WorldWideScience

Sample records for dip coating process

  1. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  2. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    Science.gov (United States)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  3. Superhydrophobic silica coating by dip coating method

    International Nuclear Information System (INIS)

    Mahadik, Satish A.; Parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S.; Wagh, Pratap B.; Gupta, Satish; Gurav, Jyoti

    2013-01-01

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  4. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    Science.gov (United States)

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  5. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.

    Science.gov (United States)

    Cui, Zhe; Yin, Long; Wang, Qingjun; Ding, Jianfu; Chen, Qingmin

    2009-09-15

    Superhydrophobic surfaces with multi-scale nano/microstructures have been prepared on epoxy paint surfaces using a feasible dip-coating process. The microstructures with 5-10 microm protuberances were first prepared on epoxy paint surface by sandblast. Then the nanostructures were introduced on the microstructure surface by anchoring 50-100 nm SiO(2) particles (nano-SiO(2)) onto the sandblasted paint surface, which was completed by dip-coating with a nano-SiO(2)/epoxy adhesive solution (M1). At last the surface was further modified for enhancing hydrophobicity by another dip-coating with a solution of a low surface energy polymer, aminopropyl terminated polydimethylsiloxane (ATPS) modified epoxy adhesive (M2). The water contact angle of the as-prepared samples reached as high as 167.8 degrees and the sliding angle was 7 degrees. The prepared superhydrophobic surface exhibited excellent durability to the high speed scouring test and high stability in neutral and basic aqueous solutions and some common organic solvents. In addition, this method can be adopted to fabricate large scale samples with a good homogeneity of the whole surface at very low cost.

  6. Dip coating of sol-gels

    Science.gov (United States)

    Schunk, P. R.; Hurd, A. J.; Brinker, C. J.

    Dip coating is the primary means of depositing sol-gel films for precision optical coatings. Sols are typically multicomponent systems consisting of an inorganic phase dispersed in a solvent mixture, with each component differing in volatility and surface tension. This, together with slow coating speeds (less than 1cm/s), makes analysis of the coating process complicated; unlike most high-speed coating methods, solvent evaporation, evolving rheology, and surface tension gradients alter significantly the fluid mechanics of the deposition stage. These phenomena were studied with computer-aided predictions of the flow and species transport fields. The underlying theory involves mass, momentum, and species transport on a domain of unknown shape, with models and constitutive equations for vapor-liquid equilibria and surface tension. Due accounting is made for the unknown position of the free surface, which locates according to the capillary hydrodynamic forces and solvent loss by evaporation. Predictions of the effects of mass transfer, hydrodynamics, and surface tension gradients on final film thickness are compared with ellipsometry measurements of film thickness on a laboratory pilot coater. Although quantitative agreement is still lacking, both experiment and theory reveal that the film profile near the drying line takes on a parabolic shape.

  7. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  8. Factors affecting the hot-dip zinc coatings structure

    International Nuclear Information System (INIS)

    Sere, P.R.; Cuclcasi, J.D.; Elsner, C.I.; Sarli, A.R.

    1997-01-01

    Coating solidification during hot-dip galvanizing is a very complex process due to Al-Fe, Al-Fe-Zn and Fe-Zn intermetallic compounds development . Fe-Zn intermetallics are brittle and detrimental for the coating ductility, while the diffusion towards the surface of a segregated insoluble alloying such as antimonium causes the sheet darkness. Steel of different roughness were hot-dip galvanized under different operation conditions using a laboratory scale simulator. The effect of steel roughness and process parameters upon coating characteristics were analysed. Experimental results showed that the steel roughness affects the coating thickness, zinc grain size and texture as well as the out-bursts development, while the process parameters affects the Fe 2 Al 5 morphology and antimonium segregation. (Author) 11 refs

  9. 75 FR 17162 - Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and...

    Science.gov (United States)

    2010-04-05

    ...] Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and Budget's... Standard on Dipping and Coating Operations (Dip Tanks) (29 CFR 1910.126(g)(4)). DATES: Comments must be... of efforts in obtaining information (29 U.S.C. 657). The Standard on Dipping and Coating Operations...

  10. Ni-YSZ graded coatings produced by dipping

    International Nuclear Information System (INIS)

    Ferrari, B.; Moreno, R.

    2004-01-01

    A new colloidal processing route for the shaping of a graded Ni-YSZ composite for applications in SOFC devices is described. A Ni foil is coated by Ni/YSZ layers by dipping in aqueous suspensions with an organic binder. Behind the metal-ceramic layers introduced to improve adhesion, an outer thin layer of nanosized YSZ is formed by electrophoretic deposition. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  11. Influence of dipping time on cracking during bending of hot dip galvanized coatings with Sn and Ti contents

    Directory of Open Access Journals (Sweden)

    L. Zortea

    2010-10-01

    Full Text Available In the last years, the attention to environmental topics led a new approach solution in classical protection techniques, introducing innovative way oriented to optimize different coating properties. Hot-dip galvanizing is a classical process aimed to generate coatings on iron-based surfaces, used unchanged since 200 years: some chemical elements are added in the bath with different aims (e.g., Pb is really important for its fluidizing properties, sometimes replaced by Sn but sometimes these elements are dangerous for human health (e.g. … Pb!.In this work, the influence of dipping time and coatings chemical compositions on damaging micromechanisms was investigated considering different Sn and Ti contents. Main damaging micromechanisms in hot dip zinc coated ipersandelin steel specimens were investigated by means of bending tests. Longitudinal sections of bended specimens were observed by means of a LOM (Light Optical Microscope: main damage micromechanisms were identified as longitudinal and radial cracks.

  12. Impact of Overlapping Fe/TiO2 Prepared by Sol-Gel and Dip-Coating Process on CO2 Reduction

    Directory of Open Access Journals (Sweden)

    Akira Nishimura

    2016-01-01

    Full Text Available Fe-doped TiO2 (Fe/TiO2 film photocatalyst was prepared by sol-gel and dip-coating process to extend its photoresponsivity to the visible spectrum. To promote the CO2 reduction performance with the photocatalyst, some types of base materials used for coating Fe/TiO2, which were netlike glass fiber and Cu disc, were investigated. The characterization of prepared Fe/TiO2 film coated on netlike glass fiber and Cu disc was analyzed by SEM and EPMA. In addition, the CO2 reduction performance of Fe/TiO2 film coated on netlike glass disc, Cu disc, and their overlap was tested under a Xe lamp with or without ultraviolet (UV light, respectively. The results show that the concentration of produced CO increases by Fe doping irrespective of base material used under the illumination condition with UV light as well as that without UV light. Since the electron transfer between two overlapped photocatalysts is promoted, the peak concentration of CO for the Fe/TiO2 double overlapping is approximately 1.5 times as large as the Fe/TiO2 single overlapping under the illumination condition with UV light, while the promotion ratio is approximately 1.1 times under that without UV light.

  13. Structure and characterization of Sn, Al co-doped zinc oxide thin films prepared by sol–gel dip-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-I [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Legrand, David [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lerondel, Gilles [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taiwan (China)

    2014-11-03

    Transparent conductive zinc oxide co-doped with tin and aluminum (TAZO) thin films were prepared via sol–gel dip-coating process. Non-toxic ethanol was used in this study instead of 2-methoxyethanol used in conventional work. Dip-coating was repeated several times to obtain relatively thick films consisting of six layers. The films were then annealed at 500 °C for 1 h in air or in vacuum and not subsequently as employed in other studies. The X-ray diffraction patterns indicated that all the samples revealed a single phase of hexagonal ZnO polycrystalline structure with a main peak of (002). The optical band gap and resistivity of the TAZO films were in the ranges of 3.28 to 3.32 eV and 0.52 to 575.25 Ω cm, respectively. The 1.0 at.% Sn, 1.0 at.% Al co-doped ZnO thin film annealed in vacuum was found to have a better photoelectrochemical performance with photocurrent density of about 0.28 mA/cm{sup 2} at a bias of 0.5 V vs. SCE under a 300 W Xe lamp illumination with the intensity of 100 mW/cm{sup 2}. Compared to the same dopant concentration but annealed in air (∼ 0.05 mA/cm{sup 2} bias 0.5 V vs. SCE), the photocurrent density of the film annealed in vacuum was 5 times higher than the film annealed in air. Through electrochemical measurements, we found that the dopant concentration of Sn plays an important role in TAZO that affected photocurrent density, stability of water splitting and anti-corrosion. - Highlights: • Al, Sn co-doped ZnO (TAZO) films was synthesized by sol–gel process. • The parameters of TAZO films were dopant concentration and annealed ambient. • The photoelectrochemical characteristics of TAZO films were investigated.

  14. Development of Zn-Al-Cu coatings by hot dip coated technology: preparation and characterization

    International Nuclear Information System (INIS)

    Cervantes, J.; Barba, A.; Hernandez, M. A.; Salas, J.; Espinoza, J. L.; Denova, C.; Torres-Villasenor, G.; Conde, A.; Covelo, A.; Valdez, R.

    2013-01-01

    In the present study, research concerning Zn-Al-Cu coatings on low carbon steels has been conducted in order to characterize different properties obtained by a hot-dip coated process. The results include preparation procedure as well as the processing parameters of the coatings. The obtained coatings were subjected to a cold rolling process followed by an anneal heat treatment at different temperatures and under different time conditions. The structural characteristics of coatings have been investigated by optical and electron microscopy. The mechanical properties were obtained by using micro-hardness testing, deep drawing and wear tests whereas chemical analyses were carried out using the SEM/EDAX microprobe. The corrosion properties were achieved by using a salt spray fog chamber and potentiodynamic tests in a saline solution. The coatings are resistant to corrosion and wear in the presence of sodium chloride, therefore, the coatings could be an attractive alternative for application in coastal areas, and adequate wear adhesive resistance. (Author)

  15. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference.

    Science.gov (United States)

    Yang, Yan; Shen, Lian; Yuan, Feng; Fu, Hui; Shan, Weiguang

    2018-05-30

    Lately, a great deal of attention is being paid to capsule coating, since the coat protects active pharmaceutical ingredients (APIs) from damage, as is in the case of tablet and pellet. However, moisture and heat sensitivity of gelatin shells make it challenging to coat capsules using the conventional aqueous coating techniques. In an effort to overcome this challenge, the present study aims to coat capsules using two different coating techniques: electrostatic dry powder coating (EDPC) and dip coating (DC). Both capsule coatings and free films were prepared by these two coating techniques, and the effects of coating formulations and processing conditions on the film quality were investigated. The corresponding drug in vitro release and mechanisms were characterized and compared. The results of dissolution tests demonstrated that the drug release behavior of both EDPC and DC coated capsules could be optimized to a sustained release of 24 h, following the Fick's diffusion law. The results of this study suggest that EDPC method is better than DC method for coating capsules, with respect to the higher production efficiency and better stability, indicating that this dry coating technology has promised in gelatin capsule coating applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon.

    Science.gov (United States)

    Senturk Parreidt, Tugce; Schmid, Markus; Müller, Kajetan

    2018-04-01

    Edible coating based on sodium alginate solution was applied to fresh-cut cantaloupe melon by dipping and vacuum impregnation coating methods. One aim of this work is to produce more technical information concerning these conventional and novel coating processes. For this purpose, the effect of various coating parameters (dipping time, draining time, time length of the vacuum period, vacuum pressure, atmospheric restoration time) with several levels on physical quality parameters (percentage of weight gain, color, and texture) of noncoated and coated samples were determined in order to define adequate coating process parameters to achieve a successful coating application. Additionally, the effects of dipping and vacuum impregnation processes were compared. Both processes improved the firmness of the melon pieces. However, vacuum impregnation application had higher firmness and weight gain results, and had significant effect (P coating technique and the parameters used significantly affect the physical quality characteristics of coated food products. The work presented produced more technical information concerning dipping and vacuum impregnation coating techniques, along with evaluating the effects of various coating parameters with several levels. The results revealed that vacuum impregnation technique is a successful coating method; however the effects should be carefully assessed for each product. © 2018 Institute of Food Technologists®.

  17. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

    Science.gov (United States)

    Kaboli, Shirin; McDermid, Joseph R.

    2014-08-01

    A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall

  18. Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Kong, Shuying; Cheng, Kui; Ouyang, Tian; Gao, Yinyi; Ye, Ke; Wang, Guiling; Cao, Dianxue

    2017-01-01

    Carbon materials, especially graphene nanosheets (GNS) and/or multi-walled carbon nanotube (MWNT), have been widely used as electrode materials for supercapacitor due to their advantages of higher specific surface area and electronic conductivity, but the relatively low specific capacitance thus results in low energy density hindering their large applications. On the contrary, MnO 2 exhibits higher energy density but poor electrical conductivity. In order to obtain high performance supercapacitor electrode, here, combining the advantages of these materials, we have designed a facile two-step strategy to prepare 3D MnO 2 -GNS-MWNT-Ni foam (MnO 2 -GM-Ni) electrode. First, GNS and MWNT is wrapped on the surface of Ni foam (GM-Ni) via a “dip & dry” method by using an organic dye as a co-dispersant. Then, by using this 3D GM-Ni as substrate, MnO 2 nanoflakes are in-situ supporting on the surface of GNS and MWNT through a hydrothermal reaction. The specific capacitances of MnO 2 -GM-Ni electrode reach as high as 470.5 F g −1 at 1 A g −1 . Furthermore, we have successfully fabricated an asymmetric supercapacitor with MnO 2 -GM-Ni and GM-Ni as the positive and negative electrodes, respectively. The MnO 2 -GM-Ni//GM-Ni asymmetric supercapacitor exhibits a maximum energy density of 35.3 Wh kg −1 at a power density of 426 W kg −1 and also a favorable cycling performance that 83.8% capacitance retention after 5000 cycles. These results show manageable and high-performance which offer promising future for practical applications.

  19. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    Science.gov (United States)

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  20. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  1. Electrochemical properties of dip-coated vanadium pentaoxide thin ...

    Indian Academy of Sciences (India)

    based on Helmholtz's double-layer capacitance, which is formed on an ... hybrid electric vehicles, laser, fuel cells, cellular phones, digital camera, etc. [5]. ... preparation of V2O5 by dip coating [43], but no work is found in the literature regarding ...

  2. 29 CFR 1910.126 - Additional requirements for special dipping and coating operations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Additional requirements for special dipping and coating... Dipping and Coating Operations § 1910.126 Additional requirements for special dipping and coating... requirements apply to flow coating? (1) You must use a direct low-pressure pumping system or a 10-gallon (38 L...

  3. The preparation and characterization of Bi-2212 film on Ag substrate by dip-coating method

    International Nuclear Information System (INIS)

    Song Yang; Zhao Liang; Li Pei; Qu Timing; Huang Yong; Han Zhenghe

    2006-01-01

    In this paper we report on the processing parameters and resulting critical current densities of Bi 2 Sr 2 Ca 1 Cu 2 O x thick films on Ag substrate. Bi-2212 tapes and wires are prepared by dip-coating method. It is found that parameters during partial melting (maximum process temperature T max and solidification temperature T s ) have strong influences on the transition temperature T c . The 0.5 mm diameter dip-coated wire can carry 4000 A/cm 2 critical current in 77 K, self field. Post-annealing on different temperatures and atmospheres are studied as well to obtain varied T c samples

  4. Investigation of passive and active silica-tin oxide nanostructured optical fibers fabricated by " inverse dip-coating " and " powder in tube " method based on the chemical sol-gel process and laser emission

    OpenAIRE

    Granger , Geoffroy; Restoin , Christine; Roy , Philippe; Jamier , Raphaël; Rougier , Sébastien; Duclere , Jean-René; Lecomte , André; Dauliat , Romain; Blondy , Jean-Marc

    2015-01-01

    International audience; This paper presents a study of original nanostructured optical fibers based on the SiO 2-SnO 2-(Yb 3+) system. Two different processes have been developed and compared: the sol-gel chemical method associated to the " inverse dip-coating " (IDC) and the " powder in tube " (PIT) process. The microstructural and optical properties of the fibers are studied according to the concentration of SnO 2. X-Ray Diffraction as well as Transmission Electron Microscopy studies show t...

  5. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD

    International Nuclear Information System (INIS)

    Castro, Y.; Duran, A.; Damborenea, J.J.; Conde, A.

    2008-01-01

    The aim of this work is the characterisation of the corrosion behaviour of stainless steel (AISI 304) substrates coated by dipping and electrophoretic deposition (EPD) from a sol-gel basic sol. Particulate silica sols (labelled NaSi) were prepared by basic catalysis from ethyltriethoxysilane (TEOS), methyltriethoxysilane (MTES) and sodium hydroxide. Coatings between 2 and 10 μm were prepared by using concentrated and diluted sols by dipping and EPD process and the corrosion behaviour of the coated substrates were studied through potentiodynamic and impedance spectroscopy measurements (EIS). Potentiodynamic studies of coatings produced by dipping reveal a strong dependence of the protective properties with the concentration of the sol. This behaviour was confirmed by EIS showing that only the coatings obtained from concentrated sol present enough protective properties. On the contrary, EPD coatings prepared from diluted NaSi sol showed an excellent corrosion resistance, maintaining a pure capacitive behaviour for long periods of immersion. EPD deposition is thus proposed as a good alternative method for obtaining thicker and denser coatings with good protective properties from dilute and stable sols

  6. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    International Nuclear Information System (INIS)

    Huang, Like; Hu, Ziyang; Zhang, Ke; Chen, Peipei; Zhu, Yuejin

    2015-01-01

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS

  7. Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Like; Hu, Ziyang, E-mail: huziyang@nbu.edu.cn; Zhang, Ke; Chen, Peipei; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    2015-03-02

    The fabrication of anodes and active layers by dip-coating in indium tin oxide (ITO)-free polymer solar cells (PSCs) is investigated. A highly conductive poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) layer was used as an anode while a blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) was employed as an active layer. The transmittance and sheet resistance of dip-coated PEDOT:PSS layers prepared with different thickness were studied. These layers were integrated into PSCs. The PSCs with the dip-coated PEDOT:PSS and P3HT:PCBM films exhibited power conversion efficiencies of 3.21% and 3.03% on glass and polyethylene terephthalate substrates, respectively, comparable to those of conventional ITO-based cells. Our research results suggest the feasibility of fabricating PSCs without a traditional spin-coating process and the possibility to substitute the ITO electrodes for conducting polymer films using the facile dip-coating method. - Highlights: • ITO-free polymer solar cells (PSCs) were fabricated by dip coating method. • Highly conductive PEDOT:PSS films used as anode were prepared. • The ITO-free PSCs performance was comparable with that of the spin coated devices. • Our results suggest the possibility of replacing ITO with dip coated PEDOT:PSS.

  8. Effect of chemical composition of steel on the structure of hot – dip galvanized coating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-01-01

    Full Text Available This article describes the effect of the content of conventional steel impurity elements on the thickness and composition of the zinc layer. This article is focused primarily on low-temperature, batch hot-dip galvanizing; however, the continuous coating process is also mentioned. The main discussion covers galvanizing from pure zinc melt, and only touches on galvanizing from melts with the usual amounts of aluminium (0,2 wt. %. Silicon, phosphorus, aluminium and sulfur may have an especially negative effect on the mechanical properties of the coating and its final appearance. The content of ballast carbon and manganese has a rather limited effect on composition and coating thickness.

  9. Filmes de titânio-silício preparados por "spin" e "dip-coating"

    Directory of Open Access Journals (Sweden)

    Nassar Eduardo J.

    2003-01-01

    Full Text Available The conditions for the preparation of luminescent materials, consisting of Eu3+ ions entrapped in a titanium matrix, in the forma of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hidrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique.

  10. Titanium-silicon films prepared by spin and dip-coating

    International Nuclear Information System (INIS)

    Nassar, Eduardo J.; Ciuffi, Katia J.; Goncalves, Rogeria R.; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2003-01-01

    The conditions for the preparation of luminescent materials, consisting of Eu 3+ ions entrapped in a titanium matrix, in the form of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hydrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu 3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique. (author)

  11. Influence of dipping cycles on physical, optical, and electrical properties of Cu 2 NiSnS 4 : Direct solution dip coating for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag; Siol, Sebastian; Klein, Talysa R.; van Hest, Maikel F. A. M.

    2017-11-01

    Direct solution coating technique has emerged as a promising economically viable process for earth abundant chalcogenide absorber materials for photovoltaic applications. Here, direct ethanol based dip coating of earth abundant Cu2NiSnS4 (CNTS) films on soda lime glass (SLG), molybdenum coated glass (Mo), and fluorine doped tin oxide coated glass (FTO) substrates is investigated. The structural and morphological properties of pre-annealed and sulfurized CNTS films coated on SLG, FTO, and Mo substrates are reported. The influence of dipping cycles on composition and optoelectronic properties of pre-annealed and sulfurized CNTS films deposited on SLG substrate is presented. Energy dispersive spectroscopy (EDS) and X-ray fluorescence (XRF) analysis reveal how changes in thickness and elemental composition affect morphology and optoelectronic properties. The obtained absorption coefficient, optical bandgap, resistivity and mobility of pre - annealed and sulfurized films are found to be 104 cm-1, 1.5 eV, 0.48 Ocm, 3.4 cm2/Vs and 104 cm-1, 1.29 eV, 0.14 Ocm, 11.0 cm2/Vs, respectively. These properties are well suited for photovoltaic applications and lead to the conclusion that the direct ethanol based dip coating can be an alternative economically viable process for the fabrication of earth abundant CNTS absorber layers for thin film solar cells.

  12. Deformation and fatigue behavior of hot dip galvanized coatings

    International Nuclear Information System (INIS)

    Camurri, Carlos P.; Benavente, Raul G.; Roa, Isidoro S.; Carrasco, Claudia C.

    2005-01-01

    This paper reports on the results of a study of the effect of static and dynamic stresses on hot dip galvanized coatings on SAE 1020 steel substrates. Galvanizing was performed using baths maintained at 450 deg. C, the zinc containing 0.16% Ti and 0.02% Fe and with Al and Ni in the ranges 0-0.20% and 0-0.30%, respectively. Static three-point bend tests were conducted with applied stresses in the range 428-790 MPa. Dynamic bend-fatigue tests involved stresses in the range 228-578 MPa at a cyclic frequency of 0.25 Hz for up to 700 cycles. The total crack density in the coatings was measured before and after the tests using light optical and electron microscopy. The results showed that the crack density increased as the applied stress increased and crack propagation was promoted perpendicular to the substrate. The number of cycles had no effect on the crack density and propagation at stresses lower than 386 MPa. At higher stresses the number of applied cycles contributed only to crack propagation. It was concluded that the best bath composition for preventing fatigue crack propagation is one that minimized the formation of thinner brittle layers in the galvanized coatings

  13. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells.

    Science.gov (United States)

    Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo

    2016-10-31

    We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

  14. Transparent conducting sol-gel ATO coatings for display applications by an improved dip coating technique

    International Nuclear Information System (INIS)

    Guzman, G.; Dahmani, B.; Puetz, J.; Aegerter, M.A.

    2006-01-01

    Transparent conducting coatings of sol-gel ATO (antimony-doped tin oxide) were used to improve surface smoothness of commercial sputter-deposited ITO (indium tin oxide) coatings for application as display electrodes. In order to overcome the deteriorating evaporation-cooling during dip coating, the coating solution was heated moderately to 25 deg. C thus providing the substrate with the required heat. This way, the surface roughness of the ITO could be reduced with an only 45 nm thick ATO coating to R pv = 3.8 nm (R a = 0.4 nm) compared to 31 nm (3.8 nm) for the ITO substrate. Another benefit of such additional coating is the possibility to tailor surface properties of the electrodes in wide ranges. This was used to increase the work function of the ITO substrate from initially 4.3-4.6 eV to about 4.8-5.2 eV by the ATO coating

  15. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  16. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Science.gov (United States)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  17. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Energy Technology Data Exchange (ETDEWEB)

    Peng Shu, E-mail: shu.peng@mail.scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, No. 371 Wushan Road, Tianhe District, Guangzhou 510640 (China); Lu Jintang; Che Chunshan; Kong Gang; Xu Qiaoyu [School of Materials Science and Engineering, South China University of Technology, No. 371 Wushan Road, Tianhe District, Guangzhou 510640 (China)

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as {beta}-Sb{sub 3}Zn{sub 4}, The precipitated {beta}-Sb{sub 3}Zn{sub 4} particles distributed randomly on the shiny spangle surface, both {beta}-Sb{sub 3}Zn{sub 4} particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb{sub 3}Zn{sub 4} compound are discussed by a proposed model.

  18. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hot-dip coating has been practically employed in manufacturing zinc alloy coated steel sheets. However, it is difficult to coat aluminum alloy on a bulky steel substrate without sufficient preheating, because a rapidly solidified layer containing gas babbles is formed on a substrate surface. A variety of iron-aluminides are also formed at the interface of a steel and aluminum hot-dip coating system, which is the main difficulty in joining of steel with aluminum. Ultrasonic vibration was applied to a steel substrate during hot-dip coating of aluminum alloy to control a rapidly solidified layer and a brittle reaction layer. Hot dipping of columnar steel substrates into molten aluminum alloy (Al-2.7 mass fraction Si-4.6 mass fraction Sn) was carried out through the use of a Langevin oscillator with resonant frequency of 19.5 kHz. The application of ultrasonic vibration is quite effective to control a rapidly solidified layer and a surface oxide layer from a substrate surface by the sonocapillary effect based on a cavitation phenomenon, so that the intimate contact is achieved at the beginning of hot-dip coating. The application of ultrasonic vibration to hot-dipping is effective to control a reaction layer with less than 5μm in thickness. An impact test exhibits that the good adhesive strength is approved in hot-dipped aluminum coatings with a thin reaction layer of approximately 5μm.

  19. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  20. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  1. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  2. Synthesis of LSM films deposited by dip-coating on YSZ substrate; Sintese de filmes de LSM depositados por dip-coating em substratos de YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Leandro da; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica; Ribeiro, Nielson F.P. [Coordenacao dos Programas de Pos-graduacao de Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica. Nucleo de Catalise

    2010-07-01

    The dip-coating process was used to deposit films of La{sub 0.7}Sr{sub 0.}3MnO{sub 3} (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 {mu}m, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  3. Description of structure of Fe-Zn intermetalic compounds present in hot-dip galvanized coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-10-01

    Full Text Available The article is describing formation, composition, morphology and crystallographic characteristics of intermetalic compounds Fe - Zn present in the coating formed during the process of low-temperature hot-dip galvanizing of carbon steels. In mutual confrontation we introduce older bibliography and results of latest modern researches based on combination of most precise analytical methods.

  4. Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly

    International Nuclear Information System (INIS)

    Mastrangeli, M; Ruythooren, W; Van Hoof, C; Celis, J-P

    2009-01-01

    Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design

  5. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    Science.gov (United States)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  6. Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments

    Directory of Open Access Journals (Sweden)

    Rita B. Figueira

    2015-04-01

    Full Text Available Previous studies have shown that the barrier effect and the performance of organic-inorganic hybrid (OIH sol-gel coatings are highly dependent on the coating deposition method as well as on the processing conditions. However, studies on how the coating deposition method influences the barrier properties in alkaline environments are scarce. The aim of this experimental research was to study the influence of experimental parameters using the dip-coating method on the barrier performance of an OIH sol-gel coating in contact with simulated concrete pore solutions (SCPS. The influence of residence time (Rt, a curing step between each dip step and the number of layers of sol-gel OIH films deposited on hot-dip galvanized steel to prevent corrosion in highly alkaline environments was studied. The barrier performance of these OIH sol-gel coatings, named U(400, was assessed in the first instants of contact with SCPS, using electrochemical impedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings in SCPS was monitored during eight days by macrocell current density. The morphological characterization of the surface was performed by Scanning Electronic Microscopy before and after exposure to SCPS. Glow Discharge Optical Emission Spectroscopy was used to investigate the thickness of the U(400 sol-gel coatings as a function of the number of layers deposited with and without Rt in the coatings thickness.

  7. Morphology evaluation of ZrO2 dip coating on mild steel and its corrosion performance in NaOH solution

    Science.gov (United States)

    Anwar, M. A.; Kurniawan, T.; Asmara, Y. P.; Harun, W. S. W.; Oumar, A. N.; Nandyanto, A. B. D.

    2017-10-01

    In this work, the morphology of ZrO2 thin film from dip coating process on mild steel has been investigated. Mild steel was dip-coated on solution made of zirconium butoxide as a precursor, ethanol as solvent, acetylacetone as chelating agent and water for hydrolysis. Number of dipping was adjusted at 3, 5 and 7 times. The dipped sample then annealed at 350°C for two hours by adjusting the heating rate at 1°C/min respectively. The optical microscope showed that micro-cracks were observed on the surface of the coating with its concentration reduced as dipping sequence increased. The XRD result showed that annealing process can produce polycrystalline tetragonal-ZrO2. Meanwhile, SEM image showed that the thicknesses of the ZrO2 coatings were in between 400-600 nm. The corrosion resistance of uncoated and coated substrates was studied by polarization test through potentio-dynamic polarization curve at 1mV/s immersed in with 3.5% NaCl. The coating efficiency was improved as the number of layer dip coated increased, which showed improvement in corrosion protection.

  8. Corrosion behaviour of hot dip zinc and zinc-aluminium coatings

    Indian Academy of Sciences (India)

    A comparative investigation of hot dip Zn–25Al alloy, Zn–55Al–Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn–25Al alloy coating is several ...

  9. Corrosion behaviour of hot dip zinc and zinc–aluminium coatings on ...

    Indian Academy of Sciences (India)

    Abstract. A comparative investigation of hot dip Zn–25Al alloy, Zn–55Al–Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn–25Al alloy coating is.

  10. Effects of Mn addition on the microstructure and indentation creep behavior of the hot dip Zn coating

    International Nuclear Information System (INIS)

    Wang, Youbin; Zeng, Jianmin

    2015-01-01

    Highlights: • Mn addition could significantly refine the grain of the Zn coating. • Twins could be observed in the Zn coatings. • The stress exponent of the Zn coating increases with Mn addition. • The creep process of the Zn coating is dominated by dislocation climb and twins. - Abstract: The Zn coatings with different Mn additions were prepared by hot dip process, and the effects of the Mn addition on the microstructure and indentation creep behavior of the coatings were investigated through scanning electron microscope and constant-load holding indentation technique at the room temperature. Some twins can be observed in the microstructure of Zn coating, which may account for the formation of the large thermal misfit stress between the zinc coating and the steel substrate. The amount of twin microstructure in the Zn coating decreases with the Mn addition. It is also found that Mn addition could induce MnZn 13 phases to precipitate along the grain boundary and significantly refine the grains of Zn coatings. The steady-state stress of the Zn coating could be improved by Mn addition. The creep stress exponent values are in the range of 14–46 and increases with Mn addition. The creep process of the Zn coating is dominated by dislocation climb and twin formation

  11. Investigation of Dip-Coating Parameters Effect on The Performance of Alumina-Polydimethylsiloxane Nanofiltration Membranes for Desalination

    OpenAIRE

    Mohammad Hadi Yousefi; Mohamad Mehdi Zerafat; Majid Shokri Doodeji; Samad Sabbaghi

    2017-01-01

    The objective of this work is to investigate the effect of dip-coating parameters on the performance of Alumina-PDMS hybrid nanofiltration membranes for water desalination. Ceramic supports used in this work were prepared with a 340 nm average pore size and 34% total porosity. The aim is to determine optimum conditions of dipping time, PDMS concentration, and withdrawal speed in order to achieve high rejection and flux values. Dip-coating parameters were considered as dipping time (60 - 120 s...

  12. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    Science.gov (United States)

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  13. Synthesis of LSM films deposited by dip-coating on YSZ substrate

    International Nuclear Information System (INIS)

    Conceicao, Leandro da; Souza, Mariana M.V.M.; Ribeiro, Nielson F.P.

    2010-01-01

    The dip-coating process was used to deposit films of La 0.7 Sr 0. 3MnO 3 (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 μm, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  14. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, A. A., E-mail: avelas26@eafit.edu.edu.co; Arnedo, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia)

    2017-11-15

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite (γ-Fe{sub 2}O{sub 3}) and two doublets attributed to superparamagnetic magnetite (Fe{sub 3}O{sub 4}), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  15. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    International Nuclear Information System (INIS)

    Velásquez, A. A.; Arnedo, A.

    2017-01-01

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite (γ-Fe_2O_3) and two doublets attributed to superparamagnetic magnetite (Fe_3O_4), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  16. 78 FR 21159 - Additional Requirements for Special Dipping and Coating Operations (Dip Tanks); Extension of the...

    Science.gov (United States)

    2013-04-09

    ... the process. Doing so reduces the likelihood of igniting the explosive chemicals used in electrostatic... information regarding the causes and prevention of occupational injuries, illnesses, and accidents (29 U.S.C...

  17. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  18. Processing hot-dip galvanized AHSS grades: a challenging task

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, A.; Hebesberger, T.; Tragl, E.; Traint, S.; Faderl, J.; Angeli, G.; Koesters, K. [voestalpine Stahl GmbH, Linz (Austria)

    2005-07-01

    High-strength thin sheet steel grades have gained a considerable market share. At present a very strong demand has been observed for DP (dual-phase), CP (complex phase) and TRIP grades, which are often summarized as advanced high-strength steel grades (AHSS). The potential benefits of applying AHSS grades were impressively demonstrated in the ULSAC-AVC project, in which a remarkable reduction in mass and an increase in stiffness and crash safety were achieved by using a very high share of AHSS steel grades. The present contribution concentrates on hot-dip galvanized AHSS thin sheet grades. The hot-dip galvanizeability of such grades is critically discussed after an overview is provided of the metallurgy of AHSS grades, including microstructure, mechanical properties, phase transformations and required alloy design. Based on these fundamentals, the processing of AHSS grades in the hot-dip galvanizing line is discussed and the resulting properties presented. (orig.)

  19. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  20. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  1. Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn–Al–Mg coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Caizhen; Lv, Haibing [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Zhu, Tianping [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Zheng, Wanguo [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Yuan, Xiaodong, E-mail: xdyuan@caep.cn [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Gao, Wei, E-mail: w.gao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand)

    2016-06-15

    In this article, Zn–Al–Mg coatings were prepared by hot dipping method. The surface morphology, cross–section microstructure, microhardness, composition, corrosion behaviour of ZAM coatings were investigated by using X–ray diffraction (XRD), Optical microscope, Environmental scanning electron microscopy equipped with EDS (FESEM–EDS), Microhardness tester and Electrochemical analysis respectively. Corrosion test was also performed in a standard salt fog spray chamber. Microstructure studies indicates that Zn grain size was refined and eutectic areas at Zn grain boundary areas increased with increasing Mg content. ZA5M1.5 and ZA5M2 coatings have two distinct layers. Mg tends to exist in the outer layer while Al is in the inner layer. The inner layer is composed of Al{sub 5}Fe{sub 2}Zn{sub 0.4} intermetallic, which may to contribute to the microhardness. The outer layer is Zn grains surrounded by Zn–Mg etutectics, which may improve the corrosion resistance. The microhardness is more than 700 HV{sub 50g} for Al-rich layer and around 151 HV{sub 25g} for Mg-rich layer. The improved corrosion resistance of Zn–5%Al-1.5%Mg coating comes from the corrosion product of flocculent type simonkolleite, which prolongs the micro-path and impedes the movement of O{sub 2} and H{sub 2}O, ultimately retards the overall corrosion process. - Highlights: • Two-layer structured Zn–Al–Mg coatings were prepared by hot dipping method. • Mg exists in the outer layer while Al exists in the inner layer of Zn–Al–Mg coating. • Zn–Al–Mg coating has better protective ability than Zn and Zn–Al coatings. • The Mg-modified simonkolleite is the reason of the enhanced corrosion resistance.

