Pelka, R; Balanda, M [Institute of Physics PAN, Radzikowskiego 152, 31-342, Krakow (Poland); Pinkowicz, D; Drath, O; Nitek, W; Sieklucka, B [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Rams, M; Majcher, A, E-mail: robert.pelka@ifj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2011-07-06

    Isostructural series of chemical formula {l_brace}[M{sup II}(pirazol){sub 4}]{sub 2}[Nb{sup IV}(CN){sub 8}]{center_dot} 4H{sub 2}O{r_brace}{sub n} (M{sup II} = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.

  8. A search for strong, ordered magnetic fields in Herbig Ae/Be stars

    Science.gov (United States)

    Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.

    2007-04-01

    The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe

  9. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings - an assessment of the interrelation of NMR restraints

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pernille Rose; Axelsen, Jacob Bock [University of Copenhagen, Institute of Molecular Biology (Denmark); Lerche, Mathilde Hauge [Amersham Health (Sweden); Poulsen, Flemming M. [University of Copenhagen, Institute of Molecular Biology (Denmark)], E-mail: fmp@apk.molbio.ku.dk

    2004-01-15

    We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on {sup 1}H{sup N}-{sup 15}N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of {sup 13}CO-{sup 13}C{sup {alpha}} and {sup 15}N-{sup 13}CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

  10. Dipolar dark matter

    International Nuclear Information System (INIS)

    Masso, Eduard; Mohanty, Subhendra; Rao, Soumya

    2009-01-01

    If dark matter (DM) has nonzero direct or transition, electric or magnetic dipole moment then it can scatter nucleons electromagnetically in direct detection experiments. Using the results from experiments like XENON, CDMS, DAMA, and COGENT, we put bounds on the electric and magnetic dipole moments of DM. If DM consists of Dirac fermions with direct dipole moments, then DM of mass less than 10 GeV is consistent with the DAMA signal and with null results of other experiments. If on the other hand DM consists of Majorana fermions then they can have only nonzero transition moments between different mass eigenstates. We find that Majorana fermions with masses 38 χ < or approx. 100-200 GeV and mass splitting of the order of (150-200) keV can explain the DAMA signal and the null observations from other experiments and in addition give the observed relic density of DM by dipole-mediated annihilation. The absence of the heavier DM state in the present Universe can be explained by dipole-mediated radiative decay. This parameter space for the mass and for dipole moments is allowed by limits from L3 but may have observable signals at LHC.

  11. Magnetic ordering at low temperatures in some random superconducting and insulating compounds

    International Nuclear Information System (INIS)

    Hueser, D.

    1985-01-01

    This thesis presents the results of some investigations on the magnetic ordering phenomena in some random superconducting and insulating materials. The results are described of an investigation of the coexistence of superconductivity and random magnetic freezing in (Th,Nd)Ru 2 . On the basis of various measurements as function of temperature and external magnetic field the author found that spin glass-like freezing can occur far below the superconductivity and even that a sample may re-enter the superconducting state below a freezing temperature. Associated with the isothermal remanent magnetization of a random magnetic material he observed strong anomalies in the critical field versus temperature curves. Also a magnetic field memory effect has been found. (Auth.)

  12. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  13. Polar order in nanostructured organic materials

    Science.gov (United States)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.

    2003-02-01

    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.

  14. Evidence for a New Magnetoelectric Effect of Current-Induced Magnetization in a Toroidal Magnetic Ordered State of UNi$_4$B

    OpenAIRE

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-01-01

    Magnetization measurements under direct electric currents were performed for toroidal magnetic ordered state of UNi$_4$B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local inversion symmetry.We found that each of the electric currents parallel to [$2\\bar{1}\\bar{1}0$] and [$0001$] in the hexagonal 4-index notation induces uniform magnetization in the direction of [$01\\bar{1}0$].The observed behavior of the induced magnetization is essent...

  15. Temperature Variation of the Magnetic Structure of HoSb

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Kjems, Jørgen; Vogt, O.

    1980-01-01

    Neutron diffraction has been used to show that the magnetic moment vector in the antiferromagnet HoSb changes direction as a function of temperature below TN=5.7K. The experimental results are in qualitative agreement with a recent theoretical prediction by Jensen et al. (1980) which ascribe the ...... the changing directions to a competition between the crystal fields and the dipolar interactions....

  16. Bandstructure study of magnetic and orbital order in BaCoO3

    International Nuclear Information System (INIS)

    Pardo, V.; Blaha, P.; Iglesias, M.; Baldomir, D.; Schwarz, K.; Pereiro, M.; Botana, J.; Arias, J.E.

    2005-01-01

    Ab initio calculations were performed in the quasi-one-dimensional BaCoO 3 using the FP-APW+lo method as implemented in the WIEN2k package utilizing the LDA+U approach. Several magnetic configurations were studied, exploring different intra- and inter-chain couplings. The most stable configuration is the ferromagnetic low-spin state. The electronic structure of the Co 4+ ion (t 2g 5 ) has an orbital degree of freedom. When an 'alternating-orbital' ordering is allowed along the Co chains, the energy of the system is drastically reduced, whereas the magnetic order is a secondary effect. This orbital ordered state reproduces the experimentally found semiconducting behaviour, which is analysed studying the bandstructure of the material

  17. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    International Nuclear Information System (INIS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Aeschlimann, Martin; Cinchetti, Mirko; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G F; Wurmehl, Sabine; Balke, Benjamin

    2015-01-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics.Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co 2 Fe 1 − x Mn x Si. The local ordering is studied by 59 Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  18. Dipolar versus octupolar triphenylamine-based fluorescent organic nanoparticles as brilliant one- and two-photon emitters for (bio)imaging.

    Science.gov (United States)

    Parthasarathy, Venkatakrishnan; Fery-Forgues, Suzanne; Campioli, Elisa; Recher, Gaëlle; Terenziani, Francesca; Blanchard-Desce, Mireille

    2011-11-18

    Two related triphenylamine-based dipolar and octupolar fluorophores are used to prepare aqueous suspensions of fluorescent organic nanoparticles (FONs) via the reprecipitation method. The obtained spherical nanoparticles (30-40 nm in diameter) are fluorescent in aqueous solution (up to 15% fluorescence quantum yield) and exhibit extremely high one- and two-photon brightness, superior to those obtained for quantum dots. Despite the two chromophores showing similar fluorescence in solution, the fluorescence of FONs made from the octupolar derivative is significantly red-shifted compared to that generated by the dipolar FONs. In addition, the maximum two-photon absorption cross section of the FONs made from the octupolar derivative is 55% larger than that of the dipolar derivative FONs. The experimental observations provide evidence that the different molecular shape (rodlike versus three-branched) and charge distribution (dipolar versus octupolar) of the two chromophores strongly affect the packing inside the nanoparticles as well as their spectroscopic properties and colloidal stability in pure water. The use of these FONs as probes for biphotonic in-vivo imaging is investigated on Xenopus laevis tadpoles to test their utilization for angiography. When using FONs made from the octupolar dye, the formation of microagglomerates (2-5 μm scale) is observed in vivo, with subsequent lethal occlusion of the blood vessels. Conversely, the nanoparticles of the dipolar dye allow acute imaging of blood vessels thanks to their suitable size and brightness, while no toxic effect is observed. Such a goal cannot be achieved with the dissolved dye, which permeates the vessel walls. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  20. Stacking of purines in water: the role of dipolar interactions in caffeine.

    Science.gov (United States)

    Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A

    2016-05-11

    During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.

  1. Critical behaviour of nanocrystalline gadolinium: evidence for random uniaxial dipolar universality class

    International Nuclear Information System (INIS)

    Ferdinand, A; Probst, A-C; Birringer, R; Michels, A; Kaul, S N

    2014-01-01

    We report on how nanocrystal size affects the critical behaviour of the rare-earth metal Gd near the ferromagnetic-to-paramagnetic phase transition. The asymptotic critical behaviour of the coarse-grained polycrystalline sample (with an average crystallite size of L≅100 μm) is that of a (pure) uniaxial dipolar ferromagnet, as is the case with single crystal Gd, albeit the width of the asymptotic critical region (ACR) is reduced. As the grain size approaches ∼30 nm, the ACR is so narrow that it could not be accessed in the present experiments. Inaccessibly narrow ACR for L ∼ 30 nm and continuous increase in the width of the ACR as L decreases from 16 to 9.5 nm basically reflect a crossover to the random uniaxial dipolar fixed point caused by the quenched random exchange disorder prevalent at the internal interfaces (grain boundaries). (paper)

  2. Scaling parallels in the non-Debye dielectric relaxation of ionic glasses and dipolar supercooled liquids

    International Nuclear Information System (INIS)

    Sidebottom, D.L.; Green, P.F.; Brow, R.K.

    1997-01-01

    We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion σ(ω)∝ω n , where n∼0.67, but frequently the dielectric response is analyzed using the electrical modulus M * (ω)=1/var-epsilon * (ω), where var-epsilon * (ω)=var-epsilon(ω)-iσ(ω)/ω is the complex permittivity. We reexamine two specific examples where the shape of M * (ω) changes in response to changes in (a) temperature and (b) ion concentration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes in the shape of M * (ω) occur in the absence of changes in the scaling properties of σ(ω), for which n remains constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which var-epsilon * (ω) likewise exhibits changes in shape on approach to the glass transition. Guided by similarities of M * (ω) in ionic glasses and var-epsilon * (ω) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon and co-workers for var-epsilon * (ω) of dipolar relaxation also appears valid for M * (ω) in the ionic case. While this suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how the dielectric response can be scaled in a linear manner using an alternative data representation. copyright 1997 The American Physical Society

  3. Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects

    Science.gov (United States)

    Jaubert, L. D. C.; Lin, T.; Opel, T. S.; Holdsworth, P. C. W.; Gingras, M. J. P.

    2017-05-01

    Motivated by recent realizations of Dy2 Ti2 O7 and Ho2 Ti2 O7 spin ice thin films, and more generally by the physics of confined gauge fields, we study a model spin ice thin film with surfaces perpendicular to the [001] cubic axis. The resulting open boundaries make half of the bonds on the interfaces inequivalent. By tuning the strength of these inequivalent "orphan" bonds, dipolar interactions induce a surface ordering equivalent to a two-dimensional crystallization of magnetic surface charges. This surface ordering may also be expected on the surfaces of bulk crystals. For ultrathin films made of one cubic unit cell, once the surfaces have ordered, a square ice phase is stabilized over a finite temperature window. The square ice degeneracy is lifted at lower temperature and the system orders in analogy with the well-known F transition of the 6-vertex model. To conclude, we consider the addition of strain effects, a possible consequence of interface mismatches at the film-substrate interface. Our simulations qualitatively confirm that strain can lead to a smooth loss of Pauling entropy upon cooling, as observed in recent experiments on Dy2 Ti2 O7 films.

