WorldWideScience

Sample records for diphosphate enzymes defining

  1. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  2. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    Science.gov (United States)

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.

    Science.gov (United States)

    Schilmiller, Anthony L; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L; Pichersky, Eran

    2009-06-30

    We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.

  4. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  5. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-01-01

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  6. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  7. Properties of ribulose diphosphate carboxylase immobilized on porous glass

    Science.gov (United States)

    Shapira, J.; Hanson, C. L.; Lyding, J. M.; Reilly, P. J.

    1974-01-01

    Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg(2+), and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4 C was somewhat improved.

  8. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  9. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    The three conserved aspartic acid residues of the 5-phospho-d-ribosyl a-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed...... enzymes were dependent on the metal ion present, suggesting a function of the investigated aspartic acid residues both in the binding of ribose 5-phosphate, possibly via a divalent metal ion, and in the interaction with a divalent metal ion during catalysis....

  10. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    Science.gov (United States)

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  11. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    Science.gov (United States)

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  12. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity.

    Science.gov (United States)

    Wypijewska, Anna; Bojarska, Elzbieta; Lukaszewicz, Maciej; Stepinski, Janusz; Jemielity, Jacek; Davis, Richard E; Darzynkiewicz, Edward

    2012-10-09

    Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.

  13. Geranylgeranyl diphosphate synthases from Scoparia dulcis and Croton sublyratus. cDNA cloning, functional expression, and conversion to a farnesyl diphosphate synthase.

    Science.gov (United States)

    Kojima, N; Sitthithaworn, W; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Sankaw, U

    2000-07-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene producing plants, Scoparia dulcis and Croton sublyratus, were isolated using the homology-based polymerase chain reaction method. Both cloned genes showed high amino acid sequence homology (60-70%) to other plant GGPPSs and contained highly conserved aspartate-rich motifs. The obtained clones were functionally expressed in Escherichia coli and showed sufficient GGPPS activity to catalyze the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate to form geranylgeranyl diphosphate. To investigate the factor determining the product chain length of plant GGPPSs, S. dulcis GGPPS mutants in which either the small amino acids at the fourth and fifth positions before the first aspartate-rich motif (FARM) were replaced with aromatic amino acids or in which two additional amino acids in FARM were deleted were constructed. Both mutants behaved like FPPS-like enzymes and almost exclusively produced FPP when dimethylallyl diphosphate was used as a primer substrate, and failed to accept FPP as a primer substrate. These results indicate that both small amino acids at the fourth and fifth positions before FARM and the amino acid insertion in FARM play essential roles in product length determination in plant GGPPSs.

  14. Recent Advances in the Development of Mammalian Geranylgeranyl Diphosphate Synthase Inhibitors

    Directory of Open Access Journals (Sweden)

    Staci L. Haney

    2017-05-01

    Full Text Available The enzyme geranylgeranyl diphosphate synthase (GGDPS catalyzes the synthesis of the 20-carbon isoprenoid geranylgeranyl diphosphate (GGPP. GGPP is the isoprenoid donor for protein geranylgeranylation reactions catalyzed by the enzymes geranylgeranyl transferase (GGTase I and II. Inhibitors of GGDPS result in diminution of protein geranylgeranylation through depletion of cellular GGPP levels, and there has been interest in GGDPS inhibitors as potential anti-cancer agents. Here we discuss recent advances in the development of GGDPS inhibitors, including insights gained by structure-function relationships, and review the preclinical data that support the continued development of this novel class of drugs.

  15. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    International Nuclear Information System (INIS)

    Flentke, G.R.; Frey, P.A.

    1990-01-01

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K D of 0.110 mM and k inact of 0.84 min -1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD + . The inactivation of epimerase by uridine 5'-diphosphate [ 2 H 2 ]chloroacetol proceeds with a primary kinetic isotope effect (k H /k D ) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD + at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD + is proposed to be the chromophore with λ max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction

  16. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McGuire, James N

    2004-01-01

    The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms...... possesses very different thermal properties. The B. caldolyticus enzyme has optimal activity at 60-65 degrees C and a half-life of 26 min at 65 degrees C, compared to values of 46 degrees C and 60 s at 65 degrees C, respectively, for the B. subtilis enzyme. Chemical cross-linking shows that both enzymes...... are hexamers. Vmax is determined as 440 micromol.min(-1).mg protein(-1) and Km values for ATP and ribose 5-phosphate are determined as 310 and 530 microM, respectively, for the B. caldolyticus enzyme. The enzyme requires 50 mM Pi as well as free Mg2+ for maximal activity. Manganese ion substitutes for Mg2...

  17. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible catalytic loop

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Bentsen, Ann-Kristin K; Harlow, Kenneth W

    2005-01-01

    Eleven of the codons specifying the amino acids of the flexible catalytic loop [KRRPRPNVAEVM(197-208)] of Bacillus subtilis phosphoribosyl diphosphate synthase have been changed individually to specify alanine. The resulting variant enzyme forms, as well as the wildtype enzyme, were produced...... in an Escherichia coli strain lacking endogenous phosphoribosyl diphosphate synthase activity and purified to near homogeneity. The B. subtilis phosphoribosyl diphosphate synthase mutant variants K197A and R199A were studied in detail. The physical properties of the two enzymes were similar to those of the wildtype...

  18. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness.

    Science.gov (United States)

    Liaudet, Lucas

    2002-03-01

    Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.

  19. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    Science.gov (United States)

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  20. Isolation and characterization of farnesyl diphosphate synthase from the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Taban, A Huma; Tittiger, Claus; Blomquist, Gary J; Welch, William H

    2009-06-01

    Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full-length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three-dimensional structure of coleopteran FPPS was determined and compared to the X-ray crystal structure of avian FPPS. The alpha-helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. (c) 2009 Wiley Periodicals, Inc.

  1. Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif.

    Science.gov (United States)

    Hurd, Matthew C; Kwon, Moonhyuk; Ro, Dae-Kyun

    2017-08-26

    Lippia dulcis (Aztec sweet herb) contains the potent natural sweetener hernandulcin, a sesquiterpene ketone found in the leaves and flowers. Utilizing the leaves for agricultural application is challenging due to the presence of the bitter-tasting and toxic monoterpene, camphor. To unlock the commercial potential of L. dulcis leaves, the first step of camphor biosynthesis by a bornyl diphosphate synthase needs to be elucidated. Two putative monoterpene synthases (LdTPS3 and LdTPS9) were isolated from L. dulcis leaf cDNA. To elucidate their catalytic functions, E. coli-produced recombinant enzymes with truncations of their chloroplast transit peptides were assayed with geranyl diphosphate (GPP). In vitro enzyme assays showed that LdTPS3 encodes bornyl diphosphate synthase (thus named LdBPPS) while LdTPS9 encodes linalool synthase. Interestingly, the N-terminus of LdBPPS possesses two arginine-rich (RRX 8 W) motifs, and enzyme assays showed that the presence of both RRX 8 W motifs completely inhibits the catalytic activity of LdBPPS. Only after the removal of the putative chloroplast transit peptide and the first RRX 8 W, LdBPPS could react with GPP to produce bornyl diphosphate. LdBPPS is distantly related to the known bornyl diphosphate synthase from sage in a phylogenetic analysis, indicating a converged evolution of camphor biosynthesis in sage and L. dulcis. The discovery of LdBPPS opens up the possibility of engineering L. dulcis to remove the undesirable product, camphor. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: Potential inhibitors of geranylgeranyl diphosphate synthase

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2014-07-01

    Full Text Available A set of bisphosphonate ethers has been prepared through sequential phosphonylation and alkylation of monophosphonate ethers. After formation of the corresponding phosphonic acid salts, these compounds were tested for their ability to inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS. Five of the new compounds show IC50 values of less than 1 μM against GGDPS with little to no activity against the related enzyme farnesyl diphosphate synthase (FDPS. The most active compound displayed an IC50 value of 82 nM when assayed with GGDPS, and no activity against FDPS even at a 10 μM concentration.

  3. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  4. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  5. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP...

  6. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    OpenAIRE

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transform...

  7. Class II recombinant phosphoribosyl diphosphate synthase from spinach

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    to other PRPP synthases the activity of spinach PRPP synthase isozyme 3 is independent of P(i), and the enzyme is inhibited by ribonucleoside diphosphates in a purely competitive manner, which indicates a lack of allosteric inhibition by these compounds. In addition spinach PRPP synthase isozyme 3 shows...... an unusual low specificity toward diphosphoryl donors by accepting dATP, GTP, CTP, and UTP in addition to ATP. The kinetic mechanism of the enzyme is an ordered steady state Bi Bi mechanism with K(ATP) and K(Rib-5-P) values of 170 and 110 micrometer, respectively, and a V(max) value of 13.1 micromol (min x...... mg of protein)(-1). The enzyme has an absolute requirement for magnesium ions, and maximal activity is obtained at 40 degrees C at pH 7.6....

  8. Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1999-01-01

    Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Δprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2...

  9. ACTIVATION OF G-PROTEINS BY RECEPTOR-STIMULATED NUCLEOSIDE DIPHOSPHATE KINASE IN DICTYOSTELIUM

    NARCIS (Netherlands)

    Bominaar, Anthony A.; Molijn, Anco C.; Pestel, Martine; Veron, Michel; Haastert, Peter J.M. van

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC 2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase

  10. Hepatic conversion of bilirubin monoglucuronide to diglucuronide in uridine diphosphate-glucuronyl transferase-deficient man and rat by bilirubin glucuronoside glucuronosyltransferase

    NARCIS (Netherlands)

    Chowdhury, J. R.; Jansen, P. L.; Fischberg, E. B.; Daniller, A.; Arias, I. M.

    1978-01-01

    The microsomal enzyme uridine diphosphate (UDP) glucuronate glucuronyltransferase (E.C. 2.4.1.17) catalyzes formation of bilirubin mono-glucuronide from bilirubin and UDPglucuronic acid. Bilirubin glucuronoside glucuronosyltransferase (E.C. 2.4.1.95), an enzyme concentrated in plasma

  11. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    Science.gov (United States)

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  12. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  13. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    Science.gov (United States)

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  14. Manganese dipyridoxyl diphosphate:

    DEFF Research Database (Denmark)

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart...

  15. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    International Nuclear Information System (INIS)

    Garcia G, N.; Ordonez R, E.

    2010-10-01

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP 2 O 7 ) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP 2 O 7 surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  16. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  17. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    Science.gov (United States)

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 araispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evaluation of the sorption of Eu(III) in titanium diphosphate

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M.

    2007-01-01

    In this work its are presented: the synthesis, physicochemical characterization and the surface parameters estimation that can be related with the retention properties of the titanium diphosphate for the actinides of valence III (Pu, Am, Cm among others), using the Eu 3+ like a chemical analog. The surface area, hydration time, zero charge point, density of active sites and the surface species distribution in the titanium diphosphate are reported. This information was used to explain the retention of the Eu(lll) in the surface of the titanium diphosphate. (Author)

  19. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and...

  20. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1996-01-01

    Phosphoribosyl diphosphate-lacking (Δprs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase...... reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth...... was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene...

  1. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Aripirala, Srinivas [Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States); Gonzalez-Pacanowska, Dolores [López-Neyra Institute of Parasitology and Biomedicine, 18001 Granada (Spain); Oldfield, Eric [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kaiser, Marcel [University of Basel, Petersplatz 1, CH-4003 Basel (Switzerland); Amzel, L. Mario, E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Gabelli, Sandra B., E-mail: mamzel@jhmi.edu [Johns Hopkins University School of Medicine, 725 N. Wolfe Street WBSB 604, Baltimore, MD 21205 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Johns Hopkins University, 725 North Wolfe Street WBSB 605, Baltimore, MD 21210 (United States)

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  2. Solid-Phase Synthesis of a New Diphosphate 5-Aminoimidazole-4-carboxamide Riboside (AICAR Derivative and Studies toward Cyclic AICAR Diphosphate Ribose

    Directory of Open Access Journals (Sweden)

    Gennaro Piccialli

    2011-09-01

    Full Text Available The solid-phase synthesis of the first example of a new diphosphate AICAR derivative is reported. The new substance is characterized by the presence of a 5'-phosphate group while a second phosphate moiety is installed on a 5-hydroxypentyl chain attached to the 4-N-position of AICAR. Cyclization of the diphosphate derivative by pyrophosphate bond formation allowed for the formation of a novel AICAR-based cyclic ADP-ribose (cADPR mimic.

  3. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  4. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  5. Synthesis of a tritium labeled photolabile analogue of farnesyl diphosphate: (E,E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphosphate (DATFP-GDP)

    International Nuclear Information System (INIS)

    Liu, J.; Benedict, C.R.

    1996-01-01

    Tritiated (E,E)-(2-diazo-3-trifluoropropionyloxy)geranyl disphosphate (DATFP-GDP) has been used as a photolabile analogue of (E,E)-farnesyl diphosphate (E,E-FDP) for an aid in isolating enzymes utilizing E,E-FDP as a substrate. We now report an alternative method of synthesizing this probe in which the tritium label is introduced in the step just before the introduction of the diphospate group. Thus, DATFP-geranial is oxidized to DATFP-geranial with activated manganese dioxide. The tritium label is introduced by reduction of the aldehyde with NaBT 4 . The DATFP-group successfully withstands both of these steps. The overall yield for these two steps is 69%. Diphosphorylation of the resulting alcohol afforded DATFP-[1- 3 H]-GDP in 8% yield with a specific activity of 48.6 μCi/μmol and radiochemical purity of 94%. (Author)

  6. Synthesis and behavior at heating of amorphous calcium diphosphate

    International Nuclear Information System (INIS)

    Levchenko, L.V.; Nurkina, Z.S.; Griggs, D.; Sinyayev, V.A.

    2005-01-01

    There is description of synthesis of amorphous calcium diphosphate in the article. The compound was received via exchange reaction between sodium diphosphate and calcium chloride in water solution. The results of investigation of behavior when heated of produced substance are presented here as well. Composition and structure of precipitated substances and products of its thermal convention were determined by methods of IR-, NMR 31 P and X-ray spectroscopy

  7. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    Science.gov (United States)

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  8. Effect of fructose diphosphate combined with large-dose vitamin C therapy on the myocardial oxidative stress injury after neonatal asphyxia

    Directory of Open Access Journals (Sweden)

    Chun-Hua Liang1

    2017-04-01

    Full Text Available Objective: To study the effect of fructose diphosphate combined with large-dose vitamin C therapy on the myocardial oxidative stress injury after neonatal asphyxia. Methods: 40 patients with neonatal asphyxia who were treated in our hospital between June 2013 and April 2016 were collected and divided into the control group (n=20 who received large-dose vitamin C therapy and the observation group (n=20 who received fructose diphosphate combined with large-dose vitamin C therapy according to the double-blind randomized control method, and the treatment lasted for 10 d. Immediately after admission and after 10 d of treatment, RIA method was used to detect the serum levels of oxidative stress indexes, color Doppler diasonograph was used to determine left cardiac function parameters, and the myocardial enzyme spectrum detector was used to determine myocardial enzyme spectrum index levels. Results: Immediately after admission, the differences in the systemic oxidative stress degree, the left cardiac function damage degree and the myocardial enzyme spectrum index levels were not statistically significant between two groups of patients (P>0.05. After 10 d of treatment, serum malondialdehyde (MDA, advanced oxidation protein products (AOPP, creatine kinase isoenzyme (CK-MB, N-terminal pro-brain natriuretic peptide (Nt-proBNP, heart-type fatty acid-binding protein (H-FABP and troponin I (cTnI contents of observation group were lower than those of control group (P<0.05 while superoxide dismutase (SOD content was higher than that of control group (P<0.05, and the left cardiac function parameter ejection time (ET level was higher than that of control group (P<0.05 while left ventricular isovolumetric contraction time (ICT and left ventricular isovolumetric relaxation time (IRT levels were lower than those of control group (P<0.05. Conclusion: Fructose diphosphate combined with large-dose vitamin C can reduce the systemic oxidative stress of neonatal asphyxia

  9. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    Science.gov (United States)

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  10. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

    Science.gov (United States)

    Zhou, Fei; Wang, Cheng-Yuan; Gutensohn, Michael; Jiang, Ling; Zhang, Peng; Zhang, Dabing; Dudareva, Natalia; Lu, Shan

    2017-06-27

    In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.

  11. Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms1[W][OA

    Science.gov (United States)

    Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg

    2010-01-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448

  12. The molecular origin of the thiamine diphosphate-induced spectral bands of ThDP-dependent enzymes.

    Science.gov (United States)

    Kovina, Marina V; De Kok, Aart; Sevostyanova, Irina A; Khailova, Ludmila S; Belkina, Natalya V; Kochetov, German A

    2004-08-01

    New and previously published data on a variety of ThDP-dependent enzymes such as baker's yeast transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase from pigeon breast muscle, bovine heart, bovine kidney, Neisseria meningitidis and E. coli show their spectral sensitivity to ThDP binding. Although ThDP-induced spectral changes are different for different enzymes, their universal origin is suggested as being caused by the intrinsic absorption of the pyrimidine ring of ThDP, bound in different tautomeric forms with different enzymes. Non-enzymatic models with pyrimidine-like compounds indicate that the specific protein environment of the aminopyrimidine ring of ThDP determines its tautomeric form and therefore the changeable features of the inducible effect. A polar environment causes the prevalence of the aminopyrimidine tautomeric form (short wavelength region is affected). For stabilization of the iminopyrimidine tautomeric form (both short- and long-wavelength regions are affected) two factors appear essential: (i) a nonpolar environment and (ii) a conservative carboxyl group of a specific glutamate residue interacting with the N1' atom of the aminopyrimidine ring. The two types of optical effect depend in a different way upon the pH, in full accordance with the hypothesis tested. From these studies it is concluded that the inducible optical rotation results from interaction of the aminopyrimidine ring with its asymmetric environment and is defined by the protonation state of N1' and the 4'-nitrogen. Copyright 2004 Wiley-Liss, Inc.

  13. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    A steady state kinetic investigation of the Pi activation of 5-phospho-D-ribosyl α-1-diphosphate synthase from Escherichia coli suggests that Pi can bind randomly to the enzyme either before or after an ordered addition of free Mg2+ and substrates. Unsaturation with ribose 5-phosphate increased...... the apparent cooperativity of Pi activation. At unsaturating Pi concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with Pi directs the subsequent ordered binding of Mg2+ and substrates via a fast pathway, whereas...... saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...

  14. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    Science.gov (United States)

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221. Copyright © 2017. Published by Elsevier Ltd.

  15. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  16. Motesanib diphosphate in progressive differentiated thyroid cancer

    DEFF Research Database (Denmark)

    Sherman, Steven I; Wirth, Lori J; Droz, Jean-Pierre

    2008-01-01

    BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet-derived gr...

  17. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  18. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  19. Mutational, Phylogeny and Evolution Analyses of Salvia Copalyl Diphosphate Synthase

    International Nuclear Information System (INIS)

    Hao, D. C.; Thimmappa, R. B.; Xiao, P. G.

    2016-01-01

    The cyclization of geranylgeranyl diphosphate (GGPP) is catalyzed by copalyl diphosphate synthase (CPS), a class II diterpene synthase (diTPS), to form copalyl diphosphate (CPP), which is an essential substrate of a variety of diterpenes in secondary metabolism of angiosperm including Salvia medicinal plants. The protein environment of the N-terminal class II active site stabilizes the carbocation intermediates and maintains the catalytic activity of angiosperm class II diTPS. The virtual modeling and mutagenesis of the class II diTPS of Salvia miltiorrhiza (SmCPS) were accomplished to illuminate the catalytic activity of SmCPS. Terminal truncations and point mutations established the role of the Beta-Gamma domain and Alpha domain, i.e., they facilitate the flexible conformational change of the class II active site after substrate binding. E203 and K238 in the N-ter Gamma domain of SmCPS1 are functional in the substrate binding and conformational transition and might be essential in catalysis. Similar to other CPSs, the ensuing protonation of the GGPP substrate and coordination of the diphosphate group are governed by highly conserved residues in the DxDD motif of SmCPS, e.g., D372 of CPS1. Moreover, F256 and Y505 stabilize the carbocation and control the enzymatic activity during CPP formation. The amino acids of the predicted active sites, despite under purifying selection, vary greatly, corresponding to the functional flexibility of angiosperm CPSs. Molecular phylogeny and evolution analyses suggest early and ongoing evolution of labdane-related diterpenoid metabolism in angiosperm. (author)

  20. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation.

    Science.gov (United States)

    Ye, Yanfang; Fujii, Makoto; Hirata, Aiko; Kawamukai, Makoto; Shimoda, Chikashi; Nakamura, Taro

    2007-09-01

    Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.

  1. Deoxynucleotide-interconverting enzymes and the quantification of deoxynucleoside triphosphates in mammalian cells

    OpenAIRE

    Fuller, Steven A.; Hutton, John J.; Meier, John; Coleman, Mary Sue

    1982-01-01

    We have demonstrated that methanol extracts of human cells are heterogeneous with regard to content of dNDP (deoxynucleoside diphosphate) and dNMP (deoxynucleoside monophosphate) kinases. The presence of these enzymes can affect the reliability of techniques used to measure intracellular pools of deoxynucleotides. An optimized extraction procedure and enzymic assay for dNTP species in haematopoietic cells are described which provide sensitivity to measure 0.1–40pmol of dATP, dTTP and dGTP, an...

  2. Electron density reactivity indexes of the tautomeric/ionization forms of thiamin diphosphate.

    Science.gov (United States)

    Jaña, Gonzalo A; Delgado, Eduardo J

    2013-09-01

    The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6-31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1' atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4' and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP-dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.

  3. Structure of trihydrated rare-earth acid diphosphates LnHP2O7·3H2O (Ln=La, Er)

    International Nuclear Information System (INIS)

    Ben Moussa, S.; Ventemillas, S.; Cabeza, A.; Gutierrez-Puebla, E.; Sanz, J.

    2004-01-01

    In trihydrated lanthanum acid-diphosphates LnHP 2 O 7 ·3H 2 O, prepared from acid LnCl 3 and Na 4 P 2 O 7 solutions (pH=1), two crystal forms were obtained. Layered structures of two representative members of this family have been determined by single-crystal X-ray diffraction (XRD) technique. In the case of orthorhombic LaHP 2 O 7 ·3H 2 O (type I), lanthanum cations are ninefold coordinated and diphosphate groups adopt a staggered (alternated) configuration. In the case of triclinic ErHP 2 O 7 ·3H 2 O (type II), erbium cations are eightfold coordinated and diphosphate groups adopt an eclipsed configuration. In agreement with Infrared (IR) spectroscopic data, a bended configuration for diphosphate groups has been deduced. In both structures, one-dimensional chains of edge-sharing rare-earth polyhedra are linked together by diphosphate groups to form the phosphate layers. In both diphosphates, PO 4 and HPO 4 environments have been identified by 31 P MAS-NMR technique. In the two compounds, OH groups of HPO 4 tetrahedra point out of diphosphate planes interacting with adjacent layers. In La-diphosphate, the interaction between HPO 4 groups and water molecules of adjacent layers is favored; however, in Er-diphosphate, the interaction between phosphate acid groups of contiguous layers is produced. Based on structural information deduced, differences detected in IR and NMR spectra of two disphosphates are discussed

  4. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  5. Studies on enzymes of C-4 pathway : Part V - Comparative studies of RUP2 carboxylase/oxygenase from maize and spinach

    International Nuclear Information System (INIS)

    Ramakrishna, J.; Bhagwat, A.S.; Sane, P.V.

    1978-01-01

    RuP 2 carboxylase (EC 4.1.1.39) isolated from maize, a C-4 plant possessed oxygenase activity. The ratio of carboxylase/oxygenase in the case of maize enzyme was more than 2-fold as compared to that of spinach. Fructose-1 6-diphosphate preferentially inhibited oxygenase function of the RuP 2 carboxylase/oxygenase in both the species when both the activities were assayed under identical conditions of pH, temperature, MgCl 2 , O 2 and RuP 2 concentration. Frutose-1, 6-diphosphate showed a fully competitive inhibition with respect to RuP 2 in the case of spinach, however the maize enzyme was inhibited seminoncompetitively. ( 14 C)-HCO 3 was used in the carboxylase assay. (author)

  6. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Simoni, E.

    2014-10-01

    The surface of zirconium diphosphate (ZrP 2 O 7 ) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP 2 O 7 ) and ternary (U(Vi)/salicylate/ZrP 2 O 7 ) surface. (Author)

  7. Silver vanadium diphosphate Ag2VP2O8: Electrochemistry and characterization of reduced material providing mechanistic insights

    International Nuclear Information System (INIS)

    Takeuchi, Esther S.; Lee, Chia-Ying; Cheng, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-01-01

    Silver vanadium phosphorous oxides (Ag w V x P y O z ) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 , where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag 2 VO 2 PO 4 reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag 2 VP 2 O 8 . However, counter to Ag 2 VO 2 PO 4 reduction, Ag 2 VP 2 O 8 demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag 2 VP 2 O 8 with that of the proposed Li 2 VP 2 O 8 reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag 2 VP 2 O 8 materials, which bodes well for enhanced safety of batteries incorporating this material. - Graphical abstract: Structure and galvanostatic intermittent titration-type test data for silver vanadium diphosphate, Ag 2 VP 2 O 8 . Highlights: ► First electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 . ► In-situ formation of Ag 0 nanoparticles was observed upon electrochemical reduction. ► Structural analysis used to provide insight of the electrochemical behavior

  8. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    Science.gov (United States)

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-07

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  9. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases

    Science.gov (United States)

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale

    2013-01-01

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587

  10. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading...... temperature shift to 42 degrees C. The other mutation was a C -> T transition located 39 bp upstream of the G -> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C -> T mutation in a plasmid contained approximately three times as much PRPP...

