WorldWideScience

Sample records for dioxide concentration record

  1. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    DEFF Research Database (Denmark)

    Lüthi, Dieter; Le Floch, Martine; Bereiter, Bernhard

    2008-01-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650......,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide...... is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16...

  2. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    Energy Technology Data Exchange (ETDEWEB)

    Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Climate and Environm. Physics, Physics Inst., Univ. Bern, CH-3012 Bern, (Switzerland); Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Oeschger Centre for Climate Change Research, Univ. Bern, CH-3012 Bern, (Switzerland); Le Floch, M; Barnola, J M; Raynaud, D [LGGE, CNRS-Univ. Grenoble 1, F-38402 Saint Martin d' Heres, (France); Jouzel, J [Inst. Pierre Simon Laplace, LSCE, CEA-CNRS-Universite Versailles-Saint Quentin, CEA Saclay, F-91191 Gif sur Yvette (France); Fischer, H [Alfred Wegener Inst. for Polar and Maine Research, D-27568 Bremerhaven, (Germany)

    2008-07-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v. (authors)

  3. 27 CFR 24.319 - Carbon dioxide record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  4. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  5. Atmospheric carbon dioxide and the climate record

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1989-04-01

    This paper is an attempt to provide a summary review of conclusions from previous studies on this subject. Subject headings include: conceptualization of the greenhouse effect, the climatic effect of doubled CO 2 , interpretation of the climatic record, diagnosis of apparent and possible model deficiencies, and the palaeoclimatic record

  6. Atmospheric carbon dioxide and the climate record

    Energy Technology Data Exchange (ETDEWEB)

    Ellsaesser, H.W.

    1989-04-01

    This paper is an attempt to provide a summary review of conclusions from previous studies on this subject. Subject headings include: conceptualization of the greenhouse effect, the climatic effect of doubled CO/sub 2/, interpretation of the climatic record, diagnosis of apparent and possible model deficiencies, and the palaeoclimatic record.

  7. Dependence of carbon dioxide concentration on microalgal carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeoung Sang; Park, Song Moon [Department of Chemical Engineering, School of Environmental Engineering, Pohang University of Science and Technology, Pohang (Korea); Bolesky, Bohumil [Department of Chemical Engineering, McGill University (Canada)

    1999-10-01

    Batch cultivation of chlorella vulgaris was carried out under various CO{sub 2} concentrations in order to understand and describe mathematically the CO{sub 2} inhibition of microalgal CO{sub 2} fixation. The volumetric CO{sub 2} transfer coefficient from mixture gas to culture medium was estimated from the volumetric O{sub 2} transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO{sub 2} was calculated during microalgal culture. When air containing 0.035%(v/v) CO{sub 2} was supplied into microalgal culture, the fixation rate was limited by CO{sub 2} transfer rate. However, the limitation was disappeared by supplying mixture gas containing above 2%(v/v) CO{sub 2} and the dissolved CO{sub 2} concentration was maintained at the saturated value. In the range of CO{sub 2} partial pressure in the flue gases from thermal power sations and steel-making plants, the microalgal CO{sub 2} fixation rate was inhibited. The CO{sub 2} fixation rate was successfully formulated by a new empirical equation as a function of dissolved CO{sub 2} concentration, which could be useful for modeling and simulating the performance of photobioreaction with enriched CO{sub 2}. Also, it was found that the CO{sub 2} inhibition of microalgal CO{sub 2} fixation was reversible and that microalgal CO{sub 2} fixation process could be stable against a shock of unusually high CO{sub 2} concentration. 29 refs., 8 figs.

  8. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  9. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations

    OpenAIRE

    Paulin, L. M.; Diette, G. B.; Scott, M.; McCormack, M. C.; Matsui, E. C.; Curtin-Brosnan, J.; Williams, D. L.; Kidd-Taylor, A.; Shea, M.; Breysse, P. N.; Hansel, N. N.

    2014-01-01

    Nitrogen dioxide (NO2), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placemen...

  10. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations.

    Science.gov (United States)

    Paulin, L M; Diette, G B; Scott, M; McCormack, M C; Matsui, E C; Curtin-Brosnan, J; Williams, D L; Kidd-Taylor, A; Shea, M; Breysse, P N; Hansel, N N

    2014-08-01

    Nitrogen dioxide (NO2 ), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. Several combustion sources unique to the residential indoor environment, including gas stoves, produce nitrogen dioxide (NO2), and higher NO2 concentrations, are associated with worse respiratory morbidity in people with obstructive lung disease. A handful of studies have modified the indoor environment by replacing unvented gas heaters; this study, to our knowledge, is the first randomized study to target unvented gas stoves. The results of this study show that simple home interventions, including replacement of an unvented gas stove with an electric stove or placement of HEPA air purifiers with carbon filters, can significantly decrease indoor NO2 concentrations. © 2013 John Wiley & Sons A

  11. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  12. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  13. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  14. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  15. 13C trend in an Egyptian recent tree as a record for global carbon dioxide behaviour

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Belacy, N.; Abou El-Nour, F.

    1988-01-01

    The record of the 13 C content in tree rings of an Egyptian tree is used as indication for the increase of the atmospheric carbon dioxide concentration. A decrease of the 13 C isotopic content of the tree rings is observed starting from 1940 coinciding with a significant increase in the global production of CO 2 due to combustion of fossil fuel depleted in 13 C with respect to the atmosphere. Considering the local as well as the global CO 2 production rates together with the measured isotopic data, it may be concluded that the behaviour of carbon dioxide in the investigated Eastern Delta province in Egypt reflects mainly a global rather than a local effect. (author)

  16. Limestone-Concentrate-Pellet Roasting in wet Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    1990-01-01

    A roast process for treating chalcopyrite concentrate was developed. The investigation of the reaction of limestone-concentrate-pellet in a wet carbon dioxide flow was carried out by means of a thermogravimetric analysis (TGA) to determine at which temperatures the roasting reaction would take place. The thermodynamic calculations on the roast reaction were made by the use of SOLGASMIX-PV program. The TGA curves and thermodynamic calculations indicated that the conversion of chalcopyrite into bornite took place at about 975K, and the conversion of bornite into chalcocite at 1065-1123K. The thermodynamic calculations also showed that the sulfur released was fixed as calcium sulfide within roasted pellets. X-ray diffraction examination identified these phases in products.

  17. Spatial variations in nitrogen dioxide concentrations in urban Ljubljana, Slovenia

    Directory of Open Access Journals (Sweden)

    Vintar Mally Katja

    2015-09-01

    Full Text Available Ambient nitrogen dioxide (NO2 concentrations are regularly measured at only two monitoring stations in the city centre of Ljubljana, and such scanty data are inadequate for drawing conclusions about spatial patterns of pollution within the city, or to decide on effective measures to further improve air quality. In order to determine the spatial distribution of NO2 concentrations in different types of urban space in Ljubljana, two measuring campaigns throughout the city were carried out, during the summer of 2013 and during the winter of 2014. The main source of NO2 in Ljubljana is road transport. Accordingly, three types of urban space have been identified (urban background, open space along roads, and street canyon, and their NO2 pollution level was measured using Palmes diffusive samplers at a total of 108 measuring spots. This article analyses the results of both measuring campaigns and compares the pollution levels of different types of urban space.

  18. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  19. 27 CFR 25.296 - Record of beer concentrate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Record of beer concentrate..., DEPARTMENT OF THE TREASURY LIQUORS BEER Records and Reports § 25.296 Record of beer concentrate. (a) Daily records. A brewer who produces concentrate or reconstitutes beer shall maintain daily records which...

  20. Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids.

    Science.gov (United States)

    Kremer, Jenni M M; Nooten, Sabine S; Cook, James M; Ryalls, James M W; Barton, Craig V M; Johnson, Scott N

    2018-04-27

    Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO 2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO 2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO 2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO 2 , aphids maintained performance and populations were unchanged by eCO 2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO 2 also produced over three times more honeydew than aphids feeding under ambient CO 2 , suggesting they were imbibing more phloem sap at eCO 2 . The frequency of ant tending of aphids more than doubled in

  1. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Beardall, J.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 111-124 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : carbon dioxide * environmental change * radiation Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  2. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    Science.gov (United States)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  3. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  4. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  5. Record annual increase of carbon dioxide observed at Mauna Loa for 2015 |

    Science.gov (United States)

    Climate Oceans & Coasts Fisheries Satellites Research Marine & Aviation Charting Sanctuaries Research Record annual increase of carbon dioxide observed at Mauna Loa for 2015 Climate Research Share Niño weather pattern, as forests, plantlife and other terrestrial systems responded to changes in

  6. On 50th Anniversary of the Global Carbon Dioxide Record

    Directory of Open Access Journals (Sweden)

    Heimann Martin

    2007-12-01

    Full Text Available Abstract The 50-year global CO2 record led the way in establishing a scientific fact: modern civilization is changing important properties of the global atmosphere, oceans and biosphere. The evidence on which this scientific fact is based will be refined further, but the next challenge for scientists is broader. In addition to its traditional role in providing discovery, diagnosis, and prediction of the changes that are taking place on our planet, science has now also a role in helping society mitigate emissions by objectively quantifying them, and in helping adaptation by providing environmental forecasts on regional scales. Science is also expected to provide new options for society to tackle the transition to a new energy system, and to provide thorough environmental evaluation of all such options. This is what the meeting recognized as planetary responsibilities for scientists in the next 50 years.

  7. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    Science.gov (United States)

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  8. The measurement of dissolved and gaseous carbon dioxide concentration

    Science.gov (United States)

    Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U.

    2011-07-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

  9. The measurement of dissolved and gaseous carbon dioxide concentration

    International Nuclear Information System (INIS)

    Zosel, J; Oelßner, W; Decker, M; Gerlach, G; Guth, U

    2011-01-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO 2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO 2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO 2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO 2 . In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements. (topical review)

  10. Spatial variations in nitrogen dioxide concentrations in an urban area

    Science.gov (United States)

    Nicholas Hewitt, C.

    Fortnightly average NO 2 concentrations have been measured at 49 sites in the small city of Lancaster, U.K., over a continuous 1-year period using passive diffusion tubes. At sampling sites on a congested main road in the city centre considerable spatial and temporal variability in concentrations was found. An annual mean concentration of 63 μgm -3 was found witha range of 12-222 μgm -3. The mean concentration in an adjacent main road was 58 μgm -3 with a range of 5-107 μgm -3. Rather less variability was seen in a suburban main road and in a suburban residential street, which had annual mean concentrations of 38 and 30 μm -3, respectively. Concentrations in a city centre pedestrian precinct decreased with distance from the main road, having an annual mean value of 30μm -3. The data suggest that the precise location of a sampling device may be crucial in determining whether or not a given NO 2, concentration or standard is exceeded.

  11. Effects of Elevated Soil Carbon dioxide (CO2) Concentrations on ...

    African Journals Online (AJOL)

    PROF HORSFALL

    concentrations on spring wheat and soil chemical properties in the Sutton Bonington Campus, of the University of ... pipeline, marine tanker or road tankers to the storage site. .... Chlorophyll analysis of wheat plant was determined using the ...

  12. Sulfur dioxide concentration measurements in the vicinity of the Albert Funk mining and metallurgical plant complex

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M

    1976-01-01

    This article discusses the ambient air concentration of sulfur dioxide in the area of Freiberg, GDR. The emission of sulfur dioxide results for the most part from brown coal combustion in heat and power plants and in metallurgical plants. Sulfur dioxide emission from neighboring industrial centers such as Dresden and North Bohemian towns affects the Freiburg area to some extent. The use of brown coal in household heating contributes an average of 50 kg of sulfur dioxide emission per coal burning household annually. A total of 1260 measurements at 28 points in the vicinity of Freiberg were made in the year 1972 in evaluating the concentration of sulfur dioxide present in the air. In 75% of the measurements the concentrations were below 0.15 mg/mat3, in 12% between 0.15 and 0.2 mg/mat3, in 7% between 0.2 and 0.3 mg/mat3 and in 6% between 0.3 and 0.5 mg/mat3. The results are described as average industrial pollution. The influence of air temperature, wind velocity, fog, season and time of day are also discussed. (4 refs.) (In German)

  13. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine.

    Science.gov (United States)

    Gabriele, Morena; Gerardi, Chiara; Lucejko, Jeannette J; Longo, Vincenzo; Pucci, Laura; Domenici, Valentina

    2018-04-15

    This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624

    DEFF Research Database (Denmark)

    Heebøll, Anna; Wargocki, Pawel; Toftum, Jørn

    2018-01-01

    of Copenhagen, Denmark, were retrofitted either with a decentralized, balanced supply and exhaust mechanical ventilation unit with heat recovery; automatically operable windows with an exhaust fan; automatically operable windows with alternating counter-flow heat recovery through slots in the outside wall......; or a visual feedback display unit showing the current classroom carbon dioxide concentration, thus advising when the windows should be opened. For comparison, one classroom retained the original approach for achieving ventilation by manual opening of windows. One year after retrofitting the classrooms carbon...... dioxide concentrations, temperatures, energy use, and window and door opening behavior were recorded during a four week period in the heating season in January. The measured carbon dioxide concentrations were significantly lower in the classrooms with the mechanical ventilation system and the system...

  15. Radiation-use of a forest exposed to elevated concentrations of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    DeLucia, E. H.; George, K.; Hamilton, J. G.

    2002-01-01

    Radiation-use efficiency of growth (defined as biomass accumulation per unit of absorbed photosynthetically active radiation) of loblobby pine forest plots exposed to ambient or elevated atmospheric carbon dioxide concentration was compared. Biomass accumulation of the dominant loblobby pines was calculated from monthly measurements of tree growth and site-specific allometric measurements. Leaf area index was estimated by optical, allometric and interfall methods, depending on species. Results showed that depending on tree height, elevated carbon dioxide did not alter the above-ground biomass allocation in loblobby pine. Leaf area index estimates by the different methods were found to vary significantly, but elevated carbon dioxide had only a slight effect on leaf area index in the first three years of this study. The 27 per cent increase in radiation-use efficiency of growth in response to carbon dioxide enrichment is believed to have been caused primarily by the stimulation of biomass increment. It was concluded that long-term increases in atmospheric carbon dioxide concentration can increase the radiation-use efficiency of growth in closed canopy forests, but the magnitude and duration of this increase in uncertain. 57 refs., 2 tabs., 3 figs

  16. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  17. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    Energy Technology Data Exchange (ETDEWEB)

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  18. (Blastomogenic action of low concentrations of nitrosodimethylamine, dimethylamine and nitrogen dioxide)

    Energy Technology Data Exchange (ETDEWEB)

    Benemanskii, V V; Prusakov, V M; Leshchenko, M E

    1981-01-01

    The round-the clock inhalation of the mixture of nitrosodimethylamine (NDMA), dimethylamine (DMA) and nitrogen dioxide, with NDMA concentrations varying within 0.66-0.0026 mg/m3, was followed by development of tumors in the kidney, liver, lungs and at other sites in albino nonbred rats, after a year of exposure. Application of DMA and nitrogen dioxide modified the carcinogenic effect of NDMA. In male rats, the blastogenic effect of the mixture was higher, as compared with that of inhalation of NDMA alone. NDMA inhalation resulted in a lower tumor yield in female rats.

  19. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  20. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    Dixon, J.

    2001-01-01

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO 2 :NO x (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  1. Sulfur dioxide concentrations near thermoelectric power plant of Rossano Calabro (Italy)

    International Nuclear Information System (INIS)

    Florio, G.

    1991-01-01

    This article presents the results of a one-year atmospheric sulfur dioxide concentration monitoring campaign conducted with the use of five detection stations situated near the 320 MW thermoelectric power plant serving the coastal town of Rossano Calabro (population 50,000). Apart from the analysis of sulfur dioxide concentrations, a meteorological study was carried out based on anemological data. Comparisons were made with reference to the relevant legal standards. It was thus possible to ascertain that air quality near the power station is quite high. Nevertheless, it should be pointed out that, due to the particular local meteorological situation strongly turbulent sea breezes, new detection stations should be opened in this area which may undergo significant industrial development

  2. Sulfur dioxide concentrations near thermoelectric power plant of Rossano Calabro (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Florio, G. (Calabria Univ., Arcavacata di Rende (Italy). Dipt. di Meccanica)

    This article presents the results of a one-year atmospheric sulfur dioxide concentration monitoring campaign conducted with the use of five detection stations situated near the 320 MW thermoelectric power plant serving the coastal town of Rossano Calabro (population 50,000). Apart from the analysis of sulfur dioxide concentrations, a meteorological study was carried out based on anemological data. Comparisons were made with reference to the relevant legal standards. It was thus possible to ascertain that air quality near the power station is quite high. Nevertheless, it should be pointed out that, due to the particular local meteorological situation strongly turbulent sea breezes, new detection stations should be opened in this area which may undergo significant industrial development.

  3. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    International Nuclear Information System (INIS)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V.

    2007-01-01

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO 2 ). Roots of some species grown in hydroponics under elevated CO 2 concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO 2 conditions. Root branching patterns may also be influenced by elevated CO 2 concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO 2 on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO 2 levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO 2 had longer roots, more lateral root growth than plants grown in ambient CO 2 . Roots in elevated CO 2 were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO 2 . In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO 2 . Therefore, both elevated CO 2 and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs

  4. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    Science.gov (United States)

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  5. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  6. Automatic colorimetric determination of low concentrations of sulphate for measuring sulphur dioxide in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Persson, G A

    1966-01-01

    An automatic colorimetric method for the determination of low concentrations of sulphate (0-10 microgram/ml) using the thoron indicator is described. Total amounts of sulphate as small as 0.3 micrograms can be determined. The sulphate is precipitated with barium perchlorate and the excess of barium is indicated with 1-(o-arsenophenylazo)-2-naphthol-3-6-disulfonic acid(thoron). The procedure is worked out primarily for the determination of sulphur dioxide in air after absorption in diluted hydrogen peroxide.

  7. Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2004-04-01

    Full Text Available Reviews 23 (2004) 803?810 Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations J.S. Waterhousea,*, V.R. Switsura,b, A.C. Barkera, A.H.C. Cartera,b,{, D.L. Hemmingc, N.J. Loaderd, I..., V.R., Waterhouse, J.S., Heaton, T.H.E., Carter, A.H.C., 1998. Climatic variation andthe stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 50B, 25?33. J.ggi, M...

  8. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  9. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.

    Science.gov (United States)

    Luangprasert, Maytat; Vasithamrong, Chainarin; Pongratananukul, Suphasit; Chantranuwathana, Sunhapos; Pumrin, Suree; De Silva, I P D

    2017-05-01

    It is known that in-vehicle carbon dioxide (CO 2 ) concentration tends to increase due to occupant exhalation when the HVAC (heating, ventilation, and air conditioning) air is in recirculation mode. Field experiments were conducted to measure CO 2 concentration during typical commute in Bangkok, Thailand. The measured concentrations agreed with the concentration predicted using first-order mass balance equation, in both recirculating and outside air modes. The long-term transient decay of the concentration when the vehicle was parked and the HVAC system was turned off was also studied. This decay was found to follow Fickian diffusion process. The paper also provides useful operational details of the automotive HVAC system and fresh air ventilation exchange between cabin interior and exterior. Drivers in tropical Asian countries typically use HVAC recirculation mode in their automobiles. This behavior leads to excessive buildup of cabin CO 2 concentration levels. The paper describes the CO 2 buildup in a typical commute in Bangkok, Thailand. Auto manufacturers can potentially take measures to alleviate such high concentration levels. The paper also discusses the diffusion of CO 2 through the vehicle envelope, an area that has never been investigated before.

  10. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  11. Calculation of critical concentrations of actinides in an infinite medium of silicon dioxide

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Sato, Shohei; Kawasaki, Hiromitsu

    2009-01-01

    The critical concentrations of actinides in metal-silicon-dioxide (SiO 2 ) and in metal-water (H 2 O) mixtures were calculated for 26 actinides including 233,235 U, 239,241 Pu, 242m Am, 243,245,247 Cm, and 249,251 Cf. The calculations were performed using the Monte Carlo neutron transport calculation code MCNP5 combined with the evaluated nuclear data library JENDL3.3. The results showed that the critical concentration of actinide in metal-SiO 2 mixtures was about 1/5 of that in metal-H 2 O mixtures for all the fissile nuclides investigated. The k ∞ 's of metal-SiO 2 and metal-H 2 O at one-half of the respective critical concentration of actinide, which was assumed as the subcritical concentration limit, were found to be less than 0.8 for all the actinides considered. By applying the sum-of-fractions rule to the concentrations of six nuclides in metal-SiO 2 mixtures, the subcriticality of high-level radioactive wastes was confirmed for a reported sample. The effects of different nuclear data libraries on the results of critical concentrations were found to be large for 242 Cm, 247 Cm, and 250 Cf by comparison with the results calculated with another evaluated nuclear data library, ENDF/B-VI. (author)

  12. Influence of low water-vapour concentrations in air and carbon dioxide on the inflammability of magnesium in these media

    International Nuclear Information System (INIS)

    Darras, Raymond; Baque, Pierre; Leclercq, Daniel

    1960-01-01

    The temperatures at which live combustion starts in magnesium and certain of its alloys have been determined systematically in air and in carbon dioxide. In carbon dioxide, the ignition temperature is reduced by 130 to 140 deg. C for very low water-vapor concentrations. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 240, p. 1647-1649, sitting of 28 October 1959 [fr

  13. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions.

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel.

  14. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel. PMID:25923722

  15. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  16. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data

    Directory of Open Access Journals (Sweden)

    Hiroshi Tani

    2012-11-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas (GHG in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR or Moderate Resolution Imaging Spectroradiometer (MODIS data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3, vegetation cover (MOD13C2 and MOD15A2 and productivity (MOD17A2 of MODIS (which we have named the TVP model was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO aboard the Greenhouse gases Observing SATellite (GOSAT are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2 was 0.75 in Eurasia (RMSE = 1.16 and South America (RMSE = 1.17; the lowest R2 was 0.57 in Australia (RMSE = 0.73. Compared with the TANSO-observed CO2 concentration (XCO2, we found that the accuracy throughout the World is between −2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  17. Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

    Science.gov (United States)

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-11-26

    Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  18. Chronic disease associated with long-term concentrations of nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, D.E.; Colome, S.D.; Mills, P.K.; Burchette, R.; Beeson, W.L.; Tian, Y. (Loma Linda Univ., CA (United States))

    1993-04-01

    A prospective epidemiologic cohort study of 6,000 residentially stable and non-smoking Seventh-day Adventists (SDA) in California was conducted to evaluate long-term cumulative levels of ambient nitrogen dioxide (NO2) in association with several chronic diseases. These diseases included respiratory symptoms, cancer, myocardial infarction (MI), and all natural causes mortality. Cumulative ambient concentrations of NO2 were estimated for each study subject using monthly interpolations from fixed site monitoring stations and applying these estimates to the monthly residence and work place zip code histories of study participants. In addition, a personal NO2 exposure study on a randomly selected sample of 650 people in southern California was conducted to predict total personal NO2 exposure using household and lifestyle characteristics and ambient NO2 concentrations. It was found that good predictability could be obtained (correlation coefficient between predicted and observed values = 0.79) from a model predicting personal NO2. The resulting regression equations from the personal NO2 exposure study were applied to the epidemiologic study cohort to adjust ambient concentrations of NO2.

  19. Use of a double-wave carbon dioxide laser for determining small concentrations of materials

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P.; Dunaev, V.B.; Prokopov, A.P.

    1985-09-01

    According to this experiment, the smallest detectable concentration of trichloroethylene is C = 2.0/sup -5/ mg/cm/sup 2/. The experiments described were made with an unstabilized laser; it is expected that with an improved radiation recording and a laser with greater stability, the detection limit could be reduced by one or two orders of magnitude.

  20. Inter-comparison of interpolated background nitrogen dioxide concentrations across Greater Manchester, UK

    Science.gov (United States)

    Lindley, S. J.; Walsh, T.

    There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area

  1. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China

    International Nuclear Information System (INIS)

    Lingxi Zhou; Jie Tang; Yupu Wen; Peng Yan; Jinlong Li

    2003-01-01

    This paper describes the continuous measurements of atmospheric carbon dioxide at Mt. Waliguan (36 deg 17 min N, 100 deg 54 min E, 3816 m asl) in western China over the period 1994-2000. The CO 2 hourly mixing ratios were segregated by horizontal wind direction/speed and vertical winds, respectively, merged by season over the entire measurement period. The short-term variability in CO 2 was examined mainly from the point of view of local winds observed at this station and isobaric back trajectory cluster-concentration analysis as for local and long-range transport influence, to permit the selection of hourly average data that is representative of background conditions. From the selected hourly data, daily, monthly and annual averages that are not influenced by local CO 2 sources and sinks be computed by discriminating the local and regional impact on the Waliguan CO 2 records. On the basis of these results, background CO 2 data were then analyzed to evaluate the averaged diurnal variation, monthly mean time series, CO 2 mixing ratio distribution in different seasons as well as averaged seasonal cycle. Annual mean and growth rate of CO 2 at Waliguan during the period of 1991 to 2000 were further discussed by supplement with NOAA/CMDL flask air sampling records at this station and other monitoring stations located at similar latitudinal band in the Northern Hemisphere. The results from this study can provide atmospheric CO 2 characteristics in Asian inland regions, and be used in other studies to improve the understanding of carbon source and sink distributions

  2. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  3. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  4. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    International Nuclear Information System (INIS)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-01-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO 2 ) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO 2 in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO 2 , 0.1 ppm NO 2 , 1 ppm NO 2 , 10 ppm NO 2 and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO 2 in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO 2 in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  5. Use of high concentrations of carbon dioxide for stunning rabbits reared for meat production

    Directory of Open Access Journals (Sweden)

    A. Dalmau

    2016-03-01

    Full Text Available Abstract: An investigation was performed to determine whether high concentrations of carbon dioxide (CO2 at 70-98% in atmospheric air are a suitable alternative for stunning rabbits compared to conventional approaches such as electronarcosis. Aversion to the gas and efficacy in causing prolonged unconsciousness and death were studied in a total of 480 rabbits by means of behavioural parameters, physiological indicators (presence of rhythmic breathing and corneal reflex and electroencephalography (EEG, brain function. The use of any of the 4 studied concentrations of the gas caused more nasal discomfort and vocalisations than the use of atmospheric air (P<0.001. EEG activity confirmed that loss of posture is a good indicator of the onset of unconsciousness in rabbits exposed to CO2, occurring earlier (P<0.05 at 90 and 98% than at 70 and 80%. Rabbits showed signs of aversion for 15 s before the onset of unconsciousness, which occurred around 30 s after the beginning of the exposure to the gas, similar to species such as swine in which high concentrations of CO2 are also used for stunning. CO2 at 80 to 98% is suggested as a reasonable concentration range to induce a long state of unconsciousness and death in rabbits, while 70% CO2 is not recommended because it requires too long duration of exposure (more than 360 s to ensure effectiveness. Despite the advantages in terms of pre-stun handling and irreversibility, CO2 is not free of animal welfare concerns. In consequence, a debate is necessary to ascertain if CO2 can be considered a suitable alternative to stun rabbits, considering the advantages and drawbacks cited, quantified in the present study as 15 s of aversion (nasal discomfort and vocalisations before losing posture.

  6. Effect of sucralfate on total carbon dioxide concentration in horses subjected to a simulated race test.

    Science.gov (United States)

    Caltabilota, T J; Milizio, J G; Malone, S; Kenney, J D; McKeever, K H

    2010-02-01

    The purpose of this study was to test the hypothesis that sucralfate, a gastric ulcer medication, would alter plasma concentrations of total carbon dioxide (tCO2), lactate (LA), sodium (Na+), potassium (K+), chloride (Cl-) and total protein (TP), as well as calculated plasma strong ion difference (SID) and packed cell volume (PCV) in horses subjected to a simulated race test (SRT). Six unfit Standardbred mares (approximately 520 kg, 9-18 years) were used in a randomized crossover design with the investigators blinded to the treatment given. The horses were assigned to either a control (40-50 mL apple sauce administered orally (PO)) or a sucralfate (20 mg/kg bodyweight dissolved in 40-50 mL apple sauce administered PO) group. Each horse completed a series of SRTs during which blood samples were taken via jugular venipuncture at five sampling intervals (prior to receiving treatment, prior to SRT, immediately following exercise, and at 60 and 90 min post-SRT). During the SRTs, each horse ran on a treadmill fixed on a 6% grade for 2 min at a warm-up speed (4 m/s) and then for 2 min at a velocity predetermined to produce VO2max. Each horse then walked at 4 m/s for 2 min to complete the SRT. Plasma tCO2, electrolytes, LA, and blood PCV and TP were analysed at all intervals. No differences (P>0.05) were detected between control and sucralfate for any of the measured variables. There were differences (P<0.05) in tCO2, SID, PCV, TP, LA and electrolyte concentrations relative to sampling time. However, these differences were attributable to the physiological pressures associated with acute exercise and were not an effect of the medication. It was concluded that sucralfate did not alter plasma tCO2 concentration in this study. Copyright (c) 2008 Elsevier Ltd. All rights reserved.

  7. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study

    Directory of Open Access Journals (Sweden)

    Spengler John D

    2010-11-01

    Full Text Available Abstract Background There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2 in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Methods Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008 and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Results Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32, the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p Conclusion Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  8. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study.

    Science.gov (United States)

    Adamkiewicz, Gary; Hsu, Hsiao-Hsien; Vallarino, Jose; Melly, Steven J; Spengler, John D; Levy, Jonathan I

    2010-11-17

    There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment) to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2) in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR) modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008) and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs) of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32), the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p GIS variables, and the regression model structure was robust to various model-building approaches. Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  9. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production

    Science.gov (United States)

    Background: Although the association between rising levels of carbon dioxide, the principle anthropogenic greenhouse gas, and pollen production has been established, few data are available regarding the function of rising carbon dioxide on quantitative or qualitative changes in allergenic fungal sp...

  10. Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Azimil Gani; Rahman, Haolia; Kim, Jung-Kyung; Han, Hwataik [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    Demand control ventilation is employed to save energy by adjusting airflow rate according to the ventilation load of a building. This paper investigates a method for occupancy estimation by using a dynamic neural network model based on carbon dioxide concentration in an occupied zone. The method can be applied to most commercial and residential buildings where human effluents to be ventilated. An indoor simulation program CONTAMW is used to generate indoor CO{sub 2} data corresponding to various occupancy schedules and airflow patterns to train neural network models. Coefficients of variation are obtained depending on the complexities of the physical parameters as well as the system parameters of neural networks, such as the numbers of hidden neurons and tapped delay lines. We intend to identify the uncertainties caused by the model parameters themselves, by excluding uncertainties in input data inherent in measurement. Our results show estimation accuracy is highly influenced by the frequency of occupancy variation but not significantly influenced by fluctuation in the airflow rate. Furthermore, we discuss the applicability and validity of the present method based on passive environmental conditions for estimating occupancy in a room from the viewpoint of demand control ventilation applications.

  11. Effect of atmospheric carbon dioxide concentration on the cultivation of bovine Mycoplasma species.

    Science.gov (United States)

    Lowe, J L; Fox, L K; Enger, B D; Progar, A Adams; Gay, J M

    2018-05-01

    Recommendations for bovine mycoplasma culture CO 2 concentrations are varied and were not empirically derived. The objective of this study was to determine whether the growth measures of bovine mycoplasma isolates differed when incubated in CO 2 concentrations of 10 or 5% or in candle jars (2.7 ± 0.2% CO 2 ). Growth of Mycoplasma bovis (n = 22), Mycoplasma californicum (n = 18), and other Mycoplasma spp. (n = 10) laboratory isolates was evaluated. Isolate suspensions were standardized to approximately 10 8 cfu/mL and serially diluted in pasteurized whole milk to achieve test suspensions of 10 2 and 10 6 cfu/mL. One hundred microliters of each test dilution was spread in duplicate onto the surface of a modified Hayflick's agar plate. Colony growth was enumerated on d 3, 5, and 7 of incubation. A mixed linear model included the fixed effects of CO 2 treatment (2.7, 5, or 10%), species, day (3, 5, or 7), and their interactions, with total colony counts as the dependent variable. Carbon dioxide concentration did not significantly affect overall mycoplasma growth differences, but differences between species and day were present. Colony counts (log 10 cfu/mL) of M. bovis were 2.6- and 1.6-fold greater than M. californicum and other Mycoplasma spp., respectively. Growth at 7 d of incubation was greater than d 3 and 5 for all species. These findings were confirmed using field isolates (n = 98) from a commercial veterinary diagnostic laboratory. Binary growth responses (yes/no) of the field isolates were not different between CO 2 treatments but did differ between species and day of incubation. On average, 57% of all field isolates were detected by 3 d of incubation compared with 93% on d 7. These results suggest that the range of suitable CO 2 culture conditions and incubation times for the common mastitis-causing Mycoplasma spp. may be broader than currently recommended. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Observations of the uptake of carbonyl sulfide (COS by trees under elevated atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    L. Sandoval-Soto

    2012-08-01

    Full Text Available Global change forces ecosystems to adapt to elevated atmospheric concentrations of carbon dioxide (CO2. We understand that carbonyl sulfide (COS, a trace gas which is involved in building up the stratospheric sulfate aerosol layer, is taken up by vegetation with the same triad of the enzymes which are metabolizing CO2, i.e. ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, phosphoenolpyruvate carboxylase (PEP-Co and carbonic anhydrase (CA. Therefore, we discuss a physiological/biochemical acclimation of these enzymes affecting the sink strength of vegetation for COS. We investigated the acclimation of two European tree species, Fagus sylvatica and Quercus ilex, grown inside chambers under elevated CO2, and determined the exchange characteristics and the content of CA after a 1–2 yr period of acclimation from 350 ppm to 800 ppm CO2. We demonstrate that a compensation point, by definition, does not exist. Instead, we propose to discuss a point of uptake affinity (PUA. The results indicate that such a PUA, the CA activity and the deposition velocities may change and may cause a decrease of the COS uptake by plant ecosystems, at least as long as the enzyme acclimation to CO2 is not surpassed by an increase of atmospheric COS. As a consequence, the atmospheric COS level may rise causing an increase of the radiative forcing in the troposphere. However, this increase is counterbalanced by the stronger input of this trace gas into the stratosphere causing a stronger energy reflection by the stratospheric sulfur aerosol into space (Brühl et al., 2012. These data are very preliminary but may trigger a discussion on COS uptake acclimation to foster measurements with modern analytical instruments.