  4. Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.

  5. Magnetic and magnetocaloric properties in La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3} exhibiting first-order and second-order magnetic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ho, T.A. [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Dang, N.T. [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam); Phan, The-Long [Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Yang, D.S. [Physics Division, School of Science Education, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, B.W. [Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Yu, S.C., E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2016-08-15

    Polycrystalline orthorhombic samples La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3} (x = 0–0.09) were prepared by solid-state reaction. The study of magnetic properties revealed that the ferromagnetic-paramagnetic (FM-PM) transition temperature (T{sub C}) increases from 255 to about 271 K with increasing Na-doping content (x) from 0 to 0.09, respectively. Around the T{sub C}, we have found the samples showing a large magnetocaloric (MC) effect with maximum values of magnetic entropy change (|ΔS{sub max}|) of 7–8 J kg{sup −1} K{sup −1} and relative cooling power RCP = 232–236 J/kg for the samples x = 0.03–0.09 in a magnetic-field interval ΔH = 40 kOe. Detailed analyses of isothermal magnetization data M(T, H) based on Banerjee's criteria indicated a first-to-second-order magnetic-phase transformation taking place at a threshold Na-doping concentration x{sub c} ≈ 0.06. This could also be observed clearly from the feature of entropy universal curves. An assessment of the magnetic-ordering exponent N = dLn|ΔS{sub m}|/dLnH demonstrates an existence of short-range magnetic order in the samples. We believe that the changes of the magnetic properties and MC effect in La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3} caused by Na doping are related to the changes in the structural parameters and Mn{sup 4+}/Mn{sup 3+} ratio, which are confirmed by the geometrical and electronic analyses based on X-ray diffraction and X-ray absorption fine structure. - Highlights: • Geometrical and electronic structures of La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3}. • Threshold of first-to-second-order phase transformation in La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3}. • Large magneto-caloric effect with |ΔS{sub max}| ≈ 7–8 J kg{sup −1} K{sup −1}, and RCP = 232–236 J/kg. • Universal curve of magnetic-entropy change.

  6. Ordering due to disorder in frustrated quantum magnetic system

    International Nuclear Information System (INIS)

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  7. Understanding the physics of magnetic nanoparticles and their applications in the biomedical field

    Science.gov (United States)

    Laha, Suvra Santa

    The study of magnetic nanoparticles is of great interest because of their potential uses in magnetic-recording, medical diagnostic and therapeutic applications. Additionally, they also offer an opportunity to understand the physics underlying the complex behavior exhibited by these materials. Two of the most important relaxation phenomena occurring in magnetic nanoparticles are superparamagnetic blocking and spin-glass-like freezing. In addition to features attributed to superparamagnetism, these nanoparticles can also exhibit magnetic relaxation effects at very low temperatures (≤ 50 K). Our studies suggest that all structural defects, and not just surface spins, are responsible for the low-temperature glass-like relaxation observed in many magnetic nanoparticles. The characteristic dipolar interaction energy existing in an ensemble of magnetic nanoparticles does not apparently depend on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution. Our findings revealed that incorporating a small percentage of boron can stabilize the spinel structure in Mn 3O4 nanoparticles. We have also demonstrated that the dipolar interactions between the magnetic cores can be tuned by introducing non-magnetic nanoparticles. In particular, we studied the magnetic properties of Gd-doped Fe3O4 nanoparticles, a potential applicant for T1--T2 dual-modal MRI contrast agent. We have explored the interactions of BiFeO3 nanoparticles on live cells and the binding of FITC-conjugated Fe3O 4 nanoparticles with artificial lipid membranes to investigate these materials as candidates in medical imaging. Taken together, these studies have advanced our understanding of the fundamental physical principles that governs magnetism in magnetic materials with a focus on developing these nanoparticles for advanced biomedical applications. The materials developed and studied expand the repertoire of tools available for

  8. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Melenev, Petr, E-mail: melenev@icmm.ru [Ural Federal University, 4, Turgeneva str., 620000 Ekaterinburg (Russian Federation); Institute of Continuous Media Mechanics, 1, Koroleva str., 614013 Perm (Russian Federation)

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.

  9. Modulation of intermolecular interactions in single-molecule magnets

    Science.gov (United States)

    Heroux, Katie Jeanne

    Polynuclear manganese clusters exhibiting interesting magnetic and quantum properties have been an area of intense research since the discovery of the first single-molecule magnet (SMM) in 1993. These molecules, below their blocking temperature, function as single-domain magnetic particles which exhibit classical macroscale magnetic properties as well as quantum mechanical phenomena such as quantum tunnelling of magnetization (QTM) and quantum phase interference. The union of classical and quantum behavior in these nanomaterials makes SMMs ideal candidates for high-density information storage and quantum computing. However, environmental coupling factors (nuclear spins, phonons, neighboring molecules) must be minimized if such applications are ever to be fully realized. The focus of this work is making small structural changes in well-known manganese SMMs in order to drastically enhance the overall magnetic and quantum properties of the system. Well-isolated molecules of high crystalline quality should lead to well-defined energetic and spectral properties as well. An advantage of SMMs over bulk magnetic materials is that they can be chemically altered from a "bottom-up" approach providing a synthetic tool for tuning magnetic properties. This systematic approach is utilized in the work presented herein by incorporating bulky ligands and/or counterions to "isolate" the magnetic core of [Mn4] dicubane SMMs. Reducing intermolecular interactions in the crystal lattice (neighboring molecules, solvate molecules, dipolar interactions) is an important step toward developing viable quantum computing devices. Detailed bulk magnetic studies as well as single crystal magnetization hysteresis and high-frequency EPR studies on these sterically-isolated complexes show enhanced, and sometimes even unexpected, quantum dynamics. The importance of intra- and intermolecular interactions remains a common theme throughout this work, extending to other SMMs of various topology including

  10. On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles

    Science.gov (United States)

    Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Artemyev, Anton V.; Birn, Joachim

    2018-01-01

    Dipolarizing flux bundles (DFBs), earthward propagating structures with enhanced northward magnetic field Bz, are usually believed to carry a distinctly different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, have been recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFB. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFB, whereas for lower κ values the DFB ions become more isotropic. Here we utilize a simple, test particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the anisotropy originates from successive ion reflections and reentries to the DFB, during which the ions are consecutively accelerated in the perpendicular direction by the DFB-associated electric field. This consecutive acceleration may be interrupted, however, when magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories become stochastic outside the DFB, which makes the reflected ions less likely to return to the DFB for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected toward Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between magnetotail and inner magnetosphere.

  11. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  12. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad, E-mail: apjena@bose.res.in [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab, E-mail: biplab.sanyal@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-01-15

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied.

  13. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    International Nuclear Information System (INIS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied

  14. Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes.

    Science.gov (United States)

    Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok

    2017-03-01

    To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T 1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T 1D values. Both ihMTR and T 1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T 1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Systematic parameter study of dynamo bifurcations in geodynamo simulations

    Science.gov (United States)

    Petitdemange, Ludovic

    2018-04-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike in previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the geostrophic zonal flow can develop and participate to the dynamo mechanism for non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently. The following three regimes are distinguished: (i) Close to the onset of convection (Rac) with only the most critical convective mode (wave number) being present, dynamos set in supercritically in the Ekman number regime explored here and are dipole-dominated. Larger critical magnetic Reynolds numbers indicate that they are particularly inefficient. (ii) in the range 3 10) , the relative importance of zonal flows increases with Ra in non-magnetic models. The field topology depends on the magnitude of the initial magnetic field. The dipolar branch has a subcritical behavior whereas the multipolar branch has a supercritical behavior. By approaching more realistic parameters, the extension of this bistable regime increases. A hysteretic behavior questions the common interpretation for geomagnetic reversals. Far above the dynamo threshold (by increasing the magnetic Prandtl number), Lorentz forces contribute to the first order force balance, as predicted for planetary dynamos. When

  16. Magnetic separation from superparamagnetic particle suspensions

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2009-01-01

    We investigate the magnetophoretic separation of magnetic microparticles from a non-dilute flow in a microfluidic channel and their subsequent field-induced aggregation under the influence of an externally applied magnetic force. This force induces dipolar interactions between the particles that aid in their separation from the flow. Existing analytical models for dilute suspensions cannot be extended to non-dilute suspensions in which interparticle magnetic interactions play an important role. We therefore conduct a parametric investigation of the mechanics of this problem in a microcapillary flow through simulations and experimental visualization. When a magnetic field is applied, the magnetic microparticles form an aggregate on the channel wall that is influenced by the competition between the holding magnetic force and the aggregate-depleting flow shear force. Microparticle collection in the aggregate increases linearly with increasing magnetic field strength and is characterized by distinct buildup and washaway phases. The collected microparticle volume fraction in an aggregate is found to depend on a single dimensional group that depends upon characteristic system parameters.

  17. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  18. Magnetic order in Pu2M3Si5 (M = Co, Ni)

    International Nuclear Information System (INIS)

    Bauer, E D; Tobash, P H; Mitchell, J N; Kennison, J A; Ronning, F; Scott, B L; Thompson, J D

    2011-01-01

    The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu 2 M 3 Si 5 (M = Co, Ni) are reported. Pu 2 Ni 3 Si 5 crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, which can be considered a variant of the BaAl 4 tetragonal structure, while Pu 2 Co 3 Si 5 adopts the closely related monoclinic Lu 2 Co 3 Si 5 type. Magnetic order is observed in both compounds, with Pu 2 Ni 3 Si 5 ordering ferromagnetically at T C = 65 K then undergoing a transition into an antiferromagnetic state below T N = 35 K. Two successive magnetic transitions are also observed at T mag1 = 38 K and T mag2 = 5 K in Pu 2 Co 3 Si 5 . Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient γ ∼ 100 mJ/mol Pu K 2 in the magnetic state with comparable RKKY and Kondo energy scales.

  19. Wave Vector Dependent Susceptibility at T>Tc in a Dipolar Ising Ferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Holmes, L. M:; Guggenheim, H. J.

    1974-01-01

    The wave-vector-dependent susceptibility of LiTbF4 has been investigated by means of neutron scattering. The observations show a singularity of the susceptibility near wave vector Q=0 which is characteristic of the dipolar Coulomb interaction and good agreement with theory is obtained...

  20. Micromagnetic simulation of two-body magnetic nanoparticles

    Science.gov (United States)

    Li, Fei; Lu, Jincheng; Yang, Yu; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2017-05-01

    Field-induced magnetization dynamics was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value on nanometer scale in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The same results were observed when varying the radius of particles. The micromagnetic results are consistent with the previous theoretical prediction where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles could be implemented as a composite information bit.