  11. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    KAUST Repository

    Quitterer, Felix; Frank, Annika; Wang, Ke; Rao, Guodong; O'Dowd, Bing; Li, Jikun; Guerra, Francisco; Abdel-Azeim, Safwat; Bacher, Adelbert; Eppinger, Jö rg; Oldfield, Eric; Groll, Michael

    2015-01-01

    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  12. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    KAUST Repository

    Quitterer, Felix

    2015-04-11

    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  13. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...... is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two...... in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4....

  15. Germacrene A Synthase in Yarrow (Achillea millefolium Is an Enzyme with Mixed Substrate Specificity: Gene Cloning, Functional Characterization and Expression Analysis

    Directory of Open Access Journals (Sweden)

    Leila ePazouki

    2015-03-01

    Full Text Available Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5 residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS. The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3, functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP, while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP. Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

  16. Biochemical studies on the effect of fluoride on higher plants. II. The effect of fluoride on sucrose-synthesizing enzymes from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S F; Miller, G W

    1963-01-01

    A study was initiated to characterize the properties of partially purified phosphoglucomutase, uridine diphosphate glucose pyrophosphorylase and uridine diphosphate glucose-fructose transglucosyalse, from various plant sources, with respect to activation by metal ions and inhibition by fluoride. Of the three enzymes studied, only phosphoglucomutase was very sensitive to fluoride. It is likely that the inhibition of sucrose synthesis in fluoride-fumigated plants might be due to the inhibition of phosphoglucomutase, which plays an important role in carbohydrate metabolism. However, at present, there is insufficient evidence to show the inhibition of phosphoglucomutase in vivo by fumigation with hydrogen fluoride.

  17. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  18. Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Krath, Britta N.; Eriksen, Tina A.; Poulsen, Tim S.

    1999-01-01

    cDNAs specifying four active phosphoribosyl diphosphate synthase isozymes were isolated from an Arabidopsis thaliana cDNA library. In contrast to other phosphoribosyl diphosphate synthases the activity of two of the A. thaliana isozymes are independent of Pi. Amino acid sequence comparison and ph...

  19. Effect of temperature and pH on the actiity of ribulose 1,5-diphosphate carboxylase from the thermophilic hydrogen bacterium Pseudomonas thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Romanova, A K; Emnova, E E; Zykalova, K A

    1980-01-01

    The activity of ribulose 1,5-diphosphate (RDP) carboxylase was found in the soluble fraction of the cytoplasm from sonicated Pseudomonas thermophila K-2 cells. The enzyme is relatively thermolabile and completey loses its activity at 80/sup 0/C. The activity of RDP carboxylase at 60/sup 0/C increases by 40% during the first 10 min of heating in the presence of Mg/sup 2 +/ ions, bicarbonate and dithiothreitol, and again decreases if the enzyme is heated over 20 min. The optimum temperature of the enzyme is 50 to 55/sup 0/C. The specific activity of the enzyme in fresh preparations under these conditions reaches 0.22 unit per 1 mg of protein in the extract. The calculated value of the activation energy for RDP carboxylase is 6.4 keal.mole/sup -1/, but 11.6 kcal.mole/sup -1/ in frozen preparations. The optimal pH is 7.0 to 7.3 depending on the buffer. The temperature optimum for the enzyme action does not depend on pH within the range of 7.3 to 8.8. Therefore, RDP carboxylase of Ps, thermophila K-2 differs from RDP carboxylases of mesophilic cultures studied earlier by a higher susceptibility to a decrease in temeprature (the enzyme activity is negligible at 30/sup 0/C), by a lower value of the activation energy at suboptimal temperatures, and by a lower pH optimum of the enzyme action.

  20. Density fluctuation in a screened Coulombic colloid dispersion: comparison of the liquid and cubic phases of lipid A-diphosphate

    International Nuclear Information System (INIS)

    Brown, Helen; Ross, D. Keith; Paradies, Henrich H.

    2004-01-01

    Light-, small-angle X-ray and neutron scattering measurements of the dynamic structure factor S(Q,t) of strong interacting dispersions of lipid A-diphosphate were recorded and analysed applying existing models of liquid state theory. Lipid A-diphosphate ordering was observed at low volume fractions (phi=2.2x10 -4 ) and at very low ionic strength (I=10 -5 M). Upon increasing the particle number density of lipid A-diphosphate a transformation of the lattices of the colloidal crystals from a BCC lattice (a=36.20 nm) to a FCC lattice (a=57.30 nm) occurred. This strongly suggests a similarity in the preformed liquid structure and the cubic colloidal phase. The fit of both S eff (Q) and the principle peak I p (Q) with the effective particle charge supports of the main conclusions drawn from the SANS experiments and the liquid state theory indicating the presence of long-range order for the dispersions of lipid A-diphosphate

  1. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion

    Czech Academy of Sciences Publication Activity Database

    Lai, D.-H.; Bontempi, E. J.; Lukeš, Julius

    2012-01-01

    Roč. 183, č. 2 (2012), s. 189-192 ISSN 0166-6851 R&D Projects: GA ČR(CZ) GAP305/11/2179 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * Sleeping sickness * Ubiquinone * Solanesyl-diphosphate synthase * Digitonin permeabilization * In situ tagging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112000539

  2. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  3. Protein preparation, crystallization and preliminary X-ray analysis of Trypanosoma cruzi nucleoside diphosphate kinase 1

    International Nuclear Information System (INIS)

    Gómez Barroso, J. A.; Pereira, H.; Miranda, M.; Pereira, C.; Garratt, R. C.; Aguilar, C. F.

    2010-01-01

    T. cruzi TcNDPK1 was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl 2 , 20% PEG 3350. Data were collected to 3.5 Å resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 Å. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease

  4. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa.

    Science.gov (United States)

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-06-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum.

  5. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    Science.gov (United States)

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  6. Altered expression profile of glycolytic enzymes during testicular ischemia reperfusion injury is associated with the p53/TIGAR pathway: effect of fructose 1,6-diphosphate

    Directory of Open Access Journals (Sweden)

    May Al-Maghrebi

    2016-07-01

    Full Text Available Background. Testicular ischemia reperfusion injury (tIRI is considered the mechanism underlying the pathology of testicular torsion and detorsion. Left untreated, tIRI can induce testis dysfunction, damage to spermatogenesis and possible infertility. In this study, we aimed to assess the activities and expression of glycolytic enzymes (GEs in the testis and their possible modulation during tIRI. The effect of fructose 1,6-diphosphate (FDP, a glycolytic intermediate, on tIRI was also investigated. Methods. Male Sprague-Dawley rats were divided into three groups: sham, unilateral tIRI, and tIRI + FDP (2 mg/kg. tIRI was induced by occlusion of the testicular artery for 1 h followed by 4 h of reperfusion. FDP was injected peritoneally 30 min prior to reperfusion. Histological and biochemical analyses were used to assess damage to spermatogenesis, activities of major GEs, and energy and oxidative stress markers. The relative mRNA expression of GEs was evaluated by real-time PCR. ELISA and immunohistochemistry were used to evaluate the expression of p53 and TP53-induced glycolysis and apoptosis regulator (TIGAR. Results. Histological analysis revealed tIRI-induced spermatogenic damage as represented by a significant decrease in the Johnsen biopsy score. In addition, tIRI reduced the activities of hexokinase 1, phosphofructokinase-1, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase C. However, mRNA expression downregulation was detected only for hexokinase 1, phosphoglycerate kinase 2, and lactate dehydrogenase C. ATP and NADPH depletion was also induced by tIRI and was accompanied by an increased Malondialdehyde concentration, reduced glutathione level, and reduced superoxide dismutase and catalase enzyme activities. The immunoexpression of p53 and TIGAR was markedly increased after tIRI. The above tIRI-induced alterations were attenuated by FDP treatment. Discussion. Our findings indicate that tIRI-induced spermatogenic damage is

  7. Acid dissociation constants of uridine-5 Prime -diphosphate compounds determined by {sup 31}phosphorus nuclear magnetic resonance spectroscopy and internal pH referencing

    Energy Technology Data Exchange (ETDEWEB)

    Jancan, Igor [Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803 (United States); Macnaughtan, Megan A., E-mail: macnau@lsu.edu [Louisiana State University, Department of Chemistry, Baton Rouge, LA 70803 (United States)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The first reported phosphate and imide pK{sub a} values of UDP-GlcNAc and UDP-S-GlcNAc. Black-Right-Pointing-Pointer New role for the monosaccharide in the imide pK{sub a} of uridine-5 Prime -phosphate compounds. Black-Right-Pointing-Pointer UDP-S-GlcNAc and UDP-GlcNAc have the same phosphate pK{sub a}, unlike thioyl analogs. Black-Right-Pointing-Pointer The {sup 31}P chemical shift of inorganic phosphate is a viable internal pH reference. Black-Right-Pointing-Pointer Stability of the external {sup 31}P chemical shift reference is essential. - Abstract: The acid dissociation constant (pK{sub a}) of small, biological molecules is an important physical property used for investigating enzyme mechanisms and inhibitor design. For phosphorus-containing molecules, the {sup 31}P nuclear magnetic resonance (NMR) chemical shift is sensitive to the local chemical environment, particularly to changes in the electronic state of the molecule. Taking advantage of this property, we present a {sup 31}P NMR approach that uses inorganic phosphate buffer as an internal pH reference to determine the pK{sub a} values of the imide and second diphosphate of uridine-5 Prime -diphosphate compounds, including the first reported values for UDP-GlcNAc and UDP-S-GlcNAc. New methods for using inorganic phosphate buffer as an internal pH reference, involving mathematical correction factors and careful control of the chemical shift reference sample, are illustrated. A comparison of the newly determined imide and diphosphate pK{sub a} values of UDP, UDP-GlcNAc, and UDP-S-GlcNAc with other nucleotide phosphate and thio-analogs reveals the significance of the monosaccharide and sulfur position on the pK{sub a} values.

  8. Spectroscopic and Computational Investigations of Ligand Binding to IspH: Discovery of Non-diphosphate Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    O' Dowd, Bing [Department of Chemistry, University of Illinois, 600 South Mathews Avenue Urbana IL 61801 USA; Williams, Sarah [Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla CA 92093 USA; Wang, Hongxin [Department of Chemistry, University of California, 1 Shields Avenue Davis CA 95616 USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley CA 94720 USA; No, Joo Hwan [Center for Biophysics and Computational Biology, Urbana, IL (United States); Rao, Guodong [Department of Chemistry, University of Illinois, 600 South Mathews Avenue Urbana IL 61801 USA; Wang, Weixue [Center for Biophysics and Computational Biology, Urbana, IL (United States); McCammon, J. Andrew [Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla CA 92093 USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla CA 92093 USA; National Biomedical Computation Resource, University of California at San Diego, La Jolla CA 92093 USA; Cramer, Stephen P. [Department of Chemistry, University of California, 1 Shields Avenue Davis CA 95616 USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley CA 94720 USA; Oldfield, Eric [Department of Chemistry, University of Illinois, 600 South Mathews Avenue Urbana IL 61801 USA

    2017-04-07

    Isoprenoid biosynthesis is an important area for anti-infective drug development. One isoprenoid target described is (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMBPP) reductase (IspH), which forms isopentenyl diphosphate and dimethylallyl diphosphate from HMBPP in a 2H + /2e - reduction. IspH contains a 4 Fe-4 S cluster, and in this work, we first investigated how small molecules bound to the cluster by using HYSCORE and NRVS spectroscopies. The results of these, as well as other structural and spectroscopic investigations, led to the conclusion that, in most cases, ligands bound to IspH 4 Fe-4 S clusters by η 1 coordination, forming tetrahedral geometries at the unique fourth Fe, ligand side chains preventing further ligand (e.g., H 2 O, O 2 ) binding. Based on these ideas, we used in silico methods to find drug-like inhibitors that might occupy the HMBPP substrate binding pocket and bind to Fe, leading to the discovery of a barbituric acid analogue with a K i value of ≈500 nm against Pseudomonas aeruginosa IspH.

  9. Evaluation of the sorption of Eu(III) in titanium diphosphate; Evaluacion de la sorcion de Eu(III) en difosfato de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M. [ININ, Carretera Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail: hortiz@nuclear.inin.mx

    2007-07-01

    In this work its are presented: the synthesis, physicochemical characterization and the surface parameters estimation that can be related with the retention properties of the titanium diphosphate for the actinides of valence III (Pu, Am, Cm among others), using the Eu{sup 3+} like a chemical analog. The surface area, hydration time, zero charge point, density of active sites and the surface species distribution in the titanium diphosphate are reported. This information was used to explain the retention of the Eu(lll) in the surface of the titanium diphosphate. (Author)

  10. A high-performance liquid chromatography-based radiometric assay for sucrose-phosphate synthase and other UDP-glucose requiring enzymes

    International Nuclear Information System (INIS)

    Salvucci, M.E.; Crafts-Brandner, S.J.

    1991-01-01

    A method for product analysis that eliminates a problematic step in the radiometric sucrose-phosphate synthase assay is described. The method uses chromatography on a boronate-derivatized high-performance liquid chromatography column to separate the labeled product, [14C]sucrose phosphate, from unreacted uridine 5'-diphosphate-[14C]glucose (UDP-Glc). Direct separation of these compounds eliminates the need for treatment of the reaction mixtures with alkaline phosphatase, thereby avoiding the problem of high background caused by contaminating phosphodiesterase activity in alkaline phosphatase preparations. The method presented in this paper can be applied to many UDP-Glc requiring enzymes; here the authors show its use for determining the activities of sucrose-phosphate synthase, sucrose synthase, and uridine diphosphate-glucose pyrophosphorylase in plant extracts

  11. Method for enzyme synthesis of radioactive thymine 5'-deoxyribonucleotides

    International Nuclear Information System (INIS)

    Nejedly, Z.; Ekl, J.; Hybs, K.; Kolina, J.; Filip, J.; Votruba, I.; Skoda, J.

    1978-01-01

    The enzyme synthesis is described for thymidine-5'-monophosphate, thymidine-5'-diphosphate and thymidine-5'-triphosphate specifically or nonspecifically labelled with 14 C or 3 H. The anabolic transformation of radioactive thymine to radioactive thymine 5'-deoxyribonucleotides is catalyzed by the action of enzyme preparations separated from Escherichia coli bacteria. It is achieved by the action of nonpurified cell-free extracts on special auxotrophic mutants of the thymine-dependent Escherichia coli SPT - strain in the presence of deoxyriboso-1-phosphate and adenosine-5'-triphosphate. The radioactive thymidine-5'-monophosphate may further be phosphorylated. In reaction mixtures, radioactive thymine, deoxyriboso-1-phosphate and adenosine-5'-triphosphate are used in molar ratios of 1:1:2 to 1:10:100, the optimum molar ratio being 1:5:10. (B.S.)

  12. A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: rhamnulose-1-phosphate aldolase, fuculose-1-phosphate aldolase and tagatose-1,6-diphosphate aldolase.

    Science.gov (United States)

    Garcia-Junceda, E; Shen, G J; Sugai, T; Wong, C H

    1995-07-01

    Three DHAP-dependent aldolases, rhamnulose-1-phosphate aldolase (Rham-1PA), fuculose-1-phosphate aldolase (Fuc-1PA) and tagatose-1,6-diphosphate aldolase (TDPA) have been cloned and overexpressed in Escherichia coli using two different expression vectors: pTrcHis for the expression of Rham-1PA and Fuc-1PA and pRSET for the expression of TDPA. In each case the recombinant enzyme is synthesized as a fusion protein with a hexahistidine tag on the N-terminus. The three enzymes have been purified in only one step by chelation affinity chromatography. The effects of cultivation temperature and concentration of inducer have been studied in order to optimize the expression of the recombinant proteins and to avoid the formation of inclusion bodies.

  13. Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs—How Does the Endoplasmic Reticulum Membrane Influence Their Function?

    Directory of Open Access Journals (Sweden)

    Yuejian Liu

    2017-08-01

    Full Text Available Uridine diphosphate-glucuronosyltransferases (UGTs are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes. They catalyze glucuronidation reactions in various aglycone substrates, contributing significantly to the body’s chemical defense mechanism. There has been controversy over the last 50 years in the UGT field with respect to the explanation for the phenomenon of latency: full UGT activity revealed by chemical or physical disruption of the microsomal membrane. Because latency can lead to inaccurate measurements of UGT activity in vitro, and subsequent underprediction of drug clearance in vivo, it is important to understand the mechanisms behind this phenomenon. Three major hypotheses have been advanced to explain UGT latency: compartmentation, conformation, and adenine nucleotide inhibition. In this review, we discuss the evidence behind each hypothesis in depth, and suggest some additional studies that may reveal more information on this intriguing phenomenon.

  14. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    Science.gov (United States)

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  15. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    Science.gov (United States)

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  16. Crystallization and preliminary X ray analysis of nucleoside diphosphate kinase 1 from T. cruzi

    International Nuclear Information System (INIS)

    Gomez Barroso, J.A.; Aguilar, C.F.; Miranda, M.R.; Pereira, C.A.

    2009-01-01

    Introduction: Trypanosoma cruzi is the etiologic agent of Chagas disease. The Nucleoside diphosphate kinases (NDPKs) are enzymes involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform. The objective of this work is obtaining protein's crystals, diffract and process the data for tridimensional structure resolution. Materials and Methods: TcNDPK1 was expressed in E. coli as a fusion protein with Nterminal His-tag. TcNDPK1 was overexpressed and purified by FPLC. Crystallization was assayed by sitting drop and hanging drop vapor diffusion method. Crystals was frozen and diffracted on synchrotron x-ray radiation in Campinas (Brasil). The data set collected was reduced and merged using MOSFLM and SCALA programs. Results and Discussion: His-TcNDPK was overexpressed, purified and crystallized. The crystals are diffracted and collected the data to 3.5A. The crystals belong to the trigonal space group P3, with unit cell parameters a=127.94, b=127.84, c=275.49. Structure determination is under way. These results will provide relevant information that could be the first step in rational drug design for treating Chagas disease.(authors)

  17. Cladribine and Fludarabine Nucleotides Induce Distinct Hexamers Defining a Common Mode of Reversible RNR Inhibition.

    Science.gov (United States)

    Wisitpitthaya, Somsinee; Zhao, Yi; Long, Marcus J C; Li, Minxing; Fletcher, Elaine A; Blessing, William A; Weiss, Robert S; Aye, Yimon

    2016-07-15

    The enzyme ribonucleotide reductase (RNR) is a major target of anticancer drugs. Until recently, suicide inactivation in which synthetic substrate analogs (nucleoside diphosphates) irreversibly inactivate the RNR-α2β2 heterodimeric complex was the only clinically proven inhibition pathway. For instance, this mechanism is deployed by the multifactorial anticancer agent gemcitabine diphosphate. Recently reversible targeting of RNR-α-alone coupled with ligand-induced RNR-α-persistent hexamerization has emerged to be of clinical significance. To date, clofarabine nucleotides are the only known example of this mechanism. Herein, chemoenzymatic syntheses of the active forms of two other drugs, phosphorylated cladribine (ClA) and fludarabine (FlU), allow us to establish that reversible inhibition is common to numerous drugs in clinical use. Enzyme inhibition and fluorescence anisotropy assays show that the di- and triphosphates of the two nucleosides function as reversible (i.e., nonmechanism-based) inhibitors of RNR and interact with the catalytic (C site) and the allosteric activity (A site) sites of RNR-α, respectively. Gel filtration, protease digestion, and FRET assays demonstrate that inhibition is coupled with formation of conformationally diverse hexamers. Studies in 293T cells capable of selectively inducing either wild-type or oligomerization-defective mutant RNR-α overexpression delineate the central role of RNR-α oligomerization in drug activity, and highlight a potential resistance mechanism to these drugs. These data set the stage for new interventions targeting RNR oligomeric regulation.

  18. Synthesis of P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate for the investigation of biosynthesis of O-antigenic polysaccharides in Pseudomonas aeruginosa and Escherichia coli O104.

    Science.gov (United States)

    Torgov, Vladimir; Danilov, Leonid; Utkina, Natalia; Veselovsky, Vladimir; Brockhausen, Inka

    2017-12-01

    Two new phenoxyundecyl diphosphate sugars were synthesized for the first time: P 1 -(11-phenoxyundecyl)-P 2 - (2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P 1 -(11-phenoxyundecyl)-P 2 -(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate to study the third step of biosynthesis of the repeating units of O-antigenic polysaccharides in Pseudomonas aeruginosa and E.coli O104 respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    DEFF Research Database (Denmark)

    Engel, M; Issinger, O G; Lascu, I

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  20. The molecular origin of the thiamin diphosphate-induced spectral bands of ThDP-dependent enzymes

    NARCIS (Netherlands)

    Kovina, M.V.; Kok, A.; Sevostyanova, I.A.; Khailova, L.S.; Belkina, N.V.; Kochetov, G.A.

    2004-01-01

    New and previously published data on a variety of ThDP-dependent enzymes such as baker's yeast transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase from pigeon breast muscle, bovine heart, bovine kidney, Neisseria meningitidis and E. coli show their spectral sensitivity to ThDP

  1. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    Science.gov (United States)

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update.

    Science.gov (United States)

    Chen, Rachel

    2018-04-01

    Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature's catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2' fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.

  3. Triclinic-cubic phase transition and negative expansion in the actinide IV (Th, U, Np, Pu) diphosphates

    International Nuclear Information System (INIS)

    Wallez, Gilles; Bregiroux, Damien; Raison, Philippe E.; Bykov, Denis; Konings, Rudy J.M.; Dacheux, Nicolas; Clavier, Nicolas; Delevoye, Laurent; Popa, Karin; Fitch, Andrew N.

    2012-01-01

    The AnP 2 O 7 diphosphates (An = Th, U, Np, Pu) have been synthesized by various routes depending on the stability of the An(IV) cation and its suitability for the unusual octahedral environment. Synchrotron and X-ray diffraction, thermal analysis, Raman spectroscopy, and 31 P nuclear magnetic resonance reveal them as a new family of diphosphates which probably includes the recently studied CeP 2 O 7 . Although they adopt at high temperature the same cubic archetypal cell as the other known MP 2 O 7 diphosphates, they differ by a very faint triclinic distortion at room temperature that results from an ordering of the P 2 O 7 units, as shown using high-resolution synchrotron diffraction for UP 2 O 7 . The uncommon triclinic-cubic phase transition is first order, and its temperature is very sensitive to the ionic radius of An(IV). The conflicting effects which control the thermal variations of the P-O-P angle are responsible for a strong expansion of the cell followed by a contraction at higher temperature. This inversion of expansion occurs at a temperature significantly higher than the phase transition, at variance with the parent compounds with smaller Mn(IV) cations in which the two phenomena coincide. As shown by various approaches, the P-O-b-P linkage remains bent in the cubic form. (authors)

  4. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Degao [Dalian University of Technology, Department of Environmental Science and Technology, Dalian (China)

    2005-10-01

    Quantitative structure-activity relationships (QSARs), which relate the glucuronidation of hydroxyl polychlorinated biphenyls (OH-PCBs) - catalyzed by the uridine diphosphate glucuronosyltransferases (UGTs) - to their physicochemical properties and molecular structural parameters, can be used to predict the rate constants and interpret the mechanism of glucuronidation. In this study, QSARs have been developed that use 23 semi-empirical calculated quantum chemical descriptors to predict the logarithms of the constants 1/K{sub m} and V{sub max}, related to enzyme kinetics. A partial least squares regression method was used to select the optimal set of descriptors to minimize the multicollinearity between the descriptors, as well as to maximize the cross-validated coefficient (Q{sup 2} {sub cum}) values. The key descriptors affecting log(1/K{sub m}) were E{sub lumo}- E{sub homo} (the energy gap between the lowest unoccupied molecular orbital and the highest occupied molecular orbital) and q{sub C}{sup -} (the largest negative net atomic charge on a carbon atom), while the key descriptors affecting log V{sub max} were the polarizability {alpha}, the Connolly solvent-excluded volume (CSEV), and logP (the logarithm of the partition coefficient for octanol/water). From the results obtained it can be concluded that hydrophobic and electronic aspects of OH-PCBs are important in the glucuronidation of OH-PCBs. (orig.)

  5. X-ray characteristics and thermal transformations of double diphosphates MLnP2O7 (M-K, Rb, Cs; Ln-REE of yttrium subgroup)

    International Nuclear Information System (INIS)

    Anisimova, N.Yu.; Chudinova, N.N.; Trunov, V.K.; AN SSSR, Moscow

    1993-01-01

    Results on studying double diphosphates of rare earth metals with K, Rb and Cs are studied by methods of X-ray analysis, high-temperature roentgenography and DTA. Double diphosphates of rare earth and alkali metals are crystallized in three structural types: monoclinic, rhombic and hexagonal, whereby rhombic form by heating inversely transforms into hexagonal one. MLnP 2 O 7 thermal transformations are studied

  6. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016

  7. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    Science.gov (United States)

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  8. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  9. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  10. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation.

    Science.gov (United States)

    Sasaki, Daisuke; Fujihashi, Masahiro; Okuyama, Naomi; Kobayashi, Yukiko; Noike, Motoyoshi; Koyama, Tanetoshi; Miki, Kunio

    2011-02-04

    Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.