  13. The Dose–Response Association between Nitrogen Dioxide Exposure and Serum Interleukin-6 Concentrations

    Directory of Open Access Journals (Sweden)

    Jennifer L. Perret

    2017-05-01

    Full Text Available Systemic inflammation is an integral part of chronic obstructive pulmonary disease (COPD, and air pollution is associated with cardiorespiratory mortality, yet the interrelationships are not fully defined. We examined associations between nitrogen dioxide (NO2 exposure (as a marker of traffic-related air pollution and pro-inflammatory cytokines, and investigated effect modification and mediation by post-bronchodilator airflow obstruction (post-BD-AO and cardiovascular risk. Data from middle-aged participants in the Tasmanian Longitudinal Health Study (TAHS, n = 1389 were analyzed by multivariable logistic regression, using serum interleukin (IL-6, IL-8 and tumor necrosis factor-α (TNF-α as the outcome. Mean annual NO2 exposure was estimated at residential addresses using a validated satellite-based land-use regression model. Post-BD-AO was defined by post-BD forced expiratory ratio (FEV1/FVC < lower limit of normal, and cardiovascular risk by a history of either cerebrovascular or ischaemic heart disease. We found a positive association with increasing serum IL-6 concentration (geometric mean 1.20 (95% CI: 1.1 to 1.3, p = 0.001 per quartile increase in NO2. This was predominantly a direct relationship, with little evidence for either effect modification or mediation via post-BD-AO, or for the small subgroup who reported cardiovascular events. However, there was some evidence consistent with serum IL-6 being on the causal pathway between NO2 and cardiovascular risk. These findings raise the possibility that the interplay between air pollution and systemic inflammation may differ between post-BD airflow obstruction and cardiovascular diseases.

  14. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    Science.gov (United States)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can

  15. N,N'-Dimethylthiourea dioxide formation from N,N'-dimethylthiourea reflects hydrogen peroxide concentrations in simple biological systems

    International Nuclear Information System (INIS)

    Curtis, W.E.; Muldrow, M.E.; Parker, N.B.; Barkley, R.; Linas, S.L.; Repine, J.E.

    1988-01-01

    The authors hypothesized that measurement of a specific product from reaction of N,N'-dimethylthiourea (Me 2 TU) and H 2 O 2 would provide a good indication of the H 2 O 2 scavenging and protection seen after addition of Me 2 TU to biological systems. They found that addition of H 2 O 2 to Me 2 TU yielded a single stable product, Me 2 TU dioxide. Me 2 TU dioxide formation correlated with Me 2 TU consumption as a function of added H 2 O 2 concentration and was prevented by simultaneous addition of catalase (but not boiled catalase), superoxide dismutase, dimethyl sulfoxide, mannitol, or sodium benzoate. Me 2 TU dioxide formation, Me 2 TU consumption, and H 2 O 2 concentration increases occurred in mixtures containing phorbol 12-myristate 13-acetate (PMA) and normal human neutrophils but not in mixtures containing PMA and neutrophils from patients with chronic granulomatous disease or in mixtures containing PMA and normal neutrophils and catalase. Me 2 TU dioxide formation also occurred in isolated rat lungs perfused with Me 2 TU and H 2 O 2 but not in lungs perfused with Me 2 TU and elastase, histamine, or oleic acid. In contrast, Me 2 TU dioxide formation did not occur after exposure of Me 2 TU to 60 Co-generated hydroxyl radical or hypochlorous acid in the presence of catalase. The results indicate that reaction of Me 2 TU with H 2 O 2 selectively forms Me 2 TU may be useful for assessing the presence and significance of H 2 O 2 in biological systems

  16. Evaluation of modified atmosphere bag and sulphur dioxide concentrations applied on highbush blueberries fruit (Vaccinium corymbosum L.) cv. Emerald

    OpenAIRE

    Rodríguez, Mario; Wyss, Anddy; Hormazábal, Nelson

    2015-01-01

    Aiming to evaluate techniques for modified atmosphere and application of sulphur anhydride upon parameters of quality of postharvest on blueberry fruit (Vaccinium corymbosum L.) cv. Emerald, an experiment of six treatments was conducted, given by the combination of two factors, modified atmosphere (with and without) and different concentrations of sulphur dioxide (generated by 0, 1 and 2 g of sodium metabisulphite) during 7, 14, 21 and 28 days at 0 °C. The dose of 2 g of modified atmosphere s...

  17. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  18. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  19. Effect of chloride concentration on the solubility of amorphous uranium dioxide at 25deg C under reducing conditions

    International Nuclear Information System (INIS)

    Aguilar, M.; Casas, I.; Pablo, J. de; Torrero, M.E.

    1991-01-01

    The dependence of the solubility of a microcrystalline uranium dioxide on the chloride concentration has been studied at 25deg C under reducing conditions. The concentration of uranium in solution has been found to be some orders of magnitude lower than in perchlorate media. Possible changes of both the morphology and the composition of the solid phase have been investigated by means of Energy Dispersive X-ray Analysis (EDX) and X-ray Powder Difraction (XPD). The formation of a secondary solid phase as a reason for the decrease of the solubility has been postulated. (orig.)

  20. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    Science.gov (United States)

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature

    International Nuclear Information System (INIS)

    Zha, T.; Ryyppo, A.; Kellomaki, S.; Wang, K-Y.

    2002-01-01

    The effects of needle age, elevated carbon dioxide and temperature on needle respiration in Scots pine was studied during a four-year period. Results showed that respiration rates and specific leaf area decreased in elevated atmospheric carbon dioxide concentration relative to ambient conditions, but increased in elevated temperature and when elevated atmospheric carbon dioxide and elevated temperature were combined. Starch and soluble sugar concentrations for a given needle age increased in elevated carbon dioxide, but decreased slightly under combined elevated temperature and elevated carbon dioxide conditions. Respiration rate and specific leaf area were highest in current year needles in all treatment modes. All treatment modes enhanced the difference in respiration between current year and older needles relative to ambient conditions. Carbohydrate concentration or specific leaf area remained unchanged in response to any treatment. Under ambient conditions the temperature coefficient of respiration increased slightly in elevated carbon dioxide regardless of age, however, there was significant decline at elevated temperature as well as when both carbon dioxide concentration and temperature were elevated, indicating acclimation of respiration to temperature. 48 refs., 2 tabs., 7 figs

  2. Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions

    Science.gov (United States)

    BUNCE, JAMES A.

    2005-01-01

    • Background and Aims Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO2] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO2] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. • Methods Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO2] and at ambient plus 350 µmol mol−1 [CO2] in open top chambers. Measurements were made on pairs of leaves from both [CO2] treatments on a total of 16 d during the middle of the growing seasons of two years. • Key Results Elevated [CO2] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m−2 d−1 (1·4 µmol m−2 s−1) for both the ambient and elevated [CO2] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO2], and respiration per unit of mass was significantly lower at elevated [CO2]. Respiration increased by a factor of 2·5 between 18 and 26 °C average night temperature, for both [CO2] treatments. • Conclusions These results do not support predictions that elevated [CO2] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. PMID:15781437

  3. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Directory of Open Access Journals (Sweden)

    A. K. Thorpe

    2017-10-01

    Full Text Available At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  4. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Science.gov (United States)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  5. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  6. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  7. Branch growth and gas exchange in 13-year old loblobby pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    International Nuclear Information System (INIS)

    Maier, C. A.; Johnsen, K. H.; Butnor, J.; Kress, L. W.; Anderson, P. H.

    2002-01-01

    The combined effects of nutrient availability and carbon dioxide on growth and physiology in mature loblobby pine trees was investigated. Whole-tree open top chambers were used to expose 13-year old loblobby pine trees, growing in soil with high or low nutrient availability to elevated carbon dioxide to examine how carbon dioxide, foliar nutrition and crown position affect branch growth, phenology and physiology. Results showed that fertilization and elevated carbon dioxide increased branch leaf area, and the combined effects were additive. However, fertilization and elevated carbon dioxide differentially altered needle lengths, number of fascicles and flush length in such a way that flush density increased with improved nutrition but decreased with exposure to elevated carbon dioxide. Based on these results, it was concluded that changes in nitrogen availability and atmospheric carbon dioxide may alter canopy structure, facilitating greater foliage retention and deeper crowns in loblobby pine forests. Net photosynthesis and photosynthetic efficiency was increased in the presence of elevated carbon dioxide concentration and lowered the light compensation point, whereas fertilization had no appreciable effect on foliage gas exchange. 71 refs., 7 tabs., 7 figs

  8. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G. [Edinburgh Univ., Inst. of Ecology and Resource Management, Edinburgh (United Kingdom); Grayston, S. J. [Macaulay Land Use Research Inst., Plant-Soil Interaction Group, Aberdeen (United Kingdom)

    2003-10-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs.

  9. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    International Nuclear Information System (INIS)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G.; Grayston, S. J.

    2003-01-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs

  10. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  11. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    Roshan GholamReza

    2012-12-01

    Full Text Available Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  12. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations.

    Science.gov (United States)

    Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan

    2012-12-12

    The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  13. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    Science.gov (United States)

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.

  14. NOAA Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Passive Microwave Sea Ice Concentration Climate Data Record (CDR) dataset is generated using daily gridded brightness temperatures from the Defense...

  15. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides a Climate Data Record (CDR) of sea ice concentration from passive microwave data. It provides a consistent, daily and monthly time series of...

  16. NOAA Climate Data Record (CDR) of Passive Microwave Sea Ice Concentration, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset version has been superseded by version 2. This data set provides a Climate Data Record (CDR) of passive microwave sea ice concentration based on the...

  17. Carbon dioxide absorbents containing potassium hydroxide produce much larger concentrations of compound A from sevoflurane in clinical practice.

    Science.gov (United States)

    Yamakage, M; Yamada, S; Chen, X; Iwasaki, S; Tsujiguchi, N; Namiki, A

    2000-07-01

    We investigated the concentrations of degraded sevoflurane Compound A during low-flow anesthesia with four carbon dioxide (CO(2)) absorbents. The concentrations of Compound A, obtained from the inspiratory limb of the circle system, were measured by using a gas chromatograph. In the groups administered 2 L/min fresh gas flow with 1% sevoflurane, when the conventional CO(2) absorbents, Wakolime(TM) (Wako, Tokyo, Japan) and Drägersorb(TM) (Dräger, Lübeck, Germany), were used, the concentrations of Compound A increased steadily from a baseline to 14.3 ppm (mean) and 13.2 ppm, respectively, at 2 h after exposure to sevoflurane. In contrast, when the other novel types of absorbents containing decreased or no potassium hydroxide/sodium hydroxide, Medisorb(TM) (Datex-Ohmeda, Louisville, CO) and Amsorb(TM) (Armstrong, Coleraine, Northern Ireland), were used, Compound A remained at baseline (potassium hydroxide/sodium hydroxide produce much larger concentrations of Compound A from sevoflurane in clinical practice. An absorbent containing neither potassium hydroxide nor sodium hydroxide produces the smallest concentrations of Compound A.

  18. Indoor-outdoor nitric oxide and nitrogen dioxide concentrations at three sites in Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D.R. (D.R. Rowe Engineering Services, Inc., Bowling Green, KY (United States)); Al-Dhowalia, K.H.; Mansour, M.E. (King Saud Univ., Riyadh (Saudi Arabia))

    1991-08-01

    The objective of this study was to evaluate the nitric oxide and nitrogen oxide concentrations indoors and outdoors at three sites in Riyadh, Saudi Arabia. Results show that the outdoor and indoor concentrations for NO were at least 270 and 16 times the reported average worldwide NO concentrations, respectively. The NO(sub 2) concentrations were about 14 times reported outdoor worldwide levels; however, NO(sub 2) concentrations indoors were generally below those reported in the literature. The data presented, in combination with information presented in previous articles, will provide a valuable background database for use in dispersion models to determine the effect of the Kuwaiti oil well fires on the air quality of Riyadh.

  19. Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    Richard Sicher

    2012-01-01

    Full Text Available Soybean seedlings were grown in controlled environment chambers with CO2 partial pressures of 38 (ambient and 72 (elevated Pa. Five or six shoot apices were harvested from individual 21- to 24-day-old plants. Metabolites were analyzed by gas chromatography and, out of 21 compounds, only sucrose and fructose increased in response to CO2 enrichment. One unidentified metabolite, Unk-21.03 decreased up to 80% in soybean apices in response to elevated CO2. Levels of Unk-21.03 decreased progressively when atmospheric CO2 partial pressures were increased from 26 to 100 Pa. Reciprocal transfer experiments showed that Unk-21.03, and sucrose in soybean apices were altered slowly over several days to changes in atmospheric CO2 partial pressures. The mass spectrum of Unk-21.03 indicated that this compound likely contained both an amino and carboxyl group and was structurally related to serine and aspartate. Our findings suggested that CO2 enrichment altered a small number of specific metabolites in soybean apices. This could be an important step in understanding how plant growth and development are affected by carbon dioxide enrichment.

  20. Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-02-01

    A chemolithotrophic bacterium, Serratia sp. ISTD04, enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was evaluated for potential of carbon dioxide (CO2) sequestration and biofuel production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Further, Western blot analysis confirmed presence of RuBisCO. The bacterium produced 0.487 and 0.647mgmg(-1) per unit cell dry weight of hydrocarbons and lipids respectively. The hydrocarbons were within the range of C13-C24 making it equivalent to light oil. GC-MS analysis of lipids produced by the bacterium indicated presence of C15-C20 organic compounds that made it potential source of biodiesel after transesterification. GC-MS, FTIR and NMR spectroscopic characterization of the fatty acid methyl esters revealed the presence of 55% and 45% of unsaturated and saturated organic compounds respectively, thus making it a balanced biodiesel composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil

    Science.gov (United States)

    Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos

    2011-09-01

    Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.

  2. Concentration variations of the tropospheric carbon dioxide over the Antarctic region

    Directory of Open Access Journals (Sweden)

    Shohei Murayama

    1997-03-01

    Full Text Available Aircraft measurements of the atmospheric CO_2 concentration have been made over Syowa Station, Antarctica since 1983. The minimum concentration of the average seasonal CO_2 cycle appears in March throughout the troposphere, while the maximum concentration occurs in mid-August in the upper troposphere and in late September in the middle and lower troposphere. The peak-to-peak amplitude of the seasonal cycle decreases with height. The CO_2 concentration increases with height during most of the year; however, this height dependency is larger from summer to early winter than in the remaining seasons. The average concentration difference between the upper troposphere and the ground surface is about 0.3ppmv. From comparisons with the results of the ground-based and aircraft measurements at southern middle and high latitudes and trajectory analysis, it is hypothesized that the seasonal cycle of height-dependent atmospheric transport processes could influence the seasonal cycle and the vertical distribution of the CO_2 concentration over Syowa Station.

  3. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  4. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Saeko Tada-Oikawa

    2016-04-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2 cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm and rutile (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL of anatase (100 nm, rutile (50 nm, and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm TiO2 particles increased interleukin (IL-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  5. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-04-16

    Titanium dioxide (TiO₂) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO₂ nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO₂ nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO₂ particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO₂ particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO₂ particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO₂ particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO₂ particles also increased IL-8 expression. The results indicated that anatase TiO₂ nanoparticles induced inflammatory responses compared with other TiO₂ particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  6. An empirical model for predicting urban roadside nitrogen dioxide concentrations in the UK

    International Nuclear Information System (INIS)

    Stedman, J.R.; Goodwin, J.W.L.; King, K.; Murrells, T.P.; Bush, T.J.

    2001-01-01

    An annual mean concentration of 40μgm -3 has been proposed as a limit value within the European Union Air Quality Directives and as a provisional objective within the UK National Air Quality Strategy for 2010 and 2005, respectively. Emissions reduction measures resulting from current national and international policies are likely to deliver significant reductions in emissions of oxides of nitrogen from road traffic in the near future. It is likely that there will still be exceedances of this target value in 2005 and in 2009 if national measures are considered in isolation, particularly at the roadside. It is envisaged that this 'policy gap' will be addressed by implementing local air quality management to reduce concentrations in locations that are at risk of exceeding the objective. Maps of estimated annual mean NO 2 concentrations in both urban background and roadside locations are a valuable resource for the development of UK air quality policy and for the identification of locations at which local air quality management measures may be required. Maps of annual mean NO 2 concentrations at both background and roadside locations for 1998 have been calculated using modelling methods, which make use of four mathematically straightforward, empirically derived linear relationships. Maps of projected concentrations in 2005 and 2009 have also been calculated using an illustrative emissions scenario. For this emissions scenario, annual mean urban background NO 2 concentrations in 2005 are likely to be below 40μgm -3 , in all areas except for inner London, where current national and international policies are expected to lead to concentrations in the range 40-41μgm -3 . Reductions in NO x emissions between 2005 and 2009 are expected to reduce background concentrations to the extent that our modelling results indicate that 40μgm -3 is unlikely to be exceeded in background locations by 2009. Roadside NO 2 concentrations in urban areas in 2005 and 2009 are expected to be

  7. Effects of low concentrations of sulfur dioxide on net photosynthesis and dark respiration of Vicia faba

    Energy Technology Data Exchange (ETDEWEB)

    Black, V J; Unsworth, M H

    1979-01-01

    Rates of net photosynthesis, P/sub N/, and dark respiration of Vicia faba plants were measured in the laboratory in clean air and in air containing up to 175 parts 10/sup -9/ (500 ..mu..g m/sup -3/) SO/sub 2/. At all SO/sub 2/ concentrations exceeding 35 parts 10/sup -9/, P/sub N/ was inhibited compared with clean air. At light saturation, the magnitude of inhibition depended on SO/sub 2/ concentration but at low irradiances the inhibition was independent of concentration. Dark respiration rates increased substantially, independent of concentration. When exposures continued for up to 3 days, P/sub N/ returned to clean air values about 1 h after fumigation ceased: dark respiration recovered after one photoperiod. There were no visible injuries. Reviewing possible mechanisms responsible for the inhibition of P/sub N/, it is suggested that SO/sub 2/ competes with CO/sub 2/ for binding sites in RuBP carboxylase. Analysis of resistance analogues demonstrates that SO/sub 2/ altered both stomatal and internal (residual) resistances. A model of crop photosynthesis shows the implications of the observed responses for the growth of field crops in which plants are assumed to respond like laboratory plants. Photosynthesis of the crop would be less sensitive than that of individual plants to SO/sub 2/ concentration. Daily dry matter accumulation of hypothetical polluted crops would be substantially less than clean air values but would vary relatively little with SO/sub 2/ concentration. It is concluded that physiological bases exist to account for observed reductions in growth of plants at very low SO/sub 2/ concentrations, and that thresholds for plant responses to SO/sub 2/ require reassessment. 30 references, 5 figures, 1 table.

  8. Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany)

    International Nuclear Information System (INIS)

    Cyrys, J.; Woelke, G.; Wichmann, H.E.; Heinrich, J.; Richter, K.

    2000-01-01

    Here we report indoor and outdoor concentrations of NO 2 for Erfurt and Hamburg and assess the contribution of the most important indoor sources (e.g. the presence of gas cooking ranges, smoking) and outdoor sources (traffic exhaust emissions). We examined the relative contribution of the different sources of NO 2 to the total indoor NO 2 levels in Erfurt and Hamburg. NO 2 indoor concentrations in Hamburg were slightly higher than those in Erfurt (i.e. living room: 15 μg m -3 for Erfurt and 17 μg m -3 for Hamburg). A linear regression model including the variables, place of residence, season and outdoor NO 2 levels, location of the home within the city, housing and occupant characteristics accounted for 38% of the NO 2 variance. The most important predictors of indoor NO 2 concentrations were gas in cooking followed by other characteristics, such as ventilation or outdoor NO 2 level. Residences in which gas was used for cooking, or in which occupants smoked, had substantially higher indoor NO 2 concentrations (41 or 18% increase, respectively). An increase in the outdoor NO 2 concentration from the 25th to the 75th-percentile (17 μg m -3 ) was associated with a 33% increase in the living room NO 2 concentration. Multiple regression analysis for both cities separately illustrated that use of gas for cooking was the major indoor source of NO 2 . This variable caused a similar increase in the indoor NO 2 levels in each city (43% in Erfurt and 47% in Hamburg). However, outdoor sources of NO 2 (motor vehicle traffic) contributed more to indoor NO 2 levels in Hamburg than in Erfurt

  9. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  10. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  11. Effect of small concentrations of sulfur dioxide during chronic poisoning on the immunologic reactivity of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Navrotzky, V K

    1959-01-01

    A concentration of 0.018 to 0.022 mg SO/sub 2//liter decreased agglutination titer of rabbit blood serum to immunization with typhoid vaccine 4 to 8 times and reduced duration of high titer 3 to 4 times. Titer of blood complement was not altered. SO/sub 2/ poisoning increases both blood acetylcholine and cholinesterase activity.

  12. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-01-01

    Graphical abstract: Carbonation conversions of (a) CC, (b) CH-2, (c) CH-4, (d) CH-6, (e) CH-8 precursor adsorbents for 10 cycles. - Highlights: • Ca(OH)_2 precursor was synthesized using precipitation method. • The effect of CTAB concentration on the synthesis of Ca(OH)_2 was studied. • The sorbent synthesized using 0.8 M of CTAB showed good CO_2 adsorption capacity. • The cyclic stability of Ca(OH)_2 was increased with increase of CTAB concentration. - Abstract: Calcium hydroxide (Ca(OH)_2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)_2 based adsorbents for carbon dioxide (CO_2) capture. The effect of CTAB concentration (0.2–0.8 M) on the structure, morphology and CO_2 adsorption performance of Ca(OH)_2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG–DTA) techniques. The phase purity, crystallite size, Brunauer–Emmett–Teller (BET) surface area and CO_2 adsorption performance of Ca(OH)_2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)_2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)_2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  13. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Vignesh, K., E-mail: vignesh134@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Anano Sphere Sdn Bhd, Lorong Industri 11, Kawasan Industri Bukit Panchor, 14300 Nibong Tebal, Penang (Malaysia); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Pung, Swee-Yong [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi; Kurniawan, Winarto [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Othman, Radzali [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Thant, Aye Aye [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Mohamed, Abdul Rahman [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salim, Chris [Department of Environmental Engineering, Surya University, Tangerang 15810, Banten (Indonesia)

    2016-02-15

    Graphical abstract: Carbonation conversions of (a) CC, (b) CH-2, (c) CH-4, (d) CH-6, (e) CH-8 precursor adsorbents for 10 cycles. - Highlights: • Ca(OH){sub 2} precursor was synthesized using precipitation method. • The effect of CTAB concentration on the synthesis of Ca(OH){sub 2} was studied. • The sorbent synthesized using 0.8 M of CTAB showed good CO{sub 2} adsorption capacity. • The cyclic stability of Ca(OH){sub 2} was increased with increase of CTAB concentration. - Abstract: Calcium hydroxide (Ca(OH){sub 2}) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH){sub 2} based adsorbents for carbon dioxide (CO{sub 2}) capture. The effect of CTAB concentration (0.2–0.8 M) on the structure, morphology and CO{sub 2} adsorption performance of Ca(OH){sub 2} was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG–DTA) techniques. The phase purity, crystallite size, Brunauer–Emmett–Teller (BET) surface area and CO{sub 2} adsorption performance of Ca(OH){sub 2} precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH){sub 2} phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH){sub 2} precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  14. Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration illustrated through experimental investigations

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, E S

    1944-01-01

    By culture experiments with the freshwater plants Helodea canadensis and Ceratophyllum demersum, in which both the contents of carbon dioxide and pH of the water were varied, it was shown that ph within the area 4.5 to 8.2 has no appreciable influence on the growth. The supply of carbon dioxide, on the other hand, has very great influence. The fact that the two freshwater plants mentioned in Denmark are found in alkaline water only, is due to the contents of assimilable carbon dioxide decreasing with decrease of pH. While thus in alkaline water there are generally large quantities of bicarbonate, from which half of the carbon dioxide may be utilized in the assimilation, there is in acid water (pH below 4.5) no bicarbonate. Carbon dioxide in true solution and bicarbonate carbon dioxide behave differently as sources of carbon dioxide for the assimilation; this is amongst other things due to the fact that the absorption of the carbon dioxide through the bicarbonate is made actively on the part of the plant. The investigations which illustrate the influence of the quantity of carbon dioxide on the intensity of assimilation were made on submersed plants in water containing bicarbonate, and therefore give quite different results in relation to terraneous plants, where the carbon dioxide is exclusively assimilated.

  15. Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce

    International Nuclear Information System (INIS)

    Slaney, M.; Linder, S.

    2007-01-01

    Atmospheric carbon dioxide (CO 2 ) concentrations are predicted to double during the next century, and recent studies have suggested that temperature changes as a result of global warming will be pronounced over the mid and high latitudes of northern continents. The phenology of boreal forests is mainly driven by temperature, and is a reliable indicator of climate change. This article presented the results of a study investigating the effects of elevated carbon dioxide (CO 2 ) and temperature on bud and shoot phenology of mature Norway spruce trees grown in northern Sweden. The trees were grown in whole tree chambers over a period of 3 years and supplied with either ambient or elevated CO 2 at either ambient, or elevated temperatures, which were altered on a monthly time step based on simulations by the Swedish Regional Climate Modelling Program. Temperature elevation ranged between 2.8 and 5.6 degrees C above ambient temperatures, with a CO 2 elevation of 700 μmol per mol. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Results of the study showed that elevated air temperature hastened both bud development and the initiation and termination of shoot growth by 2 to 3 weeks in each of the study years. It was noted that elevated CO 2 had no significant effect on bud development patterns or on the length of the shoot growth period. Although there was a distinct correlation between temperature sum and shoot elongation, a precise timing of bud burst could not be obtained by using an accumulation of temperature sums. It was concluded that climate warming will results in earlier bud burst in boreal Norway spruce. 59 refs., 3 tabs., 7 figs

  16. INDOOR AIR QUALITY IN HOSPITALS - Verification of the physical parameters of comfort and the concentration of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Waldir Nagel Schirmer

    2010-10-01

    Full Text Available In hospitals, the presence of pollutants in the indoor air creates conditions that may prejudice the recovery of patients and affect the productivity of employees. Thus, these places need air conditioning well designed, to provide adequate ventilation rates to ensure the comfort of its occupants and the aseptic of environments. The present study focused on evaluating the indoor air quality (IAQ in a surgical center and an intensive care unit, by checking the physical parameters of comfort and the concentrations of carbon dioxide, following the procedure recommended by Resolution No. 09 of the National Sanitary Surveillance Agency (ANVISA and to propose an air conditioning system for each of the environments evaluated. The results showed that the IAQ in those environments may be improved, since some of the parameters showed values higher than those recommended by that resolution. High concentrations of CO2 obtained, for example, can be justified by the lack of renewal of air. It is suggested that the air conditioning systems must to be substituted for that allowed the renewal of the air at rates acceptable to the current legislation.

  17. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen; John Butnor; Lance W. Kress; Peter H. Anderson

    2002-01-01

    Summary We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 µmol mol-1 ) carbon dioxide concentration ([CO2]) for 28 months. Branch growth...

  18. KINETIC BEHAVIOR OF SOME AZO DYES DECOLORIZATION BY VARIATION OF ZINC OXIDE AND TITANIUM DIOXIDE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Wallace J. C. da Silva

    Full Text Available The decolorization of three monoazo dyes (acid orange 7, direct orange 34, and methyl orange, one diazo dye (direct yellow 86 and one tetraazo dye (direct red 80 were mediated by n-type semiconductors as ZnO and TiO2 under pseudo-first order conditions at 30 ºC. The decolorization rate constants of these azo dyes were determined, varying the semiconductor concentration for the majority of them from 1.0 to 10.0 g L-1. In general, the highest rate constants were displayed for ZnO. This work elucidates that the decolorization capacity depends on the charge, structure, and adsorption of the azo dye on the semiconductor surface as well as the agglomeration of the photocatalyst particles.

  19. Effect of nanosilicon dioxide on growth performance, egg quality, liver histopathology and concentration of calcium, phosphorus and silicon in egg, liver and bone in laying quails

    Science.gov (United States)

    Faryadi, Samira; Sheikhahmadi, Ardashir

    2017-11-01

    This experiment was conducted to evaluate the effects of different levels of nanosilicon dioxide (nSiO2) on performance, egg quality, liver histopathology and concentration of calcium (Ca), phosphorus and silicon (Si) in egg, liver and bone in laying quails. The experiment was administered using 60 laying quails at 16-26 weeks of age with five treatments [0 (control), 500, 1000, 2000 and 4000 mg nSiO2 per kg of diet] and four replicates in a completely randomized design. During the experiment, the amount of feed intake was recorded weekly and performance parameters were measured. During the last 3 days of the experiment, all of the eggs in each replicate were collected and egg quality parameters were measured. At the end of 26 weeks of age, the birds were sacrificed and blood samples were collected. Liver samples from each treatment were fixed in 10% buffered formalin for histopathological assessment. The right thigh bone and a portion of liver were inserted in plastic bags and stored at - 20. The results showed that nSiO2 supplementation significantly affected egg weight and egg mass ( P 0.05) by dietary treatments. In conclusion, the results indicated that dietary supplementation of nSiO2 could improve bone density and performance without any adverse effect on the health of laying quails.

  20. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  1. Effects of stunning with different carbon dioxide concentrations and exposure times on suckling lamb meat quality.

    Science.gov (United States)

    Bórnez, R; Linares, M B; Vergara, H

    2009-03-01

    Forty-nine Manchega breed male suckling lambs were used to determine the effect of different stunning methods (using two different CO2 concentrations and exposure times) on lamb meat quality. The lambs were allocated to five stunning treatments including four CO2 treatments [80% CO2 for 90s (G1); 90% CO2 for 90s (G2); 90% CO2 for 60s (G3); 80% CO2 for 60s (G4)] and an electrically stunned control group (G5). The gas-stunning treatments did not cause neither haematomas nor blood splash in the carcasses. Meat quality was evaluated by testing pH, colour (L(∗), a(∗), b(∗), chroma, hue values), water holding capacity (WHC), cooking loss (CL), shear force (SF), drip loss (DL) and total aerobic bacteria. Statistical differences in pH at 24h post-mortem, colour, WHC and CL were not found among groups. After 7 days post-mortem, there were statistical differences among groups in pH (highest in G4 and G5) and in DL (highest in G1). There were differences in SF due to stunning method evident after 72h and 7 days ageing. The statistical differences (Plambs since a highest stability with ageing time on meat quality was found using 90% CO2.

  2. Facility for studying the effects of elevated carbon dioxide concentration and increased temperature on crops

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, D.W.; Mitchell, R.A.C.; Franklin, J.; Mitchell, V.J.; Driscoll, S.P.; Delgado, E. (Institute of Arable Crops Research, Harpenden (United Kingdom). Dept. of Biochemistry and Physiology)

    1993-06-01

    The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO[sub 2] and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO[sub 2] concentrations of 363 and 692 cm[sup 3] m[sup -3] for targets of 350 and 700 cm[sup 3] m[sup 3] respectively. Temperatures were set to follow outside ambient or outside ambient +4[degree]C, and hourly means were within 0.5[degree]C of the target for 92% of the time for target temperatures greater than 6[degree]C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artificial light with natural photoperiod) was 2% greater than the total measured outside over the same period.

  3. Paired assessment of volatile anesthetic concentrations with synaptic actions recorded in vitro.

    Directory of Open Access Journals (Sweden)

    Stuart J McDougall

    Full Text Available The volatile anesthetic isoflurane poses a number of experimental challenges in the laboratory. Due to its rapid evaporation, the open conditions of most in vitro electrophysiological recording systems make the determination of actual isoflurane concentrations a challenge. Since the absolute anesthetic concentration in solution is directly related to efficacy, concentration measurements are important to allow comparisons between laboratory and clinical studies. In this study we quantify the sources of isoflurane loss during experimentation and describe a method for the measurement of isoflurane concentrations using gas chromatography and mass spectrometry simultaneous to in vitro electrophysiological measurements. Serial samples of perfused bath solution allowed correlation of isoflurane concentrations with ongoing biological effects. Saturated physiological solutions contained 13.4 +/- 0.2 mM isoflurane and were diluted to desired "nominal" concentrations for experiments. The perfusion system established stable isoflurane concentrations within the bath by 2 minutes. However, bath isoflurane concentrations varied substantially and unpredictably between experiments. The magnitudes of such discrepancies in isoflurane concentrations spanned clinically important levels. Our studies suggest that, despite countermeasures, solution handling significantly impacted the isoflurane content in the tissue bath. The magnitude of these discrepancies appears to necessitate systematic direct measurement of bath isoflurane concentrations during most in vitro conditions.

  4. Intercomparison study of atmospheric methane and carbon dioxide concentrations measured at the Ebre River Delta Station

    Science.gov (United States)

    Occhipinti, Paola; Morguí, Josep Anton; Àgueda, Alba; Batet, Oscar; Borràs, Sílvia; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Vazquez, Eusebi; Rodó, Xavier

    2015-04-01

    In the framework of the ClimaDat project, IC3 has established a network of eight monitoring stations across the Iberian Peninsula and the Canarian Archipelago with the aim of studying climate processes. The monitoring station at the Ebre River Delta (DEC3) is located in the Ebre River Delta Natural Park (40° 44' N; 0° 47' E) and it is characterized by the typical North-Western Mediterranean climate. Since 2013, atmospheric greenhouse gases (GHG) and 222Rn tracer gas together with the meteorological parameters are continuously measured from a 10 m a.g.l. height tower. Atmospheric GHG (CO2, CH4, CO and N2O) concentrations are determined using a Picarro analyzer G2301 (CO2 and CH4) and a modified gas chromatograph (GC) Agilent 6890N (CO2, CH4, CO and N2O). Open data access is available from the www.climadat.es website. Data collected at the DEC3 station are also submitted to the InGOS platform since this station is part of the InGOS European infrastructure project. Researchers from the Laboratory of the Atmosphere and the Oceans (LAO) at IC3 have performed an intercomparison study at the DEC3 site between three different Picarro analyzers (two Picarro G2301 and one Picarro G2301M), a Los Gatos Research (LGR) analyzer and the GC system already installed at the station. The aim of this study is to compare and assess the measuring agreement between the four optical gas analyzers and the GC. In the first part of the experiment, all instruments have been calibrated using NOAA gases as primary standards analyzing five Praxair provided targets to evaluate the precision of the measuring instruments. Max Plank Institute (MPI) gases have been used as secondary standards for the GC whereas Praxair provided tanks are used as secondary standards for the Picarro and the LGR analyzers. In the second part of the experiment, atmospheric GHG were measured from natural atmospheric air taken from a 10 m a.g.l. inlet. Daily cycles of GHG measurements were carried out using different

  5. Tolerance of allogromiid Foraminifera to severely elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations

    Science.gov (United States)

    Bernhard, Joan M.; Mollo-Christensen, Elizabeth; Eisenkolb, Nadine; Starczak, Victoria R.