  2. Physics properties of TiO_2 films produced by dip-coating technique

    International Nuclear Information System (INIS)

    Teloeken, A.C.; Alves, A.K.; Berutti, F.A.; Tabarelli, A.; Bergmann, C.P.

    2014-01-01

    The use of titanium dioxide (TiO_2) as a photocatalyst to produce hydrogen has been of great interest because of their chemical stability, low cost and non-toxicity. TiO_2 occurs in three different crystal forms: rutile, anatase and brokita. Among these, the anatase phase generally exhibits the best photocatalytic behavior, while the rutile phase is the most stable. Among the various techniques of deposition, dip-coating technique produces films with good photocatalytic properties, using simple and inexpensive equipment. In this work TiO_2 films were obtained by dip-coating. The films were characterized using X-ray diffraction, scanning electron microscopy, profilometry, contact angle measurements and photocurrent. The microstructure and physical properties were evaluated in relation of the temperature and the addition of an additive. (author)

  3. Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating

    Directory of Open Access Journals (Sweden)

    Kyong-Min Lee

    2017-11-01

    Full Text Available Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.

  4. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    International Nuclear Information System (INIS)

    Lu Lihong; Shen Dejiu; Zhang Jingwu; Song Jian; Li Liang

    2011-01-01

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al 2 O 3 oxides. The crystal Al 2 O 3 phase includes κ-Al 2 O 3 , θ-Al 2 O 3 and β-Al 2 O 3 . Compared with the others, the β-Al 2 O 3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.

  5. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong, E-mail: llh_qc@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China) and Research Department, The Chinese People' s Armed Police Academy, Langfang 065000 (China); Shen Dejiu; Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Song Jian; Li Liang [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084 (China)

    2011-02-15

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. Compared with the others, the {beta}-Al{sub 2}O{sub 3} content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be

  6. Highly stretchable and conductive fibers enabled by liquid metal dip-coating

    Science.gov (United States)

    Zhang, Qiang; Roach, Devin J.; Geng, Luchao; Chen, Haosen; Qi, H. Jerry; Fang, Daining

    2018-03-01

    Highly stretchable and conductive fibers have been fabricated by dip-coating of a layer of liquid metal (eutectic gallium indium, EGaIn) on printed silicone elastomer filaments. This fabrication method exploits a nanolayer of oxide skin that rapidly forms on the surface of EGaIn when exposed to air. Through dip-coating, the sticky nature of the oxide skin leads to the formation of a thin EGaIn coating (˜5 μm thick) on the originally nonconductive filaments and renders these fibers excellent conductivity. Electrical characterization shows that the fiber resistance increases moderately as the fiber elongates but always maintains conductivity even when stretched by 800%. Besides this, these fibers possess good cyclic electrical stability with little degradation after hundreds of stretching cycles, which makes them an excellent candidate for stretchable conductors. We then demonstrate a highly stretchable LED circuit as well as a conductive stretchable net that extends the 1D fibers into a 2D configuration. These examples demonstrate potential applications for topologically complex stretchable electronics.

  7. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    International Nuclear Information System (INIS)

    Song, G.M.; Vystavel, T.; Pers, N. van der; De Hosson, J.Th.M.; Sloof, W.G.

    2012-01-01

    Highlights: ► Amorphous manganese oxides present at the steel surface impair the adhesion of the zinc coating. ► The adhesion of the various interfaces that exist in zinc coated steel is quantitatively estimated using the “Macroscopic Atom” model. ► Zinc coating delaminates along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces, which agrees the theoretical calculation. - Abstract: The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar ζ-FeZn 13 particles on top of a thin inhibition layer adjacent to the steel substrate. The inhibition layer is a thin compact and continuous layer that consists of η-Fe 2 Al 5–x Zn x fine and coarse particles. The coarse faceted particles are on top and fine faceted particles are at the bottom. The steel surface is covered with small fraction manganese oxides, which may impair adhesion of the zinc coating. The adhesion at various interfaces that exist in zinc-coated steel was quantitatively estimated using a so-called “macroscopic atom” model. In addition, the adhesion at the interfaces in zinc-coated steel was qualitatively assessed by examining the fracture and delamination behavior upon tensile testing. In accordance with this model, fracture along zinc grain boundaries preceded fracture along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces.

  8. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  9. Structure, electrochromic and optical properties of WO3 film prepared by dip coating-pyrolysis

    International Nuclear Information System (INIS)

    Yang Haitao; Shang Fuliang; Gao Ling; Han Haitao

    2007-01-01

    The tungsten oxide (WO 3 ) film was grown by dip coating-pyrolysis method with the PEG-400 as the structure-directing agent. Microstructure of the WO 3 film was characterized by TG-DSC, XRD and SEM techniques. It was found that the film annealed at 350 deg. C for 2 h comprised cubic WO 3 and orthorhombic WO 3 . The measurements of the cyclic voltammetry (CV) and UV-vis spectrum suggested that the WO 3 film had a good electrochromic reversibility performance. The film possessed excellent modulation to the visible light and the maximal average transmittance modulation reached 70.06%

  10. Grafting Carbon Nanotubes on Glass Fiber by Dip Coating Technique to Enhance Tensile and Interfacial Shear Strength

    Directory of Open Access Journals (Sweden)

    Bahador Dastorian Jamnani

    2015-01-01

    Full Text Available The effects of noncovalent bonding and mechanical interlocking of carbon nanotubes (CNT coating on tensile and interfacial strength of glass fiber were investigated. CNT were coated over glass fiber by a simple dip coating method. Acid treated CNT were suspended in isopropanol solution containing Nafion as binding agent. To achieve uniform distribution of CNT over the glass fiber, an optimized dispersion process was developed by two parameters: CNT concentration and soaking time. CNT concentration was varied from 0.4 to 2 mg/mL and soaking time was varied from 1 to 180 min. The provided micrographs demonstrated appropriate coating of CNT on glass fiber by use of CNT-Nafion mixture. The effects of CNT concentration and soaking time on coating layer were studied by performing single fiber tensile test and pull-out test. The obtained results showed that the optimum CNT concentration and soaking time were 1 mg/mL and 60 min, respectively, which led to significant improvement of tensile strength and interfacial shear stress. It was found that, at other concentrations and soaking times, CNT agglomeration or acutely curly tubes appeared over the fiber surface which caused a reduction of nanotubes interaction on the glass fiber.

  11. Coating hydroxiapatite on stainless steel 316 L by using sago starch as binder with dip-coating method

    Science.gov (United States)

    Fadli, A.; Akbar, F.; Prabowo, A.; Hidayah, P. H.

    2018-04-01

    Hydroxyapatite (HA) is a mineral form of naturally occurring apatite calcium with Ca10(PO4)6(OH)2 formula. One of the major innovations in the field of bone reconstruction is to apply HA as a surface coating on a mechanically strong implant metal and to improve the stability of bone implants thereby increasing the lifetime of the metal implants. Pure hydroxyapatite has poor mechanical properties so it is necessary to add sago starch as a binder to combine the strength and hardness of metal surfaces with bioactive properties of hydroxyapatite by Dip Coating method. Stainless steel 316L is the most commonly used alloy as an implant for bones and teeth due to its excellent corrosion and oxidation resistance and is easily formed. In this study, hydroxyapatite coatings used fixed variables as hydroxyapatite mass (10 grams), aquades mass (20 grams), dipping time (20 seconds), and calcination conditions (800°C, 1 hour). The variables are sago starch mass (1, 1.25, 1.5 gram) and stirring time (16, 20, 24 hours). The shear strength value is higher in the addition of 1.25, 10, 20, and again in the binder ratio of 1.5; 10; 20. The addition of stirring time causes a decrease in shear strength. The highest shear strength value obtained was 3.07 MPa. The layer attached to the substrate is a hydroxyapatite with a composition of 99.4% as evidenced by the results of XRD analysis.

  12. Effect of Coating-thickness on the formability of hot dip aluminized steel

    International Nuclear Information System (INIS)

    Awan, G.H.; Ahmed, F.; Hasan, F.

    2008-01-01

    The influence of coating thickness on the formability and ductility of hot-dip-aluminized steel has been determined using a 3-point bend test and optical metallography. The ductility / formability was estimated from the 3-point bend test wherein the angle of bend at which the cracks start to appear on the surface of the aluminized sheet during bending, was taken as an index of the formability / ductility. It was observed that as the amount of silicon in the aluminising melt was gradually increased the measured ductility of the sheet sample also increased. Metallographic examination has shown that as the amount of silicon in the aluminising melt was increased the thickness of the intermediate compound layer, between the outer aluminum coat and the substrate steel, decreased. It was thus indicated from these experiments that the formability / ductility of the sheet was inversely related to the thickness of the interlayer. (author)

  13. Use of 2-hydroxylhydrazine as a new modifier in dip-coating nickel films

    International Nuclear Information System (INIS)

    Syukri, R.; Ito, Yusuke; Ban, Takayuki; Ohya, Yutaka; Takahashi, Yasutaka

    2002-01-01

    A modified version of the dip-coating technique, which uses 2-hydroxylhydrazine as a mild reducing agent, was applied in the fabrication of nickel thin films. Nickel acetate was used as metal source. Metallic nickel thin films were formed on glass substrates by firing in the range of 400-600 deg. C under nitrogen atmosphere. The deposited layers were composed of cubic Ni crystallites. X-ray photoelectron spectroscopy analysis indicated almost uniformity in composition throughout the film thickness. The morphology of the films analyzed by scanning electron microscopy and atomic force microscopy revealed a very weak roughness after firing at 400 deg. C and the films turned out to be homogeneous. A thin film of approximately 19 nm in thickness exhibited a high resistivity of 86 μΩ cm. However, the resistivity was found to gradually decrease with increasing film thickness up to 110 nm by repeated dip-coating, reaching a minimum value of approximately 10 μΩ cm

  14. Origin of intragranular crystallographic misorientations in hot-dip Al-Zn-Si coatings

    International Nuclear Information System (INIS)

    Niederberger, Ch.; Michler, J.; Jacot, A.

    2008-01-01

    The origin of intragranular variations of the crystallographic orientation in hot-dip Al-Zn-Si coatings is discussed based on new experimental results and modelling. The solidification microstructure in as-received 55Al-43.4Zn-1.6Si (in wt.%) coatings deposited on steel plates in an industrial production line was analyzed by electron backscattered diffraction, glow-discharge optical emission spectroscopy and atomic force microscopy (AFM). The results were compared with those obtained in coatings re-solidified under different cooling and mechanical loading conditions. Continuous variations of the crystallographic orientation as large as 35 deg. were observed within individual grains of Al-Zn-Si, consistent with previous studies. However, the mechanisms previously proposed for the origin of intragranular crystallographic misorientations had to be revisited. The new experimental data acquired during this study indicate that the solidification shrinkage accumulating in the area of the grain envelope is the driving force for the formation of intragranular misorientations. The solidification shrinkage leads to the development of tensile stresses in the oxide film covering the coating while it solidifies. Estimations based on AFM profiles and phase field simulations of the dendritic structure indicate that the stresses applied on the dendrite network are sufficient to deform plastically the dendrite arms during solidification

  15. Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.

    Science.gov (United States)

    Hong, Jinkee; Kang, Sang Wook

    2011-09-01

    We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.

  16. A study of the influence of air-knife tilting on coating thickness in hot-dip galvanizing

    Science.gov (United States)

    Cho, Tae-Seok; Kwon, Young-Doo; Kwon, Soon-Bum

    2009-09-01

    Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashing. The progress of industry demands continuously the reduction of production costs which may relate directly with the increase of coating speed, and the speed up of coating results in the increase of stagnation pressure in gas wiping system in final. It is known that the increase of stagnation pressure may accompany a harmful problem of splashing in general. Together with these, also, from the view point of energy consumption, it is necessary to design a nozzle optimally. And there is known that the downward tilting of nozzle using in air knife system is effective to prevent in somewhat the harmful problem of splashing. In these connections, first, we design a nozzle with constant expansion rate. Next, for the case of actual coating conditions in field, the effects of tilting of the constant expansion rate nozzle are investigated by numerical analysis. Under the present numerical conditions, it was turned out that the nozzle of constant expansion rate of p = having a downward jet angle of 5° is the most effective to diminish the onset of splashing, while the influence of small tilting of the nozzle on impinging wall pressure itself is not so large.

  17. Microstructure and High-temperature Wear Behavior of Hot-dipped Aluminized Coating on Different Substrate Materials

    Directory of Open Access Journals (Sweden)

    ZHOU De-qin

    2018-02-01

    Full Text Available The aluminized 45 and H13 steel were prepared via hot-dipped aluminizing and subsequently high-temperature diffusion treatment. The phase, morphology and composition of aluminized coating were characterized by XRD,SEM and EDS methods. Comparative study was performed on unlubricated sliding wear behavior of plating under different substrates on a pin-on-disc wear tester, and the wear mechanism was explored. The results show that the coating is composed of ductile phases FeAl and Fe3Al. Kikendall porosity parallel to the surface exists around the interface of the two phases; because of the carbide particles agglomeration, the bond between the coating and H13 steel is apparently inferior to that in the case of 45 steel; the aluminized 45 steel possesses an excellent wear resistance under 50-200N at 400℃, whereas mild-to-severe wear transition occurs when the temperature increases to 600℃. The wear rate of the aluminized H13 steel reaches the lowest at 400℃, then slightly increases at 600℃. The wear mechanisms of Fe-Al coating are mainly predominated by oxidative mild wear, whereas the extrusion wear prevails in the process for aluminized 45 steel at 600℃.

  18. Achieving Control of Coating Process in your Foundry

    DEFF Research Database (Denmark)

    Di Muoio, G. L.; Tiedje, N. S.

    2015-01-01

    process is prerequisite for a stable drying process. In this study, we analyse the effect of different variables on the coating layer properties. We start by considering four critical variables identified in a previous study such as sand compaction, coating density, dipping time and gravity and then we...

  19. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    Science.gov (United States)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  20. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  1. Polyimide Dielectric Layer on Filaments for Organic Field Effect Transistors: Choice of Solvent, Solution Composition and Dip-Coating Speed

    Directory of Open Access Journals (Sweden)

    Rambausek Lina

    2014-09-01

    Full Text Available In today’s research, smart textiles is an established topic in both electronics and the textile fields. The concept of producing microelectronics directly on a textile substrate is not a mere idea anymore and several research institutes are working on its realisation. Microelectronics like organic field effect transistor (OFET can be manufactured with a layered architecture. The production techniques used for this purpose can also be applied on textile substrates. Besides gate, active and contact layers, the isolating or dielectric layer is of high importance in the OFET architecture. Therefore, generating a high quality dielectric layer that is of low roughness and insulating at the same time is one of the fundamental requirements in building microelectronics on textile surfaces. To evaluate its potential, we have studied polyimide as a dielectric layer, dip-coated onto copper-coated polyester filaments. Accordingly, the copper-coated polyester filament was dip-coated from a polyimide solution with two different solvents, 1-methyl-2-pyrrolidone (NMP and dimethylformaldehyde. A variety of dip-coating speeds, solution concentrations and solvent-solute combinations have been tested. Their effect on the quality of the layer was analysed through microscopy, leak current measurements and atomic force microscopy (AFM. Polyimide dip-coating with polyimide resin dissolved in NMP at a concentration of 15w% in combination with a dip-coating speed of 50 mm/min led to the best results in electrical insulation and roughness. By optimising the dielectric layer’s properties, the way is paved for applying the subsequent semi-conductive layer. In further research, we will be working with the organic semiconductor material TIPS-Pentacene

  2. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    Science.gov (United States)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  3. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  4. Preparation & characterization of SiO2 interface layer by dip coating technique on carbon fibre for Cf/SiC composites

    Science.gov (United States)

    Kumar, Kundan; Jariwala, C.; Pillai, R.; Chauhan, N.; Raole, P. M.

    2015-08-01

    Carbon fibres (Cf) are one of the most important reinforced materials for ceramic matrix composites such as Cf - SiC composites and they are generally sought for high temperature applications in as space application, nuclear reactor and automobile industries. But the major problem arise when Cf reinforced composites exposed to high temperature in an oxidizing environment, Cf react with oxygen and burnt away. In present work, we have studied the effect of silica (SiO2) coating as a protective coating on Cf for the Cf / SiC composites. The silica solution prepared by the sol-gel process and coating on Cf is done by dip coating technique with varying the withdrawing speed i.e. 2, 5, 8 mm/s with fixed dipping cycle (3 Nos.). The uniform silica coating on the Cf is shown by the Scanning Electron Microscope (SEM) analysis. The tensile test shows the increase in tensile strength with respect to increase in withdrawing speed. The isothermal oxidation analysis confirmed enhancement of oxidation resistance of silica coated Cf as compared tothe uncoated Cf.

  5. Mechanism and prevention of edge over coating in continuous hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Takeishi, Y.

    2000-11-01

    In order to clarify the mechanism of edge over coating (EOC) for continuous hot-dip galvanizing, a visualization test of the gas flow on strip and a cold model test to measure the profile of the coating thickness at the strip edge were carried out. Outward deflected gas flow was observed at the strip edge and EOC developed in the absence of gas wiping. With gas wiping, EOC developing below the wiping position is reduced by the impinging pressure of the gas wiping jet, and the film thickness becomes approximately uniform at the gas wiping position. However, upward of the gas wiping position. EOC increases again and the outward deflected gas flow on the strip edge sweeps the liquid film to the strip edge. EOC is considered to develop at the location where the dynamic pressure of the outward deflected gas flow balances with the surface tension. For the prevention of EOC, edge masking was devised and the effects which reduce EOC were measured in the cold model test and on a commercial line test. The edge mask which can be kept farther away from the strip edge is more effective for preventing EOC than the edge plates. The optimum dimension of the edge mask is 30mm in width and 75-100 mm in depth, and installing it at 4-10mm away from the strip edge is most effective. It was confirmed by the commercial line test that the edge mask can reduce EOC from 45% to less than 10%. (author)

  6. Synthesis of active absorber layer by dip-coating method for perovskite solar cell

    Science.gov (United States)

    Singh, Rahul; Noor, I. M.; Singh, Pramod K.; Bhattacharya, B.; Arof, A. K.

    2018-04-01

    In this paper, we develop the hybrid perovskite-based n-i-p solar cell using a simple, fast and low-cost dip-coating method. Hot solution and the pre-annealed substrate are used for coating the perovskite thin film by this method this is further used for studying its structural and electrical properties. UV-vis spectroscopy is carried out for calculating the band gap of the hybrid perovskite layer which is ∼1.6 eV. X-ray spectroscopy confirms that the formation of hybrid perovskite layer. The profilometer is used to study the surface roughness and also for measuring the thickness of the perovskite layer with varying substrate temperature. The optimized sample was further used for cross-sectional SEM image to verify the thickness measured from the profiler. The electrical parameter of JV characteristic with varying temperature is tabulated in the table. Whereas, the perovskite sensitized solar cell exhibits highest short circuit current density, Jsc of 11 mA cm-2, open circuit voltage, Voc of 0.87 V, fill factor of 0.55 and efficiency, η of >5%.

  7. Effect of Chitosan Coating Treatments and Calcium Dips on Quality and Shelf-life of Strawberries

    International Nuclear Information System (INIS)

    Swailam, H.M.

    2008-01-01

    Strawberries are a highly perishable fruit and storage life may be less than a week. In these investigations strawberries were treated with one of the following treatments: I) 1 % calcium chloride dips (1 % CaCl 2 ), II) 2 % irradiated (150 kGy in the solid state) chitosan (CS) (2 % Irr. CS) and III) with a coating formulation containing 2 % Irr. CS + 1 % CaCl 2 . They were then stored at 6 degree C for up to 24 days. The effectiveness of the different treatments was assessed by evaluating the microbiological, physicochemical and sensory properties of strawberries during the storage period. Results indicated that no sign of strawberries decay were observed in the fruits treated with CS formulation containing 2 % Irr. CS + 1 % CaCl 2 up to 20 days, where 6.1 % wt loss was detected. This treatment slowed the ripening of strawberries as shown by their retention of firmness and delayed changes in their external colour anthocyanin. To a lesser extent titratable acidity and ph were also affected by coatings. This treatment decreased the initial log counts of total aerobic bacteria, mould and yeast, coliform and E. coli. After 20 days of cold storage, the log counts of these micro organisms were lower than the log count of uncoated strawberries. Thus, CS can be used as a natural antimicrobial coating on fresh strawberries to improve microbiological quality and extend shelf-life. CS formulation contains 2 % Irr. CS + 1 % CaCl 2 extended the shelf-life of strawberries to 20 days in cold storage at 6 degree C with acceptable appearance, firmness, flavour and colour, while uncoated strawberries only lasted for 4 days as a result of mould growth and loss of surface appearance

  8. The morphology of coating/substrate interface in hot-dip-aluminized steels

    International Nuclear Information System (INIS)

    Awan, Gul Hameed; Hasan, Faiz ul

    2008-01-01

    In hot-dip-aluminized (HAD) steels, the morphology and the profile of the interface between the aluminum coating and the substrate steel, are affected both by the composition of the molten aluminum as well as by the composition, and even the microstructure, of the substrate steel. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The reaction between the steel and the molten aluminum leads to the formation of Fe-Al inter-metallic compounds on the steel surface. The thickness of the inter-metallic compound layer as well as the morphology of the interface between the steel and the interlayer varies with the silicon content of the molten aluminum. In hot-dip-aluminizing with pure aluminum, the interlayer is 'thick' and exhibits a finger-like growth into the steel. With a gradually increasing addition of silicon into the aluminum melt, the thickness of the interlayer decreases while the interface between the interlayer and the substrate gradually becomes 'smoother'. With an increase in the carbon content of the substrate steel the growth of the interlayer into the steel is impeded by the pearlite phase, whereas the ferrite phase appears to dissolve more readily. X-ray diffraction and electron microscopic studies showed that the interlayer formed in samples aluminized in pure aluminum, essentially consisted of orthorhombic Fe 2 Al 5 . It was further observed that the finger-like grains of Fe 2 Al 5 phase exhibited a preferred lattice orientation. With a gradual addition of silicon into the aluminum melt, a cubic phase based on Fe 3 Al also started to form in the interlayer and replaced most of the Fe 2 Al 5

  9. Investigation of Dip-Coating Parameters Effect on The Performance of Alumina-Polydimethylsiloxane Nanofiltration Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Yousefi

    2017-10-01

    Full Text Available The objective of this work is to investigate the effect of dip-coating parameters on the performance of Alumina-PDMS hybrid nanofiltration membranes for water desalination. Ceramic supports used in this work were prepared with a 340 nm average pore size and 34% total porosity. The aim is to determine optimum conditions of dipping time, PDMS concentration, and withdrawal speed in order to achieve high rejection and flux values. Dip-coating parameters were considered as dipping time (60 - 120 s, withdrawal speed (5 - 15 mm/s and PDMS concentration (10 - 20 wt. %. Hybrid membranes were characterized using FE-SEM and FTIR analysis techniques. Pure water flux and salt rejection were also measured to evaluate the rejection performance. Alumina-PDMS hybrid nanofiltration membranes fabricated with dipping time = 120 s, withdrawal speed = 15 mm/s and 10 wt. % PDMS exhibited the best performance giving 30.5% rejection for NaCl and 53.8% for Na2SO4.

  10. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  11. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    International Nuclear Information System (INIS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  12. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    Science.gov (United States)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  13. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    International Nuclear Information System (INIS)

    Wu, Yishan; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei; Li, Jun

    2017-01-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation. (paper)

  14. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  15. Morphological, structural and optical properties of ZnO thin films deposited by dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Marouf, Sara; Beniaiche, Abdelkrim; Guessas, Hocine, E-mail: aziziamor@yahoo.fr [Laboratoire des Systemes Photoniques et Optiques Non Lineaires, Institut d' Optique et Mecanique de Precision, Universite Ferhat Abbas-Setif 1, Setif (Algeria); Azizi, Amor [Laboratoire de Chimie, Ingenierie Moleculaire et Nanostructures, Universite Ferhat Abbas-Setif 1, Setif (Algeria)

    2017-01-15

    Zinc oxide (ZnO) thin films were deposited on glass substrate by dip coating technique. The effects of sol aging time on the deposition of ZnO films was studied by using the field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and optical transmission techniques. The morphology of the films strongly depends on preparation route and deposition technique. It is noteworthy that films deposited from the freshly prepared solution feature indistinct characteristics; had relatively poor crystalline quality and low optical transmittance in the visible region. The increase in sol aging time resulted in a gradual improvement in crystallinity (in terms of peak sharpness and peak intensity) of the hexagonal phase for all diffraction peaks. Effect of sol aging on optical transparency is quite obvious through increased transmission with prolonged sol aging time. Interestingly, 72-168 h sol aging time was found to be optimal to achieve smooth surface morphology, good crystallinity and high optical transmittance which were attributed to an ideal stability of solution. These findings present a better-defined and more versatile procedure for production of clean ZnO sols of readily adjustable nanocrystalline size. (author)

  16. SEM and AFM studies of dip-coated CuO nanofilms.

    Science.gov (United States)

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  17. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques

    International Nuclear Information System (INIS)

    Chaki, Sunil H.; Deshpande, M.P.; Tailor, Jiten P.

    2014-01-01

    CuS thin films were synthesized by chemical bath deposition and dip coating techniques at ambient temperature. The energy dispersive analysis of X-rays of the thin films confirmed that both the as synthesized thin films are stoichiometric. The X-ray diffraction of the chemical bath deposited and dip coating deposited thin films showed that the films possess hexagonal structure having lattice parameters, a = b = 3.79 A and c = 16.34 A. The crystallite sizes determined from the X-ray diffraction data using Scherrer's formula for the chemical bath deposition and dip coating deposition thin films came out to be nearly 11 nm and 13 nm, respectively. The optical microscopy of the as deposited thin films surfaces showed that the substrates are well covered in both the deposited films. The scanning electron microscopy of the thin films clearly showed that in chemical bath deposited thin films the grain size varies from few μm to nm, while in dip coating deposited films the grain size ranges in nm. The optical bandgap determined from the optical absorbance spectrum analysis showed, chemical bath deposited thin films possess direct bandgap of 2.2 eV and indirect bandgap of 1.8 eV. In the case of dip coating deposited thin films, the direct bandgap is 2.5 eV and indirect bandgap is 1.9 eV. The d.c. electrical resistivity variation with temperature for both the deposited films showed that the resistivity decreases with temperature thus confirming the semiconducting nature. The thermoelectric power variations with temperature and the room temperature Hall Effect study of both the synthesized CuS thin films showed them to be of p-type conductivity. The obtained results are discussed in details. - Highlights: • CuS thin films were synthesized by chemical bath deposition and dip coating techniques. • The films possessed hexagonal structure. • The optical absorption showed that the films had direct and indirect bandgap. • Study of electrical transport properties

  18. The influence of alloying elements on the hot-dip aluminizing process and on the subsequent high-temperature oxidation

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Nold, E.; Voss, Z.

    1997-01-01

    For hot dip aluminizing HDA an Al melt was doped with one of the elements Mo, W or Nb with a nominal composition of about 1 wt%. In case of W, the nominal composition was achieved, not so for Mo and Nb. The influence of these elements on the coating formed and on the following oxidation process was investigated. Hot dip aluminizing was carried out at 800 C for 5 min under dry Ar atmosphere. The oxidation experiments were performed at 950 C for 24 h in air. Compared to the HDA processes with pure Al, the addition of the alloying elements lead to thinner intermetallic layers. A change in the oxidation behavior was observed as well concerning the suppression of internal oxidation and the formation of dense and close oxide scales. (orig.)

  19. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    Science.gov (United States)

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  20. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    Directory of Open Access Journals (Sweden)

    Anping Dong

    2017-08-01

    Full Text Available The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM. The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products.

  1. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  2. Influence of PCL on mechanical properties and bioactivity of ZrO{sub 2}-based hybrid coatings synthesized by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Lamanna, Giuseppe [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy)

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic–inorganic hybrid coatings have been synthesized via sol–gel dip coating. They consist of an inorganic ZrO{sub 2} matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase. - Highlights: • ZrO{sub 2}/PCL organic-inorganic hybrid coatings synthesis via sol-gel dip coating. • Coatings porosity and bioactivity increase in presence of high PCL amount. • Coatings Hardness and Young’s modulus decrease in presence of high PCL amount.

  3. Morphology Effect of Silver Nanostructures on the Performance of a P3HT:Graphene:AgNs-Based Active Layer Obtained via Dip Coating

    Directory of Open Access Journals (Sweden)

    Alí Gómez-Acosta

    2016-01-01

    Full Text Available We report the effect of the use of different silver nanostructures (AgNs layers deposited via dip coating onto a poly(3-hexylthiophene (P3HT and solution processable functionalized graphene (SPFGraphene composite film intended to be used as active layer in BHJ devices. SPFGraphene was added to P3HT in a ratio of 1.5 wt%. The best results were achieved when a layer of silver nano-pseudospheres (AgNPSs obtained after 10 immersion cycles was used as coating; in this case the highest light trapping and efficiency percent (η=0.23% were achieved. This means an increase of ~11.3% in comparison with the efficiency of the noncoated P3HT:SPFGraphene composite. Results also indicate that graphene was successfully functionalized in order to obtain appropriate dispersion in P3HT and that such conjugated polymer remained unaltered after the addition of SPFGraphene. Finally, it can be concluded that the electrical properties of the as-synthesized films are dependent on the shape and concentration of the AgNs deposited via dip coating.

  4. Thickness measurement of Sn-Ag hot dip coatings on Large Hadron Collider Superconducting strands by coulometry

    CERN Document Server

    Arnau-Izquierdo, G; Oberli, L R; Scheuerlein, C; Taborelli, M; 10.1149/1.1715094

    2004-01-01

    Amperostatic coulometry is applied for the thickness measurement of Sn-Ag hot dip coatings, which comprise an extended Sn-Cu interdiffusion layer. Complementary measurements, notably weight loss, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence (XRF) and dynamic secondary ion mass spectroscopy (DSIMS) have been performed in order to obtain a better interpretation of the coulometry results. Based on the experimental results presented in this article the three potential changes that are observed during coulometry measurements are ascribed to (1) the entire dissolution of pure Sn, (2) the formation of a CuCl salt layer and (3) the surface passivation. The measurement of the pure Sn mass is well reproducible despite of strong coating thickness variations that are detected by XRF. Several experimental problems, in particular a coating undercutting, hamper the determination of the Sn mass in the intermetallic Sn-Cu layer.

  5. A suggestion of a new method for the calculation of the coating thickness in continuous hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C. M.; Kwon, Y. D.; Kwon, S. B. [Kyungpook National University, Daegu (Korea, Republic of); Kim, G. Y. [POSCO Technical Research laboratories, Gumgo-dong (Korea, Republic of)

    2011-11-15

    It is known that the distributions of the impinging pressure gradient and the shear stress at the strip surface play a decisive key role in the decision of the coating thickness in hot-dip galvanizing. So, to predict the exact coating thickness, it is essential that the distributions of the impinging wall jet pressure and the shear stress acting between the liquid film and jet stream are measured (or calculated) exactly for each specific coating condition. So far, to obtain the impinging wall jet pressure, it was assumed that the jet issuing from an air-knife is similar to the Hiemenz plane stagnation flow, and the wall shear stress could be predicted by an equation using the assumption of a non-negative Gaussian profile in impinging wall jet pressure in general, so that it cannot be reliable for some impinging wall jet regions and nozzle systems intrinsically. Nevertheless, one cannot find a suitable method to cope with the difficulties in measuring/calculating of the shear stress and the impinging wall jet pressure. Such a difficulty which will cause an inaccuracy in the coating thickness prediction. With these connections, in the present study, we suggest a new method named as a two-step calculation method to calculate the final coating thickness, which consists of the air jet analysis and coating thickness calculation. And, from the comparison of the results one may confirm the validation of the new suggested method.

  6. Novel Chemical Process for Producing Chrome Coated Metal

    OpenAIRE

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C.; Phillips, Jonathan

    2018-01-01

    The article of record as published may be found at http://dx.doi.org/10.3390/ma11010078 This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 ◦C for 10 min in a tube fu...

  7. 29 CFR 1910.124 - General requirements for dipping and coating operations.

    Science.gov (United States)

    2010-07-01

    ...) The ventilation that you provide to a vapor area must keep the airborne concentration of any substance... Tanks Containing Flammable or Combustible Liquids; (iii) ACGIH's “Industrial Ventilation: A Manual of... Open-Surface Tanks, and NFPA 34-1966, Standard for Dip Tanks Containing Flammable or Combustible...

  8. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    Science.gov (United States)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  9. OPTICAL PROPERTIES OF Al:ZnO THIN FILM DEPOSITED BY DIFFERENT SOL-GEL TECHNIQUES: ULTRASONIC SPRAY PYROLYSIS AND DIP-COATING

    Directory of Open Access Journals (Sweden)

    Ebru Gungor

    2016-08-01

    Full Text Available Undoped and Al-doped ZnO polycrystalline thin films have been fabricated on glass substrates by using a computer-controlled dip coating (DC and ultrasonic spray pyrolysis (USP systems. The film deposition parameters of DC process were optimized for the samples. In this technique, the substrate was exposed to temperature gradient using a tube furnace. In the study, the other solvent-based technique was conventional USP. The zinc salt and Al salt concentrations in the solution were kept constant as 0.1 M and 2% of Zn salt’s molarity, respectively. The optical properties were compared for the films deposited two different techniques. The optical transmission of Al:ZnO/Glass/Al:ZnO sample dip coated and  the optical transmission of Al:ZnO/Glass sample ultrasonically sprayed were determined higher than 80% in the visible and near infrared region. Experimental optical transmittance spectra of the films in the forms of FilmA/Glass/FilmA and FilmA/glass were used to determine the optical constants. It was observed that the optical band gaps of Al doped ZnO films onto glass substrate were increases with increase of Al content and the absorption edge shifted to the shorter wavelength (blue shift compared with the undoped ZnO thin film.

  10. Up-conversion luminescence application in Er3+: TiO2 thin film prepared by dip coating sol-gel route

    International Nuclear Information System (INIS)

    Badr, Y.; Battisha, I.K.; Salah, A.; Salem, M.A.