  1. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  2. Regio- and stereochemistry of 1,3-dipolar cycloaddition of nitrile oxides to alkenes

    International Nuclear Information System (INIS)

    Litvinovskaya, Raisa P; Khripach, Vladimir A

    2001-01-01

    The published data on the chemistry of intermolecular 1,3-dipolar cycloaddition of nitrile oxides to different types of alkene derivatives are systematised. Various aspects of stereo- and regiochemistry of this reaction are considered. The bibliography includes 182 references.

  3. Magnetic-Field-Enhanced Incommensurate Magnetic Order in the Underdoped High-Temperature Superconductor YBa2Cu3O6.45

    DEFF Research Database (Denmark)

    Haug, D.; Hinkov, V.; Suchaneck, A.

    2009-01-01

    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift...

  4. Study of the effect of magnetic ordering on order–disorder transitions in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad [Department of Condensed Matter and Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit@bose.res.in [Department of Condensed Matter and Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-06-01

    We set up a mean-field approximation in a random Ising model characterized by two order parameters: the local sublattice magnetization and a mean-field occupation variable which act as an order parameter for the order–disorder transition. In the effective model Hamiltonian the two order-parameters are coupled. We solve the coupled equations arising from this to describe the total phase diagram. The exchange energies for FeCo alloys have then been accurately obtained from first-principles based on the technique of orbital peeling and a Monte Carlo analysis using a coupled Metropolis-Kawasaki updating has been carried out. Our results reasonably successfully agree with earlier experimental data. - Highlights: • In this paper we study the effect of magnetic ordering on order–disorder transitions in binary alloys. • It describes a system with two order parameters, magnetic and chemical ordering, which are coupled. • We set up a mean-field theory for initial understanding and then carry out Monte Carlo simulations. • One parameter follows Kawasaki-dynamics and the other Metropolis. • It is an interesting system for study and we apply it to FeCo with exchanges calculated from first principles techniques.

  5. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics

    KAUST Repository

    Sparber, Christof; Markowich, Peter; Huang, Zhongyi

    2010-01-01

    We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.

  6. Electronic structure and magnetic ordering of the unconventional antiferromagnet Yb3Pt4

    KAUST Repository

    Schwingenschlö gl, Udo; Gó mez, Javier Alexandra M; Grau-Crespo, Ricardo

    2009-01-01

    Applying density functional theory within the generalized gradient approximation, we investigate the electronic and magnetic properties of the intermetallic rare-earth system Yb3Pt4. This material recently has been put forward as host for quantum criticality, while details of the magnetic ordering could not be established (Bennett N. C.et al., J. Magn. & Magn. Mater., 321 (2009) 2021). In this context, we investigate the effect of spin-orbit coupling and compare various spin patterns from the energetic point of view, which enables us to determine the electronic ground state of Yb3Pt4. The assumption of an elementary superexchange mechanism yields a magnetic-coupling constant in good agreement with the experimental ordering temperature. Copyright © 2009 EPLA.

  7. Electronic structure and magnetic ordering of the unconventional antiferromagnet Yb3Pt4

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Applying density functional theory within the generalized gradient approximation, we investigate the electronic and magnetic properties of the intermetallic rare-earth system Yb3Pt4. This material recently has been put forward as host for quantum criticality, while details of the magnetic ordering could not be established (Bennett N. C.et al., J. Magn. & Magn. Mater., 321 (2009) 2021). In this context, we investigate the effect of spin-orbit coupling and compare various spin patterns from the energetic point of view, which enables us to determine the electronic ground state of Yb3Pt4. The assumption of an elementary superexchange mechanism yields a magnetic-coupling constant in good agreement with the experimental ordering temperature. Copyright © 2009 EPLA.

  8. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  9. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    Science.gov (United States)

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  10. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  11. DipoCoup: A versatile program for 3D-structure homology comparison based on residual dipolar couplings and pseudocontact shifts

    International Nuclear Information System (INIS)

    Meiler, Jens; Peti, Wolfgang; Griesinger, Christian

    2000-01-01

    A program, DipoCoup, is presented that allows to search the protein data bank for proteins which have a three dimensional fold that is at least partially homologous to a protein under investigation. The three dimensional homology search uses secondary structure alignment based on chemical shifts and dipolar couplings or pseudocontact shifts for the three dimensional orientation of secondary structure elements. Moreover, the program offers additional tools for handling and analyzing dipolar couplings

  12. Exact Solutions for Internuclear Vectors and Backbone Dihedral Angles from NH Residual Dipolar Couplings in Two Media, and their Application in a Systematic Search Algorithm for Determining Protein Backbone Structure

    International Nuclear Information System (INIS)

    Wang Lincong; Donald, Bruce Randall

    2004-01-01

    We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the backbone (φ,ψ) angles from two backbone vectors in consecutive peptide planes. These equations make it possible to compute, exactly and in constant time, the backbone (φ,ψ) angles for a residue from RDCs in two media on any single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determining a protein backbone substructure consisting of α-helices and β-sheets. Our algorithm employs a systematic search technique to refine the conformation of both α-helices and β-sheets and to determine their orientations using exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very sparse distance restraints between pairs of α-helices and β-sheets refined by the systematic search. The algorithm has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds and four NOE distance restraints. Further, our results show that both the global orientations and the conformations of α-helices and β-strands can be determined with high accuracy using only two RDCs per residue. The algorithm requires, as its input, backbone resonance assignments, the identification of α-helices and β-sheets as well as sparse NOE distance and hydrogen bond restraints.Abbreviations: NMR - nuclear magnetic resonance; RDC - residual dipolar coupling; NOE - nuclear Overhauser effect; SVD - singular value decomposition; DFS - depth-first search; RMSD - root mean square deviation; POF - principal order frame; PDB - protein data bank; SA - simulated annealing; MD - molecular dynamics

  13. Synthesis of 1,4-naphthoquinone derivatives using 1,3-dipolar cycloaddition and Sonogashira reactions

    Directory of Open Access Journals (Sweden)

    Wilson Silva do Nascimento

    2010-04-01

    Full Text Available Naphthoquinones are known according to their important bio-activities, such as their antitumoral and topoisomerase inhibition properties. From 2-azido (3 or 2,3-diacetylene-1,4-naphthoquinone (4 it was possible to obtain triazole derivatives (naphthoquinonic. This work describes the synthesis of two novel molecules, with triazole groups linked to 1,4-naphthoquinone using the 1,3-dipolar cycloaddition and Sonogashira reactions. The synthetic strategy followed two routes (Scheme 1. First, we synthesized the 2-bromo-1,4-naphthoquinone (2, yield 98% by using Br2 and CH3CO2H, and then used it to obtain 2-azido-1,4-naphthoquinone (3, yield 62% from compound 1, along with ethanolic solution (reflux and NaN3. Finally, we prepared 1,2,3-triazole compounds (4a, b by 1,3-dipolar cycloaddition, involving compound (3 and terminal acetylenes (phenylacetylene, a and glycoside (b using Cu(OAc2 and ascorbate, under argon atmosphere. During the second step, 2,3-dibromo-1,4-naphthoquinone was prepared using Br2/CH2Cl2 at room temperature. From compound (5 it was possible to synthesize (6, catalyzed by Pd(PPh32Cl2/CuI/Et3N, under argon atmosphere, in 40% yield. The 1,3-dipolar cycloaddition reactions involving 2-azido-1,4-naphthoquinone (3 and alkynes (a, yield 23% and b, yield 30% were conducted using the solvent system, (1:1 terc-BuOH/H2O/r.t/ 20 mol% of Cu(OAc2 and sodium ascorbate, under stirring during 24 hours. The reaction involving 2,3-dibromo-1,4-naphthoquinone (5, yield 65% and phenylacetylene was prepared using the solvent mixture (2:1 DMSO/CHCl3 and catalytic amount of CuI/Pd(PPh32Cl2. The final products were characterized by elemental analysis and spectrometric techniques (IR, NMR 1H and 13C. Two novel triazole compounds were synthesized from naphthoquinones by 1,3-dipolar cycloaddition from suitable 1,4-naphthoquinones obtained by Sonogashira couplings.

  14. Conformational disorder in folded and intrinsically disordered proteins from nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Salmon, Loic

    2010-01-01

    Biological macromolecules are, by essence, dynamical systems. While the importance of this flexibility is nowadays well established, the accurate characterization of the conformational disorder of these systems remains an important challenge. Nuclear magnetic resonance spectroscopy is a unique tool to probe these motions at atomic level, through the analysis of spin relaxation or residual dipolar couplings. The latter allows all motions occurring at timescales faster than the millisecond to be investigated, including physiologically important timescales. The information presents in those couplings is interpreted here using mainly analytical approaches in order to quantify the amounts of dynamics present in folded protein, to determine the direction of those motions and to obtain structural information within this conformational disorder. These analytical approaches are complemented by numerical methods, that allowed the observation of phenomena from a different point of view or the investigation of other systems such as intrinsically disordered proteins. All of these studies demonstrate an important complementarity between structural order and conformational disorder. (author)

  15. Non-dipolar degrees of freedom in neptunium dioxide

    International Nuclear Information System (INIS)

    Santini, Paolo; Amoretti, Giuseppe

    2002-01-01

    We discuss the role of degrees of freedom different from the magnetic dipole in NpO 2 . Electric-quadrupole degrees of freedom appear to produce a large splitting of the main crystal-field (CEF) transition, due to the formation of mixed CEF-phonon states. A phase transition occurs at 25 K, and its phenomenology is inconsistent with a magnetic-dipole or an electric-quadrupole order parameter (OP). A magnetic-octupole of Γ 2 symmetry appears to be the best candidate OP. Such quantity can be detected in principle in a neutron diffraction experiment. The corresponding form factor is discussed. (author)

  16. Nuclear magnetic resonance study of alkane conformational statistics

    Science.gov (United States)

    Burnell, E. Elliott; Weber, Adrian C. J.; de Lange, Cornelis A.; Meerts, W. Leo; Dong, Ronald Y.

    2011-12-01

    NMR spectra of ethane, propane, and n-butane as solutes in the nematic liquid crystals 4-n-pentyl-4'-cyanobiphenyl (5CB) and Merck ZLI 1132 (1132) are investigated over a wide temperature range. The ratios of dipolar couplings of ethane to propane are constant over the entire temperature range. Assuming that this constancy applies to the butane conformers facilitates the separation of probability from order parameter. This separation allows the investigation of conformational distribution without the need of invoking any model for the anisotropic intermolecular potential. The results give an order matrix that is consistent with that predicted from model potentials that describe the orientational potential in terms of short-range size and shape effects. The isotropic intermolecular potential contribution to the trans-gauche energy difference Etg is found to be temperature dependent with the values and variation in agreement with that found when the same results are analyzed using the chord model for anisotropic interactions [A. C. J. Weber and E. E. Burnell, Chem. Phys. Lett. 506, 196 (2011)]. The fit obtained for 9 spectra in 5CB (63 dipolar couplings) has an RMS difference between experimental and calculated dipolar couplings of 2.7 Hz, while that for the 16 spectra in 1132 (112 couplings) is 6.2 Hz; this excellent fit with nine adjustable parameters suggests that the assumption of equal temperature dependencies of the order parameters for ethane, propane, and each conformer of butane is correct. Also the fit parameters (Etg and the methyl angle increase) obtained for 1132 and 5CB agree. The results indicate that the chord model, which was designed to treat hydrocarbon chains, is indeed the model of choice for these chains. The temperature variation of Etg provides a challenge for theoreticians. Finally, even better fits to the experimental dipolar couplings are obtained when the energy in the Boltzmann factor is used for scaling ethane to butane results. However

  17. Empirical parameters for solvent acidity, basicity, dipolarity, and polarizability of the ionic liquids [BMIM][BF4] and [BMIM][PF6].