    2009-02-01

    Increases in the partial pressure of carbon dioxide (pCO 2) in the atmosphere will significantly affect a wide variety of terrestrial fauna and flora. Because of tight atmospheric-oceanic coupling, shallow-water marine species are also expected to be affected by increases in atmospheric carbon dioxide concentrations. One proposed way to slow increases in atmospheric pCO 2 is to sequester CO 2 in the deep sea. Thus, over the next few centuries marine species will be exposed to changing seawater chemistry caused by ocean-atmospheric exchange and/or deep-ocean sequestration. This initial case study on one allogromiid foraminiferal species ( Allogromia laticollaris) was conducted to begin to ascertain the effect of elevated pCO 2 on benthic Foraminifera, which are a major meiofaunal constituent of shallow- and deep-water marine communities. Cultures of this thecate foraminiferan protist were used for 10-14-day experiments. Experimental treatments were executed in an incubator that controlled CO 2 (15 000; 30 000; 60 000; 90 000; 200 000 ppm), temperature and humidity; atmospheric controls (i.e., ~ 375 ppm CO 2) were executed simultaneously. Although the experimental elevated pCO 2 values are far above foreseeable surface water pCO 2, they were selected to represent the spectrum of conditions expected for the benthos if deep-sea CO 2 sequestration becomes a reality. Survival was assessed in two independent ways: pseudopodial presence/absence and measurement of adenosine triphosphate (ATP), which is an indicator of cellular energy. Substantial proportions of A. laticollaris populations survived 200 000 ppm CO 2 although the mean of the median [ATP] of survivors was statistically lower for this treatment than for that of atmospheric control specimens. After individuals that had been incubated in 200 000 ppm CO 2 for 12 days were transferred to atmospheric conditions for ~ 24 h, the [ATP] of live specimens (survivors) approximated those of the comparable atmospheric

  6. The Effects of Voltage and Concentration of Sodium Bicarbonate on Electrochemical Synthesis of Ethanol from Carbon Dioxide Using Brass as Cathode

    Science.gov (United States)

    Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto

    2017-11-01

    The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.

  7. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing

    International Nuclear Information System (INIS)

    Perrier, Frederic; Richon, Patrick

    2010-01-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m -3 in summer to about 800-1400 Bq m -3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10 -6 s -1 . Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m -3 hPa -1 . This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.

  9. Development of a portable wireless system for bipolar concentric ECG recording

    International Nuclear Information System (INIS)

    Prats-Boluda, G; Ye-Lin, Y; Bueno Barrachina, J M; Senent, E; Rodriguez de Sanabria, R; Garcia-Casado, J

    2015-01-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization). (paper)

  10. Historical record of concentrations of atmospheric trace components deduced from a glacier in the Alps

    International Nuclear Information System (INIS)

    Doescher, A.

    1996-07-01

    A 109 m ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4440 m a.s.l., Switzerland) was used to reconstruct the history of atmospheric trace components. Concentrations of the anions chloride, nitrate, sulfate and the cations sodium, ammonium, potassium, magnesium and calcium were measured with 2.5-5.0 cm resolution in the top 70 m of a 109 m long of the ice core. Dating of the ice core was performed using stratigraphic markers such as historically known Saharan dust events, the atomic bomb horizon and volcanic eruptions and supplemented with the 210 Pb nuclear dating. The record covers the time period from about 1755-1981. The concentrations of nitrate and sulfate show an exponential increase from 1930 and 1870 until 1965, respectively. The factors of increase were 2.3±0.3 and 5.8±0.9, respectively. The chloride concentrations remained constant during this period. A good agreement between the concentrations of sulfate, which were corrected for the contribution of seasalt and mineral dust and the European SO 2 -emissions was found for the last 100 years. The concentrations of sodium, potassium, magnesium and calcium did not show a trend. The concentrations of ammonium increased exponentially between 1870 and 1960 by a factor of 2.2±0.4. The different sources of the trace components were identified using correlation analysis. Sodium and chloride originated from seasalt, magnesium and calcium from geologic erosion. For both, the industrial and pre-industrial period, the dominant source of ammonium and nitrate was conversion of the gaseous precursors NH 3 and HNO 3 . Sulfate concentrations in the industrial period originated from the anthropogenically emitted SO 2 , whereas in the pre-industrial period the geologic source dominated. The Colle Gnifetti accumulates mainly summer snow, and therefore, several test drillings were performed to find a new site with higher accumulation rate. (author) figs., 17 tabs., 50 refs

  11. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations.

    Science.gov (United States)

    Overdieck, Dieter; Ziche, Daniel; Böttcher-Jungclaus, Kerstin

    2007-02-01

    Effects of temperature on growth and wood anatomy were studied in young European beech (Fagus sylvatica L.) grown in 7-l pots for 2.5 years in field-phytotron chambers supplied with an ambient (approximately 400 micromol mol-1) or elevated (approximately 700 micromol mol-1) carbon dioxide concentration ([CO2]). Temperatures in the chambers ranged in increments of 2 degrees C from -4 degrees C to +4 degrees C relative to the long-term mean monthly (day and night) air temperature in Berlin-Dahlem. Soil was not fertilized and soil water and air humidity were kept constant. Data were evaluated by regression analysis. At final harvest, stem diameter was significantly greater at increased temperature (Delta1 degrees C: 2.4%), stems were taller (Delta1 degrees C: 8.5%) and stem mass tree-1 (Delta1 degrees C: 10.9%) and leaf area tree-1(Delta1 degrees C: 6.5%) were greater. Allocation pattern was slightly influenced by temperature: leaf mass ratio and leaf area ratio decreased with increasing temperature (Delta1 degrees C: 2.3% and 2.2% respectively), whereas stem mass/total mass increased (Delta1 degrees C: 2.1%). Elevated [CO2] enhanced height growth by 8.8% and decreased coarse root mass/total mass by 10.3% and root/shoot ratio by 11.7%. Additional carbon was mainly invested in aboveground growth. At final harvest a synergistic interaction between elevated [CO2] and temperature yielded trees that were 3.2% taller at -4 degrees C and 12.7% taller at +4 degrees C than trees in ambient [CO2]. After 2.5 seasons, cross-sectional area of the oldest stem part was approximately 32% greater in the +4 degrees C treatment than in the -4 degrees C treatment, and in the last year approximately 67% more leaf area/unit tree ring area was produced in the highest temperature regime compared with the lowest. Elevated [CO2] decreased mean vessel area of the 120 largest vessels per mm2 by 5.8%, causing a decrease in water conducting capacity. There was a positive interaction between

  12. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    Science.gov (United States)

    Menviel, L.; Joos, F.

    2012-03-01

    The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.

  13. The Effect of Type and Concentration of Modifier in Supercritical Carbon Dioxide on Crystallization of Nanocrystalline Titania Thin Films.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Jandová, Věra; Dřínek, Vladislav; Daniš, E.; Matějová, L.

    2018-01-01

    Roč. 133, MAR 2018 (2018), s. 211-217 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin film * supercritical carbon dioxide * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.991, year: 2016

  14. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    Science.gov (United States)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  15. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.

    Science.gov (United States)

    Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo

    2018-01-21

    Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records

  16. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations 1

    Science.gov (United States)

    Moradshahi, Ali; Vines, H. Max; Black, Clanton C.

    1977-01-01

    The effects of temperature, O2, and CO2 on titratable acid content and on CO2 exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO2-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO2 uptake in air and slightly increased the total CO2 released into CO2-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol−1, but at lower temperatures the activation energy was much greater. Increasing O2 or decreasing the CO2 concentration decreased the total CO2 fixation in air, whereas the total CO2 released in CO2-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO2-free air. The total acid content at 30 C remained constant in 2% O2 irrespective of CO2 concentration. The total acid content decreased in 21 and 50% O2 as the CO2 increased from 0 to 300, and 540 μl/l of CO2. The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O2 suggests that light deacidification is dependent upon respiration and that higher O2 concentrations are required to saturate deacidification. PMID:16659832

  17. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations.

    Science.gov (United States)

    Moradshahi, A; Vines, H M; Black, C C

    1977-02-01

    The effects of temperature, O(2), and CO(2) on titratable acid content and on CO(2) exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO(2)-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO(2) uptake in air and slightly increased the total CO(2) released into CO(2)-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol(-1), but at lower temperatures the activation energy was much greater.Increasing O(2) or decreasing the CO(2) concentration decreased the total CO(2) fixation in air, whereas the total CO(2) released in CO(2)-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO(2)-free air. The total acid content at 30 C remained constant in 2% O(2) irrespective of CO(2) concentration. The total acid content decreased in 21 and 50% O(2) as the CO(2) increased from 0 to 300, and 540 mul/l of CO(2). The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O(2) suggests that light deacidification is dependent upon respiration and that higher O(2) concentrations are required to saturate deacidification.

  18. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

    Directory of Open Access Journals (Sweden)

    José Vicente Lidón-Roger

    2018-01-01

    Full Text Available Among many of the electrode designs used in electrocardiography (ECG, concentric ring electrodes (CREs are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene polystyrene sulfonate; PEDOT:PSS. Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining

  19. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Concentration and Ice Surface Temperature Environmental Data Records (EDRs) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Sea Ice Concentration (SIC) and Ice Surface Temperature (IST) from the Visible...

  20. Record low sea-ice concentration in the central Arctic during summer 2010

    Science.gov (United States)

    Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie

    2018-01-01

    The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements. Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.

  1. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    International Nuclear Information System (INIS)

    Fang Chao; Cao Jianzhu; Sun Lifeng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO 2 ) particle is built. The adsorption effect of the fission product on the surface of the UO 2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor. (nuclear physics)

  2. Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010

    Institute of Scientific and Technical Information of China (English)

    Jinping ZHAO; David BARBER; Shugang ZHANG; Qinghua YANG; Xiaoyu WANG; Hongjie XIE

    2018-01-01

    The Arctic sea-ice extent has shown a declining trend over the past 30 years.Ice coverage reached historic minima in 2007 and again in 2012.This trend has recently been assessed to be unique over at least the last 1450 years.In the summer of 2010,a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes.This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15,and has not been previously reported in the literature.The CARLIC was not the result of ice melt,because sea ice was still quite thick based on in-situ ice thickness measurements.Instead,divergent ice drift appears to have been responsible for the CARLIC.A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing.The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010.Under these conditions,more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean.We speculate that this divergence of sea ice could occur more often in the coming decades,and impact on hemispheric SIC and feed back to the climate.

  3. Effects of elevated carbon dioxide concentrations on some morphological and physiological characteristics of sesame (Sesamum indicum L. and amaranthus (Amaranthus retroflexus L.

    Directory of Open Access Journals (Sweden)

    M. Goldani

    2016-05-01

    Full Text Available Carbon dioxide is the most important resource for crop growth. In order to investigate the effect of elevated CO2 concentration on morphological and physiological characteristics of sesame (Sesamum indicum L. and amaranthus (Amaranthus retroflexus L. an experiment was conducted in greenhouse conditions. The experiment was factorial based on randomized complete block design with six treatments and three replications. Different CO2 concentrations (including 360, 520 and 750 ppm on monoculture and mixture of two species were investigated. The results indicated that plant height, node number, internode and stem dry weight had significant differences in the CO2 concentrations. Elevated CO2 concentration caused increasing plant height, node number, internode and stem dry weight in sesame and monoculture was better than mixtures, but in the amaranthus, elevated CO2 concentration resulted is decreasing plant height, node number, and internode and stem dry weight. Number and length of branches and their dry weight had significant different in CO2 concentrations. So, effect of elevated CO2 concentration was positive for sesame and negative for amaranthus. In amaranthus, monoculture was more successful than mixture. In the sesame, yield was included number and weight capsule and in the amaranthus was included total seed weight, that both had significant affected. Elevated CO2 concentration had positive effect on yield of sesame and negative effect on yield of amaranthus. In the sesame, monoculture was more successful. The effect of elevated CO2 concentration was significant on transpiration and photosynthesis rates. In the sesame, elevated CO2 concentration increased transpiration and photosynthesis rates and decreased them in the amaranthus. In the sesame, shoot total length and root dry weight was significantly different in CO2 concentrations and increased by elevated CO2 concentration, but in the amaranthus, decreased by elevated CO2 concentration

  4. Modeling caspian sea water level oscilLations Under Diffrent Scenarioes of Increasing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    GholamReza Roshan

    2012-12-01

    Full Text Available The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in thecoastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was stimulated. Variations in environmentalparameters such as temperature, precipitation, evaporation, tmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for bothpast (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software(version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17ºC per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increasedby ca. +36 mm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64ºC and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin,temperatures are projected to increase by ca. 4.78ºC and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels projectfuture water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  5. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Lund Jensen, Kristian; Kristensen, Jesper Toft; Crumrine, Andrew Michael

    2011-01-01

    the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall...

  6. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  7. Sulphate sulphur concentration in vegetable crops, soil and ground water in the region affected by the sulphur dioxide emission from Plock oil refinery (central Poland)

    International Nuclear Information System (INIS)

    Mikula, W.

    1995-01-01

    Research was carried out in 1984-1990 in the region affected by the sulphur dioxide emission from one of the greatest oil refineries in Europe (Plock, central Poland). The sulphate sulphur concentration in the vegetable crops (red beet, carrot, parsley, bean, cabbage and dill), the soil and in ground water was defined in selected allotment gardens of Plock city and in a household garden located in the rural area about 25 km from the town. The highest amount of sulphur was found in the vegetable crops cultivated in the garden situated in the closest vicinity of the refinery. Sulphate sulphur contents harmful for plants (above 0.50 per cent d.m.) were noted in cabbage and carrot leaves in almost all the gardens (except one). The soil in all examined gardens was characterised by high sulphate sulphur concentration, which considerably exceeds the maximum amount admissible for light soil in Poland, i.e. 0.004 per cent d.m. The sulphate sulphur concentration in ground water in all the gardens exceeded the highest permissible content in drinking water in Poland. The sulphate sulphur content in the soil and ground water was not significantly dependent on the garden's distance from the refinery. Generally, the above normal sulphate sulphur concentrations occurred quite universally in the examined region and they concerned all the considered environmental components (vegetable crops, soil, ground water) and all the gardens. 22 refs., 6 tabs

  8. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    Science.gov (United States)

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (Ptidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (Ptidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  9. Controlling Foam Morphology of Poly(methyl methacrylate via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters

    Directory of Open Access Journals (Sweden)

    Deniz Rende

    2013-01-01

    Full Text Available Polymer nanocomposite foams have received considerable attention because of their potential use in advanced applications such as bone scaffolds, food packaging, and transportation materials due to their low density and enhanced mechanical, thermal, and electrical properties compared to traditional polymer foams. In this study, silica nanofillers were used as nucleating agents and supercritical carbon dioxide as the foaming agent. The use of nanofillers provides an interface upon which CO2 nucleates and leads to remarkably low average cell sizes while improving cell density (number of cells per unit volume. In this study, the effect of concentration, the extent of surface modification of silica nanofillers with CO2-philic chemical groups, and supercritical carbon dioxide process conditions on the foam morphology of poly(methyl methacrylate, PMMA, were systematically investigated to shed light on the relative importance of material and process parameters. The silica nanoparticles were chemically modified with tridecafluoro-1,1,2,2-tetrahydrooctyl triethoxysilane leading to three different surface chemistries. The silica concentration was varied from 0.85 to 3.2% (by weight. The supercritical CO2 foaming was performed at four different temperatures (40, 65, 75, and 85°C and between 8.97 and 17.93 MPa. By altering the surface chemistry of the silica nanofiller and manipulating the process conditions, the average cell diameter was decreased from 9.62±5.22 to 1.06±0.32 μm, whereas, the cell density was increased from 7.5±0.5×108 to 4.8±0.3×1011 cells/cm3. Our findings indicate that surface modification of silica nanoparticles with CO2-philic surfactants has the strongest effect on foam morphology.

  10. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  11. Concentrations of tocols and γ-oryzanol compounds in rice bran oil obtained by fractional extraction with supercritical carbon dioxide.

    Science.gov (United States)

    Yoon, Sung Won; Pyo, Young-Gil; Lee, Junsoo; Lee, Jeom-Sig; Kim, Byung Hee; Kim, In-Hwan

    2014-01-01

    Rice bran oil (RBO) is a good source of several commercially important bioactive phytochemicals, such as tocols (i.e. tocopherols and tocotrienols) and ferulic esters of sterols (i.e. γ-oryzanol). The aims of the present study were to examine the effects of different pressure and temperature combinations on the fractional extraction of RBO using supercritical carbon dioxide (SC-CO2) and to assess the levels of tocols homologues and γ-oryzanol components in the resulting oil fractions. Fractional extraction of rice bran oil was performed using SC-CO2 at either 27.6 or 41.4 MPa and either 40 or 60°C. The effects of the four different pressure and temperature combinations on the levels of seven tocols homologues (α-, β-, γ- and δ-tocopherol and α-, γ- and δ-tocotrienol) and the four major components of γ-oryzanol in the resulting oil fractions were investigated. Superior extraction efficiency was obtained using the higher pressure of 41.4 MPa. The tocols (particularly α-tocopherol and α-tocotrienol) were recovered early in the extraction process, while the γ-oryzanol compounds were obtained in the later stages. With regard to SC-CO2 extraction, tocols are more soluble than γ-oryzanol components, α-tocopherol is the most soluble of the tocols and the four γ-oryzanol components all have similar solubilities. Valuable data on solubilities of tocols homologues in SC-CO2 were provided from present study.

  12. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan

    Science.gov (United States)

    Hsu, Der-Jen; Huang, Hsiao-Lin

    2009-12-01

    Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO 2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO 2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM 10 and PM 2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO 2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.

  13. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  14. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-01-01

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10 −6 –10 −3 μg mL −1 . However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL −1 , through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10 −7 μg mL −1 . This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general

  15. A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods

    Science.gov (United States)

    Choi, Giehae; Bell, Michelle L.; Lee, Jong-Tae

    2017-04-01

    The land-use regression (LUR) approach to estimate the levels of ambient air pollutants is becoming popular due to its high validity in predicting small-area variations. However, only a few studies have been conducted in Asian countries, and much less research has been conducted on comparing the performances and applied estimates of different exposure assessments including LUR. The main objectives of the current study were to conduct nitrogen dioxide (NO2) exposure assessment with four methods including LUR in the Republic of Korea, to compare the model performances, and to estimate the empirical NO2 exposures of a cohort. The study population was defined as the year 2010 participants of a government-supported cohort established for bio-monitoring in Ulsan, Republic of Korea. The annual ambient NO2 exposures of the 969 study participants were estimated with LUR, nearest station, inverse distance weighting, and ordinary kriging. Modeling was based on the annual NO2 average, traffic-related data, land-use data, and altitude of the 13 regularly monitored stations. The final LUR model indicated that area of transportation, distance to residential area, and area of wetland were important predictors of NO2. The LUR model explained 85.8% of the variation observed in the 13 monitoring stations of the year 2009. The LUR model outperformed the others based on leave-one out cross-validation comparing the correlations and root-mean square error. All NO2 estimates ranged from 11.3-18.0 ppb, with that of LUR having the widest range. The NO2 exposure levels of the residents differed by demographics. However, the average was below the national annual guidelines of the Republic of Korea (30 ppb). The LUR models showed high performances in an industrial city in the Republic of Korea, despite the small sample size and limited data. Our findings suggest that the LUR method may be useful in similar settings in Asian countries where the target region is small and availability of data is

  16. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations

    International Nuclear Information System (INIS)

    Overdieck, D.; Ziche, D.; Bottcher-Jungclaus, K.

    2007-01-01

    This study investigated relationships between wood anatomical properties, growth, and mass allocation of well-watered beech saplings growing in different temperature and carbon dioxide (CO 2 ) regimes. The study was conducted to test whether growth was enhanced by increasing temperature and CO 2 , as well as to determine whether the leaf area to stem cross-sectional area ratio, leaf mass ratio, and leaf area ratio declined with increasing temperature. The study also investigated the hypothesis that vessel member and size decreases with increasing temperature and CO 2 as well as the hypothesis that wood parenchyma content declines with increasing temperature and increases in response to elevated CO 2 . The beech saplings were grown in 7-1 pots for 2.5 years in field-phytotron chambers supplied with ambient or elevated CO 2 . Temperatures in the chambers ranged in increments of 2 degrees C. Soil was not fertilized and soil water and air humidity were kept constant. Data were evaluated by regression analysis. Results of the study showed that stem diameter was significantly larger at increased temperatures. In addition, stems were taller, and leaf area and stem mass were greater. The allocation pattern was influenced by temperature, as leaf mass ratio and leaf area ratio decreased with increasing temperature. Elevated CO 2 enhanced height growth by 8.8 per cent, and decreased coarse root mass and total mass by 10.3 per cent. The root/shoot ratio was decreased by 11.7 per cent. At final harvest, a synergistic interaction was observed between elevated CO 2 and temperature yielded trees that were 3.2 per cent taller at -4 degrees C, and 12.7 per cent taller at 4 degrees C than trees grown in ambient CO 2 . After 2.5 seasons, the cross-sectional area of the oldest stem part was approximately 32 per cent greater in the 4 degree C treatment than the -4 degree C treatment. In the final year, approximately 67 per cent more leaf area per unit tree ring area was produced in the

  17. Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition

    NARCIS (Netherlands)

    Ginkel, van J.H.; Gorissen, A.; Polci, D.

    2000-01-01

    Effects of ambient and elevated atmospheric CO2 concentrations (350 and 700 μl l-1) on net carbon input into soil, the production of root-derived material and the subsequent microbial transformation were investigated. Perennial ryegrass plants (L. perenne L.) were labelled in a continuously labelled

  18. IFCC reference measurement procedure for substance concentration determination of total carbon dioxide in blood, plasma or serum

    NARCIS (Netherlands)

    Burnett, RW; Covington, AK; Fogh-Andersen, N; Kulpmann, WR; Lewenstam, A; Mas, AHJ; VanKessel, AL; Zijlstra, WG

    A reference measurement procedure for substance concentration determination of total CO, in blood, plasma (the anticoagulant is usually heparin) or serum is described. The document covers the principle of the method, the materials and equipment needed and essential aspects of the procedure. The

  19. Influence of sublethal concentrations of sulfur dioxide on morphology, growth, and product yield of the duckweed Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Fankhauser, H; Brunold, C; Erismann, K H

    1976-01-01

    There was no disturbance in the growth of Lemna minor L. with a SO/sub 2/ concentration of up to 0.3 ppM in air. A SO/sub 2/ concentration of 0.6 ppM caused an initial depression of the growth rate of about 25 percent, but in the course of adaptation, the rate rose to the values of the control. The average dry weight per frond was not influenced by the SO/sub 2/ fumigation. The initial sporadic appearance of chloroses by fumigation with 0.6 ppM SO/sub 2/ was considered a sign of the proximate toxicity limit for Lemna minor L. With 0.15 ppM SO/sub 2/ in air, the size of the fronds was reduced. The average surface of the fronds was diminished by 0.3 ppM SO/sub 2/ for about 16 percent as compared with the control plants. The protein remained quantitatively unafffected up to a SO/sub 2/ concentration of 0.6 ppM. As a qualitative influence of SO/sub 2/, the nitrogen content of the proteins remained constant, but the sulfur content of the proteins increased. Under 0.3 and 0.6 ppM SO/sub 2/, the starch content decreased immediately by 20 to 30 percent, under 0.15 ppM SO/sub 2/ the decrease reached the same level after a longer time than in the case of the higher concentrations. The SO/sub 2/ concentrations up to 0.6 ppM had no effect on chlorophyll concentration. The contents of C, N, H, P, K, Na, Ca, Mg, Mn, and Fe were not affected by SO/sub 2/ fumigation. It is concluded that SO/sub 2/ may have some effect on product yield, even under low concentrations, without provoking acute damage; the plant is able to adapt by regulation of its metabolism, and enters a new steady state.

  20. Secular variation of cosmic ray intensity recorded in the radiocarbon concentration of tree rings

    International Nuclear Information System (INIS)

    Kigoshi, K.

    1978-01-01

    Study of the secular variations of cosmic ray intensity on the basis of the secular variations of atmospheric radiocarbon concentration in 8000 years is considered. The data on the radiocarbon concentration is received by three laboratories using the dendrochronologically dated tree ring samples. In order to use the data the variations due to geochemical process must be eliminated. From this point of view the climatic effect on the atmospheric radiocarbon concenttration is estimated using the data on sunspot number and global surface temperature during 1650-1800 y. The barge influence of climate on the atmospheric radiocarbon concentration syggests the small contribution of change of radiocarbon production rate to the short-period fluctuations in the atmospheric radiocarbon concentration. Elimination of variations caused by climate and sunspot activities from the variations in atmospheric radiocarbon concentration gives a long-term scale of its concentration which agrees well to the observed paleo-geomagnetic data

  1. Air exchanges and indoor carbon dioxide concentration in Australian pig buildings: Effect of housing and management factors

    DEFF Research Database (Denmark)

    Banhazi, T. M.; Stott, P.; Rutley, D.

    2011-01-01

    There has been a growing interest in improving air quality within livestock buildings. However, the influence of housing and management factors on air exchange rates and indoor gas concentrations is not well understood. The aim of this study was to determine the effects of housing and management...... production, although these buildings may not always provide an optimal environment for pig production. (C) 2011 IAgrE. Published by Elsevier Ltd. All rights reserved....

  2. Growth and {delta}{sup 13}C responses to increasing atmospheric carbon dioxide concentrations for several crop species

    Energy Technology Data Exchange (ETDEWEB)

    Hanba, Y.T.; Wada, E. [Center for Ecological Research, Kyoto University, Kyoto (Japan); Osaki, M.; Nakamura, T. [Faculty of Agriculture, Hokkaido University, Hokkaido (Japan)

    1996-04-01

    The responses of plant growth and carbon isotope discrimination ({Delta}) to elevated atmospheric CO{sub 2} concentrations for several crop species (lettuce: Lactuca sativa L.; corn: Zea Mays L. var. P3540, wheat: Triticum aestivum L. var Haruyutaka; and soybean: Glycine Max (L). Merr. var. Kitamusume) were investigated. Shoot relative growth rate was used to indicate plant growth, and {delta}{sup 13}C value of leaf materials in corn (C4 species) was used to calculate {Delta} for C3 species. Plant growth was stimulated by enriched CO{sub 2}, while {Delta} remained almost constant as CO{sub 2} concentration changed. {Delta} showed interspecific difference, and the plant species of larger {Delta} had larger relative growth rates. Relative growth rates of the plants of larger {Delta} were stimulated by CO{sub 2} enrichment more than those of the plants of smaller {Delta}. We propose that plant {Delta} could be a possible parameter to assess the interspecific difference of plant response to the increasing atmospheric CO{sub 2} concentrations. 3 figs., 2 tabs., 25 refs.

  3. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.

    Science.gov (United States)

    Kim, Sun-Young; Song, Insang

    2017-07-01

    The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and

  4. The impact of enhanced atmospheric carbon dioxide on yield, proximate composition, elemental concentration, fatty acid and vitamin C contents of tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Khan, Ikhtiar; Azam, Andaleeb; Mahmood, Abid

    2013-01-01

    The global average temperature has witnessed a steady increase during the second half of the twentieth century and the trend is continuing. Carbon dioxide, a major green house gas is piling up in the atmosphere and besides causing global warming, is expected to alter the physico-chemical composition of plants. The objective of this work was to evaluate the hypothesis that increased CO(2) in the air is causing undesirable changes in the nutritional composition of tomato fruits. Two varieties of tomato (Lycopersicon esculentum) were grown in ambient (400 μmol mol(-1)) and elevated (1,000 μmol mol(-1)) concentration of CO(2) under controlled conditions. The fruits were harvested at premature and fully matured stages and analyzed for yield, proximate composition, elemental concentration, fatty acid, and vitamin C contents. The amount of carbohydrates increased significantly under the enhanced CO(2) conditions. The amount of crude protein and vitamin C, two important nutritional parameters, decreased substantially. Fatty acid content showed a mild decrease with a slight increase in crude fiber. Understandably, the effect of enhanced atmospheric CO(2) was more pronounced at the fully matured stage. Mineral contents of the fruit samples changed in an irregular fashion. Tomato fruit has been traditionally a source of vitamin C, under the experimental conditions, a negative impact of enhanced CO(2) on this source of vitamin C was observed. The nutritional quality of both varieties of tomato has altered under the CO(2) enriched atmosphere.

  5. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.

    Science.gov (United States)

    Besio, Walter G; Martínez-Juárez, Iris E; Makeyev, Oleksandr; Gaitanis, John N; Blum, Andrew S; Fisher, Robert S; Medvedev, Andrei V

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos.

  6. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption.

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Larsen, Adam M; Findley, Daniel A; Davis, Robert C; Samha, Hussein; Linford, Matthew R

    2010-09-21

    Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.

  7. Global Trends in Chlorophyll Concentration Observed with the Satellite Ocean Colour Data Record

    Science.gov (United States)

    Melin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S.

    2016-08-01

    To detect climate change signals in the data records derived from remote sensing of ocean colour, combining data from multiple missions is required, which implies that the existence of inter-mission differences be adequately addressed prior to undertaking trend studies. Trend distributions associated with merged products are compared with those obtained from single-mission data sets in order to evaluate their suitability for climate studies. Merged products originally developed for operational applications such as near-real time distribution (GlobColour) do not appear to be proper climate data records, showing large parts of the ocean with trends significantly different from trends obtained with SeaWiFS, MODIS or MERIS. On the other hand, results obtained from the Climate Change Initiative (CCI) data are encouraging, showing a good consistency with single-mission products.

  8. Action of Gibberellins on Growth and Metabolism of Arabidopsis Plants Associated with High Concentration of Carbon Dioxide1[W

    Science.gov (United States)

    Ribeiro, Dimas M.; Araújo, Wagner L.; Fernie, Alisdair R.; Schippers, Jos H.M.; Mueller-Roeber, Bernd

    2012-01-01

    Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 µmol CO2 mol−1) was reverted by elevated [CO2] (750 µmol CO2 mol−1). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. PMID:23090585

  9. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  10. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni, Marcella [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Yue, Junqi; Zhang, Lifeng [PUB, 40 Scotts Road, Singapore 228231 (Singapore); Xie, Jianping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Ong, Choon Nam [Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Leong, David Tai, E-mail: cheltwd@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore)

    2015-10-30

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10{sup −6}–10{sup −3} μg mL{sup −1}. However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL{sup −1}, through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10{sup −7} μg mL{sup −1}. This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general.

  11. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    Science.gov (United States)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  12. Relative performance of different exposure modeling approaches for sulfur dioxide concentrations in the air in rural western Canada

    Directory of Open Access Journals (Sweden)

    Kim Hyang-Mi

    2008-07-01

    Full Text Available Abstract Background The main objective of this paper is to compare different methods for predicting the levels of SO2 air pollution in oil and gas producing area of rural western Canada. Month-long average air quality measurements were collected over a two-year period (2001–2002 at multiple locations, with some side-by-side measurements, and repeated time-series at selected locations. Methods We explored how accurately location-specific mean concentrations of SO2 can be predicted for 2002 at 666 locations with multiple measurements. Means of repeated measurements on the 666 locations in 2002 were used as the alloyed gold standard (AGS. First, we considered two approaches: one that uses one measurement from each location of interest; and the other that uses context data on proximity of monitoring sites to putative sources of emission in 2002. Second, we imagined that all of the previous year's (2001's data were also available to exposure assessors: 9,464 measurements and their context (month, proximity to sources. Exposure prediction approaches we explored with the 2001 data included regression modeling using either mixed or fixed effects models. Third, we used Bayesian methods to combine single measurements from locations in 2002 (not used to calculate AGS with different priors. Results The regression method that included both fixed and random effects for prediction (Best Linear Unbiased Predictor had the best agreement with the AGS (Pearson correlation 0.77 and the smallest mean squared error (MSE: 0.03. The second best method in terms of correlation with AGS (0.74 and MSE (0.09 was the Bayesian method that uses normal mixture prior derived from predictions of the 2001 mixed effects applied in the 2002 context. Conclusion It is likely that either collecting some measurements from the desired locations and time periods or predictions of a reasonable empirical mixed effects model perhaps is sufficient in most epidemiological applications. The

  13. Indoor thermal environment, air exchange rates, and carbon dioxide concentrations before and after energy retro fits in Finnish and Lithuanian multi-family buildings.

    Science.gov (United States)

    Leivo, Virpi; Prasauskas, Tadas; Du, Liuliu; Turunen, Mari; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2018-04-15

    Impacts of energy retrofits on indoor thermal environment, i.e. temperature (T) and relative humidity (RH), as well as ventilation rates and carbon dioxide (CO 2 ) concentrations, were assessed in 46 Finnish and 20 Lithuanian multi-family buildings, including 39 retrofitted case buildings in Finland and 15 in Lithuania (the remaining buildings were control buildings with no retrofits). In the Finnish buildings, high indoor T along with low RH levels was commonly observed both before and after the retrofits. Ventilation rates (l/s per person) were higher after the retrofits in buildings with mechanical exhaust ventilation than the corresponding values before the retrofits. Measured CO 2 levels were low in vast majority of buildings. In Lithuania, average indoor T levels were low before the retrofits and there was a significant increase in the average T after the retrofits. In addition, average ventilation rate was lower and CO 2 levels were higher after the retrofits in the case buildings (N=15), both in apartments with natural and mixed ventilation. Based on the results, assessment of thermal conditions and ventilation rates after energy retrofits is crucial for optimal indoor environmental quality and energy use. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  15. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    International Nuclear Information System (INIS)

    McGrath, Justin M.; Karnosky, David F.; Ainsworth, Elizabeth A.