    2008-01-01

    Sol-gel derived nano-crystalline titanium dioxide films doped with 1 up to 5% Er 3+ ions were prepared by dip coating sol-gel method. The coating sol was obtained by hydrolysis of Ti(OC 4 H 9 ) 4 in ethanol/HCI solution. The FT-Raman and the X-ray diffraction (XRD) were carried out to determine the crystal structure of the prepared samples. The morphology SEM and the cross-sectional of the film were used to characterize the microstructure and the thickness of the prepared film. It is shown that relative homogeneous, crack-free and transparent film was achieved via dipping process at 500 deg C. After the excitation with laser diode at wavelength 808 nm, visible (Vis) and infrared (IR) up-conversion emissions were evidenced in the thin film samples under investigation. The up-conversion was found to depend strongly on the Er 3+ ion concentrations. The visible emission was found to be at 540, 560, 590 and 640 nm for thin film. They are attributed to intra-4f transition of Er 3+ ions and assigned to the ( 2 H 11/2 + 4 S 3/2 ) and 4 F 9/2 , which are populated through excited state absorption (ESA) for 808 nm excitation. (author)

  11. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  12. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  13. Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Muthukrishnan, Karthika; Vanaraja, Manoj [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Boomadevi, Shanmugam [Department of Physics, National Institute of Technology, Tiruchirappalli, 620015 (India); Karn, Rakesh Kumar [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Singh, Vijay [Department of Chemical Engineering, Konkuk University, Seoul, 143-701 (Korea, Republic of); Singh, Pramod K. [Solar Energy Institute, Ege University, Bornova, 35100, Izmir (Turkey); Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, U. P. (India); Pandiyan, Krishnamoorthy, E-mail: krishpandiyan@ece.sastra.edu [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India)

    2016-07-15

    Acetone sensing characteristics of Zinc Oxide thin films prepared by dip coating method are discussed in this paper. The sol for dip coating was synthesized using Zinc nitrate hexahydrate (Zn (NO{sub 3}){sub 2}. 6H{sub 2}O) and organic polymer sodium carboxy methyl cellulose (Na-CMC) as a starting material. Crystallinity and crystallite size of the prepared thin film was characterised by X-ray diffraction (XRD). Morphology was studied using field emission scanning electron microscopy (FESEM). The gas sensing characteristics was studied using chemiresistive method, by exposing the film to various concentrations of acetone at room temperature. Further, for comparative study ethanol and acetaldehyde has also been tested. Gas sensing parameters such us response, selectivity, lowest detection limit, response/recovery time of the thin film towards acetone were also reported. - Highlights: • ZnO has successfully synthesized using cheap and ease method. • Detail characterization have carried out and explained. • Sensing behaviour has been studied. • Acetone sensor has been fabricated.

  14. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  15. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiwei [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Gao, Bo, E-mail: surfgao@aliyun.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Yin, Shaohua [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-12-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  16. Electrochemical methods for corrosion testing of Ce-based coating prepared on AA6060 alloy by dip immersion method

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2013-01-01

    Full Text Available Dip-immersion is simple and cost-effective method for the preparation of Ce-based conversion coatings (CeCCs, a promising alternative to the toxic chromate coatings, on the metal substrates. In this work CeCCs were prepared on Al-alloy AA6060 from aqueous solution of cerium chloride at room temperature. Effect of immersion time and post-treatment in phosphate solution on the microstructure and corrosion properties of the coatings was studied. The longer immersion time, the thicker but nonhomogeneous and cracked CeCCs. The post-treatment contributed to the sealing of cracks, as proven by an increase in corrosion resistance compared with as-deposited coatings. CeCCs prepared at longer deposition time and post-treated showed much better corrosion protection than those prepared at short deposition time. A detailed EIS study was undertaken to follow the evolution of corrosion behaviour of CeCCs with time of exposure to aggressive chloride environment (3.5 % NaCl. For the sake of comparison, the EIS properties of bare AA6060 were also investigated. A linear voltammetry was performed to complete the study. Results confirmed a formation of protective CeCCs on AA6060 surface. However, even CeCCs prepared at longer deposition time and post-treated provided a short term protection in aggressive environment, due to the small thickness. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i br. III 45012

  17. 29 CFR 1910.123 - Dipping and coating operations: Coverage and definitions.

    Science.gov (United States)

    2010-07-01

    ... to: (i) Clean an object; (ii) Coat an object; (iii) Alter the surface of an object; or (iv) Change... equipment so designated is listed or approved by a nationally recognized testing laboratory, as defined by...

  18. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  19. Effect of different sound atmospheres on SnO2:Sb thin films prepared by dip coating technique

    Science.gov (United States)

    Kocyigit, Adem; Ozturk, Erhan; Ejderha, Kadir; Turgut, Guven

    2017-11-01

    Different sound atmosphere effects were investigated on SnO2:Sb thin films, which were deposited with dip coating technique. Two sound atmospheres were used in this study; one of them was nay sound atmosphere for soft sound, another was metallic sound for hard sound. X-ray diffraction (XRD) graphs have indicated that the films have different orientations and structural parameters in quiet room, metallic and soft sound atmospheres. It could be seen from UV-Vis spectrometer measurements that films have different band gaps and optical transmittances with changing sound atmospheres. Scanning electron microscope (SEM) and AFM images of the films have been pointed out that surfaces of films have been affected with changing sound atmospheres. The electrical measurements have shown that films have different I-V plots and different sheet resistances with changing sound atmospheres. These sound effects may be used to manage atoms in nano dimensions.

  20. Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films

    Directory of Open Access Journals (Sweden)

    Emerson Aparecido Floriano

    2010-12-01

    Full Text Available The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110 and (101 surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110 and (101 surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101 surface, which presents direct bandgap transition.

  1. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier

    Energy Technology Data Exchange (ETDEWEB)

    Han, Shilei; Li, Hualing; Wang, Shumao; Jiang, Lijun; Liu, Xiaopeng [Energy Materials and Technology Research Institute, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2010-04-15

    The development of the International Thermonuclear Experimental Reactor (ITER) requires the production of a material capable of acting as a hydrogen/tritium permeation barrier on low activation steel. It is well known that thin alumina layer can reduce the hydrogen permeation rate by several orders of magnitude. A technology is introduced here to form a ductile Fe/Al intermetallic layer on the steel with an alumina over-layer. This technology, consisting of two main steps, hot-dip aluminizing (HDA) and subsequent oxidation behavior, seems to be a promising coating method to fulfill the required goals. According to the experiments that have been done in pure Al, the coatings were inhomogeneous and too thick. Additionally, a large number of cracks and porous band could be observed. In order to solve these problems, the element silicon was added to the aluminum melt with a nominal composition. The influence of silicon on the aluminizing and following oxidation process was investigated. With the addition of silicon into the aluminum melt, the coating became thinner and more homogeneous. The effort of the silicon on the oxidation behavior was observed as well concerning the suppression of porous band and cracks. (author)

  2. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  3. THE MANUFACUTE OF GLOVES USING RVNRL: PARAMETERS OF the COAGULANT DIPPING PROCESS

    Directory of Open Access Journals (Sweden)

    H.D. CHIRINOS

    1998-12-01

    Full Text Available Surgical gloves were manufactured using the RVNRL process. A fractional factorial design at two levels showed that five parameters of the coagulant dipping process which were studied independent. Coagulant concentration and dwell time in the radiovulcanized latex presented major main effects while the temperature of the former before dipping into the radiovulcanized latex and the flow time of the radiovulcanized latex on the former surface presented opposite main effects. The withdrawal rate of the former from the radiovulcanized latex did not change glove thickness. The mathematical correlation between the estimates of thickness and the significant main effects of coded variables was = 0.212 + 0.025x1 + 0.019x2. This optimized equation allowed reproduction of a surgical glove thickness in the range of 0.157 to 0.291mm, which is considered acceptable by international standard specification.

  4. Association between white-coat effect and blunted dipping of nocturnal blood pressure.

    Science.gov (United States)

    Bochud, Murielle; Bovet, Pascal; Vollenweider, Peter; Maillard, Marc; Paccaud, Fred; Wandeler, Gilles; Gabriel, Anne; Burnier, Michel

    2009-10-01

    In this study, we assessed whether the white-coat effect (difference between office and daytime blood pressure (BP)) is associated with nondipping (absence of BP decrease at night). Data were available in 371 individuals of African descent from 74 families selected from a population-based hypertension register in the Seychelles Islands and in 295 Caucasian individuals randomly selected from a population-based study in Switzerland. We used standard multiple linear regression in the Swiss data and generalized estimating equations to account for familial correlations in the Seychelles data. The prevalence of systolic and diastolic nondipping (rate was inversely associated with the difference between daytime and night-time heart rate in the two populations. These results did not change after adjustment for potential confounders. The white-coat effect is associated with BP nondipping. The similar associations between office-daytime values and daytime-night-time values for both BP and heart rate suggest that the sympathetic nervous system might play a role. Our findings also further stress the interest, for clinicians, of assessing the presence of a white-coat effect as a means to further identify patients at increased cardiovascular risk and guide treatment accordingly.

  5. Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure

    DEFF Research Database (Denmark)

    Koivisto, Antti Joonas; Kling, Kirsten Inga; Fonseca, Ana Sofia

    2018-01-01

    Nanoscale TiO2 (nTiO2) is manufactured in high volumes and is of potential concern in occupational health. Here, we measured workers exposure levels while ceramic honeycombs were dip coated with liquid photoactive nanoparticle suspension and dried with an air blade. The measured nTiO2 concentrati...

  6. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  7. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy.

    Science.gov (United States)

    Frutos, E; González-Carrasco, J L

    2015-06-01

    This aim of this study is to determine the elastoplastic properties of Ni-free Al3FeSi2 intermetallic coatings grown on medical stainless steel under different experimental conditions. Elastoplastic properties are defined by the plasticity index (PI), which correlates the hardness and the Young's modulus. Special emphasis is devoted to correlate the PI with the wear resistance under sliding contact, determined by scratch testing, and fracture toughness, determined by using a novel method based on successive impacts with small loads. With regard to the substrate, the developed coatings are harder and exhibit a lower Young's reduced modulus, irrespective of the experimental conditions. It has been shown that preheating of the samples prior to hot dipping and immersion influences the type and volume fraction of precipitates, which in turn also affect the nanomechanical properties. The higher the preheating temperature is, the greater the Young's reduced modulus is. For a given preheating condition, an increase of the immersion time yields a decrease in hardness. Although apparent friction coefficients of coated specimens are smaller than those obtained on AISI 316 LVM, they increase when using preheating or higher immersion times during processing, which correlates with the PI. The presence of precipitates produces an increase in fracture toughness, with values greater than those presented by samples processed on melted AlSi alloys with lower Si content (12 wt%). Therefore, these intermetallic coatings could be considered "hard but tough", suitable to enhance the wear resistance, especially when using short periods of immersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of Alloy Coating Process of Steel Pipe for Seawater service

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Man; Kwon, Taeg Kyu; Lee, Sang Hyeog [Daewoo Shipbuilding and Marine Engineering Co., Ltd., Okpo (Korea)

    2001-02-01

    The new alloy coating process was developed to apply steel pipe for seawater service. This process consists of Zn-Al hot-dip coating treatment immediately following after normal galvanizing treatment. The alloy coating process formed double layer after surface treatment, and the surface layer was similar to that of Galfan steel and the intermetallic layer was also similar to that of aluminized steel. The alloy coating layer protect steel pipe galvanically and provide steel pipe with high resistance to general corrosion of seawater. This new alloy coated steel pipe had also good weldability and adhesion strength of paints compared to galvanized steel. 5 refs., 14 figs.

  9. Effects of modified atmosphere packing and honey dip treatments on quality maintenance of minimally processed grape cv. Razaki (V. vinifera L.) during cold storage.

    Science.gov (United States)

    Sabır, Ali; Sabır, Ferhan K; Kara, Zeki

    2011-06-01

    Increasing pressure in food conservation sector to replace chemical applications has urged researchers to focus on studying new strategies of extending the postharvest life of produces. In such efforts, numerous materials have been tested for their effectiveness as well as suitability in organic consumption. In this study, effects of modified atmosphere packing (MAP) and honey solution dip on maintenance of quality of minimally processed table grape cv. Razaki were investigated. During the storage at 0 °C with relative humidity of 90%, MAP, honey dip, and their combined applications significantly retarded the weight loss of berries that retained about 2 mm of cap stem. Soluble solid contents of all berries slightly increased, while their acid amounts decreased, resulting in consecutive rises of maturity index. With respect to the sensory score, calculated as mean of ten panelists, honey treatment alone was ranked the highest while control berries had significantly lower value. Overall, MAP, honey solution dip or their combination significantly maintained the general quality of minimally processed grape by delaying quality loss and berry decay. Therefore, honey solution dip yielded promising results to use as an edible organic coating barrier to moisture and resist to water vapor diffusion during the cold storage, offering a good adherence to berry surface.

  10. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  11. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  12. Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI 3-x Cl x into Mesoporous TiO 2 for Stable Hybrid Perovskite Solar Cells

    KAUST Repository

    Kim, Woochul

    2017-05-31

    Organic-inorganic hybrid perovskite solar cells (PSCs) have reached a power conversion efficiency of 22.1% in a short period (∼7 years), which has been obtainable in silicon-based solar cells for decades. The high power conversion efficiency and simple fabrication process render perovskite solar cells as potential future power generators, after overcoming the lack of long-term stability, for which the deposition of void-free and pore-filled perovskite films on mesoporous TiO2 layers is the key pursuit. In this research, we developed a sequential dip-spin coating method in which the perovskite solution can easily infiltrate the pores within the TiO2 nanoparticulate layer, and the resultant film has large crystalline grains without voids between them. As a result, a higher short circuit current is achieved owing to the large interfacial area of TiO2/perovskite, along with enhanced power conversion efficiency, compared to the conventional spin coating method. The as-made pore-filled and void-free perovskite film avoids intrinsic moisture and air and can effectively protect the diffusion of degradation factors into the perovskite film, which is advantageous for the long-term stability of PSCs.

  13. Relationship Between the Process Parameters and Resin Content of a Glass/Epoxy Prepreg Produced by Dipping Method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Khalafi

    2015-02-01

    Full Text Available The properties of prepregs are characterized in terms of their volatile content, resin content, the degree of pre-cure, void content, tack and flow ability. Resin content is one of the most important properties of prepregs so that its changing will result in altered properties such as, tack and resin flow. In order to monitor the resin content, a quantitative relation to the processing parameters such as line speed, viscosity and distance between the resin up taking rollers have to be determined. In this study, a tri-axial E-glass fabric with the areal weight of 1025 g/m2 and an epoxy resin (Epon 828 were used to produce the prepreg by the dipping method. In the theoretical part of this work, the free coating is studied and as a result the thickness layer of the coating resin through the resin bath is calculated by Landau-Levich model. In continuation, the achieved thickness was considered as a feed for the calendering process. Using the momentum equation for the passing impregnated fibres through the extra resin uptake rollers, the relation between the internal resin layer thickness and final coating resin layer thickness was achieved in an integral equation form. In order to solve this integral equation, MAPLE software was applied. The theoretical results were in good agreement with the experimental data and showed that the resin content increased linearly with increasing the distance between rollers, the radius and roller angular velocity. In contrast, the resin content decreased with increasing the line speed. According to our calculations, the effect of the resin viscosity variation on the resin content was negligibly small.

  14. Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu

    2006-01-18

    The process of continuous galvanizing of rolled sheet steel includes immersion into a bath of molten zinc/aluminum alloy. The steel strip is dipped in the molten bath through a series of driving motors and rollers which control the speed and tension of the strip, with the ability to modify both the amount of coating applied to the steel as well as the thickness and width of the sheet being galvanized. There are three rolls used to guide the steel strip through the molten metal bath. The rolls that operate in the molten Zn/Al are subject to a severely corrosive environment and require frequent changing. The performance of this equipment, the metallic hardware submerged in the molten Zn/Al bath, is the focus of this research. The primary objective of this research is to extend the performance life of the metallic hardware components of molten Zn/Al pot hardware by an order of magnitude. Typical galvanizing operations experience downtimes on the order of every two weeks to change the metallic hardware submerged in the molten metal bath. This is an expensive process for industry which takes upwards of 3 days for a complete turn around to resume normal operation. Each roll bridle consists of a sink, stabilizer, and corrector roll with accompanying bearing components. The cost of the bridle rig with all components is as much as $25,000 dollars just for materials. These inefficiencies are of concern to the steel coating companies and serve as a potential market for many materials suppliers. This research effort served as a bridge between the market potential and industry need to provide an objective analytical and mechanistic approach to the problem of wear and corrosion of molten metal bath hardware in a continuous sheet galvanizing line. The approach of the investigators was to provide a means of testing and analysis that was both expeditious and cost effective. The consortium of researchers from West Virginia University and Oak Ridge National Laboratory developed

  15. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  16. Characterization of dip-coated ITO films derived from nanoparticles synthesized by low-pressure spray pyrolysis

    International Nuclear Information System (INIS)

    Ogi, Takashi; Iskandar, Ferry; Itoh, Yoshifumi; Okuyama, Kikuo

    2006-01-01

    In 2 O 3 :Sn (Indium Tin Oxide; ITO) films were prepared from a sol solution with highly crystalline ITO nanoparticles (less than 20 nm in size with 10 at.% Sn) which had been prepared by low-pressure spray pyrolysis (LPSP) in a single step. The ITO sol solution was prepared by dispersing LPSP-prepared ITO nanoparticles into ultra pure water. The nanoparticle ITO film was deposited on a glass substrate using a dip-coating method and then annealed in air at various temperatures. The optical transmittances of the ITO films were measured by UV-Vis spectrometry, and the films were found to have a high transparency to visible light (in the case of a film thickness of 250 nm annealed at 400 deg. C, the transparency was in excess of 95% over the range λ=450-800 nm, with a maximum value near 100% at wavelengths above λ=700 nm). The optical transmittances of the films were influenced by the size of the ITO particle used, the film thickness and the annealing temperature. The ITO films showed a minimum resistivity of 9.5x10 -2 Ω cm, and their resistivity was affected by both the ITO particle size and the annealing temperature used

  17. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method

    International Nuclear Information System (INIS)

    Gan Xiaoyan; Li Xiaomin; Gao Xiangdong; Zhuge Fuwei; Yu Weidong

    2010-01-01

    Hybrid ZnO/TiO 2 photoanodes for dye-sensitized solar cells were prepared by combining ZnO nanowire (NW) arrays and TiO 2 nanoparticles (NPs) with the assistance of the ultrasonic irradiation assisted dip-coating method. Results show that the ultrasonic irradiation was an efficient way to promote the gap filling of TiO 2 NPs in the interstices of ZnO NWs. Hybrid ZnO NW/TiO 2 NP electrodes prepared with ultrasonic treatment exhibited better gap filling efficiency and higher visible absorptance. The overall conversion efficiency of the hybrid electrode was 0.79%, representing 35% improvement compared with that of the traditional one (0.58%). The enlarged surface area and improved attachments of TiO 2 NPs onto the walls of ZnO NWs induced by the application of ultrasonic irradiation may be the underlying reason. Electrochemical impedance spectroscopy measurements indicated that hybrid electrodes combined the advantages of improved electron transport along the ZnO NWs and increased surface area provided by infiltrated TiO 2 NPs, both of which are responsible for the improved cell efficiency.

  18. Preparation of CuAlO2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

    Directory of Open Access Journals (Sweden)

    Ehara Takashi

    2016-01-01

    Full Text Available CuAlO2 thin films are prepared by sol-gel dip-coating followed by annealing in nitrogen atmosphere using copper nitrate and aluminum nitrate as metal source materials. X-ray diffraction (XRD patterns show (003, (006 and (009 oriented peaks of CuAlO2 at annealing temperature of 800 – 1000°C. This result indicates that the CuAlO2 films prepared in the present work are c-axis oriented. XRD peak intensity increase with annealing temperature and becomes maximum at 850°C. The CuAlO2 XRD peak decreased at annealing temperature of 900°C with appearance of a peak of CuO, and then increased again with annealing temperature until 1000 °C. The films have bandgap of 3.4 eV at annealing temperature of 850°C in which the transparency becomes the highest. At the annealing temperature of 850°C, scanning electron microscope (SEM observation reveals that the films are consist of amorphous fraction and microcrystalline CuAlO2 fraction.

  19. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    Science.gov (United States)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  20. High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Clement, Carlos; Park, Sung-Yong, E-mail: mpeps@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, Block EA, #07-08, 9 Engineering Drive 1, 117576 (Singapore)

    2016-05-09

    A high degree of beam steering is demonstrated using an electrowetting-driven liquid prism. While prism devices have typically relied on complex and expensive laboratory setups, such as high-vacuum facilities for fabrication of dielectric layers, this work utilizes a simple dip-coating method to provide an ion gel layer as a dielectric, offering 2 or 3 orders higher specific capacitance (c ≈ 10 μF/cm{sup 2}) than that of conventional dielectrics. Analytical studies present the effects of liquid selection and arrangement on overall prism performance. For experimental demonstrations of high-performance beam steering, we not only selected two immiscible liquids of water and 1-bromonaphthalene (1-BN) oil which provide the large refractive index difference (n{sub water} = 1.33 and n{sub 1-BN} = 1.65 at λ = 532 nm) between them, but also utilized a double-stacked prism configuration which increases the number of interfaces for incoming light to be steered. At a prism apex angle of φ = 27°, we were able to achieve significantly large beam steering of up to β = 19.06°, which is the highest beam steering performance ever demonstrated using electrowetting technology.

  1. Modification of Ti6Al4V implant surfaces by biocompatible TiO{sub 2}/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Giovanardi, Roberto; Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena (Italy)

    2017-05-01

    Surface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO{sub 2} matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated. The coatings were used to modify the surface of Ti6Al4V substrates in order to improve their wear and corrosion resistance. The chemical structure of the coatings was analyzed by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Coating microstructure, mechanical properties and ability to inhibit the corrosion of the substrates were evaluated as a function of the PCL amount. Scanning electron microscopy (SEM) showed that the polymer allows to obtain crack-free coatings, but when high percentages were added uncoated areas appear. Nano-indentation tests revealed that, as expected, surface hardness and elastic modulus decrease as the percentage of polymeric matrix increases, but scratch testing demonstrated that the coatings are effective in preventing scratching of the underlying metallic substrate, at least for PCL contents up to 20 wt%. The electrochemical tests (polarization curves acquired in order to evaluate the corrosion resistance) allowed to asses that the coatings have a significant effect in term of corrosion potential (E{sub corr}) but they do not significantly affect the passivation process that titanium undergoes in contact with the test solution used (modified Dulbecco's phosphate-buffered saline or DPBS). - Highlights: • Bioactive TiO{sub 2}/PCL hybrid coatings on Ti6Al4V were prepared via sol-gel dip coating. • Hybrid coatings are crack-free but when 50 wt% PCL was added, uncoated areas appear. • Coating hardness and elastic modulus decrease as the PCL percentage

  2. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    OpenAIRE

    Salek, Guillaume; Tenailleau, Christophe; Dufour, Pascal; Guillemet-Fritsch, Sophie

    2015-01-01

    International audience; Oxide thin solid filmswere prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperaturewithout the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepar...

  3. Nicotinic acid as a nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings on steels in diluted hydrochloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Ju Hong [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Li Yan [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)], E-mail: yanlee@ms.qdio.ac.cn

    2007-11-15

    The inhibition effect of nicotinic acid for corrosion of hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid was investigated using quantum chemistry analysis, weight loss test, electrochemical measurement, and scanning electronic microscope (SEM) analysis. Quantum chemistry calculation results showed that nicotinic acid possessed planar structure with a number of active centers, and the populations of the Mulliken charge, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) were found mainly focused around oxygen and nitrogen atoms, and the cyclic of the benzene as well. The results of weight loss test and electrochemical measurement indicated that inhibition efficiency (IE%) increased with inhibitor concentration, and the highest inhibition efficiency was up to 96.7%. The corrosion inhibition of these coatings was discussed in terms of blocking the electrode reaction by adsorption of the molecules at the active centers on the electrode surface. It was found that the adsorption of nicotinic acid on coating surface followed Langmuir adsorption isotherm with single molecular layer, and nicotinic acid adsorbed on the coating surface probably by chemisorption. Nicotinic acid, therefore, can act as a good nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid solution.

  4. New tools for digital medical image processing implemented in DIP software

    International Nuclear Information System (INIS)

    Araujo, Erica A.C.; Santana, Ivan E.; Lima, Fernando R.A.; Viera, Jose W.

    2011-01-01

    The anthropomorphic models used in computational dosimetry, also called phantoms, are mostly built from stacks of images CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) obtained from scans of patients or volunteers. The construction of voxel phantoms requires computational processing for transforming image formats, dimensional image compression (2D) to form three-dimensional arrays (3D), quantization, resampling, enhancement, restoration and image segmentation, among others. Hardly the computational dosimetry researcher finds all these skills into a single software and often it results in a decreased development of their research or inadequate use of alternative tools. The need to integrate the various tasks of the original digital image processing to obtain an image that can be used in a computational model of exposure led to the development of software DIP (Digital Image Processing). This software reads, writes and edits binary files containing the 3D matrix corresponding to a stack of cross-sectional images of a given geometry that can be a human body or other volume of interest. It can also read any type of computer image and do conversions. When the task involves only one output image, it is saved in the JPEG standard Windows. When it involves a stack of images, the binary output file is called SGI (Interactive Graphic Simulations, a symbol already used in other publications of the Research Group in Numerical Dosimetry). The following paper presents the third version of the DIP software and emphasizes the new tools it implemented. Currently it has the menus Basics, Views, Spatial Domain, Frequency Domain, Segmentations and Study. Each menu contains items and subitems with features that generally require an image as input and produce an image or an attribute in the output. (author)

  5. Photoelectrolytic hydrogen production using Bi{sub 2}MNbO{sub 7} (M = Al, Ga) semiconductor film electrodes prepared by dip-coating

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Barrera, K.L. [Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander - UIS, Sede Guatiguara, Km. 2 via El Refugio, C.P. 681011, Piedecusta, Santander (Colombia); Pedraza-Avella, J.A. [Centro de Investigaciones en Catalisis - CICAT, Universidad Industrial de Santander - UIS, Sede Guatiguara, Km. 2 via El Refugio, C.P. 681011, Piedecuesta, Santander (Colombia); Ballen-Gaitan, B.P.; Cortes-Pena, J.; Pedraza-Rosas, J.E. [Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander - UIS, Sede Guatiguara, Km. 2 via El Refugio, C.P. 681011, Piedecusta (Santander) (Colombia); Laverde-Catano, D.A., E-mail: dlaverde@uis.edu.co [Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente - GIMBA, Universidad Industrial de Santander - UIS, Sede Guatiguara, Km. 2 via El Refugio, C.P. 681011, Piedecusta, Santander (Colombia)

    2011-10-25

    The performance of Bi{sub 2}MNbO{sub 7} (M = Al, Ga) films on AISI/SAE 304 stainless steel was evaluated in the photoelectrochemical hydrogen production as a function of the annealing temperature of the films (400, 500 and 600 deg. C) and the composition of the electrolyte solution (containing KOH, KCN and KCl). The films were prepared by sol-gel dip-coating on AISI/SAE 304 stainless steel followed by a thermal annealing. The photoelectrochemical evaluation (UV-Vis, 2.5 V) was carried out in a conventional two-compartment electrochemical cell by using the prepared films as photoanode and a silver plate as cathode. During the process, circulating current was recorded and hydrogen production and cyanide degradation were measured. In both cases, it was found that the higher activity was obtained with the films annealed at 500 deg. C and using an electrolyte solution 0.3 M of KOH and 120 ppm of CN{sup -}. Further works on the subject should involve a cathode evaluation to avoid the electrode polarization in presence of KCl and an experimental design to optimize the evaluated variables.

  6. Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation.

    Science.gov (United States)

    Kamal, Tahseen; Khan, Sher Bahadar; Asiri, Abdullah M

    2016-11-01

    In this report, we used cellulose filter paper (FP) as high surface area catalyst supporting green substrate for the synthesis of nickel (Ni) nanoparticles in thin chitosan (CS) coating layer and their easy separation was demonstrated for next use. In this work, FP was coated with a 1 wt% CS solution onto cellulose FP to prepare CS-FP as an economical and environment friendly host material. CS-FP was put into 0.2 M NiCl 2 aqueous solution for the adsorption of Ni 2+ ions by CS coating layer. The Ni 2+ adsorbed CS-FP was treated with 0.1 M NaBH 4 aqueous solution to convert the ions into nanoparticles. Thus, we achieved Ni nanoparticles-CS composite through water based in-situ preparation process. Successful Ni nanoparticles formations was assessed by FESEM and EDX analyses. FTIR used to track the interactions between nanoparticles and host material. Furthermore, we demonstrated that the nanocomposite displays an excellent catalytic activity and reusability in three reduction reactions of toxic compounds i.e. conversion of 4-nitrophenol to 4-aminophenol, 2-nitrophenol to 2-aminophenol, and methyl orange dye reduction by NaBH 4 . Such a fabrication process of Ni/CS-FP may be applicable for the immobilization of other metal nanoparticles onto FP for various applications in catalysis, sensing, and environmental sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Si、Mg、RE对热浸镀锌铝基合金镀层组织与性能的影响研究进展%Effects of Si, Mg and RE on Microstructure and Properties of Hot Dip Galvanized Alloy Coatings

    Institute of Scientific and Technical Information of China (English)

    周英伟; 高波

    2017-01-01

    热浸镀技术是钢铁材料长效防腐的一种有效方法,因其可以显著提高钢铁材料的耐蚀性能、延长材料的使用寿命而被广泛应用.近年来,随着科技水平的不断提高,传统的热浸镀层已经无法满足市场多样化的需求,多元合金镀层的研究成为热浸镀领域的研究热点.随着研究的不断深入,人们发现在热浸镀过程中添加合金元素能够明显提高热浸镀层的综合性能,但是合金元素的加入是如何影响镀层组织结构及性能是值得探讨的问题.为此,详细介绍了硅、镁、稀土等合金元素的加入对热浸镀层的微观组织、耐蚀性能和耐蚀机理的影响.通过列举国内外的研究实例,进一步分析了合金元素的添加量对热浸镀层性能的影响规律.最后提出,继续研究各种合金元素及其添加量对热浸镀层组织性能的影响规律及机制,并深入探讨添加合金元素之后,合金镀层中金属间化合物层的形成和生长规律,开发性能优异的新型热浸镀层及相应的热浸镀工艺是未来热浸镀技术的主要研究方向.%Hot dipping technology is an effective method for long-term corrosion of steel materials, it has been widely used as it can significantly improve corrosion resistance of steel materials and extend service life of the materials. Recently, with the continuous improvement of technological level, traditional hot-dip coating has failed to meet the demands of market diversifica-tion, and study on multicomponent alloy coating has become a hotspot in the field of hot dipping. With the constant deepening of study, it was found that overall performance of hot-dip coating could be greatly improved by adding alloy elements in the hot dipping process could significantly improve the comprehensive performance of the hot-dip coating. However, it was worthy to discuss how addition of alloying elements affected coating microstructure and performance. The effects of the

  8. Structural and electrical characterizations of BiFeO{sub 3} capacitors deposited by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, Ali Osman, E-mail: cetinkayaaliosman@gmail.com [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Kaya, Senol; Aktag, Aliekber [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Budak, Erhan [Chemistry Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Yilmaz, Ercan [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey)

    2015-09-01

    Bismuth ferrite (BiFeO{sub 3}) thin films were deposited by sol–gel dip coating (SGDC) technique on Si-P(100) and glass substrates to investigate the structural and electrical characteristics. The aluminum (Al) metal contacts were formed on the samples deposited on the Si-P(100) to fabricate metal-oxide-semiconductor (MOS) capacitors. The fabricated MOS structures were characterized electrically by capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements. The structural characterizations were performed by X-ray diffraction technique and scanning electron microscopy. The compositions of the films were investigated by energy-dispersive X-ray spectroscopy. The results exhibit that pure rhombohedral perovskite phase films were fabricated without any elemental contamination. Average grain sizes of the BiFeO{sub 3} deposited on silicon and glass wafers were found to be about 34,50 and 30,00 nm, respectively. In addition, while the thin films deposited on glass substrate exhibit porous surface, those deposited on Si-P(100) wafers exhibit dense microstructure with a homogenous surface. Moreover, the C–V and G/ω–V characteristics are sensitive to applied voltage frequency due to frequency dependent charges (N{sub ss}) and series resistance (R{sub s}). The peak values of R{sub s} have been decreased from 2,6 kΩ to 40 Ω, while N{sub ss} is varied from 6,57 × 10{sup 12} to 3,68 × 10{sup 12} eV{sup −1} cm{sup −2} with increasing in frequency. Consequently, pure phase polycrystalline BiFeO{sub 3} thin films were fabricated successfully by SGDC technique and BiFeO{sub 3} dielectric layer exhibits stable insulation characteristics. - Highlights: • Bismuth ferrite thin films were deposited onto silicon and glass substrates by sol–gel. • Structural and electrical properties of fabricated films have been investigated. • Pure rhombohedral perovskite phase films without any contamination were deposited. • Series resistance and interface

  9. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.

  10. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties

    International Nuclear Information System (INIS)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2014-01-01

    Highlights: • Superhydrophobic silica film was prepared by sol–gel process. • The surfaces exhibited superhydrophobicity with water contact angle greater than 150°. • AFM images showed the roughness increases with increasing the percentage of silylation agent. • Before and after modification, the particle size of silica was lower than 50 nm. - Graphical abstract: Schematic illustration of the surface modification of the silica nanoparticle by iso-OTMS on the glass substrate. - Abstract: In this paper, we study the two-step dip coating via a sol–gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H 2 O) was kept constant at 1:36:6.6 respectively, with 6 M NH 4 OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO 2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG–DTA analysis

  11. Sensing application of an optical fiber dip coated with L-Cystein ethyl ester hydrochloride capped ZnTe quantum dots

    Directory of Open Access Journals (Sweden)

    Sundaray Madhulita

    2016-09-01

    Full Text Available Optical fiber in conjunction with ZnTe quantum dots (QDs is investigated for sensing application. ZnTe QDs, are synthesized by a simple chemical bottom up approach. Quantum dots are capped with L-Cystein ethyl ester hydrochloride (LEEH, to increase their stability. Then LEEH capped ZnTe QDs, whose size is estimated as 2.29 nm by effective mass approximation (EMA, are dip-coated on a cladding removed optical fiber. Different concentrations of alcohol and ammonia are used to investigate the sensing behavior. It is found that sensitivity of the sensor increases with the use of QDs for both alcohol and ammonia.

  12. On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates

    International Nuclear Information System (INIS)

    Cueto, Luisa F.; Sanchez, Enrique; Torres-Martinez, Leticia M.; Hirata, Gustavo A.

    2005-01-01

    This article reports the optical and morphological properties of dip-coated TiO 2 and ZrO 2 thin films on soda-lime glass substrates by metal-organic decomposition (MOD) of titanium IV and zirconium IV acetylacetonates respectively. Thermogravimetric and differential thermal analysis (DTA-TG) were performed on the precursor powders, indicating pure TiO 2 anatase and tetragonal ZrO 2 phase formation. Phase crystallization processes took place in the range of 300-500 deg. C for anatase and of 410-500 deg. C for ZrO 2 . Fourier Transform Infrared Spectroscopy (FT-IR) was used to confirm precursor bidentate ligand formation with keno-enolic equilibrium character. Deposited films were heated at different temperatures, and their structural, optical and morphological properties were studied by grazing-incidence X-ray Diffraction (GIXRD) and X-Ray Photoelectron Spectroscopy (XPS), Ultraviolet Visible Spectroscopy (UV-Vis), and Atomic Force Microscopy (AFM) respectively. Film thinning and crystalline phase formation were enhanced with increasing temperature upon chelate decomposition. The optimum annealing temperature for both pure anatase TiO 2 and tetragonal ZrO 2 thin films was found to be 500 deg. C since solid volume fraction increased with temperature and film refractive index values approached those of pure anatase and tetragonal zirconia. Conditions for clean stoichiometric film formation with an average roughness value of 2 nm are discussed in terms of material binding energies indicated by XPS analyses, refractive index and solid volume fraction obtained indirectly by UV-Vis spectra, and crystalline peak identification provided by GIXRD

  13. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  14. Novel Chemical Process for Producing Chrome Coated Metal

    Directory of Open Access Journals (Sweden)

    Christopher Pelar

    2018-01-01

    Full Text Available This work demonstrates that a version of the Reduction Expansion Synthesis (RES process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM. SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  15. Novel Chemical Process for Producing Chrome Coated Metal.