    Science.gov (United States)

    del Valle, J C; García Blanco, F; Catalán, J

    2015-04-02

    The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures. From the multiparameter approach using the four pure solvent scales one can draw the conclusion that (a) the solvent influence of [BMIM][BF4] parallels that of formamide at 293 K, both of them miscible with water; (b) [BMIM][PF6] shows a set of solvatochromic parameters similar to that of chloroacetonitrile, both of them water insoluble; and (c) that the corresponding solvent acidity and basicity of the ionic liquids can be explained to a great extent from the cation species by comparing the empirical parameters of [BMIM](+) with those of the solvent 1-methylimidazole. The insolubility of [BMIM][PF6] in water as compared to [BMIM][BF4] is tentatively connected to some extent to the larger molar volume of the anion [PF6](-), and to the difference in basicity of [PF6](-) and [BF4](-).

  18. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  19. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  20. Magnetic-field dependence of impurity-induced muon depolarization in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Dodds, S.A.; Richards, P.M.; MacLaughlin, D.E.; Boekema, C.

    1983-01-01

    We have measured the magnetic-field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppM), AgGd (340 ppM) and AgEr (300 ppM). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric-field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence

  1. Magnetic field dependence of impurity-induced muon depolarization in noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Yaouanc, A. (Los Alamos National Lab., NM (USA)); Dodds, S.A. (Rice Univ., Houston, TX (USA). Dept. of Physics); Richards, P.M. (Sandia National Labs., Albuquerque, NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Boekema, C. (Texas Tech Univ., Lubbock (USA))

    1984-01-01

    The authors have measured the magnetic field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppm), AgGd (340 ppm) and AgEr (300 ppm). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence.

  2. Magnetization reversal processes in bonded magnets made from a mixture of Nd-(Fe,Co)-B and strontium ferrite powders

    Science.gov (United States)

    Dospial, M.; Plusa, D.

    2013-03-01

    Isotropic epoxy-resin bonded magnets composed of different amounts of Magnequench MQP-B and strontium ferrite powders have been prepared using a compression molding technique. The magnetic parameters for magnets with different amounts of strontium ferrite and magnetization reversal processes have been studied by the measurement of the initial magnetization curves, the major hysteresis loops measured at a field up to 14 T and sets of recoil loops. The enhancement of μ0MR and μ0HC is observed in comparison with the calculated values. From the recoil loops the field dependences of the reversible, irreversible and total magnetization components and the differential susceptibilities were derived. From the dependence of the irreversible magnetization component versus an applied field it was deduced that the main mechanism of magnetization reversal process is the pinning of domain walls in MQP-B and strontium ferrite grains. The interactions between the magnetic particles and grains have been examined by the analysis of the δM plot. The δM behavior of magnets with ferrite has been interpreted as being composed of magnetizing exchange coupling and demagnetizing dipolar interactions.

  3. Medical devices; neurological devices; classification of the transcranial magnetic stimulator for headache. Final order.

    Science.gov (United States)

    2014-07-08

    The Food and Drug Administration (FDA) is classifying the transcranial magnetic stimulator for headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcranial magnetic stimulator for headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  4. A statistical relationship between the geosynchronous magnetic field and substorm electrojet magnitude

    International Nuclear Information System (INIS)

    Lopez, R.E.; Rosenvinge, T. von

    1993-01-01

    In this paper the authors examine the relationship between geosynchronous magnetic field variations during substorms measured by GOES 5 and the auroral electrojet as measured by AE and Poste de la Baleine. As in previous studies, the authors find that the more taillike the field prior to the local onset, the greater the dipolarization of the field during the substorm. They also find that the greater the deviation of the field from a dipolar configuration, the larger the change in AE during the event. This implies that stronger cross-tail currents prior to the substorm are associated with larger substorm-associated westward electrojets and thus more intense substorms. Previous work has shown that in order to produce the observed taillike fields at geosynchronous altitude, the intense cross-tail current that builds up during the growth phase must be localized in the near-Earth (≤ 10 R E ) region. Since the westward electrojet is the ionospheric leg of the substorm current wedge, this result implies that the substorm-associated westward electrojet is drawn from the near-Earth region. In fact, the authors find that most of the current diversion occurs in the near-Earth magnetotail. Furthermore, they estimate that a diversion about half of the near-Earth cross-tail current can account for the current in the northern and southern westward electrojets associated with the substorm current wedge. 25 refs., 9 figs

  5. Separated CoFe{sub 2}O{sub 4}/CoFe nanoparticles by the SiO{sub x} matrix: revealing the intrinsic origin for the small remanence magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Geng, B. Q.; Ma, Y. Q., E-mail: yqma@ahu.edu.cn; Xu, Y. F.; Xu, S. T.; Sun, X.; Zheng, G. H.; Dai, Z. X. [Anhui University, Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science (China)

    2015-07-15

    In order to clarify the intrinsic reason for the smaller remanence (M{sub r})-to-saturation (M{sub s}) magnetization ratio M{sub r}/M{sub s} than that expected by the Stoner–Wohlfarth model in CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles in the previous report, we first prepared well-dispersed CoFe{sub 2}O{sub 4} nanoparticles, and then they were diluted in the SiO{sub 2} matrix followed by reduction in H{sub 2} as far as possible to exclude or reduce disadvantageous variables (such as the growth and aggregation of particles and the exchange coupling between soft magnetic particles in the process of reducing) affecting magnetic properties. Such an idea has not been taken into account before to our knowledge. The analyses on the magnetic results indicate that the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles herein reported are a pure dipolar system, in which the coercivity (H{sub c}) and M{sub r}/M{sub s} ratio are very sensitive to the anisotropy and the strength of dipolar interaction. These results signify that it is important to maintain the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles with higher anisotropy and weaker dipolar interaction for improving M{sub r}/M{sub s} and H{sub c}. This suggestion was further confirmed by our another result wherein an M{sub r}/M{sub s} value of 0.64 was obtained even though no exchange coupling was observed in the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles, and further work is in process. Graphical abstract: Numerous efforts have devoted to improve the values of M{sub s} and M{sub r}/M{sub s} by compositing hard CoFe{sub 2}O{sub 4} (CFO) ferrite with soft CoFe{sub 2} (CF) alloy, which unfortunately give the low M{sub r}/M{sub s} value (<0.5) even in presence of the exchange coupling. Key issues involve the preparation of CFO/CF composite. Previously the preparation of CFO/CF undergoes the synthesis of CFO and the subsequent reducing in the H{sub 2} ambient, as shown in Figure (a), while in this work well dispersed CFO

  6. Ultrafast responses of dipolar and octupolar compounds with dipicolinate as an electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaochuan, E-mail: ycwang@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Siyuan; Liu, Dajun; Wang, Guiqiu [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Xiao, Haibo [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2016-11-01

    Two dipolar compounds with dipicolinate as electron acceptor group named trans-dimethyl-4-[4’-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (M-1), trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (P-1) as well as a P-1 based multi-branched octupolar compound {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N,N-bis{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]} aniline (P-3) with intense two-photon fluorescence emission properties are systematically investigated by using steady-state absorption and fluorescence spectroscopy, Z-scan, and two-photon excited fluorescence (TPF) method. The two-photon absorption cross section of octupolar compound P-3 in THF solution is determined to be 376 GM, which is approximately 12 times greater than that of dipolar counterpart P-1 (32 GM). Transient absorption spectroscopy is employed to investigate the excited state dynamics of the dipolar and octupolar compounds. The formation and relaxation lifetimes of the intra-molecular charge transfer (ICT) state are determined to be in the ranges of several picoseconds and several-hundreds of picoseconds, respectively, for all the three compounds in THF solutions. An extended π-conjugated system and increased intra-molecular cooperative effect are responsible for the observed large two-photon absorption character. - Highlights: • Octupolar compound gain 12-fold enhancement of two photon absorption. • Dynamic properties of intra-molecular charge transfer state are determined. • Cooperative effect is responsible for great increase of two photon character.

  7. Structural and magnetic order of ThMn12-type rare earth-iron-aluminium intermetallics studied by neutron diffraction

    International Nuclear Information System (INIS)

    Schaefer, W.; Halevy, I.; Gal, J.

    2000-01-01

    neutron powder diffraction data of ThMn 12 -type compounds RFe 4 Al 8 , RFe 5 Al 7 , and RFe 6 Al 6 (R = heavy rare earth) are compared to work out the structural variations and the different magnetic properties of these ternary intermetallics as a function of increasing iron concentrations. The variations of unit cell metric, of atomic coordinations and of interatomic distances are discussed. A magnetic phase diagram is presented showing the increase of the magnetic ordering temperatures from 120 K to 340 K and the change of the magnetic order from two separate magnetic phase transitions of rare earth and iron sublattices to one common ferrimagnetic transition of both sublattices, when changing the ratio of Fe/Al atoms from 4/8 to 6/6, respectively. Long range order is hampered by frozen spins. Magnetically ordered rare earth and iron moments are given. (orig.)

  8. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    Science.gov (United States)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  9. Modelling of a plasma column sustained by a travelling circularly polarized electromagnetic wave (m=1 mode) in the presence of a constant axial magnetic field

    International Nuclear Information System (INIS)

    Benova, E.; Staikov, P.; Zhelyazkov, I.