    2010-01-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO 2 ]) and elevated ozone concentration ([O 3 ]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO 2 ] and [O 3 ] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO 2 fumigation had begun, but O 3 fumigation had not. Trees in elevated [CO 2 ] plots showed a stimulation of leaf area index (36%), while trees in elevated [O 3 ] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO 2 ], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO 2 ]; however, the two clones responded differently to long-term growth at elevated [O 3 ]. The O 3 -sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O 3 ] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O 3 ] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O 3 ], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. - Spring leaf flush is stimulated by elevated [CO 2 ] and suppressed by elevated [O 3 ] in aspen (Populus tremuloides).

  16. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  17. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field

    International Nuclear Information System (INIS)

    Tissue, D. T.; Lewis, J. D.; Wullschleger, S. D.; Amthro, J. S.; Griffin, K. L.; Anderson, O. R.

    2002-01-01

    The effects of elevated carbon dioxide and canopy position on leaf respiration in sweetgum trees in a closed canopy forest were measured in an effort to determine if, and why, enriched atmospheric carbon dioxide might affect leaf respiration in sweetgum. To account for the dark respiratory response to growth in elevated carbon dioxide, cell ultrastructure and cytochrome c oxidase activity in leaves were measured at different seasonal growth periods. Leaf respiration under light conditions was also estimated to determine whether elevated carbon dioxide affected daytime respiration. Results showed that long-term exposure to elevated carbon dioxide did not effect night-time or day- time respiration in trees grown in a plantation in the field. Canopy position affected night-time respiration partially, through the effects on leaf soluble sugar, starch, nitrogen and leaf mass per unit area. In carbon dioxide partial pressure the effects of canopy position were insignificant. It was concluded that elevated carbon dioxide does not directly impact leaf respiration in sweetgum and assuming no changes in leaf nitrogen or leaf chemical composition, the long-term effects on respiration in this species will be minimal. 50 refs., 4 tabs., 3 figs

  18. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    Science.gov (United States)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity

  19. Determination of the uranium concentration in water samples by the technique of fission track recording

    International Nuclear Information System (INIS)

    Geraldo, L.P.

    1979-01-01

    The technique of fission track register was developed for the determination of micrograms of uranium. The Makrofol KG, a synthetic plastic made by Bayer, was used as the detector and the wet method was utilized. The detector calibration curve allows the determination of the uranium concentration in a sample within an interval from 8.0 to 0.4μgU/L, the total error ranging from 3.3% to 29.0% respectively. The method was used in the determination of the uranium content in various water samples, obtained from various sources like rivers, sea etc. in the state of Sao Paulo, Brazil. Results were compared with those obtained by other authors using different methods. The average concentration found in sea waters (3.27 +- 9.12μgU/l) by this method is compatible with the international average accepted value of 3.3μgU/l, irrespective of site and depth. The determination of the uranium content by fission track counting has proved to be very convenient. (Author) [pt

  20. An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health

    Science.gov (United States)

    Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic

    2015-10-01

    Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion

  1. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  2. Feasibility of recording high frequency oscillations with tripolar concentric ring electrodes during pentylenetetrazole-induced seizures in rats.

    Science.gov (United States)

    Makeyev, Oleksandr; Liu, Xiang; Wang, Liling; Zhu, Zhenghan; Taveras, Aristides; Troiano, Derek; Medvedev, Andrei V; Besio, Walter G

    2012-01-01

    As epilepsy remains a refractory condition in about 30% of patients with complex partial seizures, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via novel tripolar concentric ring electrodes (TCREs) on the scalp of rats after inducing seizures with pentylenetetrazole (PTZ). We developed a close-loop system to detect seizures and automatically trigger the stimulation and evaluated its effect on the electrographic activity recorded by TCREs in rats. In our previous work the detectors of seizure onset were based on seizure-induced changes in signal power in the frequency range up to 100 Hz, while in this preliminary study we assess the feasibility of recording high frequency oscillations (HFOs) in the range up to 300 Hz noninvasively with scalp TCREs during PTZ-induced seizures. Grand average power spectral density estimate and generalized likelihood ratio tests were used to compare power of electrographic activity at different stages of seizure development in a group of rats (n= 8). The results suggest that TCREs have the ability to record HFOs from the scalp as well as that scalp-recorded HFOs can potentially be used as features for seizure onset detection.

  3. Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers.

    Science.gov (United States)

    Hall, Marianne; Räntfors, Mats; Slaney, Michelle; Linder, Sune; Wallin, Göran

    2009-04-01

    Effects of ambient and elevated temperature and atmospheric carbon dioxide concentration ([CO2]) on CO2 assimilation rate and the structural and phenological development of shoots during their first growing season were studied in 45-year-old Norway spruce trees (Picea abies (L.) Karst.) enclosed in whole-tree chambers. Continuous measurements of net assimilation rate (NAR) in individual buds and shoots were made from early bud development to late August in two consecutive years. The largest effect of elevated temperature (TE) was manifest early in the season as an earlier start and completion of shoot length development, and a 1-3-week earlier shift from negative to positive NAR compared with the ambient temperature (TA) treatments. The largest effect of elevated [CO2] (CE) was found later in the season, with a 30% increase in maximum NAR compared with trees in the ambient [CO2] treatments (CA), and shoots assimilating their own mass in terms of carbon earlier in the CE treatments than in the CA treatments. Once the net carbon assimilation compensation point (NACP) had been reached, TE had little or no effect on the development of NAR performance, whereas CE had little effect before the NACP. No interactive effects of TE and CE on NAR were found. We conclude that in a climate predicted for northern Sweden in 2100, current-year shoots of P. abies will assimilate their own mass in terms of carbon 20-30 days earlier compared with the current climate, and thereby significantly contribute to canopy assimilation during their first year.

  4. Which plant trait explains the variations in relative growth rate and its response to elevated carbon dioxide concentration among Arabidopsis thaliana ecotypes derived from a variety of habitats?

    Science.gov (United States)

    Oguchi, Riichi; Ozaki, Hiroshi; Hanada, Kousuke; Hikosaka, Kouki

    2016-03-01

    Elevated atmospheric carbon dioxide (CO2) concentration ([CO2]) enhances plant growth, but this enhancement varies considerably. It is still uncertain which plant traits are quantitatively related to the variation in plant growth. To identify the traits responsible, we developed a growth analysis model that included primary parameters associated with morphology, nitrogen (N) use, and leaf and root activities. We analysed the vegetative growth of 44 ecotypes of Arabidopsis thaliana L. grown at ambient and elevated [CO2] (800 μmol mol(-1)). The 44 ecotypes were selected such that they were derived from various altitudes and latitudes. Relative growth rate (RGR; growth rate per unit plant mass) and its response to [CO2] varied by 1.5- and 1.7-fold among ecotypes, respectively. The variation in RGR at both [CO2]s was mainly explained by the variation in leaf N productivity (LNP; growth rate per leaf N),which was strongly related to photosynthetic N use efficiency (PNUE). The variation in the response of RGR to [CO2] was also explained by the variation in the response of LNP to [CO2]. Genomic analyses indicated that there was no phylogenetic constraint on inter-ecotype variation in the CO2 response of RGR or LNP. We conclude that the significant variation in plant growth and its response to [CO2] among ecotypes reflects the variation in N use for photosynthesis among ecotypes, and that the response of PNUE to CO2 is an important target for predicting and/or breeding plants that have high growth rates at elevated [CO2].

  5. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2007-08-01

    Full Text Available Soils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs, such as the polychlorinated biphenyls (PCBs. Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007. Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006. Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.

  6. A 40-year record of Northern Hemisphere atmospheric carbon monoxide concentration and isotope ratios from the firn at Greenland Summit.

    Science.gov (United States)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.; Buizert, C.; Lang, P. M.; Edwards, J.; Harth, C. M.; Hmiel, B.; Mak, J. E.; Novelli, P. C.; Brook, E.; Weiss, R. F.; Vaughn, B. H.; White, J. W. C.

    2014-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to climate forcing by being a major sink of tropospheric OH. A good understanding of the past atmospheric CO budget is therefore important for climate models attempting to characterize recent changes in the atmosphere. Previous work at NEEM, Greenland provided the first reconstructions of Arctic atmospheric history of CO concentration and stable isotope ratios (δC18O and δ13CO) from firn air, dating to the 1950s. In this new study, firn air was sampled from eighteen depth levels through the firn column at Summit, Greenland (in May 2013), yielding a second, independent record of Arctic CO concentration and isotopic ratios. Carbon monoxide stable isotope ratios were analyzed on replicate samples and using a newly developed system with improved precision allowing for a more robust reconstruction. The new CO concentration and stable isotope results overall confirm the earlier findings from NEEM, with a CO concentration peak around the 1970s and higher δC18O and δ13CO values associated with peak CO. Modeling and interpretation of the data are in progress.

  7. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  8. The association between the incidence of postmenopausal breast cancer and concentrations at street-level of nitrogen dioxide and ultrafine particles.

    Science.gov (United States)

    Goldberg, Mark S; Labrèche, France; Weichenthal, Scott; Lavigne, Eric; Valois, Marie-France; Hatzopoulou, Marianne; Van Ryswyk, Keith; Shekarrizfard, Maryam; Villeneuve, Paul J; Crouse, Daniel; Parent, Marie-Élise

    2017-10-01

    There is scant information as to whether traffic-related air pollution is associated with the incidence of breast cancer. Nitrogen dioxide (NO 2 ) and ultrafine particles (UFPs, variations in traffic-related air pollution and may also be associated with incidence. We conducted a population-based, case-control study of street-level concentrations of NO 2 and UFPs and incident postmenopausal breast cancer in Montreal, Canada. Incident cases were identified between 2008 and 2011 from all but one hospital that treated breast cancer in the Montreal area. Population controls were identified from provincial electoral lists of Montreal residents and frequency-matched to cases using 5-year age groups. Concentrations of NO 2 and UFPs were estimated using two separate land-use regression models. Exposures were assigned to residential locations at the time of recruitment, and we identified residential histories of women who had lived in these residences for 10 years or more. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression models adjusting for individual-level and ecological covariates. We assessed the functional form of NO 2 and UFP exposures using natural cubic splines. We found that the functional form of the response functions between incident postmenopausal breast cancer and concentrations of NO 2 and UFPs were consistent with linearity. For NO 2 , we found increasing risks of breast cancer for all subjects combined and stronger associations when analyses were restricted to those women who had lived at their current address for 10 years or more. Specifically, the OR, adjusted for personal covariates, per increase in the interquartile range (IQR=3.75 ppb) of NO 2 was 1.08 (95%CI: 0.92-1.27). For women living in their homes for 10 years or more, the adjusted OR was 1.17 (95%CI: 0.93-1.46; IQR=3.84 ppb); for those not living at that home 10 years before the study, it was 0.93 (95%CI: 0.64, 1.36; IQR=3.65 ppb). For UFPs, the ORs were

  9. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    Science.gov (United States)

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  10. Carbon dioxide assimilation in Danish crops (wheat and maize) and its dependency on increasing temperature and elevated atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Soegaard, H.; Boegh, E.

    2001-01-01

    Eddy correlation measurements of atmospheric CO 2 fluxes have been recorded over a number of crops throughout the growing season. These data have been used for validating a mechanistic photosynthesis model, which is used together with one of the most wide spread soil respiration equations. The combined model, is applied for analysing the temperature- and CO 2 -dependency of field crops. To get an idea of the potential range in the sensitivity of agricultural crops to atmospheric change, two crops with contrasting biochemical and physiological properties were selected for the present analysis: winter wheat (Triticum aestivum cv. Hereward) and maize (Zea mayz cv. Loft). While wheat, which is a C 3 -species, is the most common Danish crop (covering 25% of the Danish agricultural area), maize is interesting because it is a C 4 -plant which uses another CO 2 pathway in the dry matter production. The photosynthetic process of C 4 -plants has a higher temperature optimum compared to C 3 -plants. This could give C 4 plants more favourable conditions in the future. The model applied in this paper is utilized to evaluate whether increasing atmospheric CO 2 concentrations have contributed to the general increase in grain yield observed in Denmark since the late sixties. (LN)

  11. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  12. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    Czech Academy of Sciences Publication Activity Database

    Fausser, A. C.; Dušek, Jiří; Čížková, Hana; Kazda, M.

    2016-01-01

    Roč. 8, JUL (2016), č. článku plw025. ISSN 2041-2851 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:86652079 Keywords : typha-latifolia l * internal gas-transport * phragmites-australis * convective throughflow * pressurized ventilation * angustifolia l * ex steud * roots * flow * respiration * Aeration * constructed wetland * in-situ field study * internal carbon dioxide * internal oxygen dynamics * Phragmites australis Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.238, year: 2016

  13. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  14. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  15. Inclusion in the simulation of air pollutants recorded over the borders of test areas in Niedersachsen and forecasting of local ground level concentrations

    International Nuclear Information System (INIS)

    Mueller-Reissmann, K.F.; Schaffner, J.

    1991-08-01

    In 1987-1989 an emission-ground level concentration-model (conversion of emission into ground level concentration) was established for the pollutant sulphur dioxide (SO 2 ) by the ISP (Hannover) in cooperation with GEOS (Berlin) and was with emission data of the environs of Braunschweig for 1987 subjected to different trial runs. The pollution sources were devided into four groups: - Large Emitters (particularly power plants) - medium emitters (particularly industry) - space heating and small consumers - traffic. The pollution emitters of the first two groups were considered as point sources and the last two groups as surface sources, their emissions being evently distributed over squares of 1 km x 1 km, each surface unit of one km 2 being represented by 400 point sources in a distance of 50 m from each other. The conversion of emissions into ground level concentration is based on the Gaussian dispersion model on which also the dispersion calculation of the TA Luft (technical regulation about air pollution) is based. (orig./KW) [de

  16. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  17. Atmospheric Carbon Dioxide and its Relation to Carbon Cycle Perturbations During Ocean Anoxic Event 1d: A High Resolution Record From Dispersed Plant Cuticle

    Science.gov (United States)

    Richey, J. D.; Upchurch, G. R.; Joeckel, R.; Smith, J. J.; Ludvigson, G. A.; Lomax, B. H.

    2013-12-01

    Past geological greenhouse intervals are associated with Ocean Anoxic Events (OAEs), which result from an increase in marine primary productivity and/or an increase in the preservation of organic matter. The end point is widespread black shale deposition combined with a long-term atmospheric positive δ13C excursion and an increase in the burial of 12C. Some OAEs show a negative δ13C excursion preceding the positive excursion, indicating a perturbation in the global carbon cycle prior to the initiation of these events. The Rose Creek (RCP) locality, southeastern Nebraska, is the only known terrestrial section that preserves OAE1d (Cretaceous, Albian-Cenomanian Boundary) and has abundant charcoal and plant cuticle. These features allow for a combined carbon isotope and stomatal index (SI) analysis to determine both changes in the cycling between carbon pools (C isotope analysis) and changes in paleo-CO2 via changes in SI. Preliminary (and ongoing) SI data analysis using dispersed cuticle of Pandemophyllum kvacekii (an extinct Laurel) collected at 30 cm intervals indicate changes in SI consistent with changes in CO2. Fitting our samples to a published RCP δ13C profile, pre-excursion CO2 concentrations are high. CO2 decreases to lower concentrations in the basal 1.2 m of the RCP section, where δ13Cbulk shows a negative excursion and δ13Ccharcoal remains at pre-excursion values. CO2 concentrations become higher toward the top of the negative δ13C excursion, where δ13Cbulk and δ13Ccharcoal are at their most negative values, and drop as the negative carbon excursion terminates. Using published transfer functions, we estimate that pre-excursion CO2 concentrations were a maximum of 900 ppm. In the basal 1.2 m of RCP, CO2 drops to a maximum of 480 ppm, and rises to a maximum of 710 ppm near the top of the negative excursion. As δ13C values rise towards pre-excursion values, CO2 declines to a maximum of 400 ppm. The trend in SI is comparable to the trend in δ13

  18. Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). I. Plant growth, allocation and ontogeny

    Energy Technology Data Exchange (ETDEWEB)

    Centritto, M. [Inst. di Biochimica ed Ecofisiologia Vegetale, Rome (Italy); Lee, H.S.J.; Jarvis, P.G. [Univ. Edinburgh, Inst. of Ecology and Resource Management, Edinburgh (United Kingdom)

    1999-09-01

    An investigation was carried out to determine the effects of elevated CO(2) concentration on the long-term growth and carbon allocation of four clones of Sitka spruce taken from two provenances under conditions of non-limiting water and nutrient supply. The use of clones from different provenances provided a unique way of examining effects of elevated CO(2) concentration on competitiveness of saplings adapted to climates with different temperature and day length. The saplings were fertilized following the Ingestad approach to yield a supply of mineral nutrients at free access in order to maintain nutrient uptake proportional to plant growth, and rule out undefined variability in sink strength that might have been caused by water and nutrient deficiencies. There was considerable variation in growth responses among clones. Across all four clones there was a 40% increase in total dry mass of the saplings growth in elevated CO(2) concentration, but the genetic differences in the growth response to elevated CO(2) concentration were significant. The clones originated from different latitudinal provenances, and were acclimated to different temperatures and day length climates, and so had different abilities to acclimate to their new environment. Some Sitka spruce clones may grow better in lowland Scotland as climate change occurs. Genetic differences in the growth response to elevated CO(2) concentration may be exploited through the assessment of nursery stock for future forest planning. 33 refs., 5 figs.

  19. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    Science.gov (United States)

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  20. Simultaneous effect of nitrate (NO3- concentration, carbon dioxide (CO2 supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Aarón Millán-Oropeza

    2015-03-01

    Full Text Available Biodiesel from microalgae is a promising technology. Nutrient limitation and the addition of CO2 are two strategies to increase lipid content in microalgae. There are two different types of nitrogen limitation, progressive and abrupt limitation. In this work, the simultaneous effect of initial nitrate concentration, addition of CO2, and nitrogen limitation on biomass, lipid, protein and carbohydrates accumulation were analyzed. An experimental design was established in which initial nitrogen concentration, culture time and CO2 aeration as independent numerical variables with three levels were considered. Nitrogen limitation was taken into account as a categorical independent variable. For the experimental design, all the experiments were performed with progressive nitrogen limitation. The dependent response variables were biomass, lipid production, carbohydrates and proteins. Subsequently, comparison of both types of limitation i.e. progressive and abrupt limitation, was performed. Nitrogen limitation in a progressive mode exerted a greater effect on lipid accumulation. Culture time, nitrogen limitation and the interaction of initial nitrate concentration with nitrogen limitation had higher influences on lipids and biomass production. The highest lipid production and productivity were at 582 mgL-1 (49.7 % lipid, dry weight basis and 41.5 mgL-1d-1, respectively; under the following conditions: 250 mgL-1 of initial nitrate concentration, CO2 supply of 4% (v/v, 12 d of culturing and 2 d in state of nitrogen starvation induced by progressive limitation. This work presents a novel way to perform simultaneous analysis of the effect of the initial concentration of nitrate, nitrogen limitation, and CO2 supply on growth and lipid production of Nannochloropsis oculata, with the aim to produce potential biofuels feedstock.

  1. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o...

  2. Impacts of some meteorological parameters on the SO2 concentrations in the City of Obrenovac, Serbia

    Directory of Open Access Journals (Sweden)

    SNEŽANA S. NENADOVIĆ

    2010-05-01

    Full Text Available In this paper, the impacts of some meteorological parameters on the SO2 concentrations in the City of Obrenovac are presented. The City of Obrenovac is located in the north-west part of Serbia on the banks of the River Sava. The observed source emission, the power plants TENT A and B are situated on the bank of the Sava River in the vicinity of Obrenovac. During the period from January to November 2006, the concentrations of sulfur dioxide in the air at 4 monitoring sites in Obrenovac were measured. It was noticed that the maximal measured daily concentrations of sulfur dioxide ranged from 1 μg m-3 (16th November, 2006 to 98 μg m-3 (29th January 2006 and lie under the maximal allowed concentration value according to the Serbian Law on Environmental Protection. The measured sulfur dioxide concentrations mostly showed characteristics usual for a daily acidification sulfur dioxide cycle, excluding the specificities influenced by the measuring site itself. Sulfur dioxide transport was recorded at increased wind speeds, primarily from the southeast direction. Based on the impact of meteorological parameters on the sulfur dioxide concentration, a validation of the monitoring sites was also performed from the aspect of their representivity.

  3. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  4. Neighbourhood Characteristics and Long-Term Air Pollution Levels Modify the Association between the Short-Term Nitrogen Dioxide Concentrations and All-Cause Mortality in Paris.

    Science.gov (United States)

    Deguen, Séverine; Petit, Claire; Delbarre, Angélique; Kihal, Wahida; Padilla, Cindy; Benmarhnia, Tarik; Lapostolle, Annabelle; Chauvin, Pierre; Zmirou-Navier, Denis

    2015-01-01

    While a great number of papers have been published on the short-term effects of air pollution on mortality, few have tried to assess whether this association varies according to the neighbourhood socioeconomic level and long-term ambient air concentrations measured at the place of residence. We explored the effect modification of 1) socioeconomic status, 2) long-term NO2 ambient air concentrations, and 3) both combined, on the association between short-term exposure to NO2 and all-cause mortality in Paris (France). A time-stratified case-crossover analysis was performed to evaluate the effect of short-term NO2 variations on mortality, based on 79,107 deaths having occurred among subjects aged over 35 years, from 2004 to 2009, in the city of Paris. Simple and double interactions were statistically tested in order to analyse effect modification by neighbourhood characteristics on the association between mortality and short-term NO2 exposure. The data was estimated at the census block scale (n=866). The mean of the NO2 concentrations during the five days prior to deaths were associated with an increased risk of all-cause mortality: overall Excess Risk (ER) was 0.94% (95%CI=[0.08;1.80]. A higher risk was revealed for subjects living in the most deprived census blocks in comparison with higher socioeconomic level areas (ER=3.14% (95%CI=[1.41-4.90], ppollution episodes. There is also an indication that people living in these disadvantaged census blocks might experience even higher risk following short-term air pollution episodes, when they are also chronically exposed to higher NO2 levels.

  5. Effect of concentration, exposure time, temperature, and relative humidity on the toxicity of sulfur dioxide to the spores of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.; Uota, M.

    1961-12-01

    When spores of Botrytis cinerea are exposed to SO/sub 2/ gas, the subsequent reduction in spore germination is quantitatively proportional to the SO/sub 2/ concentration and the exposure time. The toxicity of SO/sub 2/ increases with increasing relative humidity. In an atmosphere of 96% RH, SO/sub 2/ is more than 20 times as effective as at 75% RH. The toxicity also increases about 1.5 times for each 10/sup 0/C rise in temperature between 0/sup 0/ and 30/sup 0/C. 8 references, 4 figures, 1 table.

  6. Performance of large open-top chambers for long-term field investigations of tree response to elevated carbon dioxide concentration

    International Nuclear Information System (INIS)

    Whitehead, D.; Hogan, K.P.; Rogers, G.N.D.; Byers, J.N.; Hunt, J.E.; McSeveny, T.M.; Hollinger, D.Y.; Dungan, R.J.; Earl, W.B.; Bourke, M.P.

    1995-01-01

    In preparation for an investigation of the effects of elevated carbondioxide (CO 2 ) concentration on the two tree species Pinus radiata D. Don and Nothofagus fusca (Hook. f. ) Oerst, the environmental conditions inside sixteen open-top chambers, of the design described by Heagle et al. (1989), were measured and compared with those outside. During a period in late summer, both air temperature and air saturation deficit were greater inside the chambers, with mean increases of 0.3 degreesC and 0.1 kPa, respectively. The increases were closely related to solar irradiance, reaching maximum differences for temperature and air saturation deficit of 4.3 degrees C and 0.8 kPa, respectively, when solar irradiance was greater than 1600 mu mol m -2 s -1 . The mean (± standard deviation) CO 2 concentrations for the ambient and elevated treatments were 362 ± 37 and 654 ± 69 mu mol mol -1 , respectively. However, the CO 2 concentration in the elevated treatment decreased as wind speed increased, owing to incursions of ambient air into the chambers. Transmittance of visible solar irradiance (400-700 nm) through the plastic wall material decreased by 7% after 1 year of exposure at the site. In cloudy conditions the mean transmittance of solar irradiance into the chambers was 81% and on clear days this decreased from 80% to 74% with increasing solar zenith angle. The ratio of diffuse to total solar irradiance in the chambers was 13% and 21% greater than that outside for cloudy and clear conditions, respectively. The implications of these differences on water use efficiency for the trees growing inside and outside the chamber are discussed. A cost effective system, built to separate the CO 2 required for the experiment from waste biogas, is described. This project is contributing to the Global Change and Terrestrial Ecosystems (GCTE) Core Research Programme by providing data on the long-term effects of elevated CO 2 concentration on the above and below-ground carbon balance for

  7. Neighbourhood Characteristics and Long-Term Air Pollution Levels Modify the Association between the Short-Term Nitrogen Dioxide Concentrations and All-Cause Mortality in Paris.

    Directory of Open Access Journals (Sweden)

    Séverine Deguen

    Full Text Available While a great number of papers have been published on the short-term effects of air pollution on mortality, few have tried to assess whether this association varies according to the neighbourhood socioeconomic level and long-term ambient air concentrations measured at the place of residence. We explored the effect modification of 1 socioeconomic status, 2 long-term NO2 ambient air concentrations, and 3 both combined, on the association between short-term exposure to NO2 and all-cause mortality in Paris (France.A time-stratified case-crossover analysis was performed to evaluate the effect of short-term NO2 variations on mortality, based on 79,107 deaths having occurred among subjects aged over 35 years, from 2004 to 2009, in the city of Paris. Simple and double interactions were statistically tested in order to analyse effect modification by neighbourhood characteristics on the association between mortality and short-term NO2 exposure. The data was estimated at the census block scale (n=866.The mean of the NO2 concentrations during the five days prior to deaths were associated with an increased risk of all-cause mortality: overall Excess Risk (ER was 0.94% (95%CI=[0.08;1.80]. A higher risk was revealed for subjects living in the most deprived census blocks in comparison with higher socioeconomic level areas (ER=3.14% (95%CI=[1.41-4.90], p<0.001. Among these deprived census blocks, excess risk was even higher where long-term average NO2 concentrations were above 55.8 μg/m3 (the top tercile of distribution: ER=4.84% (95%CI=[1.56;8.24], p for interaction=0.02.Our results show that people living in census blocks characterized by low socioeconomic status are more vulnerable to air pollution episodes. There is also an indication that people living in these disadvantaged census blocks might experience even higher risk following short-term air pollution episodes, when they are also chronically exposed to higher NO2 levels.

  8. Radon, carbon dioxide and fault displacements in central Europe related to the Tohoku earthquake

    International Nuclear Information System (INIS)

    Briestensky, M.; Stemberk, J.; Rowberry, M.D.; Thinova, L.; Knejflova, Z.; Praksova, R.

    2014-01-01

    Tectonic instability may be measured directly using extensometers installed across active faults or it may be indicated by anomalous natural gas concentrations in the vicinity of active faults. This paper presents the results of fault displacement monitoring at two sites in the Bohemian Massif and Western Carpathians. These data have been supplemented by radon monitoring in the Mladec Caves and by carbon dioxide monitoring in the Zbrasov Aragonite Caves. A significant period of tectonic instability is indicated by changes in the fault displacement trends and by anomalous radon and carbon dioxide concentrations. This was recorded around the time of the catastrophic M W = 9.0 Tohoku Earthquake, which hit eastern Japan on 11 March 2011. It is tentatively suggested that the Tohoku Earthquake in the Pacific Ocean and the unusual geodynamic activity recorded in the Bohemian Massif and Western Carpathians both reflect contemporaneous global tectonic changes. (authors)

  9. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  10. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  11. The effect of sodium bicarbonate and validation of beckman coulter AU680 analyzers for measuring total carbon dioxide (TCO2) concentrations in horse serum.

    Science.gov (United States)

    Dirikolu, Levent; Waller, Pamela; Waguespack, Mona Landry; Andrews, Frank Michael; Keowen, Michael Layne; Gaunt, Stephen David

    2017-11-01

    This study evaluated the usage of Beckman Coulter AU680 analyzers for measurement of TCO 2 in horse serum, and the effect of sodium bicarbonate administrations on serum TCO 2 levels in resting horses. Treatment of horses with sodium bicarbonate did not result in any adverse events. Mean TCO 2 concentration was significantly higher from 1 to 8 h in the sodium bicarbonate-treated horses compared to the untreated controls. Within an hour, administration of sodium bicarbonate increased the TCO 2 level from 31.5 ± -2.5 (SD) to 34.0 ± 2.65 (SD) mmol/L and at 2-8 h post-administration, the TCO 2 level was above the 36 mmol/L cut-off level. In all quality control analysis of Australian standard by Beckman Coulter AU680 analyzer, the instrument slightly over estimated the TCO 2 level but the values were in close agreement with mean TCO 2 level being 38.03 with ± 0.87 mmol/L (SD). Expanded uncertainty was calculated using different levels of confidence interval. Based on 99.5% confidence interval using 0.805% expanded uncertainty using mean measured concentration of 38.05 mmol/L, it was estimated that any race samples TCO 2 level higher than 38.5 mmol/L will be indicative of sodium bicarbonate administration using Beckman Coulter AU680 analyzer in Louisiana.

  12. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  13. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models

    Science.gov (United States)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.

    2017-12-01

    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  14. Whole grain intake, determined by dietary records and plasma alkylresorcinol concentrations, is low among pregnant women in Singapore.

    Science.gov (United States)

    Ross, Alastair B; Colega, Marjorelee T; Lim, Ai Lin; Silva-Zolezzi, Irma; Macé, Katherine; Saw, Seang Mei; Kwek, Kenneth; Gluckman, Peter; Godfrey, Keith M; Chong, Yap-Seng; Chong, Mary F F

    2015-01-01

    To quantify whole grain intake in pregnant women in Singapore in order to provide the first detailed analysis of whole grain intake in an Asian country and in pregnant women. Analysis of 24-h diet recalls in a cross-sectional cohort study and analysis of a biomarker of whole grain intake (plasma alkylresorcinols) in a subset of subjects. The Growing Up in Singapore Towards healthy Outcomes-mother offspring cohort study based in Singapore. 998 pregnant mothers with complete 24-h recalls taken during their 26-28th week of gestation. Plasma samples from a randomly select subset of 100 subjects were analysed for plasma alkylresorcinols. Median (IQR) whole grain intake for the cohort and the 30% who reported eating whole grains were 0 (IQR 0, 9) and 23.6 (IQR 14.6, 44.2) g/day respectively. Plasma alkylresorcinol concentrations were very low [median (IQR)=9 (3, 15) nmol/L], suggesting low intake of whole grain wheat in this population. Plasma alkylresorcinols were correlated with whole grain wheat intake (Spearman's r=0.35; pSingapore was well below the 2-3 (60-95 g) servings of whole grains per day recommended by the Singapore Health Promotion Board. Efforts to increase whole grain intake should be supported to encourage people to choose whole grains over refined grains in their diet.

  15. Historical record of concentrations of atmospheric trace components deduced from a glacier in the Alps; Historische Entwicklung von atmosphaerischen Spurenstoffkonzentrationen rekonstruiert aus Firn und Eis alpiner Gletscher

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    A 109 m ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4440 m a.s.l., Switzerland) was used to reconstruct the history of atmospheric trace components. Concentrations of the anions chloride, nitrate, sulfate and the cations sodium, ammonium, potassium, magnesium and calcium were measured with 2.5-5.0 cm resolution in the top 70 m of a 109 m long of the ice core. Dating of the ice core was performed using stratigraphic markers such as historically known Saharan dust events, the atomic bomb horizon and volcanic eruptions and supplemented with the {sup 210}Pb nuclear dating. The record covers the time period from about 1755-1981. The concentrations of nitrate and sulfate show an exponential increase from 1930 and 1870 until 1965, respectively. The factors of increase were 2.3{+-}0.3 and 5.8{+-}0.9, respectively. The chloride concentrations remained constant during this period. A good agreement between the concentrations of sulfate, which were corrected for the contribution of seasalt and mineral dust and the European SO{sub 2}-emissions was found for the last 100 years. The concentrations of sodium, potassium, magnesium and calcium did not show a trend. The concentrations of ammonium increased exponentially between 1870 and 1960 by a factor of 2.2{+-}0.4. The different sources of the trace components were identified using correlation analysis. Sodium and chloride originated from seasalt, magnesium and calcium from geologic erosion. For both, the industrial and pre-industrial period, the dominant source of ammonium and nitrate was conversion of the gaseous precursors NH{sub 3} and HNO{sub 3}. Sulfate concentrations in the industrial period originated from the anthropogenically emitted SO{sub 2}, whereas in the pre-industrial period the geologic source dominated. The Colle Gnifetti accumulates mainly summer snow, and therefore, several test drillings were performed to find a new site with higher accumulation rate. figs., 17 tabs., 50 refs.

  16. Reconstructing Middle Eocene Climate and Atmospheric Carbon Dioxide Concentration: Application of a mechanistic theoretical approach to fossil plants from the Messel Pit (Germany)

    Science.gov (United States)

    Grein, M.; Roth-Nebelsick, A.; Wilde, V.; Konrad, W.; Utescher, T.