    Science.gov (United States)

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan

    2018-01-05

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  16. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    International Nuclear Information System (INIS)

    Salek, G.; Tenailleau, C.; Dufour, P.; Guillemet-Fritsch, S.

    2015-01-01

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu 2 O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu 2 O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation

  17. Room temperature inorganic polycondensation of oxide (Cu{sub 2}O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Salek, G.; Tenailleau, C., E-mail: tenailleau@chimie.ups-tlse.fr; Dufour, P.; Guillemet-Fritsch, S.

    2015-08-31

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu{sub 2}O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu{sub 2}O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation.

  18. Investigation of optimum annealing parameters for formation of dip coated Cu{sub 2}ZnSnS{sub 4} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Sushmita; Kannan, P.K.; Dey, Suhash R., E-mail: suhash@iith.ac.in

    2016-08-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is most attractive absorber material for inorganic solar cell applications because of its cost effective and ecofriendly nature. To obtain phase pure CZTS film, effects of annealing parameters on synthesis of CZTS thin film are investigated. CZTS films are deposited through dip coating method followed by heat treatment to form crystalline CZTS thin films. Factors influencing the crystallinity, morphology and composition of the films such as annealing temperature, time, rate and atmosphere are studied through X-Ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. After numerous experiments of synthesis of CZTS in different annealing conditions and its characterization, it is observed that 1.4 eV band gap CZTS thin film of kesterite structure is obtained by annealing the film in nitrogen atmosphere for 60 min at 300 °C with 10 °C/min ramping rate. - Highlights: • Dip coated Cu{sub 2}ZnSnS{sub 4} film is developed using non-hydrazine based precursor solution. • Optimum annealing condition to achieve best crystalline film is studied. • Optimal condition is 300 °C in N{sub 2} atmosphere for 60 min at 10 °C/min ramping rate. • Bandgap of prepared films is 1.4 eV, suitable for solar cell applications.

  19. Fluidization control in the wurster coating process

    Directory of Open Access Journals (Sweden)

    el Mafadi Samira

    2003-01-01

    Full Text Available Paniculate coating process in a fluidized bed involves different sub processes including particle wetting, spreading and also consolidation or drying of the coating applied. These sub processes are done simultaneously to particle fluidization and motion. All the parameters of fluidization are known to affect the coating quality. That is why the motion of particles in the Wurster coating process has been observed and described step by step. These observations have achieved a general understanding of phenomena which take place inside the bed during fluidization and have allowed the development of an easy method for optimizing all the parameters affecting this operation.

  20. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  1. Harvest maturity and post-processing dip to improve quality of fresh-cut carambola fruit

    Science.gov (United States)

    'Arkin' carambola (Averrhoa carambola L.) fruit harvested at color break or full yellow stage were washed with or without an alkaline solution (pH 13.5), cut to 1 cm thick slices, dipped in calcium ascorbate (Ca ASA), ascorbic acid (ASA) or water, and packaged in perforated clamshells for up to 14 d...

  2. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  3. Wear performance of laser processed tantalum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2011-12-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10{sup -4} mm{sup 3}(N.m){sup -1}, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. Highlights: {yields} In vitro wear performance of laser processed Ta coatings on Ti was evaluated. {yields} Wear tests in SBF showed one order of magnitude less wear for Ta coatings than Ti. {yields} Ta coatings can minimize early-stage micro-motion induced wear debris generation.

  4. Dip-in Indicators for Visual Differentiation of Fuel Mixtures Based on Wettability of Fluoroalkylchlorosilane-Coated Inverse Opal Films.

    Science.gov (United States)

    Sedighi, Abootaleb; Qiu, Shuang; Wong, Michael C K; Li, Paul C H

    2015-12-30

    We have developed the dip-in indicator based on the inverse opal film (IOF) for visual differentiation of organic liquid mixtures, such as oil/gasoline or ethanol/gasoline fuel mixtures. The IOF consists of a three-dimensional porous structure with a highly ordered periodic arrangement of nanopores. The specularly reflected light at the interface of the nanopores and silica walls contributes to the structural color of the IOF film. This color disappears when the nanopores are infiltrated by a liquid with a similar refractive index to silica. The disappearance of the structural color provides a means to differentiate various liquid fuel mixtures based on their wettability of the nanopores in the IOF-based indicators. For differentiation of various liquid mixtures, we tune the wettability threshold of the indicator in such a way that it is wetted (color disappears) by one liquid but is not wetted by the other (color remains). Although colorimetric differentiation of liquids based on IOF wettability has been reported, differentiation of highly similar liquid mixtures require complicated readout approaches. It is known that the IOF wettability is controlled by multiple surface properties (e.g., oleophobicity) and structural properties (e.g., neck angle and film thickness) of the nanostructure. Therefore, we aim to exploit the combined tuning of these properties for differentiation of fuel mixtures with close compositions. In this study, we have demonstrated that, for the first time, the IOF-based dip-in indicator is able to detect a slight difference in the fuel mixture composition (i.e., 0.4% of oil content). Moreover, the color/no-color differentiation platform is simple, powerful, and easy-to-read. This platform makes the dip-in indicator a promising tool for authentication and determination of fuel composition at the point-of-purchase or point-of-use.

  5. Electrical contact arrangement for a coating process

    Science.gov (United States)

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  6. Development of silver coating process and facilities for ITER thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D.K. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, R.G. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Nam, K., E-mail: kwnam@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Noh, C.H.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Yoon, D.C. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Lim, K.; Baek, J.P. [SFA Engineering Corp., Asan 336-873 (Korea, Republic of)

    2016-11-01

    This paper describes both the test results of the bath type silver coating and the design of the bath to construct the silver coating plant for ITER thermal shield. The tests of small specimens made of SS304L and SS304LN were carried out to investigate the effect of the nitrogen content in SS304LN on the silver coating quality. The effect of different degreasing agents was also investigated to improve silver coating process. Small mock-up was tested to find a proper dipping direction during the electroplating process. Finally, noble bath design was conceived and structurally validated. Overall layout of silver coating plant is also shown in this paper.

  7. Microwave-Assisted Dip Coating of Aloe Vera on Metallocene Polyethylene Incorporated with Nano-Rods of Hydroxyapaptite for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2017-10-01

    Full Text Available Bone tissue engineering widely explores the use of ceramic reinforced polymer-matrix composites. Among the various widely-used ceramic reinforcements, hydroxyapatite is an undisputed choice due to its inherent osteoconductive nature. In this study, a novel nanocomposite comprising metallocene polyethylene (mPE incorporated with nano-hydroxyapaptite nanorods (mPE-nHA was synthesized and dip coated with Aloe vera after subjecting it to microwave treatment. The samples were characterized using contact angle, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM, atomic force microscopy (AFM and 3D Hirox microscopy scanning. Contact angle results show that the hydrophilicity of mPE-nHA improved notably with the coating of Aloe vera. The surface topology and increase in surface roughness were observed using the SEM, AFM and 3D Hirox microscopy. Blood compatibility assays of pure mPE and the Aloe vera coated nanocomposite were performed. The prothrombin time (PT was delayed by 1.06% for 24 h Aloe-vera-treated mPE-nHA compared to the pristine mPE-nHA. Similarly, the 24 h Aloe-vera-coated mPE-nHA nanocomposite prolonged the activated partial thromboplastin time (APTT by 41 s against the control of pristine mPE-nHA. The hemolysis percentage was also found to be the least for the 24 h Aloe-vera-treated mPE-nHA which was only 0.2449% compared to the pristine mPE-nHA, which was 2.188%. To conclude, this novel hydroxyapatite-reinforced, Aloe-vera-coated mPE with a better mechanical and anti-thrombogenic nature may hold a great potential to be exploited for bone tissue engineering applications.

  8. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    Science.gov (United States)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  9. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  10. Process for preparing coating materials

    International Nuclear Information System (INIS)

    Ryoke, Hideyasu; Kobayashi, Juichi; Kobayashi, Kei.

    1972-01-01

    A coating material curable with ionizing radiations or ultraviolet radiation can be prepared by reacting a compound (A) having one OH group and at least one α,β-ethylenic or allyl group with a polyisocyanate. (A) is a diester of a dicarboxylic acid. One of the ester groups may have a terminal α,β-ethylenic or allyl group and the other contains one OH and one α,β-ethylenic or allyl group. (A) is reacted with a polyisocyanate to yield an urethane. The latter may be diluted with a vinyl monomer. When exposed to a radiation, the coating material cures to give a film excellent in adhesion, impact strength and resistances to pollution, water and solvents. Dose of the ionizing radiation (α-, β-, γ-rays, electron beams) is 0.2-20 Mrad. In one example, 116 parts of 2-hydroxyethyl acrylate was reacted with 148 parts of phthalic anhydride and 142 parts of glycidyl methacrylate to give (A). (A) was reacted with 87 parts of tolylenediisocyanate. A metallic panel was coated with the coating material and cured with electron beams (5 Mrad). Pencil hardness was H, and gel fraction measured in acetone was above 97%. The coating was excellent in resistances to solvent and chemicals, impact strength and adhesion. (Kaichi, S.)

  11. Evaluation of interface adhesion of hot-dipped zinc coating on TRIP steel with tensile testing and finite element calculation

    NARCIS (Netherlands)

    Song, G.M.; De Hosson, J.T.M.; Sloof, W.G.; Pei, Y.T.

    In this work, a methodology for the determination of the interface adhesion strength of zinc coating on TRIP steel is present. This method consists of a conventional tensile test in combination with finite element calculation. The relation between the average interface crack length and the applied

  12. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Science.gov (United States)

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Obtenção de um revestimento compósito de poliéster-uretana reforçado com alumina pela técnica de deposição por imersão sobre fibras de poliamida 6 Preparation of a composite coating of alumina reinforced polyester urethane by dip coating on polyamide 6 fibers

    Directory of Open Access Journals (Sweden)

    F. A. L. Sánchez

    2009-12-01

    Full Text Available O uso de revestimentos compósitos de matriz polimérica e reforço cerâmico capazes de manter a flexibilidade e a elasticidade das fibras poliméricas, agregando propriedades típicas dos materiais cerâmicos (como ação bactericida ou fotocatalítica, resistência à chama, ao desgaste e à abrasão, tem atraído interesse da indústria têxtil. Baseado na técnica dip coating e usando fibras sintéticas de poliamida como substrato, foram produzidas suspensões de poliéster-uretana com partículas de alumina (tamanho médio de partícula 2,2 μm para obtenção de revestimentos uniformes e espessos sobre o material base, poliamida 6. A viscosidade das suspensões foi controlada pela adição de carboximetilcelulose e avaliada por reometria rotacional. A distribuição granulométrica das suspensões também foi determinada. Os parâmetros operacionais do dip coating, i.e., velocidade de bobinamento e temperatura dos fornos, foram mantidos constantes em todas as amostras. O processo mostrou viabilidade para deposição uniforme do recobrimento avaliado, com espessura adequada, indicando ser promissor para revestir fibras, agregando propriedades de interesse tecnológico.Ceramic reinforced polymer composite coatings that can retain the flexibility and elasticity of the polymeric fibers, being also able to incorporate the functionality of ceramic materials (e.g. fire, wear, or abrasion resistance, antibacterial performance, photocatalytic effect are interesting to the processing of textile materials. In this work, polyester-urethane slurries with alumina particles (mean particle size: 2.2 μm were developed based on the dip coating technique and using polyamide-6 synthetic fibers as the substrate, seeking to obtain an uniform and thick coating. The viscosity of the slurries was varied using carboxymethylcellulose as a rheological agent and evaluated by rotational rheometry. Particle size distribution of the slurries was also analyzed. The

  14. Poly(oligoethylene glycol methacrylate) dip-coating: turning cellulose paper into a protein-repellent platform for biosensors.

    Science.gov (United States)

    Deng, Xudong; Smeets, Niels M B; Sicard, Clémence; Wang, Jingyun; Brennan, John D; Filipe, Carlos D M; Hoare, Todd

    2014-09-17

    The passivation of nonspecific protein adsorption to paper is a major barrier to the use of paper as a platform for microfluidic bioassays. Herein we describe a simple, scalable protocol based on adsorption and cross-linking of poly(oligoethylene glycol methacrylate) (POEGMA) derivatives that reduces nonspecific adsorption of a range of proteins to filter paper by at least 1 order of magnitude without significantly changing the fiber morphology or paper macroporosity. A lateral-flow test strip coated with POEGMA facilitates effective protein transport while also confining the colorimetric reporting signal for easier detection, giving improved performance relative to bovine serum albumin (BSA)-blocked paper. Enzyme-linked immunosorbent assays based on POEGMA-coated paper also achieve lower blank values, higher sensitivities, and lower detection limits relative to ones based on paper blocked with BSA or skim milk. We anticipate that POEGMA-coated paper can function as a platform for the design of portable, disposable, and low-cost paper-based biosensors.

  15. Chemical Processing of Nanostructured Coatings

    Science.gov (United States)

    2000-01-01

    in the literature ranging from IR imaging to anti-scratch to smart windows and waveguides. Uhlmann and Towee have taken a survey of the sol-gel...Proteins and enzymes can be encapsulated in silica glass (12), while still retaining their activity. Sol-gel coatings (13,14) of hydroxyapatite should also...Technology, 13, 261-65. 14. Lolpatin, C. M. Pizziloni, V., Alford, T. L., and Lawsaon, T (1998) Hydroxyapatite powders ad thin films prepared by sol

  16. Plasma processed coating of laser fusion targets

    International Nuclear Information System (INIS)

    Johnson, W.L.; Letts, S.A.; Myers, D.W.; Crane, J.K.; Illige, J.D.; Hatcher, C.W.

    1979-01-01

    Coatings for laser fusion targets have been deposited in an inductively coupled discharge device by plasma polymerization. Two feed gases were used: perfluoro-2-butene, which produced a fluorocarbon coating (CF 1 3 ) with a density of 1.8 g/cc, and trans-2-butene which produced a hydrocarbon coating (CH 1 3 ) with a density of 1.0 g/cc. Uniform pin-hole free films have been deposited to a thickness of up to 30 μm of fluorocarbon and up to 110 μm of hydrocarbon. The effect of process variables on surface smoothness has been investigated. The basic defect in the coating has been found to result from shadowing by a small surface irregularity in an anisotropic coating flux

  17. Morphological and physicochemical properties of dip-coated poly {(2,5-diyl pyrrole) [4-nitrobenzylidène]} (PPNB) thin films: towards photovoltaic applications

    Science.gov (United States)

    Mouchaal, Younes; Gherrass, Hamou; Bendoukha Reguig, Abdelkarim; Hachemaoui, Aïcha; Yahiaoui, Ahmed; Makha, Mohamed; Khelil, Abdelbacet; Bernede, Jean-Christian

    2015-02-01

    A new material: conjugated poly {(2,5-diyl pyrrole) [4-nitrobenzylidène]}, that we called (PPNB), has been synthesized and characterized. The cyclic voltammetry has been used in order to estimate first oxidation (Ep) and reduction (En) potentials of our polymer. These values have been assigned, respectively, to the position of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and determination of the energy band gap which have been estimated to be 6.16, 3.89 and 2.27 eV respectively. Energy levels values of the HOMO and LUMO of the PPNB polymeric donor material were evaluated and the results are compatible with an electron transfer to C60 within an eventual junction, such values show that PPNB could be probed for applications in organic solar cells as donor material. PPNB Thin films have been deposited by dip-coating technique from Dichloromethane solvent with different polymer concentrations, and a dipping speed of 3.0 cm/min. For morphological characterization of the films scanning electron microscopy (SEM) was carried out. The samples, when observed by SEM, reveals that the films deposited are less dense, uniform. Cross-sectional SEM micrographs PPNB films show that thickness of the layers is homogeneous and has value of 35-40 nm. Optical characteristics of the polymer thin films were studied using UV-vis spectroscopy; absorption of wide range of wavelengths from 350 to 700 nm was observed. The optical band gap energy ranges between 1.9 eV and 1.94 eV. Based on these analyzes we realized heterojunction organic solar cells with the structure: ITO/Au/PPNB/C60/BCP/Al, the cells had a photovoltaique effect after J-V measuring, however the efficiency of photo generation under AM1.5 illumination was weak (about 0.02%) and needs to be improved.

  18. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    International Nuclear Information System (INIS)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-01-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained

  19. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  20. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    Science.gov (United States)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Diversification of Intermetallic Zn Phases Growth on Steel During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Węgrzynkiewicz S.

    2016-06-01

    Full Text Available The steel substrate formed as the result of oxy-acetylene cutting (OAB was treated differently - using: softening annealing, grinding and electro-polishing. Investigations were focused on the influence of additional processing on the structure and corrosion resistance of the deposited zinc coating. The hot - dip Zn galvanizing process was conducted in industrial conditions. Parameters were fixed: temperature 457 °C, dipping time 150 s. The coating thickness diversification dependent on the sub-surface steel structure was analysed and compared to the previous results. The correlation between conducted treatment and coatings morphology was determined.

  2. Effect of both deposition temperature and indium doping on the properties of sol-gel dip-coated SnO2 films.

    Science.gov (United States)

    Caglar, Mujdat; Atar, Kadir Cemil

    2012-10-01

    Using indium chloride as an In source, In-doped SnO(2) films were fabricated by sol-gel method through dip-coating on borofloat glass substrates. The undoped SnO(2) films were deposited in air between 400 and 600 °C to get optimum deposition temperature in terms of crystal quality and hence In-doped SnO(2) films were deposited in air at 600 °C. The effect of both deposition temperature and In content on structural, morphological, optical and electrical properties was investigated. The crystalline structure and orientation of the films were investigated by X-ray diffraction (XRD) and surface morphology was studied by a field emission scanning electron microscope (FESEM). The compositional analysis of the films was confirmed by energy dispersive X-ray spectrometer (EDS). The absorption band edge of the SnO(2) films shifted from 3.88 to 3.66 eV with In content. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by deposition temperature and In content. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    Science.gov (United States)

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  4. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection.

    Science.gov (United States)

    Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao

    2018-05-09

    Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.

  5. Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method

    International Nuclear Information System (INIS)

    Rafea, M. Abdel; Farag, A.A.M.; Roushdy, N.

    2009-01-01

    In this work, a stoichiometry Zn 0.5 Cd 0.5 S nano-structured powder was synthesized. Thin films of different thicknesses of Zn 0.5 Cd 0.5 S were prepared by dip-coating method onto glass substrates. The X-ray diffraction analysis of the prepared powder and films were performed to investigate the crystalline structure. Some structural parameters such as the mean crystallite size and the internal lattice strain were calculated. The composition analysis was made by the energy dispersive X-ray technique, EDX. Scanning electron micrographs, SEM showed that the prepared films are nearly homogeneous and consists of nearly parallel surfaces and the thickness was determined by the cross section imaging. The transmission spectra, T(λ), of the films at normal incidence of light were obtained in the spectral region 190-1100 nm. The optical constants of Zn 0.5 Cd 0.5 S films were determined using the interference maxima and minima of the transmission spectrum. The dispersion of refractive index was discussed in terms of the single-oscillator model and the important oscillating parameters were determined. The dependence of absorption coefficient on the photon energy was determined and the analysis of the result showed that the optical transition in Zn 0.5 Cd 0.5 S is allowed and indirect. The thickness dependence of the obtained optical parameters was also considered.

  6. Structural and ferroelectric properties of Sr1−xBaxBi2Nb2O9 thin films obtained by dip-coating

    Directory of Open Access Journals (Sweden)

    Y. González-Abreu

    2017-10-01

    Full Text Available The paper presents the structural and ferroelectric results for Sr1−xBaxBi2Nb2O9(x=0.30; 0.85 thin films, which were obtained by using dip-coating. The solutions containing the desirable ions were prepared from the powders of the previous studied ceramic samples. The films were deposited at room temperature on Fluorine-doped Tin Oxide (FTO substrates and submitted to a heat treatment for crystallization. The films were characterized by using scanning microscopy electronic, energy dispersive spectroscopy and ellipsometry. Hysteresis ferroelectric loops were obtained, at room temperature, by using a Sawyer-Tower circuit at several frequencies. A well-defined grain structure was observed for both compositions. The energy dispersive spectroscopy (EDS measurements revealed the presence of the corresponding elements from the chemical composition of the ceramic systems. The band-gap energy was around 3.3eV for both samples. Typical hysteresis loops for normal and relaxor ferroelectrics were obtained for x=0.30 and 0.85, respectively.

  7. Process to minimize cracking of pyrolytic carbon coatings

    Science.gov (United States)

    Lackey, Jr., Walter J.; Sease, John D.

    1978-01-01

    Carbon-coated microspheroids useful as fuels in nuclear reactors are produced with a low percentage of cracked coatings and are imparted increased strength and mechanical stability characteristics by annealing immediately after the carbon coating processes.

  8. Broadband Reflective Coating Process for Large FUVOIR Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZeCoat Corporation will develop and demonstrate a set of revolutionary coating processes for making broadband reflective coatings suitable for very large mirrors (4+...

  9. Co-Deposition of a Hydrogel/Calcium Phosphate Hybrid Layer on 3D Printed Poly(Lactic Acid Scaffolds via Dip Coating: Towards Automated Biomaterials Fabrication

    Directory of Open Access Journals (Sweden)

    Matthias Schneider

    2018-03-01

    Full Text Available The article describes the surface modification of 3D printed poly(lactic acid (PLA scaffolds with calcium phosphate (CP/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.

  10. Formation of Apatite Coatings on an Artificial Ligament Using a Plasma- and Precursor-Assisted Biomimetic Process

    Directory of Open Access Journals (Sweden)

    Ayako Oyane

    2013-09-01

    Full Text Available A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment to create a precoating containing amorphous calcium phosphate (ACP which is an apatite precursor. To grow an apatite layer on the ACP precoating, the ACP-precoated specimen was immersed for 24 h in a simulated body fluid with ion concentrations approximately equal to those in human blood plasma. The plasma surface modification was necessary to create an adequate apatite coating and to improve the coating adhesion depending on the plasma power density. The apatite coating prepared using the optimized conditions formed a thin-film that covered the entire surface of the artificial ligament. The resulting apatite-coated artificial ligament should exhibit improved osseointegration within the bone tunnel and possesses great potential for use in ligament reconstructions.

  11. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment; Yoyu Zn-Al-Mg kei gokin mekki koban no sokushin fushoku kankyoka ni okeru taishokusei toi boshoku kiko

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, A.; Izutani, H.; Tsujimura, T.; Ando, A.; Kittaka, T. [NKK Corp., Tokyo (Japan)

    2000-08-01

    Corrosion behavior of hot-dip Zn-6%Al 0-3%Mg alloy coated steel sheets in cyclic corrosion test (CCT) has been investigated. The corrosion resistance was improved with increasing Mg content in the coating layer, and the highest corrosion resistance was observed at 3% Mg. In Zn-6%Al-3%Mg alloy coated steel sheet, the formations of zinc carbonate hydroxide and zinc oxide were suppressed for longer duration compared with Zn-0.2%Al and Zn-4.5%Al-0.l%Mg alloy coated steel sheets. As a result, zinc chloride hydroxide existed stable on the surface of the coating layer. From the polarization behaviors in 5% NaCl aqueous solution after CCT, it was found that the corrosion current density of Zn-6%At-3%Mg alloy coated steel sheet was much smaller than those of Zn-0.2%Al and Zn-4.5%Al-0.1%Mg alloy coated steel sheets. As zinc carbonate hydroxide and zinc oxide had poor adhesion to the coating layer and had porous structures, these corrosion products were considered to have little protective action for the coating layer. Therefore, it was concluded that Mg suppressed the formation of such nonprotective corrosion products. resulting in the remarkable improvement of corrosion resistance. (author)

  12. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Li–N doped and codoped TiO{sub 2} thin films deposited by dip-coating: Characterization and photocatalytic activity under halogen lamp

    Energy Technology Data Exchange (ETDEWEB)

    Hamden, Z. [University of Sfax-Faculty of Science-Laboratory CI, Sfax (Tunisia); Boufi, S. [University of Sfax-Faculty of Science-LMSE, Sfax (Tunisia); Conceição, D.S.; Ferraria, A.M.; Botelho do Rego, A.M.; Ferreira, D.P.; Vieira Ferreira, L.F. [Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, IST, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Bouattour, S., E-mail: soraa.boufi@yahoo.com [University of Sfax-Faculty of Science-Laboratory CI, Sfax (Tunisia)

    2014-09-30

    Graphical abstract: - Highlights: • Li and N have a synergetic effect on photocatalytic efficiency of codoped TiO{sub 2} under halogen lamp. • (Li, N) dopants decrease the recombination rate of photogenerated e–h. • (Li, N) dopants induce an increase of the energy gap, E{sub g}. • A decrease of crystallinity of the thin films seems to occur for high loadings of co-doping. - Abstract: Li-, N-doped and codoped TiO{sub 2} powders and thin films, deposited on glass substrate using dip-coating method and Ti(OBu){sub 4} as precursor, were prepared and their structural properties were investigated using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, X-ray photoelectron spectroscopy (XPS), ground state diffuse reflectance absorption and scanning electron microscopy (SEM). Unlike the powder samples, thin films with the same composition and calcination temperature exhibited lower crystallinity degree along with the prevalence of the anatase phase. Ground state diffuse reflectance absorption studies carried on the nanopowders have shown that both the Li and N dopants led to an increase of the band gap. XPS studies revealed differences in the binding energy of N in the presence and in the absence of Li, which was explained in terms of a modification in the chemical environment of N when Li is introduced. The photocatalytic activity of the ensuing film toward the degradation of aromatic amine pollutant revealed a huge enhancement upon doping with N or codoping with N and Li. This behavior is probably provide by a charge-transfer-complex mechanism in which neither the photocatalyst nor the organic compounds absorbs visible light by itself. The improvement in the photocatalytic properties occurred simultaneously with the increase of the lifetime of the charge carriers whenever N and Li were introduced at a level 2%.

  14. Relationship between surface structure of silicon containing steel and adhesion of hot dip galvanized coating; Si gan'yu koban no hyomen kozo to yoyu aen mekki micchakuseino kankei

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Y.; Hashimoto, S.; Ishibashi, Y. [Kokan Keisoku K.K., Kawasaki (Japan); Inagaki, J. [NKK Corp., Tokyo (Japan); Fukuda, Y. [Shuibuoka University, Shizuoka (Japan)

    2000-06-01

    The surface of the annealed steel and the exfoliated interface of the coating for the hot dip galvanized Si containing steel sheets was characterized by using SEM (Scanning Electron Microscope), AES (Auger Electron Spectroscopy) and TEM (Transmission Electron Microscopy). The adhesion of the coatings have depended on the Si content of the steel. It have been found that MnSiO{sub 3} particles are formed at the surface of the annealed steels having high Si content and that two types of grain having different distribution of the oxide exist in the steels. Large oxide particles have been formed in one type of grain and small particles are formed in the other type of grain. The different type of Fe-Zn alloy are formed on two types of grains. It have been observed that the oxide particles exist at the interface of exfoliated coatings after the adhesion test for the steels with high Si content. The distribution of the oxide particles observed at the bottom of the exfoliated coating is quite similar to that of the surface oxide of the annealed steel. From these results, the exfoliation of the coating has initiated at the oxide particles of the steel surface that has been not reduced during the hot dip galvanizing. (author)

  15. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    International Nuclear Information System (INIS)

    Suriano, Raffaella; Biella, Serena; Cesura, Federico; Levi, Marinella; Turri, Stefano

    2013-01-01

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  16. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  17. Understanding the nature of the manganese hot dip phosphatizing process of steel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J., E-mail: juan.fuentes@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Parque Industrial Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-07-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn{sub 3}(PO{sub 4}){sub 2}), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO{sub 3} as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  18. Understanding the nature of the manganese hot dip phosphatizing process of steel

    International Nuclear Information System (INIS)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J.

    2013-01-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn 3 (PO 4 ) 2 ), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO 3 as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  19. Synergistic Effect of Sodium Chlorite and Edible Coating on Quality Maintenance of Minimally Processed Citrus grandis under Passive and Active MAP.

    Science.gov (United States)

    Ban, Zhaojun; Feng, Jianhua; Wei, Wenwen; Yang, Xiangzheng; Li, Jilan; Guan, Junfeng; Li, Jiang

    2015-08-01

    Edible coating has been an innovation within the bioactive packaging concept. The comparative analysis upon the effect of edible coating, sodium chlorite (SC) and their combined application on quality maintenance of minimally processed pomelo (Citrus grandis) fruits during storage at 4 °C was conducted. Results showed that the combination of edible coating and SC dipping delayed the microbial development whereas the sole coating or dipping treatment was less efficient. The synergetic application of edible coating and SC treatment under modified atmosphere packaging (MAP, 10% O2 , 10% CO2 ) was able to maintain the total soluble solids level and ascorbic acid content, while reduce the weight loss as well as development of mesophiles and psychrotrophs. Nonetheless, the N, O-carboxymethyl chitosan solely coated samples showed significantly higher level of weight loss during storage with comparison to the untreated sample. Furthermore, the combined application of edible coating and SC dipping under active MAP best maintained the sensory quality of minimally processed pomelo fruit during storage. © 2015 Institute of Food Technologists®

  20. Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Konys, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-15

    Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.

  1. Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications

    International Nuclear Information System (INIS)

    Konys, J.

    2016-01-01

    Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.

  2. Analysis Of Effect Of Mechanical Properties Of Aluminum Alloy Addition Of Zinc Corrosion Resistance Of Carbon Steel A325 Bolts Process Of Hot Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Ery Diniardi

    2015-08-01

    Full Text Available The world oil industry are common in offshore areas that are included in a corrosive environment so that the low-carbon steel bolts A325 will gradually corroded. Therefore an alternative that can be done to reduce the corrosion rate that is by coating with a Hot dip galvanizing method. The purpose of this study to improve the quality of products from low carbon steel bolts A325 with the addition of Zinc Aluminium alloy on the results of the Hot Dip Galvanizing. Results of testing the hardness of the lowest obtained in quenching time of 30 seconds is 162 037 HVN and the highest hardness obtained on quenching time of 60 seconds is 203 688 HVN. To microstructure shows that the phase Eta which is soft on the surface of the outermost started a little not as much time quenching 30 seconds so that the nature of its decline and violence increased the phase Zeta that are hard are widely spread meet the layer of phase resulting in hardness of the coating while quenching 45 seconds exceed the hardness of quenching time of 30 seconds. Results of analysis of the rate of corrosion that galvanized coating on each test is different and the structure of ferrite and pearlite it looks clear. For quenching time of 30 seconds obvious difference in galvanized layer thicker than quenching time of 45 and 60 seconds. This happens because of the influence of factors zinc layer that coats the base material so that decreased levels of corrosion is comparable to the time Salt Spray Test SST performed.

  3. Harvest maturity, pre-cutting wash and post-processing dip to improve quality of fresh-cut carambola fruit

    Science.gov (United States)

    ‘Arkin’ carambola (Averrhoa carambola L.) fruit harvested at color break or full yellow stage were washed with or without an alkaline solution (pH 12), cut to 10 mm slices, dipped in calcium ascorbate (Ca ASA), ascorbic acid (ASA) or water, and packaged in perforated clamshells for up to 14 days sto...

  4. Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2013-07-01

    Full Text Available Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.

  5. Development and application of a process window for achieving high-quality coating in a fluidized bed coating process

    NARCIS (Netherlands)

    Laksmana, F.L.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van Der Voort Maarschalk, K.

    Next to the coating formulation, process conditions play important roles in determining coating quality. This study aims to develop an operational window that separates layering from agglomeration regimes and, furthermore, the one that leads to the best coating quality in a fluidized bed coater. The

  6. Phase Transformation of Hot Dipped Aluminium during High Temperature Oxidation

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Hishamuddin Husain; Mohd Saari Ripin; Rusni Rejab; Zaiton Selamat; Mohd Shariff Sattar

    2014-01-01

    Low alloy carbon steel was coated by hot-dipping into a molten aluminum bath. Isothermal oxidations were carried out at 750 degree Celsius in static air to study the oxidation behaviour of the hot-dipped aluminide steel. The phase transformation in the aluminide layer during diffusion at 750 degree Celsius in static air was analyzed by SEM-EDX and XRD. After hot-dip treatment, the coating layers consisted of three phases, where Al, thinner layer of FeAl 3 , and thicker layer of Fe 2 Al 5 were detected from external topcoat to the aluminide/ steel substrate. After oxidation, the Fe 2 Al 5 formed during the immersion process completely transformed to Fe 2 Al 5 , FeAl 2 , FeAl and Al-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation. After oxidation, there are some voids were found at the coating/ substrate interface due to the rapid inter-diffusion of iron and aluminium during oxidation. The FeAl phase kept growing with increasing exposure time at 750 degree Celsius, while the Fe 2 Al 5 was consumed during oxidation. After 168 hrs oxidation, the Fe 2 Al 5 phase was going disappeared as the aluminum layer was consumed. (author)

  7. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  8. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  9. Characterization of solid wastes from two different hot-dip galvanizing processes; Caracterizacion de residuos solidos procedentes de dos procesos distintos de galvanizado en caliente por inmersion

    Energy Technology Data Exchange (ETDEWEB)

    Delvasto, P.; Casal-Ramos, J. a.; Gonzalez-Jordan, O.; Duran-Rodriguez, N. C.; Dominguez, J. R.; Moncada, P.

    2012-11-01

    Zinc dust and zinc ash from hot-dip galvanizing industries located in Venezuela were characterized using atomic spectroscopy, scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Dust was formed during the high-pressure drying process of the galvanized pieces, in a plant that uses a steel kettle to hold the molten zinc. Ash identified as A came from the same plant as the dust, while ash identified as B came from a hot-dip galvanizing plant which use a ceramic lined galvanizing furnace. Dust contained 98 wt % Zn, in metallic form. Both ash samples contained: Zn and ZnO, while Zn{sub 5}(OH){sub 8}Cl{sub 2}×H{sub 2}O and ZnCl{sub 2} were only found in ash B. Globally, ash “A” and ash “B” contain 71 and 75 wt % Zn, respectively. (Author)

  10. Radiation cured coating containing glitter particles and process therefor

    International Nuclear Information System (INIS)

    Sachs, P.R.; Sears, J.W.