    1992-01-01

    A set of equations modelling a low-pressure plasma column sustained by a travelling electromagnetic wave in the dipolar mode in the presence of a constant external magnetic field is presented. It is shown that, from a practical point of view, only the m = 1 mode (the right-hand-polarized wave) can sustain plasma columns in a wide region of gas-discharge conditions: plasma radius R, wave frequency ω, magnetic field B 0 and low pressures, irrespective of the nature of the gas. The main result of this study is that the magnetic field makes it possible to sustain a plasma column for values of σ smaller than σ cr = 0.3726, below which, in the absence of a magnetic field, the dipolar wave cannot produce a plasma. Moreover, at a fixed wave power, the magnetic field - in contrast with the case of plasma columns sustained by azimuthally symmetric waves - increases the plasma density and its axial gradient. The limit of an infinite external magnetic field (Ω → ∞) is also considered. A three-dimensional wave structure is obtained, and it indicates that the wave can be a generalized surface mode, a pure surface or a pseudosurface one. (author)

  10. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    Science.gov (United States)

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  11. Characterization and modelling of microwave multi dipole plasmas. Application to multi dipolar plasma assisted sputtering; Caracterization et modelisation des plasmas micro-onde multi-dipolaires. Application a la pulverisation assistee par plasma multi-dipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tan Vinh [Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2006-07-01

    The scaling up of plasma processes in the low pressure range remains a question to be solved for their rise at the industrial level. One solution is the uniform distribution of elementary plasma sources where the plasma is produced via electron cyclotron resonance (ECR) coupling. These elementary plasma sources are made up of a cylindrical permanent magnet (magnetic dipole) set at the end of a coaxial microwave line. Although of simple concept, the optimisation of these dipolar plasma sources is in fact a complex problem. It requires the knowledge, on one hand, of the configurations of static magnetic fields and microwave electric fields, and, on the other hand, of the mechanisms of plasma production in the region of high intensity magnetic field (ECR condition), and of plasma diffusion. Therefore, the experimental characterisation of the operating ranges and plasma parameters has been performed by Langmuir probes and optical emission spectroscopy on different configurations of dipolar sources. At the same time, in a first analytical approach, calculations have been made on simple magnetic field configurations, motion and trajectory of electrons in these magnetic fields, and the acceleration of electrons by ECR coupling. Then, the results have been used for the validation of the numerical modelling of the electron trajectories by using a hybrid PIC (particle-in-cell) / MC (Monte Carlo) method. The experimental study has evidenced large operating domains, between 15 and 200 W of microwave power, and from 0.5 to 15 mTorr argon pressure. The analysis of plasma parameters has shown that the region of ECR coupling is localised near the equatorial plane of the magnet and dependent on magnet geometry. These characterizations, applied to a cylindrical reactor using 48 sources, have shown that densities between 10{sup 11} and 10{sup 12} cm{sup -3} could be achieved in the central part of the volume at a few mTorr argon pressures. The modelling of electron trajectories near

  12. Inclusion Compound Based Approach to Arrays of Artificial Dipolar Molecular Rotors: Bulk Inclusions

    Czech Academy of Sciences Publication Activity Database

    Kobr, L.; Zhao, K.; Shen, Y.; Polívková, Kateřina; Shoemaker, R. K.; Clark, N.A.; Price, J. C.; Rogers, C. T.; Michl, Josef

    2013-01-01

    Roč. 78, č. 5 (2013), s. 1768-1777 ISSN 0022-3263 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : solid-state dynamics * phosphonitrilic compounds * aromatic nanochannels * triethylamine Subject RIV: CC - Organic Chemistry Impact factor: 4.638, year: 2013

  13. Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

    Science.gov (United States)

    Šimkanin, Ján; Kyselica, Juraj

    2017-12-01

    Numerical simulations of the geodynamo are becoming more realistic because of advances in computer technology. Here, the geodynamo model is investigated numerically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY dynamo code. These parameters are more realistic than those used in previous numerical studies of the geodynamo. Our model is based on the Boussinesq approximation and the temperature gradient between upper and lower boundaries is a source of convection. This study attempts to answer the question how realistic the geodynamo models are. Numerical results show that our dynamo belongs to the strong-field dynamos. The generated magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows (plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields are separated, which enables hydromagnetic dynamos to maintain the magnetic field at the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in previous geodynamo models. On the other hand, dimensional magnitudes of velocity and magnetic fields and those of the magnetic and viscous dissipation are larger than those expected in the Earth's core due to our parameter range chosen.

  14. Independent alignment of RNA for dynamic studies using residual dipolar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Bardaro, Michael F.; Varani, Gabriele, E-mail: varani@chem.washington.edu [University of Washington, Department of Chemistry (United States)

    2012-09-15

    Molecular motion and dynamics play an essential role in the biological function of many RNAs. An important source of information on biomolecular motion can be found in residual dipolar couplings which contain dynamics information over the entire ms-ps timescale. However, these methods are not fully applicable to RNA because nucleic acid molecules tend to align in a highly collinear manner in different alignment media. As a consequence, information on dynamics that can be obtained with this method is limited. In order to overcome this limitation, we have generated a chimeric RNA containing both the wild type TAR RNA, the target of our investigation of dynamics, as well as the binding site for U1A protein. When U1A protein was bound to the portion of the chimeric RNA containing its binding site, we obtained independent alignment of TAR by exploiting the physical chemical characteristics of this protein. This technique can allow the extraction of new information on RNA dynamics, which is particularly important for time scales not covered by relaxation methods where important RNA motions occur.

  15. Comparative study of magnetic ordering in bulk and nanoparticles of Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3}: Magnetization and electron magnetic resonance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Goveas, Lora Rita, E-mail: loragoveas@gmail.com [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); St. Joseph' s College of Arts and Science, Bangalore 560027 (India); Anuradha, K. N. [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); Bhagyashree, K. S.; Bhat, S. V. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-05-07

    To explore the effect of size reduction to nanoscale on the hole doped Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3} compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  16. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    Science.gov (United States)

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  17. A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.

    Science.gov (United States)

    Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M

    2016-11-14

    A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co 4 O 4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.

  18. Residual dipolar couplings : a new technique for structure determination of proteins in solution

    NARCIS (Netherlands)

    van Lune, Frouktje Sapke

    2004-01-01

    The aim of the work described in this thesis was to investigate how residual dipolar couplings can be used to resolve or refine the three-dimensional structure of one of the proteins of the phosphoenol-pyruvate phosphotransferase system (PTS), the main transport system for carbohydrates in

  19. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl3

    International Nuclear Information System (INIS)

    Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa; Tanaka, Hidekazu

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl 3 . Below the ordering temperature T N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  20. Quantum simulation and quantum information processing with molecular dipolar crystals

    International Nuclear Information System (INIS)

    Ortner, M.

    2011-01-01

    In this thesis interactions between dipolar crystals and neutral atoms or separated molecules have been investigated. They were motivated to realize new kinds of lattice models in mixtures of atoms and polar molecules where an MDC functions as an underlying periodic lattice structure for the second species. Such models bring out the peculiar features of MDC's, that include a controllable, potentially sub-optical wavelength periodicity and strong particle phonon interactions. Only stable collisional configurations have been investigated, excluding chemical reactions between the substituents, and crystal distortions beyond the scope of perturbation theory. The system was treated in the polaron picture where particles of the second species are dressed by surrounding crystal phonons. To describe the competition between coherent and incoherent dynamics of the polarons, a master equation in the Brownian motion limit was used with phonons treated as a thermal heat bath. It was shown analytically that in a wide range of realistic parameters the corrections to the coherent time evolution are small, and that the dynamics of the dressed particles can be described by an effective extended Hubbard model with controllable system parameters. The last chapter of this thesis contains a proposal for QIP with cold polar molecules that, in contrast to previous works, uses an MDC as a quantum register. It was motivated by the unique features of dipolar molecules and to exploit the peculiar physical conditions in dipolar crystals. In this proposal the molecular dipole moments were tailored by non-local fields to include a small, switchable, state-dependent dipole moment in addition to the large internal state independent moment that stabilizes the crystal. It was shown analytically that a controllable, non-trivial phonon-mediated interaction can be generated that exceeds non-trivial, direct dipole-dipole couplings. The addressability problem due to high crystal densities was overcome by

  1. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules

    Science.gov (United States)

    Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-12-01

    In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.

  2. Superconductivity and magnetic fluctuations developing in the vicinity of strong first-order magnetic transition in CrAs

    International Nuclear Information System (INIS)

    Kotegawa, H; Matsushima, K; Nakahara, S; Tou, H; Kaneyoshi, J; Nishiwaki, T; Matsuoka, E; Sugawara, H; Harima, H

    2017-01-01

    We report single crystal preparation, resistivity, and nuclear quadrupole resonance (NQR) measurements for new pressure-induced superconductor CrAs. In the first part, we present the difference between crystals made by different thermal sequences and methods, and show the sample dependence of superconductivity in CrAs. In the latter part, we show NQR data focusing the microscopic electronic state at the phase boundary between the helimagnetic and the paramagnetic phases. They suggest strongly that a quantum critical point is absent on the pressure-temperature phase diagram of CrAs, because of the strong first-order character of the magnetic transition; however, the spin fluctuations are observed in the paramagnetic phase. The close relationship between the spin fluctuations and superconductivity can be seen even in the vicinity of the first-order magnetic transition in CrAs. (paper)

  3. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  4. Microwave Synthesis and Magnetic Properties of High Tc Superconductor MGB2

    International Nuclear Information System (INIS)

    Koeseoglu, Y.

    2004-01-01

    Polycrystalline powders of MgB 2 have been synthesized by microwave synthesis technique. Crystallographic information of the sample was investigated by powder X-ray diffraction (XRD). The main phase was determined as MgB2, and secondary phases as MgB4 and MgO. The temperature dependence of magnetic properties of polycrystalline MgB2, synthesized by using microwave heating of the constituents have been characterized by SQUID magnetometer and X-band EPR spectrometer. The transition temperature to the superconducting phase is observed as 39K for both measurements. An isotropic, strong and very narrow EPR signal corresponding to free electron g-value (ge=2.0023) is observed. The observed line broadening with decreasing temperature might arise from the dipolar interactions between the superparamagnetic nanoparticles. Normally, the internal magnetic field originating from magnetic entities is expected to be more uniform as a result of highly ordered magnetic moments at low temperatures; giving narrower ESR line in contrary in our case. While the ESR line is broadened, the signal intensity is drastically decreased just below T c =39 K corresponding to a transition temperature from normal to superconducting state. Some minor changes in both intensity and line width curves might be taken as signs for changes of local crystalline field symmetry around weakly localized conduction electrons or holes, which are the sources of ESR signal in MgB 2 compound

  5. Critical dynamics of an interacting magnetic nanoparticle system

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Jonsson, P.E.; Nordblad, P.

    2002-01-01

    Effects of dipole-dipole interactions on the magnetic relaxation have been investigated for three Fe-C nanoparticle samples with volume concentrations of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective behaviour due to dipolar interactions, only the 17 vol% sample dis...... displays critical behaviour close to its transition temperature. The behaviour of the 5 vol% sample can be attributed to a mixture of collective and single-particle dynamics....

  6. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  7. Spin dynamics and magnetic ordering in mixed valence systems

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Moller, H.B.; Axe, J.D.; Birgeneau, R.J.; Bucher, E.