    2009-12-01

    It is assumed that changes in atmospheric CO2 concentrations (from now on expressed as Ca) strongly influenced the development of global temperatures during parts of the Cenozoic. Thus, detailed knowledge of ancient Ca and its variations is of utmost importance for exploring the coupling of atmospheric CO2 and global climate change. Numerous techniques (such as carbon and boron isotopes) were applied in order to obtain Ca, with varying and sometimes even conflicting results. Stomatal density (number of stomata per leaf area) represents another promising proxy for the calculation of ancient Ca since many plants reduce the number of stomata (pores on the leaf surface used for gas exchange) under increasing Ca. As a reason it is assumed that plants try to adjust stomatal conductance in order to optimize their gas exchange (which means maximal assimilation at minimal transpiration). The common technique for calculating Ca from fossil stomatal frequency is to create empirical transfer functions of living plants derived from herbar material or greenhouse experiments. In the presented project, Ca of the Middle Eocene is calculated by applying a different approach which utilizes a mechanistic-theoretical calibration. It couples the processes of a) C3-photosynthesis, b) diffusion and c) transpiration with palaeoclimatic and leaf-anatomical data. The model also includes an optimisation principle supported by ecophysiological data. According to this optimisation principle, plants adjust their stomatal conductance in such a way that photosynthesis rates are constrained by optimal water use (transpiration). This model was applied in the present study to fossil plants from the Messel Pit near Darmstadt (Germany). In order to reconstruct Ca by using fossil plant taxa from Messel, numerous parameters which represent model input have to be estimated from measurements of living representatives. Furthermore, since climate parameters are also required by the model, quantitative

  17. Continuous determination of nitric oxide and nitrogen dioxide in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, S; Yamate, N; Mitsuzawa, S; Mori, M

    1966-10-01

    Continuous determinations of nitric oxide and nitrogen dioxide in that atmospheric air by the use of a modified Saltzman reagent is described. Measurement was made intermittently, once every 30 min., by an automatic continuous analyzer equipped with a single-path colorimeter. The response of the analyzer was obtained as an average of the concentration of nitrogen oxides over a period of 25 min. Two bubblers were used for absorbing nitrogen oxides into the modified Saltzman reagent, whose transmittance was measured for the determination. One bubbler was designed to absorb nitrogen dioxide, and the other, nitric oxide plus nitrogen dioxide after the oxidation of the nitric oxide by permanganate. The oxidizing efficiency of the permanganate was 96-100%. The acetic acid in the Saltzman reagent was replaced with n-propyl alcohol in the modified Saltzman reagent; the spontaneous coloration and corrosive quality of the reagent was decreased by this substitution. The concentration of nitric oxide was obtained from the difference between the two responses of the analyzer, while the concentration of nitrogen dioxide could be read directly from the indication of the recorder. The transmittance ratio method was applied to the measurements, accurate determinations were possible, even at high blank values. Therefore, the reagent was used repeatedly by cycling it on the basis of measuring the difference in the coloration of the reagent before and after the absorption of nitrogen oxides. The analyzer could be used for a long period without changing the reagent.

  18. More bad news about carbon dioxide emissions

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    The affect that increased carbon dioxide concentrations has on plants and animals was discussed. Most research focuses on the impacts that carbon dioxide concentrations has on climatic change. Recent studies, however, have shown that elevated levels of carbon dioxide in the atmosphere caused by burning fossils fuels changes the chemical structure of plants and could lead to significant disruptions in ecological food chains. High carbon dioxide levels cause plants to speed up photosynthesis, take in the gas, and use the carbon to produce more fibre and starch while giving off oxygen as a byproduct. As plants produce more carbon, their levels of nitrogen diminish making them less nutritious for the insects and animals that feed on them. This has serious implications for farmers, as pests would have to eat more of their crops to survive. In addition, farmers would have to supplement livestock with nutrients

  19. Reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period defined from over 63 000 records in a multihospital health-care system.

    Science.gov (United States)

    Christensen, R D; Jensen, J; Maheshwari, A; Henry, E

    2010-08-01

    Blood concentrations of eosinophils and monocytes are part of the complete blood count. Reference ranges for these concentrations during the neonatal period, established by very large sample sizes and modern methods, are needed for identifying abnormally low or high values. We constructed reference ranges for eosinophils per microl and monocytes per microl among neonates of 22 to 42 weeks of gestation, on the day of birth, and also during 28 days after birth. Data were obtained from archived electronic records over an eight and one-half-year period in a multihospital health-care system. In keeping with the reference range concept, values were excluded from neonates with a diagnosis of infection or necrotizing enterocolitis (NEC). Eosinophils and monocytes per microl of blood were electronically retrieved from 96 162 records, of which 63 371 that lacked a diagnosis of infection or NEC were included in this reference range report. The mean value for eosinophils per microl on the day of birth increased linearly between 22 and 42 weeks of gestation, as did the 5 and 95% values. The reference range at 40 weeks was 140 to 1300 microl(-1) (mean 550 microl(-1)). Similarly, the mean value for monocytes increased linearly over this interval, with a reference range at 40 weeks of 300 to 3300 microl(-1) (mean 1400 microl(-1)). Over the first 4 weeks after birth, no appreciable change was observed in 5% limit and mean eosinophil count, with a slight increase in the 95% limit in week 4. A slight increase in monocyte count was observed during the first 2 weeks after birth. The results of this analysis describe reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period. Additional study is needed for determining the relevance of values falling outside the reference range.

  20. Nitrogen dioxide exposures inside ice skating rinks.

    Science.gov (United States)

    Brauer, M; Spengler, J D

    1994-01-01

    OBJECTIVES. The common operation of fuel-powered resurfacing equipment in enclosed ice skating rinks has the potential for producing high concentrations of carbon monoxide and nitrogen dioxide. Exposures to these gaseous combustion products may adversely affect the health of those inside the rink. Little information is available on pollutant concentrations under normal operating conditions. METHODS. One-week average nitrogen dioxide concentrations in 70 northeastern US rinks were measured with passive samplers during normal winter season conditions. RESULTS. The median nitrogen dioxide level inside rinks was 180 ppb, more than 10 times higher than the median outdoor concentration. One-week average nitrogen dioxide concentrations above 1000 ppb were measured in 10% of the rinks. CONCLUSIONS. Considering that short-term peak concentrations were likely to have reached two to five times the measured 1-week averages, our results suggest that nitrogen dioxide levels were well above short-term air quality guidelines and constitute a public health concern of considerable magnitude. PMID:8129060

  1. Advances in deuterium dioxide concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Woojung [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Sung Paal, E-mail: nspyim@kaeri.re.kr [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Lim; Park, Hyunmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kwang Rag; Chung, Hongsuk [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheo Kyung [Handong Global University, Pohang (Korea, Republic of)

    2016-11-01

    Highlights: • Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. • D{sub 2}O purity is analyzed using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). • OA-ICOS has advantages in terms of analysis of D{sub 2}O vapor. • OA-ICOS is expected that it can be used for accurate isotopic analyses in the future. - Abstract: The deuterium–tritium (D–T) reaction has been identified as the most efficient reaction for fusion devices. Deuterium can be obtained by heavy water electrolysis. Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. A D{sub 2}O isotopic analysis is thus very important. A system for a heavy water analysis was built and a newly designed isotopic analysis experiment was carried out. We tried to analyze the D{sub 2}O purity using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). We found that the OA-ICOS based on measurement via laser absorption spectroscopy shows very high sensitivity. We ameliorated the sensitivity by an order of magnitude of more than 10{sup 3}–10{sup 5}. We could make the apparatus smaller by employing very tiny diode laser and fiber optics elements of a DFB (Distributed Feedback) type. Consequently, our device has advantages in terms of maintainability and mobility even in a radioactive environment. This new method could be used for an accurate isotopic analysis in the future.

  2. Plant growth and physiology of vegetable plants as influenced by carbon dioxide environment

    International Nuclear Information System (INIS)

    Ito, Tadashi

    1973-01-01

    In order to obtain basic knowledge on the increased giving of carbon dioxide to vegetables, the carbon dioxide environment in growing houses was analyzed, and the physiological and ecological properties of vegetables cultivated in carbon dioxide environment were elucidated. To improve the carbon dioxide environment, giving increased quantity of carbon dioxide, air flow, ventilation, and others were examined. The concentration of carbon dioxide began to decrease when the illumination intensity on growing layer reached 1 -- 1.5 lux, owing to the photo-synthetic activity of vegetables, and decreased rapidly at 3 -- 5 lux. The lowering of carbon dioxide concentration lowered the photo-synthesis of vegetables extremely, and the transfer of synthesized carbohydrate to roots was obstructed. The effect suffered in low carbon dioxide concentration left some aftereffect even after ventilation and the recovery of carbon dioxide concentration. But this aftereffect was not observed in case of cucumber. To improve carbon dioxide environment, the air flow or ventilation required for minimizing the concentration lowering was determined, but giving increased quantity of carbon dioxide was most effective. The interaction of carbon dioxide concentration and light was examined regarding the effect on photo-synthesis, and some knowledge of practical application was obtained. The effect of giving more carbon dioxide was more remarkable as the treatment was given to younger seedlings and in the period when the capacity of absorbing assimilation products was higher. (Kako, I.)

  3. Amperometric sensor for carbon dioxide: design, characteristics, and perforance

    International Nuclear Information System (INIS)

    Evans, J.; Pletcher, D.; Warburton, P.R.G.; Gibbs, T.K.

    1989-01-01

    A new sensor for atmospheric carbon dioxide is described. It is an amperometric device based on a porous electrode in a three-electrode cell and the electrolyte is a copper diamine complex in aqueous potassium chloride. The platinum cathode, held at constant potential, is used to detect the formation of Cu 2+ following the change in the pH of the solution when the sensor is exposed to an atmosphere containing carbon dioxide. The sensor described is designed to monitor carbon dioxide concentrations in the range 0-5%, although with some modifications, other ranges would be possible. The response to a change in the carbon dioxide content of the atmosphere is rapid (about 10s) while the monitored current is strongly (but nonlinearly) dependent on carbon dioxide concentration. Unlike other amperometric devices for carbon dioxide, there is no interference from oxygen although other acid gases would lead to an interfering response

  4. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  5. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  6. Technical Note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa

    Directory of Open Access Journals (Sweden)

    C. Varotsos

    2007-01-01

    Full Text Available The monthly mean values of the atmospheric carbon dioxide concentration derived from in-situ air samples collected at Mauna Loa Observatory, Hawaii, USA during 1958–2004 (the longest continuous record available in the world are analyzed by employing the detrended fluctuation analysis to detect scaling behavior in this time series. The main result is that the fluctuations of carbon dioxide concentrations exhibit long-range power-law correlations (long memory with lag times ranging from four months to eleven years, which correspond to 1/f noise. This result indicates that random perturbations in the carbon dioxide concentrations give rise to noise, characterized by a frequency spectrum following a power-law with exponent that approaches to one; the latter shows that the correlation times grow strongly. This feature is pointing out that a correctly rescaled subset of the original time series of the carbon dioxide concentrations resembles the original time series. Finally, the power-law relationship derived from the real measurements of the carbon dioxide concentrations could also serve as a tool to improve the confidence of the atmospheric chemistry-transport and global climate models.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  8. Carbon dioxide euthanasia in rats: Oxygen supplementation minimizes signs of agitation and asphyxia

    NARCIS (Netherlands)

    Coenen, A.M.L.; Drinkenburg, W.H.I.M.; Hoenderken, R.; Luijtelaar, E.L.J.M. van

    1995-01-01

    This paper records the effects of carbon dioxide when used for euthanasia, on behaviour, electrical brain activity and heart rate in rats. Four different methods were used. Animals were placed in a box (a) that was completely filled with carbon dioxide; (b) into which carbon dioxide was streamed at

  9. The carbon dioxide thermometer and the cause of global warming

    International Nuclear Information System (INIS)

    Calder, Nigel

    1999-01-01

    Carbon dioxide in the air may be increasing because the world is warming. This possibility, which contradicts the hypothesis of an enhanced greenhouse warming driven by manmade emissions, is here pursued in two ways. First, increments in carbon dioxide are treated as readings of a natural thermometer that tracks global and hemispheric temperature deviations, as gauged by meteorologists' thermometers. Calibration of the carbon dioxide thermometer to conventional temperatures then leads to a history of carbon dioxide since 1856 that diverges from the ice-core record. Secondly, the increments of carbon dioxide can also be accounted for, without reference to temperature, by the combined effects of cosmic rays, El Nino and volcanoes. The most durable effect is due to cosmic rays. A solar wind history, used as a long-term proxy for the cosmic rays, gives a carbon dioxide history similar to that inferred from the global temperature deviations. (author)

  10. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  11. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  12. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  13. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  14. Influences of rising atmospheric carbon dioxide and ozone concentrations on soil respiration, soil microbial biomass, nutrient availability and soil C dynamics in a soybean-wheat no-till system

    Science.gov (United States)

    Effects of the elevated carbon dioxide and ozone on agroecosystems include effects on root growth, soil microbiology and soil C dynamics although the combined effects of these gases on belowground processes have been little studied. The objective of this experiment was to determine the separate and...

  15. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  16. Mechanism of the toxic action of sulfur dioxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaevskii, V S; Miroshnikova, A T; Firger, V V; Belokrylova, L M

    1975-01-01

    Experiments were performed to determine the effects of sulfur dioxide on U CO2 metabolism and photosynthesis in fescue and timothy grass and in maple and barberry branches. The free radical inhibitors, ascorbic acid and thiourea, were found to decrease the damaging effects of the sulfur dioxide. These results indicated that the processes involved are of the free-radical chain type. Even at low sulfur dioxide concentrations, photosphosphorylation and carbon dioxide assimilation were inhibited. In addition, starch and protein as well as the formation of polymeric substances were also inhibited.

  17. Dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate-hydrogen peroxide

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct dissolution of uranium dioxide in supercritical carbon dioxide modified with tri-n-butyl phosphate (TBP) has been attempted. The effects of TBP concentration and pressure on the extraction of uranium have been studied. Addition of hydrogen peroxide in the modifier enhances the dissolution/extraction of uranium. (author)

  18. Yellow cake to ceramic uranium dioxide

    International Nuclear Information System (INIS)

    Zawidzki, T.W.; Itzkovitch, I.J.

    1983-01-01

    This overview article first reviews the processes for converting uranium ore concentrates to ceramic uranium dioxide at the Port Hope Refinery of Eldorado Resources Limited. In addition, some of the problems, solutions, thoughts and research direction with respect to the production and properties of ceramic UO 2 are described

  19. Carbon dioxide capture and air quality

    NARCIS (Netherlands)

    Horssen, A. van; Ramirez, C.A.; Harmelen, T. van; Koornneef, J.

    2011-01-01

    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate

  20. Carbon dioxide emission from bamboo culms.

    Science.gov (United States)

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  2. Induction of ovoviviparity in Rhabditis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J T; Tsui, R K

    1968-01-01

    While investigating the influence of atmospheric pollutants on soil and plant microbiotas, ovoviviparity was observed in the saprophagous nematode, Rhabditis sp., after exposure to various concentrations of sulfur dioxide.

  3. Carbon dioxide efflux from leaves in light and darkness

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, P; Jarvis, P G

    1967-01-01

    The efflux of carbon dioxide in light and darkness was measured at low ambient CO/sub 2/ concentrations in leaves of Rumex acetosa. Light carbon dioxide production (photorespiration) was found to depend on irradiance and to differ from dark production as to the response to temperature and ambient concentrations of O/sub 2/ and CO/sub 2/. These observations support previously made suggestions that photorespiration follows a different metabolic pathway to dark respiration.

  4. Tethered catalysts for the hydration of carbon dioxide

    Science.gov (United States)

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  5. Dramatic reduction of sulfur dioxide emission in Northeastern China in the last decade

    Science.gov (United States)

    Yuan, J.

    2017-12-01

    Analysis of spatial and temporal variations of sulfur dioxide concentration in planetary boundary layer were conducted. The data were generated by NASA satellite daily from October of 2004 and were obtained through NASA Giovanni. The global monthly mean spatial distribution of sulfur dioxide showed several hot spots including: several spots on some islands in the Pacific Ocean, several spots in central America, and central Africa. Most of these hot spots of sulfur dioxide are related to known active volcanos. The biggest hot spot of sulfur dioxide were observed in Northeastern China. While high concentration sulfur dioxide was still observed in Northeastern China in 2017. The area averaged concentration of sulfur dioxide declined dramatically since its peak in 2008. This temporal trend indicates that sulfur reduction effort has been effective in the last decade or post 2008 financial crisis recovery lead an industry less sulfur dioxide emission.

  6. Measurement of nitrogen dioxide in the air

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J T

    1967-01-01

    The Hersch electrolytic nitrogen dioxide generator has been used to provide accurately known weights of nitrogen dioxide and hence to evaluate a calibration factor for the colorimetric reagent described by Saltaman for the determination of this gas. A method of testing whether the electrolytic generator was giving a quantitative output of NO/sub 2/ is described. The work has confirmed Saltman's value of 0.72 for the calibration factor. An assertion that the calibration factor is dependent on the concentration of nitrogen dioxide sampled, is re-examined and dismissed, the observations being re-interpreted on a simple basis. A tentative suggestion is made as to why, in recent work by Stratmann and Buck, a calibration factor equal to unity has been found. 8 references, 4 figures, 1 table.

  7. Modern climate challenges and the geological record

    Science.gov (United States)

    Cronin, Thomas M.

    2010-01-01

    Today's changing climate poses challenges about the influence of human activity, such as greenhouse gas emissions and land use changes, the natural variability of Earth's climate, and complex feedback processes. Ice core and instrumental records show that over the last century, atmospheric carbon dioxide (CO2) concentrations have risen to 390 parts per million volume (ppmv), about 40% above pre-Industrial Age concentrations of 280 ppmv and nearly twice those of the last glacial maximum about 22,000 years ago. Similar historical increases are recorded in atmospheric methane (CH4) and nitrous oxide (N2O). There is general agreement that human activity is largely responsible for these trends. Substantial evidence also suggests that elevated greenhouse gas concentrations are responsible for much of the recent atmospheric and oceanic warming, rising sea level, declining Arctic sea-ice cover, retreating glaciers and small ice caps, decreased mass balance of the Greenland and parts of the Antarctic ice sheets, and decreasing ocean pH (ocean "acidification"). Elevated CO2 concentrations raise concern not only from observations of the climate system, but because feedbacks associated with reduced reflectivity from in land and sea ice, sea level, and land vegetation relatively slowly (centuries or longer) to elevated 2 levels. This means that additional human-induced climate change is expected even if the rate of CO2 emissions is reduced or concentrations immediately stabilized.

  8. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    Science.gov (United States)

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  10. Carbon dioxide enhances fragility of ice crystals

    International Nuclear Information System (INIS)

    Qin Zhao; Buehler, Markus J

    2012-01-01

    Ice caps and glaciers cover 7% of the Earth, greater than the land area of Europe and North America combined, and play an important role in global climate. The small-scale failure mechanisms of ice fracture, however, remain largely elusive. In particular, little understanding exists about how the presence and concentration of carbon dioxide molecules, a significant component in the atmosphere, affects the propensity of ice to fracture. Here we use atomic simulations with the first-principles based ReaxFF force field capable of describing the details of chemical reactions at the tip of a crack, applied to investigate the effects of the presence of carbon dioxide molecules on ice fracture. Our result shows that increasing concentrations of carbon dioxide molecules significantly decrease the fracture toughness of the ice crystal, making it more fragile. Using enhanced molecular sampling with metadynamics we reconstruct the free energy landscape in varied chemical microenvironments and find that carbon dioxide molecules affect the bonds between water molecules at the crack tip and decrease their strength by altering the dissociation energy of hydrogen bonds. In the context of glacier dynamics our findings may provide a novel viewpoint that could aid in understanding the breakdown and melting of glaciers, suggesting that the chemical composition of the atmosphere can be critical to mediate the large-scale motion of large volumes of ice.

  11. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  12. Concentric and eccentric time-under-tension during strengthening exercises: Validity and reliability of stretch-sensor recordings from an elastic exercise-band

    DEFF Research Database (Denmark)

    Rathleff, Michael Skovdal; Thorborg, Kristian; Bandholm, Thomas Quaade

    2013-01-01

    Total, single repetition and contraction-phase specific (concentric and eccentric) time-under-tension (TUT) are important exercise-descriptors, as they are linked to the physiological and clinical response in exercise and rehabilitation....

  13. Does Carbon Dioxide Predict Temperature?

    OpenAIRE

    Mytty, Tuukka

    2013-01-01

    Does carbon dioxide predict temperature? No it does not, in the time period of 1880-2004 with the carbon dioxide and temperature data used in this thesis. According to the Inter Governmental Panel on Climate Change(IPCC) carbon dioxide is the most important factor in raising the global temperature. Therefore, it is reasonable to assume that carbon dioxide truly predicts temperature. Because this paper uses observational data it has to be kept in mind that no causality interpretation can be ma...

  14. Carbon Dioxide Sensor Technology.

    Science.gov (United States)

    1983-04-01

    second gas permeable membrane separates a compartment containing the non-aqueous " solvent dimethylsulfoxide , ( DMSO ), from the aqueous solution...compartment. In DMSO carbon dioxide can be irreversibly reduced electrochemically to * non-interfering products...current due to its reduction in the DMSO solution is proportional to the partial pressure of CO2 in the gas phase. Overall, the linear response and

  15. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  16. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  17. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  18. Forest response to carbon dioxide

    International Nuclear Information System (INIS)

    Pitelka, L.

    1992-01-01

    It has been suggested that planting trees could help slow the buildup of carbon dioxide in the atmosphere. Since elevated levels of CO 2 are known to enhance photosynthesis and growth in many plants, it is possible that trees could become progressively more effective in storing carbon as atmospheric CO 2 increases. However, early results from experiments with ponderosa and loblolly pines indicate that the relationship between tree growth and rising CO 2 concentrations may be more complex than scientists once thought. In these experiments, the response to elevated CO 2 has been highly dependent both on species and on mineral nutrient levels in the soil. Further work is necessary to clarify the mechanisms involved. This research will ultimately contribute to an integrated model for predicting forest ecosystem response to elevated CO 2

  19. Erbium diffusion in titanium dioxide

    Directory of Open Access Journals (Sweden)

    Louise Basse

    2017-04-01

    Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.

  20. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  1. Metal concentrations in the growth bands of Porites sp.: A baseline record on the history of marine pollution in the Gulf of Mannar, India.

    Science.gov (United States)

    Krishnakumar, S; Ramasamy, S; Magesh, N S; Chandrasekar, N; Simon Peter, T

    2015-12-15

    The present study was carried out on the Porites coral growth bands (1979 to 2014) to measure the metal accumulation for assessing the environmental pollution status. The concentrations of studied metals are compared with similar global studies, which indicate that the metals are probably derived from natural sources. The identical peaks of Fe and Mn are perfectly matched with Cu, Cr and Ni concentrations. However, the metal profile trend is slightly depressed from a regular trend in Zn, Cd and Pb peaks. The metal accumulation affinity of the reef skeleton is ranked in the following order Cr>Cd>Pb>Fe>Mn>Cu>Ni>Zn. The distribution of metal constituents in coral growth bands is primarily controlled by Fe and Mn in the reef skeleton. Other reef associated metals such as Pb and Cd are derived from other sources like coastal developments and anthropogenic sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  3. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  4. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  5. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    Science.gov (United States)

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The cohesive energy of uranium dioxide and thorium dioxide

    International Nuclear Information System (INIS)

    Childs, B.G.

    1958-08-01

    Theoretical values have been calculated of the heats of formation of uranium dioxide and thorium dioxide on the assumption that the atomic binding forces in these solids are predominantly ionic in character. The good agreement found between the theoretical and observed values shows that the ionic model may, with care, be used in calculating the energies of defects in the uranium and thorium dioxide crystal structures. (author)

  7. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  8. Carbon dioxide inhalation treatments of neurotic anxiety. An overview.

    Science.gov (United States)

    Wolpe, J

    1987-03-01

    A lucky chance more than 30 years ago revealed the remarkable efficacy of single inhalations of high concentrations of carbon dioxide in eliminating or markedly reducing free-floating anxiety. The reduction of anxiety lasts for days, weeks, or longer--well beyond the persistence of carbon dioxide in the body. The effects are explicable on the hypothesis that free-floating anxiety is anxiety conditioned to continuously present sources of stimulation, such as background noise or the awareness of space or time, and that the anxiety response habit is weakened when the anxiety is inhibited by the competition of responses that carbon dioxide induces. More recently, it has become apparent that inhalations of carbon dioxide, applied in a different manner, are effective in overcoming maladaptive anxiety responses to specific stimuli, e.g., social stimuli. The substance is also proving to be a valuable resource in the treatment of the common variety of panic attacks.

  9. Measurement of nitrogen dioxide in the air

    Energy Technology Data Exchange (ETDEWEB)

    Monteriolo, S C; Bertolaccini, M A

    1973-01-01

    A comparative study of automatic analytical methods for the monitoring of nitric oxide and nitrogen dioxide in the air indicates the need for a correct chemical conversion of the nonmeasurable species into the measurable species to obtain dependable results. The automatic colorimetric and chemiluminescent methods were compared to the manual colorimeter, and the electrochemical method was compared to chemiluminescence. Average, minimum, and maximum values are given for each comparison. All three methods are equally valid, in response linearity, sensitivity, and concentration limit, for the determination of nitric oxide, the measurable species. The determination of nitrogen dioxide, however, is strictly dependent on the efficiency of the conversion of the non-measurable species into the measurable form.

  10. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  11. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  12. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch

    International Nuclear Information System (INIS)

    Uhm, Han S.; Kwak, Hyoung S.; Hong, Yong C.

    2016-01-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO_2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. - Highlights: • Carbon dioxide gas produces a plasma-torch by making use of 2.45 GHz microwaves. • The temperature measurement of torch flame by optical spectroscopy. • Disintegration of carbon dioxide into carbon monoxide and oxygen atom. • Emission profiles of carbon monoxide confirm disintegration theory. • Conversion of carbon dioxide into carbon monoxide in the plasma torch. - This article presents carbon-dioxide plasma torch operated by microwaves and its applications to regeneration of new resources, eliminating carbon dioxide molecules.

  13. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  14. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. Measurement of the concentration ratio for 13N and 12N isotopes at atmospheric pressure by carbon dioxide absorption of diode laser radiation at ∼2 μm

    International Nuclear Information System (INIS)

    Mironchuk, E S; Nikolaev, I V; Ochkin, Vladimir N; Rodionova, S S; Spiridonov, Maksim V; Tskhai, Sergei N

    2009-01-01

    The ratio of 12 NO 2 and 13 CO 2 concentrations in the human exhaled air is measured by the method of diode laser spectroscopy using a three-channel optical scheme and multipass cell. Unlike the previous measurements in the spectral range of ∼4.3 μm with a resolved rotational structure at low pressure of selected samples, the present measurements are performed in the range of ∼2 μm, in which weaker absorption bands of CO 2 reside. In this case, it is possible to employ lasers and photodetectors operating at room temperature. The thorough simulation of the spectrum with collisional broadening of lines and employment of regression analysis allow one to take measurements at atmospheric pressure with the accuracy of ∼0.04%, which satisfies the requirements to medical diagnostics of ulcers. (laser spectroscopy)

  18. Associations of indoor carbon dioxide concentrations, VOCS, environmental susceptibilities with mucous membrane and lower respiratory sick building syndrome symptoms in the BASE study: Analyses of the 100 building dataset

    Energy Technology Data Exchange (ETDEWEB)

    Apte, M.G.; Erdmann, C.A.

    2002-10-01

    Using the 100 office-building Building Assessment Survey and Evaluation (BASE) Study dataset, we performed multivariate logistic regression analyses to quantify the associations between indoor minus outdoor CO{sub 2} (dCO{sub 2}) concentrations and mucous membrane (MM) and lower respiratory system (Lresp) Sick Building Syndrome (SBS) symptoms, adjusting for age, sex, smoking status, presence of carpet in workspace, thermal exposure, relative humidity, and a marker for entrained automobile exhaust. Using principal components analysis we identified a number of possible sources of 73 measured volatile organic compounds in the office buildings, and assessed the impact of these VOCs on the probability of presenting the SBS symptoms. Additionally we included analysis adjusting for the risks for predisposition of having SBS symptoms associated with the allergic, asthmatic, and environmentally sensitive subpopulations within the office buildings. Adjusted odds ratios (ORs) for statistically significant, dose-dependant associations (p<0.05) for dry eyes, sore throat, nose/sinus congestion, and wheeze symptoms with 100-ppm increases in dCO{sub 2} ranged from 1.1 to 1.2. These results suggest that increases in the ventilation rates per person among typical office buildings will, on average significantly reduce the prevalence of several SBS symptoms, up to 80%, even when these buildings meet the existing ASHRAE ventilation standards for office buildings. VOC sources were observed to play an role in direct association with mucous membrane and lower respiratory irritation, and possibly to be indirectly involved in indoor chemical reactions with ozone that produce irritating compounds associated with SBS symptoms. O-xylene, possibly emitted from furniture coatings was associated with shortness of breath (OR at the maximum concentration = 8, p < 0.05). The environmental sensitivities of a large subset of the office building population add to the overall risk of SBS symptoms (ORs

  19. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  20. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    Science.gov (United States)

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  2. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  3. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  5. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity - Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.

    2015-04-01

    The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for

  6. Oxidation suppressing device for steel materials in carbon dioxide cooled reactors

    International Nuclear Information System (INIS)

    Kawakami, Haruo

    1986-01-01

    Purpose: To effectively reduce impurity hydrogens in carbon dioxide. Constitution: At least three gas chambers are arranged serially each by way of a valve in a gas flow channel branched from a primary carbon dioxide coolant circuits. Then, a polymeric partition membrane having higher permeation rate for hydrogen than for carbon dioxide, e.g., made of polytrifluorochloroethylene is disposed between first and second gas chambers and, further, the first and the third gas chambers are connected each by way of a valve to the primary carbon dioxide coolant circuit to constitute a gas recovery channel. Carbon dioxide is caused to flow through the channel by means of a pump disposed between the second and third gas chambers, hydrogen as impurity passed through the partition walls is concentrated and discharged out of the channel, while the carbon dioxide with reduced hydrogen content is returned from the first and the third gas chambers to the circuit. (Sekiya, K.)

  7. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  8. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  9. Carbon dioxide and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J M

    1977-03-01

    The addition of carbon dioxide to the atmosphere due to burning fossil fuel is discussed. The release rate of carbon dioxide has been growing since at least 1950 at an average rate of 4.3% per year. If all known fossil fuel reserves in the world are consumed, a total of between 5 and 14 times the present amount of carbon dioxide in the atmosphere will be released. The oceans would then be unlikely to withdraw the proportion of perhaps 40% which they are believed to have withdrawn up to the present. The increase in the atmosphere would be in excess of 3 times or conceivably ten times the present amount. If the reserves are used up within a few hundred years, more than half the excess carbon dioxide would remain in the atmosphere after a thousand years. The ''greenhouse'' effect of carbon dioxide is explained. The simulation with numerical models of the effects of carbon dioxide on atmospheric radiation fluxes is discussed. An estimated increase in the average annual temperature of the earth of 2.4 to 2.9C is given for doubling the carbon dioxide content; also a 7% increase in global average precipitation. The effect of increasing carbon dioxide on global mean temperature is viewed in the perspective of the glacial-interglacial cycles. The warming effect of carbon dioxide may induce a ''super-interglacial'' on the present interglacial which is expected to decline toward a new ice age in the next several thousand years. Finally it is proposed that it may be necessary to phase out the use of fossil fuels before all the knowledge is acquired which would necessitate such an action.

  10. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...... systems. Within the measurement range for the GMP343 sensors (0-20,000 ppm), mean results from the two systems were similar within the plough layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plough layer at the upslope position (P = 0.795). However, results from...

  11. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    He, Shengbin; Ruan, Binbiao; Zheng, Yueping; Zhou, Xiaobin; Xu, Xiaoping

    2014-01-01

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO 2 ), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO 2 2+ ions or in a low concentration system to purify UO 2 2+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  12. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to ... The changes in land ... the air quality and climate models. 2. ... soon period of 2011 as a part Cloud Aerosol .... density effects due to heat and water vapour trans-.

  13. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Versteeg, G. F.

    2009-01-01

    In the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m-3. The absorption experiments were carried out at conditions where the so-called pseudo

  14. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  15. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  16. Solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Kazemi, Somayeh; Belandria, Veronica; Janssen, Nico

    2012-01-01

    In this work, the solubilities of ferrocene and acetylferrocene in supercritical carbon dioxide (scCO2) were measured using an analytical method in a quasi-flow apparatus. High-performance liquid chromatography was applied through an online sampling procedure to determine the concentration...

  17. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  18. Investigation of the impacts of elevated atmospheric CO{sub 2}-concentrations during the Free-Air Carbon Dioxide Enrichment-Experiment. Development of universal solutions; Untersuchung der Auswirkungen erhoehter atmosphaerischer CO{sub 2}-Konzentrationen innerhalb des Free-Air Carbon Dioxide Enrichment-Experimentes. Ableitung allgemeiner Modelloesungen

    Energy Technology Data Exchange (ETDEWEB)

    Kartschall, T.; Michaelis, P. [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany). Abt. Globaler Wandel und Natuerliche Systeme; Graefe, J.; Waloszczyk, K. [Professor-Hellriegel-Institut e.V., Bernburg (Germany); Grossman-Clarke, S.

    1999-06-01

    An improved version of the wheat model demeter including modules for important and commonly usable ecosystem compartments (i) light interception in homogenous and rowed canopies (ii) energy and gas exchange including photosynthesis (iii) water, temperature, carbon and nitrogen dynamics in mineral soils was developed. Due to the generic properties of the detailed model solutions qualitative and quantitative explanations about direct and indirect impacts of elevated atmospheric CO{sub 2} concentrations on Graminaceae (C{sub 3}-Type) under limited water and nitrogen supply are possible. These solutions have been tested under a wide range of geographic (33 bis 52 N), soil and climatic conditions. The model was validated on a wide spectrum of temporal (time steps ranging from one minute up to one day, simulation periods ranging from several hours to several years) and spatial scales (Submodel photosynthesis of leaf level, the entire model on canopy level, regional yield studies for the entire State of Brandenburg). (orig.) [German] Es wurde eine verbesserte Version des Modells demeter mit modularem Aufbau fuer wichtige und allgemein anwendbare Oekosystemteile (i) Lichtverteilung in homogenen geschlossenen bzw. gereihten Bestaenden; (ii) Energie- und Gasaustausch einschliesslich Photosynthese; (iii) Dynamik von Wasser, Temperatur, Kohlenstoff- und Stickstoffumsatz in Mineralboeden; entwickelt. Durch den generischen Charakter der detaillierten Modelloesungen sind qualitative und quantitative Aussagen zu direkten und indirekten Auswirkungen erhoehter atmosphaerischer CO{sub 2}-Konzentrationen auf Graminaceae des C{sub 3}-Typs bei Wasser- und Stickstofflimitierung unter breiteren geographischen (33 bis 52 N), Boden- und klimatischen Bedingungen moeglich. Das Modell wurde auf einem breiten Spektrum zeitlicher (Taktzeiten von einer Minute bis zu einem Tag, Simulationszeiten von mehreren Stunden bis zu mehreren Jahren) und raeumlicher Skalen (Teilmodell Photosynthese auf

  19. Reducing carbon dioxide to products

    Science.gov (United States)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  20. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2017-12-05

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  1. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  2. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  3. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  4. Extended-length fiber optic carbon dioxide monitoring

    Science.gov (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.

    2013-05-01

    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  5. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.

    2015-05-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.

  6. The carbon dioxide problem - a challenge to environmental protection

    International Nuclear Information System (INIS)

    Hlubek, W.; Spalthoff, F.J.