  11. Defining the optimal cut-off values for liver enzymes in diagnosing blunt liver injury.

    Science.gov (United States)

    Koyama, Tomohide; Hamada, Hirohisa; Nishida, Masamichi; Naess, Paal A; Gaarder, Christine; Sakamoto, Tetsuya

    2016-01-25

    Patients with blunt trauma to the liver have elevated levels of liver enzymes within a short time post injury, potentially useful in screening patients for computed tomography (CT). This study was performed to define the optimal cut-off values for serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in patients with blunt liver injury diagnosed with contrast enhanced multi detector-row CT (CE-MDCT). All patients admitted from May 2006 to July 2013 to Teikyo University Hospital Trauma and Critical Care Center, and who underwent abdominal CE-MDCT within 3 h after blunt trauma, were retrospectively enrolled. Using receiver operating characteristic (ROC) curve analysis, the optimal cut-off values for AST and ALT were defined, and sensitivity and specificity were calculated. Of a total of 676 blunt trauma patients 64 patients were diagnosed with liver injury (Group LI+) and 612 patients without liver injury (Group LI-). Group LI+ and LI- were comparable for age, Revised Trauma Score, and Probability of survival. The groups differed in Injury Severity Score [median 21 (interquartile range 9-33) vs. 17 (9-26) (p tool for CT scan in patients otherwise eligible for observation only or as a transfer criterion to a facility with CT scan capability.

  12. Early Cessation of Adenosine Diphosphate Receptor Inhibitors Among Acute Myocardial Infarction Patients Treated With Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Ju, Christine; Anstrom, Kevin J

    2016-01-01

    BACKGROUND: Guidelines recommend the use of adenosine diphosphate receptor inhibitor (ADPri) therapy for 1 year postacute myocardial infarction; yet, early cessation of therapy occurs frequently in clinical practice. METHODS AND RESULTS: We examined 11 858 acute myocardial infarction patients tre...

  13. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate

    International Nuclear Information System (INIS)

    Garcia G, N.; Solis, D.; Ordonez R, E.

    2012-10-01

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP 2 O 7 ). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  14. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Piotr Szymczyk

    2016-09-01

    Full Text Available The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data. The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity. Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration.

  15. Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver.

    Science.gov (United States)

    Maldonado, Marcos Rodrigues; Bracht, Lívia; de Sá-Nakanishi, Anacharis Babeto; Corrêa, Rúbia Carvalho Gomes; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2018-01-01

    p-Synephrine is one of the main active components of the fruit of Citrus aurantium (bitter orange). Extracts of the bitter orange and other preparations containing p-synephrine have been used worldwide to promote weight loss and for sports performance. The purpose of the study was to measure the action of p-synephrine on hepatic enzyme activities linked to carbohydrate and energy metabolism and the levels of adenine mononucleotides. Enzymes and adenine mononucleotides were measured in the isolated perfused rat liver and in vivo after oral administration of the drug (50 and 300 mg/kg) by using standard techniques. p-Synephrine increased the activity of glycogen phosphorylase in vivo and in the perfused liver. It decreased, however, the activities of pyruvate kinase and pyruvate dehydrogenase also in vivo and in the perfused liver. p-Synephrine increased the hepatic pools of adenosine diphosphate and adenosine triphosphate. Stimulation of glycogen phosphorylase is consistent with the reported increased glycogenolysis in the perfused liver and increased glycemia in rats. The decrease in the pyruvate dehydrogenase activity indicates that p-synephrine is potentially capable of inhibiting the transformation of carbohydrates into lipids. The capability of increasing the adenosine triphosphate-adenosine diphosphate pool indicates a beneficial effect of p-synephrine on the cellular energetics. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis.

    Science.gov (United States)

    Shen, Qinqin; Li, Lixia; Jiang, Yu; Wang, Qiang

    2016-01-01

    To characterize the ent-copalyl diphosphate (ent-CPP) synthase involved in the biosynthetic pathway of andrographolides in a medicinal plant, Andrographis paniculata. The ent-CPP synthase (ent-CPS) gene was cloned from A. paniculata and its encoded ApCPS was demonstrated to react with (E,E,E)-geranylgeranyl diphosphate to form ent-CPP through recombinant expression in Escherichia coli. Site-directed mutagenesis of the Asp to Ala in the conserved DXDD motif of ApCPS resulted in loss of function. One Arg is located in the conserved position close to DXDD motif indicating the involvement of ApCPS in specialized metabolism. In addition, RT-PCR analysis revealed that ApCPS was expressed in all tissues of A. paniculata at all growth stages, which is consistent with andrographolides accumulating in these organs. Methyl jasmonate induced ApCPS gene expression, matching inducible accumulation of andrographolides in vivo. ApCPS is the first ent-CPS characterized in A. paniculata and is suggested to be involved in biosynthesis of andrographolides that have high pharmaceutical values.

  17. Overexpression of Farnesyl Diphosphate Synthase in Arabidopsis Mitochondria Triggers Light-dependent Lesion Formation and Alters Cytokinin Homeostasis

    Czech Academy of Sciences Publication Activity Database

    Manzano, D.; Busquets, A.; Closa, M.; Hoyerová, Klára; Schaller, H.; Kamínek, Miroslav; Arró, M.; Ferrer, A.

    2006-01-01

    Roč. 61, 1-2 (2006), s. 195-213 ISSN 0167-4412 R&D Projects: GA AV ČR(CZ) IAA600380507 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * cytokinin * farnesyl diphosphate synthase * isoprenoid Subject RIV: EF - Botanics Impact factor: 3.577, year: 2006

  18.   Adenosine-diphosphate (ADP) reduces infarct size and improves porcine heart function after myocardial infarction

    DEFF Research Database (Denmark)

    Bune, Laurids Touborg; Larsen, Jens Kjærgaard Rolighed; Thaning, Pia

    2013-01-01

    Acute myocardial infarction continues to be a major cause of morbidity and mortality. Timely reperfusion can substantially improve outcomes and the administration of cardioprotective substances during reperfusion is therefore highly attractive. Adenosine diphosphate (ADP) and uridine-5-triphoshat...... infusion during reperfusion reduces IS by ~20% independently from systemic release of t-PA. ADP-induced reduction in both preload and afterload could account for the beneficial myocardial effect....

  19. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption; Modificacion del difosfato de circonio con acido salicilico y su efecto sobre la sorcion de uranio (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Almazan T, M. G.; Garcia G, N. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Simoni, E., E-mail: guadalupe.almazan@inin.gob.mx [Universidad Paris Sud, Instituto de Fisica Nuclear, Georges Clemenceau No. 15, Orsay (France)

    2014-10-15

    The surface of zirconium diphosphate (ZrP{sub 2}O{sub 7}) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP{sub 2}O{sub 7}) and ternary (U(Vi)/salicylate/ZrP{sub 2}O{sub 7}) surface. (Author)

  20. Production, purification, crystallization and preliminary X-ray diffraction studies of the nucleoside diphosphate kinase b from Leishmania major

    International Nuclear Information System (INIS)

    Tonoli, Celisa Caldana Costa; Vieira, Plinio Salmazo; Ward, Richard John; Arni, Raghuvir Krishnaswamy; Oliveira, Arthur Henrique Cavalcante de; Murakami, Mario Tyago

    2009-01-01

    Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the nucleoside diphosphate kinase b from Leishmania major are reported. The crystals belonged to the trigonal space group P3 2 21 and diffracted to 2.18 Å resolution. Nucleoside diphosphate kinases (NDKs; EC 2.7.4.6) play an essential role in the synthesis of nucleotides from intermediates in the salvage pathway in all parasitic trypanosomatids and their structural studies will be instrumental in shedding light on the biochemical machinery involved in the parasite life cycle and host–parasite interactions. In this work, NDKb from Leishmania major was overexpressed in Escherichia coli, purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The NDK crystal diffracted to 2.2 Å resolution and belonged to the trigonal crystal system, with unit-cell parameters a = 114.2, c = 93.9 Å. Translation-function calculations yielded an unambiguous solution in the enantiomorphic space group P3 2 21

  1. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  3. Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver

    Directory of Open Access Journals (Sweden)

    Chen Ren

    2012-10-01

    Full Text Available Abstract Background Natural rubber produced by plants, known as polyisoprene, is the most widely used isoprenoid polymer. Plant polyisoprenes can be classified into two types; cis-polyisoprene and trans-polyisoprene, depending on the type of polymerization of the isoprene unit. More than 2000 species of higher plants produce latex consisting of cis-polyisoprene. Hevea brasiliensis (rubber tree produces cis-polyisoprene, and is the key source of commercial rubber. In contrast, relatively few plant species produce trans-polyisoprene. Currently, trans-polyisoprene is mainly produced synthetically, and no plant species is used for its commercial production. Results To develop a plant-based system suitable for large-scale production of trans-polyisoprene, we selected a trans-polyisoprene-producing plant, Eucommia ulmoides Oliver, as the target for genetic transformation. A full-length cDNA (designated as EuIPI, Accession No. AB041629 encoding isopentenyl diphosphate isomerase (IPI was isolated from E. ulmoides. EuIPI consisted of 1028 bp with a 675-bp open reading frame encoding a protein with 224 amino acid residues. EuIPI shared high identity with other plant IPIs, and the recombinant protein expressed in Escherichia coli showed IPI enzymatic activity in vitro. EuIPI was introduced into E. ulmoides via Agrobacterium-mediated transformation. Transgenic lines of E. ulmoides overexpressing EuIPI showed increased EuIPI expression (up to 19-fold that of the wild-type and a 3- to 4-fold increase in the total content of trans-polyisoprenes, compared with the wild-type (non-transgenic root line control. Conclusions Increasing the expression level of EuIPI by overexpression increased accumulation of trans-polyisoprenes in transgenic E. ulmoides. IPI catalyzes the conversion of isopentenyl diphosphate to its highly electrophilic isomer, dimethylallyl diphosphate, which is the first step in the biosynthesis of all isoprenoids, including polyisoprene. Our

  4. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    Science.gov (United States)

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  5. The upregulation of thiamine (vitamin B1 biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    Directory of Open Access Journals (Sweden)

    Rapala-Kozik Maria

    2012-01-01

    Full Text Available Abstract Background Recent reports suggest that vitamin B1 (thiamine participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing and late (adaptation responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress

  6. Structure of active IspH enzyme from escherichia coli provides mechanistic insights into substrate reduction

    KAUST Repository

    Grä wert, Tobias; Rohdich, Felix; Span, Lngrid; Backer, Adelbert; Eisenreich, Wolfgang; Eppinger, Jö rg; Groll, Michael

    2009-01-01

    The terminal step of the non-mevalonate pathway of terpene biosynthesis is catalyzed by IspH (see scheme). In the crystal structure of IspH from E. coli, a bound inorganic diphosphate ligand occupies the position of the diphosphate residue

  7. Coenzyme metabolism in rat liver transketolase

    International Nuclear Information System (INIS)

    Gorbach, Z.V.; Kubyshin, V.L.; Maglysh, S.S.; Zabrodskaya, S.V.

    1987-01-01

    On the basis of the results of kinetic investigations, two binding sites for hydroxythiamine diphosphate were determined in apotransketolase, with sharply differing values of K/sub i/: (7-22) x 10 -9 and (13.0-19.7) x 10 -8 M. A study was made of the turnover rate of thiamine diphosphate in holotransketolase in rat liver tissue by a radioisotope method, using [ 14 C] thiamine as the labeled precursor. The half-substitution time and rate constant of degradation of the coenzyme in transketolase are close in absolute values to the analogous indices for the protein portion of the enzyme and constitute 153 h and 0.108 day -1 , respectively. Rat liver transketolase exists in vivo in the form of a substituted α-carbanion. Replacement of thiamine diphosphate by hydroxythiamine diphosphate in the holoenzyme has no effect on the formation of the intermediate α-carbanion form of the enzyme

  8. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  9. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... enzymes (Frost and Moss, 1987). However, microbial enzymes are more in use due to cheaper substrates and ease of process modification. In microbial enzyme and biomass production, defined mixed culture method in which more than one organism grows simultaneously can result in increased biomass ...

  10. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  11. Tenofovir-induced Fanconi syndrome and osteomalacia in two HIV-infected patients: Role of intracellular tenofovir diphosphate levels and review of the literature

    NARCIS (Netherlands)

    Haverkort, M.E.; van der Spek, B.W.; Lips, P.T.A.M.; Slieker, W.A.; ter Heine, R.; Huitema, A.D.; Bronsveld, W.

    2011-01-01

    We present 2 human immunodeficiency virus-infected patients with tenofovir disoproxil fumarate-induced Fanconi syndrome, leading to osteomalacia. Intracellular tenofovir diphosphate levels were measured in 1 patient and were found to be very high, with plasma tenofovir levels just slightly elevated.

  12. Study of the thorium phosphate-diphosphate (TPD) dissolution: kinetic aspect - thermodynamic aspect: analysis of the neo-formed phases; Etude de la dissolution du phosphate diphosphate de thorium: - aspect cinetique - aspect thermodynamique: analyse des phases neoformees

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A.Ch

    2000-10-06

    The aim of this work is to study the aqueous corrosion of the thorium phosphate-diphosphate (TPD), of the formula Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, in the framework of the actinides immobilization. In order to complete the anterior studies concerning solid solutions where thorium is substituted by a tetravalent ion (uranium (IV) or plutonium (IV)) in the TPD structure, compounds of thorium and neptunium phosphate-diphosphate, of formula Th{sub 4-x}Np{sub x}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, have been prepared. Furthermore, a new chemical way of synthesis has been investigated in order to sinter solids solution of thorium and uranium phosphate-diphosphate (TUPD) in good conditions. The TPD dissolution study showed two principals steps. The first one corresponds to the control of element concentration by the material dissolution whereas the second corresponds to the formation of secondary precipitates for which thermodynamic equilibrium controls the concentration of the species in solution. Leaching tests have been performed varying several independent parameters in order to determine the TPD dissolution rate. The partial orders related to the protons or to the hydroxide ions have been found between 0.35 and 0.45 whereas the apparent dissolution rate constants are in the range 1.10{sup -5} for 9.10{sup -5} g.m{sup -2}.j{sup -1} for acidic and basic media. The neo-formed phases have been characterized after the dissolution of TPD and TUPD. We found that the TPD leaching in acidic medium leads to the formation of the crystallized thorium phosphate-hydrogen-phosphate (TPHP), of formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}), x H{sub 2}O, whereas the TUPD dissolution leads to the TPHP and an other compound, of formula (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}, 5 H{sub 2}O. We calculated its solubility product which is in good agreement with those found in the literature. The phases formed during the leaching of solids containing plutonium; americium or curium (Th

  13. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  14. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  15. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  16. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  17. A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chuang

    2018-06-01

    Full Text Available Phalaenopsis bellina is a scented orchid emitting large amount of monoterpenes. GERANYL DIPHOSPHATE SYNTHASE (PbGDPS is the key enzyme for monoterpene biosynthesis, and shows concomitant expression with the emission of monoterpenes during flower development in P. bellina. Here, we identified a dual repeat cis-element in the GDPS promoter that is critical for monoterpene biosynthesis in Phalaenopsis orchids. A strong correlation between the dual repeat and the monoterpene production was revealed by examination of the GDPS promoter fragments over 12 Phalaenopsis species. Serial-deletion of the 2-kb GDPS promoter fragments demonstrated that the integrity of the dual repeat was crucial for its promoter activities. By screening the Arabidopsis transcription factors (TFs cDNA library using yeast one-hybrid assay, AtbZIP18, a member of group I of bZIP TFs, was identified to be able to bind the dual repeat. We then identified PbbZIP4 in the transcriptome of P. bellina, showing 83% identity in the DNA binding region with that of AtbZIP18, and the expression level of PbbZIP4 was higher in the scented orchids. In addition, PbbZIP4 transactivated the GDPS promoter fragment containing the dual repeat in dual luciferase assay. Furthermore, transient ectopic expression of PbbZIP4 induced a 10-fold production of monoterpenoids in the scentless orchid. In conclusion, these results indicate that the dual repeat is a real TF-bound cis-element significant for GDPS gene expression, and thus subsequent monoterpene biosynthesis in the scented Phalaenopsis orchids.

  18. Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B.

    Science.gov (United States)

    Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

    2014-12-09

    Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene.

  19. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Analysis of quinocide in unprocessed primaquine diphosphate and primaquine diphosphate tablets using gas chromatography-mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Brondz, Ilia; Fialkov, Alexander B; Amirav, Aviv

    2009-01-30

    Malaria is one of the most widespread and deadly diseases on the planet. Every year, about 500 million new cases are diagnosed, and the annual death toll is about 3 million. Primaquine has strong antiparasitic effects against gametocytes and can therefore prevent the spread of the parasite from treated patients to mosquitoes. It is also used in radical cures and prevents relapse. Consequently, primaquine is an often-used drug. In this study the separation of unprocessed primaquine from the contaminant quinocide based on gas chromatography-mass spectrometry with supersonic molecular beam (SMB) is presented and 7.5 mg primaquine diphosphate tablets were analyzed. We present a novel method for fast determination of quinocide which is an isomer of primaquine as the main contaminant in unprocessed primaquine and in its medical form as tablets by gas chromatography-mass spectrometry with SMB (also named supersonic GC-MS). Supersonic GC-MS provides enhanced molecular ion without any ion source related peak tailing plus extended range of compounds amenable for GC-MS analysis. In addition, major isomer mass spectral effects were revealed in the mass spectra of primaquine and quinocide which facilitated the unambiguous identification of quinocide in primaquine tablets. Fast GC-MS analysis is demonstrated with less then 2 min elution time of the drug and its main contaminants.

  1. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Rosenkrantz, Tina J; Haldimann, Andreas

    2003-01-01

    An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene...

  2. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction.

    Science.gov (United States)

    Chang, Chih-Kang; Teng, Kuo-Hsun; Lin, Sheng-Wei; Chang, Tao-Hsin; Liang, Po-Huang

    2013-04-23

    Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.

  3. Acquisition of wild-type HIV-1 infection in a patient on pre-exposure prophylaxis with high intracellular concentrations of tenofovir diphosphate: a case report.

    NARCIS (Netherlands)

    Hoornenborg, Elske; Prins, Maria; Achterbergh, Roel C A; Woittiez, Lycke R; Cornelissen, Marion; Jurriaans, Suzanne; Kootstra, Neeltje A; Anderson, Peter L; Reiss, Peter; de Vries, Henry J C; Prins, Jan M; de Bree, Godelieve J

    2017-01-01

    Pre-exposure prophylaxis (PrEP) with emtricitabine and tenofovir disoproxil fumarate is highly effective against acquisition of HIV infection, and only two cases of infection with a multidrug-resistant virus have been reported under adequate long-term adherence, as evidenced by tenofovir diphosphate

  4. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.

    Science.gov (United States)

    Bettendorff, Lucien; Wins, Pierre

    2009-06-01

    Prokaryotes, yeasts and plants synthesize thiamin (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamin homeostasis. Inside the cells, thiamin is phosphorylated to higher phosphate derivatives. Thiamin diphosphate (ThDP) is the best-known thiamin compound because of its role as an enzymatic cofactor. However, in addition to ThDP, at least three other thiamin phosphates occur naturally in most cells: thiamin monophosphate, thiamin triphosphate (ThTP) and the recently discovered adenosine thiamin triphosphate. It has been suggested that ThTP has a specific neurophysiological role, but recent data favor a much more basic metabolic function. During amino acid starvation, Escherichia coli accumulate ThTP, possibly acting as a signal involved in the adaptation of the bacteria to changing nutritional conditions. In animal cells, ThTP can phosphorylate some proteins, but the physiological significance of this mechanism remains unknown. Adenosine thiamin triphosphate, recently discovered in E. coli, accumulates during carbon starvation and might act as an alarmone. Among the proteins involved in thiamin metabolism, thiamin transporters, thiamin pyrophosphokinase and a soluble 25-kDa thiamin triphosphatase have been characterized at the molecular level, in contrast to thiamin mono- and diphosphatases whose specificities remain to be proven. A soluble enzyme catalyzing the synthesis of adenosine thiamin triphosphate from ThDP and ADP or ATP has been partially characterized in E. coli, but the mechanism of ThTP synthesis remains elusive. The data reviewed here illustrate the complexity of thiamin biochemistry, which is not restricted to the cofactor role of ThDP.

  5. Structure of active IspH enzyme from escherichia coli provides mechanistic insights into substrate reduction

    KAUST Repository

    Gräwert, Tobias

    2009-07-20

    The terminal step of the non-mevalonate pathway of terpene biosynthesis is catalyzed by IspH (see scheme). In the crystal structure of IspH from E. coli, a bound inorganic diphosphate ligand occupies the position of the diphosphate residue of the substrate. Together with mutation studies and theoretical calculations, these data support a mechanism which is analogous to the Birch reduction of allylic alcohols. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Kinetic study of the thorium phosphate - diphosphate dissolution

    International Nuclear Information System (INIS)

    Dacheux, N.; Thomas, A.C.; Brandel, V.; Genet, M.

    2000-01-01

    The thorium phosphate-diphosphate Th 4 (PO 4 ) 4 P 2 O 7 (TPD) structure allows the replacement of large amounts of thorium by tetravalent actinides leading to the formation of solid solutions. This compound was obtained in powdered or sintered form after pressing at room temperature at 300-800 MPa then heating at 1250 deg. C for 10-30 hours. The resistance of this material to aqueous corrosion was determined by varying several parameters such as surface, leaching flow, acidity or temperature. It was thus possible to independently determine the influence of each parameter on the leaching rate provided that the saturation of the solution was not obtained. In acidic media, the partial order related to [H 3 O + ] was found to be in the 0.31-0.35 range while, in basic media, the partial order related to [OH - ] was almost the same (0.45). The activation energy (42 kJ/mol) was determined between 4 deg. C and 120 deg. C. Moreover, the addition of phosphate in the leachate slightly increased the TPD dissolution rate. When the saturation of the solution is reached, a gelatinous precipitate controls the thorium and phosphate concentrations. The complete characterization of this solid led to the proposed general formula Th 2 (PO 4 ) 2 (HPO 4 ). n H 2 O which conventional solubility product (at I = 0 M) is very low: K * S,0 10 -66.6±1.2 even in very acidic media. (authors)

  7. SIMULTANEOUS ANALYSIS OF AZIDOTHYMIDINE AND ITS MONOPHOSPHATE, DIPHOSPHATE AND TRIPHOSPHATE DERIVATIVES IN BIOLOGICAL-FLUIDS, TISSUE AND CULTURED-CELLS BY A RAPID HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHIC METHOD

    NARCIS (Netherlands)

    MOLEMA, G; JANSEN, RW; Visser, Jan; MEIJER, DKF

    1992-01-01

    A rapid high-performance liquid chromatographic (HPLC) method for the simultaneous analysis of the antiviral drug azidothymidine (AZT), AZT monophosphate, AZT diphosphate and AZT triphosphate, with ultraviolet detection in the nanomolar range, is described. Determination of these compounds in vitro

  8. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    Science.gov (United States)

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014

  9. Chemical interaction of potassium diphosphate with cadmium nitrate in aqueous solution

    International Nuclear Information System (INIS)

    Kokhanovskij, V.V.

    1993-01-01

    Formation of low-soluble compounds in 1.5 mol/l isomolar cross section of K 4 P 2 O 7 -Cd(NO 3 ) 2 -H 2 O system was studied. Liquid phases are studied by the methods of refractometry and pH value measuring, an solid ones - by the methods of chemical and X-ray phase analysis, IR spectroscopy, chromatography and microscopy. Three individual chemical compounds K 2 CdP 2 O 7 x 4H 2 O, K 2 Cd 3 (P 2 O 7 ) 2 x 3H 2 O and Cd 2 P 2 O 7 x 3.5H 2 O and some their mixtures were isolated and investigated. It is shown that doulble diphosphate K 6 Cd(P 2 O 7 ) 2 x 6H 2 O does not precipitate spontanously, but instead of it in wide region of system K 2 CdP 2 O 7 x 4H 2 O crystallizes as elongated acicular crystals or as thin plates of improper form

  10. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    OpenAIRE

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic...

  11. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  12. Kinetic study of the thorium phosphate - diphosphate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N.; Thomas, A.C.; Brandel, V.; Genet, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Aupiais, J. [CEA/DAM-Ile de France, Dept. Analyse Surveillance Environnement, DASE, Service Radioanalyses Chimie Environnement, 91 - Bruyeres-Le-Chatel (France)

    2000-07-01

    The thorium phosphate-diphosphate Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} (TPD) structure allows the replacement of large amounts of thorium by tetravalent actinides leading to the formation of solid solutions. This compound was obtained in powdered or sintered form after pressing at room temperature at 300-800 MPa then heating at 1250 deg. C for 10-30 hours. The resistance of this material to aqueous corrosion was determined by varying several parameters such as surface, leaching flow, acidity or temperature. It was thus possible to independently determine the influence of each parameter on the leaching rate provided that the saturation of the solution was not obtained. In acidic media, the partial order related to [H{sub 3}O{sup +}] was found to be in the 0.31-0.35 range while, in basic media, the partial order related to [OH{sup -}] was almost the same (0.45). The activation energy (42 kJ/mol) was determined between 4 deg. C and 120 deg. C. Moreover, the addition of phosphate in the leachate slightly increased the TPD dissolution rate. When the saturation of the solution is reached, a gelatinous precipitate controls the thorium and phosphate concentrations. The complete characterization of this solid led to the proposed general formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}). n H{sub 2}O which conventional solubility product (at I = 0 M) is very low: K{sup *}{sub S,0} 10{sup -66.6{+-}}{sup 1.2} even in very acidic media. (authors)

  13. Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship.

    Science.gov (United States)

    Scott, Alison J; Oyler, Benjamin L; Goodlett, David R; Ernst, Robert K

    2017-11-01

    Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    Korecka, Lucie; Jezova, Jana; Bilkova, Zuzana; Benes, Milan; Horak, Daniel; Hradcova, Olga; Slovakova, Marcela; Viovy, Jean-Louis

    2005-01-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  15. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  16. Intestinal absorption of cytidine diphosphate choline and its changes in the digestive tract

    International Nuclear Information System (INIS)

    Yashima, Keisuke; Takamatsu, Masatoshi; Okuda, Kunio

    1975-01-01

    Intestinal absorption of cytidine diphosphate choline (CDP-choline), its structural changes in the digestive tract, and hepatic uptake have been investigated in rats using 14 C-labeled ( 14 CH 3 attached to N of choline) and 3 H-labeled (at C 5 of pyrimidine) compounds. The results indicate that: 1) CDP-choline is relatively stable in the stomach, but is quickly degraded into cytidine and choline in the intestine; 2) The hepatic uptakes of 14 C and 3 H reach the maximum in two to three hours after oral administration; 3) Whereas the amount of 14 C remaining in the gut is inversely related to the hepatic uptake, no similar correlation is seen with 3 H-labeled CDP-choline, and 4) Extrahepatic uptake of 14 C and 3 H is very small. The possibility of phosphorylation in the mucosa of choline and cytidine has been discussed, based on the differences in relative amount of radioactivity in individual broken-down products in the intestinal lumen and mucosa. (auth.)

  17. Pertussis toxin substrate is a guanosine 5'-[beta-thio]diphosphate-, N-ethylmaleimide-, Mg2+- and temperature-sensitive GTP-binding protein.

    OpenAIRE

    Wong, S K; Martin, B R; Tolkovsky, A M

    1985-01-01

    We compared the effects of guanine nucleotides and Mg2+ on ADP-ribosylation of rat brain and liver membrane proteins catalysed by Bordetella pertussis toxin (IAP) and cholera toxin (CT). Labelling of proteins in the presence of [alpha-32P]NAD+, ATP and CT required GTP or guanosine 5'-[gamma-thio]triphosphate (GTP [S]). In contrast, labelling of one (liver) or two (brain) polypeptides by IAP was enhanced by guanosine 5'-[beta-thio]diphosphate (GDP[S]) or GTP, but was blocked by GTP[S] or guano...

  18. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  19. Viewing the human microbiome through three-dimensional glasses: integrating structural and functional studies to better define the properties of myriad carbohydrate-active enzymes

    International Nuclear Information System (INIS)

    Turnbaugh, Peter J.; Henrissat, Bernard; Gordon, Jeffrey I.

    2010-01-01

    Metagenomics has unleashed a deluge of sequencing data describing the organismal, genetic, and transcriptional diversity of the human microbiome. To better understand the precise functions of the myriad proteins encoded by the microbiome, including carbohydrate-active enzymes, it will be critical to combine structural studies with functional analyses. Recent studies have provided an unprecedented view of the trillions of microbes associated with the human body. The human microbiome harbors tremendous diversity at multiple levels: the species that colonize each individual and each body habitat; the genes that are found in each organism’s genome; the expression of these genes and the interactions and activities of their protein products. The sources of this diversity are wide-ranging and reflect both environmental and host factors. A major challenge moving forward is defining the precise functions of members of various families of proteins represented in our microbiomes, including the highly diverse carbohydrate-active enzymes (CAZymes) involved in numerous biologically important chemical transformations, such as the degradation of complex dietary polysaccharides. Coupling metagenomic analyses to structural genomics initiatives and to biochemical and other functional assays of CAZymes will be essential for determining how these as well as other microbiome-encoded proteins operate to shape the properties of microbial communities and their human hosts

  20. Theoretical pKa prediction of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc

    Science.gov (United States)

    Vipperla, Bhavaniprasad; Griffiths, Thomas M.; Wang, Xingyong; Yu, Haibo

    2017-01-01

    The pKa value of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc (UDP-GlcNAc) has been successfully calculated using density functional theory methods in conjunction with the Polarizable Continuum Models. Theoretical methods were benchmarked over a dataset comprising of alkyl phosphates. B3LYP/6-31+G(d,p) calculations using SMD solvation model provide excellent agreement with the experimental data. The predicted pKa for UDP-GlcNAc is consistent with most recent NMR studies but much higher than what it has long been thought to be. The importance of this study is evident that the predicted pKa for UDP-GlcNAc supports its potential role as a catalytic base in the substrate-assisted biocatalysis.

  1. Formation of nicotinamide ribose diphosphate ribose, a new metabolite of the NAD pathway, by growing mycelium of Aspergillus niger

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1976-01-01

    A new step of NAD metabolism was shown in Aspergillus niger. Radioactive nicotinic acid and nicotinamide were incorporated into nicotinamide ribose diphosphate ribose (NAm-RDPR), which had been isolated from the culture filtrate. Its content in the culture medium increased with an increase of culture time, and this compound was proved to be a terminal metabolite in the NAD pathway. The experimental results also showed that the Preiss-Handler pathway and the NAD cycling system function in the NAD biosynthesis in A. niger. A part of the radioactive precursors was also incorporated into an unknown compound. (auth.)

  2. The Biosynthetic Origin of Irregular Monoterpenes in Lavandula

    Science.gov (United States)

    Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.

    2013-01-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202

  3. Self irradiation effects on the thorium phosphate diphosphate dissolution (TPD): simulation by external irradiations

    International Nuclear Information System (INIS)

    Tamain, C.; Ozgumus, A.; Dacheux, N.; Garrido, F.; Thome, L.; Corbel, C.; Genet, M.

    2004-01-01

    The Thorium Phosphate Diphosphate (TPD), proposed as a ceramic for the long term immobilization of actinides, was externally irradiated with several ions and energies (but also with gamma rays) in order to simulate the self-irradiation. The influence of the electronic energy loss was first investigated. Thus, the XRD measurements have shown a complete amorphization of the material under 10 13 ions of Kr.cm -2 , while no significant structural change occurred after 5.10 13 S.cm -2 , 2.10 16 He.cm -2 or 320 kGy of dose of gamma rays. The dissolution of the raw and irradiated pellets was studied versus several parameters such as amorphized fraction, energy loss of incident ions, radiolytic species produced in situ in the leachate during irradiation (such as H 2 O 2 ), temperature and acidity. The results reveal an important increase of the dissolution kinetics for amorphized pellets compared to raw ceramic. (authors)

  4. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  5. Biosynthesis of the Common Polysaccharide Antigen of Pseudomonas aeruginosa PAO1: Characterization and Role of GDP-D-Rhamnose:GlcNAc/GalNAc-Diphosphate-Lipid α1,3-D-Rhamnosyltransferase WbpZ.

    Science.gov (United States)

    Wang, Shuo; Hao, Youai; Lam, Joseph S; Vlahakis, Jason Z; Szarek, Walter A; Vinnikova, Anna; Veselovsky, Vladimir V; Brockhausen, Inka

    2015-06-15

    The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster. To characterize the enzymatic function of the wbpZ gene product, we chemically synthesized the donor substrate GDP-D-Rha and enzymatically synthesized GDP-D-[(3)H]Rha. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that WbpZ transferred one D-Rha residue from GDP-D-Rha in α1-3 linkage to both GlcNAc- and GalNAc-diphosphate-lipid acceptor substrates. WbpZ is also capable of transferring D-mannose (D-Man) to these acceptors. Therefore, WbpZ has a relaxed specificity with respect to both acceptor and donor substrates. The diphosphate group of the acceptor, however, is required for activity. WbpZ does not require divalent metal ion for activity and exhibits an unusually high pH optimum of 9. WbpZ from PAO1 is therefore a GDP-D-Rha:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-rhamnosyltransferase that has significant activity of GDP-D-Man:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-mannosyltransferase. We used site-directed mutagenesis to replace the Asp residues of the two DXD motifs with Ala. Neither of the mutant constructs of wbpZ (D172A or D254A) could be used to rescue CPA biosynthesis in the ΔwbpZ knockout mutant in a complementation assay. This suggested that D172 and D254 are essential for WbpZ function. This work is the first detailed characterization study of a D-Rha-transferase and a critical step in the development of CPA synthesis inhibitors. This is the first characterization of a D-rhamnosyltransferase and shows that it is essential in Pseudomonas aeruginosa for the synthesis of the common polysaccharide antigen. Copyright © 2015, American Society for

  6. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Paola; Manandhar, Miglena; Dong, Shi-Hui; Deveryshetty, Jaigeeth; Agarwal, Vinayak; Cronan, John E.; Nair, Satish K.

    2017-04-17

    Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.

  7. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  8. Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and ctc in vegetative cells of Bacillus subtilis

    DEFF Research Database (Denmark)

    Hilden, Ida; Krath, Britta N.; Hove-Jensen, Bjarne

    1995-01-01

    The gcaD, prs, and ctc genes were shown to be organized as a tricistronic operon. The transcription of the prs gene, measured as phosphoribosyl diphosphate synthetase activity, and of the ctc gene, measured as β-galactosidase activity specified by a ctc-lacZ protein fusion, were dependent...

  9. Enzyme technology for precision functional food ingredient processes

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2010-01-01

    modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much...

  10. Crystal Structures of Glycosyltransferase UGT78G1 Reveal the Molecular Basis for Glycosylation and Deglycosylation of (Iso)flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, Luzia V.; Li, Lenong; Pan, Haiyun; Blount, Jack W.; Dixon, Richard A.; Wang, Xiaoqiang; (SRNF)

    2010-09-21

    The glycosyltransferase UGT78G1 from Medicago truncatula catalyzes the glycosylation of various (iso)flavonoids such as the flavonols kaempferol and myricetin, the isoflavone formononetin, and the anthocyanidins pelargonidin and cyanidin. It also catalyzes a reverse reaction to remove the sugar moiety from glycosides. The structures of UGT78G1 bound with uridine diphosphate or with both uridine diphosphate and myricetin were determined at 2.1 {angstrom} resolution, revealing detailed interactions between the enzyme and substrates/products and suggesting a distinct binding mode for the acceptor/product. Comparative structural analysis and mutagenesis identify glutamate 192 as a key amino acid for the reverse reaction. This information provides a basis for enzyme engineering to manipulate substrate specificity and to design effective biocatalysts with glycosylation and/or deglycosylation activity.

  11. Influence of gamma radiation on the activities of some carbohydrate metabolic enzymes in the cotyledons and the leaves of fenugreek (Trigonella foenum-graecum L.) bean seedlings

    International Nuclear Information System (INIS)

    Ahanotu, P.A.

    1985-01-01

    Studies indicated that 21-day old cotyledons from gamma irradiated seeds of fenugreek beans were heavier and had more starch and sugar than their non-irradiated controls. To test whether these effects occurred in the leaves and to seek a possible biochemical explanation for these results, the activities of five enzymes involved in carbohydrate metabolism were studied. Three groups of fenugreek bean seeds were irradiated (100-300 Gy) and then allowed to grow for 21 days. On harvest, wet and dry weights of both cotyledons and leaves were determined. Starch and sugar contents in cotyledons and leaves were measured. The five enzymes α-amylase, β-amylase, starch phosphorylase, ADPG-pyrophosphorylase and ribulose-1,5-diphosphate carboxylase were extracted from cotyledons and leaves, respectively. The protein contents and activities of the enzyme extracts were determined. The results suggest an increase in carbohydrate metabolism in cotyldeons and a decrease in leaves due to the radiation treatment of the seeds before germination. Thus, increased amounts of starch and sugars are observed in the cotyledons, and decreased amounts in the leaves. Radiation damage to the translocatory system of the plant may retard the movement of sugars from the cotyledons to the other parts of the plant. This may cause accumulation of sugars and starch in the cotyledons, leading to an increase in their size and weight

  12. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  13. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  14. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes.

    Science.gov (United States)

    Herschlag, Daniel; Natarajan, Aditya

    2013-03-26

    Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multifaceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis.

  15. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  16. Effects of aqueous extract of Ruta graveolens and its ingredients on cytochrome P450, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH-quinone oxidoreductase in mice

    Directory of Open Access Journals (Sweden)

    Yune-Fang Ueng

    2015-09-01

    Full Text Available Ruta graveolens (the common rue has been used for various therapeutic purposes, including relief of rheumatism and treatment of circulatory disorder. To elucidate the effects of rue on main drug-metabolizing enzymes, effects of an aqueous extract of the aerial part of rue and its ingredients on cytochrome P450 (P450/CYP, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH:quinone oxidoreductase were studied in C57BL/6JNarl mice. Oral administration of rue extract to males increased hepatic Cyp1a and Cyp2b activities in a dose-dependent manner. Under a 7-day treatment regimen, rue extract (0.5 g/kg induced hepatic Cyp1a and Cyp2b activities and protein levels in males and females. This treatment increased hepatic UDP-glucuronosyltransferase activity only in males. However, NAD(PH:quinone oxidoreductase activity remained unchanged. Based on the contents of rutin and furanocoumarins of mouse dose of rue extract, rutin increased hepatic Cyp1a activity and the mixture of furanocoumarins (Fmix increased Cyp2b activities in males. The mixture of rutin and Fmix increased Cyp1a and Cyp2b activities. These results revealed that rutin and Fmix contributed at least in part to the P450 induction by rue.

  17. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  18. FX enzyme and GDP-L-Fuc transporter expression in colorectal cancer.

    Science.gov (United States)

    Villar-Portela, Susana; Muinelo-Romay, Laura; Cuevas, Elisa; Gil-Martín, Emilio; Fernández-Briera, Almudena

    2013-08-01

    Fucosylation is regulated by fucosyltransferases, the guanosine diphosphate-L-fucose (GDP-L-Fuc) synthetic pathway, and the GDP-L-fucose transporter (GDP-L-Fuc Tr). We have reported previously an increased level of α(1,6)fucosyltransferase activity and expression in colorectal cancer (CRC). The present study aimed to analyse the expression profiles of the FX enzyme and GDP-L-Fuc Tr in a cohort of operated CRC patients to elucidate their role in α(1,6)fucosylation in this neoplasm. We assessed the immunohistochemical expression of FX and GDP-L-Fuc Tr in a series of tumour samples and healthy tissues from CRC specimens. FX expression was observed in 58 of 91 (63.7%) tumours and 23 of 28 (82.1%) corresponding healthy samples. GDP-L-Fuc Tr expression was detected in 86 of 102 (84.3%) colorectal tumours, and 13 of 27 (48.1%) healthy tissue specimens. The expression of GDP-L-Fuc Tr was statistically higher in tumours than in healthy tissues (P GDP-L-Fuc Tr expression in tumour samples (P = 0.003). GDP-L-Fuc Tr overexpression in the tumour tissue of CRC patients suggests that GDP-L-Fuc transport to the Golgi apparatus may be an important factor associated with increased α(1,6)fucosylation in CRC. © 2013 John Wiley & Sons Ltd.

  19. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    Science.gov (United States)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  20. DETERMINATION of OPTIMUM CONDITION of PAPAIN ENZYME FROM PAPAYA VAR JAVA (Carica papaya

    Directory of Open Access Journals (Sweden)

    Aline Puspita Kusumadjaja

    2010-06-01

    Full Text Available A study to investigate the optimum condition of papain enzyme has been carried out. The condition that are investigated are pH and temperature, based on measurement of enzyme activity which is defined as mmole tyrosin that are released in reaction between papain enzyme and casein as substrat per minute. In this research, the papain enzyme was isolated from pepaya burung varietas Java. The enzyme was partially purified by precipitation method using 30% - 50% saturated acetone. The result showed that the optimum conditions of papain enzyme are in pH 6 with activity 2,606 U/mL, and temperature at 50 oC with activity 2,469 U/mL. Keywords : Papaya var Java, papain, optimum condition, enzymatic activity

  1. Surface complexation modeling of uranium (Vi) retained onto zirconium diphosphate in presence of organic acids

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Ordonez R, E.

    2010-10-01

    In the field of nuclear waste disposal, predictions regarding radionuclide migration through the geosphere, have to take account the effects of natural organic matter. This work presents an investigation of interaction mechanisms between U (Vi) and zirconium diphosphate (ZrP 2 O 7 ) in presence of organic acids (citric acid and oxalic acid). The retention reactions were previously examined using a batch equilibrium method. Previous results showed that U (Vi) retention was more efficient when citric acid or oxalic acid was present in solid surface at lower ph values. In order to determine the retention equilibria for both systems studied, a phosphorescence spectroscopy study was carried out. The experimental data were then fitted using the Constant Capacitance Model included in the FITEQL4.0 code. Previous results concerning surface characterization of ZrP 2 O 7 (surface sites density and surface acidity constants) were used to constraint the modeling. The best fit for U (Vi)/citric acid/ZrP 2 O 7 and U (Vi)/oxalic acid/ZrP 2 O 7 systems considered the formation of a ternary surface complex. (Author)

  2. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis

    International Nuclear Information System (INIS)

    Hamel, E.; Batra, J.K.; Lin, C.M.

    1986-01-01

    Using highly purified calf brain tubulin bearing [8- 14 C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins, the authors have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg 2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly

  3. Effects of triiodothyronine on turnover rate and metabolizing enzymes for thyroxine in thyroidectomized rats.

    Science.gov (United States)

    Nagao, Hidenori; Sasaki, Makoto; Imazu, Tetsuya; Takahashi, Kenjo; Aoki, Hironori; Minato, Kouichi

    2014-10-29

    Previous studies in rats have indicated that surgical thyroidectomy represses turnover of serum thyroxine (T4). However, the mechanism of this process has not been identified. To clarify the mechanism, we studied adaptive variation of metabolic enzymes involved in T4 turnover. We compared serum T4 turnover rates in thyroidectomized (Tx) rats with or without infusion of active thyroid hormone, triiodothyronine (T3). Furthermore, the levels of mRNA expression and activity of the metabolizing enzymes, deiodinase type 1 (D1), type 2 (D2), uridine diphosphate-glucuronosyltransferase (UGT), and sulfotransferase were also compared in several tissues with or without T3 infusion. After the T3 infusion, the turnover rate of serum T4 in Tx rats returned to normal. Although mRNA expression and activity of D1 decreased significantly in both liver and kidneys without T3 infusion, D2 expression and activity increased markedly in the brain, brown adipose tissue, and skeletal muscle. Surprisingly, hepatic UGT mRNA expression and activity in Tx rats increased significantly in comparison with normal rats, and returned to normal after T3 infusion. This study suggests that repression of the disappearance of serum T4 in rats after Tx is a homeostatic response to decreased serum T3 concentrations. Additionally, T4 glucuronide is a storage form of T4, but may also have biological significance. These results suggest strongly that repression of deiodination of T4 by D1 in the liver and kidneys plays a major role in thyroid hormone homeostasis in Tx rats, and that hepatic UGT also plays a key role in this mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A new radiochemical assay for fructose-1,6-diphosphatase in human leucocytes

    International Nuclear Information System (INIS)

    Janssen, A.J.M.; Trijbels, F.J.M.

    1982-01-01

    Fructose-1,6-diphosphatase (D-fructose-1,6-diphosphate 1-phosphohydrolase, EC 3.1.3.11, FDPase) is one of the key enzymes of the gluconeogenic pathway. Measuring the activity both in the presence and in the absence of AMP yields the true FDPase activity, corrected for non-specific phosphatase activity. In this paper the authors introduce a new radiochemical assay for FDPase, based on the decarboxylating activity of 6-phosphogluconate dehydrogenase. One molecule [U- 14 C]fructose-1,6-diphosphate yields one molecule 14 CO 2 which can be captured in strongly basic solutions and counted in a liquid scintillation counter. (Auth.)

  5. The Presence of Amorpha-4, 11-Diene Synthase, a Key Enzyme in Artemisinin Production in Ten Artemisia Species

    Directory of Open Access Journals (Sweden)

    GA. Garoosi

    2011-12-01

    Full Text Available Background and the purpose of the study: Artemisinin is one of the most effective medicine against malaria, which is produced naturally by Artemisia annua in low yield. It is produced in a metabolic pathway, in which several genes and gene products are involved. One of the key genes in this pathway is am1, which encodes amorpha-4, 11-diene synthase (ADS, a key enzyme in artemisinin biosynthesis pathway. The aim of this study was to determine the presence of this gene in ten Artemisia species in order to increase the yield of production of Artemisinin. Methods : The experiments were carried out using PCR. Specific primers were designed based on the published am1 gene sequence obtained from A. annua (NCBI, accession number AF327527. Results: The amplification of this gene by the specific primers was considered as a positive sign for the potentiality of artemisinin production. Since the entire am1 gene was not amplified in any of the 10 species used, four parts of the gene, essential in ADS enzyme function, corresponding to a pair site of Arg10-Pro12 in the first 100 amino acids, b aspartate rich motif (DDXXD, c active site final lid and d active site including farnesyl diphosphate (FDP ionization sites and catalytic site in the ADS enzyme, were investigated. Major conclusion: The sequence corresponding to ADS active site was amplified only in A. annua, A. aucheri and A. chamaemelifolia. The negative results obtained with other species could be due to some sequence alteration, such as point mutations or INDELs. We propose A. aucheri and A. chamaemelifolia as two potential candidate species for further characterization, breeding and transferring am1 gene for artemisinin overproduction.

  6. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate; Influencia de la temperatura en la sorcion de uranio (VI) en difosfato de circonio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Solis, D. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.mx [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP{sub 2}O{sub 7}). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  7. A study of overproduction and enhanced secretion of enzymes. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Dashek, W.V.

    1993-09-01

    Wood decay within forests, a significant renewable photosynthetic energy resource, is caused primarily by Basidiomycetous fungi, e.g., white rot fungi. These organisms possess the ability to degrade lignin, cellulose and hemicellulose, the main organic polymers of wood. In the case of the white rot fungi, e.g., Coriolus versicolor, the capacity results from the fungus` ability to elaborate extracellular cellulolytic and ligninolytic enzymes. With regard to the latter, at least one of the enzymes, polyphenol oxidase (PPO) appears within a defined growth medium. This proposal focuses on the over-production and enhanced secretion of PPO, cellulase and lignin peroxidase. There are two major sections to the proposal: (1) overproduction of lignocellulolytic enzymes by genetic engineering methodologies and hyper-production and enhanced secretion of these enzymes by biochemical/electro microscopical techniques and (2) the biochemical/electron microscopical method involves substrate induction and the time-dependent addition of respiration and PPO enzymes.

  8. Parasite enzymes as a tool to investigate immune responses

    Directory of Open Access Journals (Sweden)

    Italo M. Cesari

    1992-01-01

    Full Text Available Previous evidences reported by us and by other authors revealed the presence of IgG in sera of Schistosoma mansoni-infected patients to immunodominant antigens which are enzymes. Besides their immunological interest as possible inductors of protection, several of these enzume antigens might be also intersting markers of infection in antibody-detecting immunocapture assays which use the intrinsic catalytic property of these antigens. It was thus thought important to define some enzymatic and immunological characteristics of these molecules to better exploit their use as antigens. Four different enzymes from adult worms were partially characterized in their biochemical properties and susceptibility to react with antibodies of infected patients, namely alkaline phosphatase (AKP, Mg*+, pH 9.5, type I phosphodiesterase (PDE, pH 9.5, cysteine proteinase (CP, dithiothreitol, pH 5.5 and N-acetyl-ß-D-glucosaminidase (NAG, pH 5.5. The AKP and PDE are distinct tegumental membrane-bound enzymes whereas CP and NAG are soluble acid enzymes. Antibodies in infected human sera differed in their capacity to react with and to inhibit these enzyme antigens. Possibly, the specificity of the antibodies related to the extent of homology between the parasite and the host enzyme might be in part responsible for the above differences. The results are also discussed in view of the possible functional importance of these enzymes.

  9. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  10. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis

    Science.gov (United States)

    vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion

    2015-01-01

    Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599

  11. Surface and micellar properties of Chloroquine Diphosphate and its interactions with surfactants and Human Serum Albumin

    International Nuclear Information System (INIS)

    Usman, Muhammad; Siddiq, Mohammad

    2013-01-01

    Highlights: ► Free energy of adsorption is more negative than free energy of micellization. ► Shifts in UV/Visible spectra in presence of SDS indicated interaction of CLQ with SDS. ► The decrease in fluorescence intensity of HSA by CLQ shows its binding with HSA. -- Abstract: This manuscript addresses the physicochemical behavior of an antimalarial drug Chloroquine Diphosphate (CLQ) as well as its interaction with anionic surfactants and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solubilization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (K x ), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has also been analyzed by using UV/Visible and fluorescence spectroscopy. The values of drug-protein binding constant, number of binding sites and free energy of binding were calculated

  12. Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation

    NARCIS (Netherlands)

    Merkulov, S.; Assema, van F.; Springer, J.; Carmen, del A.F.; Mooibroek, H.