    1992-01-01

    Radiation curable coatings for use on a variety of substrates and curable by exposure to ionizing irradiation of ultraviolet light are well known. The use of urethane type coatings cured with ultraviolet light to provide protective wear layers for wall or floor tile is for instance described in U.S. Pat. No. 4,180,615. U.S. Pat. No. 3,918,393 describes a method for obtaining a non-glossy coating on various substrates by curing radiation sensitive material with ionizing irradiation or ultraviolet light in two stages. In this process the coating is partially cured in an oxygen-containing atmosphere and the curing is completed in an inert atmosphere. U.S. Pat. No. 4,122,225 discloses a method and apparatus for coating tile which involves the application of one coat of radiation curable material to an entire substrate followed by partial curing and the subsequent application and curing of a second coat or radiation curable material only on high areas of the substrate which are subject to greater than average wear. Use of pigment in radiation cured coatings on products such as floor covering which are subject to wear during use has presented substantial difficulties. Incorporation of pigment, especially enough pigment to make the coating opaque, makes the coating hard to cure and substantially reduces the thicknesses of coating which can be cured relative to a clear coating cured under the same conditions

  11. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  12. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  13. Simulation of Energy Savings in Automotive Coatings Processes

    Science.gov (United States)

    Gerini Romagnoli, Marco

    Recently, the automakers have become more and more aware of the environmental and economic impact of their manufacturing processes. The paint shop is the largest energy user in a vehicle manufacturing plant, and one way to reduce costs and energy usage is the optimization of this area. This project aims at providing a tool to model and simulate a paint shop, in order to run and analyze some scenarios and case studies, helping to take strategic decisions. Analytical computations and real data were merged to build a tool that can be used by FCA for their Sterling Heights plant. Convection and conduction heat losses were modeled for the dip processes and the ovens. Thermal balances were used to compute the consumptions of booths, decks and ovens, while pump and fan energy consumptions were modeled for each sub-process. The user acts on a calendar, scheduling a year of production, and the model predicts the energy consumption of the paint shop. Five scenarios were run to test different conditions and the influence of scheduling on the energy consumption. Two different sets of production schedules have been evaluated, the first one fulfilling the production requirement in one shift of 10 hours, at high rate, the second one using two 7-hour-long shifts at medium production rate. It was found that the unit cost was minimized in the warmest months of spring and fall, and system shutdown was a crucial factor to reduce energy consumption. A fifth hypothetical scenario was run, with a 4 month continuous production and an 8 month total shutdown, which reduced the energy consumption to a half of the best realistic scenario. When the plant was run in a two-shifts configuration, the cost to coat a vehicle was found to be 29 with weekend shutdown, and 39 without. In the one-shift configuration, the cost was slightly higher, but the difference was less than 5%. While the fifth scenario showed a consistent reduction of the unit cost, inventory and logistic expenses deriving from the

  14. Hybrid Coatings Enriched with Tetraethoxysilane for Corrosion Mitigation of Hot-Dip Galvanized Steel in Chloride Contaminated Simulated Concrete Pore Solutions

    Science.gov (United States)

    Figueira, Rita B.; Callone, Emanuela; Silva, Carlos J. R.; Pereira, Elsa V.; Dirè, Sandra

    2017-01-01

    Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance. The dielectric properties of the different materials were investigated by electrochemical impedance spectroscopy. The corrosion behavior of the hybrid coatings on HDGS was studied in chloride-contaminated simulated concrete pore solutions (SCPS) by polarization resistance measurements. The roughness of the HDGS coated with hybrids was also characterized by atomic force microscopy. The structural characterization of the hybrid materials proved the effective reaction between Jeffamine® and 3-isocyanate propyltriethoxysilane (ICPTES) and indicated that the addition of TEOS does not seem to affect the organic structure or to increase the degree of condensation of the hybrid materials. Despite the apparent lack of influence on the hybrids architecture, the polarization resistance measurements confirmed that TEOS addition improves the corrosion resistance of the hybrid coatings (U(X):TEOS) in chloride-contaminated SCPS when compared to samples prepared without any TEOS (U(X)). This behavior could be related to the decrease in roughness of the hybrid coatings (due TEOS addition) and to the different metal coating interaction resulting from the increase of the inorganic component in the hybrid matrix. PMID:28772667

  15. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  16. Microstructure development and mechanical properties of quenching and partitioning (Q and P) steel and an incorporation of hot-dipping galvanization during Q and P process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Yu, Hao, E-mail: yhzhmr@126.com

    2013-12-01

    The “quenching and partitioning” (Q and P) process has recently been substantiated to be a unique technological route for the production of high strength steels with significant amounts of retained austenite, and thus to provide better combination of strength and ductility. In this work, intercritically annealed specimens followed by Q and P treatment have been applied to low-carbon steel with chemical composition typical for conventional TRIP-assisted steels. Microstructure of the steel treated by the Q and P process was characterized by means of optical microscope, SEM, TEM and XRD. The study suggests that microstructure is mainly composed of ferrite, lath martensite, martensite–austenite islands, retained austenite and a small amount of bainite formed during partitioning. The fraction of bainite formed during partitioning is proportional to quenching temperature. The mechanical property of specimen treated by the Q and P process exhibits an improved combination of strength and ductility than that of the Q and T process. Two schemes of hot-dipping galvanization processes were designed. The results indicate that both hot-dip galvanizing schemes present a limited reduction in tensile strength and a slight enhancement of ductility. The scheme of galvanizing and partitioning after the quenching progress shows a better combination of strength and ductility.

  17. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  18. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  19. LaNi0.6Co0 4O3-δ dip-coated on Fe-Cr mesh as a composite cathode contact material on intermediate solid oxide fuel cells

    Science.gov (United States)

    Morán-Ruiz, Aroa; Vidal, Karmele; Larrañaga, Aitor; Laguna-Bercero, Miguel Angel; Porras-Vázquez, Jose Manuel; Slater, Peter Raymond; Arriortua, María Isabel

    2014-12-01

    The feasibility of using Crofer22APU mesh dip coated with LaNi0.6Co0.4O3-δ (LNC) ceramic paste as a uniform contact layer on a Crofer22APU channeled interconnect was studied. The control of LNC dip coating thickness on Fe-Cr mesh was carried out by rheological measurements of the suspension. SEM cross-section of formed composite contact material showed good adherence between ceramic and metallic components. The measured area specific resistance (ASR) value at 800 °C was 0.46 ± 0.01 mΩ cm2, indicating low contact resistance itself. The long term stability of metallic/ceramic composite was also studied. The contact resistance, when composite contact material was adhered to channeled Crofer22APU interconnect, was 5.40 ± 0.01 mΩ cm2, which is a suitable value for the performance of IT-SOFC stack. The stability of the system after treating at 800 °C for 1000 h was characterized using X-ray Micro-Diffraction (XRMD), Scanning Electron Microscope equipped with an Energy Dispersive X-ray analyzer (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) techniques. The oxidation rate of the alloy and Fe3O4 phase formation were enhanced on the channels of the interconnect. Thus, the formation of CrO3 (g) and CrO2(OH)2 (g) species was accelerated on the composite surface under the channel. Through XRMD and XPS analysis the coexistence of two perovskite phases (initial LNC and Cr-perovskite) was observed.

  20. Powdering of Hot-dip Galvannealed steel using Finite Element Analysis

    International Nuclear Information System (INIS)

    Kim, D. W.; Jang, Y. C.; Lee, Y. S.; Kim, S. I.

    2007-01-01

    Demand for hot-dip galvannealed steel has been increased due to it high corrosion resistance, paintability, and formability in automotive industry. Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and therefore it is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. Hence, various research have been carried out to prohibit powdering for improving the quality of GA steel during second manufacturing processing. This paper performed finite element analysis to evaluate local powdering and compared FEA results with V-bending test. The effects of punch radius and coating strength on the powdering was examined

  1. Applications of edible films and coatings to processed foods

    Science.gov (United States)

    Edible coatings have been successfully applied in processed foods such as meat, cereals, confectionaries, dried fruits, nuts and fresh and fresh-cut fruits and vegetables. These coatings are used to improve the quality and shelf-life of foods. Furthermore, different food ingredients, derived from ...

  2. Acoustic monitoring of a fluidized bed coating process

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Veski, Peep; Pedersen, Joan G.

    2007-01-01

      The aim of the study was to investigate the potential of acoustic monitoring of a production scale fluidized bed coating process. The correlation between sensor signals and the estimated amount of film applied and percentage release, respectively, were investigated in coating potassium chloride...

  3. Synthesis and characterization of erbium-doped SiO{sub 2}-TiO{sub 2} thin films prepared by sol-gel and dip-coating techniques onto commercial glass substrates as a route for obtaining active GRadient-INdex materials

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Varela, Ana I. [Microoptics and GRIN Optics Group, Department of Applied Physics, Faculty of Optics and Optometry and Faculty of Physics, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782 (Spain); Castro, Yolanda, E-mail: castro@icv.csic.es [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, Madrid 28049 (Spain); Durán, Alicia [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, Madrid 28049 (Spain); De Beule, Pieter A.A. [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Braga 4715-330 (Portugal); Flores-Arias, María T. [Microoptics and GRIN Optics Group, Department of Applied Physics, Faculty of Optics and Optometry and Faculty of Physics, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782 (Spain); Bao-Varela, Carmen, E-mail: carmen.bao@usc.es [Microoptics and GRIN Optics Group, Department of Applied Physics, Faculty of Optics and Optometry and Faculty of Physics, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782 (Spain)

    2015-05-29

    In this work, SiO{sub 2}-TiO{sub 2} films doped with erbium were prepared by dip-coating sol-gel process onto commercial glass substrates. The surface morphology of the films was characterized using atomic force microscopy, while thickness, refractive index, extinction coefficient and porosity of the films were determined by ellipsometric measurements in a wavelength region of 400-1000 nm. Optical constants and porosity were found to vary with erbium concentration. The proof of principle presented in this paper is applicable to systems of different nature by tailoring the sol-gel precursors in such a way that active GRadient-INdex media described by a complex, parabolic-like refractive index distribution for beam shaping purposes is obtained. - Highlights: • Sol-gel route for preparation of active GRadient-INdex materials is proposed. • SiO{sub 2}-TiO{sub 2} films doped with erbium were prepared by dipping onto commercial glasses. • Morphological and optical characterization of the samples was performed. • Optical constants and porosity were found to vary with erbium concentration. • Refractive index diminishes with dopant content; the contrary occurs for porosity.

  4. Synthesis and characterization of erbium-doped SiO2-TiO2 thin films prepared by sol-gel and dip-coating techniques onto commercial glass substrates as a route for obtaining active GRadient-INdex materials

    International Nuclear Information System (INIS)

    Gómez-Varela, Ana I.; Castro, Yolanda; Durán, Alicia; De Beule, Pieter A.A.; Flores-Arias, María T.; Bao-Varela, Carmen

    2015-01-01

    In this work, SiO 2 -TiO 2 films doped with erbium were prepared by dip-coating sol-gel process onto commercial glass substrates. The surface morphology of the films was characterized using atomic force microscopy, while thickness, refractive index, extinction coefficient and porosity of the films were determined by ellipsometric measurements in a wavelength region of 400-1000 nm. Optical constants and porosity were found to vary with erbium concentration. The proof of principle presented in this paper is applicable to systems of different nature by tailoring the sol-gel precursors in such a way that active GRadient-INdex media described by a complex, parabolic-like refractive index distribution for beam shaping purposes is obtained. - Highlights: • Sol-gel route for preparation of active GRadient-INdex materials is proposed. • SiO 2 -TiO 2 films doped with erbium were prepared by dipping onto commercial glasses. • Morphological and optical characterization of the samples was performed. • Optical constants and porosity were found to vary with erbium concentration. • Refractive index diminishes with dopant content; the contrary occurs for porosity

  5. Trapping dynamics of diindenoperylene (DIP) in self-assembled monolayers using molecular simulation

    KAUST Repository

    Kaushik, Ananth P.

    2011-07-01

    All-atom Molecular Dynamics simulation methods employing a well-tested intermolecular potential model, MM3 (Molecular Mechanics 3), demonstrate the propensity for diindenoperylene (DIP) molecules to insert between molecules of a self-assembled monolayer (SAM) during a deposition process intended to grow a thin film of this organic semiconductor molecule onto the surface of self-assembled monolayers. The tendency to insert between SAM molecules is fairly prevalent at normal growth temperatures and conditions, but is most strongly dependent on the density and the nature of the SAM. We posit the existence of an optimal density to favor surface adsorption over insertion for this system. DIP is less likely to insert in fluorinated SAMs, like FOTS (fluorooctatrichlorosilane), than its unfluorinated analog, OTS (octatrichlorosilane). It is also less likely to insert between shorter SAMs (e.g., less insertion in OTS than ODTS (octadecyltrichlorosilane)). Very short length, surface-coating molecules, like HDMS (hexamethyldisilazane), are more likely to scatter energetic incoming DIP molecules with little insertion on first impact (depending on the incident energy of the DIP molecule). Grazing angles of incidence of the depositing molecules generally favor surface adsorption, at least in the limit of low coverage, but are shown to be dependent on the nature of the SAM. The validity of these predictions is confirmed by comparison of the predicted sticking coefficients of DIP at a variety of incident energies on OTS, ODTS, and FOTS SAMs with results obtained experimentally by Desai et al. (2010) [23]. The simulation predictions of the tendency of DIP to insert can be explained, in large part, in terms of binding energies between SAM and DIP molecules. However, we note that entropic and stochastic events play a role in the deposition outcomes. Preliminary studies of multiple deposition events, emulating growth, show an unexpected diffusion of DIP molecules inserted within the

  6. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  7. Coatings for minimally processed fruits and vegetables

    Science.gov (United States)

    Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...

  8. Anti-reflection coatings applied by acid leaching process

    Science.gov (United States)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  9. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  10. Comparison of coating processes in the development of aluminum-based barriers for blanket applications

    International Nuclear Information System (INIS)

    Wulf, Sven-Erik; Krauss, Wolfgang; Konys, Jürgen

    2014-01-01

    Highlights: •Electrochemical processes ECA and ECX are suitable for Al deposition on RAFM steels. •ECA and ECX are able to produce thin Al layers with adjustable thicknesses. •All aluminization processes need a subsequent heat treatment. •Scales made by ECA or ECX exhibit reduced thicknesses compared to HDA. •ECX provides higher flexibility compared to ECA to produce scales on RAFM steels. -- Abstract: Reduced activation ferritic-martensitic steels (RAFM), e.g. Eurofer 97, are envisaged in future fusion technology as structural material, which will be in direct contact with a flowing liquid lead–lithium melt serving as breeder material. Aluminum-based barrier layers had proven their ability to protect the structural material from corrosion attack in flowing Pb–15.7Li and to reduce tritium permeation into the coolant. Coming from scales produced by hot dipping aluminization (HDA), the development of processes based on electrochemical methods to produce defined aluminum-based scales on RAFM steels gained attention in research during the last years. Two different electrochemical processes are proposed: The first one, referred to as ECA process, is based on the electrodeposition of aluminum from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX-process will be presented and occurring development needs for the future will be discussed

  11. Comparison of coating processes in the development of aluminum-based barriers for blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Sven-Erik, E-mail: sven-erik.wulf@kit.edu; Krauss, Wolfgang; Konys, Jürgen

    2014-10-15

    Highlights: •Electrochemical processes ECA and ECX are suitable for Al deposition on RAFM steels. •ECA and ECX are able to produce thin Al layers with adjustable thicknesses. •All aluminization processes need a subsequent heat treatment. •Scales made by ECA or ECX exhibit reduced thicknesses compared to HDA. •ECX provides higher flexibility compared to ECA to produce scales on RAFM steels. -- Abstract: Reduced activation ferritic-martensitic steels (RAFM), e.g. Eurofer 97, are envisaged in future fusion technology as structural material, which will be in direct contact with a flowing liquid lead–lithium melt serving as breeder material. Aluminum-based barrier layers had proven their ability to protect the structural material from corrosion attack in flowing Pb–15.7Li and to reduce tritium permeation into the coolant. Coming from scales produced by hot dipping aluminization (HDA), the development of processes based on electrochemical methods to produce defined aluminum-based scales on RAFM steels gained attention in research during the last years. Two different electrochemical processes are proposed: The first one, referred to as ECA process, is based on the electrodeposition of aluminum from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX-process will be presented and occurring development needs for the future will be discussed.

  12. Processes for coating or sealing electronic components with synthetic varnishes

    International Nuclear Information System (INIS)

    Farrugia, M.; Allard, M.

    1981-01-01

    A method of coating or sealing electrical or electronic components with a synthetic resin composition is described which consists of moving each component along a fixed path through a coating station at which at least one surface of the component receives a coating of synthetic resin and then moving each component through a beam of ionising radiation (ultra-violet or beta radiation) for a sufficient time to induce polymerisation of the resin. Suitable resin compositions for the process are listed. (U.K.)

  13. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    Science.gov (United States)

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  14. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing a la...... geometry is almost always analogous to bending, and fracture resistance is provided through deviation of the channel crack by weak interfaces, resulting in 'terrace cracking'....

  15. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  16. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  17. The Effect Of Processing Temperature On Bending Strength Of Coated Steels

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Abdul Razak Daud; Muhamad Daud; Zaifol Samsu; Julie Andrianny Murshidi

    2014-01-01

    Steel is the most common materials used as structural materials in industries. It is due its strength and low cost. There are several methods used in protecting steels against corrosion. One of them is through hot dipped coating. In this study, mechanical properties of stainless steel type 304, 316L and mild steel before and after hot dipped aluminising was investigated. The bending strength was determined by using three-point bend test and the hardness of the samples was determined by hardness test. Finally, the microstructure of the samples was investigated by using optical microscope. From the result obtained, we can conclude that strength of heated samples was decreased by heating but showed increment after application of coating. Although the strength for coated layer would decrease as compared to bare steel, it has great potential to increase the corrosion protection. (author)

  18. An Application of X-ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    Science.gov (United States)

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-03-30

    An attempt to apply X-ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  19. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  20. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  1. ICE-DIP kicks off

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Last month, Marie Curie Actions* added a new member to its ranks: ICE-DIP (the Intel-CERN European Doctorate Industrial Program). The programme held its kick-off meeting on 18-19 February in Leixlip near Dublin, Ireland, at Intel’s premises.   Building on CERN’s long-standing relationship with Intel in the CERN openlab project, ICE-DIP brings together CERN and industrial partners, Intel and Xena Networks, to train five Early Stage ICT Researchers. These researchers will be funded by the European Commission and granted a CERN Fellow contract while enrolled in the doctoral programmes at partner universities Dublin City University and National University of Ireland Maynooth. The researchers will go on extended secondments to Intel Labs Europe locations across Europe during their three-year training programme. The primary focus of the ICE-DIP researchers will be the development of techniques for acquiring and processing data that are relevant for the trigger a...

  2. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  3. Dehydration processes using membranes with hydrophobic coating

    Science.gov (United States)

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  4. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  5. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  6. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29 (Italy); Sapio, L.; Naviglio, S. [Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples (Italy)

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO{sub 2}·CaO·P{sub 2}O{sub 5}, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO{sub 2}, CaO and P{sub 2}O{sub 5}, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. - Highlights: • Coatings consisting of SiO{sub 2}·CaO·P{sub 2}O{sub 5} glasses were prepared via sol-gel dip coating. • Ca/P molar ratio affects the film morphology and biocompatibility. • Higher cell proliferation was found in response to higher Ca/P ratios coatings. • A growth cell proliferation inhibition was observed in response to lower Ca/P ratio.

  7. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    1980-01-01

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  8. Annealing temperature effect on the properties of mercury-doped TiO{sub 2} films prepared by sol-gel dip-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar Batna, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche et des Technologies de l' Energie (CRTEn), BP. 95, Hammam-Lif 2050 (Tunisia); Ben Sedrine, N. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche et des Technologies de l' Energie (CRTEn), BP. 95, Hammam-Lif 2050 (Tunisia); Karyaoui, M. [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar Batna, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche et des Technologies de l' Energie (CRTEn), BP. 95, Hammam-Lif 2050 (Tunisia); Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche et des Technologies de l' Energie (CRTEn), BP. 95, Hammam-Lif 2050 (Tunisia)

    2011-04-15

    This work presents the annealing temperature effect on the properties of mercury (Hg)-doped titanium dioxide (TiO{sub 2}). Thin films and polycrystalline powders have been prepared by sol-gel process. The structure, surface morphology and optical properties, as a function of the annealing temperature, have been studied by atomic force microscopy (AFM), Raman, reflectance and ellipsometric spectroscopies. In order to determine the transformation points, we have analyzed the xerogel-obtained powder by differential scanning calorimetry (DSC). Raman spectroscopy shows the crystalline anatase and rutile phases for the films annealed at 400 deg. C and 1000 deg. C respectively. The AFM surface morphology results indicate that the particle size increases from 14 to 57 nm by increasing the annealing temperature. The complex index and the optical band gap (E{sub g}) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreases by increasing the annealing temperature.

  9. Annealing temperature effect on the properties of mercury-doped TiO2 films prepared by sol-gel dip-coating technique

    International Nuclear Information System (INIS)

    Mechiakh, R.; Ben Sedrine, N.; Karyaoui, M.; Chtourou, R.

    2011-01-01

    This work presents the annealing temperature effect on the properties of mercury (Hg)-doped titanium dioxide (TiO 2 ). Thin films and polycrystalline powders have been prepared by sol-gel process. The structure, surface morphology and optical properties, as a function of the annealing temperature, have been studied by atomic force microscopy (AFM), Raman, reflectance and ellipsometric spectroscopies. In order to determine the transformation points, we have analyzed the xerogel-obtained powder by differential scanning calorimetry (DSC). Raman spectroscopy shows the crystalline anatase and rutile phases for the films annealed at 400 deg. C and 1000 deg. C respectively. The AFM surface morphology results indicate that the particle size increases from 14 to 57 nm by increasing the annealing temperature. The complex index and the optical band gap (E g ) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreases by increasing the annealing temperature.

  10. Silica coating of nanoparticles by the sonogel process.

    Science.gov (United States)

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  11. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  12. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  13. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    Science.gov (United States)

    Nyutu, Edward Kennedy G.

    Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency

  14. Economic evaluation of five curing processes for wood coatings

    International Nuclear Information System (INIS)

    Martinez M, I.

    1996-01-01

    In this work we study the economic feasibility of five methods for curing coatings over sheet wood products. Each year, Mexico is producing more than 40 millions of square meters of wood panels, but the demand is of the range of 58 millions of square meters of this product. Two millions are expended after they are coated, and 38 millions without coating, they are coated artisanilly when they are used to make pieces of furniture. The technical characteristics and the costs involved in each one of five methods of curing, are described. Investments involved with each method are processed to establish: fixed costs, variable costs, equilibrium point, and others. Initial investment, coasts and revenues are processed to determine the income statement pro-form, the projected statement of change in financial position, the projected working capital, the projected balance sheet, the cash-flow, and some economical and financial indicators for each one of the five curing methods. With this information, the internal rate of return (IRR) is determined, and used to compare the economic worth of each of the five methods. The five methods are profitable, because all they have a IRR greater than the opportunity cost of capital (15%) of projects with similar characteristics. Despite, with each one of the five methods, the capital invested is recoverable, and profits can be obtained; curing by ultraviolet light or by electron beam, let recover the investment in less than two years, require fewer dollars for investment, and have a IRR of 135% and 111% respectively. Besides ultraviolet light or electron beam curing processes, pollute less with volatile solvents, use the energy efficiently, have greater production rate, and the coating obtained have better quality than with the other three methods. (Author)

  15. Influence of the coating process on the tribological conditions during cold forging with a MoS2 based lubricant

    Science.gov (United States)

    Lorenz, Robby; Hagenah, Hinnerk; Merklein, Marion

    2018-05-01

    Cold forging processes such as forward rod extrusion can be used to produce high quality components like connection rods, shafts and gears. The main advantages of these extruded components are sufficient surface quality, work hardening, compressive residual stresses and fatigue strength. Since one technical disadvantage of extruded components lies in the achievable tolerance classes, the improvement of these should be of crucial importance. For instance, the attainable workpiece accuracy and component quality can be influenced by adapting the tribological system in such a way that the resulting friction is specifically controlled in order to improve component forming. Lubricant modification is one practical way of adapting the tribological system to the requirements of the forming process. An industrial established and highly efficient lubricant system is the application of a zinc-phosphate conversion layer with a molybdenum disulfide-based lubricant. While offering many advantages, its tribological conditions seem to depend strongly on the layer weight and the application strategy. These parameters and the respective interdependencies have not been sufficiently investigated yet. In order to examine this, the tribological conditions depending on the layer weight are analyzed in greater detail using the Ring-Compression-Test (RCT). This tribometer provides a comparative representation of the forming conditions during cold forging. Furthermore, a potential dependency between the tribological conditions and two different coating techniques is analyzed. The latter are represented by the industrial standards dipping and dip-drumming.

  16. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  17. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  18. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  19. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  20. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Directory of Open Access Journals (Sweden)

    Rui Weng

    2014-03-01

    Full Text Available In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE-poly-phenylene sulphide (PPS composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  1. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Science.gov (United States)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  2. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  3. Seaweed Extracts as Edible Coatings for Minimally Processed Products

    Directory of Open Access Journals (Sweden)

    Ana Augusto

    2014-05-01

    The EC containing Codium tomentosum seaweed extract showed the better performance by minimizing physical and chemical changes in RTE apples, namely: minor changes of moisture, total soluble solids and firmness values. In relation to the browning index, after 20 days of storage, RTE apples coated with EC containing Codium tomentosum seaweed extract showed the lowest values, also the results of peroxidase and polyphenoloxidase showed lower activity compared with the EC containing Fucus spirals, Bifurcaria bifurcate and Codium vermilara seaweed extracts, citric acid EC and the control. These results also allowed a pending patent application nº 107369 “Revestimento de origem marinha para aplicação em produtos minimamente processados ou de quarta gama” which is related with an edible coating with the incorporation of bioactive compounds from macroalgae for minimally processed products.

  4. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  5. Process for a preparing a coating composition. [electrom irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T; Harada, H; Kobayashi, J; Nakamoto, H; Sunano, K

    1968-07-16

    An easily hardenable acrylic coating composition is prepared with low energy electron beams to develop a surface coating process without requiring solvents, and which may be widely applied by industry. The process comprises dissolving a polymer with a molecular weight in the 5,000 to 500,000 range in a monomer consisting of at least 30% by weight of acrylic monomer and 70% by weight of other vinyl monomers. The polymer is obtained by the polymerization of 1 to 40% by weight of vinyl monomer containing carboxyl radicals, 30 to 99% by weight of methacrylic monomer and 0 to 69% by weight of other copolymerizable vinyl monomers. Then, one mole of carboxyl radical of the solution reacts with 0.1 to 1.0 mole of vinyl monomer containing a glycidyl radical. In an embodiment, 17.5% by weight of methacrylate are dissolved in 82.5% of alkyl acrylate and undergo suspension polymerization in water in the presence of a catalyst to produce a beads-like polymer of molecular weight in the 5,000 to 500,000 range. Thereafter, 120 parts of the beads-like polymer are dissolved in 180 parts of acrylic monomer in the presence of a polymerization inhibitor. To this solution are added 22 parts of glycidyl methacrylate to react with carboxyl radicals, thereby obtaining non-solvent coating materials which contain the side chain vinyl radicals in the polymer. The acceleration voltage of the electron beams employed in the polymerization is generally 0.1 to 2.0 MeV. The dose rate to harden the coatings is in the range of 0.1 to 2.0 Mrad/sec.

  6. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    Science.gov (United States)

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    Science.gov (United States)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  8. New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes

    Science.gov (United States)

    Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.

    2017-06-01

    This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.

  9. Characterization for coating processes of imidazole powders using an ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Sik; Kim, Jun Ki [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Kim, Mok Soon [Inha University, Incheon (Korea, Republic of); Lee, Jong Hyun [Seoul National University, Seoul (Korea, Republic of)

    2010-01-15

    Imidazole-curing accelerator powders were coated with stearic acid to increase the pot life of anisotropic conductive adhesive (ACA) formulations. To accomplish an efficient coating process, the coating was tested using an ultrasonic atomizer after mixing imidazole powders with a molten coating agent. Design of experiments analysis was organized to elucidate the effect of process parameters and to determine the most crucial parameter. The final formulation incorporating well-processed imidazole loaded powders indicated longer pot life, higher shear strength, and excellent highly accelerated stress test (HAST) reliability. Results show that the coating process using an ultrasonic atomizer is effective in increasing the pot life of ACA formulations

  10. Development of sustainable paper coatings using nanoscale industrial surface processing

    DEFF Research Database (Denmark)

    Markert, Frank; Breedveld, Leo; Lahti, Johanna

    in the PlasmaNice project, as environmental and social aspects are addressed using methods like life cycle check (LCC), life cycle assessment (LCA), and industrial risk assessment (RA) within the boundary of an economical production for different market segments. The results are intended to be used partly...... products, and the process and material developers providing new coatings with specific properties. The combination of RA and LCA/LCC within the early stages of product development provide a more holistic approach, It is commonly believed to be also economical beneficial as changes are easier to implement...

  11. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  12. Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Sergio Santoro

    2016-09-01

    Full Text Available In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP with a thin layer of ethylene–chlorotrifluoroethylene copolymer (ECTFE. The employment of N-methyl pyrrolidone (NMP as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C. Scanning electron microscopy (SEM analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size. ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.

  13. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2012-01-01

    Highlights: ► The pressure signals during the real TRISO UO2-coated fuel particle fabrication process. ► A new relationship about the pressure drop change and the coated fuel particles properties. ► The proposed relationship is validated by experimental results during successive coating. ► A convenient method for monitoring the fluidized state during coating process. - Abstract: The pressure signals in the coating furnace are obtained experimentally from the TRISO UO 2 -coated fuel particle fabrication process. The pressure signals during the coating process are analyzed and a simplified relationship about the pressure drop change due to the coated layer is proposed based on the spouted bed hydrodynamics. The change of pressure drop is found to be consistent with the change of the combination factor about particle density, bed density, particle diameter and static bed height, during the successive coating process of the buffer PyC, IPyC, SiC and OPyC layer. The newly proposed relationship is validated by the experimental values. Based on this relationship, a convenient method is proposed for real-time monitoring the fluidized state of the particles in a high-temperature coating process in the spouted bed. It can be found that the pressure signals analysis is an effective method to monitor the fluidized state on-line in the coating process at high temperature up to 1600 °C.

  14. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  15. Effect of antibrowning dips and controlled atmosphere storage on the physico-chemical, visual and nutritional quality of minimally processed "Rojo Brillante" persimmons.

    Science.gov (United States)

    Sanchís, Elena; Mateos, Milagros; Pérez-Gago, María B

    2017-01-01

    The combined effect of antibrowning dips and controlled atmosphere storage on fresh-cut "Rojo Brillante" persimmon quality was investigated. Persimmon slices were dipped in 10 g L -1 ascorbic acid, 10 g L -1 citric acid or water and were stored in different controlled atmospheres at 5 ℃. Controlled atmosphere conditions were 21 kPa O 2  + 10 kPa CO 2 (Atm-B), 21 kPa O 2  + 20 kPa CO 2 (Atm-C), 5 kPa O 2  + 10 kPa CO 2 (Atm-D) and 5 kPa O 2 in the absence of CO 2 (Atm-E). Air (Atm-A) was used as a control. Atmospheres with high CO 2 concentrations induced darkening, associated with a flesh disorder known as "internal flesh browning". Only the samples placed in Atm-E, and treated with 10 g L -1 ascorbic acid or 10 g L -1 citric acid, controlled enzymatic browning, reduced firmness loss and prevented the "internal flesh browning" disorder. The maximum limit of marketability was achieved in the samples treated with 10 g L -1 citric acid and stored in Atm-E for nine storage days at 5 ℃. The total vitamin C, free radical scavenging activity, total phenolic content and total carotenoids of the fresh-cut "Rojo Brillante" persimmons were affected by maturity stage at harvest, whereas antibrowning dips and controlled atmosphere storage had no clear effect. © The Author(s) 2016.

  16. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  17. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  18. E-Cigs, Menthol & Dip

    Science.gov (United States)

    ... Close Search × MENU BACK CLOSE SMOKEFREE.GOV HOME E-Cigs, Menthol & Dip There are many types of tobacco products. Learn how e-cigarettes, menthol cigarettes, smokeless tobacco, and other products ...

  19. Coated armor system and process for making the same

    Science.gov (United States)

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  20. Microstructural and optical properties of spinel oxide M{sub x}Co{sub 2−x}MnO{sub 4} (M = Ni, Zn or Cu; 0 < x < 1) thin films prepared by inorganic polycondensation and dip-coating methods

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thi Ly; Guillemet-Fritsch, Sophie; Dufour, Pascal; Tenailleau, Christophe, E-mail: tenailleau@chimie.ups-tlse.fr

    2016-08-01

    Spinel oxide nanoparticles of M{sub x}Co{sub 2−x}MnO{sub 4} (M = Ni, Zn, Cu; 0 < x < 1) were prepared at 120 °C by the inorganic polycondensation method. Phase composition and microstructure of each sample powder thus obtained were characterized by X-ray diffraction, X-ray fluorescence and scanning electron microscopy. Nanoparticles are well crystallized and uniformly distributed in both shape and size. Colloidal dispersions were stabilized in a low cost and environmentally friendly solvent solution. Spinel oxide thin films were then deposited on glass substrates by using the dip-coating technique. Their optical properties were measured in the 300–1100 nm wavelength range. Thin films show extremely good absorbance in the ultra-violet and blue regions. The highest absorbance observed in the red region was for x = 0.15 in zinc. A smaller direct band gap was determined when a low amount of doping M element was introduced in the cobalt and manganese spinel oxide material. - Highlights: • Pure complex spinel oxide nanoparticles synthesis at low T • Low cost method used to stabilize colloidal dispersions • Preparation of homogenous light absorber thin films by dip-coating • Adjustable optical properties and band gaps with the dopants.

  1. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Babaee, Saeed; Ashtiani, Fatemeh Shamsi [Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • Surface of magnesium particles was modified with Viton via solvent/non-solvent method. • FT-IR, SEM, EDX, Map analysis, and TG/DSC techniques were employed to characterize the coated particles. • Coating process factors were optimized by Taguchi robust design. • The importance of coating conditions on resistance of coated magnesium against oxidation was studied. - Abstract: The surface of magnesium particles was modified by coating with Viton as an energetic polymer using solvent/non-solvent technique. Taguchi robust method was utilized as a statistical experiment design to evaluate the role of coating process parameters. The coated magnesium particles were characterized by various techniques, i.e., Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and thermogravimetry (TG), and differential scanning calorimetry (DSC). The results showed that the coating of magnesium powder with the Viton leads to a higher resistance of metal against oxidation in the presence of air atmosphere. Meanwhile, tuning of the coating process parameters (i.e., percent of Viton, flow rate of non-solvent addition, and type of solvent) influences on the resistance of the metal particles against thermal oxidation. Coating of magnesium particles yields Viton coated particles with higher thermal stability (632 °C); in comparison with the pure magnesium powder, which commences oxidation in the presence of air atmosphere at a lower temperature of 260 °C.

  2. Process Optimization of EDM Cutting Process on Tool Steel using Zinc Coated Electrode

    Directory of Open Access Journals (Sweden)

    Hanizam H.