    1989-01-01

    Over the last century, man's activities on earth have sent off trace gases into the planet's atmosphere that have been concentrating to a level posing a threat to the global climate. Since scientists particularly spotted carbon dioxide as the main contributor to what we now call the greenhouse effect, there is urgent need for measures reducing carbon dioxide emission worldwide, may be on the basis of a global convention to be signed by both the industrialised and the developing countries. The industrialised countries, which certainly are the main pollutors, also will have the technological and financial resources to respond to the challenge of global warning more directly and faster than the developing countries. The power industry's management in the FRG is taking the problem seriously and has already come out with strategies for curbing carbon dioxide emissions from fossil-fuel power plant. (orig.) [de

  7. Comparative sensitivity of photosynthesis and translocation to sulfur dioxide damage in Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Noyes, R.D.

    1978-01-01

    The inhibiting effect of sulfur dioxide on photosynthesis in a mature bean leaf and, simultaneously, on the rate of carbohydrate translocation from this same leaf has been examined. The results show a reduction of 0, 13, and 73% in net photosynthesis and 39, 44, and 69% in translocation, at concentrations of 0.1, 1, and 3 ppm sulfur dioxide, respectively. The inhibition of translocation at 0.1 ppm sulfur dioxide without any accompanying inhibition of net photosynthesis indicates that translocation is considerably more sensitive to sulfur dioxide damage. The mechanism of translocation inhibition at 1 ppm sulfur dioxide or less is shown to be independent of photosynthetic inhibition. Whereas, it is suggested that at higher concentrations significant inhibition of photosynthesis causes an additive reduction of translocation due to reduced levels of transport sugars. Autoradiograms of 14 C-labeled source leaves indicate that one possible mechanism of sulfur dioxide damage to translocation is the inhibition of sieve-tube loading. Inhibition of phloem translocation at common ambient levels (0.1 ppm) of sulfur dioxide is important to the overall growth and yield of major agricultural crops sensitive to sulfur dioxide

  8. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    Science.gov (United States)

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Spatial variation in nitrogen dioxide concentrations and cardiopulmonary hospital admissions

    NARCIS (Netherlands)

    Dijkema, Marieke B A; van Strien, Robert T; van der Zee, Saskia C; Mallant, Sanne F; Fischer, Paul; Hoek, Gerard; Brunekreef, Bert; Gehring, Ulrike

    2016-01-01

    BACKGROUND: Air pollution episodes are associated with increased cardiopulmonary hospital admissions. Cohort studies showed associations of spatial variation in traffic-related air pollution with respiratory and cardiovascular mortality. Much less is known in particular about associations with

  10. Correlation analysis of Carbon Dioxide, Oxygen, Temperature and Humidity of Yadavaran Oil field in Khuzestan province

    Directory of Open Access Journals (Sweden)

    Mohammad velayatzadeh

    2018-02-01

    Full Text Available Background & Objective:Emission of Carbon dioxide in the atmosphere has an important role in increasing temperatures and, its higher concentration can effect on human health. Due to this issue, this study is aimed to measure the amount of the released carbon dioxide into the atmosphere in different part of Yadavaran Oil field and compare with international standards in 2017. Material & Methods:The present investigation was accomplished in Yadavaran oil field of Khuzestan province of Iran in 2017. In this study measurement of parameters including carbon dioxide, carbon monoxide, oxygen, relative humidity and temperature was done in 64 stations with 3 replications using ALTAIR 4X and Trotec BZ30. Data was analyzed by one-way ANOVA and Kolmogorov–Smirnov tests. Moreover, Correlation analysis was performed using Pearson and Spearman coefficients. Results:The results showed that concentration range of carbon dioxide and oxygen was 490-590 and 19-208ppm respectively. Also, the highest and lowest levels of carbon dioxide were 584.56±6.36 and 453.94±77.7 ppm in wet water camp and S10 wells (P 0.05 in the same order. Conclusion:Pearson and Spearman coefficient analysis showed no significant correlation between temperature, humidity, oxygen and carbon dioxide. According to the results, the concentration of carbon dioxide in different areas of the oil field of Yadavaran was acceptable.

  11. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  12. Technology advancement of the electrochemical CO2 concentrating process

    Science.gov (United States)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  13. A Cenozoic record of the equatorial Pacific carbonate compensation depth

    NARCIS (Netherlands)

    Pälike, H.; Lyle, M.W.; Nishi, H.; Raffi, I.; Ridgwell, A.; Gamage, K.; Klaus, A.; Acton, G.; Anderson, L.; Backman, J.; Baldauf, J.; Beltran, C.; Bohaty, S.M.; Bown, P.; Busch, W.; Channell, J.E.T.; Chun, C.O.J.; Delaney, M.; Dewangan, P.; Jones, T.D.; Edgar, K.M.; Evans, H.; Fitch, P.; Foster, G.L.; Gussone, N.; Hasegawa, H.; Hathorne, E.C.; Hayashi, H.; Herrle, J.O.; Holbourn, A.; Hovan, S.; Hyeong, K.; Iijima, K.; Ito, T.; Kamikuri, S.; Kimoto, K.; Kuroda, J.; Leon-Rodriguez, L.; Malinverno, A.; Moore, T.C.; Murphy, B.H.; Murphy, D.P.; Nakamura, H.; Organe, K.; Ohneiser, C.; Richter, C.; Robinson, R.; Rohling, E.J.; Romero, O.; Sawada, K.; Scher, H.; Schneider, L.; Sluijs, A.; Takata, H.; Tian, J.; Tsujimoto, A.; Wade, B.S.; Westerhold, T.; Wilkens, R.; Williams, T.; Wilson, P.A.; Yamamoto, Y.; Yamamoto, S.; Yamazaki, T.; Zeebe, R.E.

    2012-01-01

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carboninput fromvolcanicandmetamorphicoutgassingandits removalbyweathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The

  14. Studies on carbon dioxide power plant, (3)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Fujii, Terushige; Sakaguchi, Tadashi; Kawabata, Yasusuke; Kuroda, Toshihiro.

    1980-01-01

    A power generating plant using carbon dioxide instead of water has been studied by the authors, as high efficiency can be obtained in high temperature range (higher than 650 deg C) and turbines become compact as compared with the Rankine steam cycle. In this paper, the theoretical analysis of the dynamic characteristics of this small power generating plant of supercritical pressure and the comparison with the experimental results are reported. In the theoretical analysis, the linear approximation method using small variation method was adopted for solution. Every component was modeled as the concentrated constant system, and the transfer function for each component was determined, then simulation was carried out for the total system synthesizing these components. The approximation of physical values, and the analysis of a plunger pump, a regenerator, a heater, a vapor valve, a turbine and a blower, piping, and pressure drop are described. The response to the stepwise changes of heating, flow rate, opening of a vapor valve and a load control valve for a blower was investigated. The theoretical anaysis and the experimental results were in good agreement, and this analysis is applicable to the carbon dioxide plant of practical scale. (Kako, I.)

  15. Carbon Dioxide Embolism during Laparoscopic Surgery

    Science.gov (United States)

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  16. Theoretical study of carbon dioxide adsorption and diffusion in MIL-127(Fe) metal organic framework

    Science.gov (United States)

    Pongsajanukul, Pavee; Parasuk, Vudhichai; Fritzsche, Siegfried; Assabumrungrat, Suttichai; Wongsakulphasatch, Suwimol; Bovornratanaraks, Thiti; Chokbunpiam, Tatiya

    2017-07-01

    The UFF force field is found to reproduce the adsorption isotherm of carbon dioxide in MIL-127(Fe) well. It has therefore been used to investigate the structure and self-diffusion of carbon dioxide molecules in the MIL which is a candidate for membrane or adsorption application. The structure of the adsorbed phase shows different regions of high concentration. The highest particle concentration was found in the central regions of the channels. The self-diffusion coefficient slightly increases with the loading for low concentration of guest molecules while for higher concentrations it decreases because of mutual hindrance of guest molecules.

  17. PHARMACOLOGICAL RESEARCH OF THE DENTAL GEL WITH CARBON DIOXIDE HUMULUS LUPULUS EXTRACT

    Directory of Open Access Journals (Sweden)

    Melnik AL

    2017-03-01

    , food and water consumption, the dynamics of body weight, hematological and biochemical parameters of blood. Clinical observations of the animals was performed daily during the experiment, registering changes in their general condition, behavior, food and water consumption. Clinical and biochemical parameters studied using a reagent kit of "Felicity Diagnostics" (Ukraine and conventional methods. Body weight of animals recorded in dynamics. The animals were weighed before the experiment, then 7 and 14 days. Results and discussion. Results of the study parameters acute toxicity gel with carbon dioxide Humulus lupulus extract showed that intragastric administration to mice at a dose of 2.0 g/kg caused no clinical symptoms of intoxication. Animals calmly reacted to the introduction of the sample gel, their general condition and behavior remained unchanged. Animal deaths and abnormalities in their general condition and behavior during the observation period were noted. Impact analysis of the sample of gel on the dynamics of body mass animal experiments showed that a single injection of a gel to mice at a dose of 2.0 g/kg did not significantly affect the dynamics of body weight. In experiments on rats were studied subacute toxicity gel with carbon dioxide Humulus lupulus extract. The results of 14 days intragastric introduction gel and reference drug studies at subacute toxicity showed that daily administration of no effect on the general condition, appearance (state of the skin and mucous membranes and the behavior of rats. Consumption of food and water in animal experimental and control groups had no differences from each other. During the experiment animal deaths were not reported. Data characterizing the dynamics of increase in body weight of rats showed that the animals of experimental groups and the control group by the end of the experiment had equivalent, statistically significant weight gain compared with the output data: males – p ≤ 0. 0001 females – from p

  18. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  19. The carbon dioxide content in ice cores - climatic curves of carbon dioxide. Zu den CO sub 2 -Klimakurven aus Eisbohrkernen

    Energy Technology Data Exchange (ETDEWEB)

    Heyke, H.E.

    1992-05-01

    The 'greenhouse effect', which implies a temperature of 15 deg C as against -18 deg C, owes its effect to 80% from water (clouds and gaseous phase) and to 10% from carbon dioxide, besides other components. Whereas water is largely unaccounted for, carbon dioxide has been postulated as the main cause of anticipated climatic catastrophe. The carbon dioxide concentration in the atmosphere has risen presently to such levels that all previous figures seem to have been left far behind. The reference point is the concentration of carbon dioxide in the air bubbles trapped in ice cores of Antartic and Greenland ice dated 160 000 years ago, which show much lower values than at present. A review of the most relevant publications indicates that many basic laws of chemistry seem to have been left largely unconsidered and experimental errors have made the results rather doubtful. Appropriate arguments have been presented. The investigations considered should be repeated under improved and more careful conditions. (orig.).

  20. Effect of lithium tetrafluoroborate on the solubility of carbon dioxide in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate

    NARCIS (Netherlands)

    Durano Arno, S.; Lucas, S.; Shariati - Sarabi, A.; Peters, C.J.

    2012-01-01

    In this work, the phase behavior of the ternary system of carbon dioxide +1-butyl-3-methylimidazolium tetrafluoroborate + lithium tetrafluoroborate has been investigated. Mixtures of known concentrations of the salt, ionic liquid and carbon dioxide were prepared and their bubble point pressures were

  1. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  2. Irreversible climate change due to carbon dioxide emissions

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  3. Hodgkin's disease following thorium dioxide angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gotlieb, A I; Kirk, M E [McGill Univ., Montreal, Quebec (Canada). Dept. of Pathology; Hutchison, J L [Montreal General Hospital, Quebec (Canada)

    1976-09-04

    Hodgkin's disease occurred in a 53-year-old man who, 25 years previously, had undergone cerebral angiography, for which thorium dioxide suspension (Thorotrast) was used. Deposits of thorium dioxide were noted in reticuloendothelial cells in various locations. An association between thorium dioxide administration and the subsequent development of malignant tumours and neoplastic hematologic disorders has previously been reported.

  4. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  5. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  6. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  7. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  8. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  9. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  10. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  11. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  12. Thermal conductivity of uranium dioxide

    International Nuclear Information System (INIS)

    Pillai, C.G.S.; George, A.M.

    1993-01-01

    The thermal conductivity of uranium dioxide of composition UO 2.015 was measured from 300 to 1400 K. The phonon component of the conductivity is found to be quantitatively accounted for by the theoretical expression of Slack derived by modifying the Leibfried-Schlomann equation. (orig.)

  13. Hemispherical Scanning Imaging DOAS: Resolving nitrogen dioxide in the urban environment

    Science.gov (United States)

    Leigh, R. J.; Graves, R. R.; Lawrence, J.; Faloon, K.; Monks, P. S.

    2012-12-01

    Imaging DOAS techniques have been used for nitrogen dioxide and sulfer dioxide for a number of years. This presentation describes a novel system which images concentrations of nitrogen dioxide by scanning an imaging spectrometer 360 degrees azimuthally, covering a region from 5 degrees below the horizon, to the zenith. The instrument has been built at the University of Leicester (UK), on optical designs by Surrey Satellite Technologies Ltd, and incorporates an Offner relay with Schwarzchild fore-optics, in a rotating mount. The spectrometer offers high fidelity spectroscopic retrievals of nitrogen dioxide as a result of a reliable Gaussian line shape, zero smile and low chromatic aberration. The full hemispherical scanning provides complete coverage of nitrogen dioxide concentrations above approximately 5 ppbv in urban environments. Through the use of multiple instruments, the three-dimensional structure of nitrogen dioxide can be sampled and tomographically reconstructed, providing valuable information on nitrogen dioxide emissions and downwind exposure, in addition to new understanding of boundary layer dynamics through the use of nitrogen dioxide as a tracer. Furthermore, certain aerosol information can be retrieved through absolute intensity measurements in each azimuthal direction supplemented by traditional techniques of O4 spectroscopy. Such measurements provide a new tool for boundary layer measurement and monitoring at a time when air quality implications on human health and climate are under significant scrutiny. This presentation will describe the instrument and tomographic potential of this technique. First measurements were taken as part of the international PEGASOS campaign in Bologna, Italy. Results from these measurements will be shown, including imaging of enhanced NO2 in the Bologna urban boundary layer during a severe thunderstorm. A Hemispherical Scanning Imaging DOAS instrument operating in Bologna, Italy in June 2012. Visible in the background

  14. Carbon dioxide: Global warning for nephrologists.

    Science.gov (United States)

    Marano, Marco; D'Amato, Anna; Cantone, Alessandra

    2016-09-06

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients' bloodstream every hemodialysis treatment and "acidosis by dialysate" may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle.

  15. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  16. Carbon dioxide emissions from biochar in soil

    DEFF Research Database (Denmark)

    Bruun, Sander; Clauson-Kaas, Anne Sofie Kjærulff; Bobuľská, L.

    2014-01-01

    The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application....... This study investigated the nature of the early release of CO2 and the degree to which stabilizing mechanisms protect biochar from microbial attack. Incubations of 14C-labelled biochar produced at different temperatures were performed in soils with different clay contents and in sterilized and non......-sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...

  17. The study on density change of carbon dioxide seawater solution at high pressure and low temperature

    International Nuclear Information System (INIS)

    Song, Y.; Chen, B.; Nishio, M.; Akai, M.

    2005-01-01

    It has been widely considered that the global warming, induced by the increasing concentration of carbon dioxide and other greenhouse gases in the atmosphere, is an environmental task affecting the world economic development. In order to mitigate the concentration of CO 2 in the atmosphere, the sequestration of carbon dioxide into the ocean had been investigated theoretically and experimentally over the last 10 years. In addition to ocean dynamics, ocean geological, and biological information on large space and long time scales, the physical-chemistry properties of seawater-carbon dioxide system at high pressure (P>5.0 MPa) and lower temperature (274.15 K 3 , which is approximately same with that of carbon dioxide freshwater solution, the slope of which is 0.275 g/cm 3

  18. Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.

    Science.gov (United States)

    Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir

    2013-07-01

    Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).

  19. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  20. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  1. Titanium dioxide in dental enamel as a trace element and its variation with bleaching.

    Science.gov (United States)

    Vargas-Koudriavtsev, Tatiana; Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey

    2018-06-01

    Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule ( p ≤0,05). All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide.

  2. Phenological Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phenology is the scientific study of periodic biological phenomena, such as flowering, breeding, and migration, in relation to climatic conditions. The few records...

  3. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  4. Renewable Methane Generation from Carbon Dioxide and Sunlight.

    Science.gov (United States)

    Steinlechner, Christoph; Junge, Henrik

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO 2 in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO 2 into CH 4 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The thermodynamics of direct air capture of carbon dioxide

    International Nuclear Information System (INIS)

    Lackner, Klaus S.

    2013-01-01

    An analysis of thermodynamic constraints shows that the low concentration of carbon dioxide in ambient air does not pose stringent limits on air capture economics. The thermodynamic energy requirement is small even using an irreversible sorbent-based process. A comparison to flue gas scrubbing suggests that the additional energy requirement is small and can be supplied with low-cost energy. In general, the free energy expended in the regeneration of a sorbent will exceed the free energy of mixing, as absorption is usually not reversible. The irreversibility, which grows with the depth of scrubbing, tends to affect flue gas scrubbing more than air capture which can successfully operate while extracting only a small fraction of the carbon dioxide available in air. This is reflected in a significantly lower theoretical thermodynamic efficiency for a single stage flue gas scrubber than for an air capture device, but low carbon dioxide concentration in air still results in a larger energy demand for air capture. The energy required for capturing carbon dioxide from air could be delivered in various ways. I analyze a thermal swing and also a previously described moisture swing which is driven by the evaporation of water. While the total amount of heat supplied for sorbent regeneration in a thermal swing, in accordance with Carnot's principle, exceeds the total free energy requirement, the additional free energy required as one moves from flue gas scrubbing to air capture can be paid with an amount of additional low grade heat that equals the additional free energy requirement. Carnot's principle remains satisfied because the entire heat supplied, not just the additional amount, must be delivered at a slightly higher temperature. Whether the system is driven by water evaporation or by low grade heat, the cost of the thermodynamically-required energy can be as small as $1 to $2 per metric ton of carbon dioxide. Thermodynamics does not pose a practical constraint on the

  6. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  7. 40 CFR 73.34 - Recordation in accounts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Recordation in accounts. 73.34 Section 73.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.34 Recordation in accounts. (a) After a...

  8. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Avraamides, J.; Senanayake, G.; Clegg, R. [A.J. Parker Cooperative Research Centre for Hydrometallurgy, Murdoch University, Perth, WA 6150 (Australia)

    2006-09-22

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25{sup o}C. Alkaline leaching with 6M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30min at 30{sup o}C using 0.1-1.0M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1M to 2M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide. (author)

  9. Phase equilibrium conditions of semi-calthrate hydrates of (tetra-n-butyl ammonium chloride + carbon dioxide)

    International Nuclear Information System (INIS)

    Sun, Zhi-Gao; Jiao, Li-Jun; Zhao, Zhi-Gui; Wang, Gong-Liang; Huang, Hai-Feng

    2014-01-01

    Highlights: • Carbon dioxide hydrate stability zone was enlarged with the help of TBAC. • Carbon dioxide uptake into TBAC semi-clathrate hydrates is confirmed. • Equilibrium pressure of hydrate decreased with the increase of TBAC mass concentration. • The addition of TBAC reduces the formation pressures of carbon dioxide hydrate by 2.5 MPa. - Abstract: In the present work, hydrate equilibrium conditions for (tetra-n-butyl ammonium chloride (TBAC) + carbon dioxide + water) mixtures were investigated. Tetra-n-butyl ammonium chloride was reported to form a semi-clathrate hydrate. The experiments were carried out within the TBAC mass fraction range of (0.05 to 0.3). The experimental results showed that the presence of TBAC decreased the formation pressure of carbon dioxide double hydrate within the experimental temperature range. Moreover, pressure reduction was dependent on the TBAC concentration

  10. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  11. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  12. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  13. Effects of carbon dioxide on turkey poult performance and behavior.

    Science.gov (United States)

    Cândido, M G L; Xiong, Y; Gates, R S; Tinôco, I F F; Koelkebeck, K W

    2018-04-14

    Appropriate ventilation of poultry facilities is critical for achieving optimum performance. Ventilation promotes good air exchange to remove harmful gases, excessive heat, moisture, and particulate matter. In a turkey brooder barn, carbon dioxide (CO2) may be present at higher levels during the winter due to reduced ventilation rates to maintain high temperatures. This higher CO2 may negatively affect turkey poult performance. Therefore, the objective of this study was to evaluate the effects of subjecting tom turkey poults (commercial Large White Hybrid Converters) to different constant levels of atmospheric CO2 on their growth performance and behavior. In three consecutive replicate trials, a total of 552 poults were weighed post-hatch and randomly placed in 3 environmental control chambers, with 60 (Trial 1) and 62 (Trials 2 and 3) poults housed per chamber. They were reared with standard temperature and humidity levels for 3 wks. The poults were exposed to 3 different fixed CO2 concentrations of 2,000, 4,000, and 6,000 ppm throughout each trial. Following each trial (replicate), the CO2 treatments were switched and assigned to a different chamber in order to expose each treatment to each chamber. At the end of each trial, all poults were sent to a local turkey producer to finish growout. For each trial, individual body weight and group feed intake were measured, and mortality and behavioral movement were recorded. Wk 3 and cumulative body weight gain of poults housed at 2,000 ppm CO2 was greater (P < 0.05) than those exposed to 4,000 and 6,000 ppm CO2. Feed intake and feed conversion were unaffected by the different CO2 concentrations. No significant difference in poult mortality was found between treatments. In addition, no effect of CO2 treatments was evident in the incidence of spontaneous turkey cardiomyopathy for turkeys processed at 19 wk of age. Poults housed at the lower CO2 level (2,000 ppm) demonstrated reduced movement compared with those exposed to

  14. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  15. Manufacture of uranium dioxide powder

    International Nuclear Information System (INIS)

    Becker, M.

    1976-01-01

    Uranium dioxide powder is prepared by the AUC (ammonium uranyl carbonate) method. Supplementing the known process steps, the AUC, after separation from the mother liquor, is washed with an ammonium hydrogen carbonate or an NH 4 OH solution and is subsequently post-treated with a liquid which reduces the surface tension of the residual water in an AUC. Such a liquid is, for instance, alcohol

  16. Carbon dioxide capture and storage

    International Nuclear Information System (INIS)

    Durand, B.

    2011-01-01

    The author first highlights the reasons why storing carbon dioxide in geological formations could be a solution in the struggle against global warming and climate change. Thus, he comments various evolutions and prospective data about carbon emissions or fossil energy consumption as well as various studies performed by international bodies and agencies which show the interest of carbon dioxide storage. He comments the evolution of CO 2 contributions of different industrial sectors and activities, notably in France. He presents the different storage modes and methods which concern different geological formations (saline aquifers, abandoned oil or gas fields, not exploitable coal seams) and different processes (sorption, carbonation). He discusses the risks associated with these storages, the storable quantities, evokes some existing installations in different countries. He comments different ways to capture carbon dioxide (in post-combustion, through oxy-combustion, by pre-combustion) and briefly evokes some existing installations. He evokes the issue of transport, and discusses efficiency and cost aspects, and finally has few words on legal aspects and social acceptability

  17. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  18. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    Science.gov (United States)

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  19. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  20. Sulfur dioxide content of the air and its influence on the plant

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, G; Reckendorfer, P; Beran, F

    1929-01-01

    Clover was exposed to concentrations of sulfur dioxide ranging from 5 to 50 ppm for periods of 1 to 4 hours. The higher concentrations caused an increase in sulfur content. Single exposures did not affect the digestible protein content of the plants. 10 tables, 3 figures.

  1. NOAA carbon dioxide measurements at Mauna Loa Observatory, 1974-1976

    International Nuclear Information System (INIS)

    Peterson, J.T.; Komhyr, W.D.; Harris, T.B.; Chin, J.F.S.

    1977-01-01

    The Geophysical Monitoring for Climatic Change program of NOAA's Environmental Research Laboratories has measured atmospheric carbon dioxide concentrations at Mauna Loa Observatory, Hawaii, continuously since June 1974. The measurements through 1976 have been analyzed for recent secular concentration changes and show a continuing increase of about 0.9 ppm/year

  2. Collision and radiative processes in emission of atmospheric carbon dioxide

    Science.gov (United States)

    Smirnov, B. M.

    2018-05-01

    The peculiarities of the spectroscopic properties of CO2 molecules in air due to vibration-rotation radiative transitions are analyzed. The absorption coefficient due to atmospheric carbon dioxide and other atmospheric components is constructed within the framework of the standard atmosphere model, on the basis of classical molecular spectroscopy and the regular model for the spectroscopy absorption band. The radiative flux from the atmosphere toward the Earth is represented as that of a blackbody, and the radiative temperature for emission at a given frequency is determined with accounting for the local thermodynamic equilibrium, a small gradient of the tropospheric temperature and a high optical thickness of the troposphere for infrared radiation. The absorption band model with an absorption coefficient averaged over the frequency and line-by-line model are used for evaluating the radiative flux from the atmosphere to the Earth which values are nearby for these models and are equal W m‑2 for the contemporary concentration of atmospheric CO2 molecules and W m‑2 at its doubled value. The absorption band model is not suitable to calculate the radiative flux change at doubling of carbon dioxide concentration because averaging over oscillations decreases the range where the atmospheric optical thickness is of the order of one, and just this range determines this change. The line-by-line method gives the change of the global temperature K as a result of doubling the carbon dioxide concentration. The contribution to the global temperature change due to anthropogenic injection of carbon dioxide in the atmosphere, i.e. resulted from combustion of fossil fuels, is approximately 0.02 K now.

  3. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  4. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  5. Contribution to the study of uranium dioxide aqueous corrosion mechanisms

    International Nuclear Information System (INIS)

    Gallien, J.-P.

    1994-01-01

    The corrosion of uranium dioxide by a synthetical ground water has been studied in order to understand the behaviour of nuclear fuels in the hypothesis of a direct storage. An original leaching unit has been carried out in order to control the parameters occurring in the oxidation-dissolution of the uranium dioxide and to condition the leachate (in particular the temperature and the partial pressure of the carbon dioxide). A ground water in equilibrium with the geological enveloping site has been reconstituted from data acquired on the site. The influence of two parameters has been followed: the carbon dioxide carbon pressure and the redox potential. Each experiment has been carried out at 96 C during one month and the time-history of the solutions and of the solids has been studied. In oxidizing conditions, the uranium concentration in solution has been controlled by an U(VI) complex (one oxide, one hydroxide or a carbonate). The possibility of a control by an U(IV) complex (as coffinite, uraninite or uraninite B) has been confirmed in the case of reducing leaching. An original interpretation of the Rutherford backscattering spectra has allowed to describe the decomposition of the samples in a succession of layers of different densities. A very good agreement between the analyses of the solids and those of the solutions has been obtained in the experiments occurring in reducing conditions. Complementary leaching involving solutions containing stable isotopes (deuterium, O 18 ) have revealed the formation of an hydrated layer and the contribution of grain boundaries to the corrosion phenomenon of uranium dioxide. The results of the current hydro-geochemistry study on the uranium Oklo deposit prove the realism of the experiments that have been carried out in the laboratory. (O.M.)

  6. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  7. Stability of patulin to sulfur dioxide and to yeast fermentation.

    Science.gov (United States)

    Burroughs, L F

    1977-01-01

    The affinity of patulin for sulfur dioxide (SO2) is much less than was previously reported and is of little significance at the SO2 concentrations (below 200 ppm) used in the processing of apple juice and cider. However, at concentrations of 2000 ppm SO2 and 15 ppm patulin, combination was 90% complete in 2 days. Removal of SO2 liberated only part of the patulin, which suggests that 2 mechanisms are involved: one reversible (opening the hemiacetal ring) and one irreversible (SO2 addition at the double bond). Test with 2 yeasts used in English commercial cider making confirmed that patulin is effectively removed during yeast fermentation.

  8. Effects of carbon dioxide insufflation on regional cerebral oxygenation during laparoscopic surgery in children: a prospective study.

    Science.gov (United States)

    Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur

    2016-01-01

    Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. [Effects of carbon dioxide insufflation on regional cerebral oxygenation during laparoscopic surgery in children: a prospective study].

    Science.gov (United States)

    Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur

    2016-01-01

    Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. RECORDS REACHING RECORDING DATA TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    G. W. L. Gresik

    2013-07-01

    Full Text Available The goal of RECORDS (Reaching Recording Data Technologies is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  11. Records Reaching Recording Data Technologies

    Science.gov (United States)

    Gresik, G. W. L.; Siebe, S.; Drewello, R.

    2013-07-01

    The goal of RECORDS (Reaching Recording Data Technologies) is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  12. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  13. Concentrated Ownership

    DEFF Research Database (Denmark)

    Rose, Caspar

    2014-01-01

    This entry summarizes the main theoretical contributions and empirical findings in relation to concentrated ownership from a law and economics perspective. The various forms of concentrated ownership are described as well as analyzed from the perspective of the legal protection of investors......, especially minority shareholders. Concentrated ownership is associated with benefits and costs. Concentrated ownership may reduce agency costs by increased monitoring of top management. However, concentrated ownership may also provide dominating owners with private benefits of control....

  14. Inclusion in the simulation of air pollutants recorded over the borders of test areas in Niedersachsen and forecasting of local ground level concentrations. Final report. Einbeziehung der ueber die Grenzen von Untersuchungsgebieten in Niedersachsen eingetragenen Luftschadstoffe in die Simulation und Prognose oertlicher Immissionssituationen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Reissmann, K.F.; Schaffner, J.

    1991-08-01

    In 1987-1989 an emission-ground level concentration-model (conversion of emission into ground level concentration) was established for the pollutant sulphur dioxide (SO[sub 2]) by the ISP (Hannover) in cooperation with GEOS (Berlin) and was with emission data of the environs of Braunschweig for 1987 subjected to different trial runs. The pollution sources were devided into four groups: - Large Emitters (particularly power plants) - medium emitters (particularly industry) - space heating and small consumers - traffic. The pollution emitters of the first two groups were considered as point sources and the last two groups as surface sources, their emissions being evently distributed over squares of 1 km x 1 km, each surface unit of one km[sup 2] being represented by 400 point sources in a distance of 50 m from each other. The conversion of emissions into ground level concentration is based on the Gaussian dispersion model on which also the dispersion calculation of the TA Luft (technical regulation about air pollution) is based. (orig./KW).

  15. Effect of carbon dioxide on the rate of iodine vapor absorption by aqueous solution of sodium hydroxide

    International Nuclear Information System (INIS)

    Eguchi, Wataru; Adachi, Motonari; Miyake, Yoshikazu

    1978-01-01

    There is always carbon dioxide in the atmosphere as an impurity. Since this is an acid gas similar to iodine, each absorption rate seems to be affected by the other due to the coexistence of these two. Experiments have been conducted to clarify the absorption rate and absorption mechanism of iodine in the simultaneous absorption of iodine and carbon dioxide. Carbon dioxide coexisting with gas phases as an impurity decreases the absorption rate of iodine in the removal by washing with water of iodine mixed in the air. The first cause of this is that the diffusion coefficient of iodine in gas phase decreases with the carbon dioxide content in the gas phase. The second cause is that coexistent carbon dioxide is an acid gas, dissociates by dissolving into the absorbing solution, increases hydrogen ion concentration together with the formation of negative ions of bicarbonate and carbonate, and reduces hydroxyl ion concentration as a result. It is more important that existence of iodine has a catalytic effect to the rate of basic catalytic hydrolysis of carbon dioxide simultaneously dissolved in water phase, and accelerates this reaction rate. The mechanism of catalytic effect of iodine for the hydrolysis of carbon dioxide can not be clarified in detail only by this experiment, but the simultaneous absorption rate of iodine and carbon dioxide can be explained satisfactorily. (Wakatsuki, Y

  16. Instrument comparison for Aerosolized Titanium Dioxide

    Science.gov (United States)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  17. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  18. Modeling the dynamics of carbon dioxide removal in the atmosphere

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2014-12-01

    Full Text Available The temperature of Earth's surface is increasing over the past few years due to emission of global warming gases such as CO2, CH4 and NOx from industries, power plants, etc., leading to several adverse effects on human and his environment. Therefore, the question of their removal/reduction from the atmosphere is very important. In this paper, a nonlinear mathematical model to study the removal/reduction of carbon dioxide by using suitable absorbent (such as aqueous ammonia solution, amines, sodium hydroxide, etc. near the source of emission and externally introducing liquid species in the atmosphere is presented. Dynamical properties of the model which include local and global stabilities for the equilibrium are analyzed carefully. Model analysis is performed by considering three physical situations i.e. when both absorbent and the liquid species are used, only absorbent is used and only liquid species is used. It is shown that the concentration of carbon dioxide decreases as the rate of introduction of absorbent in the absorber increases. It decreases further as the rate of introduction of liquid species. Thus, the concentration of carbon dioxide would be reduced by a large amount if adequate amount of absorbent is used near the source of emission. The remaining amount can be reduced further by infusing liquid drops in the atmosphere. Numerical simulations are also carried out to support the analytical results.

  19. Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Sahoko [Mie University, Graduate School of Regional Innovation Studies (Japan); Li, Weihua [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Omura, Seiichi [Tokyo Institute of Technology (Japan); Fujitani, Yuji [National Institute for Environmental Studies (Japan); Liu, Ying; Wang, Qiangyi [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Hiraku, Yusuke [Mie University Graduate School of Medicine, Department of Environmental and Molecular Medicine (Japan); Hisanaga, Naomi [Aichi Gakusen University, Faculty of Human Science and Design (Japan); Wakai, Kenji [Nagoya University Graduate School of Medicine, Department of Preventive Medicine (Japan); Ding, Xuncheng [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Kobayashi, Takahiro, E-mail: takakoba@airies.or.jp [Association for International Research Initiatives for Environmental Studies (Japan); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Tokyo University of Science, Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences (Japan)

    2016-03-15

    Titanium dioxide (TiO{sub 2}) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO{sub 2} particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N–N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/−) or percentage of RR 50+/− that were parameters of parasympathetic function. The total mass concentration was 9.58–30.8 mg/m{sup 3} during work, but significantly less before work (0.36 mg/m{sup 3}). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO{sub 2} particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.