    1977-01-01

    Neutron scattering measurements are reported on the mixed valence compounds Ce/sub 1-x/Th/sub x/ and TmSe. The Chi''(Q,ω) as derived from the inelastic spectra of Ce 0 . 74 Th 0 . 26 shows a peak in the γ phase near 20.0 meV and shifts abruptly to greater than 70.0 meV at the transition to the α phase. The temperature independence of the susceptibility within the γ phase cannot be simply reconciled with the temperature dependence of the valence within the γ phase. TmSe is shown to order in a type I antiferromagnetic structure below T/sub N/ approx. 3.2 K. The magnetic phase diagram is understood as a successive domain reorientation and a metamagnetic phase transition for T 3+ orders in a type II structure but never achieves long range order

  8. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  9. Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications

    International Nuclear Information System (INIS)

    Mendoza Zélis, P.; Muraca, D.; Gonzalez, J. S.; Pasquevich, G. A.; Alvarez, V. A.; Pirota, K. R.; Sánchez, F. H.

    2013-01-01

    A study of the magnetic behavior of maghemite nanoparticles (NPs) in polyvinyl alcohol (PVA) polymer matrices prepared by physical cross-linking is reported. The magnetic nanocomposites (ferrogels) were obtained by the in situ co-precipitation of iron salts in the presence of PVA polymer, and subsequently subjected to freezing–thawing cycles. The magnetic behavior of these ferrogels was compared with that of similar systems synthesized using the glutaraldehyde. This type of chemical cross-linking agents presents several disadvantages due to the presence of residual toxic molecules in the gel, which are undesirable for biological applications. Characteristic particle size determined by several techniques are in the range 7.9–9.3 nm. The iron oxidation state in the NPs was studied by X-ray absorption spectroscopy. Mössbauer measurements showed that the NP magnetic moments present collective magnetic excitations and superparamagnetic relaxations. The blocking and irreversibility temperatures of the NPs in the ferrogels, and the magnetic anisotropy constant, were obtained from magnetic measurements. An empirical model including two magnetic contributions (large NPs slightly departed from thermodynamic equilibrium below 200 K, and small NPs at thermodynamic equilibrium) was used to fit the experimental magnetization curves. A deviation from the superparamagnetic regime was observed. This deviation was explained on the basis of an interacting superparamagnetic model. From this model, relevant magnetic and structural properties were obtained, such as the magnitude order of the dipolar interaction energy, the NPs magnetic moment, and the number of NPs per ferrogel mass unit. This study contributes to the understanding of the basic physics of a new class of materials that could emerge from the PVA-based magnetic ferrogels.

  10. The superexchange interactions and magnetic ordering in low-dimentional ludwigite Ni_5GeB_2O_1_0

    International Nuclear Information System (INIS)

    Sofronova, S.N.; Bezmaternykh, L.N.; Eremin, E.V.; Nazarenko, I.I.; Volkov, N.V.; Kartashev, A.V.; Moshkina, E.M.

    2016-01-01

    The ludwigite Ni_5Ge(BO_5)_2 belongs to a family of oxyborates which have low-dimensional subunits in the form of three-leg ladders unit structure. This material was studied by magnetic and thermodynamic measurements. Ni_5Ge(BO_5)_2 does not show full long-range magnetic order, but one goes into a partial ordering or spin-glass state at 87 K. The superexchange interactions were calculated in the framework of a simple indirect coupling model. Different models of magnetic structure of Ni_5Ge(BO_5)_2 and its unique magnetic behaviour was discussed. - Highlights: • The single crystals of Ni_5Ge(BO_5)_2 with a ludwigite structure were grown. • Magnetic and the specific heat measurements were performed. • The calculation of the exchange interactions shows a competition between interactions. • The magnetic behaviour corresponds to ions moments part freezing or spin-glass state. • We propose two models of magnetic ordering in Ni_5Ge(BO_5)_2.

  11. Analytical determination of 5th-order transfer matrices of magnetic quadrupole fringing fields

    International Nuclear Information System (INIS)

    Hartmann, B.; Irnich, H.; Wollnik, H.

    1993-01-01

    The fringing-field effects on particle trajectories in magnetic quadrupoles are described to 5th order by fringing-field integrals. It is shown that this method improves the description of fringing-field effects noticeably over the so far known use of third-order fringing-field integrals. (Author)

  12. Enantioselective 1,3-dipolar cycloadditions of diazoacetates with electron-deficient olefins.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Soeta, Takahiro

    2007-04-12

    [reaction: see text] A general strategy for highly enantioselective 1,3-dipolar cycloaddition of diazoesters to beta-substituted, alpha-substituted, and alpha,beta-disubstituted alpha,beta-unsaturated pyrazolidinone imides is described. Cycloadditions utilizing less reactive alpha,beta-disubstituted dipolarophiles require elevated reaction temperatures, but still provide the corresponding pyrazolines with excellent enantioselectivities. Finally, an efficient synthesis of (-)-manzacidin A employing this cycloaddition methodology as a key step is illustrated.

  13. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    International Nuclear Information System (INIS)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido

    2009-01-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  14. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf [Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium); Maes, Guido, E-mail: Jian.Ye@imec.b [Chemistry Department, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium)

    2009-11-18

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  15. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Science.gov (United States)

    Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf

    2009-11-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  16. A pulse spectrometer for NMR measurements on magnetically ordered materials

    International Nuclear Information System (INIS)

    Englich, J.; Pikner, B.; Sedlak, B.

    1975-01-01

    A simple design of a pulse nuclear magnetic resonance spectrometer is described. The spectrometer permits spin echo measurements on magnetically ordered substances. It operates in the frequency range 10 to 130 MHz, but this basic range can be extended by a replacement of the compact radiofrequency unit. The transmitter gives radiofrequency pulses with an amplitude of up to 1 kV on the coil with the investigated sample. The pulse programmer makes possible relaxation measurements in a time interval of 10 -5 to 10 -1 s. Attention was devoted to obtaining a maximum signal-to-noise ratio in the whole frequency range. Sensitivity of the spectrometer is demonstrated by spin echo measurement on pure iron powder. (author)

  17. Monte Carlo simulations of magnetic order in Fe-doped manganites

    International Nuclear Information System (INIS)

    Alonso, J.; Gutierrez, J.; Barandiaran, J.M.; Bermejo, F.J.; Brey, L.

    2008-01-01

    The effect of Fe doping on the magnetic properties of La 0.7 Pb 0.3 Mn 1-x Fe x O 3 (x=0, 0.05, 0.1, 0.15 and 0.2) manganites is studied by the Monte Carlo simulation technique. As a first approximation, by means of a simple Heisenberg Hamiltonian, experimental normalized magnetizations at low temperatures have been reproduced for concentrations of Fe (x<0.2), but the calculated order temperatures show a large deviation from the measured ones. This shortcoming can be corrected by using a one electron effective hopping semi-classical Hamiltonian, with a simplified expression for the kinetic energy of the free electrons, which also avoids time-consuming diagonalizations

  18. Asymmetric 1,3-Dipolar Cycloadditions to 5-(R)-Menthyloxy-2(5H)-Furanone

    NARCIS (Netherlands)

    Rispens, Minze T.; Keller, Erik; Lange, Ben de; Zijlstra, Robert W.J.; Feringa, Bernard

    Various diazo compounds, nitrile oxides, nitrones and azomethine ylides were examined in 1,3-dipolar cycloadditions to enantiomerically pure 5-(R)-menthyloxy-2(5H)-furanone 1a. Pyrazoline 9 was obtained in 100% c.y. as a mixture of 2 diastereoisomers in ratios up to 72 : 28, whereas pyrazoline 16

  19. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa

    2014-01-15

    The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.

  20. A second-order approximation of particle motion in the fringing field of a dipole magnet

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1980-01-01

    The radial and axial motion of charged particles in the fringing field of an arbitrary dipole magnet has been considered with accuracy to the second-order of small quantities. The dipole magnet has an inhomogeneous field and oblique entrance and exit boundaries in the form of second-order curves. The region of the fringing field has a variable extension. A new definition of the effective boundary of the real fringing field has a variable extension. A new definition of the effective boundary of the real fringing field of the dipole magnet is used. A better understanding of the influence of the fringing magnetic field on the motion of charged particles in the pole gap of the dipole magnet has been obtained. In particular, it is shown that it is important to take into account, in the second approximation, some terms related formally to the next approximations. The results are presented in a form convenient for practical calculations. (orig.)

  1. Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis

    CERN Document Server

    De Simone, Andrea; Quiros, Mariano; Riotto, Antonio

    2011-01-01

    The generation of the observed baryon asymmetry may have taken place during the electroweak phase transition, thus involving physics testable at LHC, a scenario dubbed electroweak baryogenesis. In this paper we point out that the magnetic field which is produced in the bubbles of a first order phase transition endangers the baryon asymmetry produced in the bubble walls. The reason being that the produced magnetic field couples to the sphaleron magnetic moment and lowers the sphaleron energy; this strengthens the sphaleron transitions inside the bubbles and triggers a more effective wash out of the baryon asymmetry. We apply this scenario to the Minimal Supersymmetric extension of the Standard Model (MSSM) where, in the absence of a magnetic field, successful electroweak baryogenesis requires the lightest CP-even Higgs and the right-handed stop masses to be lighter than about 127 GeV and 120 GeV, respectively. We show that even for moderate values of the magnetic field, the Higgs mass required to preserve the ...

  2. Magnetic ordering induced giant optical property change in tetragonal BiFeO3

    Science.gov (United States)

    Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-12-01

    Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

  3. Longitudinal Spin Excitations and Magnetic Anisotropy in Antiferromagnetically Ordered BaFe_{2}As_{2}

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2013-12-01

    Full Text Available We report on a spin-polarized inelastic neutron-scattering study of spin waves in the antiferromagnetically ordered state of BaFe_{2}As_{2}. Three distinct excitation components are identified, with spins fluctuating along the c axis, perpendicular to the ordering direction in the ab plane and parallel to the ordering direction. While the first two “transverse” components can be described by a linear spin-wave theory with magnetic anisotropy and interlayer coupling, the third “longitudinal” component is generically incompatible with the local-moment picture. It points toward a contribution of itinerant electrons to the magnetism that is already in the parent compound of this family of Fe-based superconductors.

  4. Dipolar oscillations in a quantum degenerate Fermi-Bose atomic mixture

    International Nuclear Information System (INIS)

    Ferlaino, F; Brecha, R J; Hannaford, P; Riboli, F; Roati, G; Modugno, G; Inguscio, M

    2003-01-01

    We study the dynamics of coupled dipolar oscillations in a Fermi-Bose mixture of 40 K and 87 Rb atoms. This low-energy collective mode is strongly affected by the interspecies interactions. Measurements are performed in the classical and quantum degenerate regimes and reveal the crucial role of the statistical properties of the mixture. At the onset of quantum degeneracy, we investigate the role of Pauli blocking and superfluidity for K and Rb atoms, respectively, resulting in a change in the collisional interactions

  5. Interaction between granulation and small-scale magnetic flux observed by Hinode

    International Nuclear Information System (INIS)

    Zhang Jun; Yang Shuhong; Jin Chunlan

    2009-01-01

    With the polarimetric observations obtained by the Spectro-Polarimeter on board Hinode, we study the relationship between granular development and magnetic field evolution in the quiet Sun. Six typical cases are displayed to exhibit interaction between granules and magnetic elements, and we have obtained the following results. (1) A granule develops centrosymmetrically when no magnetic flux emerges within the granular cell. (2) A granule develops and splits noncentrosymmetrically while flux emerges at an outer part of the granular cell. (3) Magnetic flux emergence in a cluster of mixed polarities is detected at the position of a granule as soon as the granule breaks up. (4) A dipole emerges accompanied by the development of a granule, and the two elements of the dipole are rooted in the adjacent intergranular lanes and face each other across the granule. Advected by the horizontal granular motion, the positive element of the dipole then cancels with the pre-existing negative flux. (5) Flux cancellation also takes place between a positive element, which is advected by granular flow, and its surrounding negative flux. (6) While magnetic flux cancellation takes place in a granular cell, the granule shrinks and then disappears. (7) Horizontal magnetic fields are enhanced at the places where dipoles emerge and where opposite polarities cancel each other, but only the horizontal fields between the dipolar elements point in an orderly way from the positive elements to the negative ones. Our results reveal that granules and small-scale magnetic fluxes influence each other. Granular flow advects magnetic flux, and magnetic flux evolution suppresses granular development. There exist extremely large Doppler blue-shifts at the site of one canceling magnetic element. This phenomenon may be caused by the upward flow produced by magnetic reconnection below the photosphere. (research papers)

  6. Theoretical study of the magnetic order in α-CoV2O6

    Science.gov (United States)

    Saúl, A.; Vodenicarevic, D.; Radtke, G.

    2013-01-01

    The electronic structure and magnetic properties of α-CoV2O6 are investigated using density functional theory calculations including spin-orbit coupling and orbital polarization effects. These calculations reveal a strong magnetocrystalline anisotropy with a magnetization easy axis close to the c axis. The evaluation of magnetic couplings on the basis of broken-symmetry formalism suggests the occurrence of an antiferromagnetic ground-state order where ferromagnetic chains running along b are coupled antiferromagnetically to their nearest neighbors along a and c. Monte Carlo simulations are finally employed to explore the origins of the 1/3 plateau observed in the magnetization curves of this compound and to propose a structure for the corresponding state.

  7. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    International Nuclear Information System (INIS)

    Kurz, Alexander; Liu, Tao; Steinhauser, Matthias

    2014-07-01

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a μ had,NNLO = 1.24 ± 0.01 x 10 -10 , is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  8. Synthesis and characterization of chemically ordered FePt magnetic nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, K. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Balaji, T., E-mail: theerthambalaji@yahoo.co [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Lingappa, Y. [Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Reddy, M.R.P.; Kumar, Arbind; Prakash, T.L. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India)

    2010-08-15

    Monodispersed FePt alloy magnetic nano-particles are prepared by reduction of platinum acetyl acetonate and iron acetyl acetonate salts together in the presence of oleic acid and oleyl amine stabilizers by polyol process. The particle size of FePt is in the range of 2-3 nm confirmed by transmission electron microscopy (TEM). As-synthesized FePt nano-particles are chemically disordered with face centre cubic (fcc) structure where as after vacuum annealing these particles changed to face centre tetragonal (fct) ordered structure confirmed by the X-ray diffraction technique. Magnetic coercivity of 5.247 KOe was observed for fct structure.

  9. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  10. Implement of a magnetic spectrometer at the CERN intersecting stockage rings (900 spectrometer in the R608 experiment)

    International Nuclear Information System (INIS)

    Reyrolle, M.

    1985-01-01

    By adding a new spectrometer at 90 0 in the R608 experiment at CERN (ISR) we can search correlations between some systems of particles fully measured in the forward and transverse directions. The corresponding new electronic trigger, which selects events with momentum above a chosen threshold, is mixed or not to the forward trigger, in order to record correlated or inclusive data from the collisions p-p, p-anti-p, α-α. In the 90 0 spectrometer, we build drift chambers, set before the dipolar magnet. We studied the spatial resolution and the methods to associate tracks before and after this magnet. We developed the method to determine the momenta, by taking account of the variations of the deflecting power: the accuracy of this method is better than O.3%, and the global resolution is about 0.01 P 2 . We proposed also how to identify the particles from time of flight measurements and aerogel cerenkov counters [fr

  11. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujisawa, Masashi [Tokyo Inst. of Technology, Dept. of Physics, Tokyo (Japan); Tanaka, Hidekazu [Tokyo Inst. of Technolgy, Research Center for Low Temperature Physics, Tokyo (Japan)

    2003-05-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}. Below the ordering temperature T{sub N} = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  12. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  13. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    International Nuclear Information System (INIS)

    Nadutov, V.M.; Kosintsev, S.G.; Svystunov, Ye.O.; Garamus, V.M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2011-01-01

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)x10 -6 K -1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy T C =195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Moessbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature Θ D =180 K was estimated using the temperature dependence of the integral intensity of Moessbauer spectra for specified temperature range. The inequality B eff =(0.7-0.9)B ext was obtained in external field Moessbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to B ext . Nano length scale magnetic inhomogeneities nearby and far above T C were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond. - Highlights: → Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy. → Carbon expanded the temperature range of anti-Invar behavior in Fe-Ni-based alloy. → Moessbauer data point to mixed interspin interaction and low the Dedye temperature. → The SANS experiments reveal nano length scale magnetic inhomogeneities ≤6 nm. → Anti-Invar behavior of Fe-Ni-C alloy explained by thermally varied magnetic order.

  14. Neutron diffraction studies of magnetic ordering in superconducting ErNi2B2C and TmNi2B2C in an applied magnetic field

    DEFF Research Database (Denmark)

    Toft, Katrine Nørgaard

    The field-induced magnetic structures of ErNi2B2C and TmNi2B2C in are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength ofsuperconductivity. ErNi2B2C: For magnetic fields along all.......483,0,0). The appearance of the QN phase wasinitially believed to be caused by the suppression of superconductivity. This suppression should make it favorable to create a magnetic order with a Q-vector determined by the maximum in the magnetic susceptibility at the Fermi surface nesting vector QN.The phase diagram...... three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures.Two results remain unresolved: 1. When applying the magnetic field along [010], the minority domain (QNB = (0,Q...

  15. Second order semiclassics with self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    $ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order...... with an error bound that is smaller by a factor $h^{1+\\e}$, i.e. the subleading term vanishes. However, for potentials with a Coulomb singularity the subleading term does not vanish due to the non-semiclassical effect of the singularity. Combined with a multiscale technique, this refined estimate is used...

  16. Muon and other studies of magnetic ordering in cuprate layer-compounds

    International Nuclear Information System (INIS)

    Portis, A.M.; Celio, M.

    1989-01-01

    Muon spin rotation studies of magnetic ordering in the planar cuprates are reviewed. Particular attention is given to doped La 2 CuO 4 and oxygen-depleted YBa 2 Cu 3 O 7-δ and to related experimental investigations. Studies of transition element substituted compounds are also reviewed. (orig.)

  17. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.

  18. Size effect on magnetic ordering in Ce3Al11

    International Nuclear Information System (INIS)

    Wang, C.R.; Chen, Y.Y.; Neeleshwar, S.; Ou, M.N.; Ho, J.C.

    2003-01-01

    To study the size dependence of magnetic ordering, magnetic measurements have been made between 1.8 and 300 K on Ce 3 Al 11 particles having an average particle size of 1400 A. The nanoparticles were single phase as confirmed by X-ray diffraction. At low temperatures a ferromagnetic transition occurs at T C =6.2 K, which is the same as that for the bulk material. On the other hand, the antiferromagnetic transition at T N =3.2 K for the bulk material is not visible down to 1.8 K. Meanwhile, the slightly smaller Curie constant of nanoparticles as compared to that of the bulk indicates a certain degree of demagnetization of Ce ions when the particle size is sufficiently reduced

  19. Discrete time-crystalline order in black diamond

    Science.gov (United States)

    Zhou, Hengyun; Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail D.

    2017-04-01

    The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.

  20. Magnetic resonance in zero-field: construction of a spectrometer, evaluation of a method for structure studies

    International Nuclear Information System (INIS)

    Llor, M.

    1987-01-01

    The method known as Nuclear Resonance in the zero-field, applied to the spectral analysis of powders, is discussed. In the method, the anisotropy due to the preferential direction of the magnetic field is suppressed, but a high sensitivity is keeped. For powders spectra, the process allows the obtention resolutions, of dipolar and quadrupolar couplings, in the range of those only obtained on monocrystals under strong fields. By suitable magnetic field oscillations, and by the effect of the high field on the RMN signal, the transient evolutions of the spins are obtained. Concerning the absence of a preferred direction in the zero-field, a powder or the monocrystals show nearly the same behavior. In such conditions, a much more interesting spectra than those from a powder in a strong field, can be obtained. The RMN spectrometer is described. The possibilities, the experimental and theoretical limits of the proposed method, are analyzed. Applications on dipolar (proton and phosphor) and quadrupolar (deuterium) interactions, on hydrated salts and on cyclophasphazenes are carried out [fr

  1. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  2. Electric–magnetic duality of lattice systems with topological order

    Energy Technology Data Exchange (ETDEWEB)

    Buerschaper, Oliver [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching (Germany); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Kong, Liang, E-mail: kong.fan.liang@gmail.com [Institute for Advanced Study (Science Hall), Tsinghua University, Beijing 100084 (China); Department of Mathematics and Statistics University of New Hampshire, Durham, NH 03824 (United States); Aguado, Miguel [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching (Germany)

    2013-11-11

    We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev's quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen's string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.

  3. Synthesis with Perfect Atom Economy: Generation of Furan Derivatives by 1,3-Dipolar Cycloaddition of Acetylenedicarboxylates at Cyclooctynes

    Directory of Open Access Journals (Sweden)

    Klaus Banert

    2014-09-01

    Full Text Available Cyclooctyne and cycloocten-5-yne undergo, at room temperature, a 1,3-dipolar cycloaddition with dialkyl acetylenedicarboxylates 1a,b to generate furan-derived short-lived intermediates 2, which can be trapped by two additional equivalents of 1a,b or alternatively by methanol, phenol, water or aldehydes to yield polycyclic products 3b–d, orthoesters 4a–c, ketones 5 or epoxides 6a,b, respectively. Treatment of bis(trimethylsilyl acetylenedicarboxylate (1c with cyclooctyne leads to the ketone 7 via retro-Brook rearrangement of the dipolar intermediate 2c. In all cases, the products are formed with perfect atom economy.

  4. Magnetic properties of MnAs nanoclusters embedded in a GaAs semiconductor matrix

    International Nuclear Information System (INIS)

    Hai, Pham Nam; Takahashi, Keisuke; Yokoyama, Masafumi; Ohya, Shinobu; Tanaka, Masaaki

    2007-01-01

    We have clarified fundamental magnetic properties of MnAs nanoclusters (10 nm in diameter) embedded in a thin GaAs matrix (referred to as GaAs:MnAs) through tunneling magnetoresistance (TMR) characteristics of magnetic tunnel junctions (MTJs) consisting of a GaAs:MnAs thin film and a MnAs metal thin film as ferromagnetic electrodes. Although MnAs nanoclusters have coercive forces as small as 150 Oe at 7 K, they show unusually high blocking temperature, which is as large as 300 K. The remanent magnetization of the MnAs nanocluster system linearly decreases with increasing temperature. Those magnetic behaviors cannot be explained by the non-interacting particle model, revealing the important existence of dipolar interactions in MnAs nanocluster system

  5. On nonlinear dynamics of a dipolar exciton BEC in two-layer graphene

    International Nuclear Information System (INIS)

    Berman, O.L.; Kezerashvili, R.Ya.; Kolmakov, G.V.

    2012-01-01

    The nonlinear dynamics of a Bose–Einstein condensate (BEC) of dipolar excitons in two-layer graphene is studied. It is demonstrated that a steady turbulent state is formed in this system. A comparison between the dynamics of the exciton BEC in two-layer graphene and those in GaAs/AlGaAs coupled quantum wells shows that turbulence is a general effect in a BEC.

  6. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al2O3 and Diblock Copolymer Templates

    International Nuclear Information System (INIS)

    Erb, Denise

    2015-08-01

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al 2 O 3 substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al 2 O 3 - Magnetic nanostructures on nanofaceted α-Al 2 O 3 substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al 2 O 3 surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in-situ GISAXS and NRS, the magnetization

  7. The bonding character and magnetic properties of Fe3Al: Comparison between disordered and ordered alloy

    International Nuclear Information System (INIS)

    Fan Runhua; Qi Liang; Sun Kangning; Min Guanghui; Gong Hongyu

    2006-01-01

    Fe 3 Al with D0 3 -ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe 3 Al, with D0 3 -ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0 3 -ordered Fe 3 Al to 4sp(Fe)-3p(Al) for the disordered Fe 3 Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased

  8. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  9. Influence of the particle parameters on the stability of magnetic dopants in a ferrolyotropic suspension

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Ingo; Behrens, Silke [Institut für Katalyseforschung und -technologie, Karlsruher Institut für Technologie (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Anorganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)

    2017-06-01

    The doping of liquid crystals with magnetic nanoparticles increases the magnetic susceptibility and the sensitivity to small magnetic fields. This offers interesting possibilities for controlling optical properties via external magnetic fields. The stabilization of magnetic nanoparticles in the liquid crystalline host, however, is challenging, since magnetic dipolar interactions and LC-mediated forces may result in their aggregation and even phase separation. So far, only few groups have investigated the long-term stability of these systems. In the present study, a set of magnetic iron oxide nanoparticles with different particle size, shape and surface properties was synthesized by thermal decomposition or co-precipitation. The magnetic nanoparticles were further integrated in a model liquid crystalline host (i.e., the lyotropic system potassium laurate/1-decanol/water) to investigate the effect of the different particle parameters on the stability of the resulting ferrolyotrope.

  10. Origin of second-order transverse magnetic anisotropy in Mn12-acetate

    International Nuclear Information System (INIS)

    Cornia, A.; Sessoli, R.; Sorace, L.; Gatteschi, D.; Barra, A. L.; Daiguebonne, C.

    2002-01-01

    The symmetry breaking effects for quantum tunneling of the magnetization in Mn 12 -acetate, a molecular nanomagnet, represent an open problem. We present structural evidence that the disorder of the acetic acid of crystallization induces sizable distortion of the Mn(III) sites, giving rise to six different isomers. Four isomers have symmetry lower than tetragonal and a nonzero second-order transverse magnetic anisotropy, which has been evaluated using a ligand field approach. The result of the calculation leads to an improved simulation of electron paramagnetic resonance spectra and justifies the tunnel splitting distribution derived from the field sweep rate dependence of the hysteresis loops

  11. Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan; Saber, Mohamed R.; Prosvirin, Andrey P.; Reibenspies, Joseph H.; Sun, Lei; Ballesteros-Rivas, Maria; Zhao, Hanhua; Dunbar, Kim R. (MIT); (TAM)

    2015-09-03

    Host–guest interactions between the aromatic molecules benzene, toluene, aniline and nitrobenzene and the redox-active TCNQ-based metal–organic framework (MOF), Fe(TCNQ)(4,4'-bpy) (1) (TCNQ = 7,7,8,8-tetracyanoquinodimethane), have been found to modulate spontaneous magnetization behaviours at low temperatures. An analogous MOF, Mn(TCNQ)(4,4'-bpy) (2) with isotropic Mn(II) ions as well as the two-dimensional compound Fe(TCNQ)(DMF)2·2DMF (3·2DMF), were also prepared as models for studying the effects of single-ion magnetic anisotropy and structural distortion on spin canting. The results indicate guest-dependent long range magnetic ordering occurs at low temperatures, which correlates with the electrostatic and steric effects of the incorporated aromatic guests.

  12. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  13. An alternative 3D inversion method for magnetic anomalies with depth resolution

    Directory of Open Access Journals (Sweden)

    M. Chiappini

    2006-06-01

    Full Text Available This paper presents a new method to invert magnetic anomaly data in a variety of non-complex contexts when a priori information about the sources is not available. The region containing magnetic sources is discretized into a set of homogeneously magnetized rectangular prisms, polarized along a common direction. The magnetization distribution is calculated by solving an underdetermined linear system, and is accomplished through the simultaneous minimization of the norm of the solution and the misfit between the observed and the calculated field. Our algorithm makes use of a dipolar approximation to compute the magnetic field of the rectangular blocks. We show how this approximation, in conjunction with other correction factors, presents numerous advantages in terms of computing speed and depth resolution, and does not affect significantly the success of the inversion. The algorithm is tested on both synthetic and real magnetic datasets.

  14. Synthesis and 1,3-Dipolar Cycloaddition Reactions of Chiral Maleimides

    Directory of Open Access Journals (Sweden)

    Lubor Fisera

    1997-02-01

    Full Text Available New routes to the synthesis of various novel chiral maleimides are described. The oxabicyclic anhydride 2 readily available exo-Diels-Alder adduct of furan and maleic anhydride was used as a vehicle, which in turn reacted with hydrochlorides of amino acids 3a-f in the presence of Et3N with release of furan to give the requisite novel chiral imides 4a-f in good to moderate yields. The stereoselectivity of 1,3-dipolar cycloaddition of nitrile oxides with prepared chiral imides 4a-f is investigated.

  15. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  16. Dipolar-induced interplay between inter-level physics and macroscopic phase transitions in triple-well potentials

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2012-01-01

    We propose a scheme to reveal the interplay between dipole–dipole interaction (DDI), inter-level coupling and macroscopic phase transitions in dipolar condensates. By considering a macroscopic sample of dipolar bosons in triple-well potentials, DDI-induced coupling between the inter-level physics and the macroscopic phase transitions is presented. When the DDI exceeds certain thresholds, the degeneracy of the two lowest energy levels and the excitation of new eigenstates occur, respectively. Interestingly, these thresholds give the boundaries of various quantum phase transitions. That is, the quantum phase transitions are the consequence of the levels' degeneracy and the new eigenstates' excitation. Furthermore, DDI-induced long-range macroscopic Josephson oscillations are observed and long-range coherent quantum transportation is achieved. Our results give clear proof of the interplay between the multi-level physics and quantum phase transitions, and also provide a way for designing the long-range coherent quantum transportation. (paper)

  17. The interplay of magnetic order and superconductivity in GdxY1-xNi2B2C

    International Nuclear Information System (INIS)

    Drzazga, Z.; Fuchs, G.; Handstein, A.; Nenkov, K.; Mueller, K.-H.

    2003-01-01

    Resistivity, ac susceptibility and magnetization measurements are reported for polycrystalline samples of the Gd x Y 1-x Ni 2 B 2 C series as a function of temperature and magnetic field. The magnetic Gd impurities cause an almost linear decrease of the superconducting transition temperature T c with increasing Gd content in the range of x c have been observed. The effect of the 4f local moments manifests in a complete suppression of superconductivity for x≥0.3 and in antiferromagnetic ordering for x>0.3. In zero applied magnetic field, a distinct concentration region around x∼0.3 has been revealed separating superconductivity and antiferromagneting ordering. A metamagnetic transition has been observed in the compound with x=0.5 at a magnetic field of 0.8 T

  18. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance.

    Science.gov (United States)

    Srivastava, Madhur; Freed, Jack H

    2017-11-16

    Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.

  19. Exchange bias effect in L10-ordered FePt and FeCo-based bilayer structure: effect of increasing applied field

    Science.gov (United States)

    Singh, Sadhana; Kumar, Dileep; Bhagat, Babli; Choudhary, R. J.; Reddy, V. R.; Gupta, Ajay

    2018-02-01

    The applied magnetic field (H APP) dependence of the exchange bias (EB) is studied in an exchange-coupled thin-film bilayer composed of a hard ferromagnetic FePt layer in the proximity of a soft ferromagnetic FeCo layer. FePt/FeCo structure is deposited in an ultra-high vacuum chamber, where the FePt layer was first annealed at 823 K for 30 min and subsequently cooled to room temperature in the presence of an in-plane magnetic field, H MAX ~ 1.5 kOe to promote L10-ordered hard magnetic phase with magnetic moments aligned in one of the in-plane directions in the FePt layer. In-situ magneto-optical Kerr effect measurements during different stages of bilayer growth and detailed ex-situ superconducting quantum interference device-vibrating sample magnetometer measurements jointly revealed that due to the interplay between exchange coupling at the interface and dipolar energies of the saturated hard FePt layer, a hysteresis loop of FeCo layer shifts along the magnetic field axis. A clear dependence of EB field (H EB) on increasing maximum value of the H APP during the hysteresis loop measurement is understood in terms of the magnetic state of soft and hard magnetic layers, where EB increases with increasing H APP until the hard layer moment remains undisturbed in its remanence state. As soon as the field was sufficient to rotate the spins of the FePt layer, the loop became symmetric with respect to the field axis.

  20. Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers

    Science.gov (United States)

    Liu, Yan; Guenneau, Sébastien; Gralak, Boris

    2013-01-01

    We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891