    2000-01-01

    The squalene synthase (SQS) gene encodes a key regulatory enzyme, farnesyl-diphosphate farnesyltransferase (EC 2.5.1.21), in sterol biosynthesis. The SQS1 gene was isolated from a subgenomic library of the industrially important yeast Yarrowia lipolytica, using PCR-generated probes. Probes were

  13. Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful

    Directory of Open Access Journals (Sweden)

    Keith F. Tipton

    2014-05-01

    Full Text Available Data on enzyme activities and kinetics have often been reported with insufficient experimental detail to allow their repetition. This paper discusses the objectives and recommendations of the Standards for Reporting Enzyme Data (STRENDA project to define minimal experimental standards for the reporting enzyme functional data.

  14. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.).

    Science.gov (United States)

    Yamaguchi, S; Saito, T; Abe, H; Yamane, H; Murofushi, N; Kamiya, Y

    1996-08-01

    The first committed step in the formation of diterpenoids leading to gibberellin (GA) biosynthesis is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene. ent-Kaurene synthase A (KSA) catalyzes the conversion of GGDP to copalyl diphosphate (CDP), which is subsequently converted to ent-kaurene by ent-kaurene synthase B (KSB). A full-length KSB cDNA was isolated from developing cotyledons in immature seeds of pumpkin (Cucurbita maxima L.). Degenerate oligonucleotide primers were designed from the amino acid sequences obtained from the purified protein to amplify a cDNA fragment, which was used for library screening. The isolated full-length cDNA was expressed in Escherichia coli as a fusion protein, which demonstrated the KSB activity to cyclize [3H]CDP to [3H]ent-kaurene. The KSB transcript was most abundant in growing tissues, but was detected in every organ in pumpkin seedlings. The deduced amino acid sequence shares significant homology with other terpene cyclases, including the conserved DDXXD motif, a putative divalent metal ion-diphosphate complex binding site. A putative transit peptide sequence that may target the translated product into the plastids is present in the N-terminal region.

  15. Defined media and inert supports : their potential as solid-state fermentation production systems

    NARCIS (Netherlands)

    Ooijkaas, L.P.; Weber, F.J.; Buitelaar, R.M.; Tramper, J.; Rinzema, A.

    2000-01-01

    Solid-state fermentation (SSF) using inert supports impregnated with chemically defined liquid media has several potential applications in both scientific studies and in the industrial production of high-value products, such as metabolites, biological control agents and enzymes. As a result of its

  16. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  17. Radiosensitization effects of nicotinamide on malignant and normal mouse tissue

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Kjellen, E.; Pero, R.W.; Cameron, R.

    1985-01-01

    Inhibitors of the chromatin-associated enzyme adenosine diphosphate ribosyltransferase have been found to inhibit DNA strand rejoining and to potentiate lethality of DNA-damaging agents both in vivo and in vitro. The authors have in this work examined the radiosensitizing potential of one such inhibitor, nicotinamide, on tumor tissue by using transplanted C3H mouse mammary adenocarcinomas and on normal tissue in a tail-stunting experiment using BALB/cA mice. The data indicate a radiosensitizing effect of nicotinamide on tumor cells as well as on normal tissue. The data indicate a possible role of adenosine diphosphate ribosyltransferase inhibitors as a sensitizing agent in the radiotherapy of malignant tumors

  18. Pentobarbital Sleep Time in Mouse Lines Selected for Resistance and Susceptibility to Fescue Toxicosis

    OpenAIRE

    Arthur, Kimberly Ann

    2002-01-01

    In previous work with mouse lines selected for resistance (R) and susceptibility (S) to fescue toxicosis, R mice had higher activities of Phase II liver enzymes glutathione S-transferase and uridine diphosphate glucuronosyl-transferase than S mice. Objectives of this study were: 1. to determine whether selection for toxicosis response had also caused divergence between lines in hepatic Phase I enzyme activity (as assessed by sleep time following sodium pentobarbital anesthesia), 2. to determi...

  19. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  20. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  1. Cloning and expression analysis of two dehydrodolichyl diphosphate synthase genes from Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Lin-Hui Gao

    2018-01-01

    Full Text Available Objective: To clone and investigate two dehydrodolichyl diphosphate synthase genes of Tripterygium wilfordii by bioinformatics and tissue expression analysis. Materials and Methods: According to the T. wifordii transcriptome database, specific primers were designed to clone the TwDHDDS1 and TwDHDDS2 genes via PCR. Based on the cloned sequences, protein structure prediction, multiple sequence alignment and phylogenetic tree construction were performed. The expression levels of the genes in different tissues of T. wilfordii were measured by real-time quantitative PCR. Results: The TwDHDDS1 gene encompassed a 873 bp open reading frame (ORF and encoded a protein of 290 amino acids. The calculated molecular weight of the translated protein was about 33.46 kDa, and the theoretical isoelectric point (pI was 8.67. The TwDHDDS2 encompassed a 768 bp ORF, encoding a protein of 255 amino acids with a calculated molecular weight of about 21.19 kDa, and a theoretical isoelectric point (pI of 7.72. Plant tissue expression analysis indicated that TwDHDDS1 and TwDHDDS2 both have relatively ubiquitous expression in all sampled organ tissues, but showed the highest transcription levels in the stems. Conclusions: The results of this study provide a basis for further functional studies of TwDHDDS1 and TwDHDDS2. Most importantly, these genes are promising genetic targets for the regulation of the biosynthetic pathways of important bioactive terpenoids such as triptolide.

  2. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  3. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    Science.gov (United States)

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  4. Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases.

    Science.gov (United States)

    Hall, Dawn E; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L; Yuen, Macaire; Bohlmann, Jörg

    2013-02-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.

  5. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...

  6. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome.

    Science.gov (United States)

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J

    2008-04-01

    In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not

  7. The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging

    International Nuclear Information System (INIS)

    De Medio, G.E.; Trovarelli, G.; Piccinin, G.L.; Porcellati, G.

    1984-01-01

    Lipid synthesis has been tested in vivo in different brain areas of 12-month-old male rats. Cortex, striatum, brainstem, and subcortex of brain have been examined. The cerebellum was discarded. Mixtures of (2- 3 H)glycerol and (Me- 14 C)choline were injected into the lateral ventricle of the brain as lipid precursors, and their incorporation into total lipid, water-soluble intermediates and choline-containing phospholipids was examined 1 hr after isotope injection. In another series of experiments cytidine-5'-diphosphate choline (CDP-choline) was injected intraventricularly to the aged rats 10 min before sacrifice with a simultaneous injection, and radioactivity assays were performed as above. Distribution of radioactivity content of CDP-choline among brain areas 10 min after its administration showed a noticeable enrichment of the nucleotide and water-soluble-related compounds in the examined areas, but to a lesser degree in the cerebral cortex. The incorporation of labelled glycerol, which is severely depressed in aged rats in all four areas [Gaiti et al, 1982, 1983], was increased only in the cortex, and apparently decreased in the other areas. This last result is probably due to a dilution effect brought about by the administered cold CDP-choline upon the ( 14 C)-containing water-soluble metabolites. As a consequence, the ( 3 H)/( 14 C) ratio in total lipid and in isolated phosphatidylcholine and choline plasmalogen increased after CDP-choline treatment

  8. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate

    International Nuclear Information System (INIS)

    Finck, N.

    2006-10-01

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  9. Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts.

    Science.gov (United States)

    Zhao, Linlu; Zou, Haoyang; Zhang, Hao; Sun, Hongcheng; Wang, Tingting; Pan, Tiezheng; Li, Xiumei; Bai, Yushi; Qiao, Shanpeng; Luo, Quan; Xu, Jiayun; Hou, Chunxi; Liu, Junqiu

    2017-01-24

    The elegance and efficiency by which chloroplasts harvest solar energy and conduct energy transfer have been a source of inspiration for chemists to mimic such process. However, precise manipulation to obtain orderly arranged antenna chromophores in constructing artificial chloroplast mimics was a great challenge, especially from the structural similarity and bioaffinity standpoints. Here we reported a design strategy that combined covalent and noncovalent interactions to prepare a protein-based light-harvesting system to mimic chloroplasts. Cricoid stable protein one (SP1) was utilized as a building block model. Under enzyme-triggered covalent protein assembly, mutant SP1 with tyrosine (Tyr) residues at the designated sites can couple together to form nanostructures. Through controlling the Tyr sites on the protein surface, we can manipulate the assembly orientation to respectively generate 1D nanotubes and 2D nanosheets. The excellent stability endowed the self-assembled protein architectures with promising applications. We further integrated quantum dots (QDs) possessing optical and electronic properties with the 2D nanosheets to fabricate chloroplast mimics. By attaching different sized QDs as donor and acceptor chromophores to the negatively charged surface of SP1-based protein nanosheets via electrostatic interactions, we successfully developed an artificial light-harvesting system. The assembled protein nanosheets structurally resembled the natural thylakoids, and the QDs can achieve pronounced FRET phenomenon just like the chlorophylls. Therefore, the coassembled system was meaningful to explore the photosynthetic process in vitro, as it was designed to mimic the natural chloroplast.

  10. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  11. Enzyme technology for precision functional food ingredient processes.

    Science.gov (United States)

    Meyer, Anne S

    2010-03-01

    A number of naturally occurring dietary substances may exert physiological benefits. The production of enhanced levels or particularly tailored versions of such candidate functional compounds can be targeted by enzymatic catalysis. The recent literature contains examples of enhancing bioavailability of iron via enzyme-catalyzed degradation of phytate in wheat bran, increasing diacyl-glycerol and conjugated linoleic acid levels by lipase action, enhancing the absorption of the citrus flavonoid hesperetin via rhamnosidase treatment, and obtaining solubilized dietary fiber via enzymatic modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much-needed improved understanding of the physiological benefits of complex natural substances.

  12. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate; Effets de la temperature sur les mecanismes d'interaction entre les ions europium (3) et uranyle et le diphosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Finck, N

    2006-10-15

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  13. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  14. Evolution of sequence-defined highly functionalized nucleic acid polymers

    Science.gov (United States)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  15. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Science.gov (United States)

    Keim, Verónica; Manzano, David; Fernández, Francisco J; Closa, Marta; Andrade, Paola; Caudepón, Daniel; Bortolotti, Cristina; Vega, M Cristina; Arró, Montserrat; Ferrer, Albert

    2012-01-01

    Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  16. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  17. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    enzyme required Mg2+ and inorganic phosphate for activity; Mn2+ supported only 30% the activity seen with Mg2+. Michaelis constants for ATP and ribose 5-phosphate (Rib5P) were 0.66 mM and 0.48 mM, respectively. Of several end products tested, only ADP was strongly inhibitory; GDP was a weak inhibitor....... ADP inhibition displayed homotropic cooperativity and was enhanced by increasing saturation of the enzyme with ATP. These observations strongly suggest a specific allosteric site for ADP binding. A comparison of physical and kinetic properties of bacterial and mammalian PPRibP synthetases is presented....

  18. Biphasic Elimination of Tenofovir Diphosphate and Nonlinear Pharmacokinetics of Zidovudine Triphosphate in a Microdosing Study

    Science.gov (United States)

    Chen, Jianmeng; Flexner, Charles; Liberman, Rosa G.; Skipper, Paul L.; Louissaint, Nicolette; Tannenbaum, Steven R.; Hendrix, Craig; Fuchs, Edward

    2012-01-01

    Objective Phase 0 studies can provide initial pharmacokinetics (PK) data in humans and help to facilitate early drug development, but their predictive value for standard dosing is controversial. To evaluate the prediction of microdosing for active intracellular drug metabolites, we compared the PK profile of two antiretroviral drugs, zidovudine (ZDV) and tenofovir (TFV), in microdose and standard dosing regimens. Study Design We administered a microdose (100 μg) of 14C-labeled drug (ZDV or tenofovir disoproxil fumarate (TDF)) with or without a standard unlabelled dose (300 mg) to healthy volunteers. Both the parent drug in plasma and the active metabolite, ZDV-triphosphate (ZDV-TP) or TFV-diphosphate (TFV-DP) in PBMCs and CD4+ cells were measured by AMS. Results The intracellular ZDV-TP concentration increased less than proportionally over the dose range studied (100 μg to 300 mg), while the intracellular TFV-DP PK were linear over the same dose range. ZDV-TP concentrations were lower in CD4+ cells versus total peripheral blood mononuclear cells (PBMCs), while TFV-DP concentrations were not different in CD4+ cells and PBMCs. Conclusion Our data were consistent with a rate-limiting step in the intracellular phosphorylation of ZDV but not TFV. AMS shows promise for predicting the PK of active intracellular metabolites of nucleosides, but nonlinearity of PK may be seen with some drugs. PMID:23187888

  19. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  20. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  1. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    Directory of Open Access Journals (Sweden)

    Bao-Qing Zhu

    2014-12-01

    Full Text Available Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer” with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes.

  2. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    Science.gov (United States)

    Zhu, Bao-Qing; Cai, Jian; Wang, Zhi-Qun; Xu, Xiao-Qing; Duan, Chang-Qing; Pan, Qiu-Hong

    2014-01-01

    Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer”) with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes. PMID:25470020

  3. Development of inhibitors of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway enzymes as potential anti-infective agents

    NARCIS (Netherlands)

    Masini, Tiziana; Hirsch, Anna K H

    2014-01-01

    Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl

  4. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  5. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    Science.gov (United States)

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  6. Enzymes in cleaning products: an overview of toxicological properties and risk assessment/management.

    Science.gov (United States)

    Basketter, David; Berg, Ninna; Broekhuizen, Cees; Fieldsend, Mark; Kirkwood, Sheila; Kluin, Cornelia; Mathieu, Sophie; Rodriguez, Carlos

    2012-10-01

    Enzymes used in cleaning products have an excellent safety profile, with little ability to cause adverse responses in humans. For acute toxicity, genotoxicity, sub-acute and repeated dose toxicity, enzymes are unremarkable. Reproductive toxicity and carcinogenicity are also not endpoints of concern. Exceptions are the ability of some proteases to produce irritating effects at high concentrations and more importantly, the intrinsic potential of these bacterial/fungal proteins to act as respiratory sensitizers. It is a reasonable assumption that the majority of enzyme proteins possess this hazard. However, methods for characterising the respiratory sensitisation hazard of enzymes are lacking and the information required for risk assessment and risk management, although sufficient, remains limited. Previously, most data was generated in animal models and in in vitro immunoassays that assess immunological cross-reactivity. Nevertheless, by the establishment of strict limits on airborne exposure (based on a defined minimal effect limit of 60ng active enzyme protein/m(3)) and air and health monitoring, occupational safety can be assured. Similarly, by ensuring that airborne exposure is kept similarly low, coupled with knowledge of the fate of these enzymes on skin and fabrics, it has proven possible to establish a long history of safe consumer use of enzyme containing products. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  8. Impact on enzyme activity as a new quality index of wastewater.

    Science.gov (United States)

    Balestri, Francesco; Moschini, Roberta; Cappiello, Mario; Del-Corso, Antonella; Mura, Umberto

    2013-03-15

    The aim of this study was to define a new indicator for the quality of wastewaters that are released into the environment. A quality index is proposed for wastewater samples in terms of the inertness of wastewater samples toward enzyme activity. This involves taking advantage of the sensitivity of enzymes to pollutants that may be present in the waste samples. The effect of wastewater samples on the rate of a number of different enzyme-catalyzed reactions was measured, and the results for all the selected enzymes were analyzed in an integrated fashion (multi-enzymatic sensor). This approach enabled us to define an overall quality index, the "Impact on Enzyme Function" (IEF-index), which is composed of three indicators: i) the Synoptic parameter, related to the average effect of the waste sample on each component of the enzymatic sensor; ii) the Peak parameter, related to the maximum effect observed among all the effects exerted by the sample on the sensor components; and, iii) the Interference parameter, related to the number of sensor components that are affected less than a fixed threshold value. A number of water based samples including public potable tap water, fluids from urban sewage systems, wastewater disposal from leather, paper and dye industries were analyzed and the IEF-index was then determined. Although the IEF-index cannot discriminate between different types of wastewater samples, it could be a useful parameter in monitoring the improvement of the quality of a specific sample. However, by analyzing an adequate number of waste samples of the same type, even from different local contexts, the profile of the impact of each component of the multi-enzymatic sensor could be typical for specific types of waste. The IEF-index is proposed as a supplementary qualification score for wastewaters, in addition to the certification of the waste's conformity to legal requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  10. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  11. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    Science.gov (United States)

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  12. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  13. Prevalence of abnormal plasma liver enzymes in older people with Type 2 diabetes.

    Science.gov (United States)

    Morling, J R; Strachan, M W J; Hayes, P C; Butcher, I; Frier, B M; Reynolds, R M; Price, J F

    2012-04-01

    To determine the prevalence and distribution of abnormal plasma liver enzymes in a representative sample of older adults with Type 2 diabetes. Plasma concentrations of alanine aminotransferase, aspartate aminotransferase and γ-glutamyltransferase were measured in a randomly selected, population-based cohort of 1066 men and women aged 60-75 years with Type 2 diabetes (the Edinburgh Type 2 Diabetes Study). Overall, 29.1% (95% CI 26.1-31.8) of patients had one or more plasma liver enzymes above the upper limit of the normal reference range. Only 10.1% of these patients had a prior history of liver disease and a further 12.4% reported alcohol intake above recommended limits. Alanine aminotransferase was the most commonly raised liver enzyme (23.1% of patients). The prevalence of abnormal liver enzymes was significantly higher in men (odds ratio 1.40, 95% CI 1.07-1.83), in the youngest 5-year age band (odds ratio 2.02, 95% CI 1.44-2.84), in patients with diabetes duration enzyme abnormality. The prevalence of elevated liver enzymes in people with Type 2 diabetes is high, with only modest variation between clinically defined patient groups. Further research is required to determine the prognostic value of raised, routinely measured liver enzymes to inform decisions on appropriate follow-up investigations. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  14. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    Science.gov (United States)

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  15. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    International Nuclear Information System (INIS)

    Sherley, J.L.; Kelly, T.J.

    1988-01-01

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity

  16. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Directory of Open Access Journals (Sweden)

    Verónica Keim

    Full Text Available Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP synthase (FPS, the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  17. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  18. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  19. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  20. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  1. Definably compact groups definable in real closed fields. I

    OpenAIRE

    Barriga, Eliana

    2017-01-01

    We study definably compact definably connected groups definable in a sufficiently saturated real closed field $R$. We introduce the notion of group-generic point for $\\bigvee$-definable groups and show the existence of group-generic points for definably compact groups definable in a sufficiently saturated o-minimal expansion of a real closed field. We use this notion along with some properties of generic sets to prove that for every definably compact definably connected group $G$ definable in...

  2. Circadian rhythm of anti-fungal prenylated chromene in leaves of Piper aduncum.

    Science.gov (United States)

    Morandim, Andreia de A; Bergamo, Débora Cristina B; Kato, Massuo Jorge; Cavalheiro, Alberto José; Bolzani, Vanderlan da S; Furlan, Maysa

    2005-01-01

    Leaves of Piper aduncum accumulate the anti-fungal chromenes methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate (2). The enzymatic formation of 2 from dimethylallyl diphosphate and 1 was investigated using cell-free extracts of the title plant. An HPLC assay for the prenylation reaction was developed and the enzyme activity measured in the protein extracts. The prenyltransferase that catalyses the transfer of the dimethylallyl group to C-2' of 1 was soluble and required dimethylallyl diphosphate as the prenyl donor. In the leaves, the biosynthesis of the prenylated chromene 2 was time-regulated and prenyltransferase activity depended upon circadian variation. Preliminary characterisation and purification experiments on the prenyltransferase from P. aduncum have been performed.

  3. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  4. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    Science.gov (United States)

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  5. Condensation of the isoprenoid and amino precursors in the biosynthesis of domoic acid.

    Science.gov (United States)

    Savage, Thomas J; Smith, G Jason; Clark, Amy T; Saucedo, Portia N

    2012-01-01

    Understanding how environmental signals regulate production of domoic acid in blooms of Pseudo-nitzschia spp. at a molecular level requires description of the biochemical pathway to this kainoid neurotoxin. Precursor feeding studies have suggested domoic acid arises from the condensation of the C(10) isoprenoid geranyl diphosphate with glutamate, but the specific reactions leading to domoic acid from these precursors remain undescribed. Here, we develop a method to derivatize domoic acid with propyl chloroformate that enables gas chromatography-mass spectrometry (GC-MS) analysis to measure incorporation of stable isotopes into domoic acid generated in cultures incubated with isotopically-labeled substrates. We apply this method to demonstrate that both (2)H from [1-(2)H(2)]geraniol are incorporated into domoic acid, suggesting that the condensation of geranyl diphosphate with an amino group occurs by nucleophilic substitution of the diphosphate rather than by oxidation of geraniol to the aldehyde before reaction with an amino group to form an imine. Ultimately, these and similar studies will facilitate the identification of DA biosynthetic enzymes and genes which will enable the study of how environmental factors regulate DA biosynthesis at the molecular level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. PHGDH Defines a Metabolic Subtype in Lung Adenocarcinomas with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Boxi Zhang

    2017-06-01

    Full Text Available Molecular signatures are emerging determinants of choice of therapy for lung adenocarcinomas. An evolving therapeutic approach includes targeting metabolic dependencies in cancers. Here, using an integrative approach, we have dissected the metabolic fingerprints of lung adenocarcinomas, and we show that Phosphoglycerate dehydrogenase (PHGDH, the rate-limiting enzyme in serine biosynthesis, is highly expressed in a adenocarcinoma subset with poor prognosis. This subset harbors a gene signature for DNA replication and proliferation. Accordingly, models with high levels of PHGDH display rapid proliferation, migration, and selective channeling of serine-derived carbons to glutathione and pyrimidines, while depletion of PHGDH shows potent and selective toxicity to this subset. Differential PHGDH protein levels were defined by its degradation, and the deubiquitinating enzyme JOSD2 is a regulator of its protein stability. Our study provides evidence that a unique metabolic program is activated in a lung adenocarcinoma subset, described by PHGDH, which confers growth and survival and may have therapeutic implications.

  7. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.

    Science.gov (United States)

    Kong, Min Kyung; Kang, Hyun-Jun; Kim, Jin Ho; Oh, Soon Hwan; Lee, Pyung Cheon

    2015-11-20

    The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  9. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  10. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  11. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol......-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35 °C, 6.0 methanol-to-oil molar ratio, 5 wt% of enzyme and 5...... wt% of water contents, 94 % of FAME yield and 6.1 % of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8 hours are necessary to reach a satisfactory FAME yield together with a minor FFA content....

  12. Study of the irradiation effects on thorium phosphate diphosphate ({beta}-TPD): consequences on its chemical durability; Etude des effets d'irradiation sur le phosphate diphosphate de thorium ({beta}-PDT): consequences sur la durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C

    2005-12-15

    Since Thorium Phosphate Diphosphate (beta-TPD) can be considered as a potential host matrix for long-term storage in underground repository, it is necessary to study the irradiation effects on the structure of this ceramics and the consequences on its chemical durability. Sintered samples of beta-TPD and of associated solid solutions of beta-TUPD were irradiated under ion beams and then altered in aqueous solutions. Depending on the electronic LET value, beta-TPD can be completely or partly amorphized. Furthermore, the ability of recrystallization of the amorphous material by thermal annealing was also demonstrated. Some leaching tests, realized on these irradiated samples, have shown a significant effect of the amorphous fraction on the normalized dissolution rate which was increased by a factor of 10 from the crystallized to the fully amorphized material. Correlatively, the amorphous fraction also modified the delay to reach the saturation conditions associated to the thermodynamic equilibria involved. On the other hand, it exhibited no influence neither on other kinetic parameters, such as activation energy of the dissolution process or partial order related to the proton concentration, nor on the nature of the neo-formed phase formed at the saturation of the leachate and identified as Thorium Phosphate Hydrogeno-Phosphate Hydrate (TPHPH). Beta-TUPD samples were also irradiated by gamma and alpha rays during leaching tests to study the effects of radiolysis in the leaching medium on the normalized leaching rate. It appeared that the radiolytic species occurring in the dissolution mechanism were unstable, disappearing quickly when stopping the irradiation. (author)

  13. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  14. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  15. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  16. Asymptomatic and persistent elevation of pancreatic enzymes in an ulcerative colitis patient.

    Science.gov (United States)

    Liverani, Elisa; Leonardi, Filippo; Castellani, Lucia; Cardamone, Carla; Belluzzi, Andrea

    2013-01-01

    Azathioprine has been extensively used in the management of inflammatory bowel diseases. It might cause pancreatic damage in the form of either asymptomatic elevation in serum amylase/lipase or overt acute pancreatitis. Here we report the case of a 61-year-old patient with ulcerative colitis who had been treated with azathioprine for three years, achieving clinical remission. During treatment he presented an asymptomatic elevation of serum pancreatic enzymes, without any signs of pancreatitis at imaging. This evidence brought us to reassess the drug dosage, without achieving a normalization of biochemical analysis. Autoimmune pancreatitis was excluded. One year after the suspension of azathioprine, we still face persistent high levels of amylase/lipase. Normalization of enzymatic values in patients who develop intolerance to azathioprine, in the form of either asymptomatic elevation in serum amylase/lipase or overt acute pancreatitis, is usually achieved in about two months after stopping drug intake. Asymptomatic elevation in serum pancreatic enzymes in the absence of pancreatic disease is reported in the literature and defined as "Gullo's syndrome," but nobody of the subjects studied had been treated in the past with pancreatotoxic drugs. Might this case be defined as "benign pancreatic hyperenzymemia"?

  17. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  18. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  19. Definably compact groups definable in real closed fields.II

    OpenAIRE

    Barriga, Eliana

    2017-01-01

    We continue the analysis of definably compact groups definable in a real closed field $\\mathcal{R}$. In [3], we proved that for every definably compact definably connected semialgebraic group $G$ over $\\mathcal{R}$ there are a connected $R$-algebraic group $H$, a definable injective map $\\phi$ from a generic definable neighborhood of the identity of $G$ into the group $H\\left(R\\right)$ of $R$-points of $H$ such that $\\phi$ acts as a group homomorphism inside its domain. The above result and o...

  20. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  1. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose

    NARCIS (Netherlands)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical

  2. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    Science.gov (United States)

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  3. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    Science.gov (United States)

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  4. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulytic microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.; D' haeseleer, P.; Fortney, J.L.; Reddy, A.; Hugenholtz, P.; Singer, S.W.; Vander Gheynst, J.; Silver, W.L.; Simmons, B.; Hazen, T.C.

    2010-03-01

    Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies. One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.

  5. Dynamics of complex microbiota and enzymes in Divle Cave cheese and their biochemical consequences

    NARCIS (Netherlands)

    Ozturkoglu Budak, S.

    2016-01-01

    Divle Cave cheese is a raw ewe’s milk cheese ripened with the aid of a rich microbiota and a wide range of protease and lipase enzymes secreted by individual strains belong to this microbial community. The study presented in this thesis mainly aims to define the diversity and evolution of the

  6. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    Science.gov (United States)

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  7. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  9. Estimation of extracellular lipase enzyme produced by thermophilic bacillus sp. isolated from arid and semi-arid region of Rajasthan, India

    OpenAIRE

    Deeksha Gaur; Pankaj Kumar Jain; Yamini Singh Sisodia; Vivek Bajpai

    2012-01-01

    Thermophilic organisms can be defined as microorganisms which are adapted to live at high temperatures. The enzymes produce by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipase enzymes capable of degradation of lipid at temperatures higher than those of mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite useful in te...

  10. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    Science.gov (United States)

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  11. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  12. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  13. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  14. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  15. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose.

    Science.gov (United States)

    Chin, Young-Wook; Seo, Nari; Kim, Jae-Han; Seo, Jin-Ho

    2016-11-01

    2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    International Nuclear Information System (INIS)

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-01-01

    Research highlights: → Extracellular Nm23H1 stimulates nerve growth. → Extracellular Nm23H1 provides pathfinding cues to growth cones. → The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. → The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  17. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Wright, K.T. [Keele University at the RJAH Orthopaedic Hospital, Oswestry, Shropshire (United Kingdom); Seabright, R.; Logan, A. [Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, Birmingham University, Birmingham (United Kingdom); Lilly, A.J.; Khanim, F.; Bunce, C.M. [Biosciences, Birmingham University, Birmingham (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [Life and Health Sciences, Aston University, Birmingham (United Kingdom)

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  18. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  19. Study of the irradiation effects on thorium phosphate diphosphate (β-TPD): consequences on its chemical durability

    International Nuclear Information System (INIS)

    Tamain, C.

    2005-12-01

    Since Thorium Phosphate Diphosphate (beta-TPD) can be considered as a potential host matrix for long-term storage in underground repository, it is necessary to study the irradiation effects on the structure of this ceramics and the consequences on its chemical durability. Sintered samples of beta-TPD and of associated solid solutions of beta-TUPD were irradiated under ion beams and then altered in aqueous solutions. Depending on the electronic LET value, beta-TPD can be completely or partly amorphized. Furthermore, the ability of recrystallization of the amorphous material by thermal annealing was also demonstrated. Some leaching tests, realized on these irradiated samples, have shown a significant effect of the amorphous fraction on the normalized dissolution rate which was increased by a factor of 10 from the crystallized to the fully amorphized material. Correlatively, the amorphous fraction also modified the delay to reach the saturation conditions associated to the thermodynamic equilibria involved. On the other hand, it exhibited no influence neither on other kinetic parameters, such as activation energy of the dissolution process or partial order related to the proton concentration, nor on the nature of the neo-formed phase formed at the saturation of the leachate and identified as Thorium Phosphate Hydrogeno-Phosphate Hydrate (TPHPH). Beta-TUPD samples were also irradiated by gamma and alpha rays during leaching tests to study the effects of radiolysis in the leaching medium on the normalized leaching rate. It appeared that the radiolytic species occurring in the dissolution mechanism were unstable, disappearing quickly when stopping the irradiation. (author)

  20. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  2. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production

    DEFF Research Database (Denmark)

    Kang, Aram; Meadows, Corey W.; Canu, Nicolas

    2017-01-01

    Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high...... ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass� isopentenol pathway using the promiscuous activity...

  3. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, Part II.

    Science.gov (United States)

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with codeine, dihydrocodeine, hydrocodone, oxycodone, and buprenorphine are reviewed in this column. These compounds have a very similar chemical structure to morphine. Unlike morphine, which is metabolized chiefly through conjugation reactions with uridine diphosphate glucuronosyl transferase (UGT) enzymes, these five drugs are metabolized both through oxidative reactions by the cytochrome P450 (CYP450) enzyme and conjugation by UGT enzymes. There is controversy as to whether codeine, dihydrocodeine, and hydrocodone are actually prodrugs requiring activation by the CYP450 2D6 enzyme or UGT enzymes. Oxycodone and buprenorphine, however, are clearly not prodrugs and are metabolized by the CYP450 2D6 and 3A4 enzymes, respectively. Knowledge of this metabolism assists in the understanding for the potential of drug-drug interactions with these drugs. This understanding is important so that clinicians can choose the proper dosages for analgesia and anticipate potential drug-drug interactions.

  4. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  5. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  6. Pattern of some risk factors of cardiovascular diseases and liver enzymes among Iranian seafarers

    DEFF Research Database (Denmark)

    Baygi, Fereshteh; Jensen, Olaf Chresten; Qorbani, Mostafa

    2017-01-01

    Background: Little information is available on the trend in cardiovascular risk factors and hepatic enzymes in Iranian seafarers. Thepresent study aimed at assessing the pattern of obesity, hypertension, diabetes, elevated serum glutamic oxaloacetate transaminase(SGOT), and serum glutamate pyruvate...... of antihypertensive drug use. Diabetes (DM) was defined as fasting blood sugar(FBS) > 110 mg/dl, or having a history of oral hypoglycemic agents; and elevated SGOT and SGPT were defined as SGOT > 40 U/Land SGPT > 40 U/L, respectively.Results: The BMI mean±SD values of Iranian seafarers were 24.81±3.07 kg/m2, 25...

  7. The thorium phosphate diphosphate as matrix for radioactive waste conditioning: radionuclide immobilization and behavior under irradiation; Le phosphate diphosphate de thorium, matrice pour le conditionnement des dechets radioactifs: immobilisation de radionucleides, comportement sous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pichot, Erwan [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-04-13

    The aim of this work was to perform successively the decontamination of liquid solutions and the final immobilization of radionuclide storage using the same matrix. For this, thorium phosphate-diphosphate (TPD) of the formula Th{sub 4}P{sub 6}O{sub 23}, is proposed as a very resistant to water corrosion matrix. A new compound, thorium phosphate hydrogeno-phosphate (TPHP) of the formula Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}), nH{sub 2}O with n=3-7 was synthesized and characterized. Heated at 1100 deg.C it is transformed into the TDP. Ion exchange properties of TPHP were investigated. The exchange yields of imponderable caesium, strontium and americium ion onto TPHP (NaNO{sub 3} 0.1 M media at pH=6) are equal to 60% for the first one and 100% for the two others. The results interpreted in terms of ion-exchange led to determine selectivity coefficient values for each cation and suggested that only hydrated ions are exchanged. While the TPD is proposed for the high level nuclear waste storage, the irradiation effects, particularly structural modifications were studied using both {gamma} irradiation and charged particle irradiation. ESR and TL methods were carried out in order to identify radicals created during gamma radiation exposure. Correlation between ESR and TL experiments performed at room temperature clearly show three of PO{sub 3}{sup 2-} species and one POO{center_dot} species of free radicals. We have shown that Au-ion irradiation in the range of MeV energy involved TPD structure and chemical modifications. Important sputtering was interpreted in terms of local thermal chemical decomposition. We have shown, at room temperature, that the amorphization dose for heavy ion irradiation is between 0.1 to 0.4 dpa. (author) 146 refs., 46 figs., 21 tabs.

  8. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  9. High endothelin-converting enzyme-1 expression independently predicts poor survival of patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun

    2017-09-01

    Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression

  10. Asymptomatic and Persistent Elevation of Pancreatic Enzymes in an Ulcerative Colitis Patient

    Directory of Open Access Journals (Sweden)

    Elisa Liverani

    2013-01-01

    Full Text Available Azathioprine has been extensively used in the management of inflammatory bowel diseases. It might cause pancreatic damage in the form of either asymptomatic elevation in serum amylase/lipase or overt acute pancreatitis. Here we report the case of a 61-year-old patient with ulcerative colitis who had been treated with azathioprine for three years, achieving clinical remission. During treatment he presented an asymptomatic elevation of serum pancreatic enzymes, without any signs of pancreatitis at imaging. This evidence brought us to reassess the drug dosage, without achieving a normalization of biochemical analysis. Autoimmune pancreatitis was excluded. One year after the suspension of azathioprine, we still face persistent high levels of amylase/lipase. Normalization of enzymatic values in patients who develop intolerance to azathioprine, in the form of either asymptomatic elevation in serum amylase/lipase or overt acute pancreatitis, is usually achieved in about two months after stopping drug intake. Asymptomatic elevation in serum pancreatic enzymes in the absence of pancreatic disease is reported in the literature and defined as “Gullo’s syndrome,” but nobody of the subjects studied had been treated in the past with pancreatotoxic drugs. Might this case be defined as “benign pancreatic hyperenzymemia”?

  11. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  12. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  13. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Analysis of the enzymatic formation of citral in the glands of sweet basil.

    Science.gov (United States)

    Iijima, Yoko; Wang, Guodong; Fridman, Eyal; Pichersky, Eran

    2006-04-15

    Basil glands of the Sweet Dani cultivar contain high levels of citral, a mixture of geranial and its cis-isomer neral, as well as low levels of geraniol and nerol. We have previously reported the identification of a cDNA from Sweet Dani that encodes an enzyme responsible for the formation of geraniol from geranyl diphosphate in the glands, and that these glands cannot synthesize nerol directly from geranyl diphosphate. Here, we report the identification of two basil cDNAs encoding NADP+-dependent dehydrogenases that can use geraniol as the substrate. One cDNA, designated CAD1, represents a gene whose expression is highly specific to gland cells of all three basil cultivars examined, regardless of their citral content, and encodes an enzyme with high sequence similarity to known cinnamyl alcohol dehydrogenases (CADs). The enzyme encoded by CAD1 reversibly oxidizes geraniol to produce geranial (which reversibly isomerizes to neral via keto-enol tautomerization) at half the efficiency compared with its activity with cinnamyl alcohol. CAD1 does not use nerol and neral as substrates. A second cDNA, designated GEDH1, encodes an enzyme with sequence similarity to CAD1 that is capable of reversibly oxidizing geraniol and nerol in equal efficiency, and prolonged incubation of geraniol with GEDH1 in vitro produces not only geranial and neral, but also nerol. GEDH1 is also active, although at a lower efficiency, with cinnamyl alcohol. However, GEDH1 is expressed at low levels in glands of all cultivars compared with its expression in leaves. These and additional data presented indicate that basil glands may contain additional dehydrogenases capable of oxidizing geraniol.

  16. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  17. Chemical test for mammalian feces in grain products: collaborative study.

    Science.gov (United States)

    Gerber, H R

    1989-01-01

    A collaborative study was conducted to validate the use of the AOAC alkaline phosphatase method for mammalian feces in corn meal, 44.B01-44.B06, for 7 additional products: brown rice cream, oat bran, grits, semolina, pasta flour, farina, and barley plus (a mixture of barley, oat bran, and brown rice). The proposed method determines the presence of alkaline phosphatase, an enzyme contained in mammalian feces, by using phenolphthalein diphosphate as the enzyme substrate in a test agar medium. Fecal matter is separated from the grain products by specific gravity differences in 1% test agar. As the product is distributed on liquid test agar, fecal fragments float while the grain products sink. The alkaline phosphatase cleaves phosphate radicals from phenolphthalein diphosphate, generating free phenolphthalein, which produces a pink to red-purple color around the fecal particles in the previously colorless medium. Collaborators' recovery averages ranged from 21.7 particles (72.3%) for oat bran to 25.3 particles (84.3%) for semolina at the 30 particle spike level. Overall average background was 0.4 positive reactions per food type. The collaborators reported that the method was quick, simple, and easy to use. The method has been approved interim official first action for all 7 grain products.

  18. Chemical interaction of potassium diphosphate with cadmium nitrate in aqueous solution. Khimicheskie vzaimodejstviya difosfatov kaliya s azotnokislym kadmiem v vodnom rastvore

    Energy Technology Data Exchange (ETDEWEB)

    Kokhanovskij, V V [AN Belorusskoj SSR, Minsk (Belarus). Inst. Obshchej i Neorganicheskoj Khimii

    1993-06-01

    Formation of low-soluble compounds in 1.5 mol/l isomolar cross section of K[sub 4]P[sub 2]O[sub 7]-Cd(NO[sub 3])[sub 2]-H[sub 2]O system was studied. Liquid phases are studied by the methods of refractometry and pH value measuring, an solid ones - by the methods of chemical and X-ray phase analysis, IR spectroscopy, chromatography and microscopy. Three individual chemical compounds K[sub 2]CdP[sub 2]O[sub 7] x 4H[sub 2]O, K[sub 2]Cd[sub 3](P[sub 2]O[sub 7])[sub 2] x 3H[sub 2]O and Cd[sub 2]P[sub 2]O[sub 7] x 3.5H[sub 2]O and some their mixtures were isolated and investigated. It is shown that doulble diphosphate K[sub 6]Cd(P[sub 2]O[sub 7])[sub 2] x 6H[sub 2]O does not precipitate spontanously, but instead of it in wide region of system K[sub 2]CdP[sub 2]O[sub 7] x 4H[sub 2]O crystallizes as elongated acicular crystals or as thin plates of improper form.

  19. Chemical synthesis of guanosine diphosphate mannuronic acid (GDP-ManA) and its C-4-O-methyl and C-4-deoxy congeners.

    Science.gov (United States)

    Zhang, Qingju; Howell, P Lynne; Overkleeft, Herman S; Filippov, Dmitri V; van der Marel, Gijsbert A; Codée, Jeroen D C

    2017-10-10

    Described is the first synthesis of guanosine diphosphate mannuronic acid (GDP-ManA), the sugar donor used by algae and bacteria for the production of alginate, an anionic polysaccharide composed of β-d-mannuronic acid (ManA) and α-l-guluronic acid (GulA). Understanding the biosynthesis of these polyanionic polysaccharides on the molecular level, opens up avenues to use and modulate the biosynthesis machinery for biotechnological and therapeutic applications. The synthesis reported here delivers multi-milligram amounts of the GDP-ManA donor that can be used to study the polymerase (Alg8 in Pseudomonas aeruginosa) that generates the poly-ManA chain. Also reported is the assembly of two close analogues of GDP-ManA: the first bears a C-4-O-methyl group, while the second has been deoxygenated at this position. Both molecules may be used as "chain stoppers" in future enzymatic ManA polymerisation reactions. The crucial pyrophosphate linkage of the GDP-mannuronic acids has been constructed by the phosphorylation of the appropriate ManA-1-phosphates with a guanosine phosphoramidite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

    Science.gov (United States)

    Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A

    2016-10-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J

  1. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    International Nuclear Information System (INIS)

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-01-01

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with [1- 14 C]iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of 14 C. Sequencing of tryptic peptides shows that 2.8 equiv of 14 C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of 14 C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of 14 C. Sequencing of tryptic peptides shows that 1.4 equiv of 14 C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I

  2. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  3. Optimization of lag phase shapes the evolution of a bacterial enzyme.

    Science.gov (United States)

    Adkar, Bharat V; Manhart, Michael; Bhattacharyya, Sanchari; Tian, Jian; Musharbash, Michael; Shakhnovich, Eugene I

    2017-04-28

    Mutations provide the variation that drives evolution, yet their effects on fitness remain poorly understood. Here we explore how mutations in the essential enzyme adenylate kinase (Adk) of Escherichia coli affect multiple phases of population growth. We introduce a biophysical fitness landscape for these phases, showing how they depend on molecular and cellular properties of Adk. We find that Adk catalytic capacity in the cell (the product of activity and abundance) is the major determinant of mutational fitness effects. We show that bacterial lag times are at a well-defined optimum with respect to Adk's catalytic capacity, while exponential growth rates are only weakly affected by variation in Adk. Direct pairwise competitions between strains show how environmental conditions modulate the outcome of a competition where growth rates and lag times have a tradeoff, shedding light on the multidimensional nature of fitness and its importance in the evolutionary optimization of enzymes.

  4. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  5. Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae▿

    Science.gov (United States)

    Tokuhiro, Kenro; Muramatsu, Masayoshi; Ohto, Chikara; Kawaguchi, Toshiya; Obata, Shusei; Muramoto, Nobuhiko; Hirai, Masana; Takahashi, Haruo; Kondo, Akihiko; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    (E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering. PMID:19592534

  6. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    Energy Technology Data Exchange (ETDEWEB)

    Keates, Adam C. [School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1B,. UK (United Kingdom); Wang, Qianlong [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Weller, Mark T., E-mail: m.t.weller@bath.ac.uk [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.

  7. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    International Nuclear Information System (INIS)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T.

    2014-01-01

    Single crystal and bulk polycrystalline forms of K 2 MP 2 O 7 (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42 1 m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP 2 O 7 ] 2− with potassium cations situated between the layers. The MO 4 tetrahedra share oxygen atoms with [P 2 O 7 ] 4− diphosphate groups and the potassium ions have KO 8 square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d 6 Fe(II) and p-orbital mixing or a second order JT effect for d 9 Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K 2 MP 2 O 7 , M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP 2 O 7 ] 2− , formed from linked pyrophosphate groups and MO 4 tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d 6 Fe(II) and p-orbital mixing and second-order JT effects for d 9 Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d 10 distorted coordinations

  8. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  9. Determination of the Influence of Substrate Concentration on Enzyme Selectivity Using Whey Protein Isolate and Bacillus licheniformis Protease

    NARCIS (Netherlands)

    Butré, C.I.; Sforza, S.; Gruppen, H.; Wierenga, P.A.

    2014-01-01

    Increasing substrate concentration during enzymatic protein hydrolysis results in a decrease in hydrolysis rate. To test if changes in the mechanism of hydrolysis also occur, the enzyme selectivity was determined. The selectivity is defined quantitatively as the relative rate of hydrolysis of each

  10. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  11. Nanoarmored Enzymes for Organic Enzymology: Synthesis and Characterization of Poly(2-Alkyloxazoline)-Enzyme Conjugates.

    Science.gov (United States)

    Leurs, Melanie; Tiller, Joerg C

    2017-01-01

    The properties of enzymes can be altered significantly by modification with polymers. Numerous different methods are known to obtain such polymer-enzyme conjugates (PECs). However, there is no universal method to render enzymes into PECs that are fully soluble in organic solvents. Here, we present a method, which achieves such high degree of modification of proteins that the majority of modified enzymes will be soluble in organic solvents. This is achieved by preparing poly(2-alkyloxazoline)s (POx) with an NH 2 end group and coupling this functional polymer via pyromellitic acid dianhydride onto the amino groups of the respective protein. The resulting PECs are capable of serving as surfactants for unmodified proteins, rendering the whole mixture organosoluble. Depending on the nature of the POx and the molecular weight and the nature of the enzyme, the PECs are soluble in chloroform or even toluene. Another advantage of this method is that the poly(2-alkyloxazoline) can be activated with the coupling agent and used for the enzyme conjugation without further purification. The POx-enzyme conjugates generated by this modification strategy show modulated catalytic activity in both, aqueous and organic, systems. © 2017 Elsevier Inc. All rights reserved.

  12. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  13. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  14. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  15. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    Science.gov (United States)

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  16. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  17. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  18. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  19. Crosslinked Enzyme Aggregates in Hierarchically-Ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Il; Kim, Jungbae; Lee, Jinwoo; Jia, Hongfei; Na, Hyon Bin; Youn, Jongkyu; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Wang, Ping; Hyeon, Taeghwan; Park, Hyun-Gyu; Chang, Ho Nam

    2007-02-01

    alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for two weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.

  20. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    Science.gov (United States)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  1. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  2. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  3. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  4. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  7. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    Science.gov (United States)

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  10. Allosteric regulation of the GTP activated and CTP inhibited uracil phosphoribosyltransferase from the thermophilic archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Arent, Susan; Larsen, Sine

    2005-01-01

    The upp gene, encoding uracil phosphoribosyltransferase (UPRTase) from the thermoacidophilic archaeon Sulfolobus solfataricus, was cloned and expressed in Escherichia coli. The enzyme was purified to homogeneity. It behaved as a tetramer in solution and showed optimal activity at pH 5.5 when...... assayed at 60 °C. Enzyme activity was strongly stimulated by GTP and inhibited by CTP. GTP caused an approximately 20-fold increase in the turnover number kcat and raised the Km values for 5-phosphoribosyl-1-diphosphate (PRPP) and uracil by two- and >10-fold, respectively. The inhibition by CTP...... was complex as it depended on the presence of the reaction product UMP. Neither CTP nor UMP were strong inhibitors of the enzyme, but when present in combination their inhibition was extremely powerful. Ligand binding analyses showed that GTP and PRPP bind cooperatively to the enzyme and that the inhibitors...

  11. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  12. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Max Hirte

    2018-04-01

    Full Text Available Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially

  13. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches.

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B

    2018-01-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of

  14. Dynamics of Monoterpene Formation in Spike Lavender Plants

    Directory of Open Access Journals (Sweden)

    Isabel Mendoza-Poudereux

    2017-12-01

    Full Text Available The metabolic cross-talk between the mevalonate (MVA and the methylerythritol phosphate (MEP pathways was analyzed in spike lavender (Lavandula latifolia Med on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR, the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.

  15. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  16. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  17. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  18. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  19. Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran.

    Science.gov (United States)

    Petersson, Karin; Nordlund, Emilia; Tornberg, Eva; Eliasson, Ann-Charlotte; Buchert, Johanna

    2013-03-15

    Rye and wheat bran were treated with several xylanases and endoglucanases, and the effects on physicochemical properties such as solubility, viscosity, water-holding capacity and particle size as well as the chemical composition of the soluble and insoluble fractions of the bran were studied. A large number of enzymes with well-defined activities were used. This enabled a comparison between enzymes of different origins and with different activities as well as a comparison between the effects of the enzymes on rye and wheat bran. The xylanases derived from Bacillus subtilis were the most effective in solubilising dietary fibre from wheat and rye bran. There was a tendency for a higher degree of degradation of the soluble or solubilised dietary fibre in rye bran than in wheat bran when treated with most of the enzymes. None of the enzymes increased the water-holding capacity of the bran or the viscosity of the aqueous phase. The content of insoluble material decreased as the dietary fibre was solubilised by the enzymes. The amount of material that may form a network to retain water in the system was thereby decreased. © 2012 Society of Chemical Industry.

  20. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  1. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  2. The thorium phosphate diphosphate as matrix for radioactive waste conditioning: radionuclide immobilization and behavior under irradiation

    International Nuclear Information System (INIS)

    Pichot, Erwan

    1999-01-01

    The aim of this work was to perform successively the decontamination of liquid solutions and the final immobilization of radionuclide storage using the same matrix. For this, thorium phosphate-diphosphate (TPD) of the formula Th 4 P 6 O 23 , is proposed as a very resistant to water corrosion matrix. A new compound, thorium phosphate hydrogeno-phosphate (TPHP) of the formula Th 2 (PO 4 ) 2 (HPO 4 ), nH 2 O with n=3-7 was synthesized and characterized. Heated at 1100 deg.C it is transformed into the TDP. Ion exchange properties of TPHP were investigated. The exchange yields of imponderable caesium, strontium and americium ion onto TPHP (NaNO 3 0.1 M media at pH=6) are equal to 60% for the first one and 100% for the two others. The results interpreted in terms of ion-exchange led to determine selectivity coefficient values for each cation and suggested that only hydrated ions are exchanged. While the TPD is proposed for the high level nuclear waste storage, the irradiation effects, particularly structural modifications were studied using both γ irradiation and charged particle irradiation. ESR and TL methods were carried out in order to identify radicals created during gamma radiation exposure. Correlation between ESR and TL experiments performed at room temperature clearly show three of PO 3 2- species and one POO· species of free radicals. We have shown that Au-ion irradiation in the range of MeV energy involved TPD structure and chemical modifications. Important sputtering was interpreted in terms of local thermal chemical decomposition. We have shown, at room temperature, that the amorphization dose for heavy ion irradiation is between 0.1 to 0.4 dpa. (author)

  3. Texture development in gluten-free breads: Effect of different enzymes and extruded flour

    OpenAIRE

    Martínez, Mario M.; Marcos, Pablo; Gómez, Manuel

    2013-01-01

    Producción Científica One of the main problems with gluten-free breads is their texture and their rapid staling. In this work the influence of different enzymes (one protease, one lipase and two amylases) and of extruded rice flour on rice-bread texture and texture development was studied. For this purpose, the development of firmness, cohesiveness, resilience, springiness and chewiness was modelled and the parameters that define the initial values and the development of these characterist...

  4. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  5. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  6. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  7. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  8. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  10. High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli.

    Science.gov (United States)

    Zhao, Min; Qu, Hong

    2011-11-30

    The phylogenetic profile is widely used to characterize functional linkage and conservation between proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as: where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these enzymes during evolutionary history. We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks. Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network.

  11. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  13. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    Science.gov (United States)

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  14. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  15. Levels of muscle enzymes in the serum after esophageal pneumatic dilation in patients with achalasia.

    Science.gov (United States)

    Kimchi, N A; Ron, Y; Abramowich, D; Shirin, H; Scapa, E; Avni, Y

    2005-01-01

    The success rate of pneumatic dilation of the esophagus in patients with achalasia is variable. We aim to assess whether levels of muscle enzymes in the serum are useful for predicting the efficacy of this procedure. Consecutive adults with symptomatic achalasia treated with pneumatic dilation were included. Blood samples were taken immediately before the procedure and after 12, 24 and 32 h. Clinical efficacy of the pneumatic dilation was evaluated on the basis of a symptom score defined prior to, and 2 months after the procedure. Eleven patients underwent 13 pneumatic dilations. In nine patients this was the first dilation attempt. Ten dilations were clinically effective. The study was discontinued after enzyme levels did not show a trend of increase in any of our patients. Moreover, a statistically significant unexpected decrease in creatine phosphokinase values was found 12 h after the procedure, among the 10 successful dilations. We believe that levels of muscle enzymes in the serum cannot predict the efficacy of pneumatic dilation in patients with achalasia.

  16. Detoxification of corn stover and corn starch pyrolysis liquors by ligninolytic enzymes of Phanerochaete chrysosporium.

    Science.gov (United States)

    Khiyami, Mohammad A; Pometto, Anthony L; Brown, Robert C

    2005-04-20

    Phanerochaete chrysosporium (ATCC 24725) shake flask culture with 3 mM veratryl alcohol addition on day 3 was able to grow and detoxify different concentrations of diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors [10, 25, and 50% (v/v)] in defined media. GC-MS analysis of reaction products showed a decrease and change in some compounds. In addition, the total phenolic assay with Dcs samples demonstrated a decrease in the phenolic compounds. A bioassay employing Lactobacillus casei growth and lactic acid production was developed to confirm the removal of toxic compounds from 10 and 25% (v/v) Dcs and Dst by the lignolytic enzymes, but not from 50% (v/v) Dcs and Dst. The removal did not occur when sodium azide or cycloheximide was added to Ph. chrysosporium culture media, confirming the participation of lignolytic enzymes in the detoxification process. A concentrated enzyme preparation decreased the phenolic compounds in 10% (v/v) corn stover and corn starch pyrolysis liquors to the same extent as the fungal cultures.

  17. Studies on the enzymes produced by Basidiomycetes. Part 1. The production of crude enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. S.; Kim, D.H.

    1981-01-01

    Cellulase, protease, and xylanase, formation by the basidiomycetes, Pleurotus ostreatus 301 and Lentinus edodes 3-1 in growth on rice straw medium were studied. Cultural conditions adequate for enzyme production and effects of various materials and inorganic salts added to the rice straw media were investigated. Lentinus edodes 3-1 was an excellent producer of cellulase and xylanase, and Pleurotus ostreatus 301 of protease. The optimum conditions for enzyme production were 30 degrees for cellulase production and at 25 degrees for xylanase and protease production, with 75% moisture content and initial pH of 5.0-6.0. The appropriate incubation times for enzyme production were 30 days and 35 days for Pleurotus ostreatus 301 and Lentinus edodes 3-1, respectively. Among the various materials added, defatted soybean, defatted rape seed, or defatted sesame were all effective in enzyme production but reduced mycelial growth. Rice bran was also effective, particularly at a 30% concentration. The addition of inorganic salts enhanced enzyme production. Among inorganic salts, the optimum concentration of CaCO3 was 5%, and that of CaSO4 was 2%.

  18. One-Hour Postload Hyperglycemia Confers Higher Risk of Hepatic Steatosis to HbA1c-Defined Prediabetic Subjects.

    Science.gov (United States)

    Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Pedace, Elisabetta; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2016-11-01

    Individuals with glycated hemoglobin (HbA1c)-defined prediabetes (HbA1c value of 5.7-6.4%) and 1-hour plasma glucose ≥155 mg/dL during an oral glucose tolerance test have an increased risk of developing type 2 diabetes. To evaluate the degree to which HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL individually and jointly associate with hepatic steatosis and related biomarkers. A cross-sectional analysis was performed on 1108 White individuals. Ambulatory care. Anthropometric and metabolic characteristics including hepatic steatosis assessed by ultrasonography. Compared with the normal group (HbA1c prediabetic and diabetic individuals exhibit higher values of fasting, 1-hour, and 2-hour postload glucose; fasting and 2-hour postload insulin; triglycerides; uric acid; homeostasis model of assessment for insulin resistance; liver insulin resistance index; liver enzymes; and inflammatory biomarkers; and lower levels of high-density lipoprotein cholesterol and IGF-1. Prediabetic and diabetic subjects have increased risk of hepatic steatosis (1.5- and 2.46-fold, respectively). Stratifying participants according to HbA1c and 1-hour postload glucose, we found that individuals with HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL have significantly higher risk of hepatic steatosis as compared with individuals with HbA1c-defined prediabetes but 1-hour postload glucose prediabetes and 1-hour postload glucose ≥155 mg/dL exhibit higher values of liver enzymes; fasting, 1-hour, and 2-hour postload glucose; insulin; triglycerides; uric acid; and inflammatory biomarkers; and lower levels of high-density lipoprotein and IGF-1. These data suggest that a value of 1-hour postload glucose ≥155 mg/dL may be helpful to identify a subset of individuals within HbA1c-defined glycemic categories at higher risk of hepatic steatosis.

  19. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  20. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  1. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  2. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    Science.gov (United States)

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  3. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  4. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  5. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  6. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  7. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  8. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  9. Biosensor reveals multiple sources for mitochondrial NAD⁺.

    Science.gov (United States)

    Cambronne, Xiaolu A; Stewart, Melissa L; Kim, DongHo; Jones-Brunette, Amber M; Morgan, Rory K; Farrens, David L; Cohen, Michael S; Goodman, Richard H

    2016-06-17

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases (PARPs), which are NAD(+)-consuming enzymes localized in the nucleus, cytosol, and mitochondria. Fluctuations in NAD(+) concentrations within these subcellular compartments are thought to regulate the activity of NAD(+)-consuming enzymes; however, the challenge in measuring compartmentalized NAD(+) in cells has precluded direct evidence for this type of regulation. We describe the development of a genetically encoded fluorescent biosensor for directly monitoring free NAD(+) concentrations in subcellular compartments. We found that the concentrations of free NAD(+) in the nucleus, cytoplasm, and mitochondria approximate the Michaelis constants for sirtuins and PARPs in their respective compartments. Systematic depletion of enzymes that catalyze the final step of NAD(+) biosynthesis revealed cell-specific mechanisms for maintaining mitochondrial NAD(+) concentrations. Copyright © 2016, American Association for the Advancement of Science.

  10. Study of vitamin D serum level in patients with epilepsy treated with enzyme-inducing and non enzyme-inducing medications

    Directory of Open Access Journals (Sweden)

    sima Hashemipour

    2014-01-01

    Full Text Available Background : Changes of serum minerals and vitamin D have been reported in anticonvulsant drugs user patients. The present study aimed at comparing the changes of serum minerals and vitamin D among two groups of enzyme-inducing and non enzyme-inducing anticonvulsant drug users. Methods: In this study 22 patients treated with enzyme-inducing drugs (carbamazepin, phenytoin, phenobarbital were compared to 25 patients of matched sex, age, and BMI treated with non enzyme-inducing drugs (sodium evaporate, lamotrigine. Serum calcium, phosphate, parathormone, and 25-hydroxy vitamin D were calculated in both groups. Calcium was measured by Calorimetery method. Parathormone and vitamin D were measured using ELISA method. Results: The mean serum vitamin D level was lower in enzyme-inducing than non enzyme-inducing drugs users (15.9±8.3 and 24.2±14.8, P=0.02. Frequency of vitamin D deficiency was higher in enzyme-inducing compared to non enzyme-inducing drugs users, 84% and 48% , respectively (P=0.016. The mean serum calcium level was significantly lower in enzyme-inducing drugs users. (8.7±0.2 vs. 9.0± 0.7, p= 0.05. Four percent in enzyme-inducing group compared to twenty four percent of non enzyme-inducing group had secondary hyperparathyroidism (P=0.016. Conclusion: While vitamin D deficiency is more frequent in enzyme-inducing drug users, secondary hyperparathyroidism is less frequent.

  11. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    Science.gov (United States)

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  12. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  13. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  14. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. "Dermatitis" defined.

    Science.gov (United States)

    Smith, Suzanne M; Nedorost, Susan T

    2010-01-01

    The term "dermatitis" can be defined narrowly or broadly, clinically or histologically. A common and costly condition, dermatitis is underresourced compared to other chronic skin conditions. The lack of a collectively understood definition of dermatitis and its subcategories could be the primary barrier. To investigate how dermatologists define the term "dermatitis" and determine if a consensus on the definition of this term and other related terms exists. A seven-question survey of dermatologists nationwide was conducted. Of respondents (n  =  122), half consider dermatitis to be any inflammation of the skin. Nearly half (47.5%) use the term interchangeably with "eczema." Virtually all (> 96%) endorse the subcategory "atopic" under the terms "dermatitis" and "eczema," but the subcategories "contact," "drug hypersensitivity," and "occupational" are more highly endorsed under the term "dermatitis" than under the term "eczema." Over half (55.7%) personally consider "dermatitis" to have a broad meaning, and even more (62.3%) believe that dermatologists as a whole define the term broadly. There is a lack of consensus among experts in defining dermatitis, eczema, and their related subcategories.

  16. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  17. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  18. A virus-based single-enzyme nanoreactor

    NARCIS (Netherlands)

    Comellas Aragones, M.; Engelkamp, H.; Claessen, V.I.; Sommerdijk, N.A.J.M.; Rowan, A.E.; Christianen, P.C.M.; Maan, J.C.; Verduin, B.J.M.; Cornelissen, J.J.L.M.; Nolte, R.J.M.

    2007-01-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or

  19. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  20. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  1. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  2. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  3. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  5. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  6. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  7. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  8. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  9. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    Science.gov (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  10. Incorporation of tetravalent actinides in three phosphated matrices: britholite, monazite/brabandite and thorium phosphate diphosphate (β-TPD)

    International Nuclear Information System (INIS)

    Terra, O.

    2005-03-01

    Three phosphate based ceramics were studied for the immobilization of tri- and tetravalent actinides: britholite Ca 9 Nd 1-x An x IV (PO 4 ) 5-x (SiO 4 ) 1+x F 2 , monazite/brabantite solid solutions Ln 1-2x III Ca x An x IP O 4 and Thorium Phosphate Diphosphate (β-TPD) Th 4- xAn x IV (PO 4 ) 4 P 2 O 7 . For each material, the incorporation of thorium and uranium (IV) was studied as a surrogate of plutonium. This work was the early beginning of the incorporation of 239 Pu and/or 238 Pu in order to evaluate the effects of α-decay on the three crystallographic structures. The incorporation of tetravalent cations was carried out by dry chemistry methods, using mechanical grinding to improve the reactivity of the initial mixture then the homogeneity of final solid prepared after calcination at high temperature (1200-1400 deg C). For britholites, the thorium incorporation was complete for weight loading up to 20 wt.%, leading to the preparation of homogeneous and single phase solid solutions when using the coupled substitution (Nd 3+ , PO 4 3- ) ↔ (Th 4+ , SiO 4 4- ). Due to redox problems, the incorporation of uranium was limited to 5 to 8 wt.% and always led to a two-phase mixture of U-britholite and CaU 2 O 5+y . The preparation of homogeneous solid solutions of β-TUPD and of brabantites containing thorium and uranium samples was successfully obtained using three steps of mechanical grinding/calcination. For each matrix, dense pellets were prepared prior to the study of their chemical behaviour during leaching tests. The chemical durability of brabantites and β-TUPD were found to be close to that reported in literature. The formation of neo-formed phases was also evidenced onto the surface of Th-britholite samples. (author)

  11. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  12. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  13. Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals

    Directory of Open Access Journals (Sweden)

    M.G. Mithra

    2017-08-01

    Full Text Available Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS during 24–120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose along with half dose each of xylanase (1.5 mg protein/g hemicelluloses and Stargen (12.5 μl/g biomass was used to saccharify conventional dilute sulphuric acid (DSA pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3–4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing

  14. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    International Nuclear Information System (INIS)

    Abbotts, J.; SenGupta, D.N.; Zmudzka, B.; Widen, S.G.; Notario, V.; Wilson, S.H.

    1988-01-01

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N 3 -methyl-dT or O 6 -methyl-dG

  15. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  16. Incorporation of tetravalent actinides in three phosphated matrices: britholite, monazite/brabandite and thorium phosphate diphosphate ({beta}-TPD); Incorporation d'actinides tetravalents dans trois matrices phosphatees: britholite, monazite/brabantite et phosphate - diphosphate de thorium ({beta}-PDT)

    Energy Technology Data Exchange (ETDEWEB)

    Terra, O

    2005-03-01

    Three phosphate based ceramics were studied for the immobilization of tri- and tetravalent actinides: britholite Ca{sub 9}Nd{sub 1-x}An{sub x}{sup IV}(PO{sub 4}){sub 5-x}(SiO{sub 4}){sub 1+x}F{sub 2}, monazite/brabantite solid solutions Ln{sub 1-2x}{sup III} Ca{sub x}An{sub x}{sup IP}O{sub 4} and Thorium Phosphate Diphosphate ({beta}-TPD) Th{sub 4-}xAn{sub x}{sup IV}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}. For each material, the incorporation of thorium and uranium (IV) was studied as a surrogate of plutonium. This work was the early beginning of the incorporation of {sup 239}Pu and/or {sup 238}Pu in order to evaluate the effects of {alpha}-decay on the three crystallographic structures. The incorporation of tetravalent cations was carried out by dry chemistry methods, using mechanical grinding to improve the reactivity of the initial mixture then the homogeneity of final solid prepared after calcination at high temperature (1200-1400 deg C). For britholites, the thorium incorporation was complete for weight loading up to 20 wt.%, leading to the preparation of homogeneous and single phase solid solutions when using the coupled substitution (Nd{sup 3+}, PO{sub 4}{sup 3-}) {r_reversible} (Th{sup 4+}, SiO{sub 4}{sup 4-}). Due to redox problems, the incorporation of uranium was limited to 5 to 8 wt.% and always led to a two-phase mixture of U-britholite and CaU{sub 2}O{sub 5+y}. The preparation of homogeneous solid solutions of {beta}-TUPD and of brabantites containing thorium and uranium samples was successfully obtained using three steps of mechanical grinding/calcination. For each matrix, dense pellets were prepared prior to the study of their chemical behaviour during leaching tests. The chemical durability of brabantites and {beta}-TUPD were found to be close to that reported in literature. The formation of neo-formed phases was also evidenced onto the surface of Th-britholite samples. (author)

  17. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  18. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  19. Effect of water quality and confounding factors on digestive enzyme activities in Gammarus fossarum.

    Science.gov (United States)

    Charron, L; Geffard, O; Chaumot, A; Coulaud, R; Queau, H; Geffard, A; Dedourge-Geffard, O

    2013-12-01

    The feeding activity and subsequent assimilation of the products resulting from food digestion allow organisms to obtain energy for growth, maintenance and reproduction. Among these biological parameters, we studied digestive enzymes (amylase, cellulase and trypsin) in Gammarus fossarum to assess the impact of contaminants on their access to energy resources. However, to enable objective assessment of a toxic effect of decreased water quality on an organisms' digestive capacity, it is necessary to establish reference values based on its natural variability as a function of changing biotic and abiotic factors. To limit the confounding influence of biotic factors, a caging approach with calibrated male organisms from the same population was used. This study applied an in situ deployment at 23 sites of the Rhone basin rivers, complemented by a laboratory experiment assessing the influence of two abiotic factors (temperature and conductivity). The results showed a small effect of conductivity on cellulase activity and a significant effect of temperature on digestive enzyme activity but only at the lowest temperature (7 °C). The experimental conditions allowed us to define an environmental reference value for digestive enzyme activities to select sites where the quality of the water impacted the digestive capacity of the organisms. In addition to the feeding rate, this study showed the relevance of digestive enzymes as biomarkers to be used as an early warning tool to reflect organisms' health and the chemical quality of aquatic ecosystems.

  20. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  1. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  2. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  3. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  5. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  6. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    2009-07-01

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  7. Liver enzymes and markers of inflammation in Nigerian adults with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Udenze Ifeoma Christiana

    2015-01-01

    Full Text Available Aims and objectives: The aim of this study is to determine the plasma levels of the liver enzymes alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, gamma-glutamyl transferase (GGT, and lactate dehydrogenase (LDH in people with metabolic syndrome and to determine the association between the liver enzymes and obesity, insulin resistance, interleukin 6 (IL-6, and C-reactive protein (CRP in adult Nigerians with metabolic syndrome. Materials and Methods: This was a case control study of 50 adult men and women with metabolic syndrome, and 50 age- and sex-matched males and females without metabolic syndrome. Metabolic syndrome was defined based on the National Cholesterol Education Program (NCEP-Adult Treatment Panel III (ATPIII criteria. Written informed consent was obtained from the participants. Sociodemographic and clinical data were collected using a structured questionnaire. Venous blood was collected after an overnight fast. The ethics committee of the Lagos University Teaching Hospital in Lagos, Nigeria, approved the study protocol. Comparison of continuous variables was done using the student′s t-test. Regression and correlation analysis were used to determine the associations between variables. Statistical significance was set at P < 0.05. Results: There was a statistically significant increase in the liver enzymes ALP (P = 0.031, ALT (P = 0.019, and GGT (P = 0.037, as well as in the inflammatory markers CRP (P = 0.019 and the cytokine IL-6 (P = 0.040 between the two study groups. ALP and ALT showed significant correlation with waist circumference, BMI, fasting insulin, and waist/hip ratio (P < 0.05. Multivariate regression also identified ALT, AST, and ALP to be associated with IL-6 and CRP (P < 0.05. Conclusion: Liver enzyme levels were increased in metabolic syndrome and associated with obesity, fasting insulin, and CRP. Elevated liver enzymes may indicate dysmetabolism and increased

  8. Perioperative Anaesthetic Management of a Patient of Gilbert’s Syndrome with Adult Congenital Heart Disease - A Rare Presentation

    Directory of Open Access Journals (Sweden)

    Sambhunath Das

    2014-11-01

    Full Text Available Gilbert's syndrome is a hereditary condition with the genetic mutation of the enzyme uridine diphosphate glucuronosyltransferase, characterized by intermittent jaundice in the absence of hemolysis or underlying liver disease. These patients develop jaundice when subjected to fasting, stress and exercise. Majority of anaesthetics are metabolized by liver. Anaesthesia, surgery and cardiopulmonary bypass (CPB can act as triggers to hepatic injury. The successful perioperative management of an adult congenital heart disease patient for atrial septal defect closure under cardiopulmonary bypass was discussed in this report.

  9. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  10. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  11. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  12. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    Science.gov (United States)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  13. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  14. Structure and function of α-glucan debranching enzymes

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Henriksen, Anette; Svensson, Birte

    2016-01-01

    α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α......-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12–14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains......_39 enzymes could represent a “missing link” between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference....

  15. The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance.

    Directory of Open Access Journals (Sweden)

    Hermann Bauer

    Full Text Available The t-haplotype, a variant form of the t-complex region on mouse chromosome 17, acts as selfish genetic element and is transmitted at high frequencies (> 95% from heterozygous (t/+ males to their offspring. This phenotype is termed transmission ratio distortion (TRD and is caused by the interaction of the t-complex responder (Tcr with several quantitative trait loci (QTL, the t-complex distorters (Tcd1 to Tcd4, all located within the t-haplotype region. Current data suggest that the distorters collectively impair motility of all sperm derived from t/+ males; t-sperm is rescued by the responder, whereas (+-sperm remains partially dysfunctional. Recently we have identified two distorters as regulators of RHO small G proteins. Here we show that the nucleoside diphosphate kinase gene Nme3 acts as a QTL on TRD. Reduction of the Nme3 dosage by gene targeting of the wild-type allele enhanced the transmission rate of the t-haplotype and phenocopied distorter function. Genetic and biochemical analysis showed that the t-allele of Nme3 harbors a mutation (P89S that compromises enzymatic activity of the protein and genetically acts as a hypomorph. Transgenic overexpression of the Nme3 t-allele reduced t-haplotype transmission, proving it to be a distorter. We propose that the NME3 protein interacts with RHO signaling cascades to impair sperm motility through hyperactivation of SMOK, the wild-type form of the responder. This deleterious effect of the distorters is counter-balanced by the responder, SMOK(Tcr, a dominant-negative protein kinase exclusively expressed in t-sperm, thus permitting selfish behaviour and preferential transmission of the t-haplotype. In addition, the previously reported association of NME family members with RHO signaling in somatic cell motility and metastasis, in conjunction with our data involving RHO signaling in sperm motility, suggests a functional conservation between mechanisms for motility control in somatic cells and

  16. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  17. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  18. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  19. (+)-(10R)-Germacrene A synthase from goldenrod, Solidago canadensis; cDNA isolation, bacterial expression and functional analysis.

    Science.gov (United States)

    Prosser, Ian; Phillips, Andy L; Gittings, Simon; Lewis, Mervyn J; Hooper, Antony M; Pickett, John A; Beale, Michael H

    2002-08-01

    Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.

  20. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  1. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  2. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  3. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  4. Purification and characterization of a platelet aggregation inhibitor and anticoagulant Cc 5_NTase, CD 73-like, from Cerastes cerastes venom.

    Science.gov (United States)

    Saoud, Samah; Chérifi, Fatah; Benhassine, Traki; Laraba-Djebari, Fatima

    2017-05-01

    The present study is the first attempt to report the characterization of a nucleotidase from Cerastes cerastes venom. A 70 kDa 5'-nucleotidase (Cc-5'NTase) was purified to homogeneity. The amino acid sequence of Cc-5'NTase displayed high homology with many nucleotidases. Its activity was optimal at pH 7 with a specific hydrolytic activity toward mono-, di-, and triphosphate adenylated nucleotides. Cc-5'NTase preferentially hydrolyzed ADP and obeyed Michaelis-Menten kinetics. Among the metals and inhibitors tested, Ni 2+ and Mg 2+ completely potentiated enzyme activity, whereas EGTA, PMSF, iodoacetamide, vanillic acid, vanillyl mandelic acid, and 1,10-phenanthroline partially abolished its activity. Cc-5'NTase was not lethal for mice at 5 mg/kg and exhibited in vivo anticoagulant effect. It also dose-dependently inhibited adenosine diphosphate-induced platelet aggregation by converting adenosine diphosphate to adenosine and prohibited arachidonic acid-induced aggregation but was not effective on fibrinogen-induced aggregation. Cc-5'NTase could be a good tool as pharmacological molecule in thrombosis diagnostic and/or therapy. © 2016 Wiley Periodicals, Inc.

  5. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  7. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2016-07-01

    Full Text Available Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a `catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  8. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L. and their relevance for perfume manufacture

    Directory of Open Access Journals (Sweden)

    Caniard Anne

    2012-07-01

    Full Text Available Abstract Background Sclareol is a diterpene natural product of high value for the fragrance industry. Its labdane carbon skeleton and its two hydroxyl groups also make it a valued starting material for semisynthesis of numerous commercial substances, including production of Ambrox® and related ambergris substitutes used in the formulation of high end perfumes. Most of the commercially-produced sclareol is derived from cultivated clary sage (Salvia sclarea and extraction of the plant material. In clary sage, sclareol mainly accumulates in essential oil-producing trichomes that densely cover flower calices. Manool also is a minor diterpene of this species and the main diterpene of related Salvia species. Results Based on previous general knowledge of diterpene biosynthesis in angiosperms, and based on mining of our recently published transcriptome database obtained by deep 454-sequencing of cDNA from clary sage calices, we cloned and functionally characterized two new diterpene synthase (diTPS enzymes for the complete biosynthesis of sclareol in clary sage. A class II diTPS (SsLPPS produced labda-13-en-8-ol diphosphate as major product from geranylgeranyl diphosphate (GGPP with some minor quantities of its non-hydroxylated analogue, (9 S, 10 S-copalyl diphosphate. A class I diTPS (SsSS then transformed these intermediates into sclareol and manool, respectively. The production of sclareol was reconstructed in vitro by combining the two recombinant diTPS enzymes with the GGPP starting substrate and in vivo by co-expression of the two proteins in yeast (Saccharomyces cerevisiae. Tobacco-based transient expression assays of green fluorescent protein-fusion constructs revealed that both enzymes possess an N-terminal signal sequence that actively targets SsLPPS and SsSS to the chloroplast, a major site of GGPP and diterpene production in plants. Conclusions SsLPPS and SsSS are two monofunctional diTPSs which, together, produce the diterpenoid

  9. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture.

    Science.gov (United States)

    Caniard, Anne; Zerbe, Philipp; Legrand, Sylvain; Cohade, Allison; Valot, Nadine; Magnard, Jean-Louis; Bohlmann, Jörg; Legendre, Laurent

    2012-07-26

    Sclareol is a diterpene natural product of high value for the fragrance industry. Its labdane carbon skeleton and its two hydroxyl groups also make it a valued starting material for semisynthesis of numerous commercial substances, including production of Ambrox® and related ambergris substitutes used in the formulation of high end perfumes. Most of the commercially-produced sclareol is derived from cultivated clary sage (Salvia sclarea) and extraction of the plant material. In clary sage, sclareol mainly accumulates in essential oil-producing trichomes that densely cover flower calices. Manool also is a minor diterpene of this species and the main diterpene of related Salvia species. Based on previous general knowledge of diterpene biosynthesis in angiosperms, and based on mining of our recently published transcriptome database obtained by deep 454-sequencing of cDNA from clary sage calices, we cloned and functionally characterized two new diterpene synthase (diTPS) enzymes for the complete biosynthesis of sclareol in clary sage. A class II diTPS (SsLPPS) produced labda-13-en-8-ol diphosphate as major product from geranylgeranyl diphosphate (GGPP) with some minor quantities of its non-hydroxylated analogue, (9 S, 10 S)-copalyl diphosphate. A class I diTPS (SsSS) then transformed these intermediates into sclareol and manool, respectively. The production of sclareol was reconstructed in vitro by combining the two recombinant diTPS enzymes with the GGPP starting substrate and in vivo by co-expression of the two proteins in yeast (Saccharomyces cerevisiae). Tobacco-based transient expression assays of green fluorescent protein-fusion constructs revealed that both enzymes possess an N-terminal signal sequence that actively targets SsLPPS and SsSS to the chloroplast, a major site of GGPP and diterpene production in plants. SsLPPS and SsSS are two monofunctional diTPSs which, together, produce the diterpenoid specialized metabolite sclareol in a two-step process. They

  10. Enzyme-lipid complex. Koso-shishitsu fukugotai

    Energy Technology Data Exchange (ETDEWEB)

    Okahata, Y; Ijiro, K [Tokyo Inst. of Technology., Tokyo (Japan)

    1990-08-01

    Enzyme, as unstable against organic solvent, being to be designed not to be quenched, organic solvent was tried to be made soluble by making enzyme-lipid complex. By mixing aqueous solution of enzyme with aqueous dispersion liquid of lipid, white powder was obtaind. Enzyme has monomolecular film through which reaction substance passes. Lipase-lipid complex, of which monomolecular film is qualified by hydrogen and other soft linkages, homogeneously dissolves in organic solvent and has a high activity, not given by the conventional qualification method. That activity being applied, asymmetrical esterificating reaction of alcohol could be done in organic solvent, containing high concentration reactive substance. While substance selectivity, not known in water, was obtained. Through reaction of amine with amino acid dielectrics in isooctane solvent by {alpha}-chymotrypsin-lipid complex, was indicated an exact substance selectivity. Enzyme-lipid complex dissolving in organic solvent, monomolecular film can be formed without being quenched on aqueous surface, which film can be utilized as sensor film. 10 refs., 5 figs. 1 tab.

  11. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production.

    Science.gov (United States)

    Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V

    2017-11-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Natural products inhibitors of the angiotensin converting enzyme (ACE: a review between 1980 - 2000

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    Full Text Available Inhibition of Angiotensin Converting Enzyme (ACE is a modern therapeutic target in the treatment of hypertension. Within the enzyme cascade of the renin-angiotensin system, ACE removes histidyl-leucine from angiotensin I to form the physiologically active octapeptide angiotensin II, one of the most potent known vasoconstrictors. Therefore, a rationale for treating hypertension would be to administer drugs or natural compounds which selectively inhibit ACE. The present work constitutes a review of the literature of plants and chemically defined molecules from natural sources with in vitro anti-hypertensive potential based on the inhibition of ACE. The review refers to 321 plants, the parts utilized, type of extract and whether they are active or not. It includes also the names of 158 compounds isolated from higher plants, marine sponges and algae, fungi and snake venom. Some aspects of recent research with natural products directed to produce anti-hypertensive drugs are discussed. In this review, 148 references were cited.

  13. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  14. Influence of the temperature in the uranyl sorption in zirconium diphosphate modified with salicylic acid; Influencia de la temperatura en la sorcion de uranilo en difosfato de circonio modificado con acido salicilico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Solis C, D. A. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50000 Toluca, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (MX)

    2011-11-15

    In this work the experimental conditions were established to evaluate the uranium (Vi) sorption to 20 and 40 C on the surface of the zirconium diphosphate (ZrP{sub 2}O{sub 7}) modified with a solution of salicylic acid 0.1 M. The modification of the ZrP{sub 2}O{sub 7} was produced during the hydrate process, taking advantage that these are formed complexes between the carboxyl and hydroxyl groups of salicylic acid and amphoteric species of the interface solid/liquid. The method is used by lots to elaborate the isotherms that explain the behavior of this sorption in different ph conditions and temperature, the quantity of the uranium reaction is analyzed with the fluorescence technique. The results indicated that in the temperature increases the uranium sorption on the material and is more efficient to low ph values. (Author)

  15. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    Science.gov (United States)

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  16. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  17. Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Zhang, Qingli; Yang, Bao; Brashears, Mindy M; Yu, Zhimin; Zhao, Mouming; Liu, Ning; Li, Yinjuan

    2014-05-01

    A lot of interesting research has been undertaken to enhance the yield of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB). The objective of this study was to determine the influence of casein hydrolysates (CH) with molecular weight less than 3 kDa on cell viability, EPS synthesis and the enzyme activity involved in EPS synthesis during the co-culturing of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in MRS broth for 72 h at 37 ± 0.1 °C. The highest EPS yield (150.1 mg L⁻¹) was obtained on CH prepared with papain (CHP) at 48 h. At 24 h, EPS were composed of galactose, glucose and rhamnose in a molar ratio of 1.0:2.4:1.5. The monosaccharide composition changed with extension of the fermentation time. The activities of α-phosphoglucomutase, uridine 5'-diphosphate (UDP)-glucose pyrophosphorylase and UDP-galactose 4-epimerase were associated with EPS synthesis. Moreover, the activities of β-phosphoglucomutase and deoxythymadine 5'-diphosphate (dTDP)-glucose pyrophosphorylase involved in rhamnose synthesis were very low at the exponential growth phase and could not be detected during other given periods. The influence of different CH (<3 kDa) on LAB viability, EPS production, EPS monomeric composition and activity levels of key metabolic enzymes was distinct. Besides, their influence was related to the distribution of amino acids. © 2013 Society of Chemical Industry.

  18. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  19. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    Non-mechanical nano and microfluidic devices that function without the aid of an external power source, and can be tailored to meet specific needs, represent the next generation of smart devices. Recently, we have shown that surface-bound enzymes can act as pumps driving large-scale fluid flows in the presence of any substance that triggers the enzymatic reaction (e.g. substrate, co-factor, or biomarker). The fluid velocities attained in such systems depend directly on the enzymatic reaction rate and the concentration of the substance that initiates enzymatic catalysis. The use of biochemical reactions to power a micropump offers the advantages of specificity, sensitivity, and selectively, eliminating at the same time the need of an external power source, while providing biocompatibility. More importantly, these self-powered pumps overcome a significant obstacle in nano- and micro-fluidics: the need to use external pressure-driven pumps to push fluids through devices. Certainly, the development of enzyme-powered devices opens up new venues in biochemical engineering, particularly in the biomedical field. The work highlighted in this dissertation covers all the studies performed with enzyme-powered pumps, from the development of the micropump design, to the efforts invested in understanding the enzyme pump concept as a whole. The data collected to date, aims to expand our knowledge about enzyme-powered micropumps from the inside out: not only by exploring the different applications of these devices at the macroscale, but also by investigating in depth the mechanism of pump activation behind these systems. Specifically, we have focused on: (1) The general features that characterize the pumping behavior observed in enzyme-powered pumps, as well as the optimization of the device, (2) the possible mechanisms behind fluid motion, including the role of enzyme coverage and/or activity on the transduction of chemical energy into mechanical fluid flow in these devices

  20. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  1. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  2. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  3. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  4. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  5. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  6. Contemporary enzyme based technologies for bioremediation: A review.

    Science.gov (United States)

    Sharma, Babita; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-15

    The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A thermodynamic and theoretical view for enzyme regulation.

    Science.gov (United States)

    Zhao, Qinyi

    2015-01-01

    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  8. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  9. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  10. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    Science.gov (United States)

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase

    DEFF Research Database (Denmark)

    Biondi, R M; Walz, K; Issinger, O G

    1996-01-01

    of phosphoserine after strong acid hydrolysis of the histidine autophosphorylated enzyme is in fact a nonenzymatic transphosphorylation from phosphohistidine due to the harsh acid treatment. This methodology was also applied to in vivo phosphorylation studies of C. albicans NDP kinase. We believe...

  12. Ultra-performance liquid chromatography-tandem mass spectrometry-based multiplex enzyme assay for six enzymes associated with hereditary hemolytic anemia.

    Science.gov (United States)

    Park, Chul Min; Lee, Kyunghoon; Jun, Sun-Hee; Song, Sang Hoon; Song, Junghan

    2017-08-15

    Deficiencies in erythrocyte metabolic enzymes are associated with hereditary hemolytic anemia. Here, we report the development of a novel multiplex enzyme assay for six major enzymes, namely glucose-6-phosphate dehydrogenase, pyruvate kinase, pyrimidine 5'-nucleotidase, hexokinase, triosephosphate isomerase, and adenosine deaminase, deficiencies in which are implicated in erythrocyte enzymopathies. To overcome the drawbacks of traditional spectrophotometric enzyme assays, the present assay was based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The products of the six enzymes were directly measured by using ion pairing UPLC-MS/MS, and the precision, linearity, ion suppression, optimal sample amounts, and incubation times were evaluated. Eighty-three normal individuals and 13 patients with suspected enzymopathy were analyzed. The UPLC running time was within 5min. No ion suppression was observed at the retention time for the products or internal standards. We selected an optimal dilution factor and incubation time for each enzyme system. The intra- and inter-assay imprecision values (CVs) were 2.5-12.1% and 2.9-14.3%, respectively. The linearity of each system was good, with R 2 values >0.97. Patient samples showed consistently lower enzyme activities than those from normal individuals. The present ion paring UPLC-MS/MS assay enables facile and reproducible multiplex evaluation of the activity of enzymes implicated in enzymopathy-associated hemolytic anemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.

    Science.gov (United States)

    Shao, Jinfeng; Marcondes, Marcelo F M; Oliveira, Vitor; Broos, Jaap

    2016-01-01

    Chemically defined media for growth of Lactococcus lactis strains contain about 50 components, making them laborious and expensive growth media. However, they are crucial for metabolism studies as well as for expression of heterologous proteins labeled with unnatural amino acids. In particular, the L. lactis Trp auxotroph PA1002, overexpressing the tryptophanyl tRNA synthetase enzyme of L. lactis, is very suitable for the biosynthetic incorporation of Trp analogs in proteins because of its most relaxed substrate specificity reported towards Trp analogs. Here we present two much simpler defined media for L. lactis, which consist of only 24 or 31 components, respectively, and with which the L. lactis Trp auxotroph shows similar growth characteristics as with a 50-component chemically defined medium. Importantly, the expression levels of two recombinant proteins used for evaluation were up to 2-3 times higher in these new media than in the 50-component medium, without affecting the Trp analog incorporation efficiency. Taken together, the simplest chemically defined media reported so far for L. lactis are presented. Since L. lactis also shows auxotrophy for Arg, His, Ile, Leu Val, and Met, our simplified media may also be useful for the biosynthetic incorporation of analogs of these five amino acids. © 2016 The Author(s) Published by S. Karger AG, Basel.

  14. Rapid Analysis of Protein Farnesyltransferase Substrate Specificity Using Peptide Libraries and Isoprenoid Diphosphate Analogues

    OpenAIRE

    Wang, Yen-Chih; Dozier, Jonathan K.; Beese, Lorena S.; Distefano, Mark D.

    2014-01-01

    Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequen...

  15. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  16. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  17. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    Science.gov (United States)

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

  18. Genetic-Metabolic Coupling for Targeted Metabolic Engineering

    DEFF Research Database (Denmark)

    Cardinale, Stefano; Tueros Farfan, Felipe Gonzalo; Sommer, Morten Otto Alexander

    2017-01-01

    pertur-bations, thus limiting their relevance to specific conditions. Here, we address this issue by coupling cell fitness to the production of thiamine diphosphate in Escherichia coli using a synthetic RNA biosensor. We use this strategy to interrogate a library of transposon mutants and elucidate...... the native gene network influencing both cell fitness and thiamine production. Ultimately, we identify effectors of the OxyR-Fur stress response that limit thiamine biosynthesis via alternative regulation of iron storage and Fe-S cluster inclusion in enzymes. This study presents a new approach...

  19. Early reactions of enzymes and metabolites of glycolysis at the myocardium after local irradiation

    International Nuclear Information System (INIS)

    Hoffmeister, N.

    1982-01-01

    The behaviour of enzymes, substrates and metabolites of clycolysis and the pentose-phosphate cycle was chemically investigated in guinea-pig myocardia after applying different radiation doses. The results indicate that already therapeutical doses of radiation result in essential metabolic alterations but also that the organ concerned endeavours to remedy the harmful influence at least partly. The investigations do not permit to define the actual mechanism underlying the modifications; however it is seen that changes in membrane permeability as well as alterations of effectors and inhibitors play an essential part. (orig.) [de

  20. Spherezymes: A novel structured self-immobilisation enzyme technology

    Directory of Open Access Journals (Sweden)

    Arumugam Cherise

    2008-01-01

    Full Text Available Abstract Background Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised. However, immobilisation onto solid supports greatly reduces the volumetric and specific activity of the biocatalysts. An alternative is to form self-immobilised enzyme particles. Results Through addition of protein cross-linking agents to a water-in-oil emulsion of an aqueous enzyme solution, structured self-immobilised spherical enzyme particles of Pseudomonas fluorescens lipase were formed. The particles could be recovered from the emulsion, and activity in aqueous and organic solvents was successfully demonstrated. Preliminary data indicates that the lipase tended to collect at the interface. Conclusion The immobilised particles provide a number of advantages. The individual spherical particles had a diameter of between 0.5–10 μm, but tended to form aggregates with an average particle volume distribution of 100 μm. The size could be controlled through addition of surfactant and variations in protein concentration. The particles were robust enough to be recovered by centrifugation and filtration, and to be recycled for further reactions. They present lipase enzymes with the active sites selectively orientated towards the exterior of the particle. Co-immobilisation with other enzymes, or other proteins such as albumin, was also demonstrated. Moreover, higher activity for small ester molecules could be achieved by the immobilised enzyme particles than for free enzyme, presumably because the lipase conformation required for catalysis had been locked in place during immobilisation. The immobilised enzymes also demonstrated superior activity in organic solvent compared to the original free enzyme. This type of self-immobilised enzyme particle has been named spherezymes.

  1. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  2. Review of the biochemical basis of enzyme immunoassays

    International Nuclear Information System (INIS)

    Klingler, W.

    1982-01-01

    The ever increasing number of radioimmunological determination poses problems allied with the handling of radioactive substances. In recent years various non-radioactive methods have been developed, among which the enzyme immunoassay is already in routine use. Homogeneous and heterogeneous enzyme immunoassays are described. Criteria for enzymes, substrates and enzyme-substrate reactions are listed. (orig.) [de

  3. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  4. Preliminary characterization of digestive enzymes in freshwater mussels

    Science.gov (United States)

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  5. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  6. Statistically defining optimal conditions of coagulation time of skim milk

    International Nuclear Information System (INIS)

    Celebi, M.; Ozdemir, Z.O.; Eroglu, E.; Guney, I

    2014-01-01

    Milk consist huge amount of largely water and different proteins. Kappa-kazein of these milk proteins can be coagulated by Mucor miehei rennet enzyme, is an aspartic protease which cleavege 105 (phenly alanine)-106 (methionine) peptide bond. It is commonly used clotting milk proteins for cheese production in dairy industry. The aim of this study to measure milk clotting times of skim milk by using Mucor Miehei rennet and determination of optimal conditions of milk clotting time by mathematical modelling. In this research, milk clotting times of skim milk were measured at different pHs (3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and temperatures (20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 degree C). It was used statistical approach for defining best pH and temperature for milk clotting time of skim milk. Milk clotting activity was increase at acidic pHs and high temperatures. (author)

  7. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  8. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  9. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  10. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  11. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  12. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  13. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Directory of Open Access Journals (Sweden)

    Xiangping Tan

    2014-01-01

    Full Text Available Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2 scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI and the geometric mean of enzyme activities (GME. At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  14. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  15. Lysosomal enzyme activation in irradiated mammary tumors

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1976-01-01

    Lysosomal enzyme activity of C3H mouse mammary tumors was measured quantitatively by a histochemical method. Following whole-body doses of 3600 rad or less no changes were observed in the lysosomal enzyme activity for 12 hr after the irradiation, but very large increases in acid phosphatase and β-naphthylamidase activity were, however, observed 24 hr after irradiation. Significant increases in enzyme activity were detected 72 hr after a dose of 300 rad and the increases of enzyme activity were dose dependent over the range 300 to 900 rad. Testosterone (80 mg/kg) injected into mice 2 hr before irradiation (850 rad) caused a significant increase of lysosomal enzyme activity over and above that of the same dose of irradiation alone. If the tumor-bearing mice were given 95 percent oxygen/5 percent carbon dioxide to breathe for 8 min before irradiation the effect of 850 rad on lysosomal acid phosphatase was increased to 160 percent/that of the irradiation given alone. Activitation of lysosomal enzymes in mammary tumors is an important primary or secondary consequence of radiation

  16. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  17. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  18. Enzymes as Biocatalysts for Lipid-based Bioproducts Processing

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Guo, Zheng; Fedosov, Sergey

    2012-01-01

    Bioproducts are materials, chemicals and energy derived from renewable biological resources such as agriculture, forestry, and biologically-derived wastes. To date, the use of enzymes as biocatalysts for lipid-based bioproducts processing has shown marked increase. This is mainly due to the fact...... that cost benefit derived from enzymatic processing such as enzyme specificity, higher product purity and lesser or none toxic waste disposal has surpassed the cost of biocatalysts itself. This chapter provided insights into distinct enzymes characteristics essential in industrial processing especially...... enzymes kinetics. Understanding of enzyme kinetics is important especially in designing efficient reaction set-ups including type of bioreactors, reaction conditions and reusability of biocatalysts to ensure efficient running cost. A brief review of state-of-the-art in industrial applications of enzymes...

  19. Development of thermophilic tailor-made enzyme mixtures for the bioconversion of agricultural and forest residues

    Directory of Open Access Journals (Sweden)

    Anthi eKarnaouri

    2016-02-01

    Full Text Available Even though the main components of all lignocellulosic feedstocks include cellulose, hemicellulose, as well as the protective lignin matrix, there are some differences in structure, such as in hardwoods and softwoods, which may influence the degradability of the materials. Under this view, various types of biomass might require a minimal set of enzymes that has to be tailor-made. Partially defined complex mixtures that are currently commercially used are not adapted to efficiently degrade different materials, so novel enzyme mixtures have to be customized. Development of these cocktails requires better knowledge about the specific activities involved, in order to optimize hydrolysis. The role of filamentous fungus Myceliophthora thermophila and its complete enzymatic repertoire for the bioconversion of complex carbohydrates has been widely proven. In this study, four core cellulases (MtCBH7, MtCBH6, MtEG5 and MtEG7, in the presence of other four accessory enzymes (mannanase, lytic polyssacharide monooxygenase MtGH61, xylanase, MtFae1a and β-glucosidase MtBGL3, were tested as a 9-component cocktail against one model substrate (phosphoric acid swollen cellulose and four hydrothermally pretreated natural substrates (wheat straw as an agricultural waste, birch and spruce biomass, as forest residues. Synergistic interactions among different enzymes were determined using a suitable design of experiments methodology. The results suggest that for the hydrolysis of the pure substrate (PASC, high proportions of MtEG7 are needed for efficient yields. MtCBH7 and MtEG7 are enzymes of major importance during the hydrolysis of pretreated wheat straw, while MtCBH7 plays a crucial role in case of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key enzymes for the hydrolysis of the hardwood (birch. Optimum combinations were predicted from suitable statistical models which were able to further increase hydrolysis yields, suggesting that

  20. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  1. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  2. A Theoretical Approach to Engineering a New Enzyme

    International Nuclear Information System (INIS)

    Anderson, Greg; Gomatam, Ravi; Behera, Raghu N.

    2016-01-01

    Density function theory, a subfield of quantum mechanics (QM), in combination with molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we report theoretical calculations done using QM/MM to examine whether the regioselectivity and rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. Although the protonation state of the niobium substituted enzyme is calculated to be different from than that of the natural vanadium substituted enzyme, our calculations show that the catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic differences between the niobium substituted enzyme and the natural enzyme. We conclude by briefly examining how good of a model QM/MM provides for understanding the mechanism of catalysis of chloroperoxidase. (paper)

  3. Induction of drug-metabolizing enzymes: mechanisms and consequences

    Energy Technology Data Exchange (ETDEWEB)

    Okey, A.B.; Roberts, E.A.; Harper, P.A.; Denison, M.S.

    1986-04-01

    The activity of many enzymes that carry out biotransformation of drugs and environmental chemicals can be substantially increased by prior exposure of humans or animals to a wide variety of foreign chemicals. Increased enzyme activity is due to true enzyme induction mediated by increased synthesis of mRNAs which code for specific drug-metabolizing enzymes. Several species of cytochrome P-450 are inducible as are certain conjugating enzymes such as glutathione S-transferases, glucuronosyl transferases, and epoxide hydrolases. Induction of drug-metabolizing enzymes has been shown in several instances to alter the efficacy of some therapeutic agents. Induction of various species of cytochrome P-450 also is known to increase the rate at which potentially toxic reactive metabolic intermediates are formed from drugs or environmental chemicals. Overall, however, induction of drug-metabolizing enzymes appears to be a beneficial adaptive response for organisms living in a ''chemically-hostile'' world.48 references.

  4. 21 CFR 184.1063 - Enzyme-modified lecithin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified lecithin. 184.1063 Section 184.1063... Listing of Specific Substances Affirmed as GRAS § 184.1063 Enzyme-modified lecithin. (a) Enzyme-modified lecithin is prepared by treating lecithin with either phospholipase A2 (EC 3.1.1.4) or pancreatin. (b) The...

  5. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  6. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  7. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  8. Network analysis of metabolic enzyme evolution in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kraulis Per

    2004-02-01

    Full Text Available Abstract Background The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. Results Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. Conclusions The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution.

  9. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  10. An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants.

    Science.gov (United States)

    Hudson, André O; Singh, Bijay K; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and LL-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The LL-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that LL-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms.

  11. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  12. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  13. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  14. Improving Aspergillus carbonarius crude enzymes for lignocellulose hydrolysis

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich

    and single enzyme supplementation. Fungal strains were screened in order to determine crude enzyme extracts that could be supplemented as boosters of A. carbonarius own crude enzyme extract, when applied in lignocellulose hydrolysis. The fungi originated from different environmental niches, which all had...... for their potential in hydrolysis of wheat straw both by application of monocultures and by supplementing to crude enzymes of A. carbonarius. For the crude enzymes from solid cultivations there were eight isolates that showed synergistic interaction resulting in doubling and tripling of the glucose release in wheat...... straw hydrolysis. A completely different profile of synergy was observed for crude enzymes from liquid cultivations, as there were only three isolates that enhanced glucose release. Only one of these three isolates had shown synergistic effects when cultivated in a solid medium. The screening...

  15. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...

  16. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  17. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  18. Genetic Polymorphism of Folate and Methionine Metabolizing Enzymes and their Susceptibility to Malignant Lymphoma

    International Nuclear Information System (INIS)

    Habib, E.E.; Aziz, M.; Kotb, M.

    2005-01-01

    Folate and methionine metabolism is involved in DNA synthesis and methylation. Polymorphisms in the genes of folate metabolism enzymes have been associated with some forms of cancer. In the present study, 2 polymorphisms were evaluated for a folate metabolic enzyme, methylene-tetrahydrofolate reductase (MTHFR), and one was evaluated for methionine synthase (MS). The 2 polymorphisms MTHFR 677 C-7T and MTHFR 1298 A-7C, are reported to reduce the enzyme activity, which causes intracellular accumulation of 5, 10 vm ethylene-tetrahydrofolate and results in a reduced incidence of DNA double strand breakage. The MS 2756 A-7G polymorphism also reduces the enzyme activity and results in the hypo methylation of DNA. Patients and Methods: To test this hypothesis, genetic polymorphisms in the folate metabolic pathway were investigated using the DNA from a case-control study on 31 patients having malignant lymphoma from the Oncology Outpatient Clinic of the New Children's Hospital, Cairo University and 30 controls who were actually normal children attending for vaccination to the same hospital. We found that there is a higher susceptibility with the MTHFR 677CC and MTHFR 1298 AA genotypes (OR=4.3, 95% CI 1.12-16). When those harbor at least one variant allele in either polymorphism of MTHFR they were defined as reference. For the MS 2756 AG genotype polymorphism there was also a higher susceptibility to developing malignant lymphoma (OR=2.6; 95% CI 1.16.4). Results suggest that folate and methionine metabolism may play an important role in the pathogenesis of malignant lymphoma. Further studies to confirm this association and detailed biologic mechanisms are now required

  19. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

    Science.gov (United States)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    2016-01-15

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Key Building Blocks via Enzyme-Mediated Synthesis

    Science.gov (United States)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.