  20. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  1. A METHOD OF PREPARING URANIUM DIOXIDE

    Science.gov (United States)

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  2. Results of determinations of the sulfur-dioxide content of the atmospheric air with a portable measurement kit based on the pararosaniline method

    Energy Technology Data Exchange (ETDEWEB)

    Lampadius, F

    1963-01-01

    Among the toxides emitted by industry, home heating, and transportation and which are polluting the atmospheric air, sulfur dioxide occupies the forefront of our interest in any examination of smoke damage to agricultural and forest growth. This primary position is based on the high degree of the sensitivity of plants to sulfur dioxide. The SO/sub 2/ toxicity threshold, for example, for spruce trees is between 0.4 and 0.5 mg/m/sup 3/. In contrast, an irritant concentration threshold for the nervous system of man has been set at 0.6 mg SO/sub 2//m/sup 3/. Studies have demonstrated that the SO/sub 2/ damage to plants - aside from the plant's stage of development - can be attributed to the product of the concentration and the duration of the toxide's action. The air-analytical proof of the sulfur dioxide as the cause for plant smoke damage must extend then to the selective recording of the SO/sub 2/ admixture in the atmospheric air, to the determination of the SO/sub 2/ level of the air in mg/m/sup 3/ within a longer period of time, and finally through short-term measurements to the discovery of when and how long peak concentrations of phytoxic SO/sub 2/ occur. In keeping with this goal, an SO/sub 2/ device was developed and used to conduct, on several occasions in the course of 1962, air examinations in individual smoke-damaged areas of the German Democratic Republic. The results of these air measurements are treated in this paper. 7 figures, 2 tables.

  3. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  4. Experimental nitrogen dioxide poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Cutlip, R C

    1966-01-01

    Experimental nitrogen dioxide inhalation has been reported to produce signs and lesions typical of field cases of bovine pulmonary adenomatosis (BPA) as described by Monlux et al, and Seaton. Similar lesions have been produced in mice and guinea pigs. These studies were conducted because of the similarities between silo-filler's disease of man, caused by nitrogen dioxide, and BPA. Since previous studies involved inadequate numbers of cattle, a more critical evaluation of the effects of nitrogen dioxide was needed. This project was designed to study the clinical and pathologic alterations induced in cattle by repeated exposure to nitrogen dioxide gas.

  5. The impact of environmental factors on carbon dioxide fixation by microalgae.

    Science.gov (United States)

    Morales, Marcia; Sánchez, León; Revah, Sergio

    2018-02-01

    Microalgae are among the most productive biological systems for converting sunlight into chemical energy, which is used to capture and transform inorganic carbon into biomass. The efficiency of carbon dioxide capture depends on the cultivation system configuration (photobioreactors or open systems) and can vary according to the state of the algal physiology, the chemical composition of the nutrient medium, and environmental factors such as irradiance, temperature and pH. This mini-review is focused on some of the most important environmental factors determining photosynthetic activity, carbon dioxide biofixation, cell growth rate and biomass productivity by microalgae. These include carbon dioxide and O2 concentrations, light intensity, cultivation temperature and nutrients. Finally, a review of the operation of microalgal cultivation systems outdoors is presented as an example of the impact of environmental conditions on biomass productivity and carbon dioxide fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Feedback mechanisms in the climate system affecting future levels of carbon dioxide

    International Nuclear Information System (INIS)

    Kellogg, W.W.

    1983-01-01

    The rate of increase of concentration of atmospheric carbon dioxide depends on the consumption of fossil fuels (the major source of 'new' carbon dioxide) and the natural sinks for this trace constituent, primarily the oceans and the biosphere. (It is now fairly well established that the biosphere cannot be a major source, as has been claimed.) The rate of operation of these sinks depends on several factors determined by the state of the climate system, and they will therefore presumably change as the greenhouse effect of increasing carbon dioxide warms the earth. Five specific feedback loops are discussed, two of which are positive (amplifying the rate of increase), two are weakly negative (damping the rate of increase), and one is indeterminate but probably positive. It is concluded that it would be well to be prepared for the possibility that carbon dioxide may increase faster than predicted by models based on the current or past state of the climate system

  7. Increasing carbon dioxide and the response of plants to this challenge

    International Nuclear Information System (INIS)

    Bazzaz, F.A.; Fajer, E.D.

    1992-01-01

    Discussed are the effects that increasing carbon dioxide concentrations in the air tend to have on the various types of plant. In the so-called C 3 group of plants globally elevated carbon dioxide levels may lead to increases in the rate of photosynthesis, even though these often appear to be only of a transient nature. The C 4 group of plants, however, clearly are at a disadvantage here. The attendant agricultural problems and resulting dangers to complete ecosystems including animals are described. Mention is also made of the possibility of using plants as carbon dioxide repositories. The urgent need for measures leading to a reduction of carbon dioxide emissions is strongly pointed out. (MG) [de

  8. A comparative analysis of carbon dioxide displacement rates for euthanasia of the ferret.

    Science.gov (United States)

    Fitzhugh, Dawn C; Parmer, Amanda; Shelton, Larry J; Sheets, James T

    2008-02-01

    Though carbon dioxide asphyxiation is a common method of euthanasia for laboratory animals, species-specific guidelines have not been established for this procedure in the domestic ferret (Mustela putorius furo). The authors investigated the efficacy and stress effects of carbon dioxide euthanasia in 24 ferrets that had participated in previous experimental protocols. They euthanized ferrets by placing them in cages that were either prefilled with carbon dioxide or gradually filled at a displacement rate of 10%, 20% or 50% of the cage volume per min. Blinded observers subjectively evaluated ferret distress. Prefilling the cage or filling it at a rate of 50% volume per min resulted in less time to recumbency and to last breath than did filling the cage at a slower displacement rate. Slower carbon dioxide displacement rates also caused an increase in ferret blood glucose concentrations, which may indicate distress. Overall, observers found that prefilling the euthanasia cage caused the least stress to ferrets.

  9. Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode

    Science.gov (United States)

    Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.

    2018-01-01

    Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.

  10. Environmental evaluation of the Federal Records Center in Overland, Missouri

    International Nuclear Information System (INIS)

    Persily, A.K.; Dols, W.S.; Nabinger, S.J.

    1992-08-01

    The National Institute of Standards and Technology (NIST) is studying the thermal and environmental performance of new federal office buildings for the Public Buildings Service of the General Services Administration (GSA). The project involves long-term performance monitoring starting before occupancy and extending into early occupancy in three new office buildings. The performance evaluation includes an assessment of the thermal integrity of the building envelope, long-term monitoring of ventilation system performance, and measurement of indoor levels of selected pollutants. This is the second report describing the study of the Federal Records Center in Overland, Missouri, and the report presents measurement results from preoccupancy to full occupancy. Ventilation rates ranged from 0.3 to 2.6 air changes per hour (ach) with the minimum levels being both the building design value of 0.8 ach and the recommended minimum in ASHRAE Standard 62-1989. The measured radon concentrations were 2 pCi/L or less on the sub-basement level, and less than or equal to 0.4 pCi/L on the other levels. Formaldehyde concentrations ranged from 0.03 to 0.07 ppm. Daily peak levels of carbon dioxide in the building were typically between 500 and 800 ppm. Maximum carbon monoxide levels were typically on the order of 1 to 2 ppm, essentially tracking outdoor levels induced by automobile traffic. There have been some occasions of elevated carbon monoxide and carbon dioxide levels in the building associated with unexplained episodic increases in the outdoor levels

  11. Elliptical concentrators.

    Science.gov (United States)

    Garcia-Botella, Angel; Fernandez-Balbuena, Antonio Alvarez; Bernabeu, Eusebio

    2006-10-10

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators.

  12. Titanium dioxide nanomaterials for photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Zhe; Green, Michael; Just, Michael; Chen, Xiaobo; Li, Yang Yang

    2017-01-01

    Titanium dioxide (TiO 2 ) has been long regarded as one of the more promising photocatalysts to remove environmental pollution and to generate hydrogen from water under sunlight irradiation via photocatalysis. TiO 2 is environmentally benign and thus is considered a ‘green’ catalyst. In this review we present a short introduction to the physical and electronic properties of TiO 2 , its photocatalytic mechanisms, and some recent examples of various TiO 2 materials used for photocatalysis; these examples include 0, 1, 2, 3D, faceted, defected, composited, and hydrogenated TiO 2 materials. (topical review)

  13. Muon transfer to sulphur dioxide

    International Nuclear Information System (INIS)

    Mulhauser, F.; Schneuwly, H.

    1993-01-01

    A systematic study of muon capture and muon transfer has been performed in seven different H 2 + SO 2 gas mixtures. From the single-exponential time structure of the muonic sulphur x-rays, one determines the lifetime of the μp atoms under the given experimental conditions. The reduced muon transfer rates to the sulphur dioxide molecule, deduced from these lifetimes, all agree well with each other. The muonic oxygen time spectra show an additional structure as if μp atoms of another kind were present. Comparable time structures are observed in a D 2 + SO 2 mixture. (author)

  14. Concentration risk

    Directory of Open Access Journals (Sweden)

    Matić Vesna

    2016-01-01

    Full Text Available Concentration risk has been gaining a special dimension in the contemporary financial and economic environment. Financial institutions are exposed to this risk mainly in the field of lending, mostly through their credit activities and concentration of credit portfolios. This refers to the concentration of different exposures within a single risk category (credit risk, market risk, operational risk, liquidity risk.

  15. Atlas of high resolution infrared spectra of carbon dioxide

    Science.gov (United States)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.; Ferry, P. S.; Sutton, C. H.; Richardson, D. J.

    1984-01-01

    A long path, low pressure laboratory spectrum of carbon dioxide is presented for the spectral region 1830 to 2010/cm. The data were recorded at 0.01/cm resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at Kitt Peak National Observatory. A list of positions and assignments is given for the 1038 lines observed in this region. A total of 30 bands and subbands of 12C1602, 13C1602, 12C160180, 12C160170, and 13C160180 were observed. Previously announced in STAR as N83-19598

  16. Vinyl Record

    DEFF Research Database (Denmark)

    Bartmanski, Dominik; Woodward, Ian

    2018-01-01

    . This relational process means that both the material affordances and entanglements of vinyl allow us to feel, handle, experience, project, and share its iconicity. The materially mediated meanings of vinyl enabled it to retain currency in independent and collector’s markets and thus resist the planned......In this paper, we use the case of the vinyl record to show that iconic objects become meaningful via a dual process. First, they offer immersive engagements which structure user interpretations through various material experiences of handling, use, and extension. Second, they always work via...

  17. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Bjerg, Bjarne Schmidt; Hvelplund, Torben

    2010-01-01

    This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake of metab......This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake...

  18. Record Club

    CERN Multimedia

    Record Club

    2011-01-01

    http://cern.ch/Record.Club November  Selections Just in time for the holiday season, we have added a number of new CDs and DVDs into the Club. You will find the full lists at http://cern.ch/record.club; select the "Discs of the Month" button on the left side on the left panel of the web page and then Nov 2011. New films include the all 5 episodes of Fast and Furious, many of the most famous films starring Jean-Paul Belmondo and those of Louis de Funes and some more recent films such as The Lincoln Lawyer and, according to some critics, Woody Allen’s best film for years – Midnight in Paris. For the younger generation there is Cars 2 and Kung Fu Panda 2. New CDs include the latest releases by Adele, Coldplay and the Red Hot Chili Peppers. We have also added the new Duets II CD featuring Tony Bennett singing with some of today’s pop stars including Lady Gaga, Amy Winehouse and Willy Nelson. The Club is now open every Monday, Wednesday and Friday ...

  19. Record Club

    CERN Multimedia

    Record Club

    2011-01-01

    http://cern.ch/Record.Club June Selections We have put a significant number of new CDs and DVDs into the Club You will find the full lists at http://cern.ch/record.club and select the «Discs of the Month» button on the left side on the left panel of the web page and then June 2011. New films include the latest Action, Suspense and Science Fiction film hits, general drama movies including the Oscar-winning The King’s Speech, comedies including both chapter of Bridget Jones’s Diary, seven films for children and a musical. Other highlights include the latest Harry Potter release and some movies from the past you may have missed including the first in the Terminator series. New CDs include the latest releases by Michel Sardou, Mylene Farmer, Jennifer Lopez, Zucchero and Britney Spears. There is also a hits collection from NRJ. Don’t forget that the Club is now open every Monday, Wednesday and Friday lunchtimes from 12h30 to 13h00 in Restaurant 2, Building 504. (C...

  20. Record club

    CERN Document Server

    Record club

    2010-01-01

      Bonjour a tous, Voici les 24 nouveaux DVD de Juillet disponibles depuis quelques jours, sans oublier les 5 CD Pop musique. Découvrez la saga du terroriste Carlos, la vie de Gainsbourg et les aventures de Lucky Luke; angoissez avec Paranormal Activity et évadez vous sur Pandora dans la peau d’Avatar. Toutes les nouveautés sont à découvrir directement au club. Pour en connaître la liste complète ainsi que le reste de la collection du Record Club, nous vous invitons sur notre site web: http://cern.ch/crc. Toutes les dernières nouveautés sont dans la rubrique « Discs of the Month ». Rappel : le club est ouvert les Lundis, Mercredis, Vendredis de 12h30 à 13h00 au restaurant n°2, bâtiment 504. A bientôt chers Record Clubbers.  

  1. Record Club

    CERN Multimedia

    Record Club

    2011-01-01

    http://cern.ch/Record.Club Nouveautés été 2011 Le club de location de CDs et de DVDs vient d’ajouter un grand nombre de disques pour l’été 2011. Parmi eux, Le Discours d’un Roi, oscar 2011 du meilleur film et Harry Potter les reliques de la mort (1re partie). Ce n’est pas moins de 48 DVDs et 10 CDs nouveaux qui vous sont proposés à la location. Il y en a pour tous les genres. Alors n’hésitez pas à consulter notre site http://cern.ch/record.club, voir Disc Catalogue, Discs of the month pour avoir la liste complète. Le club est ouvert tous les Lundi, Mercredi, Vendredi de 12h30 à 13h dans le bâtiment du restaurent N°2 (Cf. URL: http://www.cern.ch/map/building?bno=504) A très bientôt.  

  2. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  3. Lagrangian measurements of sulfur dioxide to sulfate conversion rates

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B D

    1981-12-01

    On the basis of Project MISTT data and proposed homogenous gas phase oxidation mechanisms for sulfur dioxide, it has been suggested that the degree of mixing with background air, the chemical composition of the background air, and the intensity of the sunlight available are key factors determining the rate of sulfur dioxide to sulfate conversion. These hypotheses are examined in light of Lagrangian measrements of conversion rates in power plant plumes made during the Tennessee Plume Study and Project Da Vinci. It is found that the Lagrangian conversion rate measurements are consistent with these hypotheses. It has also been suggested that the concentration of ozone may serve as a workable surrogate for the concentrations of the free radicals involved in the homogeneous gas phase mechanism. The night-time Lagrangian data remind one that the gross difference in mean lifetime of ozone and free radicals can lead to situations in which the ozone concentration is not a good surrogate for the free radical concentrations.

  4. Carbon Dioxide for pH Control

    Energy Technology Data Exchange (ETDEWEB)

    Wagonner, R.C.

    2001-08-16

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  5. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  6. Pressure pumping of carbon dioxide from soil

    Science.gov (United States)

    E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman

    2000-01-01

    Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...

  7. Process for the preparation of uranium dioxide

    International Nuclear Information System (INIS)

    Watt, G.W.; Baugh, D.W. Jr.

    1981-01-01

    A method for the preparation of actinide dioxides using actinide nitrate hexahydrates as starting materials is described. The actinide nitrate hexahydrate is reacted with sodium dithionite, and the product is heated in the absence of oxygen to obtain the dioxide. Preferably, the actinide is uranium, plutonium or neptunium. (LL)

  8. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  9. Validation of Reported Whole-Grain Intake from a Web-Based Dietary Record against Plasma Alkylresorcinol Concentrations in 8- to 11-Year-Olds Participating in a Randomized Controlled Trial

    DEFF Research Database (Denmark)

    Biltoft-Jensen, Anja Pia; Damsgaard, Camilla T.; W. Andersen, Elisabeth

    2016-01-01

    meal × 3 mo crossover trial. Reported WG intake and plasma AR concentrations were compared when children ate their usual bread-based lunch (UBL) and when served a hot lunch meal (HLM). Correlations and cross-classification were used to rank subjects according to intake. The intraclass correlation......BACKGROUND: Whole-grain (WG) intake is important for human health, but accurate intake estimation is challenging. Use of a biomarker for WG intake provides a possible way to validate dietary assessment methods. OBJECTIVE: Our aim was to validate WG intake from 2 diets reported by children, using...... plasma alkylresorcinol (AR) concentrations, and to investigate the 3-mo reproducibility of AR concentrations and reported WG intake. METHODS: AR concentrations were analyzed in fasting blood plasma samples, and WG intake was estimated in a 7-d web-based diary by 750 participants aged 8-11 y in a 2 school...

  10. The effect of electrolytes on the aggregation kinetics of titanium dioxide nanoparticle aggregates

    International Nuclear Information System (INIS)

    Shih Yanghsin; Zhuang Chengming; Tso Chihping; Lin Chenghan

    2012-01-01

    Metal oxide nanoparticles (NPs) are receiving increasing attention due to their increased industrial production and potential hazardous effect. The process of aggregation plays a key role in the fate of NPs in the environment and the resultant health risk. The aggregation of commercial titanium dioxide NP powder (25 nm) was investigated with various environmentally relevant solution chemistries containing different concentrations of monovalent (Na + , K + ) and divalent (Ca 2+ ) electrolytes. Titanium dioxide particle size increased with the increase in ion concentration. The stability of titanium dioxide also depended on the ionic composition. Titanium dioxide aggregated to a higher degree in the presence of divalent cations than monovalent ones. The attachment efficiency of NPs was constructed through aggregation kinetics data, from which the critical coagulation concentrations for the various electrolytes are determined (80, 19, and 1 meq/L for Na + , K + , and Ca 2+ , respectively). Our results suggest that titanium dioxide NP powders are relatively unstable in water and could easily be removed by adding multivalent cations so hazardous potentials decrease in aquatic environment.

  11. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  12. RECORD CLUB

    CERN Multimedia

    Record Club

    2010-01-01

    DVD James Bond – Series Complete To all Record Club Members, to start the new year, we have taken advantage of a special offer to add copies of all the James Bond movies to date, from the very first - Dr. No - to the latest - Quantum of Solace. No matter which of the successive 007s you prefer (Sean Connery, George Lazenby, Roger Moore, Timothy Dalton, Pierce Brosnan or Daniel Craig), they are all there. Or perhaps you have a favourite Bond Girl, or even perhaps a favourite villain. Take your pick. You can find the full selection listed on the club web site http://cern.ch/crc; use the panel on the left of the page “Discs of the Month” and select Jan 2010. We remind you that we are open on Mondays, Wednesdays and Fridays from 12:30 to 13:00 in Restaurant 2 (Bldg 504).

  13. Record dynamics

    DEFF Research Database (Denmark)

    Robe, Dominic M.; Boettcher, Stefan; Sibani, Paolo

    2016-01-01

    When quenched rapidly beyond their glass transition, colloidal suspensions fall out of equilibrium. The pace of their dynamics then slows down with the system age, i.e., with the time elapsed after the quench. This breaking of time translational invariance is associated with dynamical observables...... which depend on two time-arguments. The phenomenology is shared by a broad class of aging systems and calls for an equally broad theoretical description. The key idea is that, independent of microscopic details, aging systems progress through rare intermittent structural relaxations that are de......-facto irreversible and become increasingly harder to achieve. Thus, a progression of record-sized dynamical barriers are traversed in the approach to equilibration. Accordingly, the statistics of the events is closely described by a log-Poisson process. Originally developed for relaxation in spin glasses...

  14. Record breakers

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In the sixties, CERN’s Fellows were but a handful of about 50 young experimentalists present on site to complete their training. Today, their number has increased to a record-breaking 500. They come from many different fields and are spread across CERN’s different activity areas.   “Diversifying the Fellowship programme has been the key theme in recent years,” comments James Purvis, Head of the Recruitment, Programmes and Monitoring group in the HR Department. “In particular, the 2005 five-yearly review introduced the notion of ‘senior’ and ‘junior’ Fellowships, broadening the target audience to include those with Bachelor-level qualifications.” Diversification made CERN’s Fellowship programme attractive to a wider audience but the number of Fellows on site could not have increased so much without the support of EU-funded projects, which were instrumental in the growth of the programme. ...

  15. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  16. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  17. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities : Results from time series data from the APHEA project

    NARCIS (Netherlands)

    Katsouyanni, K; Touloumi, G; Spix, C; Schwartz, J; Balducci, F; Medina, S; Rossi, G; Wojtyniak, B; Sunyer, J; Bacharova, L; Schouten, JP; Ponka, A; Anderson, HR

    1997-01-01

    Objectives: To carry out a prospective combined quantitative analysis of the associations between all cause mortality and ambient particulate matter and sulphur dioxide. . Design: Analysis of time series data on daily number of deaths from all causes and concentrations of sulphur dioxide and

  18. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  19. Effects of sulfur dioxide on conifers

    Energy Technology Data Exchange (ETDEWEB)

    Govi, G.; Tagliani, F.; Cimino, A.

    1974-01-01

    Trials on the resistance of several conifer and oak species to the effects of sulfur dioxide at different concentrations and moisture levels were conducted. 72 combinations were experimented. The damages began to appear under the following conditions: Abies alba: 0.3 ppm, 25/sup 0/C, 70% ur after 24 hours; Picea excelsa: 0.3 ppm, 15/sup 0/C, 70-95% ur after 24 hours; Cedrus deodara: 0.3 ppm, 15/sup 0/C, 95% ur after 48 hours; Pinus pinea: 0.3 ppm, 15/sup 0/C, 70-95% after 72 hours; Pinus strobus 0.3 ppm, 25/sup 0/C, 70-95%, after 48 hours; Pinus pinaster: similar to the former; Pinus nigra: 2 ppm, 25/sup 0/C, 70-95%, ur after 5 days; Cupressus arizonica and C. semperivirens: 2 ppm, 25%/sup 0/C, 90% ur after 72 hours; Quercus robur: 5 ppm, 25/sup 0/C, 90% ur, after 10 days. 6 references, 3 figures, 1 table.

  20. Suppressing bullfrog larvae with carbon dioxide

    Science.gov (United States)

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  1. Sensing Free Sulfur Dioxide in Wine

    Science.gov (United States)

    Monro, Tanya M.; Moore, Rachel L.; Nguyen, Mai-Chi; Ebendorff-Heidepriem, Heike; Skouroumounis, George K.; Elsey, Gordon M.; Taylor, Dennis K.

    2012-01-01

    Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring. PMID:23112627

  2. Development of a low cost unmanned aircraft system for atmospheric carbon dioxide leak detection

    Science.gov (United States)

    Mitchell, Taylor Austin

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. The sensor system included a Sensair K-30 FR CO2 sensor, GPS, and altimeter connected an Arduino microcontroller which logged data to an onboard SD card. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system for the quickest response time (4-8 seconds based upon flowrate). Tests were then conducted over a controlled release of CO 2 in addition to over controlled rangeland fires which released carbon dioxide over a large area as would be expected from a carbon sequestration source. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. These tests demonstrated the system's ability to detect increased carbon dioxide concentrations in the atmosphere.

  3. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L. Seeds

    Directory of Open Access Journals (Sweden)

    Marie Sajfrtová

    2010-04-01

    Full Text Available Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L. seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40-80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  4. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    Science.gov (United States)

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  5. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  6. Increasing the efficiency of sulphur dioxide in wine by using of saturated higher fatty acids

    Directory of Open Access Journals (Sweden)

    Petra Bábíková

    2012-01-01

    Full Text Available This work is aimed on stopping of alcoholic fermentation to leave residual sugar and the possibility of sulfur dioxide reduction in wine technology and storage. As a very good opportunity showed mixture of higher saturated fatty acids with a reduced dose of sulfur dioxide. Experiments have confirmed that the concentration of viable yeasts in 1 ml of wine for variants treated with a mixture of fatty acids is significantly lower than in variants treated with sulfur dioxide alone. Then was monitored the influence of fatty acids on stored wine with residual sugar. At this point a dramatically prolongation of interval to secondary fermentation (depreciation of wine in the bottle was confirmed. Finally, attention was paid to influence on the organoleptic characteristics of wine treated this way. In this case, it is possible to consider the recommended concentration of fatty acid below the threshold of susceptibility.

  7. Electrochemical processing of carbon dioxide.

    Science.gov (United States)

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.

  8. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Petersen, Gene; Viviani, Donn; Magrini-Bair, Kim; Kelley, Stephen; Moens, Luc; Shepherd, Phil; DuBois, Dan

    2005-01-01

    Carbon dioxide (CO 2 ) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO 2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO 2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO 2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  9. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  10. Deployment of Low-Cost, Carbon Dioxide Sensors throughout the Washington Metropolitan Area - The Capital Climate Initiative

    Science.gov (United States)

    Caine, Kristen M.; Bailey, D. Michelle; Houston Miller, J.

    2016-04-01

    According to the IPCC from 1995 to 2005, atmospheric carbon dioxide (CO2) concentrations increased by 19 ppm, the highest average growth rate recorded for any decade since measurements began in the 1950s. Due to its ability to influence global climate change, it is imperative to continually monitor carbon dioxide emission levels, particularly in urban areas where some estimate in excess of 75% of total greenhouse gas emissions occur. Although high-precision sensors are commercially available, these are not cost effective for mapping a large spatial area. A goal of this research is to build out a network of sensors that are accurate and precise enough to provide a valuable data tool for accessing carbon emissions from a large, urban area. This publically available greenhouse gas dataset can be used in numerous environmental assessments and as validation for remote sensing products. It will also be a valuable teaching tool for classes at our university and will promote further engagement of K-12 students and their teachers through education and outreach activities. Each of our sensors (referred to as "PiOxides") utilizes a non-dispersive infrared (NDIR) sensor for the detection of carbon dioxide along with a combination pressure/temperature/humidity sensor. The collection of pressure and temperature increases the accuracy and precision of the CO2 measurement. The sensors communicate using a serial interfaces with a Raspberry Pi microcontroller. Each PiOxide is connected to a website that leverages recent developments in open source GIS tools. In this way, data from individual sensors can be followed individually or aggregated to provide real-time, spatially-resolved data of CO2 trends across a broad area. Our goal for the network is to expand across the entire DC/Maryland/Virginia Region through partnerships with private and public schools. We are also designing GHG Bluetooth beacons that may be accessed by mobile phone users in their vicinity. In two additional

  11. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  12. Indoor air pollution produced by man (carbon dioxide, odors)

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, H U

    1982-01-01

    Man contributes to indoor air pollution by the release of heat, humidity, carbon dioxide, particles, micro-organisms and body odours. The rise in temperature and the concentrations of the different pollutants depend on the number of persons in a room, the utilization of the room and the activities of the persons. Current parameters for the evaluation of man-made pollution in indoor air are carbon monoxide and odours. Experiments have been carried out in a test chamber under controlled conditions in order to determine the relations between carbon monoxide and odours, since these are two current parameters for the evaluation of man-made pollution in indoor air. In these experiments the variables were the number of persons in the room, the activity of the persons and the ventilation rate. For the measurement of odours a special method has been developed in which the undiluted air is tested by a test panel and compared with air containing two different pyridine concentrations. A significant relationship has been observed between the odour intensity and the carbon dioxide content of the air, and the correlation did not depend on the number of persons and the ventilation rate. At ventilation rates of 12 to 15 m3 per person and hour the carbon dioxide concentration was below 0.15% and the odour intensity was characterized as being only little annoying. Higher ventilation rates are necessary during physical activity and in rooms with tobacco smoke. The minimum ventilation rates as deduced from the laboratory experiments are compared to known standards.

  13. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  14. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Record Club

    CERN Document Server

    Record Club

    2012-01-01

      March  Selections By the time this appears, we will have added a number of new CDs and DVDs into the Club. You will find the full lists at http://cern.ch/record.club; select the "Discs of the Month" button on the left panel of the web page and then Mar 2012. New films include recent releases such as Johnny English 2, Bad Teacher, Cowboys vs Aliens, and Super 8. We are also starting to acquire some of the classic films we missed when we initiated the DVD section of the club, such as appeared in a recent Best 100 Films published by a leading UK magazine; this month we have added Spielberg’s Jaws and Scorsese’s Goodfellas. If you have your own ideas on what we are missing, let us know. For children we have no less than 8 Tin-Tin DVDs. And if you like fast moving pop music, try the Beyonce concert DVD. New CDs include the latest releases from Paul McCartney, Rihanna and Amy Winehouse. There is a best of Mylene Farmer, a compilation from the NRJ 201...

  16. Mucin secretion induced by titanium dioxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Eric Y T Chen

    2011-01-01

    Full Text Available Nanoparticle (NP exposure has been closely associated with the exacerbation and pathophysiology of many respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD and asthma. Mucus hypersecretion and accumulation in the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium dioxide (TiO(2, one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of various commercial products. Although TiO(2 NPs have been shown to induce cellular nanotoxicity and emphysema-like symptoms, whether TiO(2 NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we showed that TiO(2 NPs (<75 nm can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a Ca(2+ signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA. The corresponding changes in cytosolic Ca(2+ concentration were monitored with Rhod-2, a fluorescent Ca(2+ dye. We found that TiO(2 NP-evoked mucin secretion was a function of increasing intracellular Ca(2+ concentration resulting from an extracellular Ca(2+ influx via membrane Ca(2+ channels and cytosolic ER Ca(2+ release. The calcium-induced calcium release (CICR mechanism played a major role in further amplifying the intracellular Ca(2+ signal and in sustaining a cytosolic Ca(2+ increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary diseases involving mucus hypersecretion.

  17. Renewable methane generation from carbon dioxide and sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Steinlechner, Christoph; Junge, Henrik [Leibniz Institut fuer Katalyse, Universitaet Rostock e.V., Rostock (Germany)

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO{sub 2} in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO{sub 2} into CH{sub 4}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. BOREAS TGB-12 Isotropic Carbon Dioxide Data over the NSA

    Science.gov (United States)

    Trumbore, Susan; Hall, Forrest G. (Editor); Sundquist, Eric; Winston, Greg; Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. This data set contains information on the carbon isotopic content of carbon dioxide sampled from soils in the NSA-OBS, NSA-YJP, and NSA-OJP sites. Data were collected from 14-Nov-1993 to 10-Oct-1996. The data are stored in tabular ASCII files.

  19. Review of the health risks associated with nitrogen dioxide and sulfur dioxide in indoor air

    International Nuclear Information System (INIS)

    Brauer, M.; Henderson, S.; Kirkham, T.; Lee, K.S.; Rich, R.; Teschke, K.

    2002-01-01

    The scientific literature on the health effects of nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) were reviewed with particular focus on the chemical and physical properties of the 2 gases and the toxicological characteristics identified in animal studies at exposure concentrations near the rate of ambient human exposures. The study also examined the expected levels of non-industrial indoor exposure of Canadians compared to other regions with similar climates. The sources of indoor pollution were also reviewed, along with the contribution of outdoor pollution to indoor levels. Results from epidemiological studies of indoor exposures in homes, offices and schools were also presented. For each pollutant, the study identified anthropogenic sources, indoor sources, toxicological characteristics, biochemistry, pulmonary effects, immune response, and other effects. Indoor sources of NO 2 include gas-fired appliances, pilot lights, hot water heaters, kerosene heaters, and tobacco smoke. The impact of ventilation on both NO 2 and SO 2 levels was also examined. Outdoor sources such as traffic can also contribute to indoor levels, particularly in urban areas. In the case of SO 2 , coal heating and cooling appear to be associated in increased indoor levels. The epidemiological studies that were reviewed failed in general to indicate an association between NO 2 exposure and a wide range of health impacts. The studies, however, indicate that asthmatics are more susceptible to the effects of NO 2 exposure. In the case of SO 2 , evidence suggests that it has a chronic effect on lung function and respiratory symptoms and disease. 243 refs., 13 tabs

  20. Reaction of yttrium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Khokhlov, A.D.; Reznikova, N.F.

    1986-01-01

    It has been proved that heating of yttrium and tantalum in carbon dioxide to 500 and 800 0 C alters the gas phase composition, causing formation of carbon monoxide and reduction of oxygen content. A study of the thermal stability of yttrium polonides in carbon dioxide showed that yttrium sesqui- and monopolonides decompose at 400-430 0 C. The temperature dependence of the vapor pressure of polonium obtained upon decomposition of the referred polonides has been determined in a carbon dioxide environment radiotensometrically. The enthalpy of the process calculated from this dependence is close to the enthalpy of vaporization of elemental polonium in vacuo. The mechanism of the reactions has been suggested

  1. The Relationship Between Radiative Forcing and Temperature. What Do Statistical Analyses of the Instrumental Temperature Record Measure?

    International Nuclear Information System (INIS)

    Kaufmann, R.K.; Kauppi, H.; Stock, J.H.

    2006-01-01

    Comparing statistical estimates for the long-run temperature effect of doubled CO2 with those generated by climate models begs the question, is the long-run temperature effect of doubled CO2 that is estimated from the instrumental temperature record using statistical techniques consistent with the transient climate response, the equilibrium climate sensitivity, or the effective climate sensitivity. Here, we attempt to answer the question, what do statistical analyses of the observational record measure, by using these same statistical techniques to estimate the temperature effect of a doubling in the atmospheric concentration of carbon dioxide from seventeen simulations run for the Coupled Model Intercomparison Project 2 (CMIP2). The results indicate that the temperature effect estimated by the statistical methodology is consistent with the transient climate response and that this consistency is relatively unaffected by sample size or the increase in radiative forcing in the sample

  2. Temporal record of osmium concentrations and 187Os/188Os in organic-rich mudrocks: Implications for the osmium geochemical cycle and the use of osmium as a paleoceanographic tracer

    Science.gov (United States)

    Lu, Xinze; Kendall, Brian; Stein, Holly J.; Hannah, Judith L.