    2017-01-01

    Full Text Available In WEDM machining process, surface finish quality depends on intensity and duration of spark plasma. Electrode wire diameter has significant effect on the spark intensity and yet the studies on this matter still less. Therefore, the main objectives of this studies are to compare the different diameters of zinc coated and uncoated brass electrode on H13 tool steel surface roughness. The experiments were conducted on Sodick VZ300L WEDM and work piece material of tool steel AISI H13 block. Electrode of zinc coated brass with diameters of 0.1 mm, 0.2 mm, 0.25 mm and uncoated brass 0.2 mm were used. The surface roughness of cutting was measured using the SUR-FTEST SJ-410 Mitutoyo, surface roughness tester. The results suggest that better surface roughness quality can be achieved through smaller electrode wire diameter. The zinc coated improves flushing ability and sparks intensity resulting in better surface finish of H13 tool steel. New alloys and coating materials shall be experimented to optimized the process further.

  3. Dry coating of solid dosage forms: an overview of processes and applications.

    Science.gov (United States)

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  4. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    Science.gov (United States)

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  5. Tribological coating of titanium alloys by laser processing

    Science.gov (United States)

    Pang, Wang

    Titanium-based alloys have been used for aerospace materials for many years. Recently, these alloys are now being increasingly considered for automotive, industrial and consumer applications. Their excellent creep resistance, corrosion resistance and relative higher specific strength ratio are attractive for many applications. However, the main obstacle for the wide adoption of Ti alloys in various industries is their poor tribological properties. In slide wear, Ti deforms and adhesive wear readily occurs. Their poor tribological properties are mainly due to low hardness and absolute values of tensile and shear strength. Different surface modification techniques have been studied in order to improve the tribological characteristics of Ti alloys, i.e. PVD, nitrding, carburizing, boriding, plating etc. Coatings produced by these techniques have their own limitations such as thermal distortion and grain growth. A different approach is to introduce hard particles in the Ti alloy matrix to form a MMC coating, which has tailor-made hardness and wear resistance properties. Laser cladding or laser alloying techniques facilitate the fabrication of surface MMC on Ti alloys without thermal distortion to the substrate. In this project, the fabrication of hard and wear resistant layers of metal matrix composite on titanium alloys substrate by laser surface alloying was investigated. Powder mixtures of Mo and WC were used to form the MMC layer. By optimizing the processing parameters and pre-placed powder mixture compositions, surface MMC of different properties have been successfully fabricated on CP-Ti and Ti6A14V respectively. The structure and characteristics of the MMC surface were investigated by metallography, SEM, XRD, and E-DAX. It was found that the hardness of the laser alloyed Mo/WC MMC surface was 300% higher than that of the CP-Ti substrate Excellent metallurgical bonding with the MMC layer of the substrate has been achieved. The relative kinetic frictional tests

  6. The effect of irradiation process on the optical fiber coating

    Science.gov (United States)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei

    2018-03-01

    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  7. Wear monitoring of protective nitride coatings using image processing

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    2010-01-01

    -meter with up to 105 19 repetitive cycles, eventually leaving the embedded TiN signal layer uncovered at the bottom the wear scar. 20 The worn surface was characterized by subsequent image processing. A color detection of the wear scar with 21 the exposed TiN layer by a simple optical imaging system showed......A double-layer model system, consisting of a thin layer of tribological titanium aluminum nitride (TiAlN) on 17 top of titanium nitride (TiN), was deposited on polished 100Cr6 steel substrates. The TiAlN top-coatings 18 were exposed to abrasive wear by a reciprocating wear process in a linear tribo...... a significant increase up to a factor of 2 of 22 the relative color values from the TiAlN top layers to the embedded TiN signal layers. This behavior agrees 23 well with the results of reflectance detection experiment with a red laser optical system on the same system. 24 Thus we have demonstrated that image...

  8. Study progression in application of process analytical technologies on film coating

    Directory of Open Access Journals (Sweden)

    Tingting Peng

    2015-06-01

    Full Text Available Film coating is an important unit operation to produce solid dosage forms, thereby, the monitoring of this process is helpful to find problems in time and improve the quality of coated products. Traditional methods adopted to monitor this process include measurement of coating weight gain, performance of disintegration and dissolution test, etc. However, not only do these methods cause destruction to the samples, but also consume time and energy. There have recently emerged the applications of process analytical technologies (PAT on film coating, especially some novel spectroscopic and imaging technologies, which have the potential to real-time track the progress in film coating and optimize production efficiency. This article gives an overview on the application of such technologies for film coating, with the goal to provide a reference for the further researches.

  9. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  10. Optimizing the coating process for double-coated, wood-containing papers. Double toko chushitsushi no toko process no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Mori, T [Sumitomo Jukikai Valmet Ltd., Tokyo (Japan)

    1991-09-01

    Medium weight coat (MWC) paper is judged to be optimum for the heating setting offsetting rotary press and appropriate also for the offset printing. Representative printed matters to use MWC paper comprise, among others, sales promotion and high grade propagation purpose documents, and specialized magazines. Judging from the viewpoint of comparison between the one-layer coating and two-layer coating, effect of different coating methods, optimization in drying, etc., the two-layer coating is more advantageous than the one-layer coating in quality to keep the homogeneity also even after the printing. There are cases that the two-layer coating lowers the total cost for necessary constituent elements for the coating. The drying method of precoating, if made by an applicator roll, hardly influences the brightness and smoothness. For the precoating, the use of roll applicator gives a better brightness than that of short dwell. It was also known that the use of roll applicator solves problems raised by the increase in coated quantity due to the use of short dwell. 8 figs., 3 tabs.

  11. Performance of a dual-process PVD/PS tungsten coating structure under deuterium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Song, Jae-Min [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • D{sup +} irradiation performance of a dual-process PVD/PS W coating was evaluated. • Low-energy plasmas exposure of 100 eV D{sup +} with 1.17 × 10{sup 21} D/s{sup −1} m{sup 2} flux was applied. • After D ion irradiation, flakes were observed on the surface of the simple PS coating. • While, sub-μm size protrusions were observed for dual-process PVD/PS W coating. • Height of D spike in depth profile was lower for dual-process PVD/PS W coating. - Abstract: A dual-process coating structure was developed on a graphite substrate to improve the performance of the coating structure under anticipated operating condition of fusion devices. A thin multilayer W/Mo coating (6 μm) was deposited by physical vapor deposition (PVD) method with a variation of Mo interlayer thickness on plasma spray (PS) W coating (160 μm) of a graphite substrate panel. The dual-process PVD/PS W coatings then were exposed to 3.08 × 10{sup 24} D m{sup −2} of 100 eV D ions with a flux of 1.71 × 10{sup 21} D m{sup −2} s{sup −1} in an electron cyclotron resonance (ECR) chamber. After irradiation, surface morphology and D depth profiles of the dual-process coating were analyzed and compared to those of the simple PS W coating. Both changes in surface morphology and D retention were strongly dependent on the microstructure of surface coating. Meanwhile, the existence of Mo interlayer seemed to have no significant effect on the retention of deuterium.

  12. ENVIRONMENTAL AND ECONOMIC ASPECTS OF ANTICORROSION PROTECTION BY HOT-DIP GALVANIZED METHOD REBARS IN CONCRETE

    Directory of Open Access Journals (Sweden)

    Hegyi Andreea

    2015-05-01

    Full Text Available The implementation of the sustainable development concept is nowadays a key issue in almost all human activities. For the constructions domain an European strategy has already been elaborated. Among its goals are also the use of long lasting materials and the reduction of repair costs. This paper presents an interdisciplinary study concerning the efficiency of the use of hot-dip galvanized rebar for concrete structures. Experimental results about corrosion kinetics of coated and usual steel reinforcement embedded in concrete, subjected to chlorine ions attack, are analyzed. Electrochemical methods as chronoamperometry and linear polarization have been used. Corrosion potential values recorded for galvanized steel embedded in concrete indicate an uncertain corrosion activation process up to a rate of 2.5 % calcium chloride relative to concrete. For rates of 5% CaCl2 and more the corrosion process is activated. For unprotected steel bars embedded in concrete the corrosion activation process started at all calcium chloride studied rates and higher corrosion potential values has been registered than for the hot-dip galvanized ones, at the same rates. Economical assessments have been done using entire lifetime cost analysis of the reinforced concrete structures. Despite that the hotdip galvanization is a rather expansive procedure, when taking into account the whole expected life span, the use of zinc coating proves to be efficient both from structural and financial approaches.

  13. Simulation to coating weight control for galvanizing

    Science.gov (United States)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  14. Plural coated article and process for making same

    International Nuclear Information System (INIS)

    Dickie, R.A.; Cassatta, J.C.

    1977-01-01

    A radiation polymerizable protective coating composition or paint, coated articles bearing such a protective radiation polymerizable paint, which on a non-polymerizable solvent, pigment, initiator and particulate fillerfree basis consists essentially of a binder solution of: (1) between about 90 and about 10 parts of a thermoplastic vinyl polymer free of olefinic unsaturation and prepared from at least about 85 weight percent of monofunctional vinyl monomers: (2) between about 10 and about 90 parts of vinyl solvent monomers for said vinyl polymer, at least about 10 weight percent, preferably at least about 30 weight percent, of said solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures thereof; and (3) between about 0.05 and about 1.0 parts per 100 parts of the total of said thermoplastic vinyl polymer and said vinyl solvent monomers of a mono- or diester of phosphoric acid bearing one or more sites of vinyl unsaturation. The composition exhibits excellent quality and good adhesion to a variety of substrated, in particular metals, including vapor deposited metals. Preferred articles bearing such a coating are prepared by: applying a base coat to a substrate and curing the same; vapor depositing a coating of a metal over the surface of the base coat; and applying to and curing on the surface of the base coat; and applying to and curing on the surface of the deposited metal the radiation polymerizable topcoat, preferably with little or no pigment contained therein

  15. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  16. The Insulation of Copper Wire by the Electrostatic Coating Process.

    Science.gov (United States)

    1983-06-30

    Caster full production lines produce more uniform coating thicknesses. -18- U AM NC. IO C FWIO~k TX3M ..... ....... Z . A A I~ ~ 15X 7-., r - ’ r 15X... modification to meet specific usage requirements. t * -68- 482 5 APPENDIX CLIQUINITE’ COATING PRODU(:TS LIQUINITEE-COATING POWDERS FEP (Fluorinated Ethylene...Loss from Dissipation Factor (60 Hz-2xl0 9Hz) 0.2-1.2001 Revolving Disc, mg (60 Hz -2 x iO0 Hz) *CS 17 Wheel . 100 cycles 2.2 Surface Resistivity (250

  17. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  18. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    Science.gov (United States)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  19. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  20. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  1. Influence of the cooling method on the structure of 55AlZn coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mendala, J, E-mail: jacek.mendala@polsl.pl [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    In metallization processes, metals or metal alloys are used which have a low melting point and good anticorrosion properties. Moreover, they must form durable intermetallic compounds with iron or its alloys. The most common hot-dip metallization technology involves galvanizing, however, molten multi-component metal alloys are used as well. An addition of aluminium to the zinc bath causes an increase in corrosion resistance of the obtained coatings. The article presents results of tests of obtaining coatings by the batch hot-dip method in an 55AlZn bath. Kinetics of the coating growth in the tested alloys were determined in the changeable conditions of bath temperature, dip time and type of cooling. The structure of coatings and their phase composition were revealed. As a result of the tests performed, it has been found that an increase in total thickness of the coatings as a function of the dipping time at a constant temperature is almost of a parabolic nature, whereas an increase in the transient layer is of a linear nature. The structure was identified by the XRD analysis and the morphology of the coatings was tested by means of SEM. It has been found that the cooling process with the use of higher rates of cooling causes a size reduction of the structure in the outer layer and a reduction of thickness of both the intermediate diffusion layer and the whole coating by ca. 25 %.

  2. Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process

    International Nuclear Information System (INIS)

    Dixon, B.G.; Walsh, M.A. III; Phillips, P.G.; Morris, R.S.

    1995-01-01

    Thin amorphous films of ceramic capacitor materials were successfully deposited using sol-gel chemistry onto titanium wire using a continuous, computer controlled process. By repeatedly depositing and calcining very thin layers of material, smooth and even coats can be produced. Surface analyses revealed the layered nature of these thin coats, as well as the amorphous nature of the ceramic. The electrical properties of the better coatings, all composed of niobium, bismuth, zinc oxides, were then evaluated. copyright 1995 Materials Research Society

  3. Acid dip for dosemeter

    International Nuclear Information System (INIS)

    Stewart, J.C.; McWhan, A.F.

    1982-01-01

    Background signal in a PTFE based dosemeter caused by impurities in the PTFE and in the active component such as lithium fluoride is substantially reduced by treating the dosemeter with acid. The optimum treatment involves use of hydrofluoric acid at room temperature for approximately one minute, followed by thorough washing with methanol, and finally drying. This treatment is best applied after the original manufacture of the dosemeters. It may also be applied to existing dosemeters after they have been in use for some time. The treatment produces a permanent effect in reducing both the light induced signal and the non-light induced signal. The process may be applied to all types of dosemeter manufactured from PTFE or other plastics or resins which are able to resist brief exposure to acid. The treatment works particularly well with dosemeters based on PTFE and lithium fluoride. It is also applicable to dosemeters based on calcium sulphate, lithium borate and magnesium borate. Acids which may be used include hydrofluoric, hydrochloric, nitric, phosphoric and sulphuric. (author)

  4. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process.

    Science.gov (United States)

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S

    2018-07-01

    A direct imaging system (Eyecon TM ) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. Eyecon TM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. Eyecon TM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. Eyecon TM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by Eyecon TM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.

  5. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan

    2003-01-01

    The parameters with effect on maximum spray rate and maximum relative outlet air humidity when coating pellets in a fluidised bed were investigated. The tested variables include type of water based modified release film coating (Eudragit® NE 30D, Eudragit® RS 30D, Aquacoat ECD®) coating principle...... (top spray, bottom spray), inlet air humidity and type of pellets (sugar spheres, microcrystalline cellulose pellets). The maximum spray rate was not influenced by the coating principles. The highest spray rate was obtained for the film polymer with the lowest tackiness which is assumed...... to be the controlling factor. The type of pellets affected the maximum spray rate. A thermodynamic model for the coating process is employed throughout the process and not just during steady state. The thermodynamic model is incorporated into a new process control strategy. The process control strategy is based on in...

  6. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  7. Fluidization bed coating of copper bars with epoxy powder

    OpenAIRE

    Soh, Chiaw Min

    2014-01-01

    Fluidized bed coating (FBC) is a process where preheated material is dipped into a flowing liquid bed of powder. Although FBC has existed for more than half a century, however there is little knowledge about the fluidized bed design that gives excellent fluidization quality as well as reducing powder entrainment. The objectives of this thesis are to investigate the effect of two different types of distributor with different pressure drop on powder coating, hydrodynamics of fluidized bed coati...

  8. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  9. Effect of sol aging time on the anti-reflective properties of silica coatings templated with phosphoric acid

    Directory of Open Access Journals (Sweden)

    Wen Wen

    Full Text Available Silica anti-reflective coatings have been prepared by a sol–gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate. Keywords: Thin films, Anti-reflective coatings, Aging, Dip-coating, Sol–gel preparation

  10. Design and development on automated control system of coated fuel particle fabrication process

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2013-01-01

    With the development trend of the large-scale production of the HTR coated fuel particles, the original manual control system can not meet the requirement and the automation control system of coated fuel particle fabrication in modern industrial grade is needed to develop. The comprehensive analysis aiming at successive 4-layer coating process of TRISO type coated fuel particles was carried out. It was found that the coating process could be divided into five subsystems and nine operating states. The establishment of DCS-type (distributed control system) of automation control system was proposed. According to the rigorous requirements of preparation process for coated particles, the design considerations of DCS were proposed, including the principle of coordinated control, safety and reliability, integration specification, practical and easy to use, and open and easy to update. A complete set of automation control system for coated fuel particle preparation process was manufactured based on fulfilling the requirements of these principles in manufacture practice. The automated control system was put into operation in the production of irradiated samples for HTRPM demonstration project. The experimental results prove that the system can achieve better control of coated fuel particle preparation process and meet the requirements of factory-scale production. (authors)

  11. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  12. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  13. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    Science.gov (United States)

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  14. Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying

    International Nuclear Information System (INIS)

    Guilemany, J.M.; Sobolev, V.V.; Nutting, J.; Dong, Z.; Calero, J.A.

    1994-01-01

    The WC-Co powders can be used to produce good adhesive and wear resistant HVOF thermal spray coatings on steel and light alloys substrates. In order to understand the properties of this kind of coating, the phases which are present in the coatings and structure changes during post heat treatments have been investigated. Although the coating properties depend very much on the structure developed in the substrate-coating interfacial region it has not been yet investigated in detail. The present study is devoted to the experimental and theoretical analysis of this interfacial region. The structure characterization has been performed mainly through the use of transmission electron microscopy. To provide a theoretical investigation a realistic prediction model of the process has been developed and on its base the mathematical simulation of the substrate-coating thermal interaction has been undertaken

  15. Development of process technologies for improvement of electroless nickel coatings properties

    International Nuclear Information System (INIS)

    Barba-Pingarrón, A; Trujillo-Barragán, M; Hernandez-Gallegos, M A; Valdez-Navarro, R; Bolarín-Miró, A; Jesús, F Sánchez – de; Vargas-Mendoza, L; Molera-Sola, P

    2013-01-01

    This paper describes research and technology developments that enable to improve nickel electroless coating properties. This work deals with: (a) different methods in order to achieve Ni-P-Mo coatings. (b) Other development is related with coatings with addition of hard particles such as SiC, WC or Al 2 O 3 ,(c) Electroless nickel deposits on PBT and austempered ductile iron (ADI). (d) In addition, nickel coatings were deposited on powder metallic pieces and finally, electroless nickel coatings, in conjunction with layers from thermal spray process were formed. Characterization of all coatings by means of optical microscopy, scanning electron microscopy, micro-hardness, wear and corrosion tests were carried out. Results indicate positive increment in both mechanical and electrochemical properties which enhance field applications in Mexican industry.

  16. New weld coating process for directional horizontal drilling operations; Neues Schweissnaht-Beschichtungsverfahren fuer Horizontalbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Quast, M. [Denso GmbH, Leverkusen (Germany)

    2005-07-01

    Corrosion protective coatings of steel pipes laid by horizontal directional drilling are particularly stressed. Thermosetting compounds based on polyurethane or expoxides have proven their performance for the protection of welded joints of such pipes. The application of thermosetting joint coatings can currently be carried out in a lamination process, resulting in glass reinforced plastics coatings, or by spatula in case of polyurethane based materials. Both application procedures require a certain period of time and come along with drawbacks, which are typical for the application of reactive resins. This report describes a new procedure for the coating of welded joint areas of steel pipes with polyurethane reactive resins. By use of a special casing system the complications of applying the coating material by spatula are avoided. Consequently one can take complete advantage of using polyurethane coatings for HDD laid pipes without suffering from typical handling drawbacks. (orig.)

  17. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  18. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  19. Research progress of fabricating polyvinyl alcohol coating on plastic microsphere

    International Nuclear Information System (INIS)

    Su Lin; Chen Sufen; Liu Meifang; Zhang Zhanwen; Yao Hong; Li Bo; Liu Yiyang

    2012-01-01

    In the procedures of designing polystyrene-polyvinyl alcohol-CH (carbon and hydrogen elements) (PS-PVA-CH) triple-layer microspheres, there are many methods such as drop-tower technique, emulsion micro-encapsulation, dip (spin) coating, interfacial polycondensation, and spraying technique to prepare the PVA coating. Drop-tower technique, emulsion micro-encapsulation and dip (spin) coating are most-commonly used. The advantages, disadvantages and the research progress of the three methods are summarized in this paper. Emulsion micro-encapsulation is suitable for preparing double-layer microspheres of sizes smaller then 500 μm, with high survival ratio and good quality. However, the preparation process is easily influenced by artificial factors. Small-sized double-layer microspheres can also be prepared by the drop-tower technique, and the preparation period is short. But there are still some problems such as the difficulty in designing the droplet generator, uneven PVA coating and the difficulty in preparing large-sized microspheres. Dip (spin) coating technique can be used to prepare PS-PVA microspheres with sizes larger than 1000 μm, but the spread of PVA coating is affected by many factors in this method, and the prepared PVA coating is too thin and not uniform. (authors)

  20. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.

    Science.gov (United States)

    Kim, Byungsuk; Woo, Young-Ah

    2018-05-30

    In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding

  1. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating......In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...

  2. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    Science.gov (United States)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  3. Regeneration of FBGs during the HFCVD diamond-fiber coating process

    Science.gov (United States)

    Alberto, Nélia J.; Kalinowski, Hypolito J.; Neto, Victor F.; Nogueira, Rogério N.

    2014-08-01

    In this work, the regeneration of saturated fiber Bragg gratings during the diamond coating of the fiber is presented. Due to the high temperatures characteristic of the hot filament chemical vapor deposition (HFCVD) process (around 800 ºC), uniform fiber Bragg gratings (FBGs) are not appropriate to be coated. Nevertheless, regenerated Bragg gratings are a suitable solution for this drawback. Its production process involves the inscription of a saturated FBG followed by a time consuming heat treatment. Here it is proposed to take advantage of the high temperatures characteristic of the HFCVD process to simultaneous regenerate the grating and coat the fiber with diamond.

  4. PENGARUH PENGGUNAAN LAPISAN EDIBEL (EDIBLE COATING, KALSIUM KLORIDA, DAN KEMASAN PLASTIK TERHADAP MUTU NANAS (Ananas comosus Merr. TEROLAH MINIMAL

    Directory of Open Access Journals (Sweden)

    Indera Sakti Nasution

    2012-06-01

    Full Text Available The problem that often occurs before consuming fresh pineapple is it takes a long time to peel the pineapple. Minimal processing of pineapple is one of the solutions for practical use by consumers who would like to consume it fresh. However, minimally processed pineapple will be easily damaged and has short shelf life. The aims of this study are to determine the quality of minimally processed pineapple coated with edible coating, effect of calcium chloride dipping, as well as plastic packaging at low temperatures storage. Combination of Cassava starch and glycerol used as edible coating for pineapple dipped in CaCl2for 1 minute and 2 minutes, respectively. Products were packaged using polyethylene, polypropylene, and without packaging. It is obtained that dipping the product in CaCl2 for 2 minutes and packaging it using polypropylene (plastic can prolong the shelf life of minimally processed pineapple stored at 5°C up to 8 days.

  5. METHOD OF PROTECTIVELY COATING URANIUM

    Science.gov (United States)

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  6. The First Post-Kepler Brightness Dips of KIC 8462852

    Science.gov (United States)

    Boyajian, Tabetha. S.; Alonso, Roi; Ammerman, Alex; Armstrong, David; Asensio Ramos, A.; Barkaoui, K.; Beatty, Thomas G.; Benkhaldoun, Z.; Benni, Paul; Bentley, Rory O.; Berdyugin, Andrei; Berdyugina, Svetlana; Bergeron, Serge; Bieryla, Allyson; Blain, Michaela G.; Capetillo Blanco, Alicia; Bodman, Eva H. L.; Boucher, Anne; Bradley, Mark; Brincat, Stephen M.; Brink, Thomas G.; Briol, John; Brown, David J. A.; Budaj, J.; Burdanov, A.; Cale, B.; Aznar Carbo, Miguel; Castillo García, R.; Clark, Wendy J.; Clayton, Geoffrey C.; Clem, James L.; Coker, Phillip H.; Cook, Evan M.; Copperwheat, Chris M.; Curtis, J. L.; Cutri, R. M.; Cseh, B.; Cynamon, C. H.; Daniels, Alex J.; Davenport, James R. A.; Deeg, Hans J.; De Lorenzo, Roberto; de Jaeger, Thomas; Desrosiers, Jean-Bruno; Dolan, John; Dowhos, D. J.; Dubois, Franky; Durkee, R.; Dvorak, Shawn; Easley, Lynn; Edwards, N.; Ellis, Tyler G.; Erdelyi, Emery; Ertel, Steve; Farfán, Rafael. G.; Farihi, J.; Filippenko, Alexei V.; Foxell, Emma; Gandolfi, Davide; Garcia, Faustino; Giddens, F.; Gillon, M.; González-Carballo, Juan-Luis; González-Fernández, C.; González Hernández, J. I.; Graham, Keith A.; Greene, Kenton A.; Gregorio, J.; Hallakoun, Na’ama; Hanyecz, Ottó; Harp, G. R.; Henry, Gregory W.; Herrero, E.; Hildbold, Caleb F.; Hinzel, D.; Holgado, G.; Ignácz, Bernadett; Ilyin, Ilya; Ivanov, Valentin D.; Jehin, E.; Jermak, Helen E.; Johnston, Steve; Kafka, S.; Kalup, Csilla; Kardasis, Emmanuel; Kaspi, Shai; Kennedy, Grant M.; Kiefer, F.; Kielty, C. L.; Kessler, Dennis; Kiiskinen, H.; Killestein, T. L.; King, Ronald A.; Kollar, V.; Korhonen, H.; Kotnik, C.; Könyves-Tóth, Réka; Kriskovics, Levente; Krumm, Nathan; Krushinsky, Vadim; Kundra, E.; Lachapelle, Francois-Rene; LaCourse, D.; Lake, P.; Lam, Kristine; Lamb, Gavin P.; Lane, Dave; Lau, Marie Wingyee; Lewin, Pablo; Lintott, Chris; Lisse, Carey; Logie, Ludwig; Longeard, Nicolas; Lopez Villanueva, M.; Whit Ludington, E.; Mainzer, A.; Malo, Lison; Maloney, Chris; Mann, A.; Mantero, A.; Marengo, Massimo; Marchant, Jon; Martínez González, M. J.; Masiero, Joseph R.; Mauerhan, Jon C.; McCormac, James; McNeely, Aaron; Meng, Huan Y. A.; Miller, Mike; Molnar, Lawrence A.; Morales, J. C.; Morris, Brett M.; Muterspaugh, Matthew W.; Nespral, David; Nugent, C. R.; Nugent, Katherine M.; Odasso, A.; O’Keeffe, Derek; Oksanen, A.; O’Meara, John M.; Ordasi, András; Osborn, Hugh; Ott, John J.; Parks, J. R.; Rodriguez Perez, Diego; Petriew, Vance; Pickard, R.; Pál, András; Plavchan, P.; Pollacco, Don; Pozo Nuñez, F.; Pozuelos, F. J.; Rau, Steve; Redfield, Seth; Relles, Howard; Ribas, Ignasi; Richards, Jon; Saario, Joonas L. O.; Safron, Emily J.; Sallai, J. Martin; Sárneczky, Krisztián; Schaefer, Bradley E.; Schumer, Clea F.; Schwartzendruber, Madison; Siegel, Michael H.; Siemion, Andrew P. V.; Simmons, Brooke D.; Simon, Joshua D.; Simón-Díaz, S.; Sitko, Michael L.; Socas-Navarro, Hector; Sódor, Á.; Starkey, Donn; Steele, Iain A.; Stone, Geoff; Strassmeier, Klaus G.; Street, R. A.; Sullivan, Tricia; Suomela, J.; Swift, J. J.; Szabó, Gyula M.; Szabó, Róbert; Szakáts, Róbert; Szalai, Tamás; Tanner, Angelle M.; Toledo-Padrón, B.; Tordai, Tamás; Triaud, Amaury H. M. J.; Turner, Jake D.; Ulowetz, Joseph H.; Urbanik, Marian; Vanaverbeke, Siegfried; Vanderburg, Andrew; Vida, Krisztián; Vietje, Brad P.; Vinkó, József; von Braun, K.; Waagen, Elizabeth O.; Walsh, Dan; Watson, Christopher A.; Weir, R. C.; Wenzel, Klaus; Westendorp Plaza, C.; Williamson, Michael W.; Wright, Jason T.; Wyatt, M. C.; Zheng, WeiKang; Zsidi, Gabriella

    2018-01-01

    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in 2015 October, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1%–2.5% dips, named “Elsie,” “Celeste,” “Skara Brae,” and “Angkor,” which persist on timescales from several days to weeks. Our main results so far are as follows: (i) there are no apparent changes of the stellar spectrum or polarization during the dips and (ii) the multiband photometry of the dips shows differential reddening favoring non-gray extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale ≪1 μm, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term “secular” dimming, which may be caused by independent processes, or probe different regimes of a single process.

  7. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Kyotaro Kawaguchi

    2017-11-01

    Full Text Available This study investigated the surface modification of orthodontic stainless steel using electrophoretic deposition (EPD of bioactive glass (BG. The BG coatings were characterized by spectrophotometry, scanning electron microscopy with energy dispersive X-ray spectrometry, and X-ray diffraction. The frictional properties were investigated using a progressive load scratch test. The remineralization ability of the etched dental enamel was studied according to the time-dependent mechanical properties of the enamel using a nano-indentation test. The EPD process using alternating current produced higher values in both reflectance and lightness. Additionally, the BG coating was thinner than that prepared using direct current, and was completely amorphous. All of the BG coatings displayed good interfacial adhesion, and Si and O were the major components. Most BG-coated specimens produced slightly higher frictional forces compared with non-coated specimens. The hardness and elastic modulus of etched enamel specimens immersed with most BG-coated specimens recovered significantly with increasing immersion time compared with the non-coated specimen, and significant acid-neutralization was observed for the BG-coated specimens. The surface modification technique using EPD and BG coating on orthodontic stainless steel may assist the development of new non-cytotoxic orthodontic metallic appliances having satisfactory appearance and remineralization ability.

  8. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    Science.gov (United States)

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  10. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    Science.gov (United States)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  11. SiC Coating Process Development Using H-PCS in Supercritical CO2

    International Nuclear Information System (INIS)

    Park, Kwangheon; Jung, Wonyoung

    2013-01-01

    We tried SiC coating using supercritical fluids. Supercritical fluids are the substance exists over critical temperature and critical pressure. It is hard to expect that there would be a big change as single-solvent as the fluid is incompressible and the space between the molecules is almost steady. But the fluid which is being supercritical can bring a great change when it is changed its pressure near its critical point, showing its successive change in the density, viscosity, diffusion coefficient and the polarity. We have tested the 'H-PCS into SiC' coating experiment with supercritical CO 2 which has the high penetration, low viscosity as well as the high density and the high solubility that shows the property of the fluid. This experiment is for SiC coating using H-PCS in supercritical CO 2 . It shows the clear difference that the penetration of H-PCS into the SiC between dip coating method and using the supercritical CO 2 If we can make a metal cladding with SiC composites as a protective layer, the use of the cladding will be very broad and diverse. Inherent safe nuclear fuels can be possible that can stand under severe accident conditions. SiC is known to be one of a few materials that maintain very corrosion-resistant properties under tough corrosive environments. The metal cladding with SiC composites as a protective layer will be a high-tech product that can be used in many applications including chemical, material, and nuclear engineering and etc

  12. Inhibition of the corrosion of mild steel by phosphate conversion coatings

    International Nuclear Information System (INIS)

    Ashraf, W.; Khalid, S.; Rashid, A.; Arshad, M.

    1993-01-01

    Phosphating is the treatment of a metal surface to provide a coating of insoluble metal phosphate crystals which strongly adhere to the base material. Such coatings affect the appearance, surface hardness, and electrical conductivity of the metal. Phosphating is major industrial importance in the production of iron and steel surfaces, e.g., in automotive and appliance industries. The present article discusses a novel description of process controlling parameters. The process may be termed as hot phosphate (95-100 deg. C) and it employs the use of low cost chemicals and entirely new accelerator. Effective layer thickness is found to be 0.72 mg/cm /sup 2/ and can withstand moist and mild chemical conditions. The thickness of coating depends upon dipping time and temperature of the working bath. It seems to increase with increasing dipping time but then reaches a maxima. Any more dipping causes stripping and uneven coating layers. In our system most appropriate dipping time was found to be 45 minutes. The stability and completeness of coating was tested by Ferro Test and Tape Pull Test and was found to be satisfactory. The quality control parameters, such as free and total acidity have been controlled for optimum coating thickness and stability. (author)

  13. 9 CFR 72.25 - Dipping methods.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Dipping methods. 72.25 Section 72.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CATTLE § 72.25 Dipping methods. Dipping is accomplished by thoroughly wetting the entire skin by either...

  14. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    Science.gov (United States)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  15. Metal monitoring for process control of laser-based coating removal

    Science.gov (United States)

    Fraser, Mark E.; Hunter, Amy J.; Panagiotou, Thomai; Davis, Steven J.; Freiwald, David A.

    1999-12-01

    Cost-effective and environmentally-sound means of paint and coatings removal is a problem spanning many government, commercial, industrial and municipal applications. For example, the Department of Energy is currently engaged in removing paint and other coatings from concrete and structural steel as part of decommissioning former nuclear processing facilities. Laser-based coatings removal is an attractive new technology for these applications as it promises to reduce the waste volume by up to 75 percent. To function more efficiently, however, the laser-based systems require some form of process control.

  16. Conversion Coatings Produced on AZ61 Magnesium Alloy by Low-Voltage Process

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l and KF (300 g/l using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.

  17. Recent advances in Pt coating of microspheres by a batch magnetron sputtering process

    International Nuclear Information System (INIS)

    Hsieh, E.J.; Meyer, S.F.

    1980-01-01

    Some proposed inertial confinement fusion targets require high-Z, high density metal coatings on glass microspheres. Platinum, which satisfies the high-Z and density requirements, can be coated onto microspheres with a batch magnetron sputtering process incorporating oxygen as a dopant gas to prevent the microspheres from sticking. This paper outlines recent progress in three areas: First, the coating process has been improved; second, the oxygen content and resistivity of the oxygen doped platinum films are analyzed; and third, the roles oxygen may play in reducing microsphere sticking during sputtering are discussed in regard to cold welding, Van der Waals bonding, electrostatic sticking, and sintering

  18. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    Science.gov (United States)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-09-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  19. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Science.gov (United States)

    2010-07-01

    ... works resulting from the operations in which steel is coated with zinc, terne metal, or other metals by the hot dip process, and those rinsing operations associated with that process. (b) The BPT and BAT... facilities achieving, during periods of normal production, zinc discharge levels more stringent than those...

  20. A Novel Nonelectrolytic Process for Chromium and Nickel Coating

    Science.gov (United States)

    2015-06-01

    chromium (CrVI) has been regarded as the “ gold standard” against corrosion in military applications for decades [2]. Its uses range from electronics to...silver or gold . Furthermore, these researchers discovered that for centuries, the metal plating industry was dominated by mercury-based coating...generation of metal and metal alloy particles, including nanoparticles, from a physical mixture of metal nitrate, oxide or hydroxide species and urea. This

  1. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  2. Influence of process variables on permeability and anisotropy of Biso-coated HTGR fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.; Thiele, B.A.

    1977-11-01

    The effect of several important process variables on the fraction of defective particles and anisotropy of the low-temperature isotropic (LTI) coating layer was determined for Biso-coated HTGR fuel particles. Process variables considered are deposition temperature, hydrocarbon type, diluent type, and percent diluent. The effect of several other variables such as coating rate and density that depend on the process variables were also considered in this analysis. The fraction of defective particles was controlled by the dependent variables coating rate and LTI density. Coating rate was also the variable controlling the anisotropy of the LTI layer. Diluent type and diluent concentration had only a small influence on the deposition rate of the LTI layer. High-quality particles in terms of anisotropy and permeability can be produced by use of a porous plate gas distributor if the coating rate is between 3 and 5 μm/min and the coating density is between about 1.75 and 1.95 g/cm 3

  3. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  4. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  5. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    Science.gov (United States)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  6. Investigation of calcium phosphate coatings for biomedical applications

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Muhammad Jamal Md Isa; Mohamad Abd Razak; Hyzan Mohd Yusof

    1999-01-01

    Calcium phosphate is the main constituent of our bone and tooth minerals. The use of this bioactive material for coating implant such as artificial joint prosthesis, therefore, can promote biological fixation and enhance biocompatibility. Our initial work has been focused on the evaluation of experimental conditions of coating preparation and the effects of post-deposition calcium phosphate coatings on stainless steel substrates. The coating layers were produced by the precipitation technique and coatings were carried out in sol-gel by the dipping method. For comparison purposes a wet method was used to obtain a fine calcium phosphate ceramic powder for fabrication of microcrystal suspension used as a coating material. Scanning electron microscopy (SEM), energy dispersive microanalysis (EDS), energy dispersive x-ray fluorescence (EDXRF) and x-ray diffraction (XRD) were used to characterise the morphology, chemical composition and structure of the coatings. The results showed that the dip coating of stainless steel substrates using viscous solutions lead to the formation of porous calcium phosphate layers. These results suggested that fabrication of bioactive calcium phosphate coatings using this route offers significant advantages over the currently used methods due to considerably lower temperature process involved and may produce better result for substrates with complex shapes

  7. Process and Formulation Strategies to Improve Adhesion of Nanoparticulate Coatings on Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jutta Hesselbach

    2018-04-01

    Full Text Available The use of ceramic nanoparticles in coatings can significantly improve their mechanical properties such as hardness, adhesion to substrate, and scratch and abrasion resistance. A successful enhancement of these properties depends strongly on the coating formulation used, and the subsequent structure formed during coating. The aim of the present work was to enhance the adhesion between nanoparticulate coatings and stainless-steel substrates. A covalent particle structure was formed and better mechanical properties were achieved by modifying alumina nanoparticles, as well as substrates, with 3-aminopropyltriethoxysilane and by using a formulation consisting of solvent, modified particles, and bisphenol-A-diglycidylether as cross-linking additive. In addition to the adhesion force needed to remove the coating from the substrate, the type of failure (adhesive or cohesive was characterized to gain a deeper understanding of the structure formation and to identify interdependencies between process, formulation, and coating structure properties. The modification process and the formulation composition were varied to achieve a detailed conception of the relevant correlations. By relating the results to other structural properties, such as the theoretical porosity and thickness, it was possible to understand the formation of the coating structure in more detail.

  8. Microstructural evolution of aluminide coatings on Eurofer during heat treatments

    International Nuclear Information System (INIS)

    Bhanumurthy, K.; Krauss, W.; Konys, J.

    2011-01-01

    Development of ceramic coatings are essential for the realization of Demo fusion reactor beyond ITER. These functional coatings have to be stable at high temperatures, provide insulating coatings to reduce MHD effects and also act as corrosion barriers to reduce tritium permeation. Some of important development of high temperature coatings are CVD process, powder slurry coatings, hot-dip aluminization and plasma detonation jet processes. Recently Galvono-Al (ECA) process is being used for depositing Al from organic electrolyte, where Al is existing as an toluol-based Al(C x H y ) complex. The deposit is performed under Ar cover gas at 100 deg C with a deposit rate of 10-12 μm/hr. This process is suitable for coating large and complex shaped assemblies and is a well established industrial process for coating Al for wide range of applications including automobile industry. In order to study the effect of high temperature on these coatings, few Al coated on Eurofer specimens were obtained from M/s. Rasant-Alcotec, Germany. The thickness of these coating is around 20 μm. The objective of the presents studies is to subject these coatings to standard heat treatment schedule of Eurofer and study the evolution of microchemistry and microstructure

  9. Template-directed formation of functional complex metal-oxide nanostructures by combination of sol-gel processing and spin coating

    International Nuclear Information System (INIS)

    Choi, Y.C.; Kim, J.; Bu, S.D.

    2006-01-01

    We report the template-based formation of functional complex metal-oxide nanostructures by a combination of sol-gel processing and spin coating. This method employs the spin-coating of a sol-gel solution into an anodic aluminum oxide membrane (SSAM). Various metal-oxide nanowires and nanotubes with a high aspect-ratio were prepared. The aspect-ratios of the PbO 2 nanowires and Pb(Zr 0.52 Ti 0.48 )O 3 nanowires were about 300 and 400, respectively, and their diameters were about 50 nm. The fabricated PbTiO 3 nanotubes have a relatively constant wall thickness of about 20 nm with an outer diameter of about 60 nm. The deposition time for all of the fabricated metal-oxide nanowires and nanotubes is less than 120 s, which is far shorter than those required in both the sol-gel dipping and sol-gel electrophoretic methods. These results indicate that the SSAM method can be a versatile pathway to prepare functional complex metal-oxide nanowires and nanotubes with a high aspect-ratio. The possible formation process for the one-dimensional nanostructures by SSAM is discussed

  10. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  11. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.

    2017-11-01

    Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  13. Cube-textured metal substrates for reel-to-reel processing of coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian

    This thesis presents the results of a study aimed at investigating important fabrication aspects of reel-to-reel processing of metal substrates for coated conductors and identifying a new substrate candidate material with improved magnetic properties. The eect of mechanical polishing on surface...... texture and the fraction of low angle grain boundaries. Finally, a Ni-5Cu-5W substrate may be a good candidate material as a substrate in future coated conductors....

  14. Ecologically sustainable coating technology. BehrOxal process; Oekologisch nachhaltige Beschichtungstechnologie. BehrOxal-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-10-15

    Since 1st July, 2007, any more hexavalent chromium (chromium(VI)) has to be used in vehicles. Two years ago, Behr GmbH and Co. KG (Stuttgart, Federal Republic of Germany) developed a new procedure in order to coat evaporators in air conditioners perfectly chrome-free. Since one year, the coating process is used serially. The resonance of the customers is positively throughout - so the manufacturer.

  15. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    Science.gov (United States)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  16. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  17. Electrochemical corrosion behaviour of nickel chromium-chromium carbide coating by HVOF process

    Science.gov (United States)

    Amudha, A.; Nagaraja, H. S.; Shashikala, H. D.

    2018-04-01

    To overcome the corrosion problem in marine industry, coatings are one of the most economical solutions. In this paper, the corrosion behaviour of 25(NiCr)-75Cr3C2 cermet coating on low carbon steel substrate by HVOF process is studied. Different phases such as Cr7C3 and Cr3C2, along with Ni and chromium oxide(Cr3O2) constituents present in the coating were revealed by X-Ray Diffraction (XRD) analysis. The morphology of the coating obtained by scanning electron microscope (SEM) gave confirmation for the XRD analysis. Electrochemical corrosion techniques such as Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) were used to study the corrosion behaviour of the cermet in 3.5wt% NaCl electrolyte solution. The corrosion current density of the coated sample and substrate were found to be 6.878µA/cm-2 and 21.091µA/cm-2 respectively. The Nyquist Impedance spectra were used to derive an equivalent circuit to analyze the interaction between the coating and electrolyte. The Bode Impedance plots obtained by EIS for the coating showed a typical passive material capacitive behaviour, indicated by medium to low frequency with phase angle approaching -60o, suggesting that a stable film is formed on the tested material in the electrolyte used.

  18. Identification of Intermetallic Compounds and Its Formation Mechanism in Boron Steel Hot-Dipped in Al-7 wt.% Mn Alloy

    Directory of Open Access Journals (Sweden)

    Sung-Yun Kwak

    2017-12-01

    Full Text Available In laser welding and hot stamping Al-Si-coated boron steel, there is a problem that the strength of the joint is lowered due to ferrite formation in the fusion zone. The purpose of this study is to develop an Al-7 wt.% Mn hot-dip coating in which Mn, an austenite stabilizing element, replaces the ferrite stabilizing element Si. The nucleation and formation mechanism of the reaction layer was studied in detail by varying the dipping time between 0 and 120 s at 773 °C. The microstructure and phase constitution of the reaction layer were investigated by various observational methods. Phase formation is discussed using a phase diagram calculated by Thermo-CalcTM. Under a 30 s hot-dipping process, no reaction occurred due to the formation of a Fe3O4 layer on the steel surface. The Fe3O4 layer decomposed by a reduction reaction with Al-Mn molten alloy, constituent elements of steel dissolved into a liquid, and the reaction-layer nucleus was formed toward the liquid phase. A coated layer consists of a solidified layer of Al and Al6Mn and a reactive layer formed beneath it. The reaction layer is formed mainly by inter-diffusion of Al and Fe in the solid state, which is arranged on the steel in the order of Al11Mn4 → FeAl3 (θ → Fe2Al5 (η phases, and the Fe3AlC (κ in several nm bands formed at the interface between the η-phase and steel.

  19. Fluidized bed reactor for processing particles coated with carbon

    International Nuclear Information System (INIS)

    Marschollek, M.; Simon, W.; Walter, C.

    1978-01-01

    The carbon coating of production returns of these particles first has to be removed before the heavy metal core released can be reprocessed. For reasons of criticality, removal of burnt-up particles downwards must be possible in the fluidized bed reactor even if the reactor diameter is greater than 800 mm, and the material temperatures must not exceed 650 0 C. It consists of an upper cylindrical and a lower conical part, where, according to the invention, the gas distributor heads in the conical part are situated in several planes above one another for the fluidisation and combustion gas and where they are evently distributed over the reactor crossection, so that an even flow profile is achieved over the reactor cross section. (HP) [de

  20. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  1. Process for producing a coating composition. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T; Harada, H; Kobayashi, S; Nakamoto, H; Sunano, K

    1968-07-19

    An easily hardenable acrylic coating composition is produced by irradiation with low energy electron beams to economize the industrial application of the composition. A polymer with molecular weights in the 5,000 to 500,000 range is composed of 1 to 40% by weight of a vinyl monomer containing a glycidyl radical, 30 to 99% of a methacrylic monomer and 0 to 69% of other copolymerizable vinyl monomers. This polymer dissolves in a monomer containing at least 30% of an acrylic monomer and 70% of other vinyl monomers. The reaction takes place between 0.1 to 1.0 mole of vinyl monomer containing a carboxyl radical and one mole of glycidyl radical in the solution. In an embodiment, 17.5% by weight of glycidyl methacrylate and 82.5% of alkyl acrylate are polymerized in suspension in the presence of a catalyst to form a bead like polymer with molecular weights in the 5,000 to 500,000 range. After 120 parts of the bead like polymer are dissolved in 180 parts of the acrylic monomer in the presence of a polymerization inhibitor by heating, 22 parts of ..cap alpha.., ..beta..- unsaturated monocarboxylic acid are added to the solution to react with the glycidyl radical, whereby a non-solvent type coating material containing the polymer having a vinyl radical side chain is produced. In the place of the catalyst, electron beams can be used at an energy level of 0.1 to 20 MeV. The dose rate may be in the range of 0.1 to 2.0 Mrad/sec.

  2. DIPS space exploration initiative safety

    International Nuclear Information System (INIS)

    Dix, T.E.

    1991-01-01

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issues were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept

  3. Formation of coatings from a liquid phase on the surface of iron-base alloys

    Directory of Open Access Journals (Sweden)

    A. Tatarek

    2008-12-01

    Full Text Available The study discloses the present state of the art regarding the technology and investigations of the phenomena that take place during the formation and growth of aluminum and zinc coatings hot-dip formed on iron products. In its cognitive aspect, the study offers an in-depth analysis of the partial processes that proceed in metal bath at the solid body – liquid metal interface. It is expected that the present study will help in a more detailed description of the respective phenomena and in full explanation of the mechanism of the coating growth, taking as an example the growth of aluminum coatings. The obtained results can serve as a background for some general conclusions regarding the thickness evolution process in other hot-dip coatings.

  4. Application of process analytical technology in tablet process development using NIR spectroscopy : Blend uniformity, content uniformity and coating thickness measurements

    NARCIS (Netherlands)

    Moes, Johannes J; Ruijken, Marco M; Gout, Erik; Frijlink, Henderik W; Ugwoke, Michael I

    2008-01-01

    Near-infrared (NIR)spectroscopy was employed as a process analytical technique in three steps of tabletting process: to monitor the blend homogeneity, evaluate the content uniformity of tablets and determine the tablets coating thickness. A diode-array spectrometer mounted on a lab blender (SP15 NIR

  5. Synthesis and characterization of carbon coated nanoparticles produced by a continuous low-pressure plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Vineet; Neergat, Manoj [Indian Institute of Technology Bombay, Department of Energy Science and Engineering (India); Bhandarkar, Upendra, E-mail: bhandarkar@iitb.ac.in [Indian Institute of Technology Bombay, Department of Mechanical Engineering (India)

    2011-09-15

    Core-shell nanoparticles coated with carbon have been synthesized in a single chamber using a continuous and entirely low-pressure plasma-based process. Nanoparticles are formed in an argon plasma using iron pentacarbonyl Fe(CO){sub 5} as a precursor. These particles are trapped in a pure argon plasma by shutting off the precursor and then coated with carbon by passing acetylene along with argon as the main background gas. Characterization of the particles was carried out using TEM for morphology, XPS for elemental composition and PPMS for magnetic properties. Iron nanoparticles obtained were a mixture of FeO and Fe{sub 3}O{sub 4}. TEM analysis shows an average size of 7-14 nm for uncoated particles and 15-24 nm for coated particles. The effect of the carbon coating on magnetic properties of the nanoparticles is studied in detail.

  6. APPLICATION OF ANTIOXIDANTS AND EDIBLE STARCH COATING TO REDUCE BROWNING OF MINIMALLY - PROCESSED CASSAVA

    Directory of Open Access Journals (Sweden)

    DANIEL GOMES COELHO

    2017-01-01

    Full Text Available This study aimed to evaluate the quality of minimally - processed cassava treated with antioxidants and a starch - based edible coating. Cassava roots were washed, cooled, immersed in cold water, peeled and then cut. Root pieces were then immersed in a chloride solution, centrifuged, and subsequently immersed in either a starch suspension (3%, a solution containing antioxidants (3% citric acid and 3% ascorbic acid, or in both the coating and antioxidant solutions. Coated root pieces were dried at 18 ± 2°C for 1 hour, then packaged into polypropylene bags (150 g per pack and kept at 5 ± 2°C for 15 days, and assessed every 3 days. A completely randomized design was used in a 4 × 6 factorial consisting of the treatment (control, coating, antioxidant, or coating and antioxidant and the storage period (0, 3 6, 9, 12 or 15 days, with three replicates in each group. The pH, blackened area and peroxidase and polyphenol oxidase activities of the cassava was reduced in treatments containing antioxidants and the scores of visual analysis and phenolic content were higher. Therefore, treatment with antioxidants was effective for reducing browning in minimally - processed cassava, retaining the quality of cassava pieces stored for 15 days at 5 ± 2°C. The combination of antioxidants and the edible coating showed no improvement compared to treatment with antioxidants alone.

  7. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  8. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  9. Protocol for the microbial degradation of coumaphos from cattle dip

    International Nuclear Information System (INIS)

    Mulbry, W.; Karns, J.

    1997-01-01

    Insecticide wastes generated from livestock dipping operations are well suited for biodegradation processes since these wastes are concentrated, contained, and have no other significant toxic components. About 400,000 L of cattle dip wastes containing approximately 1500 mg/L of the organophosphate coumaphos are generated yearly along the Mexican border from a USDA program designed to control disease carrying cattle ticks. Use of unlined evaporation pits for the disposal of these wastes has resulted in highly contaminated soils underlying these sites. Previous work has shown that microbial consortia present in selected dip wastes can be induced to mineralize coumaphos. Our laboratory results show that these consortia are able to colonize plastic fibers in trickling biofilters and can be used in these filters to quickly metabolize coumaphos from dip wastes. A field scale biofilter capable of treating 15,000 litre batches of dip waste was used to reduce the coumaphos concentration in two successive 11,000 litre batch trials from 2000 mg/L to 10 mg/L in approximately 14 d. (author)

  10. Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: A mechanistic view.

    Science.gov (United States)

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2016-02-29

    Compaction of multiple-unit pellet system (MUPS) tablets has been extensively studied in the past few decades but with marginal success. This study aims to investigate the formulation and process strategies for minimizing pellet coat damage caused by compaction and elucidate the mechanism of damage sustained during the preparation of MUPS tablets in a rotary tablet press. Blends containing ethylcellulose-coated pellets and cushioning agent (spray dried aggregates of micronized lactose and mannitol), were compacted into MUPS tablets in a rotary tablet press. The effects of compaction pressure and dwell time on the physicomechanical properties of resultant MUPS tablets and extent of pellet coat damage were systematically examined. The coated pellets from various locations at the axial and radial peripheral surfaces and core of the MUPS tablets were excavated and assessed for their coat damage individually. Interestingly, for a MUPS tablet formulation which consolidates by plastic deformation, the tablet mechanical strength could be enhanced without exacerbating pellet coat damage by extending the dwell time in the compaction cycle during rotary tableting. However, the increase in compaction pressure led to faster drug release rate. The location of the coated pellets in the MUPS tablet also contributed to the extent of their coat damage, possibly due to uneven force distribution within the compact. To ensure viability of pellet coat integrity, the formation of a continuous percolating network of cushioning agent is critical and the applied compaction pressure should be less than the pellet crushing strength. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Thick metallic coatings produced by coaxial and side laser cladding : Processing and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.T.M.

    2010-01-01

    Cobalt and iron-based, defect-free coatings with thicknesses from 1 to 3.3. mm were created by a laser cladding process on different steel substrates. Extensive laser cladding experiments with a gradual change of laser power were used to study relations between main processing parameters and

  12. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    Full Text Available Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC and low and high density polyethylene (LDPE/HDPE, nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD. Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM. The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM. The effect of important parameters such as magnetic parameter Mi, the dilatant constant α, the Pseodoplastic constant β, the radii ratio δ, the pressure gradient Ω, the speed of fiber optics V, and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero. Keywords: Non-Newtonian fluid, Oldroyd 8-constant fluid, MHD flow, Double-layer fiber coating, OHAM, ADM, Wet-on-wet coating process

  13. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  14. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  15. Structural analysis of CdS thin films obtained by multiple dips of oscillating chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Lazos, C.D. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Rosendo, E., E-mail: erosendo@siu.buap.m [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Ortega, M. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Oliva, A.I. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico); Tapia, O.; Diaz, T.; Juarez, H.; Garcia, G. [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Rubin, M. [Facultad de Ciencias de la Computacion, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico)

    2009-11-25

    Highly oriented CdS thin films with thicknesses greater than 1 mum were deposited by multiple dips, using oscillating chemical bath deposition (OCBD) at the bath temperature of 75 deg. C, and deposition time ranging from 15 to 75 min for a single dip. Samples with different thickness were prepared by repeating the deposition process for two and three times. The films deposited by a single dip have the alpha-greenockite structure showing the (0 0 2) as preferred orientation, as indicated by the X-ray diffraction measurements. This notable characteristic is preserved in the samples obtained from two or three dips. The crystallite size for the samples deposited by a single dip depends on the deposition time, because it varied from 23 to 37 nm as the deposition time increased. Nevertheless for samples deposited by two and three dips, the grain size shows no noticeable change, being about 22 nm.

  16. Influence of monomer on structure, processing and application characteristics of UV curable urethane acrylate composite coatings

    International Nuclear Information System (INIS)

    Grigale-Sorocina, Z; Kalnins, M; Gross, K A

    2016-01-01

    Increased interest in the esthetical natural nail coatings have encouraged more in-depth studies particularly of UV curable coatings: their formation, processing, structure, characteristics and removing. Typical requirement for nail coatings is good adhesion, but preferably for the short time of functioning (usual 2-4 weeks). This study investigated the impact of four different monomers (tertiobutyl cyclohexyl acrylate (TBCHA), ethylene glycol dimethacrylate (EGDMA), tetrahydrofurfuryl acrylate (THFA), hydroxypropyl methacrylate (HPMA)) to viscosity of uncured mixture and degree of conversion, mechanical properties, surface gloss, micro hardness and adhesion loss for cured films. Specific coating application requires comparatively high coating flexibility and stability of deformation characteristics. This can be achieved with composition containing 30% of monomer TBCHA, what shows ultimate elongation ε B = 0,23 - 0,24, modulus of elasticity E = 670-710 MPa and comparatively constant properties in 72 hours (ΔE = 1.3%, Δε B =6.0%). A composition with 40% of TBCHA shows the fastest coating destruction achieving adhesion loss within 3 min. (paper)

  17. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    Science.gov (United States)

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  18. Prospects of DLC coating as environment friendly surface treatment process.

    Science.gov (United States)

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  20. Kinetics of the process of formation and high-temperature oxidation of electrospark coatings on steel

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Chiplik, V.N.; Egorov, F.F.; Lavrenko, V.A.; Podchernyaeva, I.A.; Shemet, V.Z.

    1986-01-01

    This work is a study of the kinetics of formation and of the heat resistance of electrospark coatings based on the composite TiB 2 -Mo with varying molybdenum content. In the process of electrospark alloying they measured the specific erosion of the anode and the increase in weight of the cathode with an accuracy not worse than 5%. Electrospark coatings of TiB 2 -Mo on steel 45 are marked by improved scaling resistance at temperatures above 900 C. Their scaling resistance and also the effectiveness of the process of electrospark alloying increase with increasing content of the phase B-MoB in the coating because molybdenum borate forms during its high-temperature oxidation. Illustrations and table are included

  1. Sol-gel coatings on large area glass sheets for electrochromic devices

    NARCIS (Netherlands)

    Vroon, Z.A.E.P.; Spee, C.I.M.A.

    1997-01-01

    The preparation of vanadium and tungsten oxide coatings is described using vanadium oxide tri-2-propoxide/2-propanol and tungsten penta-ethoxide/2-propanol solutions. These solutions are dip coated onto K-glass substrates and cured. For vanadium oxide coatings it is shown that sol-gel/dip coat

  2. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    Science.gov (United States)

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  3. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  4. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  5. Drying of water based foundry coatings: Innovative test, process design and optimization methods

    DEFF Research Database (Denmark)

    Di Muoio, Giovanni Luca; Johansen, Bjørn Budolph

    on real industrial cases. These tools have been developed in order to simulate and optimize the drying process and reduce drying time and power consumption as well as production process design time and cost of expensive drying equipment. Results show that test methods from other industries can be used...... capacity goals there is a need to understand how to design, control and optimize drying processes. The main focus of this project was on the critical parameters and properties to be controlled in production in order to achieve a stable and predictable drying process. We propose for each of these parameters...... of Denmark with the overall aim to optimize the drying process of water based foundry coatings. Drying of foundry coatings is a relatively new process in the foundry industry that followed the introduction of water as a solvent. In order to avoid moisture related quality problems and reach production...

  6. Behaviour of CaO coating of gas atomized Mg powders using mechanical milling process

    International Nuclear Information System (INIS)

    Kim, Sun-Mi; Kim, Yong Hwan; Kim, Young Do; Kim, Taek-Soo

    2011-01-01

    Highlights: → This work is very new, since behaviour of CaO coating with milling time as desulfurizer is not frequently reported. → The manuscript reports the new manner of Mg powders desulfurizer development by the innovative process. - Abstract: In order to synthesize a thermally stable Mg powder as a desulfurizer of iron, pure Mg was gas atomized to powders and coated by CaO powders, to produce a thermally stable desulfurizer using a mechanical milling process. Since the effect of desulfurization is dependent on the degree of surface modification, coating behaviours such as the size, morphology and layer thickness were investigated as a function of milling condition. As the milling conducted from 10 min to 30 min, 1 h, 3 h, 6 h, 12 h, CaO particles began to stick on the surface of Mg powders. The layer of CaO formed from 1 h milling was about 17 μm thick and gradually thickened to be 28 μm, 32 μm and 37 μm with increasing the milling time to 3 h, 6 h and 12 h, respectively. The shape of coated powder became more spherical after 1 h milling, being mostly spherical after 6 h. Desulfurization rate and uniformity were evaluated for the various thickness of the coating layer.

  7. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  8. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Science.gov (United States)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  9. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  10. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process

    International Nuclear Information System (INIS)

    Zhang Erlin; Zou Chunming; Yu Guoning

    2009-01-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61-1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO 4 unit by substituting for PO 4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility

  11. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part I – Moulding technologies vs. zinc coating

    Directory of Open Access Journals (Sweden)

    Szczęsny A.

    2017-03-01

    Full Text Available Studies have demonstrated that in the process of hot dip galvanizing the decisive influence on the mechanism of zinc coating formation and properties has the quality of the mechanically untreated (raw surface layer of the galvanized product. The terms “casting surface layer” denote various parameters of the microstructure, including the type of metal matrix, the number of grains and the size of graphite nodules, possible presence of hard spots (the precipitates of eutectic cementite and parameters of the surface condition. The completed research has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing.

  12. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  13. Efficient and Stable Carbon-coated Nickel Foam Cathodes for the Electro-Fenton Process

    International Nuclear Information System (INIS)

    Song, Shuqin; Wu, Mingmei; Liu, Yuhui; Zhu, Qiping; Tsiakaras, Panagiotis; Wang, Yi

    2015-01-01

    Highlights: • Carbon-coated nickel foam (C@NF) was prepared by cycle coating carbon process. • Ni leaching can be effectively controlled at C@NF4 (4 cycle coating times) cathode. • C@NF4 exhibits excellent electro-Fenton performance with desirable stability. • C@NF4 exhibits low energy consumption for DMP degradation. - Abstract: Carbon-coated nickel foam (C@NF) electrodes are prepared via a simple and effective method, hydrothermal-carbonization cycle coating process, characterized by scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and employed as the electro-Fenton (E-Fenton) cathode for degrading dimethyl phthalate (DMP) in aqueous solution. For the sake of comparison, nickel foam (NF) electrode and the conventional E-Fenton cathode (graphite gas diffusion electrode (GDE)) are also tested and compared. Experimental results indicate that nickel leaching can be effectively controlled at C@NF4 cathode (4 times cycle coating process), having great significance for promoting the application of NF in E-Fenton system. Moreover, C@NF4 cathode still presents excellent and effective performance on DMP degradation. DMP can be completely degraded within 2 h at −0.5 V and the total organic carbon (TOC) removal reaches as high as 82.1 %, which is almost 3 times as high as that at graphite GDE. Futhermore, the current efficiency for H 2 O 2 generation at C@NF4 is enhanced by 12 times compared to that at NF, and consequently the energy consumption during DMP degradation at C@NF4 is obvious lower than that at both NF cathode and graphite GDE. From the obtained results it can be deduced that C@NF4 is promising to be an attractive alternative E-Fenton cathode for removing organic pollutants in wastewater

  14. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    Science.gov (United States)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  15. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  16. DIP and DIP + 2 as glutathione oxidants and radiation sensitizers in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Harris, J.W.; Power, J.A.; Kosower, N.S.; Kosower, E.M.

    1975-01-01

    Two diamide analogues, diazene dicarboxylic acid bis (N'-methyl-piperazide) or DIP, and its bis-N'-methyl iodide salt, or DIP + 2, were tested for their ability to penetrate cultured Chinese hamster cells and oxidize intracellular glutathione. DIP penetrated the cells at a reasonable rate at 18 0 C, 160 nmoles being required to oxidize the endogenous glutathione of 2 x 10 6 cells, but it penetrated very slowly at 0 0 C. DIP + 2 did not effectively oxidize glutathione in Chinese hamster cells, possibly because it did not enter the cels. DIP became toxic after about 10 min of exposure, but its toxicity could be moderated by using anoxic conditions. DIP, but not DIP + 2, sensitized anoxic Chinese hamster cells to X-radiation by a factor of 1.5, an effect that was due entirely to removal of the shoulder from the survival curve. (author)

  17. Effect of process parameters on coating composition of cathodic ...

    Indian Academy of Sciences (India)

    1Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, ... The effect of some process parameters such as electrical conductivity, volume and temperature of ... the subject of numerous studies and found industrial applica- .... tion of positive ions and transfer of their kinetic energy to the.

  18. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  19. Surface conditioning of a cold-rolled dual-phase steel by annealing in nitriding atmospheres prior to hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Luther, F.; Beste, D.; Bleck, W. [Institute for Ferrous Metallurgy (IEHK), RWTH Aachen (Germany); Dimyati, A.; Mayer, J. [Central Facility for Electron Microscopy (GFE), RWTH Aachen (Germany)

    2007-04-15

    The development of steel grades for automotive applications in the recent years has been driven on by two trends: lightweight and improved crash safety. By using steels like DP (dual phase) the goals of passenger safety, fuel efficiency and environmental friendliness can be met at reasonable price. The favorite corrosion protection method for sheet steels in the car industry is the hot-dip galvanizing process. Here, an approach was made to reduce the surface enrichment of critical alloying elements of a dual phase steel grade by reactive annealing in ammonia containing atmospheres. The effects of this treatment on mechanical properties and hot-dip coating behavior are reported. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Data on the optimized sulphate electrolyte zinc rich coating produced through in-situ variation of process parameters.

    Science.gov (United States)

    Fayomi, Ojo Sunday Isaac

    2018-02-01

    In this study, a comprehensive effect of particle loading and optimised process parameter on the developed zinc electrolyte was presented. The depositions were performed between 10-30 min at a stirring rate of 200 rpm at room temperature of 30 °C. The effect of coating difference on the properties and interfacial surface was acquired, at a voltage interval between 0.6 and 1.0 V for the coating duration. The framework of bath condition as it influences the coating thickness was put into consideration. Hence, the electrodeposition data for coating thickness, and coating per unit area at constant distance between the anode and cathode with depth of immersion were acquired. The weight gained under varying coating parameter were acquired and could be used for designing and given typical direction to multifunctional performance of developed multifacetal coatings in surface engineering application.

  1. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  2. Investigation of radiation keeping property of barite coated cloth via image processing method

    Science.gov (United States)

    Kilinçarslan, Ş.; Akkurt, İ.; Molla, T.; Akarslan, F.

    2012-09-01

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  3. Investigation of radiation keeping property of barite coated cloth via image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Kilincarslan, S.; Akkurt, I.; Molla, T.; Akarslan, F. [Department of Construction Education, Suleyman Demirel University, Isparta (Turkey); Department of Physics, Science Faculty, Suleyman Demirel University, Isparta (Turkey); Department of Construction Education, Suleyman Demirel University, Isparta (Turkey); Textil Engineering, Engineering Faculty, Suleyman Demirel University, Isparta (Turkey)

    2012-09-06

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  4. Investigation of radiation keeping property of barite coated cloth via image processing method

    International Nuclear Information System (INIS)

    Kilinçarslan, Ş.; Akkurt, İ.; Molla, T.; Akarslan, F.

    2012-01-01

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  5. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Naik, Kshipra; Kowshik, Meenal

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO 2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO 2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO 2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO 2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO 2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO 2 being porous and inorganic in nature acts as a good supporting matrix

  6. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  7. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  8. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    Science.gov (United States)

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  9. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  10. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  11. Thermal physics of gas-thermal coatings formation processes. State of investigations

    International Nuclear Information System (INIS)

    Fialko, N.M.; Prokopov, V.G.; Meranova, N.O.; Borisov, Yu.S.; Korzhik, V.N.; Sherenkovskaya, G.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The analysis of state of investigations of gas-thermal coatings formation processes in presented. Classification of approaches to mathematical simulation of thermal phenomena studies is offered. The general characteristics of three main approaches to the analysis of heat transport processes is given. Some problems of mathematical simulation of single particle thermal interaction with solid surface are considered in details. The main physical assumptions are analysed

  12. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin; Kim, Sungjee

    2010-01-01

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  13. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin [System on Chip Chemical Process Research, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Kim, Sungjee, E-mail: jeons@postech.ac.kr [Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2010-08-13

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  14. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  15. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  16. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Qi, Kai; Sun, Yimin; Duan, Hongwei; Guo, Xingpeng

    2015-01-01

    Highlights: • Solution-processable polymer-grafted graphene nanocomposite is synthesized. • The nanocomposite exhibits synergistic properties of both building blocks. • The nanocomposite can be easily applied to form a protective coating on metals. • The coating can effectively prevent corrosion of copper substrate. - Abstract: A new type of solution-processable graphene coating has been synthesized by grafting polymethylmethacrylate (PMMA) brushes on graphene oxide (GO) via surface-initiated atom transfer radical polymerization (ATRP). One major finding is that the PMMA-grafted GO nanocomposite exhibits synergistic properties of both building blocks, i.e., permeation inhibition of GO and solubility of PMMA in a variety of solvents, which makes it compatible with commonly used coating methods to form uniform coatings with controlled thickness. Our results demonstrate that PMMA-grafted GO coating can effectively block charge transfer at the metal–electrolyte interface and prevent corrosion of the copper substrate under aggressive saline conditions

  17. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  18. Current trend in latex dipped products manufacturing

    International Nuclear Information System (INIS)

    Wong, W.S.C.

    1996-01-01

    The paper present the activities in dipped products manufacturing in Malaysia; the activities carried out by MARGMA - Malaysian Rubber Glove manufacturer; other issues discussed such as labour, pricing environmental issue, product certification in this activity

  19. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    International Nuclear Information System (INIS)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui

    2016-01-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m 2 were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m 2 for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  20. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-11-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m{sup 2} were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m{sup 2} for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  1. Development of corrosion and wear resistant coatings by an improved HVOF spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y.; Kawakita, J.; Kuroda, S. [National Inst. for Materials Science, Tsukuba (Japan)

    2005-07-01

    We have developed an improved HVOF spray process called ''Gas-shrouded HVOF'' (GS-HVOF) over the past several years. By using an extension nozzle at the exit of a commercial HVOF spray gun, GS-HVOF is capable of controlling the oxidation of sprayed materials during flight as well as achieving higher velocity of sprayed particles. These features result in extremely dense and clean microstructure of the sprayed coatings. The process has been successfully applied to corrosion resistant alloys such as SUS316L, Hastelloy C, and alloy 625 as well as cermets such as WC-Cr{sub 3}C{sub 2}-Ni. The spray process, coatings microstructure and property evaluation will be discussed with potential industrial applications in the near future. (orig.)

  2. Cavitation erosion of chromium-manganese and chromium-cobalt coatings processed by laser beam

    International Nuclear Information System (INIS)

    Giren, B.G.; Szkodo, M.

    2002-01-01

    In this work the cavitation erosion of chromium-manganese and chromium-cobalt clads were tested, each of them for three cases: (1) without additional processing; (2) after laser heating of the solid state and (3) after laser remelting of the material. Armco iron, carbon steel 45 and chromium-nickel steel 0H18N9T were used as substrates. C.W. CO 2 laser with a beam power of 1000 W was used as a source of radiation. The investigated samples were subjected to cavitation impingement in a rotating disk facility. The results indicate that laser processing of the thick, electrode deposited coatings by laser beam leads in some cases to an increase of their cavitation resistance. Strong dependence of the coatings performance on the substrate, both for the laser processed or unprocessed parts of the materials was also discovered. (author)

  3. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  4. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    Science.gov (United States)

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  6. Repair of glass by sol-gel coating using either conventional or microwave heating

    International Nuclear Information System (INIS)

    Boonyapiwat, A.; Fathi, Z.; Folz, D.C.; Clark, D.E.

    1993-01-01

    A method of repairing glass is discussed. Microindentation was used to deliberately weaken the glass. Some samples were dip coated with silica sol. Effects of dipping the glass in copper nitrate solution also were studied. Heat treatments were conducted in either a conventional furnace or a microwave oven. Four-point bend testing was used to evaluate the merit of each process. Microwave hybrid heating had the same effect on the repair of uncoated glass as conventional heating. Coating the glass with sol resulted in higher strength of glass than heat treatment alone. Treating the glass with copper nitrate without heat treating had no effect on strength. Microwave hybrid heating appears to yield higher reliability in sol-gel coated samples than conventional processing. 21 refs., 8 figs., 2 tabs

  7. Monitoring of pellet coating process with image analysis—a feasibility study

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Esbensen, Kim; Bogomolov, Andrey

    2010-01-01

    of the process samples appearance, besides measurable distances, that may be connected to the information of interest. In the present paper, the methods of image analysis were applied to at-line monitoring of fluid bed pellet coating process. The quantitative description of images of pellet samples, taken from...... different process stages, has been obtained using two different approaches: wavelet decomposition and angle measure technique (AMT). Both methods revealed a strong correlation between image features and process parameters. However, the AMT results turned out to be more accurate and stable. It has been shown...

  8. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. PROCESSES PROCEEDING ON CONCRETE COATING SURFACES IN CASE OF THEIR CHEMICAL PROTECTION AGAINST WINTER SLIPPERINESS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Concrete coatings of road traffic highways along with operational loadings caused by flow of traffic are subjected to weather and climate impacts. These are the following impacts: changes in temperature and air humidity, solar radiation,surface wind speed which is participating in formation of active heat-and-mass transfer in a surface layer of the concrete coating. One of the most complicated and important periods in the road traffic highway operation is so called transitional nature period (from Summer to Autumn and from Winter to Spring. These periods are accompanied by intensive rain and snow fall and possible formation of ice loading on the surface of cement and concrete coatings. These impacts significantly deteriorate friction properties of road pavement (friction factor φ is decreased up to 0.4 and less that can be a prerequisite to creation of various accident situations due to sharp increase in braking distance. For example, while having dry pavement the friction factor φ is equal to 0.80–0.85, and during icy condition of the road the factor φ constitutes 0.08–0.15 that consequently entails an increase in braking distance from 7.5 up to 20.0 m and more. It is quite possible that ice layer appears on the surface of concrete coatings when road traffic highways are used in winter season. Various methods are applicable to remove ice from the surface they can include also ice-melting chemicals and sodium chloride NaCl in particular. The chemical decreases freezing temperature of the formed brine and causes ice melting at negative temperature. Processes of NaCl dissolution and ice melting have an endothermic character, in other words these processes are accompanied by heat ingress and due to it temperature is sharply decreasing in the surface layer of the concrete coating which is under the melting ice and in this case phenomenon of thermal shock is observed.

  10. Image mispositioning due to dipping TI media : a physical seismic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, J.H.; Lawton, D.C.

    1998-09-01

    Physical modelling experiments were performed to study mispositioning of targets imaged beneath a dipping anisotropic overburden. The significance of the study is that many hydrocarbon resource exploration and development plays in different tectonic settings involve dipping clastic sequences which lie above the reservoir or target zone. In many areas in the Alberta foothills, dipping panels of relatively undeformed Wapiabi shales are found in abundance, overlying deep carbonate reservoirs. These experiments demonstrated the magnitude of the image mispositioning incurred by the use of an inappropriate isotropic processing code when velocity anisotropy was present in the overburden. It was shown that the lateral shift of an imaged target beneath a 1500 m thick, 45 degree dipping anisotropic overburden is significant. Zero-offset data showed a shift in the imaged location of 320 m in the updip direction of the dipping beds, while the shift on stacked time and depth migrated multichannel data was 300 m. 2 refs., 2 figs.

  11. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  12. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  13. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  14. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers

    International Nuclear Information System (INIS)

    Zebda, A.; Camberlein, L.; Beche, B.; Gaviot, E.; Beche, E.; Duval, D.; Zyss, J.; Jezequel, G.; Solal, F.; Godet, C.

    2008-01-01

    Polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators, made of disk- or ring-shaped upper rib waveguides, using common polymers such as SU8 (biphenol A ether glycidyl), PS233 (polymeric silane) and SOG (siloxane Spin on Glass). Both oxygen and argon plasma treatments, applied to PS233 and SOG before spin-coating the SU8, improve substantially the grip of multilayer devices (SU8 / PS233 or SU8 / SOG). Surface energy components derived from contact angle measurements have been used to optimize the processing conditions. In such integrated photonic devices, the both single-electromagnetic-modes called transverse electric (TE 00 ) and transverse magnetic (TM 00 ) have been excited in a SU8 micro-disk, with a single mode propagation strongly localized near the edge of the disk (i.e. the so called whispering gallery modes)

  15. Morphology Analysis and Process Research on Novel Metal Fused-coating Additive Manufacturing

    Science.gov (United States)

    Wang, Xin; Wei, Zheng ying; Du, Jun; Ren, Chuan qi; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Existing metal additive manufacturing equipment has high capital costs and slow throughput printing. In this paper, a new metal fused-coating additive manufacturing (MFCAM) was proposed. Experiments of single-track formation were conducted using MFCAM to validate the feasibility. The low melting alloy was selected as the forming material. Then, the effect of process parameters such as the flow rate, deposition velocity and initial distance on the forming morphology. There is a strong coupling effect between the single track forming morphology. Through the analysis of influencing factors to improve the forming quality of specimens. The experimental results show that the twice as forming efficiency as the metal droplet deposition. Additionally, the forming morphology and quality were analyzed by confocal laser scanning microscope and X-ray. The results show that the metal fused-coating process can achieve good surface morphology and without internal tissue defect.

  16. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  17. Evaluation of microstructure and micro-hardness of 410L SS coatings fabricated using laser assisted cold spraying: process development

    CSIR Research Space (South Africa)

    Mathebula, TE

    2014-11-01

    Full Text Available , contaminating and erosive environments which accelerate the degradation of these components. Surface coatings are generally used to protect and prolong the lifetime of the parts. Laser Assisted Cold Spray (LACS) is a relatively new surface coating process which...

  18. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  19. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    Science.gov (United States)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  20. EB-PVD process management for highly productive zirconia thermal barrier coating of turbine blades

    International Nuclear Information System (INIS)

    Reinhold, E.; Botzler, P.; Deus, C.

    1999-01-01

    Zirconia thermal barrier coatings are well used in the turbine manufacturing industry because they ensure extended lifetimes of turbine blades. Compared with other techniques, EB-PVD processes are best suited for the deposition on turbine blades with regard to the layer properties. Therefore EB-PVD coaters for turbine blades are becoming increasingly interesting. The coating costs per component are mainly dependent on a highly productive solution for the deposition task. Thus the EB-PVD process management has to be optimized in order to meet the productivity requirements of the manufacturers. This includes the requirement of high deposition rates, large deposition areas, long time stable production cycles as well as a matched duration of preheating, deposition and cooling down per charge. Modern EB-PVD solutions to be introduced allow deposition rates on blades up to 7 μm/min. The consequences for the technological process management and plant design concerning long time stable coating cycles with high productivity will be discussed. (orig.)

  1. Mathematical approach in galvanized steel sheet coatings

    International Nuclear Information System (INIS)

    Perez, A.; Andres, L.J.; Gonzalez, I.; Fernandez, B.; Puente, J.M.

    1998-01-01

    A short review of the kinetics models for the formation of Fe-Zn alloy phases in the galvannealing process is presented. It will focus on the continuous process which is often used by the automotive industry. A first mathematical approach of the kinetics growth of the δ phase has been done using a continuous hot-dipping process simulator which resembles the conditions of the galvannealing process in production lines. Hold time and the galvannealing temperature as well as the weight of the coating were varied. The preliminary results of the iron content and proportion of δ phase in the coating are in agreement with the results obtained by other authors. (Author) 16 refs

  2. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.

    Science.gov (United States)

    Korasa, Klemen; Hudovornik, Grega; Vrečer, Franc

    2016-10-10

    Although process analytical technology (PAT) guidance has been introduced to the pharmaceutical industry just a decade ago, this innovative approach has already become an important part of efficient pharmaceutical development, manufacturing, and quality assurance. PAT tools are especially important in technologically complex operations which require strict control of critical process parameters and have significant effect on final product quality. Manufacturing of prolonged release film coated pellets is definitely one of such processes. The aim of the present work was to study the applicability of the at-line near-infrared spectroscopy (NIR) approach in the monitoring of pellet film coating and curing steps. Film coated pellets were manufactured by coating the active ingredient containing pellets with film coating based on polymethacrylate polymers (Eudragit® RS/RL). The NIR proved as a useful tool for the monitoring of the curing process since it was able to determine the extent of the curing and hence predict drug release rate by using partial least square (PLS) model. However, such approach also showed a number of limitations, such as low reliability and high susceptibility to pellet moisture content, and was thus not able to predict drug release from pellets with high moisture content. On the other hand, the at-line NIR was capable to predict the thickness of Eudragit® RS/RL film coating in a wide range (up to 40μm) with good accuracy even in the pellets with high moisture content. To sum up, high applicability of the at-line NIR in the monitoring of the prolonged release pellets production was demonstrated in the present study. The present findings may contribute to more efficient and reliable PAT solutions in the manufacturing of prolonged release dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Final Scientific/Technical Report "Arc Tube Coating System for Color Consistency"

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, Roger [Energy Focus, Inc., Solon, OH (United States); Jenson, Chris [Energy Focus, Inc., Solon, OH (United States); Kazenski, Keith [Energy Focus, Inc., Solon, OH (United States)

    2013-03-21

    DOE has enabled the use of coating materials using low cost application methods on light sources to positively affect the output of those sources. The coatings and light source combinations have shown increased lumen output of LED fixtures (1.5%-2.0%), LED arrays (1.4%) and LED powered remote phosphor systems Philips L-Prize lamp (0.9%). We have also demonstrated lifetime enhancements (3000 hrs vs 8000 hrs) and shifting to higher CRI (51 to 65) in metal halide high intensity discharge lamps with metal oxide coatings. The coatings on LEDs and LED products are significant as the market is moving increasingly more towards LED technology. Enhancements in LED performance are demonstrated in this work through the use of available materials and low cost application processes. EFOI used low refractive index fluoropolymers and low cost dipping processes for application of the material to surfaces related to light transmission of LEDs and LED products. Materials included Teflon AF, an amorphous fluorinated polymer and fluorinated acrylic monomers. The DOE SSL Roadmap sets goals for LED performance moving into the future. EFOI's coating technology is a means to shift the performance curve for LEDs. This is not limited to one type of LED, but is relevant across LED technologies. The metal halide work included the use of sol-gel solutions resulting in silicon dioxide and titanium dioxide coatings on the quartz substrates of the metal halide arc tubes. The coatings were applied using low cost dipping processes.

  4. HTS current lead units prepared by the TFA-MOD processed YBCO coated conductors

    International Nuclear Information System (INIS)

    Shiohara, K.; Sakai, S.; Ishii, Y.; Yamada, Y.; Tachikawa, K.; Koizumi, T.; Aoki, Y.; Hasegawa, T.; Tamura, H.; Mito, T.

    2010-01-01

    Two superconducting current lead units have been prepared using ten coated conductors of the Tri-Fluoro-Acetate - Metal Organic Deposition (TFA-MOD) processed Y 1 Ba 2 Cu 3 O 7-δ (YBCO) coated conductors with critical current (I c ) of about 170 A at 77 K in self-field. The coated conductors are 5 mm in width, 190 mm in length and about 120 μm in overall thickness. The 1.5 μm thick superconducting YBCO layer was synthesized through the TFA-MOD process on Hastelloy TM C-276 substrate tape with two buffer oxide layers of Gd 2 Zr 2 O 7 and CeO 2 . The five YBCO coated conductors are attached on a 1 mm thick Glass Fiber Reinforced Plastics (GFRP) board and soldered to Cu caps at the both ends. We prepared two 500 A-class current lead units. The DC transport current of 800 A was stably applied at 77 K without any voltage generation in all coated conductors. The voltage between both Cu caps linearly increased with increasing the applied current, and was about 350 μV at 500 A in both current lead units. According to the estimated values of the heat leakage from 77 K to 4.2 K, the heat leakage for the current lead unit was 46.5 mW. We successfully attained reduction of the heat leakage because of improvement of the transport current performance (I c ), a thinner Ag layer of YBCO coated conductor and usage of the GFRP board for reinforcement instead of a stainless steel board used in the previous study. The DC transport current of 1400 A was stably applied when the two current lead units were joined in parallel. The sum of the heat leakages from 77 K to 4.2 K for the combined the current lead units was 93 mW. In comparison with the conventional Cu current leads by gas-cooling, it could be noted that the heat leakage of the current lead is about one order of magnitude smaller than that of the Cu current lead.

  5. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  6. Effects of coating process on the characteristics of Ag-SnO2 contact materials

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Zheng, J.; Li, S.L.

    2006-01-01

    Good wettability between the SnO 2 and silver matrix can improve the electrical contact performance of Ag-SnO 2 materials. In this work, Ag was deposited onto the surface of Ti-doped SnO 2 particles using chemical plating to enhance the wettability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the Ag-coated SnO 2 particles. Scanning electron microscopy (SEM), conductivity tests, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) were performed on the Ag-SnO 2 materials. Our results reveal that the chemical plating process can enhance the wettability between the Ti-doped SnO 2 particles and Ag matrix, and the Ag-coated SnO 2 particles are uniformly distributed in the Ag matrix. Both the thermal and electrical conductivity of the Ag-SnO 2 materials are significantly improved

  7. Synthesis of Cu-coated Graphite Powders Using a Chemical Reaction Process

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Ho; Park, Hyun-Kuk; Oh, Ik-Hyun [Korea Institute of Industrial Technology (KITECH), Gwangju (Korea, Republic of); Lim, Jae-Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-05-15

    In this paper, Cu-coated graphite powders for a low thermal expansion coefficient and a high thermal conductivity are fabricated using a chemical reaction process. The Cu particles adhere to the irregular graphite powders and they homogeneously disperse in the graphite matrix. Cu-coated graphite powders are coarser at approximately 3-4 μm than the initial graphite powders; furthermore, their XRD patterns exhibit a low intensity in the oxide peak with low Zn powder content. For the passivation powders, the transposition solvent content has low values, and the XRD pattern of the oxide peaks is almost non-existent, but the high transposition solvent content does not exhibit a difference to the non-passivation treated powders.

  8. Experimental Investigation of Process Parameters in Drilling LM25 Composites Coated with Multi Wall Carbon Nano Tubes Using Sonication Process

    Directory of Open Access Journals (Sweden)

    Sangeetha M.

    2017-09-01

    Full Text Available Aluminium based metal matrix composites are widely used in automobile components such as cardan shaft of Chevrolet corvette, disc brake and engine push rod. In this experiment a Hybrid Metal Matrix Composites (HMMC are fabricated and drilled. Drilling is the process of making slots in disc brake and thread in the engine parts. The surface quality of the drilled specimen depends on the speed, feed, drill type and the thrust force. Thrust force plays the major role in drilling the specimen. In this experiment HMMCs are fabricated using two processes-called, sonication and casting. Sonication is the process of coating the carbon nanotubes over the silicon carbide particles (SiCp. Semisolid stir casting is used to reinforce the coated SiCp in the LM 25 alloy. A drilling process is performed on HMMC to analyse the extent to which the input parameters influence the thrust force and Ovality. The tools used for drilling are solid carbide tools of three different diameters. Taguchi’s experimental design is adopted for the drilling operation. A mathematical model is used to determine the influence of input parameters on the outputs thrust force and ovality. This paper proves the combination of N3, f1 and d1 of the carbide tool results in the lowest value of thrust force and ovality while drilling HMMCs. In this work the HMMC is prepared by coating the abrasive nature, silicon carbide particle and there is a good interfacial bonding between the reinforced particle and matrix and the drilling process becomes smoother. The new being of this article is the treated ceramics, SiCp with carbon nanotubes. This HMMC shows the improved mechanical properties compared to other metal matrix composites surveyed in the literatures.

  9. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  10. Measurement of local critical currents in TFA-MOD processed coated conductors by use of scanning Hall-probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Kawaguchi, T.; Inoue, M.; Kiss, T.; Yoshizumi, M.; Izumi, T.

    2011-01-01

    We have investigated 2-dimensional distribution of critical current density. We have measured TFA-MOD processed YBCO coated conductor. We used scanning Hall-probe microscopy. These provided information is useful for fabrication process of coated conductor. We have carried out 2-dimensional (2D) measurement of local critical current in a Trifluoroacetates-Metal Organic Deposition (TFA-MOD) processed YBCO coated conductor using scanning Hall-probe microscopy. Recently, remarkable R and D accomplishments on the fabrication processes of coated conductors have been conducted extensively and reported. The TFA-MOD process has been expected as an attractive process to produce coated conductors with high performance at a low production cost due to a simple process using non-vacuum equipments. On the other hand, enhancement of critical currents and homogenization of the critical current distribution in the coated conductors are definitely very important for practical applications. According to our measurements, we can detect positions and spatial distribution of defects in the conductor. This kind of information will be very helpful for the improvement of the TFA-MOD process and for the design of the conductor intended for practical electric power device applications.

  11. TRISO-coated spent fuel processing using a Grind-Leach head-end

    International Nuclear Information System (INIS)

    Spencer, Barry B.; Del Cul, Guillermo D.; Mattus, Catherine H.; Collins, Emory D.

    2005-01-01

    Processing of TRISO-coated HTGR fuels with the grind-leach process requires that the fuel be finely pulverized for efficient and effective acid dissolution of the fuel components. Mechanical size reduction of the fuel is being investigated with jet mill technology as the final milling step. Laboratory experiments were performed with surrogates of crushed fuel compacts that indicate that milling to very small particle sizes is feasible. The size distribution of the milled product is sensitive to the solids feed rate, and the distribution may be bimodal which could support an effective solid-solid separation. (author)

  12. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Mahdi, E-mail: mahdi.babaei@ut.ac.ir; Dehghanian, Changiz; Vanaki, Mojtaba

    2015-12-01

    Highlights: • PEO coatings formed on Cp Ti from phosphate electrolyte with zirconate additive. • The SEM results provide information of microdischarge behavior. • The effect of additive on structure and long-term corrosion behavior was investigated. • The additive influence on coating performance varies with processing frequency. - Abstract: The plasma electrolytic oxidation (PEO) coating containing zirconium oxide was fabricated on CP Ti at different processing frequencies viz., 100 Hz and 1000 Hz in a (Na{sub 2}ZrO{sub 3}, Na{sub 2}SiO{sub 3})-additive containing NaH{sub 2}PO{sub 4}-based solution, and long-term electrochemical corrosion behavior of the coatings was studied using electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Electrochemical degradation behavior of two-layered coatings formed at different frequencies was turned out to be governed by concentration of electrolyte additive. With increasing additive concentration, the coating obtained at frequency of 1000 Hz exhibited enhanced corrosion resistance. However, corrosion resistance of the coating prepared at 100 Hz was found to decrease with increased additive, which was attributed to intensified microdischarges damaging the protective effect of inner layer. Nevertheless, the electrolyte additive was found to mitigate the long-term degradation of the coatings to a significant extent.

  13. Fabrication of long REBCO coated conductors by PLD process in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yijie, E-mail: yjli@sjtu.edu.cn [Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 20040 (China); Shanghai Superconductor Technology Corporation, Ltd, 28 Jiang Chuan Road, Shanghai 200240 (China); Liu, Linfei; Wu, Xiang [Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 20040 (China)

    2015-11-15

    Highlights: • SJTU fabricated 100 m long class CC tapes with over 300 A/cm on RABiTS tapes in 2011. • 100 m long CC tapes with 500 A/cm have been routinely fabricated on IBAD-MgO tapes. • The process optimization for kilometer long coated conductor tapes is underway. - Abstract: In China, the First National Key Project on CC Program started in 2009, which was focused on developing hundred meter long class CC tapes based on PLD/RABiTS processes. In this project, SJTU mainly worked on all of functional layer deposition process development. Northwest Institute for Non-ferrous Metal Research worked on RABiTS tape fabrication. At the end of the project in 2011, SJTU successfully fabricated hundred meter long CC tapes with over 300 A/cm (at 77 K, self field) on RABiTS tapes. To develop high performance CC tapes by PLD/IBAD-MgO processes, a pilot CC fabrication line was set up at Shanghai Superconductor Technology Corporation, Ltd. in 2013. High quality long REBCO coated conductors have been successfully fabricated on flexible polycrystalline metal tapes by PLD plus magnetron sputter and IBAD processes. Under optimized conditions, the IBAD-MgO layers showed pure (0 0 1) orientation and excellent in-plane texture. The in-plane phi-scan rocking curve is 4–6 degrees. AFM observation showed MgO layer had very smooth surface. The RMS is less 1 nm. On the textured MgO layer, sputter deposited single cerium oxide cap-layer showed pure (0 0 1) orientation and excellent in-plane texture of 4–6 degree. Reel-to-reel PLD process with high deposition rate was already scaled up to 100 m/h tape speed. Hundred meters long coated conductor tapes with over 500 A/cm performance have been routinely fabricated. And now, the process optimization for kilometer long coated conductor tapes is underway.

  14. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  15. Development of advanced coatings for laser modifications through process and materials simulation

    International Nuclear Information System (INIS)

    Martukanitz, R.P.; Babu, S.S.

    2004-01-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit

  16. Expression Patterns and Potential Biological Roles of Dip2a.

    Directory of Open Access Journals (Sweden)

    Luqing Zhang

    Full Text Available Disconnected (disco-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.

  17. Statistical evaluation of tablet coating processes: influence of pan design and solvent type

    Directory of Open Access Journals (Sweden)

    Valdomero Pereira de Melo Junior

    2010-12-01

    Full Text Available Partially and fully perforated pan coaters are among the most relevant types of equipment currently used in the process of coating tablets. The goal of this study was to assess the performance differences among these types of equipment employing a factorial design. This statistical approach allowed the simultaneous study of the process variables and verification of interactions among them. The study included partially-perforated and fully-perforated pan coaters, aqueous and organic solvents, as well as hypromellose-based immediate-release coating. The dependent variables were process time, energy consumption, mean weight of tablets and process yield. For the tests, placebo tablets with a mean weight of 250 mg were produced, divided into eight lots of two kilograms each and coated in duplicate, using both partially perforated pan and fully perforated pan coaters. The results showed a significant difference between the type of equipment used (partially and fully perforated pan coaters with regard to process time and energy consumption, whereas no significant difference was identified for mean weight of the coated tablets and process yield.Entre os tipos de equipamentos de maior relevância utilizados atualmente no processo de revestimento de comprimidos estão os de tambor parcial e totalmente perfurados. A proposta desse trabalho foi avaliar as diferenças de desempenho entre esses equipamentos empregando projeto fatorial. Essa abordagem estatística possibilitou o estudo simultâneo das variáveis do processo, permitindo verificar interações entre elas. O trabalho incluiu equipamento com tambor parcialmente perfurado e totalmente perfurado, solventes aquoso e orgânico, assim como revestimento de liberação imediata à base de hipromelose. As variáveis dependentes ou respostas foram tempo de processo, consumo de energia, peso médio e rendimento do processo. Para os ensaios, foram produzidos comprimidos de placebo de 250 mg de peso m

  18. Rheological of chocolate-flavored, reduced-calories coating as a function of conching process.

    Science.gov (United States)

    Medina-Torres, Luis; Sanchez-Olivares, Guadalupe; Nuñez-Ramirez, Diola Marina; Moreno, Leonardo; Calderas, Fausto

    2014-07-01

    Continuous flow and linear viscoelasticity rheology of chocolate coating is studied in this work using fat substitute gums (xanthan, GX). An alternative conching process, using a Rotor-Estator (RE) type impeller, is proposed. The objective is to obtain a chocolate coating material with improved flow properties. Characterization of the final material through particle size distribution (PSD), differential scanning calorimetry (DSC) and proximal analysis is reported. Particle size distribution of the final material showed less polydispersity and therefore, greater homogeneity; fusion points were also generated at around 20 °C assuming crystal type I (β'2) and II (α). Moreover, the final material exhibited crossover points (higher structure material), whereas the commercial brand chocolate used for comparison did not. The best conditions to produce the coating were maturing of 36 h and 35 °C, showing crossover points around 76 Pa and a 0.505 solids particle dispersion (average particle diameter of 0.364 μm), and a fusion point at 20.04 °C with a ΔHf of 1.40 (J/g). The results indicate that xanthan gum is a good substitute for cocoa butter and provides stability to the final product.

  19. Dynamic densification of metal matrix-coated fibre composites: modelling and processing

    International Nuclear Information System (INIS)

    Peng, H.X.; Dunne, F.P.E.; Grant, P.S.; Cantor, B.

    2005-01-01

    The consolidation processing of Ti-6Al-4V matrix-coated fibre (MCF) composite under vacuum hot pressing (VHP) has been investigated. A new test methodology has been developed for the determination of in situ matrix coating creep properties. In using the methodology, only a single, simple test is required, together with finite element modelling of the single fibre compression test. The creep coefficient and stress index have been determined for electron beam evaporated physical vapour deposited Ti-6Al-4V at 900 deg. C to be 1.23 x 10 -5 and 1.3, respectively. Consolidation experiments have been carried out on multi-ply MCF arrays under vacuum hot pressing. Finite element models have been developed for the dynamic consolidation of both square and hexagonal fibre packings. The creep constants for the Ti-6Al-4V, determined using the single fibre test, were assigned to the coating in the finite element models. Excellent agreement between predicted and experimental results was achieved, providing verification of the single fibre test methodology for the determination of creep constants

  20. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Directory of Open Access Journals (Sweden)

    Stefano Razza

    2016-09-01

    Full Text Available To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating, as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  1. Nanocomposited coatings produced by laser-assisted process to prevent silicone hydogels from protein fouling and bacterial contamination

    International Nuclear Information System (INIS)

    Huang, Guobang; Chen, Yi; Zhang, Jin

    2016-01-01

    Graphical abstract: Nanocomposited-coating was deposited on silicone hydrogel by using the matrix-assisted pulsed laser evaporation (MAPLE) process. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel, and can inhibit the bacterial growth efficiently. - Highlights: • We developed a nanocomposited coating to prevent silicone hydrogel from biofouling. • Matrix-assisted pulsed laser evaporation can deposit inorganic–organic nanomaterials. • The designed nanocomposited coating reduces protein absorption by over 50%. • The designed nanocomposited coating shows significant antimicrobial efficiency. - Abstract: Zinc oxide (ZnO) nanoparticles incorporating with polyethylene glycol (PEG) were deposited together on the surface of silicone hydrogel through matrix-assisted pulsed laser evaporation (MAPLE). In this process, frozen nanocomposites (ZnO–PEG) in isopropanol were irradiated under a pulsed Nd:YAG laser at 532 nm for 1 h. Our results indicate that the MAPLE process is able to maintain the chemical backbone of polymer and prevent the nanocomposite coating from contamination. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel. The cytotoxicity study shows that the ZnO–PEG nanocomposites deposited on silicone hydrogels do not impose the toxic effect on mouse NIH/3T3 cells. In addition, MAPLE-deposited ZnO–PEG nanocomposites can inhibit the bacterial growth significantly.

  2. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  3. Synthesis of TiC/W core–shell nanoparticles by precipitate-coating process

    International Nuclear Information System (INIS)

    Xia Min; Yan Qingzhi; Xu Lei; Zhu Lingxu; Guo Hongyan; Ge Changchun

    2012-01-01

    Graphical abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores. Abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core–shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), Filed-emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), energy dispersive spectrum (EDS). Results revealed that the as-synthesized nanoparticles possess uniform diameters about 100 nm, and high purity. TEM and the corresponding FFT images demonstrate that TiC nanoparticles were well-encapsulated by W shells. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core–shell nanoparticles with different cores.

  4. Development of flow-through and dip-stick immunoassays for screening of sulfonamide residues.

    Science.gov (United States)

    Zhang, Hongyan; Zhang, Yan; Wang, Shuo

    2008-08-20

    Two formats of membrane-based competitive enzyme immunoassays (flow-through and dip-stick) have been developed for the screening of sulfonamide residues in pig muscle and milk. Membrane was coated with anti-sulfonamide antibody and a sulfonamide hapten D2-horseradish peroxidase (HRP) conjugant was used as the labeled antigen for competitive assay of sulfonamides. Visual detection limits of the flow-through or dip-stick assay were 1-5 microg L(-1) or 1-10 microg L(-1) in buffer for seven sulfonamides, respectively. Assay validation was performed using samples spiked with single sulfonamide, spiked samples were tested using the developed strip assays and results were compared with those obtained by a validated high-performance liquid chromatograph (HPLC) method. Results showed that the two strip assays were correlated well with HPLC, respectively. With assay times of 5 min (flow-through) and 15 min (dip-stick), these rapid tests could offer simple, rapid and cost-effective on-site screening tools to detect sulfonamides in pig muscle (flow-through or dip-stick) or milk (only dip-stick).

  5. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    Science.gov (United States)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  6. DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1.

    Science.gov (United States)

    Wong, Jing Ting; Akhbar, Farzanah; Ng, Amanda Yunn Ee; Tay, Mandy Li-Ian; Loi, Gladys Jing En; Pek, Jun Wei

    2017-10-02

    Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. Here we report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, our study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila.Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. Here, the authors show that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis.

  7. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    International Nuclear Information System (INIS)

    Dubey, K.A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K.S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan

    2011-01-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  8. Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Shangqin Yuan

    2016-10-01

    Full Text Available Multi-walled carbon nanotubes (CNTs as nano-reinforcements were introduced to facilitate the laser sintering process and enhance the thermal and mechanical properties of polymeric composites. A dual experimental-theoretical method was proposed to evaluate the processability and predict the process parameters of newly developed CNT-coated polyamide 12 (CNTs/PA12 powders. The thermal conductivity, melt viscosity, phase transition and temperature-dependent density and heat capacity of PA12 and CNTs/PA12 powders were characterized for material evaluation. The composite powders exhibited improved heat conduction and heat absorption compared with virgin polymer powders, and the stable sintering range of composite powders was extended and found to be favourable for the sintering process. The microstructures of sintered composites revealed that the CNTs remained at the powder boundaries and formed network architectures, which instantaneously induced the significant enhancements in tensile strength, elongation at break and toughness without sacrificing tensile modulus.

  9. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K. A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K. S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan [Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2011-07-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  10. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  11. Coating by the Cold Spray Process: a state of the art

    Directory of Open Access Journals (Sweden)

    Mario Guagliano

    2009-04-01

    Full Text Available A brief description of cold spray coating process is presented. This paper intends to review some the previous works which are mostly about the influences of the cold spray parameters, mostly the surface ofthe substrate, on the deposition efficiency (DE. Almost all the important parameters, with more focus on the roughness of the substrate, on increasing the DE are briefly studied; this review also includes a description of application of cold spray and of some important effect of this method on substrate properties.On this basis, some possible development in this field of research are drawn and discussed.

  12. MeCrAl coatings obtained by arc PVD and pack cementation processes on nickel base superalloys

    International Nuclear Information System (INIS)

    Swadzba, L.; Maciejny, A.; Formanek, B.; Mendala, B.

    1997-01-01

    The paper presents the results of researches on obtaining and structure of high temperature resistance coatings on superalloys. The coatings were deposited on nickel and nickel base superalloys in two stages. During the first stage, the NiCr and NiCrHf coatings were obtained by arc-PVD method. Basic technology, bias, arc current, rotation, parameters of deposition of NiCr and MeCrHf coatings were defined. The high efficiency of deposition of both single and two sources was observed. The targets were made by vacuum melting and machining. An influence of targets chemical composition on coating structure and chemical coatings composition was described. The second stage was made by pack cementation HTLA (high temperature low activity) on 1323 K chromoaluminizing process. These arc-PVD and diffusion (pack cementation) connected processes permitted to obtain MeCrAl and MeCrAlHf type of coatings. The morphology, structure and microchemical composition were characterized by scanning electron microscopy, X-ray microanalysis, energy dispersive X-ray spectroscopy and X-ray diffraction methods. (orig.)

  13. The effect of thermal history on microstructure of Er_2O_3 coating layer prepared by MOCVD process

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Takezawa, Makoto; Hishinuma, Yoshimitsu; Tanaka, Teruya; Muroga, Takeo; Ikeno, Susumu; Lee, Seungwon; Matsuda, Kenji

    2016-01-01

    Er_2O_3 is a high potential candidate material for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems with liquid metal or molten-salt types. Recently, Hishinuma et al. reported to form homogeneous Er_2O_3 coating layer on the inner surface of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this study, the influence of thermal history on microstructure of Er_2O_3 coating layer on stainless steel 316 (SUS 316) substrate by MOCVD process was investigated using SEM, TEM and XRD. The ring and net shape selected-area electron diffraction (SAED) patterns of Er_2O_3 coating were obtained each SUS substrates, revealed that homogeneous Er_2O_3 coating had been formed on SUS substrate diffraction patterns. Close inspection of SEM images of the surface on the Er_2O_3 coating before and after thermal cycling up to 700degC in argon atmosphere, it is confirmed that the Er_2O_3 particles were refined by thermal history. The column-like Er_2O_3 grains were promoted to change to granular structure by thermal history. >From the cross-sectional plane of TEM observations, the formation of interlayer between Er_2O_3 coating and SUS substrate was also confirmed. (author)

  14. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  15. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  16. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  17. Electron beam irradiating process for rendering rough or topographically irregular surface substrates smooth; and coated substrates produced thereby

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1979-01-01

    This disclosure involves a novel process for instantaneous electron-beam curing of very thin low viscosity, solventless coating upon rough, irregular or textured surfaces of a substrate such as paper or the like. Through rather critical timing and energy adjustment procedures, the coating firmly adheres to the surface before the coating can conform to the roughness or texture contour or substantially penetrate into the surface. By this method a solidified very smooth outer surface is provided for the substrate that is particularly used for metalization and other finished layerings. (author)

  18. Thermal degradation process of poly (alpha-methylstyrene) microspheres coated with glow discharge polymer

    International Nuclear Information System (INIS)

    Zhang Zhanwen; Huang Yong; Tang Yongjian; Li Bo; Chen Sufen; He Zhibing

    2009-01-01

    Glow discharge polymer (GDP) shell was made by the decomposable mandrel technique using poly(alpha-methylstyrene) (PAMS) mandrel. The PAMS degradation rate and the GDP shell surface morphology at different equilibrium temperatures were investigated. Degradation rate was calculated from weight variation of PAMS before and after pyrolysis process. Experiment results indicate that the degradation rate decreases at the fixed equilibrium temperature and graded temperature can improve the rate. The degradation process has an effect on the GDP shell properties. The PAMS doesn't molten to flow liquid during degradation. But the degradation can reduce surface finish of GDP coatings. The GDP shell deffects are the result of the PAMS degradiation process. (authors)

  19. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-01-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density J c at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U 0 *. It is found that U 0 * takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U 0 * decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U 0 * on the magnetic field, temperature and the layer thickness.

  20. [Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings].

    Science.gov (United States)

    Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2013-12-01

    Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.

  1. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    Science.gov (United States)

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  2. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    Science.gov (United States)

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, ex