    2017-11-01

    We present a compilation of 192Os concentrations (representing non-radiogenic Os) and initial 187Os/188Os isotope ratios from organic-rich mudrocks (ORM) to explore the evolution of the Os geochemical cycle during the past three billion years. The initial 187Os/188Os isotope ratio of a Re-Os isochron regression for ORM constrains the local paleo-seawater 187Os/188Os, which is governed by the relative magnitudes of radiogenic Os (old continental crust) and unradiogenic Os (mantle, extraterrestrial, and juvenile/mafic/ultramafic crust) fluxes to seawater. A first-order increase in seawater 187Os/188Os ratios occurs from the Archean to the Phanerozoic, and may reflect a combination of increasing atmosphere-ocean oxygenation and weathering of progressively more radiogenic continental crust due to in-growth of 187Os from radioactive decay of 187Re. Superimposed on this long-term trend are shorter-term fluctuations in seawater 187Os/188Os ratios as a result of climate change, emplacement of large igneous provinces, bolide impacts, tectonic events, changes in seafloor spreading rates, and lithological changes in crustal terranes proximal to sites of ORM deposition. Ediacaran-Phanerozoic ORM have mildly higher 192Os concentrations overall compared with pre-Ediacaran Proterozoic ORM based on the mean and 95% confidence interval of 10,000 median values derived using a bootstrap analysis for each time bin (insufficient Archean data exist for robust statistical comparisons). However, there are two groups with anomalously high 192Os concentrations that are distinguished by their initial 187Os/188Os isotope ratios. Ediacaran-Cambrian ORM from South China have radiogenic initial 187Os/188Os, suggesting their high 192Os concentrations reflect proximal Os-rich crustal source(s), ultraslow sedimentation rates, and/or other unusual depositional conditions. In contrast, the unradiogenic initial 187Os/188Os and high 192Os concentrations of some Mesozoic ORM can be tied to emplacement

  3. Carbon dioxide measurements in the nocturnal boundary layer over Amazonian forest

    Directory of Open Access Journals (Sweden)

    A. D. Culf

    1999-01-01

    Full Text Available Measurements of carbon dioxide concentration, temperature and windspeed were made in the nocturnal boundary layer over a tropical forest near Manaus, Brazil using a tethered balloon system. The measurements were made up to a maximum height of 300 m on ten consecutive nights in November 1995. Simultaneous surface flux and in-canopy concentration measurements were made at the surface close to the site. The observation period included several different types of conditions. Generally strong windshear and relatively weak temperature gradients prevented the formation of a strong capping inversion to the nocturnal boundary layer. On some nights, however, the inversion was sufficiently strong that the CO2 concentration at 100 m above the surface exceeded 400 ppm. The concentration within the canopy was largely controlled by the presence of an inversion very close to the canopy surface. The temperature and wind profiles are contrasted with conditions in Randônia, Brazil, where the windshear was found to be weaker and higher carbon dioxide concentrations were observed in the early morning. The difference in carbon dioxide concentrations in the nocturnal boundary layer between dusk and dawn is used to estimate the regional nighttime flux of carbon dioxide. The value obtained generally exceeds the measured surface flux and sometimes exceeds the sum of the surface flux and the in-canopy storage made at the tower site. The reasons for the discrepancy are not clear; either one of the methods is in error or the regional carbon dioxide budget differs significantly from the local budget measured at the tower site.

  4. Effects of dissolved carbon dioxide on energy metabolism and stress responses in European seabass (Dicentrarchus labrax)

    NARCIS (Netherlands)

    Santos, G.A.; Schrama, J.W.; Capelle, J.; Rombout, J.H.W.M.; Verreth, J.A.J.

    2013-01-01

    Elevated carbon dioxide concentrations reduce feed intake and growth in several fish species and induce stress responses. In this study, the effects of moderately elevated CO2 levels on performance, energy partitioning, swimming activity and stress response in European seabass were assessed.

  5. Methanol Droplet Extinction in Carbon-Dioxide-Enriched Environments in Microgravity

    Science.gov (United States)

    Hicks, Michael C.; Nayagam, Vedha; Williams, Forman A.

    2010-01-01

    Diffusive extinction of methanol droplets with initial diameters between 1.25 mm and 1.72 mm, burning in a quiescent microgravity environment at one atmosphere pressure, was obtained experimentally for varying levels of ambient carbon-dioxide concentrations with a fixed oxygen concentration of 21% and a balance of nitrogen. These experiments serve as precursors to those which are beginning to be performed on the International Space Station and are motivated by the need to understand the effectiveness of carbon-dioxide as a fire suppressant in low-gravity environments. In these experiments, the flame standoff distance, droplet diameter, and flame radiation are measured as functions of time. The results show that the droplet extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the initial droplet diameter leads to an increased extinction diameter, while increasing the carbon-dioxide concentration leads to a slight decrease in the extinction diameter. These results are interpreted using a critical Damk hler number for extinction as predicted by an earlier theory, which is extended here to be applicable in the presence of effects of heat conduction along the droplet support fibers and of the volume occupied by the support beads

  6. Intracellular pH Campylobacter jejuni when treated with aqueous chlorine dioxide

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Arneborg, Nils

    2011-01-01

    The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a p...

  7. Operating conditions of T.B.P. line uranium purification plant, for uranium dioxide production

    International Nuclear Information System (INIS)

    Vardich, R.N.; La Gamma, A.M.; Anasco, R.; Soler, S.M.G. de; Isnardi, E.; Gea, V.; Chiaraviglio, R.; Matyjasczyk, E.; Aramayo, R.

    1992-01-01

    In this contribution are presented the operative conditions and the results obtained step of the Uranium dioxide production plant of Argentina. The refining step involve the Uranium concentrate dissolution, the silica ageing, the filtration and liquid - liquid extraction with n-tributyl phosphate solution in kerosene. The established operative conditions allow to obtain Uranyl nitrate solutions of nuclear purity in industrial scale. (author)

  8. Adsorption of zirconium from nitric acid solutions on hydrated tin dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tret' yakov, S Ya; Sharygin, L M; Egorov, Yu V

    1977-01-01

    Adsorption of zirconium from nitric acid solutions has been studied with the use of the labeled atom method on hydrated tin dioxide depending on the sorbate concentration, pH and prehistory of the solution. It has been found that adsorption behavior of zirconium essentially depends on its state in the solution.

  9. Prediction of supercritical carbon dioxide drying of food products in packed beds

    NARCIS (Netherlands)

    Almeida-Rivera, C.; Khalloufi, S.; Bongers, P.M.M.

    2010-01-01

    Drying assisted by supercritical carbon dioxide is foreseen to become a promising technology for sensitive food products. In this contribution, a mathematical model is derived to describe the changes in water concentration in both a solid food matrix and a fluid carrier during drying. Finite

  10. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  11. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  12. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b) [Reserved] ...

  13. 46 CFR 169.732 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  14. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  15. 46 CFR 108.627 - Carbon dioxide alarm.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...

  16. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  17. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    International Nuclear Information System (INIS)

    DuBay, D.T.

    1981-01-01

    The major objective of this study was to test the potential direct effects of SO 2 on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO 2 reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO 2 for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the control after exposure to SO 2 , but only when relative humidity (RH) was at or above 90%. The effect of SO 2 on Lepidium pollen germination in vitro was greater than the effect of SO 2 on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO 2 , at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO 2 on reproduction in vivo based on effects of SO 2 on pollen germination and pollen tube growth in vitro are not valid

  18. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  19. Carbon dioxide: making the right connection

    African Journals Online (AJOL)

    This highlights safety issues concerning pipeline provision of carbon dioxide, and that it is of utmost ... capnograph sample line, gas analysis unit, water trap and soda .... The heat generated by the chemical reaction between soda lime.

  20. integrated vertical photobioreactor system for carbon dioxide

    African Journals Online (AJOL)

    Astri Nugroho

    2013-07-02

    Jul 2, 2013 ... efficient system for converting carbon dioxide (CO2) into biomass. The use of ... often been thought to achieve the most efficient mixing and the best ... such process a photobioreactor is designed. Photobioreactor is a device ...

  1. Technology of getting of microspheric thorium dioxide

    International Nuclear Information System (INIS)

    Balakhonov, V.G.; Matyukha, V.A.; Saltan, N.P.; Filippov, E.A.; Zhiganov, A.N.

    1999-01-01

    There has been proposed a technique for getting granulated thorium dioxide from its salts solutions according to the cryogenic technology by the method of a solid phase conversion. It includes the following operations: dispersion of the initial solution into liquid nitrogen and getting of cryogranules of the necessary size by putting oscillations of definite frequency on a die device and by charging formed drops in the constant electric field; solid phase conversion of thorium salts into its hydroxide by treating cryogranules with a cooled ammonia solution, drying and calcination of hydroxide granules having got granulated thorium dioxide. At the pilot facility there have been defined and developed optimum regimes for getting granulated thorium dioxide. The mechanism of thorium hydroxide cryogranules conversion into thorium dioxide was investigated by the thermal analysis methods. (author)

  2. Antipollution system to remove nitrogen dioxide gas

    Science.gov (United States)

    Metzler, A. J.; Slough, J. W.

    1971-01-01

    Gas phase reaction system using anhydrous ammonia removes nitrogen dioxide. System consists of ammonia injection and mixing section, reaction section /reactor/, and scrubber section. All sections are contained in system ducting.

  3. Thorium dioxide: properties and nuclear applications

    International Nuclear Information System (INIS)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core

  4. Thorium dioxide: properties and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  5. Supercritical carbon dioxide hop extraction

    Directory of Open Access Journals (Sweden)

    Pfaf-Šovljanski Ivana I.

    2005-01-01

    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  6. Report of the Carbon Dioxide Committee II

    International Nuclear Information System (INIS)

    1994-01-01

    The Carbon Dioxide Committee was given the task of preparing a suggestion of the acts aimed at reducing the greenhouse gas emissions and increasing the sinks of carbon in Finland. Emissions of all greenhouse gases were in 1990 80 million tons. calculated as carbon dioxide. The carbon dioxide emissions were about 58 million tons of the total. The increase of forest resources binds carbon from the atmosphere and reduces thereby net emissions of Finland at present by nearly 30 million tons of carbon dioxide. Carbon dioxide emissions will grow during the next decades, unless strong measures to control them will not be taken. As a result of the Commissions examination, acts will be needed both in the production of energy and in its consumption. Emissions can be reduced by replacing fossil fuels with nuclear energy, bioenergy and other renewable energy sources. Saving of energy and improvement of energy efficiency will limit carbon dioxide emissions. The Commission has made suggestions both to change the structure of energy production and to control the consumption of energy. (orig.)

  7. Investigation of the vertical nitrogen dioxide distribution above a frequented street

    Energy Technology Data Exchange (ETDEWEB)

    Malissa, H; Juette, W; Alidad, I

    1975-01-01

    Knowledge of the vertical nitrogen dioxide concentration profile in the atmosphere within a street canyon would enable the estimation of pollutant concentrations in street site living or working rooms and furthermore the calculation of pollutant concentrations at ground level from data measured at roof levels by means of long-line remote sensing methods. A formula was therefore derived under simplified conditions and examined by simultaneous measurements of the nitrogen dioxide concentration, wind velocity, and wind direction at roof level and ground level. The data thus obtained were average values for half an hour. The knowledge of the local vertical wind profile and the influence of the traffic density in neighboring urban areas is essential for the calculation. The verification of the derived model shows a correlation coefficient of r equals 0.88 between calculated and measured data.

  8. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    Science.gov (United States)

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  9. Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions

    Science.gov (United States)

    Patel, P. S.; Baker, B. S.

    1977-01-01

    A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.

  10. Exposure experiments of trees to sulfur dioxide gas. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Otani, A.

    1974-12-01

    The effects of gaseous sulfur dioxide on trees were studied. Twenty species of plant seedlings (70 cm in height) including Cedrus deodara, Metasequoia glyptostroboides, Ginkgo biloba, Celmus parvifolia var. albo-marginata, Pinus thumbergii, P. densiflora, Cryptomeria japonica, and Quercus myrsinaefolia, were exposed in a room to gaseous sulfur dioxide at 0.8 ppm for 7.5 hr/day (from 9 am to 4:30 pm) for 24 days at a temperature of 20-35 deg C and RH of 55-75%. Visible damage to plants was lighter in C.j. and Chamae cyparis obtusa, more severe in P.t., G.b., and C.d. The damage appeared earlier in G.b., Cinnamomum camphona, and Ilex rotunda, and the change of early symptoms was smaller in P.t., C.j., and C.o. The leaves of the 4-5th positions from the sprout were apt to be damaged. Although the sulfur content of exposed leaves increased markedly, that in other parts did not increase. Because of the high concentration of the gas and the short period of exposure, the absorption of sulfur into leaves should have differed from the situation in fields where longer exposure to lower concentrations of the gas would be expected. 6 references.

  11. Relationship between sulphate and sulphur dioxide in the air

    Energy Technology Data Exchange (ETDEWEB)

    Fugas, M; Gentilizza, M

    1978-01-01

    The relationship between the sulphate in suspended particulates and sulphur dioxide in the air was studied in various urban and industrial areas. The relationship is best described by the equation y = ax/sup b/, where y is the percentage of the sulphate S in the total S (sulphate and sulphur dioxide) and x is the concentration of the total S in the air. The regression coefficients a and b seem to be characteristics of the area. In urban areas studied so far a was between 316 and 378 and b between -0.74 and -0.83. In industrial areas polluted by dust which contains elevated concentrations of metals a was between 91 and 107 and b between -0.35 and -0.49. In the area polluted by cement dust there was practically no correlation between the sulphate S (%) and the total S, but a relatively high correlation between absolute amounts of the sulphate S and the total S. The relations indicate that the limitation of SO/sub 2/ conversion is influenced by aerosol composition. Aerosols containing certain metals may promote the conversion by a catalytic effect while alkaline substances by increasing the pH. Whether this can only happen in the plume or in the air as well remains to be clarified.

  12. Air-sea exchange of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, D C.E.; De Baar, H J.W.; De Jong, E; Koning, F A [Netherlands Institute for Sea Research NIOZ, Den Burg Texel (Netherlands)

    1996-12-31

    The greenhouse gas carbon dioxide is emitted by anthropogenic activities. The oceans presumably serve as a net sink for 17 to 39% of these emissions. The objective of this project is to quantify more accurately the locality, seasonality and magnitude of the net air-sea flux of CO2 with emphasis on the South Atlantic Ocean. In situ measurements of the fugacity of CO2 in surface water and marine air, of total dissolved inorganic carbon, alkalinity and of air-sea exchange of CO2 have been made at four Atlantic crossings, in the Southern Ocean, in a Norwegian fjord and in the Dutch coastal zone. Skin temperature was detected during several of the cruises. The data collected in the course of the project support and refine previous findings. Variability of dissolved CO2 in surface water is related in a complex way to biological and physical factors. The carbonate equilibria cause dissolved gaseous CO2 to react in an intricate manner to disturbances. Dissolved gaseous CO2 hardly ever attains equilibrium with the atmospheric CO2 content by means of air-sea exchange, before a new disturbance occurs. Surface water fCO2 changes could be separated in those caused by seasonal warming and those by biological uptake in a Southern Ocean spring. Incorporation of a thermal skin effect and a change of the wind speed interval strongly increased the small net oceanic uptake for the area. The Atlantic crossings point to a relationship between water mass history and surface water CO2 characteristics. In particular, current flow and related heat fluxes leave their imprint on the concentration dissolved gaseous CO2 and on air-sea exchange. In the Dutch coastal zone hydrography and inorganic carbon characteristics of the water were heterogeneous, which yielded variable air-sea exchange of CO2. figs., tabs., refs.

  13. Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives

    Directory of Open Access Journals (Sweden)

    Marta Rumayor

    2018-06-01

    Full Text Available Carbon dioxide (CO2 utilization alternatives for manufacturing formic acid (FA such as electrochemical reduction (ER or homogeneous catalysis of CO2 and H2 could be efficient options for developing more environmentally-friendly production alternatives to FA fossil-dependant production. However, these alternatives are currently found at different technological readiness levels (TRLs, and some remaining technical challenges need to be overcome to achieve at least carbon-even FA compared to the commercial process, especially ER of CO2, which is still farther from its industrial application. The main technical limitations inherited by FA production by ER are the low FA concentration achieved and the high overpotentials required, which involve high consumptions of energy (ER cell and steam (distillation. In this study, a comparison in terms of carbon footprints (CF using the Life Cycle Assessment (LCA tool was done to evaluate the potential technological challenges assuring the environmental competitiveness of the FA production by ER of CO2. The CF of the FA conventional production were used as a benchmark, as well as the CF of a simulated plant based on homogeneous catalysts of CO2 and H2 (found closer to be commercial. Renewable energy utilization as PV solar for the reaction is essential to achieve a carbon-even product; however, the CF benefits are still negligible due to the enormous contribution of the steam produced by natural gas (purification stage. Some ER reactor configurations, plus a recirculation mode, could achieve an even CF versus commercial process. It was demonstrated that the ER alternatives could lead to lower natural resources consumption (mainly, natural gas and heavy fuel oil compared to the commercial process, which is a noticeable advantage in environmental sustainability terms.

  14. Records Management Directive

    Data.gov (United States)

    Office of Personnel Management — The Office of Personnel Management (OPM) Records Management Directive provides guidelines for the management of OPM records, and identifies the records management...

  15. Assessment of different concentrations of ketofol in procedural operations

    International Nuclear Information System (INIS)

    Daabiss, Mohamed; Elsherbiny, Medhat; Al Otaibi, Rashed

    2009-01-01

    Propofol is an intravenous anesthetic that is often used as an adjuvant during monitored anesthesia care, the addition of ketamine to propofol may counteract the cardiorespiratory depression seen with propofol used alone. Ketofol (ketamine/propofol combination) was used for procedural sedation and analgesia. However, evaluation of the effectiveness of different concentrations of Ketofol in procedural operation regarding changes in haemodynamics, emergence phenomena, recovery time, the doses, and adverse effects was not yet studied, so this randomized, double blinded study was designed to compare the quality of analgesia and side effects of intravenous different concentrations of ketofol. One hundred children of both sex undergoing procedural operation, e.g. esophgoscopy, rectoscopy, bone marrow aspiration and liver biopsy participated in this. Patients received an infusion of a solution containing either combination of propofol: ketamine (1:1) (Group I) or propofol: ketamine (4:1) (Group II). Subsequent infusion rates to a predetermined sedation level using Ramsay Sedation Scale. Heart rate, noninvasive arterial blood pressure (NIBP), oxygen saturation (SpO2), end tidal carbon dioxide (Etco 2 ) and incidence of any side effects were recorded. There were no significant hemodynamic changes in both groups after induction. However, there was an increase in postoperative nausea, psychomimetic side effects, and delay in discharge times in group I compared to group II. The adjunctive use of smaller dose of ketamine in ketofol combination minimizes the psychomimetic side effects and shortens the time of hospital discharge. (author)

  16. Review of the recent carbon dioxide-climate controversy

    International Nuclear Information System (INIS)

    Luther, F.M.; Cess, R.D.

    1992-01-01

    Model calculations of the climatic impact of the increasing atmospheric carbon dioxide (CO 2 ) concentration consistently suggest that a doubling of the CO 2 concentration would lead to a warming of global average surface air temperatures by as much as several degrees Celsius. In this appendix, this controversy about the effect of CO 2 on climate is reviewed. Because the surface energy balance approach to estimating climate sensitivity has been the source of much of the controversy, a review of this approach is presented. It is shown that prior applications of this approach violate the law of conservation of energy (the first law of thermodynamics); therefore, these results are incorrect. Empirical data indicating the relationship between atmospheric emittance and surface vapor pressure and surface air temperature are shown to be consistent with climate model calculations. Consequently, it is not the experimental data that are the basis of the controversy, but rather the analysis and interpretation of these data

  17. Elevated carbon dioxide increases salicylic acid in Glycine max.

    Science.gov (United States)

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  18. Understanding the carbon dioxide gaps.

    Science.gov (United States)

    Scheeren, Thomas W L; Wicke, Jannis N; Teboul, Jean-Louis

    2018-06-01

    The current review attempts to demonstrate the value of several forms of carbon dioxide (CO2) gaps in resuscitation of the critically ill patient as monitor for the adequacy of the circulation, as target for fluid resuscitation and also as predictor for outcome. Fluid resuscitation is one of the key treatments in many intensive care patients. It remains a challenge in daily practice as both a shortage and an overload in intravascular volume are potentially harmful. Many different approaches have been developed for use as target of fluid resuscitation. CO2 gaps can be used as surrogate for the adequacy of cardiac output (CO) and as marker for tissue perfusion and are therefore a potential target for resuscitation. CO2 gaps are easily measured via point-of-care analysers. We shed light on its potential use as nowadays it is not widely used in clinical practice despite its potential. Many studies were conducted on partial CO2 pressure differences or CO2 content (cCO2) differences either alone, or in combination with other markers for outcome or resuscitation adequacy. Furthermore, some studies deal with CO2 gap to O2 gap ratios as target for goal-directed fluid therapy or as marker for outcome. CO2 gap is a sensitive marker of tissue hypoperfusion, with added value over traditional markers of tissue hypoxia in situations in which an oxygen diffusion barrier exists such as in tissue oedema and impaired microcirculation. Venous-to-arterial cCO2 or partial pressure gaps can be used to evaluate whether attempts to increase CO should be made. Considering the potential of the several forms of CO2 measurements and its ease of use via point-of-care analysers, it is recommendable to implement CO2 gaps in standard clinical practice.

  19. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  20. Health Risk Assessment of Nitrogen Dioxide and Sulfur Dioxide Exposure from a New Developing Coal Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Tin Thongthammachart

    2017-07-01

    Full Text Available Krabi coal-fired power plant is the new power plant development project of the Electricity Generating Authority of Thailand (EGAT. This 800 megawatts power plant is in developing process. The pollutants from coal-fired burning emissions were estimated and included in an environmental impact assessment report. This study aims to apply air quality modeling to predict nitrogen dioxide (NO2 and sulfur dioxide (SO2 concentration which could have health impact to local people. The health risk assessment was studied following U.S. EPA regulatory method. The hazard maps were created by ArcGIS program. The results indicated the influence of the northeast and southwest monsoons and season variation to the pollutants dispersion. The daily average and annual average concentrations of NO2 and SO2 were lower than the NAAQS standard. The hazard quotient (HQ of SO2 and NO2 both short-term and long-term exposure were less than 1. However, there were some possibly potential risk areas indicating in GIS based map. The distribution of pollutions and high HI values were near this power plant site. Although the power plant does not construct yet but the environment health risk assessment was evaluated to compare with future fully developed coal fire plant.

  1. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  2. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-10-01

    Full Text Available This paper is aimed at selectivity investigation of gas sensors, based on chemically modified nanocrystalline tin dioxide in the detection of CO and ammonia mixtures in air. Sol-gel prepared tin dioxide was modified by palladium and ruthenium oxides clusters via an impregnation technique. Sensing behavior to CO, NH3 and their mixtures in air was studied by in situ resistance measurements. Using the appropriate match of operating temperatures, it was shown that the reducing gases mixed in a ppm-level with air could be discriminated by the noble metal oxide-modified SnO2. Introducing palladium oxide provided high CO-sensitivity at 25–50 °C. Tin dioxide modified by ruthenium oxide demonstrated increased sensor signals to ammonia at 150–200 °C, and selectivity to NH3 in presence of higher CO concentrations.

  3. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  4. Lignification in beech grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation

    International Nuclear Information System (INIS)

    Blaschke, L; Forstreuter, M.; Sheppard, L. J.; Leith, K.; Murray, M. B.; Polle, A.

    2002-01-01

    Results of a study undertaken to investigate contradictory observations reported in the literature to the effect that growth in elevated carbon dioxide affects ontogeny, are discussed. Results of this study showed that seedlings grown at elevated carbon dioxide had nitrogen concentrations of about 15 per cent lower than seedlings grown in ambient carbon dioxide. Elevated carbon dioxide caused increased growth and biomass production in trees with a medium to high nutrient supply, but had no effect on growth of trees with a low nutrient supply rate. Because elevated carbon dioxide enhanced seedling growth in the high nutrient supply treatments, the total amount of lignin produced per seedling was higher in these treatments. Overall, the results suggest that carbon dioxide availability does not directly affect lignin concentrations, but affects them indirectly through the effects on or an interaction with nitrogen supply and growth. In seedlings, elevated carbon dioxide reduced lignin concentration on a dry mass basis, indicating diminished wood quality in a carbon dioxide-enriched atmosphere. 51 refs., 2 tabs., 5 figs

  5. Chemoselective alternating copolymerization of limonene dioxide and carbon dioxide : a new highly functional aliphatic epoxy polycarbonate

    NARCIS (Netherlands)

    Li, C.; Sablong, R.J.; Koning, C.E.

    The alternating copolymerization of biorenewable limonene dioxide with carbon dioxide (CO2) catalyzed by a zinc β-diiminate complex is reported. The chemoselective reaction results in linear amorphous polycarbonates that carry pendent methyloxiranes and exhibit glass transition temperatures (Tg) up

  6. Titanium dioxide. An effective additive for minimisation of alkali vaporisation; Titandioxidadditiv. En effektiv tillsats foer att minska alkalifoeraangning

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Groenberg, Carola; Oehrman, Olov

    2008-10-15

    If an additive of titanium dioxide can limit the release of alkali under practical combustion conditions it may significantly reduce the ash related operational problems in real furnaces. The aim with this project is therefore to investigate if an additive of titanium dioxide could reduce the vaporisation of alkali during practical combustion conditions and determine the optimum mixing ratio between the fuel and titanium dioxide. Controlled combustion experiments with varied amounts of titanium dioxide in straw pellets were performed in a pellet burner together with sampling of particles in the flue gas (impactor and absolute filter), analysis of the flue gas composition (FTIR) and chemical analyses of the collected particles and bottom ashes (ICP, SEM/EDS, and XRD). The experimental results from this study showed that an increasing amount of titanium dioxide additive reduced the concentration of fine particles in the flue gas. The particle concentration was reduced from 241 mg/Nm3 to 163 mg/Nm3 for an optimum amount of titanium dioxide additive. Furthermore, the concentration of HCl and SO{sub 2} in the flue gas increased when the titanium dioxide was introduced to the straw pellets. Independent of titanium dioxide additive or not, no titanium was detected in the submicron particles. This indicates that titanium is a refractory element that is not vaporised during the combustion process. The chemical composition of the flue gas particles was also influenced by titanium dioxide additive. In general, the amounts of O, Na, and P were increased in the same time as the amounts of S, Cl, and K were reduced when more titanium dioxide was introduced to the straw pellets. From the particle concentration in the flue gas and the chemical composition of the fine particles, the particle bound elemental concentration of Na, P, S, Cl, and K could be estimated. From this investigation the concentration of potassium in the flue gas was reduced from 126 mg/Nm3 to 77 mg/Nm3 when

  7. Process for the preparation of uranium dioxide

    International Nuclear Information System (INIS)

    Watt, G.W.; Baugh, D.W. Jr.

    1977-01-01

    An actinide dioxide, e.g., uranium dioxide, plutonium dioxide, neptunium dioxide, etc., is prepared by reacting the actinide nitrate hexahydrate with sodium dithionite as a first step; the reaction product from this first step is a novel composition of matter comprising the actinide sulfite tetrahydrate. The reaction product resulting from this first step is then converted to the actinide dioxide by heating it in the absence of an oxygen-containing atmosphere (e.g., nitrogen) to a temperature of about 500 0 to about 950 0 C for about 15 to about 135 minutes. If the reaction product resulting from the first step is, prior to carrying out the second heating step, exposed to an oxygen-containing atmosphere such as air, the resultant product is a novel composition of matter comprising the actinide oxysulfite tetrahydrate which can also be readily converted to the actinide dioxide by heating it in the absence of an oxygen-containing atmosphere (e.g., nitrogen) at a temperature of about 400 0 to about 900 0 C for about 30 to about 150 minutes. Further, the actinide oxysulfite tetrahydrate can be partially dehydrated at reduced pressures (and in the presence of a suitable dehydrating agent such as phosphorus pentoxide). The partially dehydrated product may be readily converted to the dioxide form by heating it in the absence of an oxygen-containing atmosphere (e.g., nitrogen) at a temperature of about 500 0 to about 900 0 C for about 30 to about 150 minutes. 16 claims

  8. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies

    Science.gov (United States)

    Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela

    2018-01-01

    The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration. PMID:29495318

  9. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  10. Validation of double-pulse 1572 nm integrated path differential absorption lidar measurement of carbon dioxide

    Science.gov (United States)

    Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao

    2018-04-01

    A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.

  11. Carbon dioxide issue: A perspective for the energy research laboratories. Report No. ERL 90-46(TR)

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C J; Read, P J

    1990-01-01

    This document presents a major revision of CANMET's Energy Research Laboratories' (ERL) view on atmospheric emissions of carbon dioxide from its original policy in early 1989. The report covers ERL's mandate to deal with pollutants caused by the production, upgrading and utilization of fuels, concentrating on carbon dioxide emissions, and identifies new and improved fuel utilization and energy conversion technologies. It indicates strategies for implementing these technologies to decrease atmospheric pollution, toxic wastes and carbon dioxide emissions in an economically acceptable way; explains what ERL has already achieved; and presents proposals to expand ERL's work to lead Canada in the development of environmentally sound fuel technologies. Strategies not considered include improvement in motor vehicle efficiency and the enhancement of natural biological carbon dioxide absorbers by preserving forests and coral reefs and other crustaceans in oceans.

  12. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Science.gov (United States)

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  13. Imaging flow cytometry assays for quantifying pigment grade titanium dioxide particle internalization and interactions with immune cells in whole blood.

    Science.gov (United States)

    Hewitt, Rachel E; Vis, Bradley; Pele, Laetitia C; Faria, Nuno; Powell, Jonathan J

    2017-10-01

    Pigment grade titanium dioxide is composed of sub-micron sized particles, including a nanofraction, and is widely utilized in food, cosmetic, pharmaceutical, and biomedical industries. Oral exposure to pigment grade titanium dioxide results in at least some material entering the circulation in humans, although subsequent interactions with blood immune cells are unknown. Pigment grade titanium dioxide is employed for its strong light scattering properties, and this work exploited that attribute to determine whether single cell-particle associations could be determined in immune cells of human whole blood at "real life" concentrations. In vitro assays, initially using isolated peripheral blood mononuclear cells, identified titanium dioxide associated with the surface of, and within, immune cells by darkfield reflectance in imaging flow cytometry. This was confirmed at the population level by side scatter measurements using conventional flow cytometry. Next, it was demonstrated that imaging flow cytometry could quantify titanium dioxide particle-bearing cells, within the immune cell populations of fresh whole blood, down to titanium dioxide levels of 10 parts per billion, which is in the range anticipated for human blood following titanium dioxide ingestion. Moreover, surface association and internal localization of titanium dioxide particles could be discriminated in the assays. Overall, results showed that in addition to the anticipated activity of blood monocytes internalizing titanium dioxide particles, neutrophil internalization and cell membrane adhesion also occurred, the latter for both phagocytic and nonphagocytic cell types. What happens in vivo and whether this contributes to activation of one or more of these different cells types in blood merits further attention. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  15. Lidar detection of carbon dioxide in volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  16. Minimizing emission of carbon dioxide in the coconut processing

    International Nuclear Information System (INIS)

    Lozada, Ernesto P.

    1998-01-01

    About 90% of the world's coconut production is made into copra. There are 2-3 million smoke kilns which are used by the coconut farmers for making copra. It is estimated that these kilns emit carbon dioxide from 247 to 366 gram of carbon per kg of copra produced. From the world copra production of 10 M tons, the total carbon released in copra making range is 2-3 Tg(telegram=10 12 grams) or 2-3M tons of carbon per year. To minimize carbon dioxide emission in copra making, kilns with better combustion characteristics and heat utilization efficiencies must be used. One of the most promising alternative dryers is a direct-fired, natural draft dryer known as the Los Banos (Lozada) Dryer. Developed at the University of the Philippines Los Banos, the dryer consist of a simple burner, a heat distributor and a drying bin. The burner combust coconut shell, corn cob, and wood pieces with extremely high efficiency thus minimizing fuel consumption and dramatically reducing the release of airborne pollutants. The resulting copra is practically smoke free. Tests have shown that carbon dioxide emissions from the Los Banos (Lozada) Dryer are about half of that released by the traditional smoke kilns. Furthermore, the dryer emits lower concentrations of CO (50 ppm vs 2000-3000 ppm), of NO x (5 ppm vs 400 ppm), and SO x (5 ppm vs 400 ppm). When used widely, significant reductions in the emissions of greenhouse and acid rain gases from biomass combustion will be attained. (About 500 units of the Los Banos (Lozada) Dryer are now in use in the Philippines and Papua New Guinea). (Author)

  17. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    Science.gov (United States)

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  18. Recording of electrohysterogram laplacian potential.

    Science.gov (United States)

    Alberola-Rubio, J; Garcia-Casado, J; Ye-Lin, Y; Prats-Boluda, G; Perales, A

    2011-01-01

    Preterm birth is the main cause of the neonatal morbidity. Noninvasive recording of uterine myoelectrical activity (electrohysterogram, EHG) could be an alternative to the monitoring of uterine dynamics which are currently based on tocodynamometers (TOCO). The analysis of uterine electromyogram characteristics could help the early diagnosis of preterm birth. Laplacian recordings of other bioelectrical signals have proved to enhance spatial selectivity and to reduce interferences in comparison to monopolar and bipolar surface recordings. The main objective of this paper is to check the feasibility of the noninvasive recording of uterine myoelectrical activity by means of laplacian techniques. Four bipolar EHG signals, discrete laplacian obtained from five monopolar electrodes and the signals picked up by two active concentric-ringed-electrodes were recorded on 5 women with spontaneous or induced labor. Intrauterine pressure (IUP) and TOCO were also simultaneously recorded. To evaluate the uterine contraction detectability of the different noninvasive methods in comparison to IUP the contractions consistency index (CCI) was calculated. Results show that TOCO is less consistent (83%) than most EHG bipolar recording channels (91%, 83%, 87%, and 76%) to detect the uterine contractions identified in IUP. Moreover laplacian EHG signals picked up by ringed-electrodes proved to be as consistent (91%) as the best bipolar recordings in addition to significantly reduce ECG interference.

  19. A Cenozoic record of the equatorial Pacific carbonate compensation depth.

    Science.gov (United States)

    Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary; Anderson, Louise; Backman, Jan; Baldauf, Jack; Beltran, Catherine; Bohaty, Steven M; Bown, Paul; Busch, William; Channell, Jim E T; Chun, Cecily O J; Delaney, Margaret; Dewangan, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann; Hovan, Steve; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Ted C; Murphy, Brandon H; Murphy, Daniel P; Nakamura, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca; Rohling, Eelco J; Romero, Oscar; Sawada, Ken; Scher, Howie; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy; Williams, Trevor; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E

    2012-08-30

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

  20. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo