WorldWideScience

Sample records for diorites

  1. Processes and sources during late Variscan Dioritic-Tonalitic magmatism

    DEFF Research Database (Denmark)

    Pietranik, A.; Waight, Tod Earle

    2008-01-01

    The Gesiniec Intrusion (Strzelin Massif, East Sudetes) (~307-290 Ma) is composed predominantly of dioritic to tonalitic rocks with 87Sr/86Sr ratios ranging from 0.7069 to 0.7080 and eNd=-3.1 to -4.2, emplaced as post-collisional magmas following the Variscan orogeny. In situ Sr isotope and trace ...

  2. The U-Pb age of the Posselandia Diorite, Hidrolina, Goias State, Brazil

    International Nuclear Information System (INIS)

    Jost, Hardy; Pimentel, Marcio M.; Fuck, Reinhard A.; Danni, Jose C.M.

    1993-01-01

    The Posselandia Diorite intrudes Archean granite-greenstone terrains of the region of Hidrolina, Central Goias, Brazil. U-Pb radiometric determinations in two fractions of zircon crystals from the diorite yield an age of 2,146 ± 1,6 Ma, interpreted as the crystallization age of the intrusion. The lack of deformation in the intrusion demonstrates that consolidation of the granite-greenstone terrains in the Hidrolina-Pilar de Goias-Crixas area took place before 2,146 Ma. (author). 3 figs., 2 tabs

  3. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    International Nuclear Information System (INIS)

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 (angstrom), forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10 -14 mol biotite m -2 s -1 . Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 (micro)m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10 -13 mol hornblende m -2 s -1 : the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the

  4. Alteration dependent physical-mechanical properties of quartz-diorite building stones

    Directory of Open Access Journals (Sweden)

    Masoud Torkan

    2016-12-01

    Full Text Available The microscopic and geomechanical properties of igneous building stones include the level of alteration, presence of micro cracks, peak strength, porosity, proportion of detrimental minerals, etc. Porosity is reportedly of a devastating impact on the peak strength of igneous rocks. The quartz diorite rock samples in this study were selected from five quarries in Natanz, Iran and subject to microscopic and geomechanical investigations. The level of alteration and the minerals detrimental to the strength of the samples were identified from thin sections. Therefore, the geomechanical tests upon density, porosity, durability index, the Brazilian, and triaxial tests were conducted as per ISRM standards. The findings from microscopic studies reveal that alteration is of more intense impact on rock peak strength compared to that of porosity. The results were compared to standard values and a qualitative correlation between strength and microscopic properties was detected accentuating the importance of microscopic studies on construction stones. The correlation thereupon may be adopted in the exploration, exploitation, and process of construction stones to avoid heavy expenditures and damage to the environment.

  5. Semi-adakitic magmatism of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic magmatism in southeastern Eurasia

    Science.gov (United States)

    Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk

    2018-04-01

    The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.

  6. Syenite and diorite: a unique stone heritage in north of Italy

    Science.gov (United States)

    Tori, Alice; Marini, Paula; Zichella, Lorena; Bellopede, Rossana

    2015-04-01

    The Syenite from the Cervo Torrent Valley near Biella in northern Italy has been widely used as a building material. During the XXth century it has been exported all over the World for covering and paving slabs and monumental work. It is an intrusive magmatic rock found in the Cervo Valley pluton, which is part of the Balma pluton. It formed about 30 million years ago as a result of the Alpine Orogeny and is known to be post-orogenic because of the absence of metamorphism. Hydrothermal mineralization associated with the pluton includes minerals of molybdenum, tungsten, copper, lead, silver and gold. Utilisation of the Syenite has been the only industrial activity in the high Cervo Valley sustaining the whole of valley life. During the second half of the XIXth century and during the first part of the XXth the competencies and the working skills of the Cervo Valley stonecutters was exported as far as Perù and China. It was e.g. used for the edification and refinement of the Oropa Sanctuary square in Piedmont, Italy. It has been recognized as an interesting building material because of the intrinsic characteristics such as its resistance to mechanical wear, durability of colour tone and intensity and resistance to water wear (e.g. in fountains) and maintains its mechanical integrity over time. Diorite is also a magmatic intrusive rock and, similar to the syenite, differs from granite due to the low concentration of quartz (<10%). It consists of plagioclase, pyroxene, amphibole and quartz. It is exploited at the Vico Canavese quarry, near Turin, Italy. It is easy to cut and to process with the suitable tools. It has a number of variants, each with specific characteristics and behavior. It is multipurpose material and consequently it can be used in different shape and application, such as slabs, covering, bed river, building block and tiles. Although mainly used in Italy, it has also been used world wide for many different constructional and aesthetic purposes. These

  7. First record of 1.2 Ga quartz dioritic magmatism in the Archaean Yilgarn Craton, Western Australia, and its significance

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Y.; McNaughton, N.J.; Groves, D.I.; Dunphy, J.M. [University of Western Australia, Nedlands, WA (Australia). Centre for Strategic Mineral Deposits, Department of Geology and Geophysics

    1999-06-01

    Ion microprobe (SHRIMP) U-Pb zircon dating. Pb-Nd isotope tracer studies and major, trace and rare-earth element analyses have identified, for the first time. a Mesoproterozoic (1.2 Ga) quartz diorite intrusion in the central part of the Archaean Yilgarn Craton. Western Australia The quartz diorite is characterised by intergrowths of quartz and plagioclase, having low A/CNK (0 8). low K{sub 2}O (0.28 wt%), Ba (54 ppm), Rb (11 ppm), Sr (92 ppm), Pb (13 ppm), U (1.7 ppm) and Th (6 ppm) contents, high Nd (41 ppm), Sm (10.5 ppm), Zr (399 ppm). Nb (18.5 ppm). Y (57.5 ppm) and Sc (19 ppm) contents. a low Pb isotope two-stage model {mu} value (6.3), and a primitive initial e{sub Nd} value (+3.4) at 1.2 Ga. It is interpreted that the 1.2 Ga quartz diorite was derived from a predominantly mantle source, with minor crustal contamination, possibly from the surrounding Archaean monzogranites or their source region, during magma ascent. The age (1215 {+-} 11 Ma) of the intrusion overlaps with the timing of a major continental collisional orogeny in the Albany-Fraser Orogen, about 400km south, and is broadly coeval with the diamond-bearing Argyle lamproites in the east Kimberley Block. This study extends the history of granitoid magmatism in the central craton by more than 1.0 billion years (2.6 to 1.2 Ga), and has implications for isotopic data interpretations of tectonothermal events in the craton. Copyright (1999) Blackwell Science Pty Ltd 33 refs., 3 tabs., 6 figs.

  8. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    Science.gov (United States)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  9. Isotope geochemistry of brasiliano age, coarsely porphyritic, K-calc-alkalic granitoids and associated K-diorites, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.; Mariano, G.; Ferreira, V.P.

    1989-01-01

    Several porphyritic, K-calc-alkalic were syntectonically intruded in NE Brazil during the Brasiliano orogeny. They show bi-(qz) diorite and coarsely porphyritic granodiorite to qz monzonite ('Itaporanga-type') in commingling zones on a scale of cm to m irrespective of whether plutons are at the margins of the NE-trending Cachoeirinha-Salgueiro Fold Belt (CSF) or intruded metasediments of the Serido Fold Belt (SFB). The bi(qz) diorites are found in magmatic or stromatic structures and narrow dikes wich intruded the felsic facies. SiO 2 in the porphyritic facies ranges from 61 to 72% with K 2 O usually > Na 2 O. K-diorities exhibit SiO 2 from 50 to 58%, MgO from 2 to 10% and K 2 O from 2 to 5%. Both facies are usually Ba and Sr-enriched, with similar, highly fractionated REE patterns, lacking free of Eu anomaly. Quartz 180 values are considered homogeneous on the scale of these intrusions in the CSF, (8 to 10 per milSMOW). Bi-(qz) diorites exhibit slightly higher 180 (9.5 to 10.5 per milSMOW). In the SFB both facies are lower than 180. The oxygen isotope data for the porphyritic facies are compatible with I-type source with some metasedimentary component of variable proportion. As bi(qz) diorites were formed pre- to post-porphyritic facies intrusion, their high LREE, K and 180 reflect their source rather than the interaction with the potassic felsic magma. Preliminarly sulfur isotope values suggest that porphyritic facies of granitoids in the SBF are lower in 34S than those in the CSF. Rb and Sr isotopes reflect source heterogeneity, complicated by mixing relations. Ages span from 510 to 630 Ma suggesting that the Itaporanga-type association was formed during uplift and cooling of the Pan-African I and onset of the Pan-African II orogenies, recognized in West Africa. (author) [pt

  10. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  11. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust

    Science.gov (United States)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming

    2018-06-01

    The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional

  12. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet

    Science.gov (United States)

    Cao, Kang; Yang, Zhi-Ming; Xu, Ji-Feng; Fu, Bin; Li, Wei-Kai; Sun, Mao-Yu

    2018-04-01

    The giant Pulang porphyry Cu-Au deposit in the Yidun arc, eastern Tibet, formed due to westward subduction of the Garze-Litang oceanic plate in the Late Triassic. The deposit is hosted in an intrusive complex comprising primarily coarse-grained quartz diorite and cored quartz monzonite. Here, we investigate a suite of simultaneous (216.6 ± 1.9 Ma) diorite porphyries within the complex. The diorite porphyries are geochemically similar to mafic magmatic enclaves (MME) hosted in coarse-grained quartz diorite, and both are characterized by low SiO2 (59.4-63.0 wt%) and high total alkali (Na2O + K2O = 7.0-9.2 wt%), K2O (3.5-6.4 wt%), MgO (3.2-5.5 wt%), and compatible trace element (e.g., Cr = 72-149 ppm) concentrations. They are enriched in large-ion lithophile and light rare earth elements (LILE and LREE, respectively), but depleted in high field-strength and heavy rare earth elements (HFSE and HREE, respectively), and yield variably high (La/Yb)N ratios (17-126, average 65) with weak to negligible Eu anomalies. Furthermore, they yield low (87Sr/86Sr)i ratios (0.7054-0.7067), weakly negative εNd(t) (-2.8 to -0.8) values, and variable zircon εHf(t) (-5.4 to +0.8) and δ18O (6.0‰-6.7‰) values. These geochemical features indicate that the diorite porphyry and MME formed through crustal assimilation of a magma produced during low-degree partial melting of metasomatized phlogopite-rich subcontinental lithospheric mantle. In contrast, the coarse-grained quartz diorite and quartz monzonite have relatively high concentrations of SiO2 (61.1-65.3 wt%), K2O (4.1-5.4 wt%), and total alkali (Na2O + K2O = 7.1-8.1 wt%), and low concentrations of MgO (generally Y ratios (50-63) that indicate an adakitic affinity, and are enriched in LILE, depleted in HFSE, and yield lower (La/Yb)N values (13-20, average 17) than the diorite porphyry and MME. They yield low (87Sr/86Sr)i ratios (0.7046-0.7066), negative εNd(t) (-3.3 to -1.7) values, and zircon εHf(t) and δ18O values of -2.9 to

  13. Geochemistry and chronology of the early Paleozoic diorites and granites in the Huangtupo volcanogenic massive sulfide (VMS) deposit, Eastern Tianshan, NW China: Implications for petrogenesis and geodynamic setting

    Science.gov (United States)

    Zheng, Jiahao; Chai, Fengmei; Feng, Wanyi; Yang, Fuquan; Shen, Ping

    2018-03-01

    The Eastern Tianshan orogen contains many late Paleozoic porphyry Cu and magmatic Cu-Ni deposits. Recent studies demonstrate that several early Paleozoic volcanogenic massive sulfide (VMS) Cu-polymetallic and porphyry Cu deposits were discovered in the northern part of Eastern Tianshan. This study presents zircon U-Pb, whole-rock geochemical, and Sr-Nd isotopic data for granites and diorites from the Huangtupo VMS Cu-Zn deposit, northern part of the Eastern Tianshan. Our results can provide constraints on the genesis of intermediate and felsic intrusions as well as early Paleozoic geodynamic setting of the northern part of Eastern Tianshan. LA-ICP-MS zircon U-Pb analyses suggest that the granites and diorites were formed at 435 ± 2 Ma and 440 ± 2 Ma, respectively. Geochemical characteristics suggest that the Huangtupo granites and diorites are metaluminous rocks, exhibiting typical subduction-related features such as enrichment in LILE and LREE and depletion in HFSE. The diorites have moderate Mg#, positive εNd(t) values (+6.4 to +7.3), and young Nd model ages, indicative of a depleted mantle origin. The granites exhibit mineral assemblages and geochemical characteristics of I-type granites, and they have positive εNd(t) values (+6.7 to +10.2) and young Nd model ages, suggesting a juvenile crust origin. The early Paleozoic VMS Cu-polymetallic and porphyry Cu deposits in the northern part of Eastern Tianshan were genetically related. The formation of the early Paleozoic magmatic rocks as well as VMS and porphyry Cu deposits in the northern part of Eastern Tianshan was due to a southward subduction of the Junggar oceanic plate.

  14. Late Early-Cretaceous quartz diorite-granodiorite-monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei; Wang, Jiang-Bo

    2017-09-01

    Geochemical variations in granitic rocks may be controlled by their source rocks, melting reactions and subsequent magmatic processes, which resulted from various geodynamic processes related to subduction, collision, or slab break-off. Here we report new LA-ICP-MS zircon U-Pb ages and Hf isotopes, whole-rock chemistry and Sr-Nd isotopes for the late Early Cretaceous quartz diorite, granodiorite and monzogranite in the Gaoligong belt, southeastern Tibet Plateau. The zircon U-Pb dating yield ages of 113.9 ± 1.6, 111.7 ± 0.8, and 112.8 ± 1.7 Ma for the quartz diorite, granodiorite, and monzogranite, respectively, which are coeval with bimodal magmatism in the central and northern Lhasa sub-terrane. There are the distinct sources regions for the quartz diorite and granodiorite-monzogranite association. The quartz diorites are sodic, calc-alkaline and have high Mg# (52-54) values. They also have elevated initial 87Sr/86Sr (0.707019 to 0.709176) and low εNd(t) (- 5.16 to - 7.63), with variable zircon εHf(t) values (+ 5.65 to - 9.02). Zircon chemical data indicate a typical crustal-derived character with high Th (142-1260 ppm) and U (106-1082 ppm) and moderate U/Yb ratios (0.30 to 2.32) and Y content (705-1888 ppm). Those data suggest that the quartz diorites were derived from partial melting of ancient basaltic lower crust by a mantle-derived magma in source region. The granodiorite-monzogranite association has high-K calc-alkaline, weakly peraluminous characters. They show lower Nb/Ta (5.57 to 13.8), CaO/Na2O (0.62 to 1.21), higher Al2O3/TiO2 (24.4 to 44.4) ratios, more evolved whole-rock Sr-Nd and zircon Hf isotopic signatures, all of which suggest derivation from mixed basaltic and metasedimentary source rocks in a deep crustal zone. We propose that the granitic magmatisms at ca. 113-110 Ma in the Gaologong belt was triggered by the slab break-off of Bangong-Nujiang Tethyan oceanic lithosphere. Supplementary Dataset Table 2. Single-grain zircon Hf isotopic data

  15. The Jeffers Brook diorite-granodiorite pluton: style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.

    2018-04-01

    Small appinite plutons ca. 610 Ma outcrop in the peri-Gondwanan Avalon terrane of northern Nova Scotia, with different structural levels exposed. Field mapping shows that the Jeffers Brook pluton is a laccolith emplaced along an upper crustal thrust zone, likely in a dilational jog in a regional dextral strike-slip system. The oldest rocks are probably mafic sills, which heated the area facilitating emplacement of intermediate magmas. Cross-cutting relationships show that both mafic and intermediate magmas were supplied throughout the history of pluton emplacement. The modal composition, mineral chemistry, and bulk chemistry of gabbro, diorite, tonalite, granodiorite, and granite have been studied in the main plutonic phases, dykes, and sills, and mafic microgranular enclaves. As with the type appinites in the Scottish Caledonides, the pluton shows evidence of high water content: the dominance of hornblende, locally within pegmatitic texture; vesicles and irregular felsic patches in enclaves; and late aplite dykes. Analyzed mafic microgranular enclaves are geochemically similar to larger diorite bodies in the pluton. Tonalite-granodiorite is distinct from the diorite in trace-element geochemistry and radiogenic isotopes. Elsewhere to the east, similar rocks of the same age form vertically sheeted complexes in major shear zones; hornblende chemistry shows that they were emplaced at a deeper upper crustal level. This implies that little of the observed geochemical variability in the Jeffers Brook pluton was developed within the pluton. The general requirements to form appinites are proposed to be small magma volumes of subduction-related magmas that reach the upper crust because of continual heating by mafic magmas moving through strike-slip fault pathways and trapping of aqueous fluids rather than venting through volcanic activity.

  16. Magma Mixing, Mingling and Its Accompanying Isotopic and Elemental Partitioning: Records from Titanites in Guojialing-type Granodiorites and Dioritic Enclaves, Jiaodong, North China

    Science.gov (United States)

    Jiang, P.; Yang, K. F.; Fan, H. R.; Liu, X.

    2016-12-01

    The grain-scale textural and in-situ compositional analyses on accessory minerals (such as titanite, rutile, apatite, monazite, etc.) have recently been a hot topic for geologists, through which a detailed information on magmatic, metamorphic or hydrothermal process can be extracted. As an attempt to unravel the petrogenesis of Early Cretaceous Guojialing-type granodiorites and their bearing dioritic enclaves, we accomplished an integrated geochronological and geochemical study on titanites within these rocks. Three types of titanites, with distinguishable textural and geochemical features, are identified. G-type titanites (from granodiorites) and E-type-I titanites (from plagioclase-rich dioritic enclaves) yield identical U-Pb age of 130 Ma, but reveal distinct back-scattered electron (BSE) zonings. G-type titanites are characterized by oscillatory zonings whereas E-type-I titanites are marked by core-mantle-rim zonings, exhibiting drastic but contrary variation trends for several key elements (such as LREEs, Zr, Hf and F) among their transition BSE zones. These two types of titanites are interpreted to crystallize coevally, and record a notable temperature and compositional change of two corresponding melts, as a response to magma mixing. E-type-II titanites (from plagioclase-poor dioritic enclaves) yield a relatively younger U-Pb age at 128 Ma, and show typical interstitial growth with narrower and lower range of Zr, total REEs contents, but higher F content and Nb/Ta ratios. Such titanites are perceived to record late-stage mingling, during which F-rich and REE-poor hybrid granodioritic magma squeezed into the incompletely consolidated dioritic enclaves with accompanying fluid-rock interaction. Unlike the dramatic elemental changes in these differentiated titanites, in-situ Nd isotopic compositions are relatively homogeneous, which in our view is a good sign of showing that isotopic equilibrium among two magma systems was more easily reached compared to

  17. Petrogenesis and zircon U-Pb dating of skarnified pyroxene-bearing dioritic rocks in Bisheh area, south of Birjand, eastern Iran

    Directory of Open Access Journals (Sweden)

    Malihe Nakhaei

    2014-10-01

    Full Text Available Introduction The study area is located 196 km south of Birjand in eastern border of the Lut block Berberian and King, 1981 in eastern Iran between 59°05′35" and 59°09′12" E longitude and 31°42′29" and 31°44′13" N latitude. The magmatic activity in the Lut block began in the middle Jurassic such as Kalateh Ahani, Shah Kuh and Surkh Kuh granitoids that are among the oldest rocks exposed within the Lut block (Esmaeily et al., 2005; Tarkian et al., 1983; Moradi Noghondar et al., 2011-2012. Eastern Iran, and particularly the Lut block, has great potential for different types of mineralization as skarnification in Bisheh area which has been studied in this paper. The goal of this study is to highlight the geochronology, geochemistry of major and trace elements, Rb-Sr, Sm-Nd isotopes for skarnified pyroxene-bearing diorites. Materials and methods Major element compositions of thirteen samples were determined by wavelength-dispersive X-ray fluorescence (XRF spectrometry, using fused discs and the Phillips PW 1410 XRF spectrometer at Ferdowsi University, Mashhad, Iran. These samples were analysed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Analytical Laboratories, Vancouver, British Columbia, Canada. Zircon grains were separated from pyroxene diorite porphyrys using heavy liquid and magnetic techniques at the Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan. Zircon U-Pb dating was performed by laser ablation-inductively-coupled plasma-mass spectrometry (LA-ICP-MS, using an Agilent 7500 s machine and a New Wave UP213 laser ablation system, equipped at the Dr Shen-Su Sun memorial laboratory in the Department of Geosciences, National Taiwan University, Taiwan. Strontium and Nd isotopic analyses were performed on a six-collector Finnigan MAT 261 thermal-ionization mass spectrometer at the University of Colorado, Boulder, Colorado, United States. 87Sr/86Sr ratios were determined using four

  18. Constraints on the depth of generation and emplacement of a magmatic epidote-bearing quartz diorite pluton in the Coast Plutonic Complex, British Columbia

    Science.gov (United States)

    Chang, J.M.; Andronicos, C.L.

    2009-01-01

    Petrology and P-T estimates indicate that a magmatic epidote-bearing quartz diorite pluton from Mt. Gamsby, Coast Plutonic Complex, British Columbia, was sourced at pressures below ???1.4 GPa and cooled nearly isobarically at ???0.9 GPa. The P-T path indicates that the magma was within the stability field of magmatic epidote early and remained there upon final crystallization. The pluton formed and crystallized at depths greater than ???30 km. REE data indicate that garnet was absent in the melting region and did not fractionate during crystallization. This suggests that the crust was less than or equal to ???55 km thick at 188 Ma during the early phases of magmatism in the Coast Plutonic Complex. Late Cretaceous contractional deformation and early Tertiary extension exhumed the rocks to upper crustal levels. Textures of magmatic epidote and other magmatic phases, combined with REE data, can be important for constraining the P-T path followed by magmas. ?? 2009 Blackwell Publishing Ltd.

  19. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  20. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    Science.gov (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  1. The high-K calc-alkalic Serra da Lagoinha batholith, States of Ceara and Paraiba (Northeastern region, Brazil): coexistence and mixing of dioritic and quartz monzonitic to granitic magmas

    International Nuclear Information System (INIS)

    Mariano, Gorki; Sobreira, Mauricio de Nassau de Mattos

    1999-01-01

    The Serra da Lagoinha batholith (SLB) has an outcrop area of 200 km 2 is located in the Borborema Province, northeastern Brazil, and intrudes schists and phylites at the border of the Cachoeirinha-Salgueiro fold belt. Its southern border is defined by a major curved NE-SW sinistral transcurrent shear zone (Boqueirao dos Cochos) connecting the E-W dextral shear zones of Patos to the north and Pernambuco to the south. The SLB has three lithologic domains: the felsic porphyritic domain composed of K-feldspar megacrystic monzonitic, quartz monzonitic, quartz monzodioritic, granitic to granodioritic rocks; the k-dioritic domain composed of biotite (quartz) dioritic to tonalitic rocks and the hybrid domain composed of monzonitic and biotite (quartz) dioritic rocks. Field evidences show that these lithologic domains were produced by the coexistence and mixing of K-diorites with potassic monzonitic to granodioritic magmas. The mafic rocks are enriched in Nb, ba, and Zr and LREE in relation to the felsic porphyritic rocks. The REE patterns for mafic and felsic rocks are similar and enriched in the LREE in relation to the HREE, with (La/Yb) N varying from 22.43 to 36.10 for the felsic and from 27.21 to 58.87 for the mafic rocks. Al Τ in amphibole geobarometer (Hollister 1987) shows that amphibole crystallization in the SLB occurred at approximately 4.5 kbar. Geothermometry based on the coexistence of amphibole and plagioclase, (Blundy and Holland 1990) gives a temperature of 742 deg C. Whole rock Oxygen isotope data showed average values for mafic of δ 18 O = + 7.9 permil SMOW and for the felsic rocks of δ 18 O + 9.1 permil SMOW , suggesting either isotopic equilibrium of coexistent magmas of distinct sources or crystal fractionation process controlling the evolution from mafic to felsic rocks. Quartz corrected values for the felsic porphyritic rocks averaged δ 18 O = + 9.2 permil, suggesting that the whole rock data represent magmatic values. Sm-Nd systematics show T

  2. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China

    Science.gov (United States)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen

    2018-03-01

    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently

  3. 中祁连苏里地区奥陶纪石英闪长岩地球化学特征及年代学意义%Geochemical Characteristics and Chronology Significance of Ordovician Quartz Diorite from Suli Area in Middle Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    郑英; 陈光庭; 张小永; 宋泰忠; 梁坤先

    2017-01-01

    In Suli area,the Ordovieian quartz diorite has poor aluminum and high potassium (K2O>NaO),which belongs to calc-alkaline series,with the characteristics of partial aluminium shoshonite series and obvious Ⅰ-type granite.Rare earth and trace elements characteristics show that a mantle material was involved in the material source of quartz diorite.The tectonic environment discrimination suggests that the quartz diorite belongs to the island arc granite formed before the plate collision.The zircon U-Pb isotopic age has been tested by LA-ICP-MS method,the obtained zircon 206pb/238 U weighted average age is (474 ±-2.9) Ma (MSWD =0.12),which limit the formation age of the quartz diorite era to early Ordovician,suggesting that the north Qilian Ocean experienced two-way expansion and subduction stage,while the southern Qilian continental subduction extrusion cause the mantle material upwelling andthe partial melting of continental crust.And then,the rock mass of quartz diorite was formed.The age determination of this rock mass provides a new evidence for the subduction era of the north Qilian Ocean.%苏里地区奥陶纪石英闪长岩具贫铝、高钾(K2O>NaO)特征,属于钙碱性系列,具偏铝质钾玄岩系列岩石的特点,明显具Ⅰ型花岗岩的特征.岩石稀土及微量元素特征均显示物质来源有地幔物质参与,构造环境判别显示为形成于板块碰撞前的岛弧花岗岩.利用LA-ICP-MS法进行锆石U-Pb同位素年龄测定,样品的锆石206 pb/238U加权平均年龄为(474±2.9) Ma(MSWD=0.12),限定该石英闪长岩的形成时代为早奥陶世,表明在北祁连大洋发生双向扩张俯冲阶段,南部中祁连陆块遭受俯冲挤压导致地幔物质上涌,同时陆壳部分熔融,岩体为两者混合而形成的产物,该岩体年龄的确定为北祁连洋的俯冲时代提供了新的证据.

  4. Petrography and Geochemistry (Trace, Ree and Pge of Pedda Cherlo Palle Gabbro-Diorite Pluton, Prakasam Igneous Province, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Subramanyam K.S.V.

    2015-09-01

    Full Text Available Prakasam Igneous Province (PIP is an important geological domain in the Eastern Dharwar Craton (EDC, found in the junction zone between the EDC and Eastern Ghat Mobile Belt (EGMB. The Pedda Cherlo Palle (PCP gabbros are massive, leucocratic-mesocractic, and show cumulus textures with minerals plagioclase, cpx, and amphiboles. Compositionally, plagioclase is a labradorite-bytownite, cpx is diopside to augite, olivines are hyalosiderites and amphiboles are magnesiohornblendes. PCP gabbros have normal SiO2, high Al2O3, moderate to high TiO2, Na2O and medium Fe2O3, so, classified as subalkaline tholeiitic gabbros. Fractionated rare earth element (REE patterns, high abundance of large ion lithofile elements (LILE and transitional metals coupled with light REE (LREE relative enrichment over heavy REE (HREE and Nb are characteristics of partial melting of depleted mantle and melts that have undergone fractional crystalisation. These partial melts are enriched in LREE and LILE, due to the addition of slab derived sediment and fluids. PCP gabbros contain low abundance (5.1 to 24.6 ng/g of platinum group elements (PGE, and show an increase in the order Ir>Os>Pt>Ru»Pd>Rh. We propose that the subduction related intraoceanic island arc might have accreted to the southeastern margin of India to the east of Cuddapah basin in a collisional regime that took place during Ur to Rodinia amalgamations.

  5. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China

    Science.gov (United States)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia

    2018-03-01

    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  6. Coexistence and mixing of magmas in the late precambrian Itaporanga batholith, State of Paraiba, Northeastern Brazil

    International Nuclear Information System (INIS)

    Mariano, G.; Sial, A.N.

    1990-01-01

    The Precambrian Cachoeirinha-Salgueiro Fold Belt (CSF) located in the western portion of the states of Pernambuco and Paraiba is intruded, in its northern portion, by several coarsely porphyritic potassic calc-alkalic batholiths. These batholiths were syntectonically emplaced in relation to the Brasiliano cycle (=Pan-African) and are commonly associated with potassium diorites suggesting coexistence and mixing between felsic and mafic magmas. In the Itaporanga batholith three petrographic domains were mapped. A hybrid zone characterized by intense mechanical mixing of granite to granodiorite and potassium diorite magmas is located towards the border of the batholith. A commingling zone where felsic porphyritic granite to granodiorite and potassium diorite rocks are individualized at outcrop scale is located towards the center of the batholith. Finally a felsic porphyritic facies occur in the hybrid zone. Similarity among chemical analyses of amphiboles from potassium dioritic enclaves of the Itaporanga batholith and from the potassium diorite stock east of it suggest a common source for both magmas. This hypothesis is corroborated by similar REE patterns for potassium dioritic enclaves of the Itaporanga batholith and for the potassium diorite stock. The batholith shows a well developed foliation which dips towards its core suggesting that the present level of exposure represents the root zone of a diapir, where intense interaction between felsic and mafic magmas took place. (author)

  7. Determination of Cl-36 in Irradiated Reactor Graphite

    International Nuclear Information System (INIS)

    Beer, H.-F.; Schumann, D.; Stowasser, T.; Hartmann, E.; Kramer, A.

    2016-01-01

    Two of the three research reactors at the Paul Scherrer Institute (PSI), the reactors DIORIT and PROTEUS, contained reactor graphite. Whereas the former research reactor DIORIT has been dismantled completely the PROTEUS is subject to a future decommissioning. In case of the DIORIT the reactor graphite was conditioned applying a procedure developed at PSI. In this case the 36 Cl content had to be determined after the conditioning. The result is reported in this paper. The radionuclide inventory including 36 Cl of the graphite used in PROTEUS was measured and the results are reported in here. It has been proven that the graphite from PROTEUS has a radionuclide inventory near the detection limits. All determined radionuclide activities are far below the Swiss exemptions limits. The graphite from PROTEUS therefore poses no radioactive waste. In contrast, the 36 Cl content of graphite from DIORIT is well above the exemption limits. (author)

  8. The physical properties of coal

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2015-01-01

    Full Text Available FORMATION KIMBERLITE LAMPROPHYRE LAVA LIMESTONE LUTACEOUS ARENITE LUTITE MAGNETITE METAMORPHIC ROCKS MONZONITE NORITE OLIVINE GABBRO PLUTONIC ROCKS PYROCLASTIC BRECCIA PYROXENITE QUARTZ DIORITE RHYOLITE RUDITE SAND SEDIMENTARY SILCRETE SILICICLASTIC SEDIMENT...

  9. Caring for disused nuclear power plants

    International Nuclear Information System (INIS)

    Francioni, W.M.

    1981-10-01

    EIR studies are being made among other things of the break-down of the biological shield of light water reactors and in particular the break-down of the reactor island of the former research reactor DIORIT. In selecting a method for disassembly of the concrete structures the use of a wire saw has also been examined. To gain experience two concrete test pieces - representing respectively the concrete and reinforcement of the DIORIT biological shield and the biological shield of the Beznau nuclear plants - have undergone cutting trials. The results show that the wire saw can be economically used to cut not only Baryte concrete and cast iron (thermal shield of DIORIT) but also the reinforced concrete of Beznau. (Auth.)

  10. Uruguay geology contributions no. 9

    International Nuclear Information System (INIS)

    Preciozzi, F.

    1989-01-01

    The Isla Mala intrusive complex is found to be made up of a main granodiorite unit which comprise dioritic to leucogranitic rocks, of a contemporaneous vein system of granites and diorites and of a stock of porphyroblastic hornblendites. Petrographically abundant mineralogical and textural variations are found. These units passed different evolutionary trends. The geochemical factors discriminate the diorites 01 the main unit from those of the vein type and both from the stock of porphyroblastic hornblendites. According to the geochemical and petrografic analyses it is suggested that the main unit has through an evolutionary process during fractional crystallization.The coexistence of mafie and acid magma has been proved. A model of thermo gravitational diffusion has been suggested for the vein system. Finally the stock of porphyroblastic hornblendites has a different source, probably from a magma with ultramalic tendency.

  11. Les granites sodiques et les roches associées de l'ophiolite de Chamrousse-Tabor et du groupe de Rioupéroux-Livet ( Isère-France) - Pétrochimie et géochimie .

    OpenAIRE

    Scarenzi , Denis

    1984-01-01

    Les roches leucocrates du massif UB-B de Chamrousse - Tabor sont intrusives au sommet de la séquence ophiolitique et y sont associées à des gabbros cumulats, des ferrogabbros, des basaltes et des dolérites. Ces roches correspondent à des cumulats plagioclastiques (albitites et anorthosites), des diorites quartziques, des tonalltes et des leucotonalites. . Des diorites quartziques, tonalites et leucotonalites sont également présentes dans le groupe de Séchilienne. Elles y sont accompagnées par...

  12. Geological research for hot spring resources in the Kanno-kawa area, Tsukui-machi, Tanzawa mountains

    Energy Technology Data Exchange (ETDEWEB)

    1969-03-01

    The Kanno-kawa area is mainly composed of the following geological units: miocene submarine pyroclastic formation and its associated augite dolerite sheets, quartz diorite intrusive, and hornblende andesite dykes. The Miocene pyroclastic rocks mainly consist of tuff, tuff breccia, and agglomerate of basaltic, andestic, and dacitic composition intercalated with subordinate amounts of conglomerate, sandstone, and siltstone beds. These rocks were divided into two lithological facies: basaltic and andestic tuff and tuff breccia facies and a facies of dacitic pumice tuff with characteristic white or gray spots of siliceous pumice (2 to 35 mm in diameter). These pyroclastic rocks suffered metamorphism mainly related to the intrusion of quartz diorite. The metamorphic rocks can be divided into the following four zones: amphibolite, actinolite hornfels, pumpellyite-prehnite, and zeolite. Probably during the late stage of the metamorphism, hornblende andesite intruded along sheared zones running from NE or NNE toward SW or SSW. Above noted Miocene pyroclastic rocks, quartz diorite, and hornblende andesite also suffered a hydrothermal alteration by which many zeolite bearing veins or networks were formed. Mineral waters of the Tanzawa mountains are believed to be related to the intrusion of quartz diorite, hornblende andesite, and formation of zeolite veins. In this respect, mineral water of highly alkaline nature can be expected by deep drilling of 600 to 1,000 m at some places such as Choja-goya and Hikage-zawa of the Kanno-kawa area.

  13. Origin of the pegmatite veins within the skarn body at Vevčice near Znojmo (Gfohl Unit, Moldanubian Zone)

    Czech Academy of Sciences Publication Activity Database

    Buriánek, D.; Houzar, S.; Krmíček, Lukáš; Šmerda, J.

    2017-01-01

    Roč. 62, č. 1 (2017), s. 1-23 ISSN 1802-6222 Institutional support: RVO:67985831 Keywords : diorite pegmatite * skarn * mineralogy * geochemistry * Moldanubian Zone * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.609, year: 2016

  14. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey

    NARCIS (Netherlands)

    Karsli, O.; Dokuz, A.; Uysal, I.; Aydin, F.; Chen, B.; Kandemir, R.; Wijbrans, J.R.

    2010-01-01

    We present elemental and Sr-Nd-Pb isotopic data for the magmatic suite (~79 Ma) of the Harşit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO

  15. Onset of seafloor spreading in the Iapetus Ocean at 608 Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides

    DEFF Research Database (Denmark)

    Svenningsen, Olaf

    2001-01-01

    that crystallization in the youngest dykes mimicked similar processes in gabbro plutons. Six zircon fractions, from the diorite pods including two single grains, were analysed geochronologically by the U–Pb thermal ionization mass spectrometry method. The data yield a linear array of points that are 0.4–0.8% normally...

  16. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  17. Petrology, geochemistry and LA-ICP-MS U-Pb geochronology of Paleoproterozoic basement rocks in Bangladesh: An evaluation of calc-alkaline magmatism and implication for Columbia supercontinent amalgamation

    Science.gov (United States)

    Hossain, Ismail; Tsunogae, Toshiaki; Tsutsumi, Yukiyasu; Takahashi, Kazuki

    2018-05-01

    The Paleoproterozoic (1.7 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations (e.g. SiO2 = 50.7-74.7%) and include diorite, quartz diorite, monzodiorite, quartz monzonite and granite. The pluton overall displays metaluminous, calc-alkaline orogenic suite; mostly I-type suites formed within subduction-related magmatism. The observed major elements show general trends for fractional crystallization. Trace element contents also indicate the possibility of a fractionation or assimilation; explain the entire variation from diorite to monzonite, even granite. The pluton may have evolved the unique chemical features by a process that included partial melting of calc-alkaline lithologies and mixing of mantle-derived magmas, followed by fractional crystallization, and by assimilation of country rocks. The pluton shows evidence of crystal fractionation involving largely plagioclase, amphibole and possibly biotite. Some of the fractionated magmas may have mixed with more potassic melts from distinct parts of the continental lithosphere to produce granites and/or pegmatites. New geochronological results of granitic pegmatite (1722 ± 10 Ma) are indisputably consistent with diorite and tonalite and those data showing credible geochronological sequence (i.e., diorite - tonalite - granitic pegmatite). Identical Paleoproterozoic age (1.7 Ga) with distinctive magmatism of the Maddhapara basement rocks have agreeable relationship with the CITZ, India. The consistent magmatism is also common in the Transamazonian of South America, Trans-Hudson orogeny in North America, Bohemian Massif and the Svecofennian, Poland, have identified the sequential growth of the continent through the amalgamation of juvenile terrains, succeeded by a major collisional orogeny. Such Paleoproterozoic subduction-related orogens in Australia have similar counterparts in Antarctica and other part of the world. These types of Paleoproterozoic magmatism dominantly contributed

  18. K/Ar age dating of Oshnaviyeh plutonic complex

    International Nuclear Information System (INIS)

    Ghalamghash, J.; Vosoughi Abedini, M.; Bellon, H.; Emami, M.H.; Pourmafi, M.; Rashid, H.

    2003-01-01

    Oshnaviyeh plutonic complex, the western member of Urumiyeh-Golpayehgan intrusive plutons is located in northern part of Sanandaj-Sirjan zon. Oshnaviyeh plutonic complex, exposing in an area of about 700 km 2 , comprises 10 plutons that can be divided into three suites, i.e.,diorite,granite,and alkali syenite-alkali granite. Dioritic bodies are the oldest intrusive rocks of the region, which on the basis of the field study, their relative age of emplacement is estimated to be post-Jurassic and pre-miocene. However, with respect to the age of other similar intrusive bodies in Naghadeh area, they are most likely of post early cretaceous-pre miocene age. Hybrid intrusive rocks, occurring at the contact of dioritic and granitic rocks may suggest a simultaneous emplacement of both magmas. Syntetic pluton from alkali syenite-alkali granite has intruded dioritic and granitic rocks, in contrast, flourine bearing alkali granite pluton from this suite shows no contact with other igneous rocks in the area. K-Ar age determinations obtained on amphibole specimens from diorite suite are 91.9±2.3, 94.1±2.3 and 100±2.4 Ma, and on biotite specimens from granite suite are 100±1.5 to 98.9±1.5 Ma. Chronology study using same method on arfvedsonite specimens from syenite pluton shows 78.9±3.1, 79.6±1.9 and 81.7±2.0 Ma and on K-fled par samples of flourine bearing alkali granite pluton from the alkali syenite-alkali granite suite presents 76±3.4 and 77.1±1.8. Therefore, based on field evidence and K/Ar age dating, Oshnaviyeh plutonic complex presumably formed during two episodes: granite and diorite suites formed simultaneously at about 100 Ma, then plutons of alkali syenite-alkali granite suite emplaced at about 80 Ma

  19. Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China

    International Nuclear Information System (INIS)

    He Zhenyu; Xu Xisheng; Wang Xudong; Yu Yao; Zou Haibo

    2010-01-01

    The tungsten deposit region of South China is well known as the world's leading tungsten (W) producer. The Piaotang tungsten deposit in the region is such a representative large-scale quartz vein type tungsten polymetallic deposit that is closely associated with granitoids. In the present study we present precise LA-ICP-MS zircon U-Pb dating and LA-MC-ICPMS zircon Hf isotopic data for the samples from exposed quartz diorite body and buried granite stock in the Piaotang tungsten deposit area. Zircon U-Pb dating results indicate that the quartz diorite body was formed in Early Paleozoic time at 439±2 Ma, whereas the granite body was emplaced in EarlyYanshanian time at 158±3 Ma. Both the quartz diorite and granite have negative ε Hf (t) values, with similar two-stage zircon Hf model ages ranging from 1.8 to 2.1 Ga. Through integration of our new data with the isotope data of Precambrian basement rocks in western Cathaysia, we suggest that the Paleoproterozoic Hf model ages (1.8-2.1 Ga) might be an average age which resulted from mixing of continental materials of different ages. Both the Piaotang Early Paleozoic quartz diorite and Early Yanshanian granite are produced by reworking of the heterogeneous Neoproterozoic crust. Our zircon ages, together with the geochemical data and geological features and ore-forming ages of this tungsten deposit, indicate that the buried Early Yanshanian granite, rather than the exposed quartz diorite, is genetically associated with tungsten mineralization. The distinct metallogeny difference between the Piaotang Early Paleozoic quartz diorite and Early Yanshanian granite can be ascribed to the different degrees of magma differentiation. The Early Yanshanian granite is highly differentiated rock and similar to the other W-Sn deposits generating granitoids in South China. The extents of magma differentiation depend on the tectonic setting and the mechanism of magma generation. On the basis of the relationship between two different

  20. Apatite fission track dating and thermal history of Qing-He region in Altay Mountains

    International Nuclear Information System (INIS)

    Bao Zengkuan; Chinese Academy of Sciences, Beijing; Yuan Wanming; Dong Jinquan; Gao Shaokai

    2005-01-01

    Fission track ages (FTA) and track lengths of apatite from Qing-He diorite intrusion in Altay Mountains are measured. Apatite fission track ages of three diorite samples is range from (78±5) Ma to (95 ± 5) Ma, and the lengths of horizontal confined spontaneous fission tracks are (13.2 ± 1.2)-(13.5 ±1.3) μm. The distribution of the track length is narrow and symmetrical with a mean length of approximately 13.3 μm and a standard deviation of around 0.1 μm. The inverse modeling results show that thermal history of this region has four stages, two rapid uplift of this region still existed magmatic intrusion and tectonic movements in Yanshanian. (authors)

  1. Petrology and mapping of Fe and Ti occurences in Passira country, PE, Brazil

    International Nuclear Information System (INIS)

    Silva Filho, A.F. da; Pinho Guimaraes, I. de.

    1979-01-01

    The results of a geologic mapping realized at the scale of 1:25.000, for graduating in geology, the will show in this communication. The area mapped has 230 square kilometers and it is localized between the south lattitudes of 7 0 52'30'' and 8 0 42'45'' and the west greenwiches of 35 0 26'49'' and 35 0 33'30'', at the districts of Passira and Limoeiro-PE. At the area, are recorgnized migmatites granites, biotite schists, hornblende-gneisses, quartz-diorites and amphigolites. The iron titanium ore are fitted, like xenoliths, inside the amphibolites. The amphibolites have orthorocks type, and they are derived predominatly of the quartz-diorite unit, where they may be individualized cartographicaly. On the other side of the geological mapping, we did many thin sections and polished, chemical analyses of the ore bodyes, and the results will be disciminated [pt

  2. The Study of enclaves and relative age of plutonic bodies in the Alvand Plutonic complex

    International Nuclear Information System (INIS)

    Sepahi Gerow, A. A.; Moien-Vaziri, H.

    2000-01-01

    The study of enclaves and field observations indicate that: The Alvand plutonic complex comprise several plutonic phases with sharp contact and different ages. The older plutonic rocks are composed of gabbro, diorite and tonalites. The porphyroid granites were formed at least in two phases and they are younger than gabbros, diorites and tonalites. The hololeucocratic granitoids were also formed in two phases and they are the youngest plutonic phase in the Alvand plutonic complex. The granitic rocks are magmatic and they are not metasomatic in origin. The porphyroid granites (monzogranites and granodiorites) are S-type (Anatexites). According to radiometric ages and relative ages we believe that mafic plutonism have occurred during pre-middle Cretaceous to Paleocene ages and felsic plutonism have occurred during middle Cretaceouc to Paleocene ages

  3. Archean crustal evolution in the central Minto block, northern Quebec

    International Nuclear Information System (INIS)

    Skulski, T.; Percival, J.A.; Stern, R.A.

    1996-01-01

    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ( 2.83 Ga ε Nd +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by 2.76 Ga ε Nd +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ( 2.76 Ga ε Nd +1.6 to -0.1) including 2.78Ga ε Nd Nd 2.725Ga ε Nd - 1. 6). (author). 19 refs., 4 tabs., 5 figs

  4. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada

    Science.gov (United States)

    Dodge, F.C.W.; Kistler, R.W.

    1990-01-01

    Microgranular quartz diorite and diorite inclusions are widespread in central Sierra Nevada granitoid rocks and are almost exclusively restricted to hornblende-bearing rocks, most commonly felsic tonalites and mafic granodiorites. The Nd-Sm and Rb-Sr systematics indicate that most inclusions were in isotopic equilibrium with enclosing materials at the time of formation. Silica contents of inclusions and granitoids are contiguous, but inclusions generally contain less than, and granitoids more than, 60% SiO2. Ferric oxide and H2O+ trends relative to SiO2 suggests many inclusions formed as concentrations of hydrous mafic minerals. Variation of other major element oxides and trace elements support this inference. Most inclusions represent fragmented crystal accumulations of early-formed, near-liquidus minerals generated from these previously mixed magmas. -from Authors

  5. Petrographic and mineralogical features of the uraniferous pink granites in the north eastern desert of egypt

    International Nuclear Information System (INIS)

    Atawiya, M.Y.; Salman, A.B.; El-Bayyomi, R.M.

    1998-01-01

    The present work is concerned with the petrological, mineralogical and geochemical studies of some uranium bearing younger granites in the north eastern desert of egypt particularly Gebel Gattar area. The area around Gebel Gattar comprises the following rock units (starting from the oldest): meta volcanic, diorite-grano-diorite complex- Dokhan volcanics- Hammamat sediments, younger granites and dykes. The most significant structural features are represented by NNE-ENE dominantly trending faults and joints. Petrographicaly, the pink granites are divided into normal and mineralized (uraniferous) granites. Normal granites are classified into three types; a) leucocratic perthitic granite, b) hornblende- biotite perthitic granite and c) two feldspars perthitic granite. Mineralized granites are sheared, deformed, pinkish brown in colour and strongly altered. A remarkable secondary uranium mineralization has been recorded along fault and fracture zones

  6. Mikroskopische Studien ueber Gesteine aus den Molukken. 2. Gesteine von Seran. Mit einem französischen Résumé

    NARCIS (Netherlands)

    Schroeder van der Kolk, J.L.C.

    1899-01-01

    Dans les pages précédentes j’ai décrit quelques uns des nombreux échantillons de roche recueillis par M. Martin pendant son voyage de Séran (Céram). Les types suivants en sont les plus intéressants, les granites à cordiérite, les diorites les péridotites, les andésites à augite, les gneiss, les

  7. The ophiolite massif of Kahnuj (western Makran, Southern Iran): new geological and geochronological data

    International Nuclear Information System (INIS)

    Kananian, A.; Juteau, Th.; Bellon, H.; Darvishzadeh, A.; Sabzehi, M.; Whitechurch, H.; Ricou, L.E.

    2001-01-01

    The ophiolite massif of Kahnuj (600 km 2 ) consists, from bottom to top, of layered gabbros, isotropic gabbros and ouralite gabbros, agmatites of dioritic to plagio-granitic composition, a sheeted dyke complex and lastly a basaltic pillow lava unit. Amphiboles from gabbros were dated ( 40 K- 40 Ar ages) between 156 and 139 Ma and the agmatites are nearly contemporaneous. Potassic granitic veins dated at 93-88 Ma are related to the development of the Ganj arc complex. (authors)

  8. Identifiksi Sebaran Litologi berdasarkan Analisis Data Resistivitas di Gunung Wungkal

    OpenAIRE

    Nurul Dzakiya; MGS. Dwiki Nugraha; Nenden L. Sidik; Trias Galena

    2017-01-01

    Analisis data untuk mengidentifikasi sebaran litologi yang memiliki potensi bahan galian industri di Daerah Gunung Wungkal Yogyakarta dengan menggunakan metode resistivitas dan survei geologi permukaan telah dilakukan. Hasil korelasi kedua data tersebut menunjukkan sebaran litologi merupakan pelapukan intrusi batuan beku yang kemudian menghasilkan material lempung (6,0-10 m), lempung pasiran (11-30 m) dan lapukan batuan diorit (30-55 m) yang berada di kedalaman berbeda. Ketebalan batuan di pe...

  9. Fluid Evolution of the Magmatic Hydrothermal Porphyry Copper Deposit Based on Fluid Inclusion and Stable Isotope Studies at Darrehzar, Iran

    OpenAIRE

    Alizadeh Sevari, B.; Hezarkhani, A.

    2014-01-01

    The Darrehzar porphyry Cu-Mo deposit is located in southwestern Iran (~70 km southwest of Kerman City). The porphyries occur as Tertiary quartz-monzonite stocks and dikes, ranging in composition from microdiorite to diorite and granodiorite. Hydrothermal alteration and mineralization at Darrehzar are centered on the stock and were broadly synchronous with its emplacement. Early hydrothermal alteration was dominantly potassic and propylitic and was followed by later phyllic and argillic altera...

  10. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals)

    OpenAIRE

    A. V. Snachev; E. P. Shchulkin

    2018-01-01

    This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5...

  11. Petrographic aspects of the intrusive complex of Arroyo Marincho and granodiorite of Arroyo Grande.Part I

    International Nuclear Information System (INIS)

    Preciozzi, F.

    2011-01-01

    The epimetamorphis of Arroyo Grande formation (lower Precambrian) are integrated by several granitoid bodies. The Marincho complex represented by;a) main unit integrated by hornoblenditic diorite to mozongranite b) an incomformable belt of porfinoblastic honobledite c) one unit characterized by a two mica granite heterogranular to porphiroic.The petrographic diagrams shows evolutive lines, suggestings differentd origins for the main granodiorite, granodiorite the Arroyo Grande, south granite and the hornoblendites.

  12. Alterasi Akibat Proses Hidrothermal di Bolaang Mongondow, Provinsi Sulawesi Utara

    Directory of Open Access Journals (Sweden)

    Agus Harjanto

    2016-05-01

    Full Text Available Bolaang Mongondow is located in central north Sulawesi arm, which is composed of Neogen magmatic arc and potentially contain economic minerals. This condition is behind the research purpose to study the mineral resources potencies. Research aim is to study alteration caused by hydrothermal process and its relation with gold (Au deposit based on field study and laboratory analysis. Methodologies used for the research are literature study, geological survey, rocks sampling, laboratory analysis, and data processing. Research area is a multiply diorite intrusion complex. Andesite, volcaniclastic rocks, and dacite, the older rocks, were intruded by this complex. Later, dacitic tuff, volcanic sandstone, and alluvium deposited above them. There are three measured and mapped major faults heading NE-SW crossed by E-W fault and NW-SE fault lately crossed all the older faults. Early stage hydrothermal alteration related to the existence of young quartz diorite, showing alteration stage from the potassic center to distal prophyllitic. Final stage hydrothermal alteration consist of argilic, advanced argilic, and silica-clay mineral±magnetite±chlorite alteration overlapping the earlier alteration. Mineralization of Cu-Au±Ag in central part of research area or Tayap-Kinomaligan area is mostly asociated with potassic altered young quartz diorite and crossed by paralel and stockworked quartz-magnetite-chalcopyrite±bornite vein.

  13. Hydrothermal alteration in Dumoga Barat, Bolaang Mongondow area North Sulawesi

    International Nuclear Information System (INIS)

    Agus Harjanto' Sutanto; Sutarto; Achmad Subandrio; I Made Suasta; Juanito Salamat; Giri Hartono; Putu Suputra; I Gde Basten; Muhammad Fauzi; Rosdiana

    2016-01-01

    Bolaang Mongondow is located in central north Sulawesi arm, which is composed of Neogen magmatic arc and potentially contain economic minerals. This condition is behind the research purpose to study the mineral resources potencies. Research aim is to study alteration caused by hydrothermal process and its relation with gold (Au) deposit based on field study and laboratory analysis. Methodologies used for the research are literature study, geological survey, rocks sampling, laboratory analysis, and data processing. Research area is a multiply diorite intrusion complex. Andesite, volcaniclastic rocks, and dacite, the older rocks, were intruded by this complex. Later, dacitic tuff, volcanic sandstone, and alluvium deposited above them. There are three measured and mapped major faults heading NE-SW crossed by E-W fault and NW-SE fault lately crossed all the older faults. Early stage hydrothermal alteration related to the existence of young quartz diorite, showing alteration stage from the potassic center to distal prophylatic. Final stage hydrothermal alteration consist of argilic, advanced argilic, and silica-clay mineral±magnetite±chlorite alteration overlapping the earlier alteration. Mineralization of Cu-Au±Ag in central part of research area or Tayap-Kinomaligan area is mostly associated with potassic altered young quartz diorite and crossed by parallel and stock worked quartz-magnetite-chalcopyrite±bornite vein. (author)

  14. Origin of K-feldspar megacrystals from Monte das Gameleiras granite, Rio Grande do Norte/Paraiba, Brazil

    International Nuclear Information System (INIS)

    Galindo, A.C.

    1988-01-01

    The Monte das Gameleiras granitic batholith is located at the boundary between Rio Grande do Norte and Paraiba States in northeastern Brazil. Two main types of granitic rocks have been identified in this batholith. Dioritic inclusions occur in both of them. The predominating type is an extremely porphyritic syenogranite, which is intruded by a fine-grained monzogranite. K-feldspar megacrysts are found in both porphyritic granite and dioritic inclusions. The megacrysts long axes average around 4 cm, reaching up to 9 or 10 cm. The megacrysts are euhedral, zoned, and, sometimes, they show rapakivi texture. Flow textures and tuillage are common, but irregularly distributed. The K-feldspar megacrysts contain inclusions of plagioclase, biotite, quartz, hornblende, sphene, and apatite. These inclusions are concentrically arranged and parallel to the megacrysts zones. The included minerals are generally smaller than the same minerals in the groundmass. Microprobe analyses and X-ray difraction studies show that the megacrysts of both facies are similar in composition, containing around 90% of orthoclase. Taking into account the textural and compositional aspects, it is concluded that the megacrysts of porphyritic granite and dioritic inclusions are phenocrysts and not porphyroblasts. (author) [pt

  15. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    2011-01-01

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases including Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer

  16. Carboniferous-Permian tectonic transition envisaged in two magmatic episodes at the Kuruer Cu-Au deposit, Western Tianshan (NW China)

    Science.gov (United States)

    Yu, Jie; Li, Nuo; Qi, Nan; Guo, Jian-Ping; Chen, Yan-Jing

    2018-03-01

    The Western Tianshan in NW China is one of the most important gold provinces in the Central Asian Orogenic Belt (CAOB). The recently discovered Kuruer Cu-Au deposit has been interpreted to represent a transition from high-sulfidation epithermal to porphyry mineralization system. In this study, we present new LA-ICP-MS zircon U-Pb ages for the many magmatic rock types at Kuruer, including the Dahalajunshan Formation andesitic tuff (333.2 ± 1.6 Ma), diorite porphyry (269.7 ± 2.0 Ma), slightly-altered (264.4 ± 2.6 Ma) and intensively-altered (270.5 ± 2.5 Ma) albite porphyry. These ages reveal two distinct magmatic episodes: The Early Carboniferous Dahalajunshan Formation (wall rocks) andesitic tuff samples contain narrow ranges of SiO2 (60.29-61.28 wt.%), TiO2 (0.96-0.98 wt.%), Al2O3 (16.55-16.57 wt.%) and Fe2O3T (5.36-5.57 wt.%). The tuff is characterized by LREE enrichment and HFSE depletion, as well as LREE/HREE enrichment ((La/Yb)N = 8.31-8.76) and negative Eu anomalies (δEu = 0.64-0.76). Zircon εHf (t) values are 5.4-8.2, and two-stage Hf model ages (TDM2) are 821-1016 Ma, indicating partial melting of a moderately depleted mantle wedge with Precambrian continental crustal input. The ore-forming Middle Permian diorite porphyry and (quartz) albite porphyry have variable major oxide compositions (e.g., SiO2 = 53.09-53.12 wt.% for the diorite porphyry, 70.84-78.03 wt.% for the albite porphyry, and 74.07-75.03 wt.% for the quartz albite porphyry) but similar chondrite-normalized REE and primitive mantle-normalized multi-element patterns. These porphyries display LREE enrichment and HFSE depletion, as well as elevated LREE/HREE enrichment and negative Eu anomalies. The positive zircon εHf(t) values (11.7-15.9 for the diorite porphyry, 8.9-14.9 for the albite porphyry) and young two-stage Hf model ages (TDM2) (282-542 Ma for the diorite porphyry, 337-717 Ma for the albite porphyry) indicate a major juvenile continental crustal involvement. We propose that the

  17. Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania

    Science.gov (United States)

    Bonin, Bernard; Tatu, Mihai

    2016-08-01

    The Guadalupian (Mid-Permian) Highiș massif (Apuseni Mountains, Romania) displays a bimodal igneous suite of mafic (gabbro, diorite) and A-type felsic (alkali feldspar granite, albite granite, and hybrid granodiorite) rocks. Amphibole is widespread throughout the suite, and yields markedly high chlorine contents. Three groups are identified: Cl-rich potassic hastingsite (2.60-3.40 wt% Cl) within A-type felsic rocks and diorite, mildly Cl-rich pargasite to hornblende (0.80-1.90 wt% Cl) within gabbro, and low F-Cl hornblende within gabbro and hybrid granodiorite. Coexisting biotite is either Cl-rich within diorite, or F-Cl-poor to F-rich within A-type felsic rocks. Chlorine and fluorine are distributed in both mafic phases, according to the F-Fe and Cl-Mg avoidance rules. The low-Ti contents suggest subsolidus compositions. Cl-rich amphibole within diorite and A-type felsic rocks yields a restricted temperature range - from 575 °C down to 400 °C, whereas mildly Cl-rich amphibole within gabbro displays the highest range - from 675 to 360 °C. Temperatures recorded by Cl-rich biotite within diorite range from 590 to 410 °C. Biotite within A-type felsic rocks yields higher temperatures than amphibole: the highest values- from 640 to 540 °C - are recorded in low-F-Cl varieties, whereas the lowest values- from 535 to 500 °C - are displayed by F-rich varieties. All data point to halogen-rich hydrothermal fluids at upper greenschist facies conditions percolating through fractures and shear zones and pervasively permeating the whole Highiș massif, with F precipitating as interstitial fluorite and Cl incorporating into amphibole, during one, or possibly several, hydrothermal episodes that would have occurred during a ~ 150 My-long period of time extending from the Guadalupian (Mid-Permian) to the Albian (Mid-Cretaceous).

  18. Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran – a key to determine conditions of mineralisation

    Directory of Open Access Journals (Sweden)

    Zamanian Hassan

    2016-03-01

    Full Text Available The Baba Ali skarn deposit, situated 39 km to the northwest of Hamadan (Iran, is the result of a syenitic pluton that intruded and metamorphosed the diorite host rock. Rare earth element (REE values in the quartz syenite and diorite range between 35.4 and 560 ppm. Although the distribution pattern of REEs is more and less flat and smooth, light REEs (LREEs in general show higher concentrations than heavy REEs (HREEs in different lithounits. The skarn zone reveals the highest REE-enriched pattern, while the ore zone shows the maximum depletion pattern. A comparison of the concentration variations of LREEs (La–Nd, middle REEs (MREEs; Sm–Ho and HREEs (Er–Lu of the ore zone samples to the other zones elucidates two important points for the distribution of REEs: 1 the distribution patterns of LREEs and MREEs show a distinct depletion in the ore zone while representing a great enrichment in the skarn facies neighbouring the ore body border and decreasing towards the altered diorite host rock; 2 HREEs show the same pattern, but in the exoskarn do not reveal any distinct increase as observed for LREEs and MREEs. The ratio of La/Y in the Baba Ali skarn ranges from 0.37 to 2.89. The ore zone has the highest La/Y ratio. In this regard the skarn zones exhibit two distinctive portions: 1 one that has La/Y >1 beingadjacent to the ore body and; 2 another one with La/Y < 1 neighbouring altered diorite. Accordingly, the Baba Ali profile, from the quartz syenite to the middle part of the exoskarn, demonstrates chiefly alkaline conditions of formation, with a gradual change to acidic towards the altered diorite host rocks. Utilising three parameters, Ce/Ce*, Eu/Eu* and (Pr/Ybn, in different minerals implies that the hydrothermal fluids responsible for epidote and garnet were mostly of magmatic origin and for magnetite, actinolite and phlogopite these were of magmatic origin with low REE concentration or meteoric water involved.

  19. Survival of the Lhasa Terrane during its collision with Asia due to crust-mantle coupling revealed by ca. 114 Ma intrusive rocks in western Tibet

    Science.gov (United States)

    Wang, Qing; Zhu, Di-Cheng; Liu, An-Lin; Cawood, Peter A.; Liu, Sheng-Ao; Xia, Ying; Chen, Yue; Wang, Hao; Zhang, Liang-Liang; Zhao, Zhi-Dan

    2018-04-01

    Survival of the Lhasa Terrane during its drift across the Tethyan Ocean and subsequent collision with Asia was likely maintained by mechanical coupling between its ancient lithospheric mantle and the overlying crust. Evidence for this coupling is provided by geochronological and geochemical data from high-Mg dioritic porphyrite dikes that intruded into granodiorites with dioritic enclaves within the Nixiong Batholith in the western segment of the central Lhasa subterrane, southern Tibet. Zircon LA-ICP-MS U-Pb dating indicates synchronous emplacement of dioritic porphyrite dikes (113.9 ± 2 Ma), dioritic enclaves (113.9 ± 1 Ma), and host granodiorites (113.1 ± 2 Ma). The hornblende-bearing granodiorites are metaluminous to weakly peraluminous (A/CNK = 0.95-1.05) and belong to high-K calc-alkaline I-type granite. These rocks are characterized by low Mg# (37-43), negative zircon εHf(t) values (-6.8 to -1.2), and negative whole-rock εNd(t) values (-8.1 to -5.4), suggestive of derivation through anatexis of ancient lower crust. The two least-mixed or contaminated dioritic porphyrite dike samples have high MgO (8.46-8.74 wt%), high Mg# (69-70), and high abundances of compatible elements (e.g., Cr = 673-646 ppm, Ni = 177-189 ppm), which are close to those of primitive magma. They are high-K calc-alkaline and show negative whole-rock εNd(t) values (-1.9 to -1.2), indicating that these samples are most likely derived from the partial melting of ancient lithospheric mantle that was metasomatized by slab-derived fluids. The dioritic enclave samples are metaluminous high-K calc-alkaline and have varying negative whole-rock εNd(t) values (-7.8 to -3.7), which are interpreted as the result of magma mixing between the ancient lower crust-derived melts and asthenospheric mantle- (rather than lithospheric mantle-) derived melts. The Nd isotope mantle model ages of the least-mixed or contaminated high-Mg dioritic porphyrite dike samples (1.1-1.4 Ga) are close to the Nd isotope

  20. Perspectives on basaltic magma crystallization and differentiation: Lava-lake blocks erupted at Mauna Loa volcano summit, Hawaii

    Science.gov (United States)

    McCarter, Renee L.; Fodor, R.V.; Trusdell, Frank A.

    2006-01-01

    Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.The MgO of the gabbronorites and gabbros ranges ∼ 7–21 wt.%. Those with MgO >10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO <10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s ∼83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have ∼ 3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine ∼ Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at <1 kbar P. Highly evolved mineral Mg#s, <75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene

  1. The interaction of sorbing and non-sorbing tracers with different Aespoe rock types. Sorption and diffusion experiments in the laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Byegaard, J.; Johansson, Henrik; Skaalberg, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Tullborg, E.L. [Terralogica AB, Graabo (Sweden)

    1998-11-01

    Laboratory experiments studying the sorption and diffusivity of different tracers in Aespoe Hard Rock Laboratory (Aespoe HRL) site specific conditions have been performed. The experiments were conducted by applying both the batch sorption and the through diffusion technique. The investigation was focused on slightly sorbing tracers, i e, alkaline metals (Na{sup +}, Rb{sup +} and Cs{sup +}) and alkaline earth metals (Ca{sup 2+}, Sr{sup 2+} and Ba{sup 2+}), but some presumed non-sorbing species have also been included. The dominating generic rock material from Aespoe HRL, Aespoe-diorite and fine-grained granite, were used as well as some altered wall rock and mylonite from the Feature A fracture, the fracture where in situ migration studies have been performed. Synthetic groundwater was used; similar to the high saline groundwater found at the 350m level at Aespoe HRL and at the Feature A site. The results of batch experiments show that the sorption of the tracers increase in the order Nadiorite than for the fine-grained granite which is explained by the much higher concentration of biotite in Aespoe diorite than in fine-grained granite. In the altered material the biotite has been transformed to chlorite and a lower sorptivity is shown for those material compared to the fresh diorite and granite, respectively. Attempts to explain the sorption and desorption results to a surface sorption - diffusion model are presented. The diffusion results show that the tracers were retarded in the same order as was expected from the measured batch sorption coefficients. Furthermore, the largest size fraction was the most

  2. The interaction of sorbing and non-sorbing tracers with different Aespoe rock types. Sorption and diffusion experiments in the laboratory scale

    International Nuclear Information System (INIS)

    Byegaard, J.; Johansson, Henrik; Skaalberg, M.

    1998-11-01

    Laboratory experiments studying the sorption and diffusivity of different tracers in Aespoe Hard Rock Laboratory (Aespoe HRL) site specific conditions have been performed. The experiments were conducted by applying both the batch sorption and the through diffusion technique. The investigation was focused on slightly sorbing tracers, i e, alkaline metals (Na + , Rb + and Cs + ) and alkaline earth metals (Ca 2+ , Sr 2+ and Ba 2+ ), but some presumed non-sorbing species have also been included. The dominating generic rock material from Aespoe HRL, Aespoe-diorite and fine-grained granite, were used as well as some altered wall rock and mylonite from the Feature A fracture, the fracture where in situ migration studies have been performed. Synthetic groundwater was used; similar to the high saline groundwater found at the 350m level at Aespoe HRL and at the Feature A site. The results of batch experiments show that the sorption of the tracers increase in the order Na + in the order of (4-30)x10 -6 m 3 /kg and for Cs + in the range of (I-400)x10 -3 m 3 /kg. The variations in sorption coefficients are due to differences in the composition of the geological material, contact time and particle size. Sorption is generally stronger for the Aespoe-diorite than for the fine-grained granite which is explained by the much higher concentration of biotite in Aespoe diorite than in fine-grained granite. In the altered material the biotite has been transformed to chlorite and a lower sorptivity is shown for those material compared to the fresh diorite and granite, respectively. Attempts to explain the sorption and desorption results to a surface sorption - diffusion model are presented. The diffusion results show that the tracers were retarded in the same order as was expected from the measured batch sorption coefficients. Furthermore, the largest size fraction was the most representative when comparing batch sorption coefficients with sorption coefficients evaluated from the

  3. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?

    Science.gov (United States)

    Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin

    2014-08-01

    Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.

  4. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    Science.gov (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  5. Identifiksi Sebaran Litologi berdasarkan Analisis Data Resistivitas di Gunung Wungkal

    Directory of Open Access Journals (Sweden)

    Nurul Dzakiya

    2017-05-01

    Full Text Available Analisis data untuk mengidentifikasi sebaran litologi yang memiliki potensi bahan galian industri di Daerah Gunung Wungkal Yogyakarta dengan menggunakan metode resistivitas dan survei geologi permukaan telah dilakukan. Hasil korelasi kedua data tersebut menunjukkan sebaran litologi merupakan pelapukan intrusi batuan beku yang kemudian menghasilkan material lempung (6,0-10 m, lempung pasiran (11-30 m dan lapukan batuan diorit (30-55 m yang berada di kedalaman berbeda. Ketebalan batuan di permukaan sekitar 225-231 meter berdasarkan penampang peta geologi dengan arah sebaran dari Barat Laut hingga Tenggara. Proses pelapukan dan alterasi di daerah ini intensif (alterasi argilik dengan jenis morfologi perbukitan intrusi terdenudasi dan dataran Alluvial.

  6. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    Science.gov (United States)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  7. Lithosphere/asthenosphere interaction during continental breakup: preliminary isotopic date on the passive Galicia margin (North-Atlantic)

    International Nuclear Information System (INIS)

    Charpentier, S.; Kornprobst, J.; Chazot, G.; Cornen, G.

    1998-01-01

    The Galicia Margin ultramafic ridge has been cross-cut by diorites, pyroxenites and gabbros before the end of the rifting stage, and then by dolerites, after the continental break-full; it has been further overlaid by basaltic lava flows. The younger the rocks, the higher the initial ξ Nd (2.2-8.8). This evolution would be the result of the contamination of liquids extracted from the asthenosphere, by the enriched (ξ Ndi =4.0) and partially melted previous continental lithosphere. Time-decreasing contamination is related to progressive lithospheric thinning from the end to the beginning of oceanic spreading. (authors)

  8. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2008-12-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing

  9. Geology, petrography and geochronology of meridional and oriental regions from Morungaba complex, SP

    International Nuclear Information System (INIS)

    Vlach, S.R.F.

    1985-01-01

    The Morungaba Granitoid Complex, covering about 330 km 2 , crops out as an elongate irregular Massif trending SW-NE, in the southeast part of the State of Sao Paulo, southeast Brazil. Major constituents are biotite granitoids with subordinate diorites. Over thirty facies types, each with distinctive structural-petrographic features, were recognized during detailed mapping of part of the Massif (about 200 km 2 ), and mapped as groups of facies. Geochronological Rb/Sr data for several groups of associated facies are also presented. (author)

  10. The ophiolite massif of Kahnuj (western Makran, Southern Iran): new geological and geochronological data; Le massif ophiolitique de Kahnuj (Makran occidental, Iran meridional): nouvelles donnees geologiques et geochronologiques

    Energy Technology Data Exchange (ETDEWEB)

    Kananian, A. [University of Tarbiat Modarress, Geological Dept., Faculty of Science, Teheran (Iran, Islamic Republic of); Juteau, Th.; Bellon, H. [Universite de Bretagne Occidentale, IUEM, 29 - Brest (France); Darvishzadeh, A. [University of Teheran, Geological Dept., Faculty of Science, Teheran (Iran, Islamic Republic of); Sabzehi, M. [Geological Survey of Iran, Teheran (Iran, Islamic Republic of); Whitechurch, H. [Universite Louis Pasteur, EOST, Institut de Physique du Globe, 67 - Strasbourg (France); Ricou, L.E. [Institut de Physique du Globe, 75 - Paris (France)

    2001-05-01

    The ophiolite massif of Kahnuj (600 km{sup 2}) consists, from bottom to top, of layered gabbros, isotropic gabbros and ouralite gabbros, agmatites of dioritic to plagio-granitic composition, a sheeted dyke complex and lastly a basaltic pillow lava unit. Amphiboles from gabbros were dated ({sup 40}K-{sup 40}Ar ages) between 156 and 139 Ma and the agmatites are nearly contemporaneous. Potassic granitic veins dated at 93-88 Ma are related to the development of the Ganj arc complex. (authors)

  11. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals

    Directory of Open Access Journals (Sweden)

    A. V. Snachev

    2018-03-01

    Full Text Available This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5 g/t that allows suggesting the setting up of new gold deposit.

  12. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing.

  13. Cristallisation fractionnée et contamination crustale dans la série magmatique jurassique transitionnelle du Haut Atlas central (Maroc)Fractional crystallisation and crustal contamination in the transitional Jurassic magmatic series of Central High Atlas (Morocco)

    Science.gov (United States)

    Zayane, Rachid; Essaifi, Abderrahim; Maury, René C.; Piqué, Alain; Laville, Edgard; Bouabdelli, Mohamed

    The Middle Jurassic plutonism of the Central High Atlas (Morocco) was emplaced in N45° trending anticlinal ridges. It is characterised by various petrographic facies including mafic rocks (troctolites), intermediate rocks (diorites, monzodiorites), and evolved rocks (syenites), together with heterogeneous facies resulting from mixing between acidic and the intermediate magmas. Mineralogical and chemical data show ( i) the transitional character of the Jurassic magmatic series of the Central High Atlas and ( ii) the implication of continental crust as a contaminant during fractional crystallization. To cite this article: R. Zayane et al., C. R. Geoscience 334 (2002) 97-104.

  14. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  15. Decommissioning and dismantling of nuclear research facilities in Switzerland: lessons learned

    International Nuclear Information System (INIS)

    Leibundgut, Fritz

    2017-01-01

    Paul Scherrer Institute is the largest research institute for natural and engineering science in Switzerland. It operated various nuclear facilities from 1960 to 2011: Research reactors DIORIT, SAPHIR and PROTEUS, and an incineration plant for low and medium level radioactive waste. Concerning SAPHIR research reactor: in operation from 1958 to 1993, planning of decommissioning from 1998 to 2000. Decommissioning work started in 2004. Finishing is planned for 2019. Concerning DIORIT research reactor: operation as DIORIT I (20 MWth) from 1960 to 1967, then reconstruction to DIORIT II (30 MWth) and operation from 1970 until 1977. Planning of decommissioning from 1992 to 1994. Decommissioning work started in 1994 and was finished in 2012. Concerning PROTEUS research reactor: in operation from 1966 to 2011. Planning of decommissioning from 2013 to 2014. Starting of decommissioning work is planned for 2017, finishing is planned for the end of 2018 Incineration plant: In operation from 1974 to 2002. Planning of decommissioning from 2011 to 2012. Starting of decommissioning work in 2016. Finishing planned for end of 2019. Treatment of various material categories from dismantling: Concerning aluminum: because of the production of H_2 during solidification in concrete, it was necessary to minimize the surface area. When dismantling research reactors, the aluminum removed was melted in an induction furnace and poured into a 4.5 m"3 concrete container to solidify. Cutting the metal and handling it was largely accomplished remote control, using conventional technology. Concerning Steel/Cast-iron: the storage containers to be filled determined the method used for reducing the size of these materials, and the technique used for handling them. The goal was to optimize the packing density to reduce repository costs. The selected method of reducing the size of components is to cut them up using diamond-tipped tools, like saw blades. Concerning Graphite: for graphite, grinding was the

  16. Regional and detailed research studies for stone resources in Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report consists of 7 articles. 1) Detail drilling research works on granodiorite stock of Cheanan area near Onyang city in Chungnam province. 2) Regional research studies on granites distributed in Kimje - Jeongeup. 3) Regional survey and feasibility study on diorite rock mass in Kohyeng, Cheonnam province. 4) Regional research study on the stone resources of Hamyang area. 5) A study on variation trends of physical properties of 5 kinds of building stone by means of Weather-Ometer experiment. 6) Borehole radar survey at the granodiorite quarry mine, Cheonan, Chungnam province. 7) Radar velocity tomography in anisotropic media. (author). refs., tabs., figs.

  17. Physical volcanology of the mafic segment of the subaqueous New Senator caldera, Abitibi greenstone belt, Quebec, Canada

    International Nuclear Information System (INIS)

    Moore, Lyndsay N; Mueller, Wulf U

    2008-01-01

    Archean calderas provide valuable insight into internal geometries of subaqueous calderas. The New Senator caldera, Abitibi greenstone belt, Canada, is an Archean example of a subaqueous nested caldera with a basal stratigraphy dominated by gabbro-diorite dykes and sills, ponded magmas and basalt and andesite lava flows. The aim of our study is to focus on the use of physical volcanology to differentiate between the various mafic units found at the base of the New Senator caldera. Differentiation between these various mafic units is important from an exploration point of view because in modern subaqueous summit calders (e.g. Axial Seamount) margins of ponded magmas are often sites of VMS formation.

  18. Geology of the Northern part of the Strath Ossian Granite, Scotland

    International Nuclear Information System (INIS)

    Henderson, W.G.

    1982-12-01

    The Strath Ossian Granite is made up of granodiorite, dark, variable 'granodiorites' interpreted as mobilised diorite or basic material, appinite and porphyritic granodiorite. Huge rafts of psammitic metasediments occur within the mass and three fracture-zones and numerous dykes, dominantly of porphyrite, cut across it in a north-easterly direction. Granite emplacement may have occurred in stages, early batches being xenolith-rich and later ones xenolith-poor. New batches were intruded centrally, which created strong radial stresses, sufficiently strong to make room for the intrusion by forcing the metasedimentary country rocks downwards and aside. (author)

  19. An overview of the lithological and geochemical characteristics of the Mesoarchean (ca. 3075) Ivisaartoq greenstone belt, southern West Greenland

    DEFF Research Database (Denmark)

    Polat, A.; Frei, Robert; Appel, P.W.U.

    2008-01-01

    Archean greenstone belts in the area. The Ivisaartoq greenstone belt is the largest Mesoarchean supracrustal lithotectonic assemblage in the Nuuk region. The belt contains well-preserved primary magmatic structures including pillow lavas, volcanic breccias, and cumulate (picrite) layers. It also includes...... depleted initial Nd isotopic signatures ( Nd = +4.2 to +5.0) than gabbros, diorites, and tholeiitic basalts ( Nd = +0.3 to +3.1), consistent with a strongly depleted mantle source. In some areas gabbros include up to 15 cm long white inclusions (xenoliths). These inclusions are composed primarily (>90...

  20. Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Minera

    International Nuclear Information System (INIS)

    Kim, Geon Young; Koh, Yong Kwon; Choi, Byoung Young; Shin, Seon Ho; Kim, Doo Haeng

    2008-01-01

    Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy (SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher Sig 2 content and lower MgO and Fe 2 O 3 contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of Sig 2 content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower Sig 2 , Al 2 O 3 , Na 2 O and K 2 O contents, and higher CaO, Fe 2 O 3 contents than the granodiorite region. Especially, because the differences in the CaO and Na 2 O distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that

  1. Physical volcanology of the mafic segment of the subaqueous New Senator caldera, Abitibi greenstone belt, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lyndsay N; Mueller, Wulf U [Universite du Quebec a Chicoutimi, 555 boul. du l' Universite, Chicoutimi, Quebec, G7H2B1 (Canada)], E-mail: lyndsay.moore@uqac.ca

    2008-10-01

    Archean calderas provide valuable insight into internal geometries of subaqueous calderas. The New Senator caldera, Abitibi greenstone belt, Canada, is an Archean example of a subaqueous nested caldera with a basal stratigraphy dominated by gabbro-diorite dykes and sills, ponded magmas and basalt and andesite lava flows. The aim of our study is to focus on the use of physical volcanology to differentiate between the various mafic units found at the base of the New Senator caldera. Differentiation between these various mafic units is important from an exploration point of view because in modern subaqueous summit calders (e.g. Axial Seamount) margins of ponded magmas are often sites of VMS formation.

  2. Application of geophysical methods to gold prospecting in Minas de Corrales, Uruguay

    International Nuclear Information System (INIS)

    Costa, Antonio Flavio U.; Dias, Rogerio Aguirre; Barcelos, Andre B.B. de

    1993-01-01

    Geophysical methods were tested in San Gregorio gold mine, Minas de Corrales, north region of Uruguay. The ores are mainly stockworks, sheeted veinlet zones, ore shoot and disseminated sulfides types, situated in a silicated and carbonated shear zone structure, over granitic mylonites, quartz diorites, quartz-feldspathic breccia, basic rocks and quartz veins. Magnetic and radiometric methods were applied . VLF and EM34-3 detected the high resistivity silicated and carbonated zone and IP detected a weak PFE anomaly associated with pyrite/gold zone. (author)

  3. The crust role at Paramillos Altos intrusive belt: Sr and Pb isotope evidence

    International Nuclear Information System (INIS)

    Ostera, H.A.; Linares, E; Haller, M.J; Cagnoni, M.C

    2001-01-01

    Paramillos Altos Intrusive Belt (PAIB) (Ostera, 1996) is located in the thick skinned folded-thrust belt of Malargue, southwestern Mendoza, Argentina. Geochemical, geochronologic and isotopic studies were carried out in it (Ostera 1996, 1997, Ostera et al. 1999; Ostera et al. 2000) and these previous papers suggested a minor involvement of the crust in the genesis of the PAIB. According with Ostera et al. (2000) it is composed by stocks, laccoliths, dykes and sills which range in composition from diorites to granodiorites, and from andesites to rhyolites, and divided in five Members, which range in age from Middle Miocene to Early Miocene: a- Calle del Yeso Dyke Complex (CYDC), with sills and dykes of andesitic composition (age: 20±2 Ma). b- Puchenque-Atravesadas Intrusive Complex (PAIC), composed by dykes and stocks ranging from diorites to granodiorites (age: 12.5±1 Ma). c- Arroyo Serrucho Stock (SAS), an epizonal and zoned stock, with four facies, with K/Ar and Ar/Ar dates of 10±1 and 9.5±0.5 Ma. d- Portezuelo de los Cerros Bayos (PCB), that includes porphyritic rocks of rhyolitic composition, of 7.5±0.5 Ma. e- Cerro Bayo Vitrophyres (CBV), with andesitic sills and dykes (age: 4.8±0.2 Ma). We present in this paper new Sr and Pb isotopes data that constrain the evolution of the PAIB (au)

  4. Petrography, mineral chemistry of tourmaline, geochemistry and tectonic setting of Tertiary igneous rocks in Shurab area(west of Khusf), Southern Khorasan

    International Nuclear Information System (INIS)

    Gholami, A. A.; Mohammadi, S. S.; Zarrinkoub, M. H.

    2016-01-01

    Tertiary igneous rocks of Shurab area in eastern part of Lut block include pyroxene andesite, andesite, trachy andesite, quartz andesite, diorite, quartz diorite and porphyric quartz monzodiorite. Plagioclase, hornblende, pyroxene, biotite and quartz are common minerals and alkali feldspar, opaque, sphene, apatite, tourmaline and zircon exists as minor minerals. Propylitization, chloritization, silisification and tourmalinization are common alterations. Based on electron micro prob analysis, tourmaline in quartz monzodiorite is characterized by weakly chemical zoning, high Mg/Fe ratio from dravite type with alkaline nature that originated from Ca-poor metapelites and metapsammites. The studied rocks have low to medium-K calk-alkaline nature and their spider diagrams display enrichment in LILE such as Cs, Rb ,K , Sr and LREE and depletion in Nb,Ti and HREE that indicate their relation to subduction zone. Geochemical characteristics such as high Sr/Y and La/Yb ratios, high SiO_2 and no Eu anomaly are comparable to high-SiO_2 adakites. Shuorab adakitic rocks are likely originated from partial melting of the crust during delamination process.

  5. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates

    Science.gov (United States)

    Açlan, Mustafa; Altun, Yusuf

    2018-06-01

    The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG + syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U-Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U ages indicate that the collision which is take place between Arabian and Eurasian plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene.

  6. Multiple sources of magmatism. granitoids from southeast Kohistan, NW Himalayas, Pakistan

    International Nuclear Information System (INIS)

    Khan, M. A.; Qazi, M. S.

    2005-01-01

    The Kohistan island arc terrane in the northwestern Himalayas of N. Pakistan is sandwiched between the Indian and Karakoram plated. The base of the arc is occupied by a major stratiform ultramafic-gabbroic complex (the Sapat-Babusar complex), which overrides the crust of the Indian plate along the Indus suture (i.e., the Main Mantle Thrust; MMT). It was intruded into the base of a thick pile of metavolcanics (the Kamila belt), which comprise a tectonic collage of MORB-type tholeiitic basalts, island-arc tholeiites and calc-alkaline andesites. The Chilas complex, comprising ultramafic and gabbronorite rocks, is also intrusive into the Kamila belt, it is emplaced onto the top rather than the base of the Kamila belt. A sizeable proportion of granitoid rocks are present in the south-eastern part of Kohistan, which intruded the Kamila amphibolites. These are predominantly dioritic in composition, but include gabbros, granodiorites, granites and trondhjemites. The granitoids occur in two types. (1) large sheet-like lenticular masses, and (2) minor intrusives in the form of veints, sills or dykes. Three large sheets like bodies are mapped. All these bodies are composite, comprising gabbros, diorite/tonalite, granodiorite and granite. The minor intrusion of granitic and trondhjemitic composition are abundantly present in the form of veins, sills and dykes; and are characterized by variation in distribution. Strong shearing transformed the rocks into blastomylonite gneisses. The mineral assemblage consists of quartz, plagioclase, emphibole, epidote, chlorite, biotite, muscovite, sphene, magnetite and apatite. (author)

  7. Multiple sources of magmatism: granitoids from southeast kohistan, nw himalayas Pakistan

    International Nuclear Information System (INIS)

    Sayab, M.; Qazi, M.S.

    2005-01-01

    The Kohistan island arc terrane in the northwestern Himalayas of N. Pakistan is sandwiched between the Indian and Karakoram plates. The base of the arc is occupied by a major stratiform ultramafic-gabbroic complex (the Sapat-Babusar complex). which overrides the crust of the Indian plate along the Indus suture (i. e., the Main Mantle Thrust; MMT). It was intruded into the base of a thick pile of metavolcanics (the Kamila belt), which comprise a tectonic collage of MORB-type tholeiitic basalts, island-arc tholeiites and calc-alkaline andesites. The Chilas complex, comprising ultramafic and gabbronorite rocks, is also intrusive into the Kamila belt. It is emplaced onto the top rather than the base of the Kamila belt. A sizeable proportion of granitoid rocks are present in the south-eastern part of Kohistan. Which intruded the Kamila amphibolites. These are predominantly dioritic in composition but include gabbros, granodiorites, granites and trondhjemites. The granitoids occur in two types: (I) large sheet-like lenticular masses, and (2) minor intrusives in the form of veins sills or dykes. Three large sheets like bodies are mapped. All these bodies are composite, comprising gabbros, diorite/tonalite. granodiorite and granite. The minor intrusions of granitic and trondhjemitic composition are abundantly present in the form of veins, sills and dykes and are characterized by variation in distribution. Strong shearing transformed the rocks into blastomylonite gneisses. The mineral assemblage consists of quartz, plagioclase, Amphibole, epidote, chlorite, biotite, muscovite, sphene, magnetite and apatite. (author)

  8. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition?

    Science.gov (United States)

    Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo

    2013-05-01

    Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.

  9. Bismuth-silver mineralization in the Sergozerskoe gold occurrence

    Directory of Open Access Journals (Sweden)

    Kalinin A. A.

    2017-03-01

    Full Text Available Bismuth-silver mineralization attendant to gold mineralization in the Sergozerskoe gold occurrence has been studied in detail. Bi-Ag mineralization is connected with diorite porphyry dykes, which cut volcanic-sedimentary Lopian complexes of the Strel'ninsky greenstone belt – hornblendite and actinolite-chlorite amphibolites, biotite and bi-micaceous gneisses. Distribution of Bi-Ag mineralization similar to gold mineralization is controlled by 80 m thick zone of silicification. Bi minerals are found in brecciated diorite porphyry. Bismuth-silver mineralization includes native metals (bismuth, electrum, silver, tellurides (hedleyite, hessite, selenides (ikunolite, sulfides and sulfosalts of Bi and Ag (matildite, lillianite, eckerite, jalpaite, prustite, acanthite, a few undiagnosed minerals. All Bi and Ag minerals associate with galena. Composition of mineralization evolved from early to late stages of development, depending on intensity of rock alteration. The earliest Bi-Ag minerals were native bismuth and hedleyite formed dissemination in galena, and electrum with 30-45 mass.% Au. Later native bismuth was partly substituted by silver and bismuth sulfosalts and bismuth sulfides. The latest minerals were low-temperature silver sulfides eckerite, jalpaite, and acanthite, which were noted only in the most intensively altered rocks. As soon as the process of formation of Bi-Ag mineralization is the same as formation of gold, findings of bismuth-silver mineralization can serve as a positive exploration sign for gold in the region.

  10. Climate change effects on an endemic-rich edaphic flora: resurveying Robert H. Whittaker's Siskiyou sites (Oregon, USA)

    Science.gov (United States)

    Damschen, Ellen Ingman; Harrison, Susan; Grace, James B.

    2010-01-01

    Species with relatively narrow niches, such as plants restricted (endemic) to particular soils, may be especially vulnerable to extinction under a changing climate due to the enhanced difficulty they face in migrating to suitable new sites. To test for community-level effects of climate change, and to compare such effects in a highly endemic-rich flora on unproductive serpentine soils vs. the flora of normal (diorite) soils, in 2007 we resampled as closely as possible 108 sites originally studied by ecologist Robert H. Whittaker from 1949 to 1951 in the Siskiyou Mountains of southern Oregon, USA. We found sharp declines in herb cover and richness on both serpentine and diorite soils. Declines were strongest in species of northern biogeographic affinity, species endemic to the region (in serpentine communities only), and species endemic to serpentine soils. Consistent with climatic warming, herb communities have shifted from 1949-1951 to 2007 to more closely resemble communities found on xeric (warm, dry) south-facing slopes. The changes found in the Siskiyou herb flora suggest that biotas rich in narrowly distributed endemics may be particularly susceptible to the effects of a warming climate.

  11. Holocene evolution of Dahab coastline - Gulf of Aqaba, Sinai Peninsula, Egypt

    Science.gov (United States)

    Torab, Magdy

    2018-03-01

    Dahab is a little Bedouin-village in Sinai Peninsula on the east coast of the Gulf of Aqaba and it lies approximately 90 km north of Sharm-el-Sheikh City. Dahab means "gold" in the Arabic language; over the past 20 years it has become one of the most visited tourist sites in Egypt. The basement complex is composed mostly of biotite aplite-granite, mica-aplite granite, granodiorite, quartz diorite, alaskite, and diorite. This composition correlates to similar igneous rocks in the most southern areas of Sinai and the Red Sea. Wadi Dahab is composed of igneous and metamorphic rocks and the coastline is formed of fragments of its rocks mixed with fragments of coral reef. The morphology of Dahab's coastline is characterized by a hooked marine spit composed of fluvial sediments carried by marine currents from the mouth of Wadi Dahab. This spit encloses a shallow lagoon, but the active deposition on the lagoon bottom will turn it into saline marsh. This paper investigates the evolution of the Dahab spit and lagoon during the Holocene and over the last 100 years, as well as the potential impacts of future management of the coastal area. The coastline mapping during the study was dependent on GIS techniques and data were collected by using total station, aerial photographs and satellite image interpretation as well as soil sample dating.

  12. Archean crustal evolution in the central Minto block, northern Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Skulski, T; Percival, J A; Stern, R A [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ({sup 2.83} {sup Ga}{epsilon}{sub Nd} +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by <2.77 Ga conglomerates. Overlying the conglomerate is a more evolved ({sup 2.76} {sup Ga}{epsilon}{sub Nd} +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ({sup 2.76} {sup Ga}{epsilon}{sub Nd} +1.6 to -0.1) including <2.76 Ga rhyolitic tuff, pillowed andesites, and 2.76 Ga quartz-feldspar porphyry, and less abundant, depleted tholeiitic basalts (2.76 GaF-Nd +2.4). These are interlain with sedimentary rocks including banded iron-formation, quartzite, and metagreywacke. Calc-alkaline batholiths include 2.78 Ga pyroxene-bearing intermediate and felsic plutons ({sup 2.78Ga}{epsilon}{sub Nd} <+2.7) and younger, peraluminous tonalites ({epsilon}{sub Nd} <+1.3). Late, 2.73 Ga peraluminous granitoids are isotopically evolved ({sup 2.725Ga}{epsilon}{sub Nd} - 1. 6). (author). 19 refs., 4 tabs., 5 figs.

  13. Magma interaction in the root of an arc batholith

    Science.gov (United States)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.

    2016-12-01

    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  14. Potensi Batuan Induk Batu Serpih dan Batu Lempung di Daerah Watukumpul Pemalang Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Sachrul Iswahyudi

    2009-02-01

    Full Text Available Shale and claystone of Watukumpul Area have capability to become the source rock of hydrocarbon because of the ability to conserve the organic material better. Potential of the rock become source rock is depend on its maturity and total organic carbon. This research test eight example of rock to analysis their total organic carbon (TOC and rock eval pyrolisis. Only one sample is claystone, while the seven others are shales. The analyses provide data of total organic carbon, hydrogen index, and vitrinite reflectances which was used to interpret source rock potential of research area. Through this research is known that the organic material content of shale and claystone of research area own the fair level of total organic carbon. Organic material is included Kerogen Type III with the origin of land organism or plant. These kerogens of research area prefer to produce gas or gas prone. Organic material or kerogens have reached the matured phase to generate hydrocarbon (mature level. Special follow the rock sample came from Location 8 which have over mature level. Its high maturity is suspect have relationship with the intrusion of diorite igneous rock in this research area. Further research is needed to investigate the relationship between diorite intrusion and organic material in this research area.

  15. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    Science.gov (United States)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  16. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    Science.gov (United States)

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  17. Albari granodiorite - a typical calcalkaline diapir of volcanic arc stage from the Arabian Shield

    Science.gov (United States)

    Radain, Abdulaziz A.

    Granodiorite rocks of the Arabian Shield are generally considered to be collision-related granitoids. However, there are some granodiorites that were formed during the volcanic arc stage. Major and trace elements studies are carried out on Albari diapiric granodiorite to reveal its tectonic environment. This intrusive rock type is common in the Taif arc province (Mahd adh Dhahab quadrangle) of the Asir microplate near the border of the southeast dipping subduction zone that ended up with arc-arc collision (Asir-Hijaz microplates) along the now known Bir Umq suture zone. The granodiorite exhibits a calcalkaline trend on ternary AFM and K 2ONa 2OCaO diagrams. Tectonic discrimination diagrams using multicationic parameters (R1 = 4Sill(Na+K)2(Fe+Ti); R2 = 6Ca+2Mg+Al), SiO 2-trace elements (Nb, Y, Rb), and Y versus Nb and Rb versus (Y+Nb) indicate a destructive active plate margin or volcanic arc stage tectonic environment. Albari calcalkaline granodiorite might have been derived directly from partial melting of subducted oceanic crust or overlying mantle contaminated with variable amounts of intermediate (quartz diorite, diorite, tonalite, trondhjemite) early and late volcanic arc-related plutonic country rocks.

  18. U-Pb (LA-ICPMS) zircon ages and Nd isotopes for granitoids of the Tamboril-Santa Quiteria Complex, Ceara Central Domain: implication for neoproterozoic syncollisional magmatism in north Borborema Province, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Felipe Grandjean da; Araujo, Carlos Eduardo Ganade de; Vasconcelos, Antonio Maurilio, E-mail: felipe.costa@cprm.gov.br, E-mail: caegeo@gmail.com, E-mail: maurilio.vasconcelos@cprm.gov.br [Servico Geologico do Brasil (CPRM), Fortaleza, CE (Brazil); Amaral, Wagner da Silva, E-mail: wamaral@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Geologia; Rodrigues, Joseneusa Brilhante, E-mail: joseneusa.rodrigues@cprm.gov.br [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil)

    2013-06-15

    The Tamboril-Santa Quiteria Complex (TSQC) is one of the largest Neoproterozoic plutonic manifestations in the north Borborema Province (NE Brazil). It represents an anatectic/igneous association characterized by a number of magmatic pulses that occurred in the 650-610 Ma interval. In this paper, we present U-Pb (LA-MC-ICP-MS) zircon ages and Nd isotopes for quartz monzonite and quartz diorites of the southern part of TSQC. The quartz monzonite belong to a hybrid granitoid association, including monzonite, syenites and quartz syenites, all with abundant mafic magmatic enclaves. A quartz monzonite sample yielded a U-Pb zircon age of 634 {+-} 10 Ma and a TDM age of 2.69 Ga. The quartz diorites are much more homogeneous in composition and yielded a U-Pb zircon age of 618 {+-} 23 Ma and a TDM age of 2.19 Ga. The presence of coeval mantle-derived magmatism and diatexites (crustal anatexis) post-dating high-pressure metamorphism (ca. 650 Ma), and together with high-temperature metamorphism (ca. 630-610 Ma), suggests that this large magmatic manifestation evolved in a collisional setting, probably related to slab break off during the Western Gondwana amalgamation. (author)

  19. Characterization and zircon SHRIMP U-Pb geochronology of the subvolcanic rocks from Yarumalito Porphyry System, Marmato District, Colombia; Caracterizacao e geocronologia SHRIMP U-Pb em zircao das rochas subvulcanicas do sistema porfiro Yarumalito, Distrito de Marmato, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Henrichs, Isadora A.; Frantz, Jose Carlos; Marques, Juliana C.; Castoldi, Marco S., E-mail: isahenrichs@gmail.com, E-mail: jose.frantz@ufrgs.br, E-mail: juliana.marques@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Ordonez-Carmona, Oswaldo, E-mail: oswaldo.geologo@gmail.com [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Minas; Sato, Kei, E-mail: keisato@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Centro de Pesquisas Geocronologicas

    2014-09-15

    The mining District of Marmato, located in the Central Cordillera, is considered one of the oldest gold districts in Colombia and its exploration dates back to the Inca’s times, being exploited regularly for more than a thousand years. Inserted in this context lies the Yarumalito porphyry system (YPS), characterized to concentrate ore in structure related veins and stockworks. The YPS is related to the Miocene magmatism of the Combia Formation. In this paper, the subvolcanic rocks directly associated with the mineralized zones were described in order to obtain U-Pb ages in zircon to the intrusions. Selected samples from two fertile intrusions, one andesitic (more abundant in the area) and other dioritic (more restricted), were carefully described and dated by SHRIMP. The results points to a very restricted interval for the ages, with weighted average {sup 206}Pb/{sup 238}U varying from 7,00 ± 0,15 Ma for the andesitic porphyry and 6.95 ± 0.16 Ma for the dioritic porphyry. These results constrain the Yarumalito system to the final stages of the Combia magmatism and suggest a brief period for the crystallization of the mineralized subvolcanic rocks in the area and in the Marmato District. (author)

  20. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  1. Radon sources emanation in granitic soil and saprolite

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Flexser, S. [Lawrence Berkeley Lab., CA (United States); Brimhall, G.; Lewis, C. [California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics

    1993-08-01

    Petrological and geochemical examinations of soil, saprolite, and quartz diorite protolith have been made at the Small Structures field site, Ben Lomond Mountain, California. Variations in Ra in soil and saprolite are mainly controlled by heterogeneities inherited from the parent quartz diorite. Fission-track radiography shows that U is concentrated in the primary accessory minerals, zircon and sphene. However, most importantly for Rn emanation, U is also concentrated in secondary sites: weathered sphene, biotite and plagioclase, grain coatings, and Fe-rich fracture linings which also contain a rare-earth phosphate mineral. This occurrence of U along permeable fracture zones suggests that soil-gas Rn from depth (> 2 m) is a significant contributor to Rn availability near the surface. Zones highest in emanation occur where fine pedogenic phases: gibbsite, amorphous silica, and iron oxyhydroxide are most abundant. Mass balance analyses of this soil-saprolite profile are in progress and preliminary indicate that a high-emanation zone corresponds to the upper portion of a zone of accumulation of U and Ba.

  2. 40Ar/39Ar geochronology of the El Teniente porphyry copper deposit

    International Nuclear Information System (INIS)

    Maksaev, V; Munizaga, F; McWilliams, M; Thiele, K; Arevalo, A; Zuniga, P; Floody, R

    2001-01-01

    Chile's El Teniente deposit is the largest known porphyry Cu-Mo orebody (>70 Mt Cu ), and is genetically related to Late Miocene-Early Pliocene igneous activity on the western slopes of the Andean Cordillera (cf. Howell and Molloy, 1960, Camus, 1975, Cuadra, 1986, Skewes and Stern, 1995). The deposit is 2700 m long by 1000 to 1700 m wide and is elongated in a N-S direction, with a recognized vertical extent of about 1800 m. Approximately 80% of the copper at El Teniente is distributed within a stockwork of mineralized veinlets and minor hydrothermal breccias within pervasively altered andesites, basalts and gabbros that are part of the Upper Miocene country rocks. Two intrusive bodies occur within the deposit, the Sewell Diorite (actually a tonalite) in the southeast part of the orebody and the dacitic Teniente Porphyry in its northern part. The Teniente Porphyry occurs as a north-south trending dike 1500 m long and 200 m wide. Minor quartz-diorite or tonalite intrusions known as the Central Diorite and the Northern Diorite occur along the eastern side of the deposit. Hydrothermal breccias commonly occur along the contacts of intrusive bodies with the country rocks. The Braden Breccia is a conspicuous diatreme in the center of the deposit that forms a pipe 1200 m in diameter at the surface, narrowing to 600 m at a depth of 1800 m. The Braden diatreme pipe is poorly mineralized (∼0.3% Cu), but it is surrounded by the copper-rich Marginal Breccia, a discontinuous rim of tourmaline-matrix hydrothermal breccia. Latite dikes intrude El Teniente, some forming altered ring dikes that encircle the Braden breccia pipe. After mineralization had ceased, the southern section of the deposit was cut by a 3.8 ± 0.3 Ma lamprophyre dyke, marking the end of igneous activity (Cuadra, 1986). Biotite-dominated K-silicate alteration is widespread within the orebody. In contrast, pervasive phyllic alteration is restricted to 'diorite' intrusions, and to the Braden and Marginal

  3. Late Proterozoic island-arc complexes and tectonic belts in the southern part of the Arabian Shield, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greenwood, William R.; Stoeser, D.B.; Fleck, R.J.; Stacey, J.S.

    1983-01-01

    Two main subdivisions of layered rocks are recognized in the southern Arabian Shield south of lat 22? N. These are an older ensimatic-arc complex, which formed 1100-800 m.y. ago, and a younger marginal-arc complex, which formed 800-690 m.y. ago. The older ensimatic-arc complex, located in the southwestern part of the Shield, includes graywacke and mafic to intermediate volcanic rocks of the essentially contemporaneous Baish, Bahah, and Jiddah groups. Although the younger arc complex is also dominantly ensimatic in character, it is also partly superimposed over the older ensimaticarc complex. The superimposed portions of the younger arc complex are represented by the Ablah, Samran, and possibly the Ararat groups. The ensimatic portion of the younger arc group is represented by the Halaban group, which was deposited to the east and northeast of the older ensimatic-arc complex. The Halaban group includes andesitic and dacitic volcanic rocks and associated clastic sedimentary rocks. The layered rocks of both arc complexes are intruded by dioritic (quartz diorite, tonalite, trondhjemite) plutonic rocks. The southern Shield is also subdivided into a number of structurally bounded, north-trending tectonic belts. Within the older ensimatic complex, three belts are recognized. From west to east, these are the Lith, Bidah, and Tayyah belts. Within these three belts, progressive facies changes indicate a gradation from deep-water facies in the south to shallow-water or-terrestrial facies in the north. The distribution of dioritic batholiths, as well as the distribution of layered-rock facies, suggests a northwest-trending axis for the older ensimatic-arc complex. The younger arc complex is present within six belts, the Makkah source papers. In Fleck and others (1980), the term 'quartz diorite' includes both tonalite and quartz diorite as defined in the International Union of Geological Sciences (IUGS) system of plutonic rock classification (Streckeisen, 1973). Initial 87Sr/86

  4. Late Neoproterozoic layered mafic intrusion of arc-affinity in the Arabian-Nubian Shield: A case study from the Shahira layered mafic intrusion, southern Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Azer, M.K.; Obeid, M.A.; Gahalan, H.A.

    2016-07-01

    The Shahira Layered Mafic Intrusion (SLMI), which belongs to the late Neoproterozoic plutonic rocks of the Arabian-Nubian Shield, is the largest layered mafic intrusion in southern Sinai. Field relations indicate that it is younger than the surrounding metamorphic rocks and older than the post-orogenic granites. Based on variation in mineral paragenesis and chemical composition, the SLMI is distinguished into pyroxene-hornblende gabbro, hornblende gabbro and diorite lithologies. The outer zone of the mafic intrusion is characterized by fine-grained rocks (chilled margin gabbroic facies), with typical subophitic and/or microgranular textures. Different rock units from the mafic intrusion show gradational boundaries in between. They show some indications of low grade metamorphism, where primary minerals are transformed into secondary ones. Geochemically, the Shahira layered mafic intrusion is characterized by enrichment in LILE relative to HFSE (e.g. Nb, P, Zr, Ti, Y), and LREE relative to HREE [(La/Lu)n= 4.75–8.58], with subalkaline characters. It has geochemical characteristics of pre-collisional arc-type environment. The geochemical signature of the investigated gabbros indicates partial melting of mantle wedge in a volcanic-arc setting, being followed by fractional crystallization and crustal contamination. Fractional crystallization processes played a vital role during emplacement of the Shahira intrusion and evolution of its mafic and intermediate rock units. The initial magma was evolved through crystallization of hornblende which was caused by slight increasing of H2O in the magma after crystallization of liquidus olivine, pyroxene and Ca-rich plagioclase. The gabbroic rocks crystallized at pressures between 4.5 and 6.9kbar (~15–20km depth). Whereas, the diorites yielded the lowest crystallization pressure between 1.0 to 4.4Kbar (<10km depth). Temperature was estimated by several geothermometers, which yielded crystallization temperatures ranging from 835

  5. The La Unión Au ± Cu prospect, Camagüey District, Cuba: fluid inclusion and stable isotope evidence for ore-forming processes

    Science.gov (United States)

    Santana, Miriela María Ulloa; Moura, Márcia Abrahão; Olivo, Gema R.; Botelho, Nilson Francisquini; Kyser, T. Kurtis; Bühn, Bernhard

    2011-01-01

    The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc-alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O-NaCl-(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480-505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical-chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore

  6. Permo-Triassic arc-like granitoids along the northern Lancangjiang zone, eastern Tibet: Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications

    Science.gov (United States)

    Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun

    2018-05-01

    Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence

  7. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Wilson [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mail: wteixeir@usp.br; Avila, Ciro Alexandre [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Museu Nacional. Dept. de Geologia e Paleontologia]. E-mail: avila@mn.ufrj.br; Nunes, Luciana Cabral [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias]. E-mail: luciana@igc.usp.br

    2008-07-01

    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K{sub 2}O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 {+-} 9 Ma, whereas the Lajedo granodiorite yields 2208 {+-} 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low {sup 87}Sr/{sup 86}Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 {+-} 2 Ma), Brumado

  8. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    International Nuclear Information System (INIS)

    Teixeira, Wilson; Avila, Ciro Alexandre; Nunes, Luciana Cabral

    2008-01-01

    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K 2 O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 ± 9 Ma, whereas the Lajedo granodiorite yields 2208 ± 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low 87 Sr/ 86 Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 ± 2 Ma), Brumado de Baixo

  9. Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)

    Science.gov (United States)

    Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.

    2017-02-01

    At fast-spreading mid-ocean ridges, axial melt lenses (AMLs) sandwiched between the sheeted dyke section and the uppermost gabbros are assumed to be the major magma source of crust formation. Here, we present our results from a field study based on a single outcrop of a frozen AML in the Samail ophiolite in the Sultanate of Oman which presents a whole suite of different lithologies and complex cutting relationships: varitextured gabbro with relics of primitive poikilitic clinopyroxene is intruded by massive quartz diorites and tonalites bearing relics of assimilated sheeted dykes, which in turn are cut by trondhjemite dykes. The whole is cut by basaltic dykes with chilled margins. The geochemical evolutionary trend of the varitextured gabbros, including some of the quartz diorites and tonalites, can be best modelled by fractional crystallisation of an experimental MORB parental melt composition containing 0.4 to 0.8 wt.% H2O. Patchy varitextured gabbros containing domains of primitive poikilitic clinopyroxene and evolved granular networks represent the record of in situ crystallisation. Some quartz diorites, often with xenoliths of sheeted dykes and exceptionally high Al2O3 contents, show a bulk trace element pattern more in accord with melts generated by experimental partial melting of dyke material. Highly evolved, crosscutting trondhjemite dykes show characteristic trace element patterns implying a formation by partial melting of sheeted dykes under lower water activity which is indicated by relatively low Al2O3 contents. The late basaltic dykes with chilled margins crosscutting all other lithologies show a relatively depleted geochemical character with pronounced negative Nb-Ta anomalies implying a genetic relationship to the second phase of magmatic Oman paleo-ridge activity (V2). The field relationships in combination with the petrological/geochemical trends reveal multiple sequences of MORB-type magma cooling (resulting in fractional crystallisation) and re

  10. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes

    Science.gov (United States)

    Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei

    2017-08-01

    The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic

  11. Multi-stage origin of the Coast Range ophiolite, California: Implications for the life cycle of supra-subduction zone ophiolites

    Science.gov (United States)

    Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.

    2004-01-01

    The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB

  12. Genetic-Structural relations in some types of spanish uranium deposits

    International Nuclear Information System (INIS)

    Alia Medina, M.

    1962-01-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs

  13. REE in cretaceous to tertiary granitoids of Chugoku and Shikoku district, SW Japan

    Energy Technology Data Exchange (ETDEWEB)

    Imaoka, Teruyoshi [Yamaguchi Univ. (Japan). Faculty of Science; Harada, Michiru

    1998-01-01

    `Niho plutonic composite rocks` distributed in Niho Kamigo area in the northeast of Yamaguchi-city in Japan. It is small plutonic composite rocks, of about 2 km in long length and 1 km of short length. The rocks were studied by the geological survey. Many kinds of rock and rare earth elements were determined. The constitution process is estimated by these results. It consists of gabbro-quartz diorite-tonalite{center_dot}granodiorite-granito. The more inside of rock existed, the more felsic rock are discovered. Chemical compositions were TiO{sub 2}, FeO, MnO and K{sub 2}O. It is estimated that intrusion of tonalite and successive intrusion of granodiorite generated and then formed in situ crystallization differentiation. (S.Y.)

  14. Strontium isotopic geochemistry of intrusive rocks, Puerto Rico, Greater Antilles

    International Nuclear Information System (INIS)

    Jones, L.M.; Kesler, S.E.

    1980-01-01

    The strontium isotope geochemistry is given for three Puerto Rican intrusive rocks: the granodioritic Morovis and San Lorenzo plutons and the Rio Blanco stock of quartz dioritic composition. The average calculated initial 87 Sr/ 86 Sr ratios are 0.70370, 0.70355 and 0.70408, respectively. In addition, the San Lorenzo data establish a whole-rock isochron of 71 +- 2 m.y., which agrees with the previously reported K-Ar age of 73 m.y. Similarity of most of the intrusive rocks in the Greater Antilles with respect to their strontium isotopic geochemistry regardless of their major element composition indicates that intrusive magmas with a wide range of composition can be derived from a single source material. The most likely source material, in view of the available isotopic data, is the mantle wedge overlying the subduction zone. (orig.)

  15. Recurrent mesoproterozoic continental magmatism in South-Central Norway

    DEFF Research Database (Denmark)

    Pedersen, Svend; Andersen, Tom; Konnerup-Madsen, Jens

    2009-01-01

    rocks and metasediments from the Byglandsfjorden supracrustal cover sequence, and metaigneous rocks which intruded the whole succession. The main crustal evolution took place from 1,550-1,020 Ma, beginning with the emplacement of juvenile tonalitic melts; the contribution of older crustal material......We report U-Pb dates and Lu-Hf isotope data, obtained by LAM-ICPMS, for zircons from metamorphic rocks of the Setesdalen valley, situated in the Telemark block south of the classic Telemark region of southern Norway. The samples include infracrustal rocks from the metamorphic basement, metaigneous...... is represented by supracrustal rocks, principally metarhyolites with minor mafic material and immature sediments of the Byglandsfjorden Group. The crust generation processes ended with the intrusion of diorites and granodiorites at 1,030 Ma, late in the Sveconorwegian orogeny. Regional processes of metamorphism...

  16. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    Science.gov (United States)

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  17. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria

    2012-01-01

    The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data...... on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated...... by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of similar to 0.46 GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite...

  18. New petrographic, geochemical and geochronological data for the Reguengos de Monsaraz pluton (Ossa Morena Zone, SW Iberian Massif, Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, A.; Santos, J. F.; Azevedo, M. R.; Mendez, M. H.; Ribeiro, S.

    2010-07-01

    The Reguengos de Monsaraz pluton is a late to post-tectonic Variscan intrusion occurring in the Ossa Morena Zone (Iberian Variscan Chain). The dominant lithological types are tonalites and granodiorites, but the internal area of the massif is composed of gabbro-dioritic rocks. Field evidence shows that the intrusion is heterogeneous at mesoscopic scale suggesting that the emplacement of mafic and felsic magmas was contemporaneous. Petrographic and geochemical studies reveal that the different lithologic types define a continuous sequence with compositions varying from metaluminous to slightly peraluminous and a typical calc-alkaline signature. In Harker variation diagrams, it is possible to observe systematic rectilinear correlations pointing to the involvement of magma mingling/mixing processes in the petrogenesis of this sequence. Rb-Sr isotopic data, using a mineral-mineral pair from a granodiorite sample, yielded an age of 298 Ma, interpreted as a cooling age after igneous crystallization. (Author) 13 refs.

  19. Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere

    Science.gov (United States)

    Wang, Peng; Dong, Guo-Chen; Zhao, Guo-Chun; Han, Yi-Gui; Li, Yong-Ping

    2018-04-01

    The Pulang complex is located in the southern segment of the Yidun Arc in the Sanjiang Tethys belt, southwestern China. It is composed of quartz diorite, quartz monzonite and granodiorite porphyries, and hosts the super-large Pulang deposit. This study presents new U-Pb geochronological, major-trace elemental and Sr-Nd-Hf isotopic data to constrain the petrogenesis of the Pulang complex and to evaluate its significances for porphyric mineralization and tectonic evolution of the Paleo-Tethys Ocean. The zircon U-Pb dating yields ages ranging from 208 Ma to 214 Ma. Geochemically, the Pulang complex has high Sr and MgO contents, and high Sr/Y and La/Yb ratios, but low Yb and Y contents, displaying adakitic affinities. However, it has moderate Sr/Y and La/Yb ratios, and high Rb contents (32 to 202 ppm). The Pulang samples plot into the transitional field between adakites and normal arc rocks, differing from typical adakites. It is attributed to the assimilation of 10-15% crustal components. The zircon εHf(t) (-4.6 to -2.5), whole-rock (87Sr/86Sr)i (0.7052 to 0.7102), εNd(t) (-0.62 to 2.12) values and adakitic affinities suggest that the Pulang complex was derived from a basaltic slab-melt source and reacted with peridotite during ascending through an enriched asthenospheric mantle wedge. The basaltic slab-melts likely resulted from the westward subduction of the Ganzi-Litang oceanic plate (a branch of the Paleo-Tethys). As far as the metallogenesis concerned, three factors in mineralization are proposed in this paper. The country rock, quartz diorite porphyry, has higher Cu contents than the mantle (average 30 ppm), suggesting that ore-forming magma was derived from a Cu-enriched source, which is a crucial contribution to the late mineralization to form the super-large Pulang deposit. In addition, the barren quartz diorite, granodiorite, and ore-bearing quartz monzonite porphyries are all characterized by high oxygen fugacity, which is another important factor for the

  20. Small-scale bentonite injection test on rock

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    When radiactive waste is disposed a sealing of the rock is very valuable since it reduces the rate of water percolation and diffusion. In an earlier report injection of bentonite gels by means of over-pressure and subsequent electrophoresis has been suggested. The present report describes a rock test series where bentonite injection was applied. For the test an approximately cubical block of about 1 m 3 was selected. The rock type was diorite with a fairly high frequency of quartz denses. The block was kept in a basin during the test in order to maintain the water saturation. Holes were bored in the block. A bentonite slurry with 1000 percent water content was injected. It was shown that the bentonite had a sealing effect but the depth of extrusion into rock joints was not large because of gelation. Electro-Kinetic injection of montmorillonite was found to be a more promising technique for rock lightening

  1. Particle-induced X-ray emission: thick-target analysis of inorganic materials in the determination of light elements

    International Nuclear Information System (INIS)

    Perez-Arantegui, J.; Castillo, J.R.; Querre, G.

    1994-01-01

    Particle-induced X-ray emission (PIXE) has been applied to the analysis of inorganic materials to determine some elements with Z < 27: Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe, in thick-target analysis. A PIXE method has been developed for the analysis of geological materials, ceramics and pottery. Work has been carried out with an ion beam analytical system, using a low particle beam energy. Relative sensitivity, detection limits, reproducibility and accuracy of the method were calculated based on the analysis of geological standard materials (river sediments, argillaceous limestone, basalt, diorite and granite). Analysis using PIXE offers a number of advantages, such as short analysis time, multi-elemental and nondestructive determinations, and the results are similar to those obtained with other instrumental techniques of analysis. (Author)

  2. Geological characteristics and genesis of Niangnianggong gold-silver deposit in Liaoning Province, China

    International Nuclear Information System (INIS)

    Hou Zhenyuan

    2013-01-01

    Based on the analysis of geological characteristics and genesis of Niangnianggong deposit, this paper suggested that the deposit is controlled by the EW direction faults and belongs to quartz vein type. Average value of δ 34 S of the ore is 2.19‰, and the variation ranges from 1.6‰ to 4.9‰, which shows the feature of hydrothermal sulfur. The result of lead isotope is fall into original lead zone, which shows the feature of primeval lead system. The result of H-O isotope is close to meteoric line, which means the participation of precipitations. Rb-Sr age of ore is 186.6 Ma, which is similar to the age of diorite dike. Multi-disciplinary analysis concludes that the deposit is a quartz vein type deposit with composite hydrothermal origin. (author)

  3. Terahertz lens made out of natural stone.

    Science.gov (United States)

    Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook

    2013-12-20

    Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

  4. Constraints on the tectonic evolution of the Namaqua Province: Pt.1

    International Nuclear Information System (INIS)

    Onstott, T.C.; Hargraves, R.B.; Joubert, P.; Reid, D.L.

    1986-01-01

    Palaeomagnetic analysis of 80 samples from 13 sites in the Richtersveld Subprovince together with 40 Ar/ 39 Ar measurements were done on selected samples. A brief description of the demagnetization behaviour of the samples of various rock types were given. Because of its stable univectorial palaemagnetic properties, the presence of the mineral species necessary for 40 Ar/ 39 Ar dating, and because it was the least altered rock unit, some of the Vioolsdrif diorite localities were selected for Ar 40 /Ar 39 analyses. With regard to two different models concerning the emplacement history of the Vioolsdrif suite, and the Ar 40 /Ar 39 data that is presented here, two possible thermal histories for the Vioolsdrif Suite have been outlined

  5. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    Two types of filler from crushed sand were mixed with cement paste with constant superplasticizer dosage per mass of cement to investigate how their shape affects the rheology. The fillers were mylonitic quartz diorite and limestone produced using Vertical Shaft Impact (VSI) crusher and air...... was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  6. A transitional alkalic dolerite dike suite of Mesozoic age in Southeastern New England

    Science.gov (United States)

    Hermes, O. Don; Rao, J. M.; Dickenson, M. P.; Pierce, T. A.

    1984-12-01

    Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.

  7. ALPINE MAGMATIC-METALLOGENIC FORMATIONS OF THE NORTHWESTERN AND CENTRAL DINARIDES

    Directory of Open Access Journals (Sweden)

    Jakob Pamić

    1997-12-01

    Full Text Available In the paper are presented basic geological, petrologieca1, geochemi-cal and mineral deposit data for five main magmatic-metallogenic formations of the northwestern and central Dinarides: (lThe Permo Triassic rifting related andesite-diorite formations; (2 The Jurassic-Lower Cretaceous accretionary (ophiolite formations; (3 The Upper Cretaceous-Paleogene subduction related basalt-rhyohite formations; (4 The Paleogene collisional granite formations, and (5 The Oligo-cene-Neogene postsubduction andesite formations. All these magmatic-metallogenic formations originated in different geotectonic settings during the Alpine evolution of the Dinaridic parts of thc Tethys and the postorogenic evolution of the Paratethys and the Pannonian Basin, respectively.

  8. The post-Laramide clastic deposits of the Sierra de Guanajuato: Compositional implications on the tectono-sedimentary and paleographic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Aviles, R.; Puy-Alquiza, M.J.; OmaNa, L.; Loza-Aguirre, I.

    2016-07-01

    This article presents the results of the study on sedimentation, sedimentary environments, tectono-sedimentary and paleogeographic evolution of post-Laramide clastic deposits and pre-volcanism of the Sierra Madre Occidental in the Sierra de Guanajuato, central Mexico. The Eocene Duarte Conglomerate and Guanajuato Conglomerate were deposited in the middle and distal parts of alluvial fans. The studied rocks are composed of limestone clasts, granite, andesite, metasediments, diorite, and pyroxenite, indicating the erosion of uplifted blocks of the basal complex of the Sierra de Guanajuato (Arperos basin). The petrographic and compositional analysis of limestone shows a textural variation from basin limestones and shallow platform limestones. The shallow platform limestone contain bivalves, brachiopods, gastropods, echinoderms and benthic foraminifera from the Berriasian-Valanginian. The shallow-water limestone corresponds to the boundary of the Arperos basin whose original outcrops currently not outcrop in the Sierra de Guanajuato. (Author)

  9. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  10. Geology, petrology and geochronology of meridional and oriental regions of the Morungaba complex, SP

    International Nuclear Information System (INIS)

    Vlach, S.R.F.

    1985-01-01

    This work studies the Morungaba Intensive Complex, in Southwestern of Sao Paulo State. Formed principally by granitoid rocks with biotite. 31 granitoid facies with structural was recognized. Petrographic own characteristics. The rocks from Morungaba Complex was joint in three magmatics groups, denominated: Roby Gray and Porphyritic. Petrographic and mineralogical composition studies of this three groups were done. Geochranological studies by Rb/Sr and K/sr methods made possible to establish the ages and evolution of this rocks. This Complex formation and evolution are associated with the dioritic rocks presence. This work also concluded that the Morungaba Intrusive Complex represent the pos-orogenic wents from Brazilian Cycle. (C.D.G.) [pt

  11. Genetic-Structural relations in some types of spanish uranium deposits; Relaciones genetico-estructurales de algunos tipos de mienralizaciones uraniferas espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Alia Medina, M

    1962-07-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs.

  12. Uruguay geology contributions no. 7

    International Nuclear Information System (INIS)

    Preciozzi, F.

    1989-01-01

    Arroyo Grande Formation (Lower Precambrian) are intruded by several granitoid bodies.The Marincho complex are represented by: a) a main unit integrated by hornblende diorites to monzoqranites, the main facies is a biotitic-hornblenditic granodiorite; b) An unconformable belt of porphyroblastics hornblendites and related granodiorites in complex relationships; c) A unit characterized by a two mica granite heterogranular to porphyritic wich cuts the previous sets; d) a little intrusion of gross leucogranite.The granodiorite of Arroyo Grande shows to be a apophysis to NW 01 Marincho Complex, being the most frecuent lacies a hornblende-biotite-granodiorite.The petrographic diagrams shows evolutive lines, suggesting different origins tor the main granodiorite, the Arroyo Grande granodiorite south granite and the hornbledites.

  13. U-Pb isotope systematics in josephinites and associated rocks

    Energy Technology Data Exchange (ETDEWEB)

    Goepel, C.; Manhes, G.; Allegre, C.J. (Lab. Geochimie et Cosmochimie, I.P.G., 75 - Paris (France))

    1990-02-01

    Josephinite nodules, composed of metallic nickel iron alloy intergrown with andradite garnet, are found in the peridotitic section of an obducted ophiolite in SW Oregon. The origin of josephinite is widely debated: for example, previous investigation have proposed it as a byproduct of low temperature synserpentinization processes linked to the intrusion of dikes or and its derivation from primitive mantle, conceivably from as deep as the core mantle boundary. We report U-Pb data from josephinites, wyrdite (a rock associated with josephinite) consisting of rutile and ilmente intergrown with silicates, and their surrounding rocks (hornblende diorites and harzburgites). The measured Pb isotopic composition of all decontaminated, leached josephinite metal samples plots in the Pb-Pb diagram just above/in the MORB field, while the first leachates are characterized by higher {sup 207}Pb/{sup 204}Pb ratios. The isotopic Pb composition measured in the leachates of the wyrdite defines a line whose slope corresponds to an age of 159{plus minus}8 Myr. The harzburgites show a wide spread in Pb isotopic compositions; all samples lie above the MORB field and three samples plot to the left side of the 4.55 AE geochron. The hornblende diorite dikes, characterized by the highest U and Pb concentrations of all studied rocks, plot in the MORB field. None of these different rocks is characterized by a single or homogeneous Pb composition. All samples are affected by secondary alteration processes: the circulation of hydrothermal fluids disturbed the dikes and ultramafic rocks and serpentinization processes have affected harzburgites, josephinites, and wyrdites. Thus the Pb isotopic composition measured today represents a mixture of initial Pb, radiogenic Pb and inherited Pb in variable proportions. Concerning the origin of josephinite these results show a close relationship between josephinite, wyrdite, and the dikes. (orig./WB).

  14. Summary of the Lavia borehole investications in 1984

    International Nuclear Information System (INIS)

    Aeikaes, T.; Oehberg, A.; Ryhaenen, V.

    1985-02-01

    Industrial Power Company Ltd (TVO) drilled in the spring 1984 a 1001 m deep borehole, diameter 56 mm, in Lavia. The borehole is used during the years 1984-85 for developing and testing research methods and equipment needed in site investigations of spent fuel final disposal in the future. In 1984 hydraulical and geophysical tests were made and groundwater samples were taken. The drilling site is a wide outcropped area in the northern part of the porphyritic granite formation of Lavia. Geological and fracture mapping as well as geophysical measurements on the surface were made in the area surrounding the drilling site. The bedrock consists of homonous porphyritic granite, in which quartzdiorite occurs in thin incalations. Magnetic or electric anomalies were not observed. Fracture frequency is low and the fractures appear mainly in two sets. The rock types vary in the borehole from porphyritic granite to diorite. Due to slight mineralogical variations, the diorite is either granodiorite, quartzdiorite or tonalite. Granite occurs as veins. Hydraulic conductivity was measured systematically with a packer separation of 30 m between the depths 73-973 m. Hydraulic conductivity is generally 10 -10 -10 -11 m/s. Electric, radiometric, magnetic and acoustic measurements were made in the borehole. In addition, the caliper and the temperature of the borehole were measured. The results of these geophysical measurements indicate the properties of rock types and fracturing in the borehole. On the basis of the results e.g. fracture porosity was interpreted. The results of acoustic tube wave measurement correlate well with hydraulic conductivity. Water samples were taken from four depths. The deepest level was 910 m. The samples were taken with a packer separation of 5 m. In the water analyses it was observed that at several depths remarkable amounts of flushing water from drilling were still remaining in the rock

  15. Age and paragenesis of mineralisation at Coronation Hill uranium deposit, Northern Territory, Australia

    Science.gov (United States)

    Orth, Karin; Meffre, Sebastien; Davidson, Garry

    2014-06-01

    Coronation Hill is a U + Au + platinum group elements deposit in the South Alligator Valley (SAV) field in northern Australia, south of the better known unconformity-style U East Alligator Rivers (EAR) field. The SAV field differs from the EAR by having a more complex basin-basement architecture. A volcanically active fault trough (Jawoyn Sub-basin) developed on older basement and then was disrupted by renewed faulting, before being buried beneath regional McArthur Basin sandstones that are also the main hanging wall to the EAR deposits. Primary mineralisation at Coronation Hill formed at 1607 ± 26 Ma (rather than 600-900 Ma as previously thought), and so it is likely that the SAV was part of a single west McArthur Basin dilational event. Most ore is hosted in sub-vertical faults and breccias in the competent volcanic cover sequence. This favoured fluid mixing, acid buffering (forming illite) and oxidation of Fe2+ and reduced C-rich assemblages as important uranium depositional mechanisms. However, reduction of U in fractured older pyrite (Pb model age of 1833 ± 67 Ma) is an important trap in diorite. Some primary ore was remobilised at 675 ± 21 Ma to form coarse uraninite + Ni-Co pyrite networks containing radiogenic Pb. Coronation Hill is polymetallic, and in this respect resembles the `egress'-style U deposits in the Athabascan Basin (Canada). However, these are all cover-hosted. A hypothesis for further testing is that Coronation Hill is also egress-style, with ores formed by fluids rising through basement-hosted fault networks (U reduction by diorite pyrite and carbonaceous shale), and into veins and breccias in the overlying Jawoyn Sub-basin volcano-sedimentary succession.

  16. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China

    Science.gov (United States)

    Sha, Xin; Wang, Jinrong; Chen, Wanfeng; Liu, Zheng; Zhai, Xinwei; Ma, Jinlong; Wang, Shuhua

    2018-03-01

    The Paleo-Asian Ocean (Southern Mongolian Ocean) ophiolitic belts and massive granitoids are exposed in the Alxa block, in response to oceanic subduction processes. In this work, we report petrographic, geochemical, and zircon U-Pb age data of some granitoid intrusions from the northern Alxa. Zircon U-Pb dating for the quartz diorite, tonalite, monzogranite, and biotite granite yielded weighted mean 206Pb/238U ages of 302±9.2 Ma, 246.5±4.6 Ma, 235±4.4 Ma, and 229.5±5.6 Ma, respectively. The quartz diorites ( 302 Ma) exhibit geochemical similarities to adakites, likely derived from partial melting of the initially subducted Chaganchulu back-arc oceanic slab. The tonalites ( 246.5 Ma) display geochemical affinities of I-type granites. They were probably derived by fractional crystallization of the modified lithospheric mantle-derived basaltic magmas in a volcanic arc setting. The monzogranites ( 235 Ma) are characterized by low Al2O3, but high Y and Yb with notably negative Eu anomalies. In contrast, the biotite granites ( 229.5 Ma) show high Al2O3 but low Y and Yb with steep HREE patterns and the absence of negative Eu anomalies. Elemental data suggested that the biotite granites were likely derived from a thickened lower crust, but the monzogranites originated from a thin crust. Our data suggested that the initial subduction of the Chaganchulu oceanic slab towards the Alxa block occurred at 302 Ma. This subduction process continued to the Early Triassic ( 246 Ma) and the basin was finally closed before the Middle Triassic ( 235 Ma). Subsequently, the break-off of the subducted slab triggered asthenosphere upwelling (240-230 Ma).

  17. Zircon U-Pb geochronology and emplacement history of intrusive rocks in the Ardestan section, central Iran

    Energy Technology Data Exchange (ETDEWEB)

    Sarjoughian, F.; Kananian, A.

    2017-11-01

    The Urumieh-Dokhtar Magmatic Arc (UDMA) is part of the Alpine–Himalayan orogenic belt and interpreted to be a subduction-related Andean-type magmatic arc. Along this belt, Eocene volcanics and some gabbroic to granitic bodies crop out. The main rock types of the studied intrusion are granite, granodiorite, and diorite. They have geochemical features typical of magnesian, calc-alkaline, metaluminous to slightly peraluminous granites and I-type intrusive rock that have a strong enrichment in Large-Ion Lithophile (LIL) elements (e.g. Rb, Ba, Sr), and a depletion in High Field Strength (HFS) elements (e.g. Nb, Ti, P), typical of subduction-related magmas. Zircon U-Pb dating was applied to determine the emplacement ages of the different intrusions in the Ardestan area. Among them the Kuh-e Dom diorite is 53.9±0.4Ma old; the Kuh-e Dom granodiorite is 51.10±0.4Ma old; the Mehrabad granodiorite is 36.8±0.5Ma old, the Nasrand granodiorite is 36.5±0.5Ma old, the Zafarghand granodiorite is 24.6±1.0Ma old, and the Feshark granodiorite is 20.5±0.8Ma old. These results delineate more accurately the magmatic evolution related to the Neotethyan subduction from the Lower Eocene to Lower Miocene, and the subsequent Zagros orogeny that resulted from the Arabia-Eurasia collision. The emplacement of these intrusive rocks inside the UDMA, which has a close relationship with the collisional orogeny, is transitional from a subduction-related setting to post-collisional setting in the Ardestan area.

  18. Monzonitoid magmatism of the copper-porphyritic Lazurnoe deposit (South Primor'e): U-Pb and K-Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic-geochemical studies

    Science.gov (United States)

    Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.

    2011-05-01

    Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.

  19. Alteration Mineralogy and Geochemical Characteristics of Porphyry Cu-Mo Mineralization in Domaniç (Kütahya) Area

    Science.gov (United States)

    Sariiz, K.; Sendir, H.

    2012-04-01

    The study area is located at 30 km northwest of Domaniç (Kütahya) and covers on approximately 250 square kilometers. The Devonian (Paleozoic) schists which are composed of gneiss, mica schist and chlorite schist is the oldest unit of the study area. This units are overlain unconformably by the Permian Allıkaya Marbles. Eocene granodioritic intrusives cut other rock series and located as a batholite. Magmatic units present porphyric and holocrystalline textures. Granodioritic intrusions are represented by tonalite, tonalite porphyr, granodiorite, granodiorite porphyr, granite, diorite, diorite porphyries. Potassic, phyllitic and prophyllitic hydrothermal alteration zones are determined in host rocks and wallrocks. Mineralizations are observed as disseminated, and stockwork types within the granodioritic rocks. Ore minerals are pyrotine, pyrite, chalcopyrite, molybdenite, rutile, bornite, sphalerite, marcasite and limonite. Geochemically, it is of sub-alkaline affinity, belongs to the high-K, calc-alkaline series and displays features of typical I-type affinity. They show enrichment in large-ion lithophile elements (LIL) and depletion Nb and Ti indicating a subduction zone related magmatic signature for their origin. δ18O (quartz) values range from 8,8 to 12,1 ‰. δ18O (biotite) and δD (biotite) values range from 2,6 to 6,1 ‰ and -87 - -125 (SMOW). These values indicate that mixture magmatic-meteoric of hydrothermal solutions origin which are potassic to propylitic zones. δ13C (calcite) values range from 1,9 to 3,3 ‰ (PDB). Calcite values within the marine carbonates in the study area.

  20. Sm-Nd geochemistry and U-Pb geochronology of the Preissac and Lamotte leucogranites, Abitibi Subprovince

    International Nuclear Information System (INIS)

    Ducharme, Y.; Stevenson, R.K.; Machado, N.

    1997-01-01

    The Lacorne Block in the Southern Volcanic Zone of the Abitibi Subprovince is composed of interleaved metavolcanic and metasedimentary rocks that are intruded by syn- to posttectonic diorites, granodiorites, and granites. These rocks form the Lacorne, Lamotte, and Preissac plutons, which can be divided into an early suite of dioritic - granodioritic rocks and a later suite of S-type, Ieucocratic granites with an estimated age of 2640 Ma. This study presents Sm - Nd data and U - Pb monazite and titanite ages for the late leucocratic granites of the Preissac and Lamotte plutons. A biotite -muscovite monzogranitic phase of the Lamotte pluton is dated at 2647 ± 2 Ma, but similar phases of the Preissac pluton are dated at 2681 - 2660 Ma. These ages extend the period of leucogranitic plutonism for this area to 40 Ma and suggest that the age of collision of the Abitibi and the Pontiac subprovinces occurred before 2685 Ma. The ε Nd values for the leucogranites range from -1 to +3 and suggest an origin largely through melting of sediments having a juvenile isotopic signature (i.e.. a short crustal residence time). Possible sources of the leucogranites include metasedimentary rocks of the Pontiac Subprovince, the Lacorne Block, and the Southern Abitibi Volcanic Zone, but the ε Nd values of the granites are most consistent with melting of metasediments of the Southern Volcanic Zone. We suggest that sediments of the Southern Volcanic Zone formed an accretionary prism along the southern continental margin of the Abitibi before collision with the Pontiac Subprovince. This prism was subsequently trapped between the two colliding margins, subducted, and partially melted to produce the Lamotte, Preissac, and Lacorne leucogranites. (author)

  1. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization

    Science.gov (United States)

    Wang, Bai-Qiu; Zhou, Mei-Fu; Li, Jian-Wei; Yan, Dan-Ping

    2011-11-01

    Early Mesozoic porphyritic intrusions in the Shangri-La region, southern Yidun terrane, SW China, are spatially associated with andesites and dacites. These intrusions are composed of diorite and quartz diorite, and are closely related to copper mineralization. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The associated andesites and dacites are interlayered with slates and sandstones and have ages of around 220 Ma. All of the intrusive and extrusive rocks have similar, highly fractionated REE patterns and high La/Yb (13-49) ratios with no prominent Eu anomalies. They display pronounced negative Nb-Ta and Ti anomalies on primitive mantle-normalized spidergrams. Their SiO2 contents range from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from1.9 to 4.2 wt.%. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). These features suggest that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and εNd (- 1.88 to - 4.93) values, but belong to high silica (HSA) and low silica adakitic rocks (LSA). The HSA represent an early stage of magmatism (230 to 215 Ma) and were derived from oceanic slab melts with limited interaction with the overlying mantle wedge during ascent. At 215 Ma, more extensive interaction produced the LSA. We propose that the early adakitic magmas (HSA) formed by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the later adakitic magmas (LSA).

  2. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.

    2016-10-01

    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  3. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton

    Directory of Open Access Journals (Sweden)

    Yusheng Wan

    2014-07-01

    Full Text Available The Central Hebei Basin (CHB is one of the largest sedimentary basins in the North China Craton, extending in a northeast–southwest direction with an area of >350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedimentary rocks recovered from drill holes that penetrated into the basement of the CHB. Two samples of gneissic granodiorite (XG1-1 and gneissic quartz diorite (J48-1 have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41–2.51 and ∼2.5 Ga, respectively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher ΣREE contents and lower Eu/Eu* and (La/Ybn values. Two metasedimentary samples (MG1, H5 mainly contain ∼2.5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have εHf (2.5 Ga values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2.9 Ga, respectively. Therefore, ∼2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.

  4. Isotopic disequilibrium among commingled hybrid magmas: Evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona

    International Nuclear Information System (INIS)

    Metcalf, R.V.; Smith, E.I.; Reed, R.C.

    1995-01-01

    The syn-extensional Miocene Mt. Perkins pluton, northwestern Arizona, cooled rapidly due to its small size (6 km 2 ) and shallow emplacement (7.5 km) and allows examination of commingled rocks that experienced little isotopic exchange. Within the pluton, quartz dioritic to granodioritic host rocks (58-68 wt% SiO 2 ) enclose dioritic enclaves (50-55 wt% SiO 2 ) and a portion contains enclave-free granodiorite (70-74 wt% SiO 2 ). Fine-grained, crenulate enclave margins and a lack of advanced mixing structures (e.g., schlieren, flow fabrics, etc.) indicate an incipient stage of commingling. Isotopic variation between enclaves and enclosing host rocks is large (6.8 to 10.6 ε Nd units; 0.0036 to 0.0046 87 Sr/ 86 Sr units), suggesting isotopic disequilibrium. Comparison of an enclave core and rim suggests that isotopic exchange with the host magma was limited to the enclave rim. Enclaves and hosts collectively form a calc-alkaline suite exhibiting a large range of ε Nd (+1.2 to -12.5) and initial 87 Sr/ 86 Sr (0.705 to 0.71267) with a correlation among ε Nd , initial 87 Sr/ 86 Sr, and major and trace element compositions. Modeling suggests that the suite formed by magma hybridization involving magma mixing accompanied by fractional crystallization. The magma mixing must have predated commingling at the present exposure level and indicates a larger mixing chamber at depth. Isotopic and trace element data suggests mixing end-members were asthenospheric mantle-derived mafic and crustal-derived felsic magmas. Fractional crystallization facilitated mixing by reducing the rheological contrasts between the mafic and felsic mixing end-members. 58 refs., 11 figs., 3 tabs

  5. Origin, Petrogenesis and radiometric age dating of Pichagchi Batholith (North West Iran)

    International Nuclear Information System (INIS)

    Kholghi, M.H.; Vossoughi Abedini, A.

    2004-01-01

    Pichagchi batholith, located in 35 Km southeast of Shahin Dez, northwest of Iran, is situated in Central Iran, cutting Paleozoic rocks. Absolute age determination for this batholith by K-Ar radiometric method gives 74.20 Ma. indicating Late Cretaceous-Paleocene time corresponding to lauramide orogeny. This batholith consists of quartz diorite, tonalite, granodiorite and quartz monzodiorite in which main mafic minerals are biotite and amphibole. Enclaves are mica schist and fine graind quartz diorite in various sizes. Sieve texture and zonation observed in plagioclase minerals indicate that the original magma has been produced by magma mixing of lower crust and upper mantle. Geochemistry study of the main elements shows that the batholith is calc-alkaline and meta luminous and A12O3, Na2O, K2O, FeO values are high where as MgO, CaO, MnO, P2O5, TiO2 are low. In addition, genetic parameters for this batholith is compatible with I-Type granites (Caledonian). Rare earth elements plotted in spider diagrams show that the average slope the curves is from K towards Cr (left to right), indicating partial melting. Depletion of compatible elements such as Ni, Cu, V and enrichment of incompatible elements imply that magma was not original and not initiated from mantle. Further mores trough of Nb could be interpreted by magma mixing with crustal materials or by subduction. Also trough of Ti and crest of Y elements show that the origin of the magma is I-type. Finally, Pichagchi batholith is orogenic and its tectonic setting is compatible with continental arc granitoids

  6. Petrology, Magnetic susceptibility, Tectonic setting and mineralization associated with Plutonic and Volcanic Rocks, Eastern Bajestan and Taherabad, Iran

    Directory of Open Access Journals (Sweden)

    Malihe Ghoorchi

    2009-09-01

    Full Text Available Study area is located in district of Bajestan and Ferdows cities, NE of Iran. Structurally, this area is part of Lut block. The oldest exposed rocks, to the north of intrusive rocks and in Eastern Bajestan, are meta-chert, slate, quartzite, thin-bedded crystalline limestone and meta-argillite. The sedimentary units are: Sardar Formation (Carboniferous, Jamal Formation (Permian, Sorkh Shale and Shotori Formations (Triassic, carbonateous rocks (Cretaceous and lithostratigraphically equivalent to Kerman conglomerate (Cretaceous-Paleocene are exposed in this area. Based on relative age, magmatism in eastern Bajestan and Taherabad started after Late Cretaceous and it has been active and repeated during Tertiary time. At least, three episodes of volcanic activities are recognized in this area. The first stage was mainly volcanic flow with mafic composition and minor intermediate. The second episode was mainly intermediate in composition. The third stage was changed to acid-intermediate in composition. Since the plutonic rocks intruded the volcanic rocks, therefore they may be Oligo-Miocene age. Bajestan intrusive rocks are granite-granodiorite-quartz monzonite. Taherabad intrusive rocks are diorite-quartz diorite- monzonite-latite. Bajestan intrusive rocks are reduced type (ilmenite series and Taherabad intrusive rocks are oxidized type (magnetite series.Based on geochemical analysis including trace elements, REE and isotopic data, Bajestan intrusive rocks formed in continental collision zone and the magma has crustal origin. Taherabad intrusive rocks were formed in subduction zone and magma originated from oceanic crust. Taherabad intrusive rock has exploration potential for Cu-Au and pb.

  7. Petrogenesis, U-Pb and Sm-Nd geochronology of the Furna Azul Migmatite: partial melting evidence during the San Ignacio Orogeny, Paragua Terrane, SW Amazon Craton

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Newton Diego Couto do; Ruiz, Amarildo Salina; Pierosan, Ronaldo; Lima, Gabrielle Aparecida de; Matos, Joao Batista; Lafon, Jean-Michel; Moura, Candido Augusto Veloso, E-mail: newtongeologia@hotmail.com, E-mail: asruiz@gmail.com, E-mail: ronaldo.pierosan@yahoo.com.br, E-mail: gabilimagel@gmail.com, E-mail: lafonjm@ufpa.br, E-mail: prof.jmatos@gmail.com, E-mail: candido@ufpa.br [Universidade Federal do Para (GEOCIAM/UFPA), Belem, PA (Brazil). Instituto Nacional de Ciencia e Tecnologia de Geociencias da Amazonia

    2016-11-01

    The Furna Azul Migmatite is a ∼10 km{sup 2} complex located in Pontes e Lacerda city, Mato Grosso, Brazil. It belongs to Paragua Terrane, limit with Rio Alegre Terrane, southeast of San Ignacio Province, in Amazon Craton. It consists of transitional metatexites with amphibolite enclaves and dioritic injections. The rocks were divided in residuum rich and leucosome rich; both have three deformation phases marked by folded stromatic layers affected by spaced foliation and metamorphosed in amphibolite facies, represented by garnet, biotite, sillimanite, and by the clinopyroxene in the enclaves. The metamorphic retrograde to greenschist is marked by formation of chlorite, muscovite and prehnite. Residuum-rich metatexites show higher CaO and Na{sub 2}O contents, separating them from K{sub 2}O, Ba and Rb enriched transitional metatexites. U-Pb on zircon and Sm-Nd whole-rocks dating indicates that the residuum-rich metatexite crystallized at 1436 ± 11 Ma, with a T{sub DM} age of 1.90 Ga and ε{sub Nd(1.43)} of -0.54, whereas the dioritic injection crystallized at 1341,7 ± 17 Ma with a T{sub DM} age of 1.47 Ga and ε{sub Nd(1.34)} of 3.39. These results indicate that the Furna Azul Migmatite protolith was formed during the San Ignacio Orogeny and was reworked during the same orogeny, as basement for collisional to post-magmatic granites from Pensamiento Intrusive Suite. (author)

  8. Zircon U-Pb geochronology and emplacement history of intrusive rocks in the Ardestan section, central Iran

    International Nuclear Information System (INIS)

    Sarjoughian, F.; Kananian, A.

    2017-01-01

    The Urumieh-Dokhtar Magmatic Arc (UDMA) is part of the Alpine–Himalayan orogenic belt and interpreted to be a subduction-related Andean-type magmatic arc. Along this belt, Eocene volcanics and some gabbroic to granitic bodies crop out. The main rock types of the studied intrusion are granite, granodiorite, and diorite. They have geochemical features typical of magnesian, calc-alkaline, metaluminous to slightly peraluminous granites and I-type intrusive rock that have a strong enrichment in Large-Ion Lithophile (LIL) elements (e.g. Rb, Ba, Sr), and a depletion in High Field Strength (HFS) elements (e.g. Nb, Ti, P), typical of subduction-related magmas. Zircon U-Pb dating was applied to determine the emplacement ages of the different intrusions in the Ardestan area. Among them the Kuh-e Dom diorite is 53.9±0.4Ma old; the Kuh-e Dom granodiorite is 51.10±0.4Ma old; the Mehrabad granodiorite is 36.8±0.5Ma old, the Nasrand granodiorite is 36.5±0.5Ma old, the Zafarghand granodiorite is 24.6±1.0Ma old, and the Feshark granodiorite is 20.5±0.8Ma old. These results delineate more accurately the magmatic evolution related to the Neotethyan subduction from the Lower Eocene to Lower Miocene, and the subsequent Zagros orogeny that resulted from the Arabia-Eurasia collision. The emplacement of these intrusive rocks inside the UDMA, which has a close relationship with the collisional orogeny, is transitional from a subduction-related setting to post-collisional setting in the Ardestan area.

  9. Geology, alteration, age dating and petrogenesis of intrusive bodies in Halak Abad prospect area, NE Iran

    Directory of Open Access Journals (Sweden)

    Maliheh Ghourchi

    2014-04-01

    Full Text Available The Halak Abad prospect occurs in the northeastern part of Central Iran zone (Sabzevar structural zone. In this investigation, geochemical evolution, age and source of part of northeastern Iran magmatic arc (intrusive bodies in Halak Abad area in the Khorasan Razavi province has been studied. The exposed rocks consist of volcanic rocks with andesite and dacite nature, limestone, plutonic rocks mostly diorite, quartz diorite, monzodiorite, quartz monzonite, granodiorite and granite and sedimentary rocks such as limestone, sandstone and conglomerate. Magnetic susceptibility of intrusive rocks is >100 × 10-5 SI, so they belong to the magnetite-series (oxidized. This magmatism is mainly low-K (tholeiite series and meta-aluminous. The amounts of Zr, Th, Nb and Ti show depletion compared to N-MORB. Trace elements behavior shows a nearly flat pattern. Age of granodiorite body based on U-Pb zircon dating is 99.7±1.8 Ma (Mid-Cretaceous and 87Sr/86Sr initial ratio is 0.7047. The geochemical signature and 87Sr/86Sr initial ratio in the area suggest volcanic arc magmatism in subduction zone. This magmatism has characteristic such as high Na2O (3-7 %, low K2O (0.12-1 %, high CaO (4-5.7%, low Rb (1-20 ppm, low total REE (<40 ppm, high Ba/Nb, Sm/Yb<2, (La/YbN<5, 87Sr/86Sr initial ratio < 0.7045 and εNd: +4.5 show differences with normal granitoids in subduction zones. Geochemical and petrological characteristics indicate melting in relatively low pressure (shallow depth. The lines of evidence demonstrate that formation of this granitoid needs a suprasubduction zone.

  10. An evolving magmatic-hydrothermal system in the formation of the Mesozoic Meishan magnetite-apatite deposit in the Ningwu volcanic basin, eastern China

    Science.gov (United States)

    Liu, Wen-Hao; Jiang, Man-Rong; Zhang, Xiao-Jun; Xia, Yan; Algeo, Thomas J.; Li, Huan

    2018-06-01

    The Meishan iron deposit contains 338 Mt of iron-ore reserves at 39% Fe and represents the largest magnetite-apatite deposit in the Ningwu Basin of eastern China. Controversy has long existed about whether this deposit had a hydrothermal or iron-oxide melt origin. Iron mineralization is genetically related to plutons that are composed of gabbro-diorite, which were emplaced at 130 ± 1 Ma. These rocks have SiO2 contents of 51.72-54.60 wt%, Na2O contents of 3.47-4.04 wt%, K2O contents of 2.02-2.69 wt%, and K2O/Na2O ratios of 0.51-0.73. These rocks are enriched in LILEs and LREEs and depleted in Nb, Ta, and Ti, which indicates that the magma originated through partial melting of an enriched lithospheric mantle source in a subduction environment. A pattern of decreasing initial Sr isotopic ratios and increasing εNd(t) values with time in Early Cretaceous magmatic rocks of the Ningwu Basin may indicate incorporation of increasing proportions of asthenospheric mantle material into the source magma, which is consistent with the processes of lithospheric thinning and asthenospheric upwelling in eastern China related to Mesozoic subduction of the Paleo-Pacific Plate. Two stages of magnetite are found in the gabbro-diorite: (1) early-crystallized magnetite as euhedral-subhedral crystals in larger clinopyroxene crystals, and (2) later-crystallized magnetite and accompanying ilmenite grains in the voids between plagioclase and clinopyroxene crystals. The formation of magnetite before clinopyroxene, combined with the results of Fe-Ti oxide geothermometry and analysis of magnetite V content, indicates that the oxygen fugacity of the source magma was greater than ΔFMQ +2.2 at an early stage (>640 °C) but decreased to ΔFMQ -2.66 as abundant magnetite crystallized at a later stage (∼489 °C). The early crystallization of magnetite at a high oxygen fugacity does not support a Fenner evolution trend for the primitive magma and diminishes the likelihood of liquid immiscibility

  11. Growth of a Large Composite Magma System: the EJB Pluton, Eastern California.

    Science.gov (United States)

    Matty, D. J.; Vervoort, J.; Dufrane, A.; Hart, G.; Student, J.; Morgan, S.

    2008-12-01

    The composite EJB pluton crops out in the White-Inyo Mountains of eastern California, and comprises the Eureka Valley monzonite (EVM), the Joshua Flat quartz monzonite (JFQM), the Beer Creek granite (BCG), and an unnamed diorite. While sometimes equivocal, field relationships suggest that the EVM was emplaced first, followed by the JFQM, and finally the BCG; the diorite predates the BCG. Sylvester and others (GSAB, 1978) reported zircon U-Pb ages of 179±2 Ma for the EVM and 174±5 Ma for the JFQM. Coleman and others (GSAB, 2003) determined a U-Pb age of 179±3 Ma (via Pb-loss trajectory) for the BCG. Because of the uncertainty in the ages and ambiguous field relations, the sequence and duration of EJB magmatism remain unclear. To understand more fully the timing of EJB magmatism, we separated zircons from 12 samples collected from each of the main EJB units. These samples were characterized using light microscopy, SEM and CL techniques. U-Pb ages were determined from individual zircons by LA-ICP-MS following the method of Chang and others (G3, 2006). For the ages reported below, the reported uncertainties are based on factors within the analysis, but do not include external factors such as sample/standard bias or other matrix effects. Overall uncertainty in LA-ICPMS U-Pb geochronology is hard to assess, but we estimate that all ages reported below are subject to a minimum 2% uncertainty. We determined a concordant U-Pb age of 180±2 Ma for the EVM, which agrees with the results of Sylvester and others (1978). The unnamed diorite produced a concordant U-Pb age of 177±3 Ma. Concordant U-Pb ages of 172±2, 172±3, 173±2, 174±2, and 175±2 Ma were determined for individual samples of the JFQM and agree with the age reported by Sylvester and others (1978) of 174±5 Ma. Concordant U-Pb ages of 168±4, 168±3, 169±1, 172±2, and 172±2 Ma were determined for individual BCG samples. Within the reported error, there is no difference in age between individual samples of

  12. Petrogenesis of late Paleozoic-to-early Mesozoic granitoids and metagabbroic rocks of the Tengchong Block, SW China: implications for the evolution of the eastern Paleo-Tethys

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei

    2018-03-01

    This paper presents precise zircon U-Pb, bulk-rock geochemical, and Sr-Nd-Pb isotopic data for metagabbro, quartz diorite, and granite units within the Tengchong Block of SW China, which forms the southeastern extension of the Himalayan orogeny and the southwestern section of the Sanjiang orogenic belt, a key region for furthering our understanding of the evolution of the eastern Paleo-Tethys. These data reveal four groups of zircon U-Pb ages that range from the late Paleozoic to the early Mesozoic, including a 263.6 ± 3.6 Ma quartz diorite, a 218.5 ± 5.4 Ma two-mica granite, a 205.7 ± 3.1 Ma metagabbroic unit, and a 195.5 ± 2.2 Ma biotite granite. The quartz diorite in this area contains low concentrations of SiO2 (60.71-64.32 wt%), is sodium-rich, and is metaluminous, indicating formation from magmas generated by a mixed source of metamafic rocks with a significant metapelitic sedimentary material within lower arc crust. The two-mica granites contain high concentrations of SiO2 (73.2-74.3 wt%), are strongly peraluminous, and have evolved Sr-Nd-Pb isotopic compositions, all of which are indicative of a crustal source, most probably from the partial melting of felsic pelite and metagreywacke/psammite material. The metagabbros contain low concentrations of SiO2 (50.17-50.96 wt%), are sodium-rich, contain high concentrations of Fe2O3T (9.79-10.06 wt%) and CaO (6.88-7.12 wt%), and are significantly enriched in the Sr (869-894 ppm) and LREE (198.14-464.60 ppm), indicative of derivation from magmas generated by a metasomatized mantle wedge modified by the sedimentary-derived component. The biotite granites are weakly peraluminous and formed from magmas generated by melting of metasedimentary sources dominated by metagreywacke/psammite material. Combining the petrology and geochemistry of these units with the regional geology of the Indosinian orogenic belt provides evidence for two stages of magmatism: an initial stage that generated magmas during partial melting of

  13. Response of zircon to melting and metamorphism in deep arc crust, Fiordland (New Zealand): implications for zircon inheritance in cordilleran granites

    Science.gov (United States)

    Bhattacharya, Shrema; Kemp, A. I. S.; Collins, W. J.

    2018-04-01

    The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20-25 km-thick, 125.3 ± 1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3 ± 1.2 Ma old, pre-MDC lattice dykes and 117.4 ± 3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9-14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only 2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740-640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1 ± 1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths

  14. Ground-water resources of Gregg County, Texas, with a section on Stream runoff

    Science.gov (United States)

    Broadhurst, W.L.; Breeding, S.D.

    1950-01-01

    Field work in the island of St. Croix, V. I., was carried on from December 1938 to April 1939 in connection with a test-drilling program for water sup- plies. The island is 21 miles long and has a maximum width of 6 miles. Its western part consists of a range of mountains flanked on the south by a rolling plain; its narrower eastern part is entirely mountainous. There are only a few small streams. The rolling and fiat lands are cultivated or are in grass, and the mountainous areas are either wooded or in grass. The average rain- fall of the island is 46.34 inches, but severe droughts and periods of excess precipitation are not uncommon. The island is made up of rocks of Upper Cretaceous age, mostly volcanic tufts and limestones known as the Mount Eagle volcanics; diorite intruded into the cretaceous rocks; and Oligocene to Miocene blue clays and yellow marls (the Jealousy formation and Kingshill marl, respectively). Alluvium is widely distributed. The Mount Eagle rocks were strongly folded in early Tertiary time and the Kingshill strata gently folded in post Lower-Miocene time along an east-northeast axis. Three early Tertiary cycles of erosion are recognized. After the folding of the Kingshill marl, streams followed the strike of the folded rocks in a westerly direction, but they gradually assumed southward courses across the marl plain and as a result a western area of old-age topography, a central area of late-mature topography, and an eastern area of early-mature topography have been created. Submerged reefs and emergent reefs and beaches indicate several fairly recent stands of the sea. Water for human consumption is obtained by collecting rain water in cis- terns, but water for other purposes is almost entirely supplied by wells which are generally less than 100 feet deep. Many dug wells are used, but in recent years drilled wells have been constructed. Most of them are discharged by wind-powered pumps of small capacity. Wells are developed in all the rocks

  15. Geochemical and Isotopic Features of Çaykara (Trabzon, NE Turkey) Intrusive Complex

    Science.gov (United States)

    Sen, Cuneyt; Aydınçakır, Emre; Aydin, Faruk; Dokuz, Abdurrahman; Karslı, Orhan; Yılmazer, Sinan; Dündar, Buket

    2017-04-01

    Çaykara (Trabzon) Intrusive Complex is located at the eastern part of the Kaçkar Batholith. In the complex, Gündoǧdu-Boǧalı Plutons is Upper Cretaceous in aged, and Uzundere and Eǧerler Plutons are Eocene in aged. Gündoǧdu-Boǧa Plutons crop out around Araklı-Bahçecik villages, and are represented by the granitic to granodioritic rocks in composition showing porphyritic-granular texture. These rocks contain dark coloured, semi-rounded to rounded, wedged, fine-grained diorite and monzodiorite anclaves. Uzuntarla Pluton extends at E-W from Köknar-Karaçam-Uzuntarla sub-districs to south of Çaykara towards Bahçecik sub-district of Araklı. The rocks of the Uzuntarla Pluton are generally diorite to granodiorite in composition with porphyritic in texture. Eǧerler Pluton exposes at southern of the Çaykara Intrusive Complex. It's mineralogical composition is changing from diorite to granite with medium-coarse grain granular texture. The Upper Cretaceous plutonic rocks are characterized by ɛNd(i) values range from -1.5 to -9.7, whereas 87Sr/86Sr(i) values range from 0.7052 to 0.7119. Nd model ages are between 0.94 and 1.52 Ga. 206Pb/204Pb(i), 207Pb/204Pb(i) and 208Pb/204Pb(i) contents of samples change from 18.24 to 18.72, 15.59 to 15.66 and 37.93-38.64, respectively. The δ18O values in the investigated samples range from 4.0 ‰ to 6.7 ‰ and have similar ratios to I-type granitoides.The Eocene plutonic rocks are characterized by ɛNd(i) values range from -0.4 to -6.0, whereas 87Sr/86Sr(i) values range from 0.7050 to 0.7143. Nd model ages are between 0.81 and 1.32 Ga. 206Pb/204Pb(i), 207Pb/204Pb(i) and 208Pb/204Pb(i) contents of samples change from 18.241to 18.57, 15.58 to 15.63 and 38.22-38.92, respectively. The δ18O values in the investigated samples range from 5.8 ‰ to 7.1 ‰ and have similar ratios to I-type granitoides. Upper Cretaceous and Eocene aged Plutons in the study area are high-K calc-alkaline in composition and display metaluminous to

  16. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    Science.gov (United States)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18-24Ab79-82Or0.3-0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclase-dominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong

  17. Petrography, alteration and genesis of iron mineralization in Roshtkhar

    Directory of Open Access Journals (Sweden)

    Habib Biabangard

    2017-07-01

    Full Text Available Introduction Iron mineralization in Roshtkhar is located in 48 Km east of the city of Roshtkhar and south of the Khorasan Razavi province. It is geologically located in the north east of the Lut block and the Khaf-Bardeskan volcano-plutonic belt. The Khaf-Bardeskan belt is an important metallogenic province since it is a host of valuable ore deposits such as the Kuh-e-Zar Au-Spicularite, the Tanourcheh and the Khaf Iron ore deposits (Karimpour and Malekzadeh Shafaroudi, 2007. Iron and Copper mineralization in this belt are known as the hydrothermal, skarn and IOCG types (Karimpour and Malekzadeh Shafaroudi, 2007. IOCG deposits are a new type of magmatic to hydrothermal mineralization in the continental crust (Hitzman et al., 1992. Precambrian marble, Lower Paleozoic schist and metavolcanics are the oldest rocks of the area. The younger units are Oligocene conglomerate, shale and sandstone, Miocene marl and Quaternary deposits. Iron oxides and Cu sulfides are associated with igneous rocks. Fe and Cu mineralization in Roshtkhar has been subject of a few studies such as Yousefi Surani (2006. This study describes the petrography of the host rocks, ore paragenesis, alteration types, geochemistry, genesis and other features of the Fe and Cu mineralization in the Roshtkhar iron. Methods After detailed field studies and sampling, 30 thin sections and 20 polished sections that were prepared from host rocks and ores were studied by conventional petrographic and mineraloghraphic methods in the geology department of the University of Sistan and Baluchestan. 5 samples from the alteration zones were examined by XRD in the Yamagata University in Japan, and 8 samples from the less altered ones were analyzed by XRF and ICP-OES in the Kharazmi University and the Iranian mineral processing research center (IMPRC in Karaj, respectively. The XRF and ICP-OES data are presented in Table 1. Result and discussion The host rocks of the Roshtkhar Iron deposit are diorite

  18. The evaluation of physico-chemical parameters of the Nasrand Plutonic complex by using mineral composition

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarjoughian

    2017-02-01

    Full Text Available Introduction Mineral composition is sensitive to variations in the composition of the magma and can be used to characterize the physical conditions of crystallization such as temperature, pressure, oxygen fugacity and water content. The studies have demonstrated that geobarometery by amphibole provides a tool for determining the depth of crystallization and knowledge of the depth of crystallization of hornblende through to solidification of calc-alkaline plutons (Anderson and Smith, 1995. The composition of pyroxene can be used as crystallization pressure and temperature indicators of pyroxene too. Anlytical methods The mineral compositions of the Nasrand intrusion were determined by electron microprobe, with special emphasis on the amphibole, feldspar, and pyroxene at the Naruto University, Japan, the EPMA (Jeol- JXA-8800R was used at operating conditions of 15 kV, 20 nA acceleration voltage and 20s counting time. Results The Nasrand intrusion (33°13'–33°15' N, 52°33'–52°34'E with an outcrop area of about 40 km2 is situated in the Urumieh–Dokhtar magmatic belt, SE of Ardestan. It is composed of granite and granodiorite and various dikes of diorite and gabbro which are intruded in it. It is intruded into Eocene volcanic rocks, including andesite, rhyolite, and dacite. The petrographical studies indicate that the granitic and granodioritic rocks contain major minerals such as quartz, K-feldspar, plagioclase, and amphibole, which are in an approximate equilibrium state. The gabbroic-dioritic dikes usually show microgranular porphyric texture. They mainly consist of plagioclase, amphibole, and pyroxene. The plagioclase shows variable composition from albite to oligoclase in the granitoid rocks and from oligoclase to bytownite in dioritic and gabbroic dikes (Deer et al., 1991. The amphiboles are calcic and their composition varies from hornblende to actinolite, whereas the composition of the basic dikes is inclined to hastingsite (Leake et

  19. The Solarya Volcano-Plutonic Complex (NW Turkey): Petrography, Petrogenesis and Tectonic Implications

    Science.gov (United States)

    Ünal, Alp; Kamacı, Ömer; Altunkaynak, Şafak

    2014-05-01

    The post collisional magmatic activity produced several volcano-plutonic complexes in NW Anatolia (Turkey) during the late Oligocene- Middle Miocene. One of the major volcano-plutonic complexes, the Solarya volcano-plutonic complex is remarkable for its coeval and cogenetic plutonic (Solarya pluton), hypabysal and volcanic rocks of Early Miocene (24-21 Ma) age. Solarya pluton is an epizonal pluton which discordantly intruded into metamorphic and nonmetamorphic basement rocks of Triassic age. It is a N-S trending magmatic body covering an area of 220 km2,approximatelly 20 km in length and 10 km in width. Based on the field and petrographic studies, three main rock groups distinguished in Solarya pluton; K-feldspar megacrystalline granodiorite, microgranite-granodiorite and haplogranite. Porphyritic and graphic-granophyric textures are common in these three rock groups. Pluton contains magmatic enclaves and syn-plutonic dykes of dioritic composition. Hypabyssal rocks are represented by porphyritic microdiorite and porphyritic quartz-diorite. They form porphyry plugs, sheet inrusions and dykes around the pluton. Porphyrites have microcrystalline-cryptocrystalline groundmass displaying micrographic and granophyric textures. Petrographically similar to the hypabyssal rocks, volcanic rocks are formed from andesitic and dasitic lavas and pyroclastic rocks. Plutonic, hypabyssal and volcanic rocks of Solarya volcano-plutonic complex show similar major-trace element and Sr-Nd-Pb isotopic compositions, indicating common magmatic evolution and multicomponent melt sources including mantle and crustal components. They are mainly metaluminous, medium to high-K calc alkaline rocks and display enrichment in LILE and depletion in Nb, Ta, P and Ti. They have initial 87Sr/86Sr values of 0.70701- 0.70818 and 143Nd/144Nd values of 0.51241-0.51250. These geochemical characteristics and isotopic signatures are considered to reflect the composition of the magmas derived from a

  20. Poly-phase Deformation Recorded in the Core of the Coast Plutonic Complex, Western British Columbia

    Science.gov (United States)

    Hamblock, J. M.; Andronicos, C. L.; Hurtado, J. M.

    2006-05-01

    The Coast Plutonic Complex of western British Columbia constitutes the largest batholith within the North American Cordillera. The field area for this study is Mt. Gamsby, an unexplored region above the Kitlope River, east of the Coast Shear Zone and at the southern end of the Central Gneiss Complex. The dominant lithologies on Mt. Gamsby include amphibolite and metasedimentary gneiss, gabbro-diorite, and orthogneiss. The amphibolite gneiss contains alternating amphibolite and felsic layers, with chlorite and epidote pervasive in some regions and garnet rare. This unit is commonly migmatized and contains various folds, boudins, and shear zones. The metasedimentary gneiss contains quartz, k-spar, graphite, chlorite, and perhaps cordierite, but appears to lack muscovite and aluminosilicates. The gabbro-diorite is salt and pepper in color and contains ca. 50% pyroxene and plagioclase. The orthogneiss is light in color and plagioclase-rich, with a texture varying from coarse-grained and undeformed to mylonitic. In some regions, this unit contains abundant mafic enclaves. At least four deformational events (D1-4) are observed. The second generation of folding, F2, is dominant in the area and resulted in the production of a large synform during sinistral shearing. The S1 foliation is observed only in the amphibolite gneiss and is orthogonal to S2, creating mushroom- type fold interference patterns. S2 foliations strike NW-SE and dip steeply to the SW, suggesting SW-NE directed shortening. L2 lineations developed on S2 plunge shallowly to the NW and SE, implying strike-slip motion. Although both dextral and sinistral motions are indicated by shear band data, sinistral motion is dominant. The average right and left lateral shear band orientation is nearly identical to S2, suggesting that right and left lateral shearing were synchronous. Foliations within the orthogneiss are parallel to the axes of S2 folds and boudins in the amphibolite gneiss, suggesting that emplacement

  1. Interpretation of ground and aeromagnetic surveys of Palmer Land, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    V. N. Masolov

    2000-06-01

    Full Text Available Aeromagnetic data for Palmer Land provide new information on crustal structures of the Antarctic Peninsula. Features shown on the compilation of the Lassiter Coast and Orville Coast are characterized by systems of subparallel regional anomaly zones and lineaments. The magnetic data reveal the widespread presence of an orthogonal pattern of crosscutting linear discontinuities that can be interpreted as a Late Cretaceous/Early Tertiary fracture pattern. The main displacements in the anomaly pattern between the two units are recognized in Wetmore-Irvine glaciers area where the structure of the Antarctic Peninsula changes orientation from SW-NE to S-N. The NW-SE trending transitional zone is probably a transfer zone associated with north-westerly movement of the Lassiter Coast crustal segment relative to the Orville Coast segment. Within the Lassiter Coast a fragment of Pacific Margin Anomaly (PMA, Central Plateau Magnetic Anomaly and East Coast Magnetic Anomaly (ECMA are mapped. Two-dimensional modelling suggests that PMA is caused by a limited depth body (8 km consisting of numerous plutons, probably, of different ages, composition and magnetization. The Central Plateau Magnetic Anomaly and the Merrick-Sweeney-Latady zone of the Orville Coast are represented by strong positive anomaly bands that are associated with gabbro-diorite rocks and accompanying plutons intruded near by the border of Mount Poster Formation and Latady Formation. The ECMA are alignments of high-amplitude magnetic anomalies caused by gabbro-diorite bodies, which are located within the framework of the Cretaceous granite-granodiorite plutons. Granite-granodiorite plutons of Lassiter Coast Intrusive Suite are mostly reflected by positive anomalies (100-500 nT. Modelling studies and the character of distribution of the magnetic anomalies suggest that the plutons of Lassiter Coast Intrusive Suite are prominently reflected in magnetic anomalies of regional extent. The plutonic

  2. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    Science.gov (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  3. Geology and mineral deposits of an area in the Departments of Antioquia and Caldas (Subzone IIB), Colombia

    Science.gov (United States)

    Feininger, Tomas; Barrero L., Dario; Castro, Nestor; Hall, R.B.

    1973-01-01

    The Inventario Minero National (IMN), a four-year cooperative geologic mapping and mineral resources appraisal project, was accomplished under an agreement between the Republic of Colombia and the U. S. Agency for International Development from 1964 through 1969. Subzone IIB, consisting essentially of the east half of Zone comprises nearly 20,000 km2 principally in the Department of Antioquia but including also small parts of the Departments of Caldas and Tolima. The rocks in IIB range from Precambrian to Holocene. Precambrian feldspar-quartz gneiss occupies a mosaic of fault-bounded blocks intruded by igneous rocks between the Oto fault and the Rio Magdalena. Paleozoic rocks are extensive, and include lightly metamorphosed graptolite-bearing Ordovician shale at Cristalina, and a major suite of graphitic quartz-mica schist, feldspathic and aluminous gneiss, quartzite, marble, amphibolite, and other rocks. Syntectonic intrusive gneiss included many of the older rocks during a late Paleozoic(?) orogeny, which was accompanied by Abukuma-type metamorphosing from lowermost greenschist to upper amphibolite facies. A Jurassic diorite pluton bounded by faults cuts volcanic rocks of unknown age east of the Otu fault. Cretaceous rocks are major units. Middle Cretaceous carbonaceous shale, sandstone, graywacke, conglomerate, and volcanic rocks are locally prominent. The Antioquian batholith (quartz diorite) of Late Cretaceous age cuts the middle Cretaceous and older rocks. A belt of Tertiary nonmarine clastic sedimentary rocks crops out along the Magdalena Valley. Patches of Tertiary alluvium are locally preserved in the mountains. Quaternary alluvium, much of it auriferous, is widespread in modern stream valleys. Structurally IIB constitutes part of a vast complex synclinorium intruded concordantly by syntectonic catazonal or mesozonal felsic plutons, and by the later epizonal post-tectonic Antioquian batholith. Previously unrecognized major wrench faults are outstanding

  4. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    Science.gov (United States)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  5. Geochemical characteristics and tectonic setting of the Tuerkubantao mafic-ultramafic intrusion in West Junggar, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Yufeng Deng

    2015-03-01

    Full Text Available Mineral chemistry, whole-rock major oxide, and trace element compositions have been determined for the Tuerkubantao mafic-ultramafic intrusion, in order to understand the early Paleozoic tectonic evolution of the West Junggar orogenic belt at the southern margin of the Central Asian orogenic belt. The Tuerkubantao mafic-ultramafic intrusion is a well-differentiated complex comprising peridotite, olivine pyroxenite, gabbro, and diorite. The ultramafic rocks are mostly seen in the central part of the intrusion and surrounded by mafic rocks. The Tuerkubantao intrusive rocks are characterized by enrichment of large ion lithophile elements and depleted high field strength elements relative to N-MORB. In addition, the Tuerkubantao intrusion displays relatively low Th/U and Nb/U (1.13–2.98 and 2.53–7.02, respectively and high La/Nb and Ba/Nb (1.15–4.19 and 37.7–79.82, respectively. These features indicate that the primary magma of the intrusion was derived from partial melting of a previously metasomatized mantle source in a subduction setting. The trace element patterns of peridotites, gabbros, and diorite in the Tuerkubantao intrusion have sub-parallel trends, suggesting that the different rock types are related to each other by differentiation of the same primary magma. The intrusive contact between peridotite and gabbro clearly suggest that the Tuerkubantao is not a fragment of an ophiolite. However, the Tuerkubantao intrusion displays many similarities with Alaskan-type mafic-ultramafic intrusions along major sutures of Phanerozoic orogenic belts. Common features include their geodynamic setting, internal lithological zoning, and geochemistry. The striking similarities indicate that the middle Devonian Tuerkubantao intrusion likely formed in a subduction-related setting similar to that of the Alaskan-type intrusions. In combination with the Devonian magmatism and porphyry mineralization, we propose that subduction of the oceanic slab has

  6. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    Science.gov (United States)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    Uranium-lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U-Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5-453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U-Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U-Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U-Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U-Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U-Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a

  7. Banska Shtiavnica and Hodrusha gold, silver and polymetallic deposits (Slovak Republic)

    International Nuclear Information System (INIS)

    Jelen, Stanislav; Haber, Milan

    1997-01-01

    The Banska Stiavnica-Hodrusa ore district is located in the Central Slovakia, in the central upweled part of a polygenic stratovolcano. More than 120 veins are know in this ore district. They mainly occur in propylitized pyroxene andesites, diorites, quartz-diorite porphyries and granodiorites. The ores of Banska Stiavnica and Hodrusa deposits belong to the gold-silver-polymetallic hydrothermal mineralization with lead and zink prevailing over copper. Higher temperature (mezothermal?) and epithermal para genetic assemblages indicate successive mineralizing events immediately in relation to the poly phase tectonic events - deformation stages D 1 to D 4 . Later mineralizing events show evidences for heterogeneous fluids developed in a uplifted collapsing system combined with younger extension tectonics which created conditions for later influx of meteoric waters. The ore-forming processes were accompanied by concomitant decrease in temperature, salinity, oxygen and sulphur activities. Generally, the hydrothermal precious- and base metal mineralization originated in the three successive ore-cycles. Contrasting behaviour of base and precious metal complexes in the ore-forming solutions as well as diverse thermodynamic parameters cause partial temporal and spatial separation of the base- and precious metal ore mineralization. Essential portion of the carbonate-quartz vein filling with the earlier higher temperature (mezothermal?) precious metal mineralization (first mineralization ore cycle) was formed at relatively high (395-230 o C) temperatures in acid and sub neutral solutions in depth from 2.0 to 1.5 km. Temperature decrease was accompanied by gradual pH increasing from 3.6 to 4.5. The precious- and base metal mineralization of the second ore cycle consists of three mineralization stages: (1) hematite-quartz, (2) sphalerite, and (3) rhodonite-carbonate-quartz. It was formed at temperatures >300- 200 'C, pH 4.7-6.0 in depth from 0.75 to 1.60 km. The mineralization

  8. Geology, mineralization, and fluid inclusion study of the Kuru-Tegerek Au-Cu-Mo skarn deposit in the Middle Tien Shan, Kyrgyzstan

    Science.gov (United States)

    Soloviev, Serguei G.; Kryazhev, Sergey; Dvurechenskaya, Svetlana

    2018-02-01

    The Kuru-Tegerek Cu-Au-Mo deposit is situated in a system of Late Carboniferous subduction-related magmatic arcs of the Middle Tien Shan, which together constitute a metallogenic belt of Cu-Au-Mo (±W) porphyry, with local skarns, deposits. The deposit is related to magnetite-series gabbro-diorite to tonalite intrusion. It contains prograde magnesian and calcic skarns with abundant magnetite, associated with gabbro-diorite, and retrograde skarn with Cu mineralization, formed after intrusion of tonalite. Subsequent propylitic alteration introduced abundant chalcopyrite and pyrrhotite, and native Au culminating in zones overprinting magnetite and garnet skarn. Later quartz-muscovite-carbonate veins, formed after intrusion of late mafic quartz monzogabbro dikes, contain chalcopyrite, pyrite, arsenopyrite and other sulfides and sulfosalts, tellurides, and native Au. The earliest retrograde skarn garnet contains gaseous low-salinity (1.7-3.4 wt.% NaCl eq.) fluid inclusions homogenizing at 460-500 °C into vapor, indicating that the early fluid released from crystallizing magma was a low-density vapor. It was followed by more saline (4.0-5.0 wt.% NaCl eq.), high-temperature (400-440 °C) aqueous fluid, as fluid release from the magma progressed. Boiling of this fluid at temperatures of 420 to 370 °C and a pressure of 350-300 bar produced a low-salinity (0.6-1.2 wt.% NaCl eq.), essentially gaseous, and high-salinity (from 39 to 31 wt.% NaCl eq.) brine, with possible metal (including Cu) partitioning into both gaseous and aqueous-saline phases. Boiling was coeval with sulfide deposition in the retrograde skarn. The latest episode of the retrograde skarn stage included direct separation of saline ( 40-42 wt.% NaCl eq.) fluid from crystallizing magma. The separation of saline ( 40 to 14 wt.% NaCl eq.) fluids from a crystallizing magmatic melt continued during the propylitic stage, when fluid cooling from 370 to 320 °C, together with decreasing fO2, caused Cu and especially

  9. Late Triassic Porphyritic Intrusions And Associated Volcanic Rocks From The Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Implications For Adakitic Magmatism And Porphyry Copper Mineralization

    Science.gov (United States)

    Wang, B.; Zhou, M.; Li, J.; Yan, D.

    2011-12-01

    The Yidun terrane, located on the eastern margin of the Tibetan plateau, has been commonly considered to be a Triassic volcanic arc produced by subduction of the Ganzi-Litang oceanic lithosphere. The Yidun terrane is characterized by numerous arc-affinity granitic intrusions located along a 500-km-long, north-south-trending belt. Among these granitic bodies, several small porphyritic intrusions in the southern segment of the terrane (Shangri-La region) are associated with large porphyry copper deposits. These porphyritc intrusions are composed of diorite and quartz diorite, and spatially associated with andesites and dacites. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The andesites and dacites are intercalated with slates and sandstones and have ages of around 220 Ma. The intrusive and volcanic rocks have SiO2 contents from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from 1.9 to 4.2 wt.%. They show significant negative Nb-Ta anomalies on primitive mantle-normalized spidergrams. They have high La/Yb (13-49) ratios with no prominent Eu anomalies. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). The geochemical features indicate that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and ɛNd (-1.88 to -4.93) values, but can be further divided into two groups: high silica (HSA) and low silica adakitic rocks (LSA). The HSA, representing an early stage of magmatism (230 to 215 Ma), were derived from oceanic slab melts with limited interaction with the overlying mantle wedge. At 215 Ma, more extensive interaction resulted in the formation of LSA. We propose that HSA were produced by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the LSA. Compared with

  10. Formation of the Archean crust of the ancient Vodlozero domain (Baltic shield)

    Science.gov (United States)

    Arestova, N. A.; Chekulaev, V. P.; Lobach-Zhuchenko, S. B.; Kucherovskii, G. A.

    2015-03-01

    The available geological, petrological, and isotopic data on Archean rocks of the Baltic shield are used to analyze the formation of the crust of the ancient Vodlozero domain. This made it possible to reveal the succession of endogenic processes in different parts of the domain and correlate them between each other. Several stages of magmatic processes reflecting changes in magma-generation environments are definable in the crust formation. The earliest stages of magmatism (3.24 and 3.13-3.15 Ga) are mostly represented by rocks of the tonalite-trondhjemite-granodiorite association. The next stage of endogenic activity (3020-2900 Ma) was marked by the formation of volcanics of the komatiite-basalt and andesite-dacite associations constituting greenstone belts in marginal parts of the Vodlozero domain and basic dikes accompanied by layered pyroxenite-norite-diorite intrusion in its central part. These basic bodies crossing earlier tonalities were formed in extension settings related to the formation of the mantle plume, which is confirmed by the rock composition. This stage culminated in the formation of trondhjemites at margins of greenstone structure. The next stage of endogenic activity commenced at 2890-2840 Ma by the emplacement of high-magnesian gabbro and diorite dikes in the western margin of the domain, where they cross rocks of the tonalitetrondhjemite association. This stage was marked by the formation of intermediate-acid subvolcanic bodies and dikes as well as basite intrusions including the layered and differentiated Semch intrusion, the largest one in the Vodlozero domain. The stage culminated at approximately 2850 Ma in the emplacement of tonalities of the limited distribution being represented by the Shilos massif in the north of the domain and Shal'skii massif on the eastern shore of Lake Onega. The important stage in the geological history of the Vodlozero domain is the formation of the intracratonic Matkalakhta greenstone belt at approximately 2

  11. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes

    Science.gov (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang

    2018-06-01

    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  12. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  13. Metamorphism Near the Dike-Gabbro Transition in the Ocean Crust Based on Preliminary Results from Oman Drilling Project Hole GT3A

    Science.gov (United States)

    Manning, C. E.; Nozaka, T.; Harris, M.; Michibayashi, K.; de Obeso, J. C.; D'Andres, J.; Lefay, R.; Leong, J. A. M.; Zeko, D.; Kelemen, P. B.; Teagle, D. A. H.

    2017-12-01

    Oman Drilling Project Hole GT3A intersected 400 m of altered basaltic dikes, gabbros, and diorites. The 100% recovery affords an unprecedented opportunity to study metamorphism and hydrothermal alteration near the dike-gabbro transition in the ocean crust. Hydrothermal alteration is ubiquitous; all rocks are at least moderately altered, and mean alteration intensity is 54%. The earliest alteration in all rock types is background replacement of igneous minerals, some of which occurred at clinopyroxene amphibolite facies, as indicated by brown-green hornblende, calcic plagioclase, and secondary cpx. In addition, background alteration includes greenschist, subgreenschist, and zeolite facies minerals. More extensive alteration is locally observed in halos around veins, patches, and zones related to deformation. Dense networks of hydrothermal veins record a complex history of fluid-rock alteration. During core description, 10,727 individual veins and 371 vein networks were logged in the 400 m of Hole GT3A. The veins displayed a range of textures and connectivities. The total density of veins in Hole GT3A is 26.8 veins m-1. Vein density shows no correlation with depth, but may be higher near dike margins and faults. Vein minerals include amphibole, epidote, quartz, chlorite, prehnite, zeolite (chiefly laumontite) and calcite in a range of combinations. Analysis of crosscutting relations leads to classification of 4 main vein types. In order of generally oldest to youngest these are: amphibole, quartz-epidote-chlorite (QEC), zeolite-prehnite (ZP), and calcite. QEC and ZP vein types may contain any combination of minerals except quartz alone; veins filled only by quartz may occur at any relative time. Macroscopic amphibole veins are rare and show no variation with depth. QEC vein densities appear to be higher (>9.3 veins m-1) in the upper 300 m of GT3A, where dikes predominate. In contrast, there are 5.5 veins m-1 at 300-400 m, where gabbros and diorites are abundant. ZP

  14. Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China

    Science.gov (United States)

    Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang

    2009-12-01

    The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow

  15. Mineralogía y condiciones de cristalización en el complejo subvolcánico de Barcarrota (Badajoz, España

    Directory of Open Access Journals (Sweden)

    Casquet, C.

    1987-08-01

    Full Text Available A description of mineral chemistry from rocks of the subvolcanic Barcarrota Complex is made. This igneous massif consists of several sub-alkaline lithologies, namely olivine gabbros, diorites, quartz-monzonites and amphibole granites, as well as minor peralkaline granites. Physico-chemical conditions during magma crystallization are obtained on the basis of mineral data. Thus different geothermometers lead to the following crystallization temperatures: olivine gabbros (972-1.008° C, diorites (953-995° C, quartz-monzonites (801-833° C and amphibole granites 750° C. The presence of illmenite as the sole Fe-Ti mineral in these rocks (except in the peralkaline types where it is magnetite, sugests that the fO2 was never higher than the MW buffer, decreasing continuously with the differentiation degree fram fO2= 1O-13.2 atm. for the olivine gabbros to 10-18.87 atm. in the granites Furthemore water played an important role during crystallization of the different magmas.Se estudian las características químicas de los minerales más significativos del Complejo subvolcánico de Barcarrota, formado por litologías subalcalinas consistentes en: gabros olivínicos, dioritas, cuarzo-monzonitas y granitos anfibólicos, así como por pequeños afloramientos de granitos peralcalinos. Estos datos se emplean para definir las condiciones físico-químicas de cristalización magmática. Mediante distintos geotermómetros se obtienen las siguientes temperaturas de cristalización: Gabras olivínicos (972-1008º C, Dioritas (953-995º C, Cuarzo-monzonitas (801-833º C y los Granitos anfibólicos 750º C. La presencia como único óxido de FeTi, de ilmenita en todas las rocas excepto en los tipos peralcalinos, que es magnetita, indica que la fO2 no superó las condiciones del tampón MW, decreciendo con el grado de diferenciación (fO2= 10-132 en los gabros olivínicos hasta 10-18,87 en los granitos. La presencia de agua debió jugar un notable

  16. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes

    Science.gov (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang

    2017-10-01

    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  17. Probing the Architecture of the Weathering Zone in a Tropical System in the Rio Icacos Watershed (Puerto Rico) With Drilling and Ground Penetrating Radar (GPR)

    Science.gov (United States)

    Orlando, J.; Comas, X.; Mount, G. J.; Brantley, S. L.

    2012-12-01

    Weathering processes in rapidly eroding systems such as humid tropical environments are complex and not well understood. The interface between weathered material (regolith) and non-weathered material (bedrock) is particularly important in these systems as it influences water infiltration and groundwater flow paths and movement. Furthermore, the spatial distribution of this interface is highly heterogeneous and difficult to image with conventional techniques such as direct coring and drilling. In this work we present results from a preliminary geophysical study in the Luquillo Critical Zone Observatory (LCZO) located in the rain forest in the Luquillo Mountains of northeastern Puerto Rico. The Luquillo Mountains are composed of volcaniclastic rocks which have been uplifted and metamorphosed by the Tertiary Rio Blanco quartz diorite intrusion. The Rio Blanco quartz diorite weathers spheroidally, creating corestones of relatively unweathered material that are surrounded by weathered rinds. A number of boreholes were drilled near the top of the Rio Icacos watershed, where the corestones are thought to be in the primary stages of formation, to constrain the regolith/bedrock interface and to provide an understanding of the depth to which corestones form. The depth of the water table was also a target goal in the project. Drilling reveals that corestones are forming in place, separated by fractures, even to depths of 10s of meters below ground surface. One borehole was drilled to a depth of about 25 meters and intersected up to 7 bedrock blocks (inferred to be incipient corestones) and the water table was measured at about 15 meters. Ground Penetrating Radar surveys were conducted in the same location to determine if GPR images variable thicknesses of saprolite overlying corestones. GPR common offset measurements and common midpoint surveys with 50, 100, and 200 MHz antenna frequencies were combined with borehole drillings in order to constrain geophysical results. We

  18. Evolution of borate minerals from contact metamorphic to hydrothermal stages: Ludwigite-group minerals and szaibélyite from the Vysoká - Zlatno skarn, Slovakia

    Science.gov (United States)

    Bilohuščin, Vladimír; Uher, Pavel; Koděra, Peter; Milovská, Stanislava; Mikuš, Tomáš; Bačík, Peter

    2017-09-01

    Borate minerals of the ludwigite group (LGM) and szaibélyite in association with hydroxylclinohumite, clinochlore, a serpentine mineral, magnesian magnetite, spinel, magnesite, dolomite and sulphide minerals, occur in a magnesian exoskarn in the R-20 borehole located in the Vysoká - Zlatno Cu-Au porphyry-skarn deposit, located within the Štiavnica Neogene stratovolcano, Western Carpathians, central Slovakia. The skarn is developed along the contact of Miocene granodiorite to quartz-diorite porphyry and a Middle-Upper Triassic dolomite-shale-psammite-anhydrite sedimentary sequence. The boron minerals were investigated by electron probe micro-analyser (EPMA) and micro-Raman techniques. The source of boron could have been from the granodiorite/quartz diorite intrusion; however some supply of B from adjacent evaporite-bearing sediments is also possible. Based on textural and compositional data, the minerals originated during two stages. (1) An early high-temperature, contact-metamorphic and metasomatic stage comprises coarse-crystalline aggregate of LGM (types 1 to 3) in association with hydroxylclinohumite, magnetite, and rarely spinel inclusions in LGM. Compositional variations of LGM show a crystallization sequence from early azoproite [≤17 wt% TiO2; 0.40 atoms pre formula unit (apfu) Ti, which correspond to ≤79 mol% of the Mg2(Mg0.5Ti0.5)O2(BO3) end-member], Ti-Al-rich members of LGM, "aluminoludwigite "[≤14 wt% Al2O3; ≤0.53 apfu, ≤53 mol% of Mg2AlO2(BO3) end-member] and Al-rich ludwigite in the central zone of crystals, to Ti-Al-poor ludwigite in outer parts of crystals. (2) Minerals of the late retrograde serpentinization and hydrothermal stage form irregular veinlets and aggregates, including partial alteration of hydroxylclinohumite to the serpentine-group mineral and clinochlore, replacement of LGM by szaibélyite, formation of the latest generation of Fe-rich, Ti-Al poor ludwigite in veinlets (type 4), and precipitation of dolomite, magnesite and

  19. Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania

    Directory of Open Access Journals (Sweden)

    Shimba D. Kwelwa

    2018-04-01

    Full Text Available Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and intrusive diorite. The geological evolution of the deposits involved three separate stages: (1 an early stage of syn-sedimentary extensional deformation (D1 around 2715 Ma; (2 a second stage involving overprinting ductile folding (D2–4 and shearing (D5–6 events during N-S compression between 2700 and 2665 Ma, coeval with the emplacement of the Kukuluma Intrusive Complex; and (3 a final stage of extensional deformation (D7 accommodated by minor, broadly east-trending normal faults, preceded by the intrusion of felsic porphyritic dykes at ~2650 Ma. The geometry of the ore bodies at Kukuluma and Matandani is controlled by the distribution of magnetite-rich meta-ironstone, near the margins of monzonite-diorite bodies of the Kukuluma Intrusive Complex. The lithological contacts acted as redox boundaries, where high-grade mineralization was enhanced in damage zones with higher permeability, including syn-D3 hydrothermal breccia, D2–D3 fold hinges, and D6 shears. The actual mineralizing event was syn-D7, and occurred in an extensional setting that facilitated the infiltration of mineralizing fluids. Thus, whilst gold mineralization is late-tectonic, ore zone geometries are linked to older structures and lithological boundaries that formed before gold was introduced. The deformation-intrusive history of the Kukuluma and Matandani deposits is near identical to the geological history of the world-class Nyankanga and Geita Hill deposits in the central part of the Geita Greenstone Belt. This similarity suggests that the geological history of much of the greenstone belt is similar. All major gold deposits in the Geita Greenstone Belt lack close proximity to crustal-scale shear zones; they are associated

  20. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    Science.gov (United States)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2018-04-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  1. The Yatela gold deposit in Mali, West Africa: The final product of a long-lived history of hydrothermal alteration and weathering

    Science.gov (United States)

    Masurel, Quentin; Miller, John; Hein, Kim A. A.; Hanssen, Eric; Thébaud, Nicolas; Ulrich, Stanislav; Kaisin, Jean; Tessougue, Samuel

    2016-01-01

    The Yatela gold deposit is located in the Kédougou-Kénieba inlier (KKI), a window of ca. 2200-2050 Ma rocks that are exposed in eastern Senegal and western Mali. The geology of the KKI differs from other Paleoproterozoic granite-greenstone belts and sedimentary basins by the abundance of carbonate rocks. The Yatela deposit occurs within 8 km of the regional-scale Senegal-Mali Shear Zone. Country rocks in the Yatela region have been subjected to polycyclic deformation and regional greenschist-facies metamorphism. A syn-kinematic diorite stock has intruded the metasedimentary sequences in the open pit and is associated with a hornblende-hornfels contact aureole. Field relationships and micro-textural data indicate that the primary gold mineralisation is shear-hosted. The similar relative timing and structural setting between the Yatela primary gold mineralisation and other world-class deposits in the region (e.g., Loulo, Lawrence et al., 2013a; Massawa, Treloar et al., 2014; Sadiola Hill, Masurel et al., in press) suggest that regional orogenic gold mineralisation occurred during a period of transcurrent tectonics, after the cessation of regional compressional deformation. The primary gold mineralisation at Yatela, however, is low-grade and sub-economic. It is hosted by marbles and, to a lesser extent, diorite. The primary ore is pyrite-rich, with abundant chalcopyrite, minor arsenopyrite and accessory Zn-Pb-Sb-Fe-Ag-Co-Ni-bearing mineral species. Post-Birimian surficial dissolution of hydrothermally altered and mineralised host marbles resulted in the creation of troughs, which were draped and infilled with a ferruginous dissolution residue enriched in gold. This auriferous residuum formed the economic resource mined at Yatela until decommissioning in 2013. The Yatela gold deposit is unique with respect to mineralisation types encountered in West Africa because an auriferous residuum of economic interest (>1 Moz) derives from an underlying sub-economic Birimian

  2. Ordovician A-type granitoid magmatism on the Ceará Central Domain, Borborema Province, NE-Brazil

    Science.gov (United States)

    Castro, Neivaldo A.; Ganade de Araujo, Carlos E.; Basei, Miguel A. S.; Osako, Liliane S.; Nutman, Alan A.; Liu, Dunyi

    2012-07-01

    We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceará Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) × Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A2-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaíba intracratonic basin, attesting also to a purely anorogenic character (A1-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A2-type granitoid, it provides interesting constraints about how long can last A2-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community.

  3. Petrographical and geochemical characterization and deformation conditions of the San Cristobal pluton, Sierra de Velasco, La Rioja, Argentina; Caracterizacion petrografica y geoquimica y condiciones de deformacion del pluton San Cristobal, Sierra de Velasco, La Rioja, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bellos, L.I.; Toselli, A.J.; Rossi, J.N.; Grosse, P.; Rosa, J.D. de la; Castro, A.

    2010-07-01

    The San Cristobal pluton is a 35 km2 granitic body that outcrops at the southestern tip of the Sierra de Velasco, located west of La Rioja city, Argentina. It is formed by monzogranites and syenogranites, together with scarce granodiorites, with medium to fine-grained, equigranular to slightly porphyritic textures. Their mineral assemblage consists of quartz + microcline + plagioclase + biotite {+-} muscovite + zircon + apatite + magnetite. The granite contains dioritic to tonalitic mafic enclaves. The central and eastern parts of the granite have been deformed by the NNW-SSE trending South Mylonitic shear zone formed by mylonitic rocks. The metamorphic host-rock is represented by scarce greenschist facies xenoliths and hornfels with the high T/P assemblage K-feldspar - cordierite - biotite {+-} sillimanite. The granites are calc-alkaline, weak- to moderately peraluminous, and formed as part of a continental magmatic arc developed along the active margin of western Gondwana during the Early Paleozoic. The depth of emplacement of the San Cristobal pluton is estimated at {approx}12 km. (Author).

  4. Study geology and uranium mineralization of ririt-amir engkala - tiga dara sector West Kalimantan

    International Nuclear Information System (INIS)

    Bambang Soetopo

    2009-01-01

    The results of previous research from Ririt, Amir Engkala, Tiga Dara sector which consist of geology, geophysics and drilling data show that all of the areas has similar in geology and Uranium mineralization. The purpose of this study is to know the relationship between geological condition and Uranium mineralization in Ririt, Amir Engkala and Tiga Dara sector. In general the geology of Ririt and Amir Engkala is similar with Tiga Dara sector. Those areas consist of tourmaline quartzite, muscovite quartzite, meta ignimbrite, biotite quartz schist, muscovite quartz schist, and micro diorite. The direction of the stratification is NE - SW and dipping to SE and the direction of the stochasticity is W - E and dipping to N. The dextral faults have WNW-ESE and NNE - SSW trends, while the sinistral one is WSW - ENE direction. There are also a thrust fault and a normal fault with WSW-ESE and NW-SE striking respectively. Uranium mineralization as a uraninite fill in the stochasticity and fracture N2600-30° E37°-59° in orientation which associated with magnetite, chalcopyrite, pyrite, arsenopyrite,. rutile, ilmenite, tourmaline and quartz. Radiometric value of Uranium mineralization is in the range of 500-15.000 c/s. The mineral association and the present of calcite, gypsum and quartz veins suggest that Uranium mineralization was resulted by hydrothermal magmatic processes. (author)

  5. Some geophysical and geological studies of the Tanzawa Mountains. [Nakagawa Hot Spring area, Hokizawa, and Higashizawa

    Energy Technology Data Exchange (ETDEWEB)

    Minakami, T; Matsuda, T; Hiraga, S; Horai, K I; Sugita, M

    1964-11-01

    Joints and zeolite-veins in both metamorphic rocks and quartz diorite exposed along the Nakagawa River were studied. Fractures with zeolite-veins are most developed in three areas, the Nakagawa hot spring area, Hokizawa, and Higashizawa. They follow two prevailing directions: N--S with minor right-lateral displacement and N60/sup 0/E with minor left-lateral displacement. The two fractures should represent a conjugate set that was produced by stress with maximum principal axis of N30/sup 0/E-S30/sup 0/W. Distribution and prevailing directions of fractures are illustrated. Geothermal gradients are measured in two newly opened boreholes, at the Nakagawa hot spring area and Higashizawa. The geothermal gradients are 12.60 +- 0.48/sup 0/C/100m at the Nakagawa hot spring and 5.55 +- 0.24/sup 0/C/100m at Higashizawa. Temperature-depth relationships in the two boreholes are given. Seismic observation was made at the Higashizawa. In five days 43 shocks were recorded, of which 20 are thought to have occurred 2 to 20km from the observation station, that is, in and very near the Tanzawa mountains. None have shallower hypocenters than 2 km in depth.

  6. Just passing through --- high Hg deposition to Puerto Rico forest moves quickly off the landscape

    Science.gov (United States)

    Shanley, J. B.; Willenbring, J. K.; Kaste, J. M.; Occhi, M.; McDowell, W. H.

    2012-12-01

    Atmospheric mercury (Hg) in wet deposition at the Luquillo Experimental Forest in northeastern Puerto Rico, averages 28 μg m-2 yr-1, higher than any site in the USA Mercury Deposition Network. Despite the high deposition, Hg content of soils, vegetation, and biota are below global averages. The low Hg content of watershed surfaces, coupled with exceptionally high stream total Hg flux, suggest that most of the Hg passes through the watershed with minimal retention. We assessed Hg dynamics in two adjacent watersheds, Rio Icacos underlain by quartz diorite, and Rio Mameyes underlain by volcaniclastic rocks. At both sites, high-flow Hg concentrations approached 100 ng L-1, dominated by particulate Hg. In order to assess the apparent pass-through nature of Hg in this tropical forest, we measured 7Be and 10Be isotopes from natural, cosmogenic fallout adsorbed on stream suspended particles to constrain the Hg age /residence time and source (atmospheric vs. geogenic or legacy Hg from 19th century gold mining). Ubiquitous 7Be (half-life 53 days) and relatively high 7Be/10Be ratios on suspended particles suggest that stream Hg was dominated by erosion from exposed surfaces, supporting a short residence time. The low watershed retention of the high Hg throughput limits adverse biological effects in this tropical ecosystem.

  7. K-Ar ages of rocks from Lago Alumine, Rucachoroi and Quillen, North Patagonian Andes, Neuquen, Republica Argentina

    International Nuclear Information System (INIS)

    Latorre, Carlos O.; Vattuone, M.E; Linares, Enrique; Leal, Pablo R

    2001-01-01

    This study presents new K-Ar ages of granitic rocks from the Patagonian Batholit in the North Patagonian Andes (38 o 00'- 39 o 30' SL), from localities near Alumine lake and from Norquinco lake to Quillen valley, in the Neuquen Province, Argentine. The granitic rocks of Patagonia had been recognized as Upper Paleozoic to Middle Jurassic batholits and as Late Jurassic to Tertiary batholiths (Rapela and Pankhurst, 1992). Geochronologically, Rapela and Kay (1988) had distinguished Early Cretaceous (140 to 120 Ma) and Late Cretaceous (110 to 75 Ma ) magmatic episodes based in potassium-argon data. For the granitic rocks of the area of Paso Icalma, Moquehue and the Rahue granodiorites, Cingolani et al. (1991) presented Rb-Sr whole rock isochron ages of 70±10 Ma, 209±13 Ma and 237±37 Ma, respectively, and Varela et al. (1994), with the same method, cited an age of 285±5 Ma for the Rahue granodiorites and diorites (au)

  8. The U resources inventory at Tebalungkang sector, west Kalimantan systematic prospection stage

    International Nuclear Information System (INIS)

    Soetopo, B.; Suripto; Boman; Sajiyo

    1996-01-01

    The systematic prospection at Tebalungkang sector, West Kalimantan was carried out to characterize the occurrence of U mineralization and to invent the potential U resources at the area. The investigation was done on the basis of previous results, i.e. radiometric anomalous outcrops and boulders of 1000-7000 C/s. The methods for the investigation was systematic geological mapping and radiometric measurements of soil and tranced rocks and supported by mineralogical and geochemical analyses. The results of the investigation show that this area consists of metamorphic rocks, intruded by granite quartz-diorite batholites and dike of andesite and lamprophyre. From geological structure this is 30 o plunging from anticlin NE-SW and NNW-SSE, is crossed by NE-SW and E-W normal faults and NW-SE and WNW-ESE strike slip faults. Uranium mineralization appears in quartz-schist brecciated and quachitite (lamprophyre). The radioactive minerals were thorite and monazite, associated with rutile, ilmenite, magnetite, hematite, pyrite, calcopyrite, muscovite, apatite and allanite. The U content from rock samples has been found to be 4,5-54,75 ppm U

  9. The study of ore minerals parageneses in Ponorogo area, East Java

    Directory of Open Access Journals (Sweden)

    Wiwik Dyah Hastuti Endang

    2017-01-01

    Full Text Available The present study was undertaken in the Southern Mountain Range of East Jawa, Ponorogo District. Tectonically, the region extends along the Magmatic Sunda-Banda Arc, which comprises predominantly volcanic rocks of Mandalika Formation, sedimentary rock units of Arjosari Formation, and intrusive sequences such as dacite, andesite and diorite. Structurally, the region is controlled by faults striking NE-SW, NW-SE and N-S. Mandalika Formation and Arjosari Formation have an interfingering relation and are Oligo-Miocene. Results of the field observation and analyses of petrography and mineragraphy on outcrops reveal that the region has commonly undergone alteration and mineralisation. The principle ore minerals occurring in the Ponorogo area are pyrite and sphalerite with abundant mineral assemblages of chalcopyrite, magnetite, hematite, galena, covelite, bornite, and limonite. Mineralisation occurs in argillic zone and subprophyllitic zone. Based on textures, structures and ore mineral assemblages, mineralisation in the study area can be devided at least into two stages. The earlier stage was present in relation to hypogene processes, and resulted in pyrite–sphalerite–chalcopyrite–magnetite– galena. The subsequent stage took place due to supergene enrichment processes, and yielded pyrite– sphalerite–covelite–bournite–limonite. Such mineral assemblages suggest that they are formed at temperatures of about 100–360° C.

  10. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc?

    Science.gov (United States)

    Ichiyama, Yuji; Ito, Hisatoshi; Hokanishi, Natsumi; Tamura, Akihiro; Arai, Shoji

    2017-06-01

    A Paleogene accretionary complex, the Mineoka-Setogawa Belt, is distributed around the Izu Collision Zone, central Japan. Plutonic rocks of gabbro, diorite and tonalite compositions are included as fragments and dykes in an ophiolitic mélange in this belt. Zircon U-Pb dating of the plutonic rocks indicates that they were formed at ca. 35 Ma simultaneously. These ages are consistent with Eocene-Oligocene tholeiite and calc-alkaline arc magmatism in the Izu-Bonin-Mariana (IBM) Arc and exclude several previous models for the origin of the Mineoka-Setogawa ophiolitic rocks. The geochemical characteristics of these plutonic rocks are similar to those of the Eocene-Oligocene IBM tholeiite and calc-alkaline volcanic rocks as well as to the accreted middle crust of the IBM Arc, the Tanzawa Plutonic Complex. Moreover, their lithology is consistent with those of the middle and lower crust of the IBM Arc estimated from the seismic velocity structure. These lines of evidence strongly indicate that the plutonic rocks in the Mineoka-Setogawa ophiolitic mélange are fragments of the middle to lower crust of the IBM Arc. Additionally, the presence of the Mineoka-Setogawa intermediate to felsic plutonic rocks supports the hypothesis that intermediate magma can form continental crust in intra-oceanic arcs.

  11. Terrestrial gamma ray dose rates on Ryoke granitic rocks in Ikoma Mountains

    International Nuclear Information System (INIS)

    Ikeda, Tadashi; Ueshima, Masaaki; Shibayama, Motohiko; Hiraoka, Yoshitsugu; Muslim, Dicky

    2012-01-01

    We measured the γ dose rate of 16 rock bodies in the field, which belonged to Ryoke granitic rocks distributed over Ikoma Mountains. The measurement points were 190 spots, and the mean dose rate was 82.0 ± 21.0 nGy/h. Results of analysis were summarized as follows. (1) The distribution of the dose rate in the Fukihata quartz diorite showed that the rocks crystallization differentiation had progressed from the south to the north. (2) The dose rate of granite tended to arise with the increase of SiO 2 quantity, but in the Iwahashiyama granite, the Takayasuyama granite, the Omichi granite and the Katakami granite, it was revealed that the dose rate was low in spite of high SiO 2 quantity. (3) It became clear that the dose rate of Ryoke granitic rocks from the first stage to the fourth stage was high to be considered as a new rock body. (4) Because the relationship between the dose rate of rocks and the main chemical elements did not show a common characteristic, it may be that those rocks were formed from different Magma. (author)

  12. Reconstructing modalities of magma storage in the crust by thermo-rheological modelling

    Science.gov (United States)

    Caricchi, L.; Annen, C.; Rust, A.; Blundy, J.

    2012-04-01

    During my PhD I worked under the supervision of Luigi Burlini studying the rheological behaviour of magma. Luigi was not only a great teacher and friend but he was also able to project the science he was performing beyond the obvious applications. This aspect of Luigi's approach shaped my approach to research and brought me to think to ways of applying the studies we performed together to unravel the complexity of nature that impassioned and inspired him. This contribution comes from the motivation and interest that Luigi created in me during the short, but truly memorable journey we shared together. This study combines petrology, thermal modelling and magma rheology to characterise timescales and modalities of magma emplacement in the Earth's crust. Thermal modelling was performed to determine the influence of magma injection rates in the crust on the temperature evolution of a magmatic body. The injected tonalitic magma was considered to contain dioritic enclaves, common in plutons. The contrast in chemical composition between host and enclaves leads to different crystallinities of these magmas during cooling and produce a rheological contrast that permits reciprocal deformation only in restricted temperature ranges. Characterising the thermal and rheological evolution of host magma and enclaves, we traced the evolution of strain recorded by these inclusions during the construction of an intrusion, showing that the strain recorded by enclaves distributed in different portions of a pluton can be used to constrain thermal evolution in time, magmatic fluxes and timescale of assemblage of magmatic bodies in the crust.

  13. High-resolution 40Ar/39Ar chronology of multiple intrusion igneous complexes

    Science.gov (United States)

    Foland, K. A.; Chen, J.-F.; Linder, J. S.; Henderson, C. M. B.; Whillans, I. M.

    1989-06-01

    The Mount Brome complex of the Monteregian province of southern Quebec, Canada, consits of several major intrusions ranging compositionally from gabbro to syenite. The relative ages of these intrusives have been investigated with high-resolution 40Ar/39Ar analyses, including a specially designed irradiation configuration to cancel the effects of fluence gradients. Small yet distinct apparent age differences are observed. While a number of analytical and geological factors could be proposed to explain the small variations, evaluation of these suggests the age differences reflect those in emplacement times. The gabbro and nepheline diorite were emplaced within a short span 123.1 Ma ago. Generally more evolved lithologies (biotite monzodiorite, pulaskite, nordmarkite) appear to have been emplaced within a restricted interval 1.4±0.3 Ma later. Whole-rock Rb-Sr systematics do not give acceptable isochrons because of significant scatter interpreted to reflect initial 87Sr/86Sr heterogeneities resulting from crustal contamination. Considering the variations in initial ratio, the Rb-Sr data are consistent with the 40Ar/39Ar age.

  14. Petrology, geochemistry and tectonic setting of alkaline mafic rocks in the Jalal Abad area in the NW of Zarand (Kerman Province: Evidence for Paleo-Tethys rifting in the Central Iran

    Directory of Open Access Journals (Sweden)

    Yusef Vesali

    2018-03-01

    Full Text Available The Jalal Abad region lies within the southern sector of Posht Badam block near to Jalal Abad, Najaf Abad iron deposits. In this region, several mafic intrusions and associated dyke and sills were intruded within the volcano-sedimentary unit of Rizu series and magnetite veins producing a narrow contact metamorphic aureole and overlain by Desu Series dolomites. These intrusion massives include irregular coarse- grained gabbro- diorites stocks and several NW-SE-trending basaltic dykes and sills. Petrographical and geochemical studies on the Jalal Abad mafic units reveal that they are alkaline in nature and based on the tectonic discrimination diagrams are grouped in alkaline basalts field of the intra-continental rift setting. They display LREE enrichment and HREE depletion, and significant enrichment in LILE in comparison to HFSE and HREE. Compositionally, they resemble modern OIB and the Hawaiian alkaline basalts. Magmas of these OIB-type and alkaline rock associations formed from partial melting of garnet- lherzolite facieses in the plume source, during the rift-drift and seafloor spreading evolution of the Proto-Tethys oceanic lithosphere during the Ordovician through Silurian periods.

  15. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    Science.gov (United States)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  16. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust

    Science.gov (United States)

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.

    2005-01-01

    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  17. Geochemical halos of gold and associated elements in Nabijan gold index (SW Kaleibar, NW Iran

    Directory of Open Access Journals (Sweden)

    Hemayat Jamali

    2017-07-01

    Full Text Available The Nabijan ore index located 20 km southwest of Kaleibar city, East Azerbaijan province in the Alborz-Azerbaijan structural zone. Geological rock units outcropping in the area consist of volcano-sedimentary rocks (trachyandesite, andesite, shale and limestone of the Cretaceous age which intruded by the Oligo-Miocene monzogranite, monzogranodiorite and diorite. These intrusions and related hydrothermal activities caused the Au mineralization in the Cretaceous host rocks, as well as in the monzogranitic intrusion. The mineralization in the monzogranite occurred as silicic stockwork and sheeted veins with pyrite and minor chalcopyrite, sphalerite and galena. The other type of mineralization is skarn, which present as sparse irregular veinlets with less amount of Au in the Cretaceous carbonates. Preliminary estimation of ore reserve shows 320000t reservoir with average of Au grade about 1.37 gr/ton. According to surface and drilling data, two important anomalies determined. One in the contact zone of intrusive rocks with the Cretaceous volcanics and carbonates (skarn zone. In this anomaly, the correlation coefficient index between Au and Cu, Pb, Zn, Ag, and As is low whereas, in the second one which coincides with stockwork mineralization within monzogranite, it is high.

  18. Geophysical borehole logging in Lavia borehole - results and interpretation of sonic and tube wave measurements

    International Nuclear Information System (INIS)

    Andersson, P.; Stenberg, L.

    1985-02-01

    Swedish Nuclear Fuel and Waste Management Co, SKB has been contracted by Industrial Power Company LTD, TVO to perform geophysical logging in a borehole at Lavia in Western Finland. The logging has been conducted by Swedish Geological Co, SGAB in accordance with an agreement for cooperation with SKB. The depth of the borehole is 1001 m, diameter 56 mm and inclination 10-20 degrees to the vertical. The aim of the logging was to determine the various geophysical parameters in the borehole in order to interpret and understand the rock mass properties in the vicinity of the borehole. According to the contract the report covers the following main objectives: a technical description of the field work and the equipment used; a review of the theoretical base for the sonic and tube wave methods; an interpretation and presentation of the results obtained by sonic and tube wave mesurements. The evaluation of the sonic and tube wave measurements shows good correlation. On a qualitative basis there seems to be a correlation between tube wave generating points, the relative tube wave amplitudes and the hydraulic conductivity measurements performed as hydraulical tests between packers in the borehole. The low velocity anamalies in the sonic log are mainly caused by tectonic features like fractures and fracture zones but to some extent also by contacts between granite and diorite. The estimation of elastic properties of the rock mass from observation of tube wave velocity are in accordance with laboratory determinations made on core samples. (author)

  19. The study of mineralization and fluid inclusion in Dehsalm Mahour 2 lead deposit, east of Lut block, Central Iran

    Directory of Open Access Journals (Sweden)

    Fateme Mohammadpour

    2016-09-01

    Full Text Available The Mahour 2 lead mineralization area is located, about 145 km west of Nehbandan and 2 km northwest of Mahour polymetal deposit and in the eastern part of Lut Block. The area comprises of volcanic and pyroclastic rocks (Eocene intruded by several intrusive rocks mainly as dioritic dykes and stocks. Mineralization as veins and filling the space, occurred in altered andesitic rocks. Supergene zone is characterized by azurite, malachite, linarite and iron oxides (hematite and limonite whereas, galena, pyrite, chalcopyrite and magnetite are the main minerals of hypogene zone. And, quartz and calcite are main gangue. The area is dominated by four types of alteration including silicic, sericitic, propylitic, and argillic. Fluid inclusions study on quartz mineral sections polished reveals the presence of 1.0 to 5.6 percent salt and homogeneous temperature between 278 to 570 ° C. The high temperature with low salinity zone mineralization in this area is likely related to another generation of mineralization in the area. The results of fluid inclusions show that the mineralization is probably a mixture of magmatic fluid and atmospheric, although there is doubt. Several similar criteria including form of deposit, primary ore deposit, alteration facies, tectonic environment and magmatic series document that there should be a correlation between the origin of the studied mineralization area and that of the Mahour polymetal deposit.

  20. Geology, alteration, mineralization and geochemistry at south of Arghash (Neyshabour

    Directory of Open Access Journals (Sweden)

    Zahra Karimi Saeid Abadi

    2010-11-01

    Full Text Available The Arghash area is located 45 km to southwest of Neyshabour. The subvolcanic rocks in the area consist of biotite hornblende quartz monzodiorite porphyry, hornblende biotite quartz monzodiorite porphyry, hornblende monzonite porphyry, biotite hornblende monzonite porphyry, monzodiorite porphyry and biotite quartz monzodiorite porphyry units. The volcanic rocks consist of hornblende biotite dacite, biotite hornblende dacite, and andesite and pillow lava. The plutonic rocks consist of hornblende monzodiorite, hornblende monzonite, quartz monzonite, hornblende quartz monzodiorite, biotite granodiorite, hornblende granodiorite, biotite hornblende granodiorite, biotite quartz diorite and pyroxene dolerite units. Five types of alteration including propylitic, carbonate, argillic, silicification and sericitic were recognized. Those are subdivided into twelve sub-zones based on the mineral abundances and intensity of alteration. Primary pyrite, 3-4%, is found mainly as disseminated. Secondary mineralization includes limonite, hematite and jarosite. Twenty rock chip and 8 stream sediment samples were collected for geochemical exploration. The samples were analysed for Cu, Zn, Pb, Ag and Sb using Atomic Absorbtion Spectrophotometric (AAS method. In stream sediment samples, Cu abundance is 34-58 ppm, Zn 45-422 ppm, Pb 28-42 ppm and Ag 2-12 ppm; whereas in rock chip samples, Cu abundance is 8-1137 ppm, Zn 13-411 ppm, Pb 15-97 ppm and Ag 3-32 ppm.

  1. Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG mineralized system in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Karimpour

    2011-11-01

    Full Text Available Neyshabour turquoise mine is located in northwest of Neyshabour, southern Quchan volcanic belt. Eocene andesite and dacite forming as lava and pyroclastic rocks cover most of the area. Subvolcanic diorite to syenite porphyry (granitoids of magnetite series intruded the volcanic rocks. Both volcanic and subvolcanic rocks are highly altered. Four types of alteration are recognized including: silicification, argillic, calcification and propylitic. Silicification is dominant followed by argillic alteration. Mineralization is present as stockwork, disseminated and hydrothermal breccia. Hypogene minerals are pyrite, magnetite, specularite, chalcopyrite, and bornite. Secondary minerals are turquoise, chalcocite, covellite, and iron oxides. A broad zone of gossan has developed in the area. Oxidized zone has a thickness of about 80 m. Mineralized samples show high anomalies of Cu, Au, Zn, As, Mo, Co, U, LREE, Nb, and Th. Both aeromagnetic and radiometric (U and Th maps show very strong anomalies (10 × 5km within the mineralized area. Based on geology, alteration, mineralization, geochemistry, and geophysics, Neyshabour turquoise mine is a large Iron oxide Cu-Au-U-LREE (IOCG mineralized system. In comparison with other IOCG deposits, it has some similarities with Olympic Dam (Australia and Candelaria (Chile. In comparison with Qaleh Zari and Kuh Zar mines, Neyshabour turquoise mine is the first Iron oxide Cu-Au-U-LREE (IOCG mineralized system discovered in Iran.

  2. Exploration for porphyry copper deposits in Pakistan using digital processing of Landsat-1 data

    Science.gov (United States)

    Schmidt, R. G.

    1976-01-01

    Rock-type classification by digital-computer processing of Landsat-1 multispectral scanner data has been used to select 23 prospecting targets in the Chagai District, Pakistan, five of which have proved to be large areas of hydrothermally altered porphyry containing pyrite. Empirical maximum and minimum apparent reflectance limits were selected for each multispectral scanner band in each rock type classified, and a relatively unrefined classification table was prepared. Where the values for all four bands fitted within the limits designated for a particular class, a symbol for the presumed rock type was printed by the computer at the appropriate location. Drainage channels, areas of mineralized quartz diorite, areas of pyrite-rich rock, and the approximate limit of propylitic alteration were very well delineated on the computer-generated map of the test area. The classification method was used to evaluate 2,100 sq km in the Mashki Chah region. The results of the experiment show that outcrops of hydrothermally altered and mineralized rock can be identified from Landsat-1 data under favorable conditions.

  3. First insights on the molybdenum-copper Bled M'Dena complex (Eglab massif, Algeria)

    Science.gov (United States)

    Lagraa, Karima; Salvi, Stefano; Béziat, Didier; Debat, Pierre; Kolli, Omar

    2017-03-01

    Molybdenum-Copper showings in the Eglab massif (eastern part of the Reguibat rise of Algeria), are found in quartz-monzodiorite and granodiorite of the Bled M'Dena complex, a Paleoproterozoic circular structure of ∼5 km in diameter, comprising volcanic and intrusive suites. The latter consist of quartz-diorite, quartz-monzodiorite and granodiorite with a metaluminous normative composition. They display an "adakitic character" with moderate light rare-earth element (LREE) enrichment, minor Eu anomalies, high Sr/Y ratio and low Yb concentration, suggestive of a hydrous, arc magma of volcanic-arc affinity. The mineralization occurs mostly in quartz + molybdenite + chalcopyrite stockwork veins marked by widespread propylitic alteration along the selvages. Molybdenite and chalcopyrite are commonly associated with calcite, which precipitated at relatively late stages of the hydrothermal alteration. Fluid inclusions related to the mineralization stage, range from aqueous to aqueous-carbonic to solid bearing. The latter inclusions have the highest homogenization temperature (up to ∼400 °C), are salt saturated, and commonly contain molybdenite and/or chalcopyrite crystals. The petrology and geochemistry of the host rocks, the style of the hydrothermal alteration, the ore mineral associations, and the characteristics of the fluid inclusions, are all coherent in indicating that the Bled M'Dena represents a Paleoproterozoic porphyry style Mo mineralization, which is far unreported in the African continent.

  4. Studies on the radiation absorption characteristics of various rocks

    International Nuclear Information System (INIS)

    Rahman, K.N.; Abdullah, S.A.; Gazzaz, M.A.

    1984-05-01

    Radiation absorption characteristics of nine different rocks, namely, ferrugenous quartz, metabasalt, larvikite, coarse grained diorite, coarse grained granite, coarse grained alkali granite, marble, quartz mica schist, and metamorphosed rock are studied. The rocks were collected from Jeddah, Makkah, Mina and Taif areas. Special attention was given on the availability, compactness, physical formation and uniform composition in selecting the rocks. The rocks were identified by optical method and their elemental composition determined by chemical analysis. The data were used to calculate the effective atomic numbers, half value layers mass and linear attenuation coefficients. The half value layers and the linear attenuation coefficientsof these rocks were determined experimentally using Am-241, Cs-137,and Co-60 sources. The results are compared with those obtained by theoretical calculations and agrre within 10%. Most of the rocks show much higher radiation attenuation characteristics than the standard concrete. Rocks containing higher percentage of Fe, Ca, Ti, and Mn show much higher radiation absorption characteristics than concrete. Only granites are found to be almost equivalent to concrete. 12 Ref

  5. U-Pb dating by zircon dissolution method using chemical abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, Lucy, E-mail: lucytakehara@gmail.com.br [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil); Chemale Junior, Farid [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Inst. de Geociencias. Lab. de Geocronologia; Hartmann, Leo A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Geociencias; Dussin, Ivo A.; Kawashita, Koji [Universidade de Sao Paulo (USP), SP, (Brazil). Centro de Pesquisa Geocronologicas

    2012-06-15

    Chemical abrasion was carried out on zircons grains of the Temora II standard for U-Pb dating prior to analyses using in situ Laser Ablation-Multi Collector Ion Coupled Plasma Mass Spectrometer (LA-ICPMS) followed by the Isotope Dissolution Thermal Ionization Mass Spectrometer (ID-TIMS) method. The proposed methodology was herein applied in order to reduce primarily the effects of secondary Pb loss, the presence of common lead and/or silicate impurities. Nine Temora II zircon grains were analyzed by the laser ablation method yielding an age of 418.3 +- 4.3 Ma. Zircon grains of a same population were separated for chemical abrasion before dissolution and mass spectrometry analyses. Six fractions of them were separated for isotope dissolution using {sup 235}U-{sup 205}Pb mixed spike after we have checked and assured the laboratory conditions of low blank values for total Pb of less than 2 pg/g. The obtained U-Pb zircon age by the ID-TIMS method was 415.7 +- 1.8 Ma (error 0.43 %) based on four successful determinations. The results are consistent with the published ages for the Temora diorite (Temora I - 416.75 +- 1.3 Ma; Temora II - 416.78 +- 0.33 Ma) and established as 416 +- 0.33 Ma. The technique is thus recommended for high precision U-Pb zircon analyses (error < 1 %), mainly for high resolution stratigraphic studies of Phanerozoic sequences. (author)

  6. Morphology versus U-Pb systematics in zircon: A high-resolution isotopic study of a zircon population from a Variscan dike in the Central Alps

    International Nuclear Information System (INIS)

    Bossart, P.J.; Meier, M.; Oberli, F.; Steiger, R.H.

    1986-01-01

    U/Pb isotopic measurements on individual zircon crystals combined with morphological analyses permit the identification of three distinct components within the zircon population of the Saedelhorn diorite, a Variscan dike from the western Gotthard (Central Alps, Switzerland): (i) 94% of the grains in the zircon population are elongate crystals with pronounced skeletal morphology indicative of rapid growth from a supercooled melt. (ii) 5% of the population consist of turbid, mostly subhedral zircons frequently showing D-type morphology and elevated uranium contents compared to the skeletal variety. Single-crystal and multi-grain U-Pb isotopic data of group (i) and (ii) zircons define an intrusion age of 293 + 5/ -4 m.y. for the dike. (iii) Rare, transparent zircon crystals (< 1% of the zircons population) yield apparent U-Pb ages in the range of 370-490 m.y. and display morphological and isotopic characteristics closely resembling those of a Caledonian orthogneiss intruded by the dike. This implies presence of assimilated wall-rock components in the macroscopically homogeneous dike sample. (orig./WB)

  7. Evidence of the impacting body of the Ries crater - the discovery of Fe-Cr-Ni veinlets below the crater bottom

    Science.gov (United States)

    El, Goresy A.; Chao, E.C.T.

    1976-01-01

    Fe-Cr-Ni particles and veinlets have been discovered in the top 15 m of the compressed zone with abundant shatter cones below the bottom of the Ries crater. The metallic particles are less than a few microns across. They occur in various minerals along healed intergranular and locally in intragranular microfractures in quartz diorite, amphibolite and chloritized granite of the basement crystalline rocks. The particles consist of major Fe, Cr, and Ni with minor Si and Ca. Origin due to contamination is absolutely ruled out. We believe that these Fe-Cr-Ni particles are probably condensed from the vaporized impacting body which produced the Ries crater. These particles were injected with high velocity into microfractures near the top of the compressed zone, implanted in and across various minerals before these microfractures were resealed. The presence of Si and Ca as well as the fact that the Cr content is nearly twice that of Ni, led us to conclude that the Ries impacting body is very likely not an iron meteorite but a stony meteorite. ?? 1976.

  8. Geochemistry and petrogenesis of the Feshark intrusion (NE Isfahan city

    Directory of Open Access Journals (Sweden)

    Ali Kananian

    2017-11-01

    Full Text Available Introduction Granitic rocks are the most abundant rock types in various tectonic settings and they have originated from mantle-derived magmas and/or partial melting of crustal rocks. The Oligo-Miocene Feshark intrusion is situated in the northeast of the city of Isfahan, and a small part of Urumieh–Dokhtar Magmatic Arc is between 52º21' E to 52º26'E and 32º50' N to - 32º53' N. The pluton has intruded into lower Eocene volcanic rocks such as rhyolite, andesite, and dacite and limestone. Analytical methods Fifteen representative samples from the Feshark intrusion were selected on the basis of their freshness. The major elements and some trace elements were analyzed by X-ray fluorescence (XRF at Naruto University in Japan and the trace-element compositions were determined at the ALS Chemex lab. Results The Feshark intrusion can be divided into two phases, namely granodiorite with slightly granite and tonalite composition and quartz diorite with various quartz diorite and quartz monzodiorite abundant enclaves according to Middlemost (1994 classification. The quartz diorite show dark grey and are abundant at the western part of the intrusive rocks. Granodiorite are typically of white-light grey in color and change gradually into granite and tonalite. The granodiorite and granite rocks consist of quartz, K-feldspar, plagioclase, biotite, and amphibole, whereas in the quartz diorites the mineral assemblages between different minerals are very similar to those observed in the granodiorite. However, amphibole and plagioclase are more abundant and quartz and K-feldspar modal contents are lower than in the granodiorite whereas pyroxene occurs as rare grains. They are characterized as metaluminous to mildly peraluminous based on alumina saturation index (e.g. Shand, 1943 and are mostly medium-K calc-alkaline in nature (Rickwood, 1989. Discussion In the Yb vs. La/Yb and Tb/Yb variation diagrams (He et al., 2009, the studied samples show small

  9. The timing of Late Pleistocene glaciation at Mount Wilhelm, Papua New Guinea

    Science.gov (United States)

    Mills, Stephanie; Barrows, Timothy; Hope, Geoff; Pillans, Brad; Fifield, Keith

    2016-04-01

    The highlands of New Guinea were the most extensively glaciated area in the Asian tropical region during the Late Pleistocene. Evidence for glaciation is widespread on most of the mountain peaks above ~3500 m. Glacial landforms include both valley and ice cap forms, but the timing of glaciation remains constrained to only a few local areas. This paper focuses on Mount Wilhelm, which is situated in the central southern region of Papua New Guinea at 5.78°S and is the highest peak (4510 m a.s.l.) We focus on a south easterly valley (Pindaunde Valley) emanating from the peak, where large moraines indicate the maximum ice extent of a valley glacier ~5 km long. Within this extensive moraine complex, recessional moraines document the retreat of the glacier towards the summit region. In order to determine the timing of deglaciation, we collected samples for surface exposure dating using 36Cl and 10Be from diorite boulders positioned on moraine crests. The ages indicate that maximum ice extent was attained during the last glacial maximum (LGM) and that ice remained near its maximum extent until after 15 ka but persisted at higher elevations almost until the Holocene. These results are similar to those described from Mt Giluwe to the northwest of Mount Wilhelm, where an ice cap reached its maximum extent at the LGM and remained there for around 3-4,000 years. This indicates that full glacial conditions were only brief in this region of the tropics.

  10. An audio-magnetotelluric investigation of the eastern margin of the Mamfe Basin, Cameroon

    International Nuclear Information System (INIS)

    Tabod, C.T.; Tokam Kamga, A.-P.; Manguelle-Dicoum, E.; Nouayou, R.; Nguiya, S.

    2006-12-01

    Audio-magnetotelluric (AMT) data has been used to study the eastern margin of the Mamfe sedimentary basin along two profiles. Both profiles run across the sedimentary-metamorphic transition zone in this part of the basin. A 1-D interpretation of these data has been carried out using frequency profiling, pseudosections and geoelectric sections. Studying the propagation of the electric field at each station also gives an initial qualitative understanding of the possible layering of the subsurface at the station. A dioritic basement intrusion into the sediments has been identified along one of these profiles and a granitic intrusion under the other. Faults have been identified along both profiles marking the transition from sedimentary to metamorphic rocks at the eastern edge of the basin. However, this transition is complex and not smooth. This complexity can probably be explained by the fact that regional lithospheric stretching must have been responsible for the formation of this basin resulting in faulting in the eastern margin, thus strengthening the link between this basin and the Benue Trough of Nigeria. (author)

  11. Shallow Depth Study Using Gravity & Magnetics Data in Central Java - Yogyakarta

    Science.gov (United States)

    Fawzy Ismullah M, Muhammad; Altin Massinai, Muhammad; Maria

    2018-03-01

    Gravity and magnetics measurements carried out in Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region as much as 34 points for subsurface identification. Modeling and interpretation using both data at 3 sections. Section A lies on Karangsambung area and reach to 1900 m. Section A showed formation of 0.000001 - 0.0014 nT and 2.00 - 2.80 g/cm3 like alluvium, basalt and tuff. Section B lies on Wates - Yogyakarta area and reach to 1700 m. Section B showed formation of (-0.01) - 0.02 nT and 2.40 - 3.00 g/cm3 like andesite intrusive and Merapi volcano sediments. Section C lies on Bayat - Wonosari area and reach to 2000 m. Section C showed formation of 0.00016 - 0.0005 nT and 2.30 - 3.14 g/cm3 like limestone, tuff and diorite intrusive. Based on modeling results from 2D structure inversion method can identify the formation of sediments from volcano activity on Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region. The method of this study shows potential application for identify the formation of volcano activity from 2D structure.

  12. 600 MeV Simulation of the Production of Cosmogenic Nuclides in Meteorites by Galactic Protons

    CERN Multimedia

    2002-01-01

    A large variety of stable and radioactive nuclides is produced by the interaction of solar and galactic cosmic rays with extraterrestrial matter. Measurements of such cosmogenic nuclides provide information about the constancy of cosmic ray fluxes in space and time and about the irradiation history of individual extraterrestrial objects provided that there exist reliable models describing the production process. For the calculation of the depth dependent production of cosmogenic nuclides in meteorites no satisfactory Therefore, the irradiation of small stony meteorites (radii~$<$~40~cm) by galactic protons is simulated in a series of thick target irradiation experiments at the 600~MeV proton beam of the SC. \\\\ \\\\ The thick targets are spheres (R = 5, 15, 25 cm) and are made out of diorite because of its low water content, its high density (3.0~g/cm|3) and because it provides a good approximation of the chemical composition of some common meteorite clas These spheres will also contain a wide variety of pure...

  13. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    Science.gov (United States)

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  14. Isotopes and ages in the northern Peninsular Ranges batholith, southern California

    Science.gov (United States)

    Kistler, Ronald W.; Wooden, Joseph L.; Morton, Douglas M.

    2003-01-01

    Strontium, oxygen and lead isotopic and rubidium-strontium geochronologic studies have been completed on Cretaceous and Jurassic (?) granitic rock samples from the northern Peninsular Ranges batholith in southern California. Many of these samples were collected systematically and studied chemically by A. K. Baird and colleagues (Baird and others, 1979). The distribution of these granitic rocks is shown in the Santa Ana, Perris, and San Jacinto Blocks, bounded by the Malibu Coast-Cucamonga, Banning, and San Andreas fault zones, and the Pacific Ocean on the map of the Peninsular Ranges batholith and surrounding area, southern California. The granitic rock names are by Baird and Miesch (1984) who used a modal mineral classification that Bateman and others (1963) used for granitic rocks in the Sierra Nevada batholith. In this classification, granitic rocks have at least 10% quartz. Boundaries between rock types are in terms of the ratio of alkali-feldspar to total feldspar: quartz diorite, 0-10%; granodiorite, 10-35%; quartz monzonite 35-65%; granite >65%. Gabbros have 0-10% quartz. Data for samples investigated are giv in three tables: samples, longitude, latitude, specific gravity and rock type (Table 1); rubidium and strontium data for granitic rocks of the northern Peninsular Ranges batholith, southern California (Table 2); U, Th, Pb concentrations, Pb and Sr initial isotopic compositions, and δ18O permil values for granitic rocks of the northern Peninsular Ranges batholith (table 3).

  15. Uranium occurence in California near Bucaramanga (Columbia)

    International Nuclear Information System (INIS)

    Heider Polania, J.

    1980-01-01

    The mining district of California, Bucaramanga, is on the west side of the Cordillera Oriental in the Santander massif region. The oldest rocks of the area form a complex of metamorphites and migmatites of the predevonic age. Amphibolite various types of paragneiss and orthogneiss are represented. Several stages of metamorphism can be documented in some rocks, as well as double anatexis. Triassic to jurassic quarz diorites and leukogranites show wide distribution. Porphyric rocks of granodioritic to granitic composition, to which the uranium mineralization is mainly bonded, intruded into the sediments of the lower cretaceous. Atomic absorption spectral analyses were carried out for the elements Cu, Zn and Li, as well as the uranium contents of some samples using fluorimetry. Uranium is primarily bonded to pitch blende and coffinite. The latter mostly occur in fine distribution grown in quarz and belong to the most recent mineralization phase. Autunite, meta-autunite, torbernite, meta-torbernite, zeunerite, meta-zeunerite and meta uranocircite detected as secondary uranium minerals. (orig./HP) [de

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Thailand

    International Nuclear Information System (INIS)

    1977-08-01

    Thailand is a country with an area of 514?000 square kilometres situated in the centre of continental south-east Asia, The geology of Thailand is very varied with sedimentary formations ranging from Cambrian to Quaternary in age and including sandstones, shales, limestones of many varieties. Among the igneous rocks, granites are very important and rhyolites, tuffs diorites, basalts and ultrabasic rocks also exist. Tin is the most important mineral occurrence. Available information on the geology and mineral resources suggests that the country may contain significant resources of radioactive minerals. Favourable potential host types are; 1) uranium and thorium in monazite in beach sands and tin placer deposits; 2) uranium in sandstones, principally in Jurassic sandstones of the Khorat Plateau; 3) uranium in Tertiary lignite deposits; 4) uranium in veins in granites; 5) uranium related to fluorite deposits; 6) uranium in black shales and phosphates. Uranium mineralization in sedimentary rocks at Phu Wieng was discovered in 1970. The area has been radiometrically grid mapped and limited shallow drilling has shown continuity.of the narrow, carbonaceous, conglomeratic sandstone host bed. No uranium reserves or resources can be stated at the present time, but the favourable geology of the Khorat Plateau, the known uranium occurrence and the very small exploration coverage is possibly indicative of a good future potential. The Speculative Potential is estimated to be between 1000 and 10,000 tonnes uranium. (author)

  17. Construction of Tai Lam tunnel under a Build, Operate and Transfer (BOT) scheme in Hong Kong; BOT hoshiki ni yoru Hong Kong root 3 (Tai Lam tunnel) kensetsu koji

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Endo, S. [Nishimatsu Construction Co. Ltd., Tokyo (Japan)

    1998-01-01

    Hongkong Route 3 construction under the BOT scheme (covering the basic plan, design, and construction, and the management of the completed tunnel as a private, toll facility) is described. The new route aims at dealing with aggravating traffic conditions as part of the major highway network joining Hongkong and Guanzhou, China proper. It is a dual three lane system, consisting of a 3.7km-long road tunnel, a 1.5km-long southern approach, and a 6.3km-long northern approach. Geologically speaking, the tunnel section as a whole is on a relatively hard and stable basement made of fine-grain granite and granitic diorite. Also introduced in this report are the project-executing organization and the flow of tendering under the BOT scheme. Since the shortening of the construction time is quite important in the 30-year BOT franchise period, rapid boring technologies were introduced into tunnel excavation. The 5.6m long-hole blasting enabled a maximum monthly progress of 460m. For the assurance of high boring accuracy and cycle time reduction, a fully automatic boring machine was adopted for speedy positioning and marking. An emulsion-type explosive was used, which can be pump-fed under pressure, for shortening the charging time. 5 figs.

  18. Granulitic orthogneisses geochemistry of Caraiba complex, in Riachao do Jacuipe region - Bahia state, Brazil

    International Nuclear Information System (INIS)

    Teixeira, L.R.; Mello, R.C.

    1990-01-01

    This paper describes the granulitic orthogneisses of the Riachao do Jacuipe unit (Caraiba Complex) petrographicaly classified as tonalitic (predominating), trondhjemitic, granodioritic and quartz dioritic hyperstene gneisses. The chemical composition of the orthogneisses is dominantly tonalitic/granodioritic, that is typical of a calc-alkaline parentage depleted in K and enriched in Al sub(2) O sub(3). Their geochemical characteristics are very similar to those of the grey gneisses of other regions of the world, usually named TTG (tonalite-trondhhemite-granodiorite). In the sequence of orthogneiss coexist rocks both normal and depleted in LILE. The patterns of distribution of highly fractioned REE (La/YbN ratio up to 102) with Eu anomaly small or absent points against a direct mantle origin. On the other hand the only Rb-Sr age determination in the se rocks gives an age of 2,35 Ga with an initial ratio (Ro) of 0,702. This initial ratio suggests that the rocks did not originated from reworking of a much older continental crust. The available data suggest that the granulitized orthogneisses of the Caraiba Complex were formed by partial melt of basaltic material (amphibalitized oceanic crust). (author)

  19. In situ isotopic analyses of U and Pb in zircon by remotely operated SHRIMP II, and Hf by LA-ICP-MS: an example of dating and genetic evolution of zircon by {sup 176}Hf/{sup 177}Hf from the Ita Quarry in the Atuba Complex, SE, Brazil; Analises in situ de U e Pb em zircao por SRIMP II por controle remoto e de Hf por LA-ICP-MS: um exemplo de datacao e da evolucao genetica de zircao atraves da razao {sup 176}Hf/{sup 177} em amostra da Pedreira Ita no Complexo Atuba, SE, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Siga Junior, Oswaldo; McReath, Ian; Sproesser, Walter; Basei, Miguel Angelo Stipp [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas], e-mail: keisato@usp.br, e-mail: osigajr@usp.br, e-mail: ianmcr@usp.br, e-mail: wmspres@usp.br, e-mail: baseimas@usp.br; Silva, Josiane Aline da [Universidade de Sao Paulo (USP), SP (Brazil). Programa de Pos-graduacao em Geoquimica e Geotectonica; Dunyi, Liu [Institute of Geology, Beijing (China); Iizuka, Takafumi; Rino, Shuji; Hirata, Takafumi [Tokyo Institute of Technology, Tokyo (Japan)

    2009-10-15

    Remotely-operated SHRIMP dating of zircon is an interesting alternative for dating of zircon crystals. Although it does not represent any technical progress of the geochronological method using the U-Pb system in zircon it is a very useful and cheap facility. The procedure was first used for mass spectrometric analyses involving two international laboratories in Sao Paulo, Brazil and Beijing, China. It was applied to samples of three gneiss-migmatitic rocks from the Ita quarry in the Atuba Complex (located between the Luis Alves and the Apiai Domain) to test previous controversial hypotheses about its evolution. The presence of important archaean and paleo proterozoic components in the complex is confirmed by analyses of zircon found in probably neo proterozoic leucosomes. Diorite intrusion also occurred during the neo proterozoic, associated with the 0.6Ga continental collisions involved in the assembly of Gondwana. The determination of Hf isotope ratios by LA-ICP/MS represents a new option for checking the relative importance of mantle ({epsilon}{sub Hf} > 0) and crustal contributions (({epsilon}{sub Hf} < 0) during the growth of the zircon crystals. While the archaean component in the complex was derived from the mantle ({epsilon}{sub Hf} + 1.5 to + 8.7) the paleo proterozoic component had a crustal contribution ({epsilon}{sub Hf} - 9.1 to -10.1). (author)

  20. Investigation of the geochemical and mineralogical characteristics of the dikes associated with copper mineralization at the southeastern Ardestan (NE Isfahan

    Directory of Open Access Journals (Sweden)

    Maryam Salehi

    2017-07-01

    Full Text Available The Ardestan study area lies in the northeast of Isfahan and at the outer margin of Urumieh -Dokhtar Volcanic Arc (UDMA. In this area, copper mineralization is associated with dikes. Mineralization occurred as sulfides (chalcocite, chalcopyrite and bornite and oxides (malachite and azurite. According to field studies as well as petrographic and geochemical investigations, two different types of dikes are present. The first type, trending NW-SE and comprising fine crystalline gabbro, whereas the second type with relatively E-W trend are gabbro and pyroxene diorite. Geochemically, these rock are characterized by SiO2 = 45.8 to 52.8 wt.%, MgO with 6.9 wt.% (average, Na2O+K2O = 5.6 wt.%, and Al2O3/TiO2 = 16.8%. All dikes are alkaline, related to back-arc tectonic setting in a wider concept associated with changing in source of magmatism. The second type shows enrichment in Ba, Sr, Rb, K, Zr, Nb, Ti, Cr and Ni in comparison to the first type. The first type is generated as a result of a subducted modified mantle while the latter shows an enriched astenospheric mantle source. It appears that there is a weak correlation between ore-forming and volatile elements in the mafic dikes. Overall, the same tectonic stresses are an essential controlling factor for the formation of second type E-W dikes associated with mineralization.

  1. Au-Pt-Pd-U mineralization in the Coronation Hill-El Sherana region, NT

    International Nuclear Information System (INIS)

    Wyborn, L.

    1992-01-01

    In 1990 BMR's Minerals and Land Use program conducted an geochemical and geophysical survey to provide the best possible basis for estimating the resource potential of the Kakadu Conservation Zone. Combining the old and new data, an integrated model for the deposit types has been developed. Although differing in metal content, all mines and prospects of the Coronation Hill region share similar timing and structural controls, suggesting that they are related to one geochemical system. The presence or absence of U in the Au-Pt-Pd mineralisation appears related to geological differences, primarily in host-rock composition. U-bearing deposits are hosted mainly in carbonaceous shales, although some U is associated with chloritic zones. Deposits lacking U, best developed at Coronation Hill, occur in a broad range of host rocks, including quartz-feldspar porphyry, green tuffaceous shale, diorite, dolomite, and sedimentary breccias. Although seemingly diverse rock types, the common components of these U-poor host units are feldspar and/or carbonate. 1 tab., 3 figs

  2. Gold in primary high thermal transformations of the Au porphyry deposit Biely vrch

    International Nuclear Information System (INIS)

    Kozak, J.; Kodera, P.; Lexa, J.; Chovan, M.

    2014-01-01

    Porphyry gold deposit Biely vrch is situated in northern part of the Javorie stratovolcano in eastern part of Central Slovakia Volcanic Field. Intrusion of diorite to andesite porphyry with andesites is affected by hydrothermal alterations with dominant intermediate argillic alteration. Accumulations of gold are spatially associated with stockwork, formed by different types of quartz veinlets. Gold grains occur in altered rocks in the vicinity of quartz veinlets and rarely also as inclusions in vein. Analysed gold grains are chemically very homogenous and have fineness between 87 to 99.50 wt % Au while silver is the only significant element in addition to gold. In deeper parts of the deposit gold also occurs associated with K and Ca-Na silicate alteration which confirms precipitation of gold already in early stages of the hydrothermal system from high salinity Fe-K rich salt melt based on analyses of corresponding fluid inclusions. Difference in the fineness of gold is not significant between primary and secondary hydrothermal alterations. The highest fineness of gold (more than 99 wt %) in advanced argillic alteration is probably caused by remobilisation by acidic hydrothermal fluids. (authors)

  3. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    Science.gov (United States)

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  4. Panorama Pluton : a composite gabbro-monzodiorite early Ross Orogeny intrusion in southern Victoria Land, Antarctica

    International Nuclear Information System (INIS)

    Mellish, S.D.; Cooper, A.F.; Walker, N.W.

    2002-01-01

    The Koettlitz Glacier Alkaline Province of the Walcott Glacier to Radian Glacier area of the Transantarctic Mountains contains a diverse suite of intrusions ranging from gabbro and diorite to granite, nepheline syenite, and carbonatite. Most of the plutons are alkaline (A-type), although the Panorama Pluton is mafic, comprising both hypersthene normative gabbroic and quartz normative monzodioritic lithologies. The pluton has a composite nature, determined by whole-rock geochemical trends and Nd-Sr isotope data that reflect distinctive source regions for the different components. U-Pb geochronology of zircon and titanite indicates the Panorama Pluton was intruded during the early stages of the Neoproterozoic-early Paleozoic Ross Orogeny at 535 ± 9 Ma, and that it is coeval with the geochemically similar Dromedary Mafic Complex which crops out 10 km to the southeast. The Panorama Pluton is a volumetrically minor mafic component of the Koettlitz Glacier Alkaline Province, which predates, by at least 15 m.y., the dominant calc-alkaline suites that occur along-strike in the Dry Valleys area to the north, and the central Transantarctic Mountains to the south. The Panorama Pluton magmas, and other Koettlitz Glacier Alkaline Province lithologies, are interpreted to have formed in an extensional or transtensional jog that predates the onset of widespread Ross Orogeny subduction. (author). 48 refs., 7 figs., 3 tabs

  5. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  6. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    Science.gov (United States)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  7. Application of Sm/Eu/, Rb/Sr, Ce/Yb and F-Rb ratios to discriminate between Tin mineralized and non-mineralized S-type granites

    International Nuclear Information System (INIS)

    Karimpour, M.H.

    1998-01-01

    Mash had granites and Gran diorites are divided into three groups bas sed on their ages and composition: (1) Deh Now-Vakilabad-Kuhsangi Granodiorites and Quartz monzodiorites, (2) Sang bast Granite and (3) Khalaj- Gheshlagh Biotite-muscovite Granite. All these intrusive s belong to S-type granite, The oldest are in the range of intermediate and the youngest are acidic in composition. Intrusive rocks in the area of Deh now to Kuhsangi show trend of differentiation. Major, trace and rare earth elements within the source rocks of porphyry Sn, Mo, and Cu deposits were compared and very distinct differences were noticed. Differentiation index, Rb/Sr, Ce/Yb, and (Sr 87 /Sr 86 ) ratios can be used to identify the source rocks for porphyry Sn, Mo, or Cu. Major, as well as trace and rare earth elements of Mash had Granites and Granodiorites were compared with tin mineralized granites of the world. As a result, four diagrams were presented to be utilized in order to discriminate between Sn mineralized and non-mineralized granites. Such as Rb to the ratio of Sm/Eu, F to Rb and the three angle of F, Rb, Sr + Ba

  8. Mafic and ultramafic rocks, and platinum mineralisation potential, in the Longwood Range, Southland, New Zealand

    International Nuclear Information System (INIS)

    Ashley, P.; Craw, D.; Mackenzie, D.; Rombouts, M.; Reay, A.

    2012-01-01

    Intrusive rocks in the Longwood Range represent a component of the Permian Brook Street Terrane. They include diffusely layered, cumulate-textured olivine gabbro, troctolite, and gabbro, and gradations into non-cumulate gabbro and gabbronorite. Volumetrically small ultramafic layers occur (plagioclase wehrlite), and thin veins of felsic rocks ranging from quartz diorite to trondhjemite. Primary olivine, plagioclase, clinopyroxene, and subordinate orthopyroxene and hornblende are commonly altered or metamorphosed to amphiboles, minor spinel, magnetite, chlorite, biotite and clinozoisite, and serpentine in olivine-rich rocks. Accessory primary Ti-bearing magnetite and ilmenite occur, and trace Cr-magnetite is characteristic of olivine-rich rocks. Trace pyrrhotite, chalcopyrite, pentlandite, and pyrite could reflect equilibrated late magmatic, and alteration-derived phases. Key petrochemical characteristics of the rock suite are high Mg, Al, Ca, and Sr contents, and low alkali, LILE, and sulfur contents. Platinum and Pd are locally enriched in drill-hole intercepts, but zones appear unrelated to rock type, magnetic properties, or to S, Cu, Ni, Cr, or Au values. Local platinum group element (PGE) enrichment in altered rocks implies metamorphic and/or hydrothermal redistribution. Pervasive PGE enrichment in Longwood rocks is an indicator of potential 'fertility', but evidence is currently lacking for the precipitation of primary stratiform PGE accumulations from a sulfide liquid saturated magma. (author). 41 refs., 11 figs., 2 tabs.

  9. Petrogenesis and geochemical characterisation of ultramafic cumulate rocks from Hawes Head, Fiordland, New Zealand

    International Nuclear Information System (INIS)

    Daczko, N.R.; Emami, S.; Allibone, A.H.; Turnbull, I.M.

    2012-01-01

    Early Cretaceous parts of the western Median Batholith (Western Fiordland Orthogneiss) represent the exposed root of a magmatic arc of dioritic to monzodioritic composition (SiO 2 = 51-55 wt%; Na 2 O/K 2 O = 3.7-8.8 in this study). We characterise for the first time the field relationships, petrography, mineralogy and geochemistry of ultramafic and mafic cumulates at Hawes Head, the largest exposure of ultramafic rocks in western Fiordland. We distinguish three related rock types at Hawes Head: hornblende peridotite (MgO = 21-35 wt%); hornblendite (MgO = 15-16 wt%); and pyroxenite (MgO = 21 wt%). Petrogenetic relationships between the ultramafic rocks and the surrounding Misty Pluton of the Western Fiordland Orthogneiss are demonstrated by: (i) mutually cross-cutting relationships; (ii) similar mafic phases (e.g. pyroxene and amphibole) with elevated Mg-numbers (e.g. olivine Mg/(Mg+Fe) = 0.77-0.82); (iii) fractionation trends in mineral geochemistry; and (iv) shared depleted heavy rare earth element patterns. In addition, the application of solid/liquid partition coefficients indicates that olivine in the ultramafic rocks at Hawes Head crystallised from a magma with Mg/(Mg+Fe) = 0.54-0.57. The olivine grains therefore represent a plausible early crystallising phase of the adjacent Western Fiordland Orthogneiss (Mg/(Mg+Fe) = 0.51-0.55). (author). 42 refs., 5 figs., 1 tab.

  10. Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madani

    2011-12-01

    Full Text Available This research aims to generate a favorability map for gold exploration at the Bulghah gold mine area using integration of geo-datasets within a GIS environment. Spatial data analyses and integration of different geo-datasets are carried out based on knowledge-driven and weighting technique. The integration process involves the weighting and scoring of different layers affecting the gold mineralization at the study area using the index overlay method within PCI Geomatica environment. Generation of the binary predictor maps for lithology, lineaments, faults and favorable contacts precede the construction of the favorability map. About 100 m buffer zones are generated for favorable contacts, lineaments and major faults layers. Internal weighting is assigned to each layer based on favorability for gold mineralization. The scores for lithology, major faults, lineaments and favorable contacts layers in the constructed favorability map are 50%, 25%, 10% and 15%, respectively. Final favorability map for the Bulghah gold mine area shows the recording of two new sites for gold mineralization located at the northern and southern extensions of tonalite–diorite intrusions. The northern new site is now exploited for gold from the Bulghah North mine. The southern new site is narrow and small; its rocks resemble those of the Bulghah gold mine.

  11. Research on uranium and thorium elements exploration through the study of petrography, petrology and geophysical method in the Saghand Area (Central Iran) Islamic Republic of Iran

    International Nuclear Information System (INIS)

    Iranmanesh, J.; Fattahi, V.; Raziani, S.

    2014-01-01

    This study is a research on uranium and thorium exploration by use of the petrography, petrology and radiometric data in the Saghand area, Central Iran plateau. The lithologies of this area comprise of granite and metasomatized granite. As a result of metasomatic process, uranium and thorium bearing minerals such as davidite and alanite were formed. Sericitization and albitization are the main alterations detected in the study area and thorium mineralization is more common in albitization. By investigation of the chemical classification, non-radioactive specimens, rock types include: diorite and granodiorite, while radioactive specimens consist of gabbroic rocks (basalt). According to the magma source graphs, these rocks formed by calc-alkaline series magma. A scintillometer and spectrometer (MGS-150) were used for radiometric data acquisition. 1001 data points have been obtained from 11 profiles and total counts for, K, U, Th were measured. After primary data processing, data logarithms were calculated for normalizing, and the radiometric data show that uranium and thorium enrichment is more than potassium, while thorium and uranium enrichment are approximately equal. After data integration, two probable anomalies were determined in northwest and northeast parts of the study area. (author)

  12. Model to Assess the Quality of Magmatic Rocks for Reliable and Sustainable Constructions

    Directory of Open Access Journals (Sweden)

    Mihaela Toderaş

    2017-10-01

    Full Text Available Geomechanical assessment of rocks requires knowledge of phenomena that occur under the influence of internal and external factors at a macroscopic or microscopic scale, when rocks are submitted to different actions. To elucidate the quantitative and qualitative geomechanical behavior of rocks, knowing their geological and physical–mechanical characteristics becomes an imperative. Mineralogical, petrographical and chemical analyses provided an opportunity to identify 15 types of igneous rocks (gabbro, diabases, granites, diorites, rhyolites, andesites, and basalts, divided into plutonic and volcanic rocks. In turn, these have been grouped into acidic, neutral (intermediate and basic magmatites. A new ranking method is proposed, based on considering the rock characteristics as indicators of quantitative assessment, and the grading system, by given points, allowing the rocks framing in admissibility classes. The paper is structured into two parts, experimental and interpretation of experimental data, showing the methodology to assess the quality of igneous rocks analyzed, and the results of theoretical and experimental research carried out on the analyzed rock types. The proposed method constitutes an appropriate instrument for assessment and verification of the requirements regarding the quality of rocks used for sustainable construction.

  13. Groundwater modelling of Aespoe using the ECLIPSE program

    International Nuclear Information System (INIS)

    Wokil, H.

    1995-06-01

    The pre-investigations indicated that the dominant rocks ranged in composition from true granite to dioritic or gabbroic rocks. In conjunction with these investigations at the area, a number of indications were obtained of high transmissive fracture zones. To be able to understand the fracture zone NE-1 as well as possible, a number of hydraulic tests were performed, for example a tracer test. The program ECLIPSE 100 is one of the standard programs in the oil industry which is used to simulate oil fields. ECLIPSE 100 is a multi-facility simulator and it can be used to simulate 1, 2 and 3 phase systems, one option is oil, two phase options are oil/gas, oil/water or gas/water, and the third option is oil/gas/water. Good results were obtained from the simulator match of the tracer concentration versus time to the measured values from the tracer test of the fracture zone NE-1. The simulation was less successful in modelling the draw-down of water in the wells. We were also unable to reach a balance situation for the water pressure prior to injecting the tracer in order to accommodate several weeks of leakage into the tunnel prior to the tracer test. As a main conclusion, we found the results of the simulation to be satisfactory and we believe that further work should be done to adapt the program completely for groundwater simulation. 19 refs, 10 tabs, 13 figs

  14. Isotopic data bearing on the origin of Mesozoic and Tertiary granitic rocks in the western United States

    International Nuclear Information System (INIS)

    DePaolo, D.J.; Farmer, G.L.

    1984-01-01

    A regional survey of initial Nd and Sr isotopic compositions has been done on Mesozoic and Tertiary granitic rocks from a 500 000 km 2 area in California, Nevada, Utah, Arizona, and Colorado. The plutons, which range in composition from quartz diorite to monzogranite, are intruded into accreted oceanic geosynclinal terrains in the west and north and into Precambrian basement in the east. Broad geographic coverage allows the data to be interpreted in the context of the regional pre-Mesozoic crustal structure. Initial Nd isotopic compositions exhibit a huge range, encompassing values typical of oceanic magmatic arcs and Archean basement. The sources of the magmas can be inferred from the systematic geographic variability of Nd isotopic compositions. The plutons in the accreted terrains represent mantle-derived magma that assimilated crust while differentiating at deep levels. Those emplaced into Precambrian basement are mainly derived from the crust. The regional patterns can be understood in terms of: (1) the flux of mantle magma entering the crust; (2) crustal thickness; and (3) crustal age. The mantle magma flux apparently decreased inland; in the main batholith belts purely crustal granitic rocks are not observed because the flux was too large. Inland, crustal granite is common because mantle magma was scarce and the crust was thick, and hot enough to melt. The epsilonsub(Nd) values of peraluminous granite formed by melting of the Precambrian basement depend on the age of the local basement source. (author)

  15. Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians).

    Science.gov (United States)

    Burda, Jolanta; Gawęda, Aleksandra; Klötzli, Urs

    In the Variscan Western Tatra granites hybridization phenomena such as mixing and mingling can be observed at the contact of mafic precursors of dioritic composition and more felsic granitic host rocks. The textural evidence of hybridization include: plagioclase-K-feldspar-sphene ocelli, hornblende- and biotite-rimmed quartz ocelli, plagioclase with Ca-rich spike zonation, inversely zoned K-feldspar crystals, mafic clots, poikilitic plagioclase and quartz crystals, mixed apatite morphologies, zoned K-feldspar phenocrysts. The apparent pressure range of the magma hybridization event was calculated at 6.1 kbar to 4.6 kbar, while the temperature, calculated by independent methods, is in the range of 810°C-770°C. U-Pb age data of the hybrid rocks were obtained by in-situ LA-MC-ICP-MS analysis of zircon. The oscillatory zoned zircon crystals yield a concordia age of 368 ± 8 Ma (MSWD = 1.1), interpreted as the age of magma hybridization and timing of formation of the magmatic precursors. It is the oldest Variscan magmatic event in that part of the Tatra Mountains.

  16. Hf isotope study of Palaeozoic metaigneous rocks of La pampa province and implications for the occurrence of juvenile early Neoproterozoic (Tonian) magmatism in south-central Argentina

    Science.gov (United States)

    Chernicoff, C. J.; Zappettini, E. O.; Santos, J. O. S.; Belousova, E.; McNaughton, N. J.

    2011-12-01

    On a global scale, juvenile Tonian (Early Neoproterozoic) magmatic rocks are associated with the extensional events that lead to the breakup of the Rodinia supercontinent. In Argentina, no geological record is available for this time interval, lasting from 1000 to 850 Ma. We present indirect evidence for the existence of Tonian extension in Argentina, as supported by Hf and Nd isotope determinations on Phanerozoic magmatic and sedimentary rocks. We mainly focus on our own Hf isotope determinations carried out on U-Pb SHRIMP dated zircons from Palaeozoic metaigneous rocks of La Pampa province, south-central Argentina, i.e. metagabbros of Valle Daza, dioritic orthogneiss of Estancia Lote 8, and metadiorite of Estancia El Carancho, having found that these rocks were derived from sources of ca. 920 to ca 880 Ma, with ɛHf values between +6.83 and + 9.59. Inherited zircons of this age and character identified in these rocks also point to the same source. We also compile additional Hf and Nd studies from previous work on Phanerozoic magmatic and sedimentary rocks. We preliminarily compare the age of the juvenile Tonian sources referred to in our work with that of two extensional events identified in the São Francisco craton, Brazil.

  17. Geochemistry and zircon U-Pb geochronology of the Pulang complex, Yunnan province, China

    International Nuclear Information System (INIS)

    Pang, Zhenshan; Du, Yangsong; Cao, Yi; Gao, Fuping; Wang, Gongwen; Dong, Qian

    2014-01-01

    The Pulang complex is located tectonically at the southern margin of the Yidun-Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U-Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr-Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257∼ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas. (author)

  18. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    Science.gov (United States)

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  19. Oxygen isotope fine structure and fluid throughput of the Tongonan geothermal field, Philippines

    International Nuclear Information System (INIS)

    Scott, G.L.; Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1986-01-01

    Oxygen isotope ratios for 40 reservoir rocks from the plutonic basement and overlying andesitic rocks, and 14 separated geothermal quartz samples from the volcanics, range from 2.5 to 9.9 per mil. The lowest δ 18 O values (average 2.9 per mil) in diorite cores from wells 401, 407 and 410 are located in the most productive northwest (Mahiao) sector of the field. In the Malitbog sector, the average δ 18 O values for basement rocks are higher (c. 4.6 per mil). Plutonic rock samples from the Mamban (well MN1) sector, located outside the present-day field margin, are only slightly altered (6 per mil) except possibly near the contact zone between the basement and overlying volcanics. The highest cumulative fluid/rock ratios are calculated for the Mahiao sector, whereas Malitbog is possibly a relatively recent extension of the field. Relatively shallow (Bao Formation) quartz has δ 18 O values suggesting past tectonic uplift

  20. Granites and granitoids of the southern region - Granite molybdenite system

    International Nuclear Information System (INIS)

    Issler, R.S.

    1987-01-01

    Economic concentrations of molybdenum are genetically closely associated with acidic and moderately acid granitoids-granites, granodiorites, monzonites and diorites, and are located in two geotectonic settings: subduction-related and rift-related. The aim of this paper is twofold, first succinctly approach the geology, tectonic setting and chemical parameters of the 'granite molybdenite system' as defined by Mutschler and/or alcali granite porphyry bodies emplaced in the North American continent for occasion of a Mesozoic-Fanerozoic extensile event; second to relate the computer-assisted evaluation of 422 major element chemical analysis of granites and granitoids of southern region of Brazil, using chemical fingerprints (SiO 2 ≥ 74. Owt%, Na 2 O ≤ 3.6wt%, K 2 O ≥ 4.5wt%), and K 2 O/Na 2 O ratio > 1.5 developed and testified from North American and Finnish occurrences, may locate molybdenite-bearing granite bodies with high exploration potential. These techniques suggest that some late Precambrian to early Paleozoic granite-rhyolite assemblages inserted at domains of the SG. 22/23 Curitiba/Iguape, SH. 21/22 Uruguaiana/Porto Alegre and SI.22 Lagoa Mirim Sheets, have exploration potential for molybdenum. (author) [pt

  1. K-Ar age and tectonic setting of brannerite-mineralized Futagojima granodiorite, Koshiki Islands, Southern Kyushu

    International Nuclear Information System (INIS)

    Ishihara, Shunso; Shibata, Ken; Terashima, Shigeru

    1984-01-01

    Futagojima granodiorite, which was previously thought to be a part of Cretaceous Ryoke granitoids, is turned out to be upper Miocene granitoids (7.5 Ma). The granodiorite contains magnetite and is depleted in lithophile components. This is characteristics of magnetite-series granitoids in the Green Tuff terrains. All the Miocene granitoids in Koshiki Islands are relatively mafic consisting of hornblende-bearing facies such as quartz diorite, tonalite and granodiorite; thus belonging to I-type magnetite series. These rocks are considered to have generated at depth and formed along a rift zone during Miocene time (13 - 7 Ma). Thus, Koshiki Islands may represent an aborted rift at margin of the Danjo basin. Miocene granitoids of Koshiki Islands are small stocks but magmatic-hydrothermal ore deposits are only seen in Futagojima. This localization of mineralization is explained by a high degree of magmatic fractionation, which is only observed in Futagojima and by a low rate of erosion to preserve the mineralized horizons. Mineralization here is unique having brannerite-magnetite and chalcopyrite-molybdenite-quartz assemblages. No gold and silver were detected from the vein-type deposit. (author)

  2. Petrology of skarns in the north and the southwest of Qazan (South Qamsar with emphasis on the mineral chemistry of garnet and pyroxene

    Directory of Open Access Journals (Sweden)

    Maria Chavideh

    2018-03-01

    Full Text Available The Oligo-Miocene Qazan granitoid body caused contact metamorphic of surrounding rocks and skarn formation in the wall limestone. The main intrusive rocks are essentially granite to diorite in composition. Two different types of skarn, exo and endoskarn have been developed. On the base of microprobe data, the northern skarn are characterized by zoning and the amounts of andradite and grossular changes oscillatory. While garnets from the southwestern skarn is predominantly andradite in composition. Using Fe/Ti vs. Al/ (Al+Fe+Mn diagram that were calculated based on the mole percent of the used elements, it is estimated that about less than 50 percent hydrothermal waters were involved for the northern skarn whereas it was over this amount for the southwestern skarn. This leds to difference in garnet composition. The composition of clinopyroxene in both skarns is the same (diopside. As a result, hydrothermal fluids have not had much influence on pyroxene genesis. With regards to the occurrence of mineral assemblage and the presence of wollastonite in the skarns under study, these rocks have evolved in temperature above 500 ° C and O2 fugacity in the range of 10-17 to 10-15.

  3. Chemical and isotopic characteristics of the coso east flankhydrothermal fluids: implications for the location and nature of the heatsource

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, B.W.; Kennedy, B.M.; Adams, M.C.; Bjornstad, S.C.; Buck, C.

    2007-01-08

    Fluids have been sampled from 9 wells and 2 fumaroles fromthe East Flank of the Coso hydrothermal system with a view toidentifying, if possible, the location and characteristics of the heatsource inflows into this portion of the geothermal field. Preliminaryresults show that there has been extensive vapor loss in the system, mostprobably in response to production. Wells 38A-9, 51-16 and 83A-16 showthe highest CO2-CO-CH4-H2 chemical equilibration temperatures, rangingbetween 300-340oC, and apart from 38A-9, the values are generally inaccordance with the measured temperatures in the wells. Calculatedtemperatures for the fractionation of 13C between CO2 and CH4 are inexcess of 400oC in fluids from wells 38A-9, 64-16-RD2 and 51A-16,obviously pointing to equilibrium conditions from deeper portions of thereservoir. Given that the predominant reservoir rock lithologies in theCoso system are relatively silicic (granitic to dioritic), the isotopicsignatures appear to reflect convective circulation and equilibrationwithin rocks close to the plastic-brittle transition. 3He/4He signatures,in conjunction with relative volatile abundances in the Coso fluids,point to a possibly altered mantle source for the heat sourcefluids.

  4. Use of ERS-2 Sar and Landsat TM Images for Geological Mapping and Mineral Exploration Of Sol Hamid Area, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ramadan, T.M.

    2003-01-01

    Sol hamid area is chiefy occupied by neo proterozoic rocks, partly covered by miocene sediments and recent sand sheets and dunes. The neo proterozoic rocks include ophiolitic ultramafic to mafic rocks, meta volcano-sedimentary rocks, meta volcanics, gabbros-diorite rocks, granodiorites, biotite granites and alkali granites. Magnesite, chromite, iron ores, manganese and barite ore deposits are hosted in different at the study area. ERS-2 SAR data enabled to obtain an image that reveals some buried fluvial features beneath the surface cover of desert sand. These features are not observable in Landsat TM image of similar resolution. In this work, Principal Component Analysis (PCA) technique was used for merging ERS-2 SAR and Landsat TM images to make use of the potential of data fusion technique of image processing in the interpretation of geological features. This procedure has resulted in enhancing subsurface structure such as faults that control distribution of several deposits in the study area. This study represents an example to demonstrate the utility of merging various remote sensing data for exploring mineral deposits in arid region

  5. Geology and mineralization of the Jabalat alkali-feldspar granite, northern Asir region, Kingdom of Saudi Arabia

    Science.gov (United States)

    Al Tayyar, Jaffar; Jackson, Norman J.; Al-Yazidi, Saeed

    The Jabalat post-tectonic granite pluton is composed of albite- and oligoclase-bearing, low-calcium, F-, Sn- and Rb-rich subsolvus granites. These granites display evidence of late-magmatic, granitophile- and metallic-element specialization, resulting ultimately in the development of post-magmatic, metalliferous hydrothermal systems characterized by a Mo sbnd Sn sbnd Cu sbnd Pb sbnd Zn sbnd Bi sbnd Ag sbnd F signature. Two main types of mineralization are present within the pluton and its environs: (1) weakly mineralized felsic and aplitic dikes and veins enhanced in Mo, Bi, Ag, Pb and Cu; and (2) pyrite—molybdenite—chalcopyrite-bearing quartz and quartz—feldspar veins rich in Mo, Sn, Bi, Cu, Zn and Ag. A satellite stock, 3 km north of the main intrusion, is composed of fine-grained, miarolitic, muscovite—albite—microcline (microperthite) granite. The flanks of this intrusion and adjacent dioritic rocks are greisenized and highly enriched in Sn, Bi and Ag. Quartz veins which transect the satellite stock contain molybdenite and stannite.

  6. U-Pb ages and geochemistry of zircon from Proterozoic plutons of the Sawatch and Mosquito ranges, Colorado, U.S.A.: Implications for crustal growth of the central Colorado province

    Science.gov (United States)

    Moscati, Richard J.; Premo, Wayne R.; Dewitt, Ed; Wooden, Joseph L.

    2017-01-01

    southern portion of the Sawatch and Mosquito ranges.(2) Calc-alkalic to alkali-calcic magmas intruded this region approximately 55 m.y. after the Roosevelt Granite with emplacement of pre-deformational plutons at ca. 1,710 Ma (e.g., Henry Mountain Granite and diorite of Denny Creek), and this continued for at least 30 m.y., ending with emplacement of post-deformational plutons at ca. 1,680 Ma (e.g., Kroenke Granodiorite, granite of Fairview Peak, and syenite of Mount Yale). The timing of deformation can be constrained to sometime after intrusion of the diorite of Denny Creek and likely before the emplacement of the undeformed granite of Fairview Peak. Geochemistry of both whole-rock and zircon indicates that the older group of ca. 1,710-Ma plutons formed at shallower depths, and then they intruded the younger group of more deeply generated, commonly peraluminous and sodic plutons. Although absent in the Sawatch and Mosquito ranges, Mazatzal-age (ca. 1,680–1,620 Ma) plutonic rocks are present regionally. Inherited zircon components of Mazatzal-age were found as cores in some 1.4-Ga Sawatch and Mosquito Range zircons, indicating the likelihood of a relatively local source. These combined data suggest the possibility that all were produced within a continental-margin magmatic arc created as a result of southward-migrating (slab rollback?), north-dipping subduction to the south of the region.(3) Widespread Mesoproterozoic plutonism—with emplacement at various depths and exhibiting bimodal geochemistry—is recognized in 16 different samples. An older group of predominantly peraluminous, yet magnesian granitoids (e.g., granodiorite of Sayers, granite of Taylor River, and the St. Kevin Granite) were emplaced between ca. 1,450 and 1,425 Ma. These geochemical parameters suggest moderate degrees of partial melting in a low-pressure environment. Three younger metaluminous, but ferroan plutons (diorite of Grottos, diorite of Mount Elbert, and granodiorite of Mount Harvard

  7. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    Modnikov, I.S.; Skvortsova, K.V.; Chesnokov, L.V.

    1974-01-01

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  8. Copper mineralization geology of Mandacaru, State of Piaui, Brazil

    International Nuclear Information System (INIS)

    Parente, C.V.

    1984-01-01

    The Mandacaru area, Sao Juliao county, Piaui, comprises a Precambrian crystalline basement of granitic to quartaz dioritic gneisses overlain by several younger units of low grade metamorphics, volcanic and sedimentary rocks. The late Proterozoic Sao Juliao sequence comprises folded epicontinental marine metasediments of rank greenschist facies, including phyllite marble, metarkose and quartzite. The Eopaleozoic Catole Formation is represented by continental volcanic material (basalt, andesitic basalt, dacite, rhyolite, pyroclastics) and sedimentary rocks (conglomerate, arkosic wacke, felspathic sandstone, silt-stone), intruded by the post-tectonic Mandacaru Granite and related dykes and apophyses of granophyre, quartz porphyry, and other felsic subvolcanic roks. The intrusive rocks display subalkaline to slightly alkaline (potassic) trends. Rb-Sr isotope determinations yielded a reference isochron of 550+-8 my, Ri=0,70924+-0,0010. Eopaleozoic volcanism, sedimentation and granite introsion are controlled by faulting and graben-like strucutures, the evolution of which culminated with the deposition of polymictic conglomerate and breccia of the Tamboril Formation. AII the previous units are unconformably overlain by the Silurian Serra Grande Formation at the eastern border of the Parnaiba Basin. (Author) [pt

  9. Tok-Algoma magmatic complex of the Selenga-Stanovoi Superterrain in the Central Asian fold belt: Age and tectonic setting

    Science.gov (United States)

    Kotov, A. B.; Larin, A. M.; Salnikova, E. B.; Velikoslavinskii, S. D.; Sorokin, A. A.; Sorokin, A. P.; Yakovleva, S. Z.; Anisimova, I. V.; Tolmacheva, E. V.

    2012-05-01

    According to the results of U-Pb geochronological investigations, the hornblende subalkali diorite rocks making up the Tok-Algoma Complex in the eastern part of the Selenga-Stanovoi Superterrain of the Central Asian fold belt were formed in the Middle Jurassic rather than in the Middle Archean as was suggested previously. Thus, the age of the regional amphibolite facies metamorphism manifested itself in the Ust'-Gilyui rock sequence of the Stanovoi Complex and that superimposed on granitoids of the Tok-Algoma Complex is Mesozoic rather than Early Precambrian. The geochemical features of the Tok-Algoma granitoids are indicative of the fact that they were formed in the geodynamic setting of the active continental margin or a mature island arc. Hence, it is possible to suggest that the subduction processes along the southern boundary between the Selenga-Stanovoi Superterrain and the Mongolian-Okhotsk ocean basin in the Middle Jurassic resulted in the formation of a magmatic belt of over 500 km in length.

  10. Geology, petrography, alteration, mineralization and petrogenesis of intrusive bodies in the Hamech prospect area, Southwest of Birjand

    Directory of Open Access Journals (Sweden)

    Abbas Etemadi

    2018-04-01

    Full Text Available Introduction The Hamech prospect area is located in the eastern Iran, 85 kilometers southwest of Birjand. The study area coordinates between 58¬¬˚¬53΄¬00 ˝ to 59˚¬00΄¬00˝ latitude and 32˚¬22΄¬30 ˝ to 32˚¬26΄¬00˝ longitude. Due to the high volume of magmatism and the presence of geo-structure special condition in the Lut Block at a different time, a variety of metal (copper, lead, zinc, gold, etc. and non-metallic mineralization has been formed (Karimpour et al., 2012. The studied area (Hamech includes Paleocene-Eocene igneous outcrops which contain a wide range of subvolcanic bodies (diorite to monzonite porphyry associated with mafic intrusives, volcanic units (andesite, volcaniclastic and sedimentary rocks. Material and Methods This study was done in two parts including field and laboratory works. Sampling and structural studies were done during field work. Geological and alteration maps for the study area were also prepared. 200 thin and 60 polished sections for petrographic purpose were studied. The number of 200 thin sections and 60 polished sections were prepared and studied in order to investigate petrography and mineralogy. Major oxides (XRF method- East Amethyst Laboratory in Mashhad, rare earth elements and trace (ICP-MS method-ACME Laboratory in Vancouver, Canada elements were analyzed for 13 samples that included subvolcanic units and intrusive bodies. Data processing and geological and alteration mapping is done by the GCD.kit and Arcgis software. Discussion and Results Based on lab work and XRF analysis, the rocks in the area are composed of intrusive-subvolcanic bodies and volcanic rocks (andesite, trachyandesite and dacite together with volcano-classic and sedimentary rocks. Also, alteration zones consist of a variety of argillic, silicified, quartz-sericite-pyrite (QSP, propylitic and carbonate. Igneous rock textures are mainly porphyritic for sub-volcanic and granular for intrusive bodies. Phenocrysts

  11. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer - El Graara inliers, eastern and central Anti-Atlas, Morocco

    Science.gov (United States)

    Walsh, Gregory J.; Aleinikoff, John N.; Harrison, Richard W.; Burton, William C.; Quick, James E.; Benziane, Foudad; Yazidi, Abdelaziz; Saadane, Abderrahim

    2012-01-01

    New mapping, geochemistry, and 17 U–Pb SHRIMP zircon ages from rocks of the Sirwa, Bou Azzer–El Graara, and Jebel Saghro inliers constrain the Neoproterozoic evolution of the eastern Anti-Atlas during Pan-African orogenesis. In the Sirwa inlier, Tonian quartzite from the pre Pan-African passive margin deposits of the Mimount Formation contains detrital zircon derived entirely from the West African Craton (WAC), with most grains yielding Eburnean Paleoproterozoic ages of about 2050 Ma. Cryogenian Pan-African orogenic activity (PA1) from about 760 to 660 Ma included northward-dipping subduction to produce a volcanic arc, followed by ophiolite obduction onto the WAC. In the Bou Azzer–El Graara inlier, calc-alkaline granodiorite and quartz diorite, dated at 650–646 Ma, are syn- to post-tectonic with respect to the second period of Pan-African orogenesis (PA2), arc-continent accretion, and related greenschist facies metamorphism. Slab break-off and lithospheric delimination may have provided the source for the supra-subduction calc-alkaline plutons. At about 646 Ma, quartz diorite intruded the Tiddiline formation placing an upper limit on molassic deposition. Widespread Ediacaran high-K calc-alkaline to shoshonitic plutonism and volcanism during the final stage of Pan-African orogenesis (PA3) occurred in a setting related to either modification of the margin of the WAC or formation of a continental volcanic arc above a short-lived southward-dipping subduction zone. In the Saghro inlier, eight plutonic rocks yield ages ranging from about 588 to 556 Ma. Sampled plutonic rocks previously considered to be Cryogenian yielded Ediacaran ages. Peraluminous rhyolitic volcanic rocks in the lower part of the Ouarzazate Supergroup, including ash-flow tuffs of the Oued Dar’a caldera, yield ages between about 574 and 571 Ma. The Oued Dar’a caldera developed in a pull-apart graben produced by a left-step in a northeast-trending, left-lateral strike-slip fault zone, and

  12. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  13. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China

    Science.gov (United States)

    Feng, Zhiqiang; Liu, Yongjiang; Li, Yanrong; Li, Weimin; Wen, Quanbo; Liu, Binqiang; Zhou, Jianping; Zhao, Yingli

    2017-08-01

    The Xinlin-Xiguitu suture zone, located in the Great Xing'an Range, NE China, in the eastern segment of the Central Asian Orogenic Belt (CAOB), represents the boundary between the Erguna and Xing'an micro-continental blocks. The exact location of the Xinlin-Xiguitu suture zone has been debated, especially, the location of the northern extension of the suture zone. In this study, based on a detailed field, geochemical, geochronological and Sr-Nd-Hf isotope study, we focus our work on the Cambrian igneous rocks in the Erguna-Xing'an block. The Xinglong granitoids, mainly include ∼520 Ma diorite, ∼470 Ma monzogranite and ∼480 Ma pyroxene diorite. The granitoids show medium to high-K calc-alkaline series characteristics with post-collision granite affinity. The circa 500 Ma granitoids have low εHf (t) values (-16.6 to +2.2) and ancient two-stage model (TDM2) ages between 1317 Ma and 2528 Ma. These results indicate the primary magmas of the Xinglong granitoids were probably derived from the partial melting of a dominantly Paleo-Mesoproterozoic ;old; crustal source with possible different degrees of addition of juvenile materials, and formed in a post-collision tectonic setting after the amalgamation of the Erguna and Xing'an blocks. Compared with the Xinglong granitoids, the Duobaoshan igneous rocks are consisted of the approximately coeval rhyolitic tuffs (491 ± 5 Ma) and ultramafic intrusions (497 ± 5 Ma) within the Duobaoshan Formation. They are generally enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), consistent with the geochemistry of igneous rocks from island arcs or active continental margins. The ultramafic rocks have high positive εHf (t) values (+1.3 to +15) and εNd (t) (+1.86 to +2.28), and relatively young two-stage model (TDM2) ages and low initial 87Sr/86Sr ratios (0.70628-0.70853), indicating the partial melting of a depleted mantle source from a subducted slab in

  14. Mineralization related to Alvand pluton in the Hamadan, western Iran

    Science.gov (United States)

    Salehi, M. H.; Doosti, E. A.; Ahadnejad, V.

    2009-04-01

    The Alvand (Hamadan) plutonic batholith is one of the largest plutonic bodies in the Sanandaj-Sirjan metamorphic belt. This complex is consist of mafic part (gabbro-diorite-tonalite), intermediate (granite-granodiorite porphyroids), and hololeucocratic granitoids. Previous studies have shown that S-type granite-granodiorites are mostly peraluminous and calc-alkaline; the gabbro-diorite-tonalite suite is mostly metaluminous and tholeiitic to calc-alkaline (Sepahi, 2008). High initial 87Sr-86Sr ratios (0.7081 to 0.7115), low epsilon Nd values (-1.0 to -3.3), and peraluminous character reflects a different origin for the granites, possibly crustal sources (Ghalamghash et al, 2007). Aplite-pegmatite dikes are intruded in granitoide rocks, metamorphic rocks and the contact of Alvand granite with metamorphic rocks. The contact of Alvand granite with metamorphic rocks is sharp. By using heavy mineral studies on the alluvium of Alvand complex, it is recognized 28 minerals amongst Scheelite, Cassiterite, Ilmenite, Zircon and Garnet. Different geostatistical studies such as variant, bivariant and multivariant studies have been done on rough data of heavy minerals. They showed normal concentration of gold in studied rocks and low enrichment of tin and tungsten. The index of the ore elements average, frequeney distribution criteria of elements, the ratio of elements index and multielements show that Alvand granite is barren. Mineralography studies did not recognized any tin and tungsten minerals. The grains of gold was recognized in some of the microscopic thin sections. Calcopyrotite is the most important ore mineral that is accompanied with oxides and iron carbonates. The contacts of aplite-pegmatite dikes with granitoide rocks mostly are not prolific. For recognizing Scheelite, some samples of rocks studied by ultraviolet and few Scheelite is recognized in the samples. Some alteration zone observed in this area but they are not accompany with main mineralization. Although

  15. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Science.gov (United States)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  16. Characteristics of hydrothermal alteration mineralogy and geochemistry of igneous rocks from the epithermal Co-O mine and district, Eastern Mindanao (Philippines)

    Science.gov (United States)

    Sonntag, Iris; Hagemann, Steffen

    2010-05-01

    Detailed petrographic as well as hyperspectral analyses using PIMA (Portable Infrared Mineral Analyser) and geochemical (major, trace and rare earth elements) studies were conducted on samples of the epithermal, low sulfidation Co-O mine (47,869 ounces gold produced in 2009 with an average grade of 13.3 g/t gold) and district in Eastern Mindanao (Philippines). The aims of the study were to unravel the petrogenetic origin of the various volcanic (host rocks) and intrusive rocks (potential fluid driver) as well as their relationship and influence on the hydrothermal alteration zoning and fluid chemistry. The auriferous veins at the Co-O mine were formed during two hydrothermal stages associated with the district wide D1 and D2 deformation events. Gold in stage 1 quartz veins is in equilibrium with galena and sphalerite, whereas in stage 2 it is associated with pyrite. Auriferous quartz veins of stage 1 reflect temperatures below 250° C or strong variations in pH and fO2 at higher temperatures, due to potential involvement of acidic gas or meteoric water. Cathodoluminescense studies revealed strong zonation of quartz associated with Au, presumably related to changes in the Al content, which is influenced by the pH. Plumose textures indicate times of rapid deposition, whereas saccharoidal quartz grains are related to potential calcite replacement. The geology of the Co-O mine and district is dominated by Miocene volcanic rocks (basic to intermediate flows and pyroclastics units), which are partly covered by Pliocene volcanic rocks and late Oligocene to Miocene limestones. The Miocene units are intruded by diorite (presumably Miocene in age). The epithermal mineralization event may be related to diorite intrusions. The geochemistry of all igneous rocks in the district is defined by a sub-alkaline affinity and is low to medium K in composition. Most units are related to a Miocene subduction zone with westward subduction, whereas the younger Pliocene rocks are related to

  17. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  18. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    Science.gov (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  19. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    Science.gov (United States)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    The comparative evaluation of the levels of biologically active chemical elements and their migration in the soil-plant complex of two Urov endemic locations in East Transbaikalia (Zolinsky and Uryumkansky) and background areas (Western Baikal region and the western area of the Trans-Baikal region) was conducted. The predominant soil-forming rocks in East Transbaikalia are weathering products of Proterozoic carbonated granitoids PR2. The surface rocks consist from granite, granodiorite, diorite quartz diorite, gabbro, norite, gabbro-norite and other. Soils - mountain and cryogenic meadow forests, mountain permafrost taiga podzolised, meadow alluvial, peaty meadow [2]. The paludification of narrow valleys and thermokarst phenomena are typical in Urov endemic localities. It reflects on the spotted of soil and differentiation of chemical composition of soils and plants. Most of the chemical elements in soils were determined by means of X-ray fluorescence, and trace elements in soils and plants - by atomic absorption spectrometry. The selenium content was measured by spectrofluorimetric method [3]. The research processed by methods of variation statistics. It was found that the soils of two locations of the Urov subregion of the biosphere were more enriched with iron, barium, calcium, uranium, thorium, phosphorus, and to a lesser extent strontium compared to background soils. The ratio of Ca: P was significantly higher in the soil of background areas, and Ca: Sr, on the contrary, in endemic soils. In assessing the migration of trace elements in soil-plant complex by means of the total content of trace elements and biological absorption coefficient found a marked accumulation by plants manganese, chromium, arsenic and weak plants accumulation of cobalt and nickel. Soil landscape is not much different in content of selenium, but its migration in plants was reduced in places of spread of Urov disease [1]. The concentrators of cadmium (leaves of different species of willow

  20. Natural stone muds as secondary raw materials: towards a new sustainable recovery process

    Science.gov (United States)

    Zichella, Lorena; Tori, Alice; Bellopede, Rossana; Marini, Paola

    2016-04-01

    The production of residual sludge is a topical issue, and has become essential to recover and reuse the materials, both for the economics and the environmental aspect. According to environmental EU Directives, in fact ,the stone cutting and processing should characterized by following objectives, targets and actions: the reduction of waste generated, the decreasing of use of critical raw material, the zero landfilling of sludge and decreasing in potential soil contamination, the prevention of transport of dangerous waste, the reduction of energy consumption, the zero impact on air pollution and the cost reduction . There are many industrial sector in which residual sludge have high concentrations of metals and/or elements deemed harmful and therefore hazardous waste. An important goal, for all industrial sectors, is an increase in productivity and a parallel reduction in costs. The research leads to the development of solutions with an always reduced environmental impact. The possibility to decrease the amount of required raw materials and at the same time the reduction in the amount of waste has become the aim for any industrial reality. From literature there are different approaches for the recovery of raw and secondary materials, and are often used for the purpose chemical products that separate the elements constituting the mud but at the same time make additional pollutants. The aim of the study is to find solutions that are environmentally sustainable for both industries and citizens. The present study is focused on three different Piedmont rocks: Luserna, Diorite from Traversella and Diorite from Vico, processed with three different stone machining technologies: cutting with diamond wire in quarry (blocks), in sawmill (slabs) and surface polishing. The steps are: chemical analysis, particle size analysis and mineralogical composition and characterization of the sludge obtained from the various machining operations for the recovery of the metal material by

  1. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic-ultramafic complex of Gaositai, North China Craton

    Science.gov (United States)

    Yang, Fan; Santosh, M.; Tsunogae, T.; Tang, Li; Teng, Xueming

    2017-07-01

    The suprasubduction zone mantle wedge of active convergent margins is impregnated by melts and fluids leading to the formation of a variety of magmatic and metasomatic rock suites. Here we investigate a composite mafic-ultramafic intrusion at Gaositai, in the northern margin of the North China Craton (NCC). The hornblende gabbro-serpentinite-dunite-pyroxenite-gabbro-diorite suite surrounded by hornblendites of this complex has long been considered to represent an "Alaskan-type" zoned pluton. We present petrologic, mineral chemical, geochemical and zircon U-Pb and Lu-Hf data from the various rock types from Gaositai including hornblende gabbro, serpentinite, dunite, pyroxenite, diorite and the basement hornblendite which reveal the case of multiple melt generation and melt-peridotite interaction. Our new mineral chemical data from the mafic-ultramafic suite exclude an "Alaskan-type" affinity, and the bulk geochemical features are consistent with subduction-related magmatism with enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. Zircon U-Pb geochronology reveals that the hornblendites surrounding the Gaositai complex are nearly 2 billion years older than the intrusive complex and yield early Paleoproterozoic emplacement ages (2433-2460 Ma), followed by late Paleoproterozoic metamorphism (1897 Ma). The serpentinites trace the history of a long-lived and replenished ancient sub-continental lithospheric mantle with the oldest zircon population dated as 2479 Ma and 1896 Ma, closely corresponding with the ages obtained from the basement rock, followed by Neoproterozoic and Phanerozoic zircon growth. The oldest member in the Gaositai composite intrusion is the dunite that yields emplacement age of 755 Ma, followed by pyroxenite formed through the interaction of slab melt and wedge mantle peridotite at 401 Ma. All the rock suites also carry multiple population of younger zircons ranging in age from Paleozoic to

  2. Plutonic rocks of the Median Batholith in southwest Fiordland, New Zealand : field relations, geochemistry, and correlation

    International Nuclear Information System (INIS)

    Allibone, A.H.; Turnbull, I.M.; Tulloch, A.J.; Cooper, A.F.

    2007-01-01

    This paper provides a first description of all major plutonic rock units between Resolution Island and Lake Poteriteri in southwest Fiordland. Plutonic rocks, of which c. 95% are granitoids, comprise c. 60% of the basement in southwest Fiordland. Approximately 50% of the plutonic rocks were emplaced between c. 355 and 348 Ma, 5% at c. 164 Ma, 25% between c. 140 and 125 Ma, and 20% between c. 125 and 110 Ma. These episodes of plutonism occurred in response to terrane amalgamation, continental thickening, and subduction along the convergent margin of Gondwana. Correlatives of Devonian plutonic rocks which occur in Nelson are absent from the area described here. A wide variety of plutonic rocks were emplaced at c. 355-348 Ma. These include relatively small plutons of K- and Rb-rich gabbro-diorite and members of at least three distinct suites of granitoids. Plutons of two-mica ± garnet granodiorite, granite, and minor tonalite share affinities with the S-type Ridge Suite and are the most widespread c. 355-348 Ma old granitoids in southern Fiordland. Plutons rich in Ca, Fe and Zr, depleted in K and Na, and containing quartz diorite, tonalite, and minor granodiorite with the unusual assemblage red-brown biotite, garnet ± hornblende ± clinopyroxene also occur widely in southern Fiordland. These plutons are similar to peraluminous A-type granitoids, indicating A as well as I and S-type plutonism occurred in the Western Province at this time. The Newton River and Mt Evans Plutons have no correlatives amongst c. 355-348 Ma granitoids in southern Fiordland, but their chemistry is similar to that of the older Karamea Suite. Three regional-scale metasedimentary units - locally fossiliferous Fanny Bay Group Buller Terrane rocks in southern Fiordland, Edgecumbe and Cameron Group Takaka Terrane rocks in south-central Fiordland, and undifferentiated Deep Cove Gneiss high-grade metasedimentary rocks of western Fiordland - are all stitched by c. 355-348 Ma old plutons, indicating

  3. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    Science.gov (United States)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  4. Fluid and heat transport at the Torres del Paine laccolith (Patagonia/Chile)

    International Nuclear Information System (INIS)

    Putliz, B; Baumgartner, L.P; Oberhansli, R; Diamond, L; Altenberger, U

    2001-01-01

    The 12 Ma old Torres del Paine laccolith (TPL) is part of a chain of isolated Miocene plutons and subvolcanic rocks which intruded the foothills of the southern Andes of Chile and Argentina (Halpern, 1973; Michael, 1984). The 12x12 km big laccolith, an I-type granite, intruded mudstones, sandstones, carbonates and conglomerates of the Cretaceous Cerro Torre and Punta Barrosa formation (Wilson, 1991) creating a well defined, but small contact aureole of 200-400m width. The TPL contains abundant textural evidence of fluid exsolution and eutectic crystallisation. It hence represents a good example for the transport of large quantities of magmatic aqueous fluids to the uppermost level of the crust. The pluton is well exposed and its rugged topography allows the investigation of the roof, the lateral rims and the base of the intrusion. Field and textural observations, phase petrological constraints, oxygen isotope and fluid inclusion data are used to unravel mechanism and patterns of fluid and heat transport in the intrusion and the contact aureole. The Torres del Paine Intrusives form a calcalkaline suite, ranging from gabbros through diorites to leucogranites. The intrusive body has the general shape of a laccolith (Skarmeta and Castelli, 1997). Gabbroic and dioritic rocks are only exposed at the lower levels. Granites are clearly predominant - the main body of the laccolith is composed of a fine to medium grained biotite-orthoclase granite. The TPL is remarkable for its abundance of miarolitic cavities. Locally, at the margins of the pluton, a microgranitic phase is found with up to 15% of cavities. While some miaroles are isolated, others are interconnected, forming tube-like structures. Open miaroles contain euhedral crystals of quartz and feldspar. Other important phases are biotite, tourmaline, fayalite and late chlorite and carbonate. Individual crystals are typically between < 1cm up to a few cm in length. Some miaroles are completely filled with coarse quartz

  5. Geochemical Characteristics on NW of Ladakh Batholith region exposed in the Western part of Leh area around Trans- Himalayan Belt, NW (India)

    Science.gov (United States)

    Mirza, A., IV; Ilbeyli, N.

    2017-12-01

    The geochemical characteristics (major & trace elements including REE) are studied on the granitic rocks from NW of Ladakh batholith region that emplaced in the western part of Leh area around the Trans- Himalaya of Ladakh district, Jammu & Kashmir (NW India). The major element geochemistry reveals that these granitic rocks display a broad spectrum of SiO2 content (54.50 wt%- 75.80 wt%). The oxide of K2O, Al2O3, MgO & Fe2O3 shows negative correlation with SiO2 probably shows the fractionation of biotite during the process of crystallization. The oxide of CaO & TiO2 shows positive correlation that coupled with their negative correlation with SiO2 most probably reflects the fractionation of Sphene (CaTiSiO5). The fractionation of apatite is also indicated by the positive correlation with CaO & P2O5 and their negative correlation with SiO2. The classified diagram between Molar Al2O3/ (CaO+Na2O+K2O) vs Molar Al2O3/ (Na2O+K2O) shows that all samples covered peraluminous region. The total alkali diagram of (Na2O+K2O) wt% vs SiO2 (wt %) shows that all samples covered the region of granite, quartz diorite & diorite. The samples plot between K2O (wt %) vs SiO2 (wt %) shows high to medium -K (calc-alkaline) series. All these intrusive rock shows enrichment in LILE (K, Rb, Ba, & Th) and LREE (Ce) relative to the HFSE (Ta, Nb, Hf, Zr, Sm, Y, & Yb). The Chondrite- normalized REE patterns for the studied granitic rocks such as LREE & MREE and HREE's are moderately fractionated & have moderate negative Eu anomalies. In the Nb Vs Y and Rb- (Y+Nb) diagrams, all intrusive rocks fall into the VAG (volcanic- arc granite) field in order to characterize tectonic environment for the granitic rocks. The Al2O3/TiO2 vs CaO/Na2O diagram & Rb/Ba vs Rb/Sr plots are used for identifying the source of melts parental to peraluminous granites. The variations that observed in granitoid are not only by partial melting but also depend on various processes like migration of melts, magma mixing

  6. High magnetic susceptibility granodiorite as a source of surface magnetic anomalies in the King George Island, Antarctica

    Science.gov (United States)

    Kon, S.; Nakamura, N.; Funaki, M.; Sakanaka, S.

    2012-12-01

    Change in plate motion produces convergence of the two oceanic lithospheres and the formation of volcanic island arcs above the subducted older and thicker plate. The association of calc-alkaline diorites to tonalites and granodiorites (ACG) is typical plutonic rocks of the volcanic arcs. In the many island arcs that surround the Pacific Ocean, ACG generally forms shallow level plutons and is closely associated with volcanic rocks. The Japan Arc setting had occurred the emplacement of the highly magnetic granitoid along the fore-arc basin before back-arc spreading at middle Miocene, showing a linear positive magnetic anomaly. Similar magnetic anomalies have also been exhibited along the Circum-Pacific Belt. Along East Antarctica, it is well known that the South Shetland Islands have been formed by back-arc spreading related to the subduction along the South Shetland trench during the late Cretaceous and middle Miocene. Moreover, geology in the South Shetland Islands consists of lava flows with subordinate pyroclastic deposits, intrusive dykes-sills, granitic plutons, displaying a typical subduction-related calc-alkaline volcanic association. However, there is little report on the presence of fore-arc granitoid. Here we report the distribution and structure of the granitic plutons around Marian Cove in the King George Island, South Shetland, East Antarctica by surface geological survey and magnetic anisotropic studies. Then we compare the distribution of granitic plutons with surface magnetic anomalies through our ship-borne and foot-borne magnetic surveys. The granitic plutons are distributed only shallow around the Marian cove in the King George Island, and the plutons had been intruded in the Sejong formation with pyroclastic deposits and basaltic/rhyoritic lavas, suggesting the post back-arc spreading. We sampled 8 plutons, 12 basaltic lavas and 6 andestic dykes, all located within four kilometer radius from the Korean Antarctic research station (King Sejong

  7. Coeval interaction between magmas of contrasting composition (Late Carboniferous-Early Permian Santa Eulália-Monforte massif, Ossa-Morena Zone): field relations and geochronological constraints

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M.F.; Gama, C.; Rodríguez, C.

    2017-07-01

    The Santa Eulália-Monforte massif is a post-kinematic Late Carboniferous-Early Permian calc-alkaline composite massif (LC-EP) located in the Ossa-Morena Zone (OMZ, Portugal). This paper examines the field relationships between pinkish granites and mafic-intermediate rocks from the external ring of this massif and presents new U-Pb zircon age determinations. The estimated 206Pb/238U ages, 297±4Ma for the pinkish granite and 303±3Ma for a gabbro-diorite point to a short time interval between the crystallization of both magmas. At outcrop scale, contacts of the mafic-intermediate rocks with the host pinkish granite are sharp and corroborate this age relationship, but do not justify why the host-enclave contacts often has curved and irregular shapes, indicating liquid-liquid interaction. A full analysis of the distribution of U-Pb zircon ages and respective Th/U ratios suggests that the compositionally distinct magmas were roughly contemporaneous. The obtained ages also fit the LC-EP Iberian calc-alkaline suite that was formed contemporaneously to the development of the Iberian-Armorican Arc and when the Paleotethyan oceanic Plate subducted under the Eurasian active margin. Taking this geodynamic setting as a reference, the LC-EP Iberian calc-alkaline magmatism can be interpreted as most probably related to the Cimmerian cycle instead of the traditionally accepted model that ascribe a closer connection of this magmatism with the Variscan cycle. The Santa Eulália-Monforte massif is a post-kinematic Late Carboniferous-Early Permian calc-alkaline composite massif (LC-EP) located in the Ossa-Morena Zone (OMZ, Portugal). This paper examines the field relationships between pinkish granites and mafic-intermediate rocks from the external ring of this massif and presents new U-Pb zircon age determinations. The estimated 206Pb/238U ages, 297±4Ma for the pinkish granite and 303±3Ma for a gabbro-diorite point to a short time interval between the crystallization of both

  8. Preliminary Geologic Map of the San Fernando 7.5' Quadrangle, Southern California: A Digital Database

    Science.gov (United States)

    Yerkes, R.F.

    1997-01-01

    . The San Fernando area lies on the southern slopes of the San Gabriel Mountains. The basement rocks here include high-grade metamorphic rocks of Precambrian age. The mountains are largely composed of crystalline basement that includes the Pelona Scist of probable Mesozoic age that has been overthrust by Precambrian gneisses; the gneisses were subsequently intruded by Mesozoic plutons prior to overthrusting along the latest Cretaceous Vincent thrust. Gneisses of somewhat variable composition and possibly varying ages are found in four terranes, but not all are in contact with Pelona Schist. Large tracts of Precambrian (1.2 billion years old) andesine anorthosite are intrusive into 1.7 billion year-old Mendenhall gneiss, and are found in the western part of the San Gabriels. Mixed with these are younger marble, limestone, and schist of possible Paleozoic age found in association with plutons along the southern margin of the range. The older rocks are intruded by diorite, quartz diorite, and granodiorite of Jurassic age. Also present are siliceous sedimentary rocks of Jurassic age. A thick section of Tertiary sedimentary and volcanic rocks overlie these units. The sediments located south of the San Gabriel Fault are totally different in character from those on the northern range flank, and mostly resemble the western Transverse Ranges due to their deposition in the southeastern Ventura basin; approximately 3,000 m of these sediments are exposed north and west of the city of San Fernando in the Tujunga syncline. Some of the Tertiary rocks are Paleocene and Eocene in age, but the bulk of these rocks are Oligocene and Miocene in age. The Vasquez and Sespe Formations of basal basaltic volcanic and sandstone are Oligocene and lower Miocene in age. These are overlain by clastic rocks of Tick Canyon and Mint Canyon Formations of middle to late Miocene age. Above these rocks are the Castaic, Modelo, and Santa Margarita Formations of fossiliferous marine shale, sand

  9. Coeval interaction between magmas of contrasting composition (Late Carboniferous-Early Permian Santa Eulália-Monforte massif, Ossa-Morena Zone): field relations and geochronological constraints

    International Nuclear Information System (INIS)

    Pereira, M.F.; Gama, C.; Rodríguez, C.

    2017-01-01

    The Santa Eulália-Monforte massif is a post-kinematic Late Carboniferous-Early Permian calc-alkaline composite massif (LC-EP) located in the Ossa-Morena Zone (OMZ, Portugal). This paper examines the field relationships between pinkish granites and mafic-intermediate rocks from the external ring of this massif and presents new U-Pb zircon age determinations. The estimated 206Pb/238U ages, 297±4Ma for the pinkish granite and 303±3Ma for a gabbro-diorite point to a short time interval between the crystallization of both magmas. At outcrop scale, contacts of the mafic-intermediate rocks with the host pinkish granite are sharp and corroborate this age relationship, but do not justify why the host-enclave contacts often has curved and irregular shapes, indicating liquid-liquid interaction. A full analysis of the distribution of U-Pb zircon ages and respective Th/U ratios suggests that the compositionally distinct magmas were roughly contemporaneous. The obtained ages also fit the LC-EP Iberian calc-alkaline suite that was formed contemporaneously to the development of the Iberian-Armorican Arc and when the Paleotethyan oceanic Plate subducted under the Eurasian active margin. Taking this geodynamic setting as a reference, the LC-EP Iberian calc-alkaline magmatism can be interpreted as most probably related to the Cimmerian cycle instead of the traditionally accepted model that ascribe a closer connection of this magmatism with the Variscan cycle. The Santa Eulália-Monforte massif is a post-kinematic Late Carboniferous-Early Permian calc-alkaline composite massif (LC-EP) located in the Ossa-Morena Zone (OMZ, Portugal). This paper examines the field relationships between pinkish granites and mafic-intermediate rocks from the external ring of this massif and presents new U-Pb zircon age determinations. The estimated 206Pb/238U ages, 297±4Ma for the pinkish granite and 303±3Ma for a gabbro-diorite point to a short time interval between the crystallization of both

  10. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    Science.gov (United States)

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in

  11. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia

    Science.gov (United States)

    Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang

    2018-05-01

    The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs

  12. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  13. Petrology and geochemistry of the orbicular granitoid of Caldera, northern Chile. Models and hypotheses on the formation of radial orbicular textures

    Science.gov (United States)

    Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo

    2017-07-01

    The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and

  14. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    Science.gov (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  15. Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity

    Science.gov (United States)

    Allison, Kali L.; Dunham, Eric M.

    2018-05-01

    We simulate earthquake cycles with rate-and-state fault friction and off-fault power-law viscoelasticity for the classic 2D antiplane shear problem of a vertical, strike-slip plate boundary fault. We investigate the interaction between fault slip and bulk viscous flow with experimentally-based flow laws for quartz-diorite and olivine for the crust and mantle, respectively. Simulations using three linear geotherms (dT/dz = 20, 25, and 30 K/km) produce different deformation styles at depth, ranging from significant interseismic fault creep to purely bulk viscous flow. However, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. Despite these similarities, variations in the predicted surface deformation might permit discrimination of the deformation mechanism using geodetic observations. Additionally, in the 25 and 30 K/km simulations, the crust drags the mantle; the 20 K/km simulation also predicts this, except within 10 km of the fault where the reverse occurs. However, basal tractions play a minor role in the overall force balance of the lithosphere, at least for the flow laws used in our study. Therefore, the depth-integrated stress on the fault is balanced primarily by shear stress on vertical, fault-parallel planes. Because strain rates are higher directly below the fault than far from it, stresses are also higher. Thus, the upper crust far from the fault bears a substantial part of the tectonic load, resulting in unrealistically high stresses. In the real Earth, this might lead to distributed plastic deformation or formation of subparallel faults. Alternatively, fault pore pressures in excess of hydrostatic and/or weakening mechanisms such as grain size reduction and thermo-mechanical coupling could lower the strength of the ductile fault root in the lower crust and, concomitantly, off-fault upper crustal stresses.

  16. The intra-oceanic Cretaceous (~ 108 Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure

    Science.gov (United States)

    Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon

    2016-09-01

    The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* 3000 km continuity of Cretaceous arc activity (Oman to Cyprus), that consumed Neotethyian oceanic crust between Eurasia and the Gondwanan fragment Arabia.

  17. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    Science.gov (United States)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  18. Record of Permian-Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: petrogenesis and implications for Paleo-Pacific subduction

    Science.gov (United States)

    Yang, Hao; Ge, Wenchun; Dong, Yu; Bi, Junhui; Wang, Zhihui; Ji, Zheng; Yang, H.; Ge, W. C.; Dong, Y.; Bi, J. H.; Wang, Z. H.; Ji, Z.

    2017-09-01

    In this paper, we report zircon U-Pb ages, Hf isotopes and whole-rock geochemical data for the Permian to Early Triassic granitoids from the western margin of the Jiamusi Block (WJB), NE China. The intermediate to felsic (SiO2 = 59.67-74.04 wt%) granitoids belong to calc-alkaline series and are characterized by enrichments in light rare earth elements and large ion lithophile elements with pronounced negative Nb, Ta and Ti anomalies, revealing typical continental magmatic arc geochemical signatures. The zircon U-Pb determinations on the granodiorite, monzogranite, syenogranite and quartz diorite samples yielded ages between ca. 275-245 Ma, which, together with the published coeval intrusive rocks, indicates that Permian to Early Triassic continental arc magmatism occurred extensively in the WJB. The low and mainly negative zircon ɛ Hf( t) values between -7.6 and +1.6 and the zircon Hf model ages of 1.2-1.8 Ga, which are significantly older than their crystallization ages, suggest that they were mainly derived from reworking of ancient crustal materials with a limited input of juvenile components. The geochemical systematics and petrogenetic considerations indicate that the studied granitoids were generated from a zone of melting, assimilation, storage, and homogenization, i.e., a MASHed zone at the base of Paleo- to Mesoproterozoic continental crust, where large portions of igneous rocks and minor clay-poor sediments involved in the source region. In combination with regional geological data, we argue that the Jiamusi Block was unlikely the rifted segment of the Songliao Block and two possible geodynamical models were proposed to interpret the formation of the ca. 275-245 Ma granitoids in the WJB. In the context of Permian global plate reconstruction, we suggest that Paleo-Pacific plate subduction was initiated in the Permian to Early Triassic beneath the Jiamusi Block, and even whole eastern NE China.

  19. Maurim intrusive suite: a calc-alkacic batholite zoned of catarinense shield

    International Nuclear Information System (INIS)

    Wildner, W.; Ramgrab, G.E.; Zanini, L.F.P.; Branco, P.M.; Camozzato, E.

    1990-01-01

    The geological survey of the Florianopolis Sheet (SG.22-Z-D-V) identified and characterized a calc-alkacic multi-intrusive and polydiapiric suite that occurs as a granitic batholite roughly concentric in texture and composition. This co-magmatic plutonic sequence is intrusive in the granite-gneissic basement of amphibolite facies, with which it was formerly confounded. The initial magmatic terms, put-in-place at the marginal portions of the batholite, are represented by quartz-diorites and tonalites (Forquilha Tonalites), followed by granodiorites (alto da Varginha Granodiorite), granodiorites to monzonites (Rio das Antas Granite) and completed by an inner portions of porphyritic monzonites (Sao Pedro de Alcantara Granite). The identifications of the compositional zoning that results from the development of the magmatic chamber is based on the examination of 74 rock samples that were analysed for major and minor oxides and trace elements (Ba, F, Li, Mo, Sn, W, Y, Rb, Nb, Zr and Sr). The treatment of these data shows the portions where mantle fractions predominate as well as the others where crustal meltings dominate, what demonstrates an origin by in situ differentiation processes, fractioning and different degrees of magmatic mixing. Geochronologic dating by Rb/Sr, K/Ar and U/Pb methods show isochronic and conventional ages of 600 to 700 m.y. that roughly are in accord with the temporal progress towards the younger felsic phases, putting this suite in the Upper Proterozoic age. The initial Sr sup(87) / Sr sup(86) ratios, around 0.710, point to a crustal origin with variable mantle contribution to these rocks. (author)

  20. Geochemical Relationships between Volcanic and Plutonic Upper to Mid Crustal Exposures of the Rosario Segment, Alisitos Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.

    2015-12-01

    Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.

  1. Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: Geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes

    Directory of Open Access Journals (Sweden)

    Sen Wang

    2017-05-01

    Full Text Available The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basic-intermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases and NW-trending (mainly diabasic diorites dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with εHf (t values of −8.90 to 7.49 and −23.39 to −7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma, respectively. Geochemically these rocks are characterized by low TiO2 (0.91–1.73 wt.% and MgO (3.04–7.96 wt.%, and high Al2O3 (12.5–16.60 wt.% and K2O (0.60–3.63 wt.%. Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K, but depleted in HFSEs (Nb, Ta and Zr. The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional environment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.

  2. Geochemistry and tectonic implications of the Early Carboniferous Keketuobie intrusion in the West Junggar foldbelt, NW China

    Science.gov (United States)

    Deng, Yu-Feng; Yuan, Feng; Zhou, Taofa; Hollings, Pete; Zhang, Dayu

    2018-06-01

    The Keketuobie intrusion is situated in the northern part of the West Junggar foldbelt at the southern margin of the Central Asian Orogeic Belt. The intrusion consists of medium- to coarse-grained gabbro, fine-grained gabbro and diorite. Igneous zircons from the medium- to coarse-grained gabbro yielded a LA-ICP-MS U-Pb age of 320.8 ± 5.7 Ma, indicating that the intrusion was emplaced in the Early Carboniferous. The intrusive contact between the medium- to coarse-grained gabbro and the fine-grained gabbro indicates they formed from distinct magma pulses. Magnetite crystals from the fine-grained gabbro have lower V2O3 but higher TiO2 and Al2O3 contents than those of the medium- to coarse-grained gabbro, suggesting that the fine-grained gabbro crystallized in a relatively higher fO2 and temperature magma than the medium- to coarse-grained gabbro. The Keketuobie intrusive rocks are characterized by enriched large ion lithophile elements and depleted high field strength elements relative to N-MORB with restricted (87Sr/86Sr)t ratios (0.70370-0.70400) and εNd(t) values (+5.85 to +6.97). The petrography and geochemistry are comparable to those of subduction-related volcanic rocks. The trace elements and isotopic compositions of the mafic intrusive rocks suggest that the primary magmas were derived from mixing of metasomatized lithospheric mantle and depleted asthenospheric melts, perhaps triggered by slab break-off. The Keketuobie intrusion is younger than adjacent ophiolite sequences, island arc volcanic rocks and porphyry deposits, but predates the post-collisional A-type granites and bimodal volcanic rocks in the district, suggesting that the Keketuobie intrusion likely formed in a syn-collisional setting.

  3. Ground magnetic exploration for radioactive minerals in Missikat area eastern desert of Egypt

    International Nuclear Information System (INIS)

    Sadek, H.S.; Soliman, S.A.; Abdelhady, H.M.; Elsayed, H.I.

    1988-01-01

    The airborne radiometric surveys and subsequent geological investigations proved the occurrence of uranium mineralization in jasperoid vein which cuts across the pink granites of Gebel El Missikat. The Missikat granites are intruded in older granodiorite and diorite exposures where the whole system is intersected by a system of faults and sheers. The relationship between the different structures and the origin of mineralization is not yet understood. The present study is the first step in a systematic approach of subsurface geophysical exploration for the mineral deposits. Ground magnetic survey was conducted along more than 25 lines across the jasperoid vein and separated at 50m while the magnetic measurements were taken at stations spaced 20m apart. The collected data has been reduced and analysed automatically using appropriate advanced software. The interpretation of the resultant magnetic contour map and profiles reveals the subsurface configuration of the different lithologic units in the area. Most of the granodiorites, exposed due west, are just roof pendants where they are underlain by the Missikat granite pluton. In addition it was possible to map the subsurface contacts between the granites and other geologic units beneath the Wadi Alluvium. The structural interpretation of magnetic data succeeded to distinguish additional fault lines and shear zones in the area. In this respect, a system of NE shears parallel to the mineralized vein, was distinguished by the associated weak magnetic anomalies. The anomalies resulting from the vein and shears suggest wider repetition of the mineralization and in addition, they can be used to distinguish the locations of increasing mineral potential in depth. Such locations are recommended for further geophysical exploration using more effective, however, expensive methods such as induced polarization (IP), self potential (SP) and miseala mass. The recommended exploration can be used for precise determination of the

  4. Geology, alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand

    Directory of Open Access Journals (Sweden)

    Maryam Abdi

    2012-04-01

    Full Text Available The Kuh Shah prospecting area is located in Tertiary volcano-plutonic belt of the Lut Block. More than seventeen subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, were identified in the study area. The intrusions are related to hydrothermal alteration zones and contain argillic, propylitic, advanced argillic, silicified, quartz-sericite-pyrite, gossan and hydrothermal breccia which overprinted to each other and are accompanied by weathering which made it complicated to distinguish zoning. Mineralization is observed as sulfide (pyrite and rare chalcopyrite, disseminated Fe-oxides and quartz-Fe-oxide stockwork veinlets. Intrusive rocks are metaluminous, calc-alkaline with shoshonitic affinity with high values of magnetic susceptibility. The Kuh Shah intrusive rocks are classified as magnetite-series of oxidant I-type granitoids. Based on zircon U–Pb age dating, the age of these granitoid rocks is 39.7± 0.7 Ma (Middle Eocene. The radioisotope data (initial 87Sr/86Sr and 143Nd/144Nd ratios as well as εNd and geochemical data suggest that the Kuh Shah granitoid rocks formed from depleted mantle in a subduction-related magmatic arc setting. Geochemical anomalies of elements such as Cu, Au, Fe, Pb, Zn, As, Sb, Mo, Bi, Hg and also Mn, Ba, Te and Se, correlated with quartz-sericite-pyrite, gossan-stockwork-hydrothermal breccias, irregular silicified bodies and advanced argillic hydrothermal alteration zones. Geophysical anomalies correlated with hydrothermal alteration and mineralization zones. The interpretation of the results represents complex patterns of sub-circular to ellipsoid shape with north-east to south-west direction. These evidences are similar to the other for known Cu-Au porphyry and Au-epithermal systems in Iran and worldwide.

  5. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    Science.gov (United States)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  6. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    Science.gov (United States)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2017-02-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  7. Zircon U-Pb dating of Maherabad porphyry copper-gold prospect area: evidence for a late Eocene porphyry-related metallogenic epoch in east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2011-04-01

    Full Text Available Eastern Iran has great potential for porphyry copper deposits, as a result of its past subduction zone tectonic setting that lead to extensive alkaline to calc-alkaline magmatic activity in Tertiary time. Maherabad is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. This is related to a succession o f monzonitic to dioritic porphyries stocks that were emplaced within volcanic rocks. Monzonitic porphyries have basic role in mineralization. Hydrothermal alteration zones are well developed including potassic, sericitic-potassic, quartz-sericite-carbonate-pyrite, quartz-carbonate-pyrite, silicified-propylitic, propylitic, carbonate and silicified zones. Mineralization occurs as Disseminated, stockwork and hydrothermal breccia. Based on early stage of exploration, Cu is between 179- 6830 ppm (ave. 3200 ppm and Au is up to 1000 ppb (ave. 570 ppb. This prospect is gold- rich porphyry copper deposit. Laser-ablation U-Pb dating of two samples from ore-related intrusive rocks indicate that these two monzonitic porphyries crystallized at 39.0 ± 0.8 Ma to 38.2 ± 0.8 Ma, within a short time span of less than ca. 1 Ma during the middle Eocene. This provides the first precise ages for metallogenic episode of porphyry-type mineralization. Also, the initial 87Sr/86Sr and (143Nd/144Ndi was recalculated to an age of 39 Ma. Initial 87Sr/86Sr ratios for monzonitic rocks are 0.7047-0.7048. The (143Nd/144Ndi isotope composition are 0.512694-0.512713. Initial ε Nd isotope values 1.45-1.81. Based on isotopic data the magma had originated beyond the continental crust. The study will be used for tectonic-magmatic setting and evolution of eastern Iran. Keywords: Lut block, Middle Eocene, Zircon, Geochronology, Laser ablation ICP-MS,

  8. The study of hydrothermal alteration zones in Kahang exploration area (north eastern of Isfahan, central of Iran) using microscopy studies and TM and Aster satellite data

    Science.gov (United States)

    Zahra Afshooni, Seyedeh; Esmaeily, Dariush

    2010-05-01

    Kahang ore deposit located in 73 km to the northeast of Isfahan city and 10 km to the east of Zefreh town, covering an area about 18.6 km2. This ore deposit is a part of Uromieh-Dokhtar volcanopolotonic belt. The rocks of the area included Andesite, Porphyritic Andesite, Dacite, Porphyritic, Rhyodacite, Diorite, Quartz Monzonite and Porphyry Micro Granite. In plutons, there is a trend from basic to acid features along with decreasing of age from margin to center of massive. Kahang region is an alteration and breccia zone. The occurrence of alteration zones and iron oxides were confirmed by satellite images processing. Generally, more than 90% of rocks of this region have been affected by hydrothermal fluids. Remote sensing refers to detection and measurement from a distance. For the first time, this exploration area was studied using satellite images processing (TM) and primary results showed that is suitable place for resources of Copper (Cu) and Molybdenum (Mo). Hydrothermal alteration commonly occurs in geothermal areas in association with ore deposits producing alteration assemblages typically dominated by silicates, sulfides, sulfates and carbonates. In the alteration zones studies the subject discussed is the study of existing minerals in such zones and study of chemical specifications of altering fluids. Four alteration zones Based on observations derived from the study of thin sections, XRD analysis and deep remote sensing using TM and Aster satellite images studies could be identified in this area: propylitic alteration zone with chlorite, epidot, calcite; argillic alteration zone with clay minerals; phyllic (qartz-sericite) alteration zone with quartz, sericite and pyrite and silicic alteration zone with abundant quartz.

  9. Karakteristik mineralisasi epitermal di Daerah Taran, Hulu Kahayan, Kalimantan Tengah berdasarkan studi mikroskopis, X-Ray Diffraction (XRD, dan inklusi fluida

    Directory of Open Access Journals (Sweden)

    Danny Zulkifli Herman

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol1no3.20064Taran area is occupied predominantly by piroclastic rocks and locally intercalations of lenticular claystones and sandstones. The pyroclastic rocks are intruded by diorite, dacite and andesite, leading alteration and mineralization within the host rocks. Mineralization occurs as a vein type and is associated with a number of pervasive alteration types named respectively: quartz-illite- montmorillonite-kaolinite ± pyrite, quartz-illite ± pyrite, quartz-illite-chlorite ± pyrite and quartz- kaolinite-illite ± pyrite. On the other hand, a propylitic alteration also occurs within the andesite intrusion composed of calcite-epidote-chlorite-sericite-quartz ± pyrite. The mineralization is characterized by several zones of quartz stockwork containing gold and associated ore minerals of chalcopyrite, sphalerite, galena, pyrite and argentite. The quartz veins occurs as fi llings of structural openings in the form of milky quartz and amethyst with textures of sugary, comb, and dogteeth. Evaluation work on results of microscopic (petrography and mineragraphy, X-Ray Diffraction (XRD, and fl uid inclusion studies, and chemical analysis of entirely altered rock/quartz vein samples shows that the alteration and mineralization process were closely related to a change of hydrothermal fl uids, from near neutral into acid conditions at a temperature range of >290o – 100oC. The appearances of quartz variation indicate a relationship with repeated episodes of boiling in an epithermal system, as ground water mixed with hot vapor originated from a remained post-magmatic solution. Corresponding to a salinity of average 1,388 equiv.wt.% NaCl, it indicates that the ore minerals bearing quartz veins were deposited at a depth range of 640 – 1020 m beneath paleosurface.  

  10. The graphite deposit at Borrowdale (UK): A catastrophic mineralizing event associated with Ordovician magmatism

    Science.gov (United States)

    Ortega, L.; Millward, D.; Luque, F. J.; Barrenechea, J. F.; Beyssac, O.; Huizenga, J.-M.; Rodas, M.; Clarke, S. M.

    2010-04-01

    The volcanic-hosted graphite deposit at Borrowdale in Cumbria, UK, was formed through precipitation from C-O-H fluids. The δ 13C data indicate that carbon was incorporated into the mineralizing fluids by assimilation of carbonaceous metapelites of the Skiddaw Group by andesite magmas of the Borrowdale Volcanic Group. The graphite mineralization occurred as the fluids migrated upwards through normal conjugate fractures forming the main subvertical pipe-like bodies. The mineralizing fluids evolved from CO 2-CH 4-H 2O mixtures (XCO 2 = 0.6-0.8) to CH 4-H 2O mixtures. Coevally with graphite deposition, the andesite and dioritic wall rocks adjacent to the veins were intensely hydrothermally altered to a propylitic assemblage. The initial graphite precipitation was probably triggered by the earliest hydration reactions in the volcanic host rocks. During the main mineralization stage, graphite precipitated along the pipe-like bodies due to CO 2 → C + O 2. This agrees with the isotopic data which indicate that the first graphite morphologies crystallizing from the fluid (cryptocrystalline aggregates) are isotopically lighter than those crystallizing later (flakes). Late chlorite-graphite veins were formed from CH 4-enriched fluids following the reaction CH 4 + O 2 → C + 2H 2O, producing the successive precipitation of isotopically lighter graphite morphologies. Thus, as mineralization proceeded, water-generating reactions were involved in graphite precipitation, further favouring the propylitic alteration. The structural features of the pipe-like mineralized bodies as well as the isotopic homogeneity of graphite suggest that the mineralization occurred in a very short period of time.

  11. Geology, alteration, mineralization and geochemical study in Kalateh Taimour area, NE Iran

    Directory of Open Access Journals (Sweden)

    Zahra Alaminia

    2010-11-01

    Full Text Available The area is located 20 km northwest of Kashmar and about 4 km of Kalateh Taimour in Khorasan Razavi province. The study area is part of Tertiary volcanic-plutonic belt north of Daruneh fault and its situation in tectonic inliers between two important active faults, Doruneh and Taknar. Volcanic rocks are mainly intermediate to acid pyroclastic type. They formed during early Tertiary. The volcanic rocks of the Kalateh Taimour area are predominantly andesitic basalt, andesite, latite, trachyte, dacite and rhyodacite and are observed as lava, tuff, lapilli tuff and agglomerate. Field evidences and study show several subvolcanic bodies including quartz hornblende biotite monzodiorite porphyry, quartz biotite monzodiorite porphyry, quartz diorite porphyry and microdiorite which are intruded sometime in mid-Tertiary. In this belt, new methods of image processing were used for enhancing the alteration zones to help near infra red and short wavelength infrared and bands example band ratios and principle component method. Propylitic, sericitic and argillic are the main alteration types. Minor silicification is found in some areas. Alteration is extent but mineralization is limited. Mineralization is mainly controlled by fault system. Several mineralized faults are being discovered. Open space filling features are abundant. In the study area, disseminate and stock work mineralization are abundant. The amount of sulfide minerals is very small. Ancient mining is present in the area. Stream sediment geochemical study shows a very broad and high level of gold anomaly. Rock geochemical study show very high levels of Au, Ag, Cu, Pb, Zn and Au value is correlative to Cu, Pb, Zn and Ag values. Due to alteration modeling, non uniformity in mineralization and low abundance of sulfide mineralization suggest study in low sulphidation Au-Cu deposit.

  12. Mineralogy of the epithermal precious and base metal deposit Banská Hodruša at the Rozália Mine (Slovakia)

    Science.gov (United States)

    Kubač, Alexander; Chovan, Martin; Koděra, Peter; Kyle, J. Richard; Žitňan, Peter; Lexa, Jaroslav; Vojtko, Rastislav

    2018-03-01

    The Au-Ag-Pb-Zn-Cu epithermal deposit Banská Hodruša of intermediate-sulphidation type is located in the Middle Miocene Štiavnica stratovolcano on the inner side of the Carpathian arc in Slovakia. This deposit represents an unusual subhorizontal multi-stage vein system, related to processes of underground cauldron subsidence and exhumation of a subvolcanic granodiorite pluton. Veins are developed on a low-angle normal shear zone, possibly representing a detachment zone in andesitic wall rocks that formed during emplacement and exhumation of the granodiorite pluton. The deposit consists of two parts, separated by a thick sill of quartz-diorite porphyry. The eastern part is currently mined, and the western part has already been depleted. The Banská Hodruša mineralization was formed during four stages: (1) low-grade silicified breccia at subhorizontal structures at the base of the deposit; (2) stockwork of steep veins with rhodonite-rhodochrosite, quartz-sulphide-carbonate and quartz-gold assemblages; (3) thin quartz-gold veins with medium dip in tension cracks inside the shear zone and complementary detachment hosted quartz-base metals-gold veins; (4) Post-ore veins. Gold and electrum (920-730) occur as intergrowths with base metal sulphides or hosted in quartz and carbonates, accompanied by Au-Ag tellurides (hessite, petzite). Rare Te-polybasite and Cu-cervelleite result from re-equilibration of early Te-bearing minerals during cooling. Sulphide minerals include low Fe sphalerite ( 1.25 wt%), galena, chalcopyrite, and pyrite. The wall rock alteration is represented mostly by adularia, illite, chlorite, quartz, calcite and pyrite. Precipitation of gold, Au-Ag tellurides, Mn-bearing minerals and adularia resulted from boiling of fluids due to hydraulic fracturing, as well as opening of dilatational structures within the shear zone.

  13. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization

    Science.gov (United States)

    Pati, J. K.; Reimold, W. U.; Greshake, A.; Schmitt, R. T.; Koeberl, C.; Pati, P.; Prakash, K.

    2015-05-01

    Pseudotachylitic breccia (PTB) occurs in a drill core from the crater floor of the 11 km diameter, Proterozoic Dhala impact structure, India. PTBs were intersected in late Archean granitoids between 348.15 m and 502.55 m depth in the MCB-10 drill core from the center of the Dhala structure. The breccias comprise both cataclastic-matrix as well as melt breccias. The presence of microlites and vesicles in the groundmass and a widely observed flow fabric in the PTB support the presence of melt in the groundmass of some samples. Clasts in PTB are derived from the Archean granitoid basement. PTB matrix, the matrix of impact melt breccia also occurring between 256.50 m and 502.55 m depth, and the target granitoids vary in terms of silica, total alkali, magnesium and iron oxide contents. Chondrite-normalized REE patterns of PTB and target granitoids are similar, but the elemental abundances in the PTB are lower. The restricted size of PTB as veins and pods of up to 2.5 cm width, their occurrence at varied depths over a core length of 150 m, the clast population, and the chemical relationships between PTB and their host rocks all suggest the derivation of these breccias locally from the fractured basement granitoids involving in-situ melting. We favor that this took place due to rapid decompression during the collapse and modification stage of impact cratering, with, locally, additional energy input from frictional heating. Locally, amphibolite and dioritic mylonite occur in the host granitoids and their admixture could have contributed to the comparatively more mafic composition of PTB. Alteration of these crater floor rocks could have involved preferential reduction of silica and alkali element abundances, possibly due to impact-induced hydrothermal activity at crater floor level. This process, too, could have resulted in more mafic compositions.

  14. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  15. Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications

    International Nuclear Information System (INIS)

    Poma, Stella; Zappettini, Eduardo O; Quenardelle, Sonia; Santos, Joao O; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil

    2014-01-01

    We have carried out zircon U-Pb SHRIMP dating and Hf isotope determinations as well as geochemical analyses on three plutonic units of Gondwanan magmatism that crop out in NW Argentina. Two episodes of different age and genesis have been identified. The older one includes gabbros and diorites (Rio Grande Unit) of 267±3 Ma and granitoids (belonging to the Llullaillaco Unit) of 263±1 Ma (late Permian, Guadalupian); the parent magmas were generated in an intraplate environment and derived from an enriched mantle but were subsequently contaminated by crustal components. The younger rocks are granodiorites with arc signature (Chuculaqui Unit) and an age of 247±2 Ma (middle Triassic-Anisian). Hf isotope signature of the units indicates mantle sources as well as crustal components. Hf model ages obtained are consistent with the presence of crustal Mesoproterozoic (mainly Ectasian to Calymnian (T DM(c) =1.24 to 1.44 Ga-negative ε Hf m) and juvenile Cryogenian sources (T DM =0.65 to 0.79 Ga-positiveε Hf(T) , supporting the idea of a continuous, mostly Mesoproterozoic, basement under the Central Andes, as an extension of the Arequipa-Antofalla massif. The tectonic setting and age of the Gondwanan magmatism in NW Argentina allow to differentiate: a. Permian intra-plate magmatism developed under similar conditions to the upper section of the Choiyoi magmatism exposed in the Frontal Cordillera and San Rafael Block, Argentina; b. Triassic magmatism belonging to a poorly known subduction-related magmatic arc segment of mostly NS trend with evidence of porphyry type mineralization in Chile, allowing to extend this metallotect into Argentina

  16. New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)

    Science.gov (United States)

    de Oliveira Chaves, Alexandre

    2013-09-01

    New evidence supported by petrography (including mineral chemistry), lithogeochemistry, U-Pb geochronology by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and physicochemical study of fluid and melt inclusions by LA-ICP-MS and microthermometry, point to an orogenic setting of Lagoa Real (Bahia-Brazil) involving uraniferous mineralization. Unlike the previous models in which uraniferous albitites represent Na-metasomatised 1.75 Ga anorogenic granitic rocks, it is understood here that they correspond to metamorphosed sodium-rich and quartz-free 1.9 Ga late-orogenic syenitic rocks (Na-metasyenites). These syenitic rocks are rich not only in albite, but also in U-rich titanite (source of uranium). The interpretation of geochemical data points to a petrogenetic connection between alkali-diorite (local amphibolite protolith) and sodic syenite by fractional crystallization through a transalkaline series. This magmatic differentiation occurred either before or during shear processes, which in turn led to albitite and amphibolite formation. The metamorphic reactions, which include intense recrystallization of magmatic minerals, led uraninite to precipitate at 1.87 Ga under Oxidation/Reduction control. A second population of uraninites was also generated by the reactivation of shear zones during the 0.6 Ga Brasiliano Orogeny. The geotectonic implications include the importance of the Orosirian event in the Paramirim Block during paleoproterozoic Săo Francisco Craton edification and the influence of the Brasiliano event in the Paramirim Block during the West-Gondwana assembly processes. The regional microcline-gneiss, whose protolith is a 2.0 Ga syn-collisional potassic granite, represents the albitite host rock. The microcilne-gneiss has no petrogenetic association to the syenite (albitite protolith) in magmatic evolutionary terms.

  17. Relationships between the Brook Street Terrane and Median Tectonic Zone (Median Batholith) : evidence from Jurassic conglomerates

    International Nuclear Information System (INIS)

    Tulloch, A.J.; Kimbrough, D.L.; Landis, C.A.; Mortimer, N.; Johnston, M.R.

    1999-01-01

    U-Pb zircon ages of 237-180 Ma and c. 280 Ma of seven granitoid clasts from the Rainy River Conglomerate which lies within the eastern Median Tectonic Zone (Median Batholith) in Nelson, and the Barretts Formation of the Brook Street Terrane in Southland, constrain the depositional ages of both units to be no older than c. 180-200 Ma (Early Jurassic). The minimum age of the Rainy River Conglomerate is constrained by the 147 +2 -1 Ma (Latest Jurassic) emplacement age of the One Mile Gabbronorite (new name: previously western Buller Diorite). The ages and chemistry of five of the granitoid clasts are broadly compatible with derivation from rocks that are now represented by Triassic plutons of the Median Tectonic Zone (Median Batholith), although ages as young as 180 Ma are slightly outside the range of the latter as currently exposed in New Zealand. The age (273-290 Ma, 237 +/- 3 Ma) and chemistry of the other two clasts (one each from Rainy River Conglomerate and Barretts Formation) suggest derivation from the Brook Street Terrane. Similarity in stratigraphic age, depositional characteristics, granitoid clast ages and composition between Rainy River Conglomerate and Barretts Formation suggests that they are broadly correlative and collectively overlapped a combined Brook Street Terrane - Median Batholith (MTZ) before the Late Jurassic (147 +2 -1 Ma). Sedimentary overlap may also have continued across to Middle Jurassic conglomeratic strata in the Murihiku Terrane to the east of the Brook Street Terrane. A U-Pb zircon age of 261 +/- 2 Ma is reported for Pourakino Trondhjemite of the Brook Street Terrane. (author). 56 refs., 10 figs., 4 tabs

  18. Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test

    Science.gov (United States)

    Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.

    2001-01-01

    Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field

  19. Extremadura (Spain): a case to be considered as Global Heritage Stone Province

    Science.gov (United States)

    Mota, Maribel; Tejado, Juanjo; Pereira, Dolores

    2015-04-01

    Extremadura is geologically located in the Iberian Massif, belonging part of the Central Iberian Zone, in the north of the region, and the Ossa Morena zone, in the south of it. The Central Iberian Zone is characterized by the abundance of clastic metasedimentary rocks and greywacke, sandstones, shales, conglomerates, quartzites and lesser amounts of carbonate materials such as limestone and dolomite (600-300 Ma). Also featured are Hercynian granitic intrusions. The rocks from the Ossa-Morena zone are metamorphic, intrusive igneous and volcanic (650-300 Ma). Extremadura, given its strategic geographical position, has been the site of human settlement since ancient times, and this civilisation has left its influence on the building materials used in buildings and monuments. The rocks used in building, are directly related to the geology of the immediate area, since rock outcrops, near the construction are mostly granites, slates and marbles. The historic and artistic heritage from Extremadura includes Roman treasures (like the bridges located in the Via de la Plata, dams, walls and milestones), Islamic and Christian treasures as well as medieval and Renaissance Jewish treasures. Extremadura has three World Heritage Sites declared by UNESCO: the old town of Cáceres, the archaeological site at Merida and the monastery of Guadalupe. The latter is built mainly of bricks and masonry. In Merida, granites and diorites of various facies of the batholiths located north of the city are used together with Sierra Carija's marble and quartzite alluvial gravels from the river Guadiana. Among the constructions in Merida, granite utilisation in the theater and amphitheater, aqueduct of Miracles and the Proserpina dam, are remarkable. The old town of Cáceres is characterised by the presence of narrow streets and monuments, medieval churches and Renaissance palaces, built with granite and flanked by a wall constructed during the Muslim period. This granite comes from the quarries

  20. Detection of freeze-thaw weathering effect using X-ray micro computed tomography

    Science.gov (United States)

    Park, J.; Hyun, C.; Park, H.

    2011-12-01

    Physical weathering caused by repeated freeze-thaw action of water inside rock pores or cracks was artificially simulated in laboratory. The tests were conducted on three rock types, i.e. diorite, basalt, and tuff, which are the major rock types around King Sejong Station of Korea located in Barton Peninsula, King George Island, Antarctica. The temperature of freeze-thaw cycle was also set with simulated the air temperature of the station, i.e. the maximum temperature was + 10 °C and the minimum temperature was - 20 °C. Three cylindrical specimens composed of one for each rock type with 24.6 mm diameter and 14.5 ~ 17.7 mm length were prepared, and 2 mm diameter and 7 mm shallow depth hole was drilled on the center of the specimens. To exaggerate the effect of the freeze-thaw weathering, all tests were conducted under completely saturated condition. 50 cycles of the freeze-thaw test was carried, and X-ray micro computed tomography (CT) images of each rock specimen were obtained after every 10 cycles. Using X-ray micro CT images, 3D structure was rendered and pore and crack structures were extracted. The changes of porosity, absorption rate and pore and crack structure were detected. Porosity of all specimens was decreased linearly and absorption rate of all specimens was increased linearly as weathering processes; the pore connection and crack propagation was detected in 3D rendering pore and crack structure. The change of tuff specimen is the most remarkable among three rock types used in the research, because of its relatively high initial absorption rate and low strength. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0027520).

  1. Multi-scale geophysical study to model the distribution and development of fractures in relation to the knickpoint in the Luquillo Critical Zone Observatory (Puerto Rico)

    Science.gov (United States)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Job, M. J.; Fletcher, R. C.; Brantley, S.

    2017-12-01

    Previous studies in the Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) have shown that regolith materials are rapidly developed from the alteration of quartz diorite bedrock, and create a blanket on top of the bedrock with a thickness that decreases with proximity to the knickpoint. The watershed is also characterized by a system of heterogeneous fractures that likely drive bedrock weathering and the formation of corestones and associated spheroidal fracturing and rindlets. Previous efforts to characterize the spatial distribution of fractures were based on aerial images that did not account for the architecture of the critical zone below the subsurface. In this study we use an array of near-surface geophysical methods at multiple scales to better understand how the spatial distribution and density of fractures varies with topography and proximity to the knickpoint. Large km-scale surveys using ground penetrating radar (GPR), terrain conductivity, and capacitively coupled resistivity, were combined with smaller scale surveys (10-100 m) using electrical resistivity imaging (ERI), and shallow seismics, and were directly constrained with boreholes from previous studies. Geophysical results were compared to theoretical models of compressive stress as due to gravity and regional compression, and showed consistency at describing increased dilation of fractures with proximity to the knickpoint. This study shows the potential of multidisciplinary approaches to model critical zone processes at multiple scales of measurement and high spatial resolution. The approach can be particularly efficient at large km-scales when applying geophysical methods that allow for rapid data acquisition (i.e. walking pace) at high spatial resolution (i.e. cm scales).

  2. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt

    Science.gov (United States)

    Zheng, Rongguo; Li, Jinyi; Xiao, Wenjiao; Zhang, Jin

    2018-03-01

    The ages and origins of metasedimentary rocks, which were previously mapped as Precambrian, are critical in rebuilding the orogenic process and better understanding the Phanerozoic continental growth in the Central Asian Orogenic Belt (CAOB). The Beishan Complex was widely distributed in the southern Beishan Orogenic Collage, southernmost CAOB, and their ages and tectonic affinities are still in controversy. The Beishan Complex was previously proposed as fragments drifted from the Tarim Craton, Neoproterozoic Block or Phanerozoic accretionary complex. In this study, we employ detrital zircon age spectra to constrain ages and provenances of metasedimentary sequences of the Beishan Complex in the Chuanshanxun area. The metasedimentary rocks here are dominated by zircons with Paleoproterozoic-Mesoproterozoic age ( 1160-2070 Ma), and yield two peak ages at 1454 and 1760 Ma. One sample yielded a middle Permian peak age (269 Ma), which suggests that the metasedimentary sequences were deposited in the late Paleozoic. The granitoid and dioritic dykes, intruding into the metasedimentary sequences, exhibit zircon U-Pb ages of 268 and 261 Ma, respectively, which constrain the minimum deposit age of the metasedimentary sequences. Zircon U-Pb ages of amphibolite (274 and 216 Ma) indicate that they might be affected by multi-stage metamorphic events. The Beishan Complex was not a fragment drifted from the Tarim Block or Dunhuang Block, and none of cratons or blocks surrounding Beishan Orogenic Collage was the sole material source of the Beishan Complex due to obviously different age spectra. Instead, 1.4 Ga marginal accretionary zones of the Columbia supercontinent might have existed in the southern CAOB, and may provide the main source materials for the sedimentary sequences in the Beishan Complex.

  3. Geochemical and geophysical investigations, and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Alaminia

    2017-11-01

    Full Text Available Introduction Urumieh-Dokhtar Magmatic Arc (UDMA is a good prospective area for Cu, Cu-Mo and Cu-Au deposits (Fig. 1A and B. The Zafarghand district is located in the central part of the UDMA and the northeastern Isfahan. The present study concerns geological observations, alteration investigations, geochemical data and fluid inclusion studies. The purpose of the research is to identify geochemical anomalies and source of metals in this area. Geochemical anomalies for mineralizing elements and element associations were identified by using statistical analysis methods. Additionally, these results together suggest a site for exploration drilling in this study area. Materials and methods We collected 186 samples (rock along multi-cross sections oriented perpendicular to the strike of the South -Ardestan fault (Fig. 2.Trace element concentrations were determined by the ICP-MS technique in Amdel laboratory (Australia. Thin sections and doubly polished sections (100–200 µm thick from quartz veins were prepared from samples collected from the Zafarghand district in the University of Isfahan. Heating and freezing experiments on fluid inclusions were performed as defined (by Goldstein and Reynolds (1994 on a Linkam THM600 stage. Results Igneous rocks in the Zafarghand area are dominated by the Eocene and post Eocene acidic-intermediate rocks that include dacite, rhyodacite and andesite associated with diorite, quartz diorite and microdiorite intrusions. The present investigations indicate that all rocks of the Zafarghand district exhibit a variety of alterations. Hydrothermal alterations include phyllic, potassic, silicification, and argillic with widespread propylitic. The mineralization consists of malachite, azurite, hematite, and goethite, rare amounts of magnetite, pyrite, and chalcopyrite. Numerical traditional statistical analysis techniques have been applied to interpret the geochemical data of the study area. These methods are aimed at

  4. Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania

    Science.gov (United States)

    Batki, Anikó; Pál-Molnár, Elemér; Jankovics, M. Éva; Kerr, Andrew C.; Kiss, Balázs; Markl, Gregor; Heincz, Adrián; Harangi, Szabolcs

    2018-02-01

    Clinopyroxene is a major constituent in most igneous rock types (hornblendite, diorite, syenite, nepheline syenite, camptonite, tinguaite and ijolite) of the Ditrău Alkaline Massif, Eastern Carpathians, Romania. Phenocryst and antecryst populations have been distinguished based on mineral zoning patterns and geochemical characteristics. Major and trace element compositions of clinopyroxenes reflect three dominant pyroxene types including primitive high-Cr Fe-diopside, intermediate Na-diopside-hedenbergite and evolved high-Zr aegirine-augite. Clinopyroxenes record two major magma sources as well as distinct magma evolution trends. The primitive diopside population is derived from an early camptonitic magma related to basanitic parental melts, whilst the intermediate diopside-hedenbergite crystals represent a Na-, Nb- and Zr-rich magma source recognised for the first time in the Ditrău magmatic system. This magma fractionated towards ijolitic and later phonolitic compositions. Field observations, petrography and clinopyroxene-melt equilibrium calculations reveal magma recharge and mingling, pyroxene recycling, fractional crystallisation and accumulation. Repeated recharge events of the two principal magmas resulted in multiple interactions between more primitive and more fractionated co-existing magma batches. Magma mingling occurred between mafic and felsic magmas by injection of ijolitic magma into fissures (dykes) containing phonolitic (tinguaite) magma. This study shows that antecryst recycling, also described for the first time in Ditrău, is a significant process during magma recharge and demonstrates that incorporated crystals can crucially affect the host magma composition and so whole-rock chemical data should be interpreted with great care.

  5. Uranium in the north of Côte d'Ivoire: the case of Odienné

    International Nuclear Information System (INIS)

    Koffi, K.

    2014-01-01

    This work is a contribution to a better knowledge of Precambrian formations of Odienne region (Côte d’Ivoire), through their petrography and geochemistry. Those formations may be divided into two main groups: - first the metamorphic rocks constituted of Liberian rock relics, volcanic and volcano-sedimentary complex of Birimian age, ortho-gneiss and amphibolites considered either as Ante-Eburnean or early from the Eburnean cycle; - second, the plutonic rocks which are mainly made of granitoids. The discovery of aluminous gneiss of granulite facies within the Liberian formations, petrographically and chemically similar to those described in the Man region, and the presence of magnetite containing quartzites, are evidences of the existence of Liberian basement in the Odienne region. All the features of the Odienne Eburnean volcanism, as shown by the study made on the volcanic and volcano-sedimentary complex, allow us to connect it to the calco-alkaline series. In the present case, a formation model related to the big cutting accidents seems to fit best. As for the granitoids, they show: • a cataclais characterized by mineral torsions or breakages, a frequent mineral lineation, and an ondulating extinction; these are evidences of a syncinematic set-up; • a high content of Na_2O that seems to be expressed by a very important plagioclasic charge; • an evolution wholly silico-potassic in nature; all the samples studied vary from a quartzic-diorite pole to a granitic pole, with the majority of the compositions found in the granodiorite and adamellite domains ; the magma which generated those granitoids is of the calco-alkaline type; • relatively low average uranium and thorium contents; most of the radioactivity of those rocks is concentrated in the biotite or in the accessory minerals (generally in the form of inclusions in the biotite). (author)

  6. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    Science.gov (United States)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  7. The Variscan calc-alkalic plutonism of western Corsica: mineralogy and major and trace element geochemistry

    Science.gov (United States)

    Cocherie, A.; Rossi, Ph.; Le Bel, L.

    1984-10-01

    Petrographic and structural observations on the calc-alkalic plutonism of western Corsica revealed the existence of several successively emplaced units associated with large basic bodies. The present mineralogical and geochemical study deals with the genesis, evolution and relationships of these different units. Basic plutonism is represented by three genetically linked types of rock: norites and troctolites with cumulate textures characterized by low REE contents and either no Eu anomaly or a positive Eu anomaly; gabbros with enriched LREE relatively to HREE patterns, probably close to an initial basaltic liquid; and diorites ranging up to charnockites which represent liquids evolved to varying degrees, mainly by fractional crystallization. Trace element data and studies on the evolution of pyroxene pairs demonstrate the consanguinity of these calc-alkaline basic rocks which are derived from a high alumina basaltic melt. The various granitoids (granodiorites, monzogranites and leucocratic monzogranites, i.e., adamellites) have distinct evolution trends as shown by the composition of their mafic minerals and by trace element distributions. They cannot be considered as being derivatives of the basic suite and they cannot be related by a common fractionation sequence. Rather, they represent distinctive batches of crustal anatexis. In addition, hybridization phenomena with the basic melt are noticed in granodiorites. The particular problem of the low La/Yb, Eu/Eu∗ and the high U, Th, Cs leucocratic monzogranites is discussed in detail. In addition to more conventional trace element diagrams, the simultaneous statistical treatment of all the geochemical data by correspondence factor analysis is shown to be a very use tool in distinguishing between the different units and to classify the elements according to their geochemical properties.

  8. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    Science.gov (United States)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  9. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb

    2017-07-01

    Full Text Available Introduction The formation of porphyry copper deposits is attributed to the shallow emplacement, and subsequent cooling of the hydrothermal system of porphyritic intrusive rocks (Titley and Bean, 1981. These deposits have usually been developed along the chain of subduction-related volcanic and calc-alkalin batholiths (Sillitoe, 2010. Nevertheless, it is now confirmed that porphyry copper systems can also form in collisional and post collisional settings (Zarasvandi et al., 2015b. Detailed studies on the geochemical features of ore-hosting porphyry Cu-Mo-Au intrusions indicate that they are generally adakitic, water and sulfur- riched, and oxidized (Wang et al., 2014. For example, high oxygen fugacity of magma has decisive role in transmission of copper and gold to the porphyry systems as revealed in (Wang et al., 2014. In this regard, the present work deals with the mineral chemistry of amphibole and plagioclase in the Dalli porphyry Cu-Au deposit. The data is used to achieve the physical and chemical conditions of magma and its impact on mineralization. Moreover, the results of previous studies on the hydrothermal system of the Dalli deposit such as Raman laser spectroscopy and fluid inclusion studies are included for determination of the evolution from magmatic to hydrothermal conditions. Materials and methods In order to correctly characterize the physical and chemical conditions affecting the trend of mineralization, 20 least altered and fractured samples of diorite and quartz-diorite intrusions were chosen from boreholes. Subsequently, 20 thin-polished sections were prepared in the Shahid Chamran University of Ahvaz. Finally, mineral chemistry of amphibole and plagioclase were determined using electron micro probe analyses (EMPA in the central lab of the Leoben University. Results Amphibole that is one of the the main rock-forming minerals can form in a wide variety of igneous and metamorphic rocks. Accordingly, amphibole chemistry can be

  10. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    Directory of Open Access Journals (Sweden)

    Radmard Kaikhosrov

    2017-12-01

    Full Text Available Situated about 130 km northeast of Tabriz (northwest Iran, the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB. Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb, Pb (21100 ppm, Ag (9.43ppm, Cu (611ppm and Zn (333 ppm. Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb. In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  11. Evolution of Friction, Wear, and Seismic Radiation Along Experimental Bi-material Faults

    Science.gov (United States)

    Carpenter, B. M.; Zu, X.; Shadoan, T.; Self, A.; Reches, Z.

    2017-12-01

    Faults are commonly composed by rocks of different lithologies and mechanical properties that are positioned against one another by fault slip; such faults are referred to as bimaterial-faults (BF). We investigate the mechanical behavior, wear production, and seismic radiation of BF via laboratory experiments on a rotary shear apparatus. In the experiments, two rock blocks of dissimilar or similar lithology are sheared against each other. We used contrasting rock pairs of a stiff, igneous block (diorite, granite, or gabbro) against a more compliant, sedimentary block (sandstone, limestone, or dolomite). The cylindrical blocks have a ring-shaped contact, and are loaded under conditions of constant normal stress and shear velocity. Fault behavior was monitored with stress, velocity and dilation sensors. Acoustic activity is monitored with four 3D accelerometers mounted at 2 cm distance from the experimental fault. These sensors can measure accelerations up to 500 g, and their full waveform output is recorded at 1MHz for periods up to 14 sec. Our preliminary results indicate that the bi-material nature of the fault has a strong affect on slip initiation, wear evolution, and acoustic emission activity. In terms of wear, we observe enhanced wear in experiments with a sandstone block sheared against a gabbro or limestone block. Experiments with a limestone or sandstone block produced distinct slickenline striations. Further, significant differences appeared in the number and amplitude of acoustic events depending on the bi-material setting and slip-distance. A gabbro-gabbro fault showed a decrease in both amplitude and number of acoustic events with increasing slip. Conversely, a gabbro-limestone fault showed a decrease in the number of events, but an increase in average event amplitude. Ongoing work focuses on advanced characterization of mechanical, dynamic weakening, and acoustic, frequency content, parameters.

  12. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet

    International Nuclear Information System (INIS)

    Schaerer, U.; Allegre, C.J.; Paris-6 Univ., 75; Paris-7 Univ., 75; Xu, R.H.

    1984-01-01

    A series of different plutons from the Lhasa-Xigaze segment of the Gangdese (Transhimalaya) belt has been studied by high-resolution U-Pb analyses of zircon (using zircon fractions of 5-100 grains each, selected upon specific grain characteristics). For two diorites, located east of Xigaze (Dazhuka), the zircons yield concordant ages of 93.4 +- 1.0 and 94.2 +- 1.0 m.y., respectively. Also concordant ages of 41.1 +- 0.4 and 41.7 +- 0.4 m.y. have been obtained for two granodiorites, collected southwest of Lhasa (Qushui). The precision on the ages of two granites from the Xigaze and Lhasa area, is limited by two factors: the presence of inherited radiogenic lead and the occurrence of subsequent lead loss. However, some concordant zircons, detected in both granites, define approximate ages of about 67 and 53 m.y., respectively. The inherited lead components show the melting of Precambrian material was involved in magma genesis. The U-Pb ages substantiate a magmatic activity lasting from mid-Cretaceous (Cenomanian) to Eocene (Lutetian) time. Such a period of plutonism at the southern margin of Eurasia, as well as the occurrence of magma generation from continental crust, suggest that the Gangdese range results from the subduction of Tethys oceanic lithosphere (Indian plate) underneath Eurasia (Eurasian plate). If this model is true, the collision of India with Eurasia (Along the Lhasa-Xigaze sector) postdates the emplacement of the 41 m.y. old Gangdese granodiorites, i.e. the collision occurred after Lutetian time. (orig.)

  13. Past surface conditions and speleogenesis as inferred from cave sediments in the Great Cave of Șălitrari Mountain (SW Romania

    Directory of Open Access Journals (Sweden)

    Cristina M. Pușcaș

    2010-08-01

    Full Text Available Abstract In one of the passages in the Great Cave of Șălitrari Mountain the floor is completely covered by an alluvial deposit at least 6 m in thickness, ranging from boulders, and cobbles, to sand and clay, topped by a layer of dry bat guano. Sediment and mineral samples collected from six profiles underwent broad analyses to determine their petrological and mineralogical makeup, grain-size distribution, and paleoclimatic significance. The complicated facies alternation suggests frequent changes in the former stream’s hydrological parameters, with frequent flooding, leading to the hypothesis that the climate was somewhat wetter than today. Both the mineralogical composition of the sediment (ranging from quartz, mica, gypsum, phosphates, and calcite to garnet, zircon, titanite, olivine, serpentine, tourmaline, sphalerite, pyrite/chalcopyrite, and feldspars and the petrological composition of the larger clasts (limestone, sandstone, mudstone, granitoids, serpentinite, amphibolite, diorite, gneiss, quartzite, microconglomerate, and schist ascribe the potential source rocks to an area with contrasting lithologies, such as amphibolites, felsic and basic metaigneous, and metasedimentary rocks, mixed with a variety of detritic rocks. These rock types are not entirely comprised by the catchment area of the modern Presacina Brook, thus implying that due either to hydrological conditions, or to changes in the base level caused by river down cutting or active tectonics, the former source area was much more extensive. Based on morphological and sedimentological criteria, the cave started under pipe-full flow conditions, and further evolved during a prolonged and complex vadose phase. Evidence to support the existence of hypogene conditions is also present. Once the underground stream left the cave and most of the sediment was removed, speleothem precipitation was initiated. In this contribution we put forward evidence that argue for an extra

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Brazil

    International Nuclear Information System (INIS)

    1977-06-01

    Brazil occupies an area of about 8.5 million square kilometers -- almost half of the South American continent. The dominant geographic feature is the Amazon basin. The Amazon River and its more than 200 tributaries drain about 60 percent of the country. The basin is a vast tropical rain forest, whereas the remainder of Brazil is made up predominantly of highlands. The Central Highlands, which extends into the Amazon basin, occupies nearly all of southern Brazil and includes major mountain chains such as the Serra do Mar, Serra da Mantiqueira, and Serra do Espinhago. The Guiana Highlands fringe the northern Amazon basin and extend into Venezuela, Guyana, Surinam, and French Guiana. Lowland areas other than the Amazon basin are found in western Mato Grosso, and along the Atlantic coast from French Guiana to Uruguay. The geology of Brazil is dominated structurally and areally by three major shields composed of crystalline rocks of Archean and Proterozoic age. Collectively they comprise the Brazilian complex which is probably the largest Precambrian outcrop in the world. The complex is made up of gneisses, granites, mica schists, quartzites, dolomites, skarns, diorites, itabirites and gabbros, many of which are deeply metamorphosed. Faults, quartz veins, and dikes are common. Recurrent granitization has occurred from the Precambrian to Late Tertiary. The area of Brazil is large and its geology is favorable, in places, for every known type of uranium deposit. This is not reflected in the amount of 'known' and 'inferred' reserves -- slightly more than 21,000 tons. Rather, it is an indication of the small amount of exploration done, taking into account the large area to be covered. The speculative potential can only be guessed. It is guessed to be 500,000 tons

  15. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang

    2018-03-01

    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  16. Termobarometría Opx-Cpx aplicada al conocimiento de las condiciones de formación de las roca s ultramálicas de Vivero (Lugo, noroeste de España

    Directory of Open Access Journals (Sweden)

    Galán, G.

    1985-12-01

    Full Text Available Several two-pyroxene thermometers and barometers have been used to determine the genetic conditions of ultramafic rocks associated to calc-alkalic granites that outcrop in the Vivero Massif (Lugo, NW of Spain. These ultramafic rocks, some of which are similar to cortlandtites, have an amphibole being the most abundant phase, together with olivino, pyroxenes and phlogopite. They have been differentiated in peridotites, pyroxenites and hornblendites. Some dioritic mafic rocks are also present. Their emplacement, simultaneous with that of the granites, was made following a shear zone related to the Mondoñedo nappe and resulted in Penetrative deformationof the whole complex Temperatures obtained with different methods are quite uniform with an average value of 938º C, and a pressure of about 3 Kbars. The results of the different thermometers are compared, as well as their petrological and regional significance.

    Diversos métodos termométricos y barométricos, basados en el equilibrio ortopiroxenoclinopiroxeno, se utilizan en la determinación de la temperatura y presión de formación de rocas ultramáficas ricas en anfíbol, asociadas a granitos calcoalcalinos del macizo de Vivero (Lugo, noroeste de España. Se trata de rocas ultramáficas, algunas de ellas de tipo cortlandtítico, con una proporción variable de olivinos, piroxenos, anfíboles y flogopita como fases principales, que se emplazan simultáneamente con los granitos asociados, aprovechando una zona de cizalla en relación con el manto de Mondoñedo. Se comparan los resultados obtenidos y la validez de los diversos métodos empleados, a la vez que se discute su significado petrológico y regional.

  17. VOSGES, a long and rich geologic history

    Science.gov (United States)

    Dominique, Carteaux; Cyrille, Delangle; Sophie, Demangel

    2015-04-01

    The study of geology in scientific classes is often too theoretical and abstract for the pupils. How can teachers make the link between some samples of rocks observed in a practical class and the geologic story of the region? There's nothing better than outdoor education to establish a relationship between the rock observed in macroscopic and microscopic scale in the classroom,with the outcrop scale and the landscape scale in the field: all of them are the result of a fascinating geologic history.Our pupils are lucky enough to live at the heart of a modest mountain massif that has a very rich geologic story: the massif from Vosges situated in the east of France. During two expeditions we show the students all the following tectonic processes: Accretion at the scale of the landscape with the Rhenish Ditch (tectonic and volcanic markers) Obductionis observed due to ophiolites found in the massive of Thalhorn (peridotite, gabbro and sedimentary marine rocks of great depth). Collisionis illuminated with numerous sites like the schists of Steige, the phyllite of Villé, the gneisses of Climont. Subductionis captured bystudying the outcrops of magmatic rocks within the continental crust (andesite, diorite, granodiorite). At each of the stops we have the students, from a hand sample, to findits story in a more global context. So the theory becomes reality. A study of thin slides of rocks observed on the ground finishes these exits and so various scales of understanding are approached. The long and rich geologic history of Vosges maybe reconstituted on hundreds of million years, allowing certainly giving another aspect to the living environment of our pupils.

  18. Multiple and prolonged porphyry Cu–Au mineralization and alteration events in the Halasu deposit, Chinese Altai, Xinjiang, northwestern China

    Directory of Open Access Journals (Sweden)

    Chunji Xue

    2016-09-01

    Full Text Available The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cu–Mo–Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cu–Au deposit, which is currently under exploration. U–Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372–382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Re–Os dating of molybdenite from veinlet-dissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar–Ar dating of K-feldspar from K-feldspar–quartz–chalcopyrite veins produces ages of ca. 269 and ca. 198 Ma. The mineralization (and alteration ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the post-collisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to post-collisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.

  19. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances

    Science.gov (United States)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian

    2016-03-01

    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  20. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    Science.gov (United States)

    Ekren, E.B.

    1984-01-01

    The Jibal Matalli quadrangle lies along the northern boundary of the Arabian Shield about 90 km west-southwest of Ha'il. The quadrangle consists of about 45 percent Precambrian bedrock, 50 percent Quaternary deposits, and 5 percent sedimentary cover rocks. The Precambrian rocks include volcaniclastic and volcanic rocks that are slightly metamorphosed and various granitic plutons. The volcaniclastic and volcanic rocks are correlated with the Hulayfah group and the Hadn formation. The older Hulayfah is principally basalt of probably submarine origin that has locally been metamorphosed to greenschist facies. The Hadn is composed of submarine and subaerial deposits. These consist of volcanic-derived sandstone and siltstone and lesser amounts of chiefly rhyolite volcanic rocks. In most areas, the Hadn shows little in the way of metamorphic effects, but locally it too has been metamorphosed to greenschist facies. The volcanic rocks of the Hadn include ash-flow tuffs; some appear to be water-laid, but others are subaerial. The oldest pluton is diorite, those of intermediate age are monzogranite and syenogranite, and the youngest are alkali feldspar granites. The largest pluton, a metaluminous, low-calcium, biotite monzogranite, occupies much of the southern part of the quadrangle. The alkali feldspar granites are mostly peralkaline; the two youngest are particularly so. The latter two are located in the southwest and southeast corners of the quadrangle, and both contain arfvedsonite and kataphorite. The pluton in the southeast grades outward from a peraluminous core to a peralkaline, comenditic peripheral zone and is inferred to be genetically related to a spectacular, west-trending comendite dike swarm in the southern half of the quadrangle.

  1. Geology of the Baskil (Elazığ Area and the Petrology of Baskil Magmatics

    Directory of Open Access Journals (Sweden)

    H. Jerf ASUTAY

    1986-06-01

    Full Text Available The study area which covers the region around Baskil on Eastern Taurus Range comprises of Keban metamorphics and Baskil magmatics overlain by a Tertiary sedimentary cover. The Keban metamorphics are represented by regional and contact metamorphic rocks in the study area. Calc schist and marble associations are widespread on the regional scale. Between Baskil granite and Keban metamorphics exomorphism and endomorphism zones have been developed. Metasomatic effects are observed in the contact metamorphic rocks which reflect the pyroxene-hornfels facies. The sedimentary sequence begins with Middle Paleocene (Thanetian aged rocks in the study area. The same sequence, however, has been deposited starting in Santonian-Campanian in the surrounding area. The sedimentary rock sequence which is composed of Kuşçular conglomerate, Seske formation, Kırkgeçit formation (Paleocene-Plio-Quaternary are represented by conglomerate, carbonates and flysch kind of sedimentary rocks. Baskil magmatics are an association of plutonic, hypabyssal and volcanic rocks. Of this association, Baskil granite contains dioritic, monzonitic and tonalitic kind of magmatic rocks which are mostly observed as transitional. Baskil granite, in the study area, is frequently cut across by basic and acidic dykes which locally intrudes between the granite and the basaltic, andesitic rocks overlying the granite and are transitional with the volcanics. Chemically, Baskil granite is of calc-alkaline type. It is rich in silica and alkaline. Trace element distribution is quite regular. Baskil granite which is determined as of type 'I' is generally rich in hornblende but poor in muscovite and biotite. It shows the features of continental margin magmatism and is an example of systematic differentiation. Considering their features and under the light of plate tectonics concept, Baskil magmatics may be said to be a product of continental margin magmatism. They are, presumably, the products of an

  2. Reconnaissance geochemical survey for uranium and related industrial minerals in Cebu Island

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Ramos, A.F.; Magsambol, W.N.; Hernandez, E.

    1989-03-01

    Consistent with the program of evaluating the nuclear mineral resource potential and related industrial minerals of the Philippines, a reconnaissance geochemical survey was conducted in Cebu with considerable success. The total area covered by the survey was about 5,088 sq. kms. The survey consisted of systematic collection of 857 geochemical stream and water and heavy mineral samples, and measurement of radioactivity in over 352 stations. The average sampling density was about one set of samples per 15 to 30 sq. kms. All solid samples were analyzed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon and conductivity were measured on most water samples collected. A total of 4,518 elemental determinations were involved. All field and analytical data were treated by statistics, and the computed parameters data were correlated with the geology of the area to establish anomalous zones. Four areas were delineated for possible uranium mineralization. Of the areas, the Mandaue river area is the most interesting for uranium. The contact zone between the diorite and the sedimentary rocks in this area appears to be a favorable geological environment for uranium mineralization. The other anomalous uranium values were found to be related with the guano and phosphate deposits. Uranium was also shown to be independent of the other seven elements in the geologic environment of Cebu. No definite elemental association could be established at present. This study also marks the thorough utilization of Q'GAS, Cadplot and Autocad, all microcomputer-based programs/systems, in the evaluation and interpretation of exploration-oriented geochemical and geological data, and with more significance in the sense that computer generated quality geochemical maps were produced, a first in the country. (Author). Appendices (23); 23 figs; 13 refs.; 4 tabs

  3. Aespoe hard rock laboratory. Evaluation and conceptual modelling based on the pre-investigations 1986-1990

    International Nuclear Information System (INIS)

    Wikberg, P.; Gustafson, G.; Rhen, I.; Stanfors, R.

    1991-06-01

    The investigations have been grouped to several geometric scales under the disciplines of geology, geohydrology and groundwater chemistry, transport of solutes and mechanical stability. Geological mapping and geophysical measurements have been made both on a regional and on a site scale. On the site scale additional surface measurements, drilling of 35 percussion boreholes and 19 cored boreholes was made. The results of the geological investigations show that the Aespoe bedrock is a complex mixture between Smaaland granite, Aespoe diorite and fine grained granite. Hydraulic and chemical data was collected from existing well records within the Kalmar County. Hydraulic conductivity measurement and interference pumping tests were made in the core drilled holes and to some extent in the percussion holes. The hydraulic conductors are basically the fracture zones, but one of the most important is a NNW striking system of single fractures which is difficult to distinguish geologically. The chemical conditions of the groundwater and the fracture minerals form water bearing sections of the core drilled holes have been examined. Water samples were collected from percussion boreholes. The groundwater can be divided into three categories. Fresh water down to approximately 50 m depth. Mixed fresh and seawater 50-100 m, present and/or relict seawater 100-500 m and old (relict) seawater below a depth of 500 m. An important task in the evaluations is to set up 'conceptual models'. These models are the basis for calculation of the ambient groundwater situation and the way in which the hydrological regime will change during the excavation of the laboratory. In order to allow for different levels of detail the conceptual models are established on different scales. The geometrical scales chosen are 500 m, 50 m and 5 m. (au)

  4. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    Science.gov (United States)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2018-01-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  5. U-Pb zircon geochronology, Sr-Nd isotope geochemistry, and petrogenesis of oxidant granitoids at Keybarkuh, southwest of Khaf

    Directory of Open Access Journals (Sweden)

    Ehsan Salati

    2012-10-01

    Full Text Available Keybarkuh area is located 70 km southwest of Khaf, Khorasan Razavi province. The study area is situated in northeastern Lut block. The rock units in the area are Paleozoic metamorphic rocks and Cretaceous to Tertiary subvolcanic intrusions intruded as dike, stock and batholith; their composition varies from granite to diorite. Based on magnetic susceptibility, the intrusive rocks are divided into oxidant and reduced series. In this study, the oxidant intrusions are discussed. These intrusions are mostly high-K to shoshonitic and also meta-aluminous type. Their magma formed in subduction magmatic arc and they belong to I-type granitoid series. Enrichment of Large Ion Lithophile Elements (LILE such as Rb, Cs, K, Ba, and Th relative to High Field Stength Elements (HFSE such as Nb, Zr, and Ti supported the idea. Enrichment of Light Rare Earth Elements (LREE and depletion of Heavy Rare Earth Elements (HREE are also typical of subduction magmatism. Negative anomalies of Eu/Eu* can be attributed to the presence of residual plagioclase in a mantle source and contamination of magma by reduced continental crust. The amount of Nb > 11 ppm, lower ratio of Zr/Nb 0.706, initial 143Nd/144Nd (> 0.512 and εNd (< -3.5 indicate that magma contaminated by reduced continental crust. Hornblende biotite granodiorite porphyry dated using U-Pb zircon geochronology at 43.44 Ma (Middle Eocene. Based on calculated TDM, magma derived from ancient slab with 820 Ma age in the Keybarkuh area, was affected by the highest continental crust contamination during its ascent.

  6. U-Pb zircon and 40Ar/39Ar geochronology of sericite from hydrothermal alteration zones: new constraints for the timing of Ediacaran gold mineralization in the Sukhaybarat area, western Afif terrane, Saudi Arabia

    Science.gov (United States)

    Harbi, Hesham M.; Ali, Kamal A.; McNaughton, Neal J.; Andresen, Arild

    2018-04-01

    The Sukhaybarat East and Red Hill deposits, in the northeastern part of the Arabian Shield, are mesothermal vein-type gold deposits hosted by late Cryogenian-Ediacaran intrusive rocks of the Idah suites (diorite, tonalite, granodiorite) and, at Sukhaybarat East, also by Ediacaran metasedimentary rocks. Gold mineralization comprises quartz-arsenopyrite veins (Sukhaybarat East), quartz-carbonate-pyrite veins (Red Hill), and subordinate gold-base metal sulfide veins. In the Red Hill deposit, alteration is complicated due to multiple overprinting hydrothermal events and is characteristically affected by pervasive, pink quartz-K-feldspar-hematite alteration which is overprinted by potassic alteration characterized by a quartz-biotite-carbonate-muscovite/sericite-rutile-apatite assemblage. This assemblage is associated with molybdenite veins which appear to form late in the paragenetic sequence and may represent either evolution of the ore fluid composition, or a later, unrelated mineralized fluids. Hydrothermal alteration at the Sukhaybarat East deposit is dominated by quartz-carbonate-sericite-arsenopyrite assemblages. Zircon from ore-hosting tonalite at Sukhaybarat East yields a U-Pb age of 629 ± 6 Ma, and biotite from the same rock gives an 40Ar/39Ar age of 622 ± 23 Ma. The 40Ar/39Ar age is within the uncertainty range for the U-Pb age of the host intrusion and is interpreted as a minimally disturbed cooling age for the tonalite. In the Red Hill area, granodiorite was emplaced at 615 ± 5 Ma, whereas muscovite/sericite separated from a mineralized sample of a quartz-carbonate-pyrite vein, that was overprinted by molybdenite-bearing veinlets, yields an 40Ar/39Ar age of 597 ± 8 Ma. We interpreted this age to represent the maximum age of the molybdenite mineralization and the probable minimum age of gold mineralization in the Red Hill deposit.

  7. Lithogeochemistry of the main unities of Pelotas batholith from Rio Grande do Sul State

    International Nuclear Information System (INIS)

    Figueiredo, M.C.H. de; Cesar, A.R.S.; Kronberg, B.I.

    1990-01-01

    The Pelotas batholith is composed predominantly of a Cambrian multi-intrusive granitic complex (Dom Feliciano Granitic Suite) associated to rhyolitic dike swarms and small basic plutons. The Piratini Gneisses (Late Riphean -Vendian) correspond to calcalkaline dioritic-tonalitic-granodioritic orthogneisses with chemical features of pre-collisional granitoids related to oceanic crust subduction (B-subduction) under an active continental margin. The Pinheiro Machado Granitoids (Vendian) are alkali-calcic granodiorite-monzogranites with Caledonian-type characteristics, but appear to also correspond to pre-collisional granitoids as a latter and more mature phase in the evolution of the magmatic arc. The Dom Feliciano Granitic Suite (Cambrian) is subdivided into porphyritic and equigranular facies, with predominance of monzogranites and syenogranites, respectively, with alkali-calcic late-orogenic characteristics. While the Rb/Sr isotopic data is consistent with the proposed evolution, the Nd model ages range from 2.0 - 1.2 Ga. This may reflect episodes of Sm/Nd fractionation within a lithospheric mantle instead of the accretion age of the granitoids. These apparent ages, which are also obtained in Parana and Karroo continental basalts, probably indicate coupled evolution of the continental crust and lithospheric mantle. In the suggested model, the Piratini Gneisses were orginated by differentiation of basic magmas formed by partial melting of lithospheric mantle, induced by dehydration of subducted oceanic crust, while the more mature arc granitoids had increasing crustal contamination or mingling-mixing with crustal melts and finally, in the late-and post-orogenic stages, partial melting of continental crust predominates. (author)

  8. Detected Surface Effects of the September 3, 2017 Declared Nuclear Test

    Science.gov (United States)

    Pabian, F. V.

    2017-12-01

    Satellite-based synthetic aperture radar (SAR) data of North Korea's Punggye-ri Nuclear Test Site, together with new electro-optical commercial satellite imagery and a short official video (apparently recorded during the most recent test), provide additional insights on the widespread surface disturbances[1] around the peak of Mt. Mantap that were caused by North Korea's sixth and by far largest nuclear test (over one hundred kilotons). While a number of visible landslides have already been reported by this author and others, this additional data reveals more information about the widespread nature of the detected movements that indicate a general slumping/compression of the top 200 meters of the mountain consisting of loosely consolidated volcanic ash deposits above a nonconformity with underlying basement diorite/granites. A closer look at the one previously noted zone of localized slippage/subsidence located within the volcanic deposits, revealed that several healthy trees have been knocked down. The new image data empirically confirms previous seismological estimates that the detonation occurred somewhere under Mt. Mantap. The North Korean-sourced short video, which shows a large dust cloud rising up from the mountain along with a probable active rockfall in a pre-existing landslide scar, provides additional new evidence consistent with that conclusion. However, the broad-scale nature of those movements inhibits more precise geolocation of the test within the mountain using imagery. [1] Surface displacements include landslides, spall, cracks, rock falls, small fault displacements, and earth movement including slippage/subsidence within pre-existing surface features such as small depressions as previously reported here: http://www.38north.org/2017/01/fpabiandcoblentz010617/ and http://www.38north.org/2017/09/punggye090517/ and http://www.38north.org/2017/09/punggye091217/

  9. Tectonometamorphic evolution of the gneissic Kidal assemblage related to the Pan-African thrust tectonics (Adrar des Iforas, Mali)

    Science.gov (United States)

    Champenois, M.; Boullier, A. M.; Sautter, V.; Wright, L. I.; Barbey, P.

    In the central part of the Adrar des Iforas (Mali), the 2 Ba Eburnean granulatic unit has been thrust above a high-grade gneissic unit, the so-called 'Kidal assemblage', during an early event of the Pan-African orogeny. The Kidal assemblage can be defined as a tectonic mixing of an Eburnean granulitic basement, its sedimentary cover of Middle to Upper Proterozoic age (quartzites, marbles, basalts and metavolcanics) and various pretectonic rocks: ultrabasic to basic rocks, diorites, tonalites. All these rocks have been deformed during at least four main events and metamorphosed together. Thrusting of the Iforas Granulitic Unit above the Kidal assemblage happened during the first event D1. The movement direction was roughly N-S, as shown by the stretching lineation. Some field criteria indicate a sense of displacement towards the north. The lattice preferred orientation of quartz c- and axes indicate that the slip was dominantly on prismatic and probably pyramidal planes along an direction; consequently D1 deformation was achieved at high temperature or low-strain rate. The quartz c- and axes do not show any constant asymmetry, so they do not indicate a sense of shear. Two metamorphic stages have been found in the Kidal assemblage: the first one is characterized by kyanite in aluminous metasediments and by the occurrence of garnet-clinopyroxene-bearing boundis of basic rocks. The P-T range of this event is located at 700 ± 50°C and around 10 Kb. The second event is a syntectonic high temperature (600-650°C) low pressure (3.5 Kb) stage accompanied by migmatization. Such a tangential deformation in barrowian-type metamorphic conditions and with N-S transport direction is known along the entire Trans-Saharan belt and cannot be related in a simple way to the collision between West African Craton and the mobile belt.

  10. Geological mapping of the vertical southeast face of El Capitan, Yosemite Valley, California (Invited)

    Science.gov (United States)

    Stock, G. M.; Glazner, A. F.; Ratajeski, K.; Law, B.

    2010-12-01

    El Capitan in Yosemite Valley, California, is one of the world’s most accessible large granitic rock faces. At nearly 1 km tall, the vertical southeast face of El Capitan provides unique insight into igneous processes contributing to the assembly of the Sierra Nevada batholith ~103 million years ago. Although the base and summit dome of El Capitan have been mapped in detail, the vertical face has so far eluded comprehensive attempts at geologic mapping. We have combined field mapping by technical rock climbing with high-resolution gigapixel photography to develop the first detailed digital geologic map of the southeast face (North America Wall). Geologic units exposed on the face include the El Capitan and Taft Granites, at least two phases of dioritic intrusions, hybridized rocks, and late-stage aplite/pegmatite dikes and pods. We map these units on a high resolution far-range base image derived from a high-resolution panoramic photograph, and verify contact relationships with close-range field photographs and visual observations from anchor points along major climbing routes. Mapping of contact relationships between these units reveals the sequence of intrusion of the various units, as well as the relationship of the mafic intrusions with the more voluminous granites. Geologic mapping of the southeast face also informs geologic hazards by constraining the source area for lithologically distinct rock falls; for example, geologic mapping confirms that a 2.2 x 106 m3 rock avalanche that occurred circa 3,600 years ago originated from near the summit of El Capitan, within an area dominated by Taft Granite. In addition to expanding mapping to the southwest face, future mapping efforts will focus on integrating the high resolution base map with airborne and terrestrial LiDAR data to produce a three-dimensional geologic map of one of the most iconic rock formations in the world.

  11. Petrology of the gabbro and sheeted basaltic intrusives at North Cape, New Zealand

    International Nuclear Information System (INIS)

    Hopper, D.J.; Smith, I.E.M.

    1996-01-01

    The North Cape massif consists of a semi-conformable sequence of serpentinite, gabbro, sheeted sill and dike units, and pillow lavas. Although structurally disrupted, they can be interpreted in terms of an idealised ophiolite sequence and represent the most complete sequence in the Northland Ophiolite. Their age is considered to be Late Cretaceous-Paleocene on the basis of microfossils in associated sediments. Early Miocene K-Ar ages from igneous rocks are thought to reflect the time of emplacement as a thrust sheet of oceanic crust and upper mantle. The gabbros are divided into a lower unit characterised by well-developed cumulate layering and an upper unit which is massive; the sheeted sills and dikes are quartz-diorite and microgabbro interleaved with minor pillow lava. Two phases of alteration are observed, a pervasive low-grade greenschist metamorphism attributed to sea-water interaction after formation as oceanic crust, and an overprinting zeolitic alteration which is possibly post-emplacement. Their tholeiitic nature as well as overlapping geochemical compositions suggest that the gabbros and sheeted dikes and sills represent different components of a single magmatic system related by simple fractionation processes. Several lines of evidence suggest that the magmas that formed the North Cape gabbro and sheeted intrusives have subduction-related chemical characteristics. In the gabbro, calcic plagioclase (An 86-92 ) and depleted Zr and Y abundances, and in the sheeted intrusives depleted high field strength element abundances relative to typical MORB, is indicative of a subduction signature. The presence of subduction-related characteristics within the Northland Ophiolite suggests that it may have originated at a back-arc basin rather than a major ocean ridge spreading centre. (author). 64 refs., 12 figs., 7 tabs

  12. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    International Nuclear Information System (INIS)

    Staub, Isabelle; Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    have been derived on the Aespoe diorite. Only a few compressive strength tests have been done on rock samples collected close to the shear zone which is mostly due to the lack of representative sections of intact rock in the pillar. The strength of the altered rock is approximately 50-60% of the intact diorite. The results of the testing of the thermal properties are good and lies well within what can be expected of diorite. Nothing in the results from the laboratory programme has indicated that the chosen experiment volume would be unsuitable, it is important to take the heterogenity in consideration. The P-wave velocity tests on core samples and between two boreholes perpendicular to the future pillar wall has been performed. The velocities indicate that the excavation disturbed zone is thin. If the dynamic Young's modulus is calculated from the velocities between the two boreholes approximately 3 m apart it is found to be of the same magnitude as the static one measured on intact rock. The reason is probably the low fracturing and that the fractures are either sealed or compressed due to the quite high stress field. It can be concluded that the modulus for the pillar volume should be at least in the same order as the one derived from the convergence measurements. A high modulus in the experiment volume is positive since lower temperatures can be used for the stress increase necessary to initiate brittle spalling. A selection of the parameters derived from the characterisation to be used in the numerical modelling is presented. The choice of the respective values is discussed in the respective section in this report

  13. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle [Golder Associates AB, Uppsala (Sweden); Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    give similar results to what's earlier have been derived on the Aespoe diorite. Only a few compressive strength tests have been done on rock samples collected close to the shear zone which is mostly due to the lack of representative sections of intact rock in the pillar. The strength of the altered rock is approximately 50-60% of the intact diorite. The results of the testing of the thermal properties are good and lies well within what can be expected of diorite. Nothing in the results from the laboratory programme has indicated that the chosen experiment volume would be unsuitable, it is important to take the heterogenity in consideration. The P-wave velocity tests on core samples and between two boreholes perpendicular to the future pillar wall has been performed. The velocities indicate that the excavation disturbed zone is thin. If the dynamic Young's modulus is calculated from the velocities between the two boreholes approximately 3 m apart it is found to be of the same magnitude as the static one measured on intact rock. The reason is probably the low fracturing and that the fractures are either sealed or compressed due to the quite high stress field. It can be concluded that the modulus for the pillar volume should be at least in the same order as the one derived from the convergence measurements. A high modulus in the experiment volume is positive since lower temperatures can be used for the stress increase necessary to initiate brittle spalling. A selection of the parameters derived from the characterisation to be used in the numerical modelling is presented. The choice of the respective values is discussed in the respective section in this report.

  14. Metalliferous deposits of the greater Helena mining region, Montana

    Science.gov (United States)

    Pardee, Joseph Thomas; Schrader, F.C.

    1933-01-01

    out to the neighboring wide intermontane valleys. The area is underlain mostly by shale, sandstone, and limestone of the upper part of the Belt series. Beds of Paleozoic and Mesozoic age occur south of the Belt area and extend from Helena west and northwest. The igneous rocks of the area include diorite and gabbro sills and dikes of probable Cretaceous age, extrusive andesite that is probably Oligocene or Miocene, and stocks of quartz monzonite, granodiorite, and quartz diorite, probably of Oligocene or Miocene age. The ore deposits of the northern districts are chiefly lodes that are valuable for gold and silver but contain some lead and copper. In the Ophir district bodies of gold and silver ore occur mainly in limestone near a body of quartz monzonite. In the Scratchgravel Hills and Grass Valley districts veins of gold quartz and veins containing lead-silver ore occur in quartz monzonite and in the adjoining metamorphic rocks. In the Austin district lodes containing gold; silver, lead, and copper are found in limestone near intrusive quartz monzonite. An unusual mineral in one of these lodes is corkite, a hydrous sulphate of lead containing arsenic. A small stock of quartz diorite in the Marysville district has invaded and domed Belt rocks. Marginal and radial fractures formed during the cooling and contraction of the igneous body became the receptacles of gold and silver veins, one of which, the Drumlummon, has produced $16,000,000. The veins filled open fractures and are characterized by a gangue of platy calcite and quartz. Lodes in Towsley Gulch in the western part of the district contain lead in addition to gold. In the Gould district a small stock of the granodiorite has invaded the Belt rocks and caused the deposition of veins similar to those near Marysville. In the Heddleston district lodes valuable for gold, silver, lead, and copper occur in Belt sedimentary rocks and diorite, some of them associated with porphyry dikes. In the Wolf Creek district veins

  15. Zircon and baddeleyite from the economic ultramafic-mafic Noril'sk-1 intrusion (Russia): Hf-isotope constraints on source composition

    Science.gov (United States)

    Malitch, K. N.; Belousova, E. A.; Badanina, I. Yu.; Griffin, W. L.

    2012-04-01

    The ultramafic-mafic Noril'sk-1 intrusion in the northwestern part of the Siberian Craton (Russia) represents one of three known Noril'sk-type, ore-bearing intrusions, which host one of the world's major economic sulphide platinum-group-element (PGE)-Cu-Ni deposits. Zircon and baddeleyite dated previously both by SHRIMP (i.e. 248.0 ± 3.7 Ma, Campbell et al. 1992) and ID-TIMS (251.1 ± 3.6 Ma, Kamo et al. 1996) have been restricted to one lithology (e.g. leucogabbro) of the Noril'sk-1 intrusion. To better constrain the age of igneous event and sources involved in its generation our multi-technique study utilized ten rock samples characteristic of unmineralized and mineralized lithologies. The rocks investigated comprise (from top to bottom) gabbro-diorite (sample N1-1), leucogabbro (N1-3), olivine-free gabbro (N1-2 and N1-4), olivine-bearing gabbro (N1-5), olivine gabbro (N1-6), plagiowehrlite and plagiodunite (N1-7), taxitic-textured rocks comprising melanotroctolite, olivine gabbro with relics of ultramafic rocks (N1-8, N1-9) and contact fine-grained gabbro (N1-10). Sulphide PGE-Cu-Ni ores occur in ultramafic (N1-7) and taxitic-textured rocks (N1-8 and N1-9), which have thickness of about 17 m, whereas the low-sulphide horizon of about 1 m thick occurs in the upper part of intrusion (N1-3). In situ U-Pb analyses of zircon from these rocks, combined with detailed study of crystal morphology and internal structure, identify four zircon populations (Malitch et al. 2012). The U-Pb ages of baddeleyite and the defined zircon populations cover a significant time span, from Late Paleozoic to Early Mesozoic (e.g., 290 ± 2.8; 261.3 ± 1.6; 245.7 ± 1.1; 236.5 ± 1.8 and 226.7 ± 0.9 Ma). The established distribution of U-Pb ages implies that crystallization of baddeleyite and zircon corresponds to several stages of protracted evolution of ultramafic-mafic magmas at deep-seated staging chambers and/or probably characterizes interaction of distinct magmas during formation

  16. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2014-10-01

    Full Text Available Introduction There is an iron mining complex called Shahrak 60 km east of Takab town, NW Iran. The exploration in the Shahrak deposit (general name for all iron deposits of the area started in 1992 by Foolad Saba Noor Co. and continued in several periods until 2008. The Shahrak deposit comprising 10 ore deposits including Korkora-1, Korkora-2, Shahrak-1, Shahrak-2, Shahrak-3, Cheshmeh, Golezar, Sarab-1, Sarab-2, and Sarab-3 deposits Sheikhi, 1995 with total 60 million tons of proved ore reserves. The Fe grade ranges from 45 to 65% (average 50%. The ore reserves of these deposits vary and the largest one is Korkora-1 with 15 million tons of 55% Fe and 0.64% S. The Korkora-1 ore deposit is located in western Azarbaijan and Urumieh-Dokhtar volcanic zone, at the latitude of 36°21.8´, and longitude of 47°32´. Materials and methods Six thin-polished sections were made on magnetite, garnet, and amphibole for EPMA (Electron Probe Micro Analysis. EPMA was performed using a JEOL JXA-733 electron microprobe at the University of New Brunswick, Canada, with wavelength-dispersive spectrometers. Results and discussion Outcropped units of the area are calc-alkaline volcanics of rhyolite, andesite and dacite and carbonate rocks of Qom Formation in which intrusion of diorite to granodiorite and quartzdoirite caused contact metamorphism, alteration plus skarnization and formation of actinolite, talc, chlorite, phlogopite, quartz, calcite, epidote and marblization in the vicinity of the ore deposit. Iron mineralization formed at the contacts of andesite and dacite with carbonates in Oligo-Miocene. The study area consists of skarn, metamorphic rocks, and iron ore zones. The shape of the deposit is lentoid to horizontal with some alteration halos. The ore occurred as replacement, massive, disseminated, open-space filling and breccia. The ore minerals of the deposit include low Ti-magnetite (0.04 to 0.2 wt % Ti, minor apatite, and sulfide minerals such as pyrite

  17. Mineralogy and skarnification processes at the Avan Cu-Fe Skarn, northeast of Kharvana, NW Iran

    Directory of Open Access Journals (Sweden)

    Mir Ali Asghar Mokhtari

    2017-02-01

    Full Text Available Introduction The Avan Cu-Fe skarn is located at the southern margin of Qaradagh batholith, about 60 km north of Tabriz. The Skarn-type metasomatic alteration is the result of Qaradagh batholith intrusion into the Upper Cretaceous impure carbonates. The studied area belongs to the Central Iranian structural zone. In regional scale, the studied area is a part of the Zangezour mineralization zone in the Lesser Caucasus. Several studies (Karimzadeh Somarin and Moayed, 2002; Calagari and Hosseinzadeh, 2005; Mokhtari, 2008; Baghban Asgharinezhad, 2012; Mokhtari, 2012 including master’s theses and research programs have been done on some skarns in the Azarbaijan area considering their petrologic and mineralization aspects. However, before this study, the Avan skarn aureole has not been studied in detail. In this paper, various geological aspects of the Avan skarn including mineralogy, bi-metasomatic alteration, metasomatism and mineralization during the progressive and retrograde stages of the skarnification processes have been studied in detail. Research Method This research consists of field and laboratory studies. Field studies include preparation of the geological map, identifying the relationship between the intrusion and the skarn aureole, identifying the relationship between different parts of the skarn zone and also collecting samples for laboratory studies. Laboratory studies include petrography, mineralography and microprobe studies. Cameca SX100 Microprobe belonging to Geological Survey of the Czech Republic was used in order to determine the chemical composition of the calc-silicate minerals such as pyroxene and garnet in garnet skarn and pyroxene- garnet skarn sub-zones. Discussion and conclusion Qaradagh batholith is composed of discrete acid to mafic phases including gabbro, diorite, quartz diorite, quartz monzonite, quartz monzodiorite, tonalite, granodiorite, monzogranite and granite porphyry which is dominated by granodiorite

  18. Alternative DFN model based on initial site investigations at Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. [Itasca Consultants, Ecully (France); Davy, S.A.P.; Bour, O.; Dreuzy, J.R. de [Geosciences, Rennes (France)

    2004-12-01

    In this report, we provide a first-order analysis of the fracture network at the Simpevarp site. The first order model is the fracture distribution function, noted, fdf, which provides the number of fractures having a given orientation and length, and belonging to a given volume of observation. The first-order distribution model does not describe higher-order correlation between fracture parameters, such as a possible dependency of fracture length distribution with orientations. We also check that most of the information is contained in this 1st-order distribution model, and that dividing the fracture networks into different sets do not bring a better statistical description. The fracture distribution function contains 3 main distributions: the probability distribution of fracture orientations, the dependency on the size of the sampling domain that may exhibit non-trivial scaling in case of fractal correlations, and the fracture-length density distribution, which appears to be well fitted by a power law. The main scaling parameters are the fractal dimension and the power-law exponent of the fracture length distribution. The former was found to be about equal to the embedding dimension, meaning that fractal correlations are weak and can be neglected in the DFN model. The latter depends on geology, that is either lithology or grain size, with values that ranges from 3.2 for granite-like outcrops to 4 for diorite or monzodiorite outcrops, as well as for the large-scale lineament maps. When analyzing the consistency of the different datasets (boreholes, outcrops, lineament maps), we found that two different DFNs can be described: the first one is derived from the fdf of the outcrop with fine-grained size lithology, and is valid across all scales investigated in this study, from the highly-fractured cores to large-scale maps; the second one is derived from the fdf of the outcrops with coarse-grained size lithology, and is found consistent with cores that present the

  19. Discriminations of Younger Granitic Masses at Gabal Qattar Area, North Eastern Desert, Egypt, Using Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Wasfi, S.A.; Lliase, E.L.; Mousa, M.I.

    2009-01-01

    Gabal Qattar area is located in the north Eastern Desert of Egypt between Latitudes 26 degree 52 and 27 degree 08 N, and Longitudes 33 degree 13 and 33 degree 25 E. The exposed rock units, there, from the oldest to the youngest, are meta volcanics; granodiorites- diorite complex; Hammamat sediments and younger granites. Most of the area is densely traversed by felsic and mafic dykes. The Qattarian younger granites are divided into seven granitic areas according to their spectral characters to facilitate the studying and delineating physical characteristic differences between these areas as well as to throw a light about the best conditions of exploration for radioactive mineralizations. This study is based on brightness Digital Number values (DNs) of the granitic areas, predominant trends and densities of the structural lineaments, shape and type of weathering products. Three areas of these seven younger granite areas form Gabal (G.) Qattar, and designated Gr 1, Gr 3 and Gr 4, where the other granite areas which form the G. Urn Dissi (Gr 2), G. Thelma (Gr 5), G. Abu Samyuk (Gr 6) and G. Ayn AI Ruwayshed (Gr 7). Photo geologically, these seven granite areas show some differences in shape, texture, predominant trends and densities of structural lineaments and ability of weathering. This study shows that the seven granite areas could be gathered into three main groups according to their DNs values of Landsat ETM+ spectral bands especially of band 5, where these three main groups representing different, and mainly coincide with the three granite phases previously delineated according to chronological field relation, petrographic and geochemical studies. The Gr 1 area contains all uranium occurrences from locations I to V. This area is characterized by semi circular shape of NW trend, massive appearance with high relief peaks, and high fracture density, where the N 55 degree E, N 5 degree E, N 45 degree E and N 45 degree W are the predominant trends. Some of the N 55

  20. Source-to-sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia)

    Science.gov (United States)

    Babault, Julien; Viaplana-Muzas, Marc; Legrand, Xavier; Van Den Driessche, Jean; González-Quijano, Manuel; Mudd, Simon M.

    2018-05-01

    The island of New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. Recent studies have shown that rapid subduction, uplift and exhumation events took place in response to rapid, oblique convergence between the Pacific and the Australian plates. The tectonic and sedimentary evolution of Cenderawasih Bay, in the northwestern part of the New Guinea Island is still poorly understood: this bay links a major structural block, the Kepala Burung block, to the island's Central Ranges. Previous studies have shown that Cenderawasih Bay contains a thick (>8 km) sequence of undated sediments. One hypothesis claims that the embayment resulted from a 3 Ma opening created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate. Alternatively, the current configuration of Cenderawasih Bay could have resulted from the southwest drift of a slice of volcanics and oceanic crust between 8 and 6 Ma. We test these hypotheses using (i) a geomorphologic analysis of the drainage network dynamics, (ii) a reassessment of available thermochronological data, and (iii) seismic lines interpretation. We suggest that sediments started to accumulate in Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the inception of growth of the Central Range, beginning at 12 Ma, resulting in sediment accumulation of up to 12,200 m. This evidence is more consistent with the second hypothesis, and the volume of sediment accumulated means it is unlikely that the embayment was the result of recent (2-3 Ma) rotation of structural blocks. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. Ophiolites, volcanic arc rocks and diorites contribute minor proportions. From the unroofing paths in the Central Range we deduce two rates of solid phase

  1. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition

    Science.gov (United States)

    Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan

    2018-03-01

    Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials

  2. Regolith formation rate from U-series nuclides: Implications from the study of a spheroidal weathering profile in the Rio Icacos watershed (Puerto Rico)

    Science.gov (United States)

    Chabaux, F.; Blaes, E.; Stille, P.; di Chiara Roupert, R.; Pelt, E.; Dosseto, A.; Ma, L.; Buss, H. L.; Brantley, S. L.

    2013-01-01

    A 2 m-thick spheroidal weathering profile, developed on a quartz diorite in the Rio Icacos watershed (Luquillo Mountains, eastern Puerto Rico), was analyzed for major and trace element concentrations, Sr and Nd isotopic ratios and U-series nuclides (238U-234U-230Th-226Ra). In this profile a 40 cm thick soil horizon is overlying a 150 cm thick saprolite which is separated from the basal corestone by a ˜40 cm thick rindlet zone. The Sr and Nd isotopic variations along the whole profile imply that, in addition to geochemical fractionations associated to water-rock interactions, the geochemical budget of the profile is influenced by a significant accretion of atmospheric dusts. The mineralogical and geochemical variations along the profile also confirm that the weathering front does not progress continuously from the top to the base of the profile. The upper part of the profile is probably associated with a different weathering system (lateral weathering of upper corestones) than the lower part, which consists of the basal corestone, the associated rindlet system and the saprolite in contact with these rindlets. Consequently, the determination of weathering rates from 238U-234U-230Th-226Ra disequilibrium in a series of samples collected along a vertical depth profile can only be attempted for samples collected in the lower part of the profile, i.e. the rindlet zone and the lower saprolite. Similar propagation rates were derived for the rindlet system and the saprolite by using classical models involving loss and gain processes for all nuclides to interpret the variation of U-series nuclides in the rindlet-saprolite subsystem. The consistency of these weathering rates with average weathering and erosion rates derived via other methods for the whole watershed provides a new and independent argument that, in the Rio Icacos watershed, the weathering system has reached a geomorphologic steady-state. Our study also indicates that even in environments with differential

  3. The differentiation process of the I-type granitoids in southwest Japan and New South Wares in Australia

    Science.gov (United States)

    Kawakatsu, K.; Iwamoto, Y.; Ebisu, S.; Hasegawa, M.; Hiraiwa, N.; Kawakatsu, T.; Kitano, A.; Masuta, T.; Ootsubo, H.; Wakazono, R.

    2013-12-01

    Cretaceous-Paleogene Granitoids in the inner zone of southwest Japan have been divided into two series: the magnetite series that is distributed mainly in the San-in belt and the ilmenite series that is distributed mainly in San-yo belt. For 8 years, we have been investigating the two series to clear their processes of magmatic differentiation. Recently, we discovered oscillatory zoned structure, exsolution lamellae of amphibole, and relics of pyroxene left in the core of amphibole from Harima granodiorite, Nunobiki granodiorite (San-yo belt) and Daito-Yokota quartz diorite (San-in belt). The amphibole that has microstructure coexists with magnetite, ilmenite and pyrrhotite. We compared the two series for crystallization and re-equilibrium by ion substitution using the microstructure of the amphibole as 'time measure' during the differentitation process of acidic magma. While magnetites and ilmenites coexist with the core of the amphiboles, the oxygen fugacity of the San-yo belt magma was low until the later stage of magmatic differentiation where H2S from the Earth's crust mixed with it. In the subsolidus process, hydrothermal solutions circulated. On the other hand, the oxygen fugacity of the San-in belt magma began to rise in the early stage of magmatic differentiation. In the later stage, mafic magma was contaminated with SO2. The rims of amphiboles coexist with pyrrhotites in both of belts. Furthermore, the re-equilibrium of minerals underwent progressive oxidation and hydrothermal fluid circulated actively in the subsolidus process. Bingie Bingie Point at New South Wares (Eurobodalla National Park) is a peninsula about a meter around. The plutonic rocks were formed in the Devonian period and belong to the magnetite series. They are classified I-type granitoids such as those found in the inner zone of southwest Japan. They have only trace amounts of oxide minerals and pyrrhotite. The amphiboles of the granitoids have oscillatory zoned structures at pale green

  4. Interpretasi Mineralisasi Epitermal Berdasarkan Studi Ubahan Hidrotermal dan Tekstur Urat Kuarsa di Kawasan Hutan Lindung Taliwang, Nusa Tenggara Barat

    Directory of Open Access Journals (Sweden)

    Danny Zulkifli Herman

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no3.20072Taliwang conservation forest, West Nusa Tenggara, is particularly covered by volcanic rocks consisting of alternated breccia and tuff. The breccia is composed of andesitic – dioritic clasts and matrix of fine-grained to lapilli tuff which had partially been hidrothermally altered and invaded by gold bearing quartz veins. Outcrops of quartz veins are commonly limonitized, trending nearly east-west and north-south with respectively dip of 70o and 85o. Identification of quartz veins originated from people mining’s waste leads to a prediction that there are quartz stockworks beneath the earth surface (50 – 100 m depth in the conservation forest area, from which quartz veins penetrated the illite-paragonite-calcite-siderite- nacrite altered country rock. Textures of quartz veins were identified such as comb with some coarse- grained euhedral crystals, sugary/saccharoidal/fine grained crystalline quartz and ghost-bladed. Veins and host rocks generally contain disseminated and spotted pyrites. Evaluation of quartz textures, altered rocks analysis (PIMA method, fluid inclusion studies and chemical analysis (AAS method of selective altered rocks/quartz vein samples exhibits that the alteration and mineralization processes might occur in an epithermal system, connecting with a change of hydrothermal fluids from near neutral into acid conditions at a temperature ranging from 231 to 185oC. Alteration of illite-paragonite-kalsit-siderite is suggested as a result of reaction between host rock and a near neutral fluid, whilst nacrite (kaolin group or argillic is a result of reaction between host rock and an acid fluid, within a mixing zone of meteoric fluid and condensed acid gas released during boiling process of hydrothermal fluid in the depth. On the basis of salinity ranging from 0.9 to 2.2 equivalent wt.% NaCl of fluid inclusion, it is predicted that the deposition of gold bearing quartz and associated

  5. Overview of Hole GT3A: The sheeted dike/gabbro transition

    Science.gov (United States)

    Abe, N.; Harris, M.; Michibayashi, K.; de Obeso, J. C.; Kelemen, P. B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.; Matter, J. M.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole GT3A (23.11409 N, 58.21172 E) was drilled by the Oman Drilling Project (OmDP) into Wadi Abdah of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientifi1c Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT3A was diamond cored in February to March 2017 to a total depth of 400 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT3A recovered predominantly sheeted dikes and gabbros and has been sub-divided into 4 igneous groups based on the abundance of gabbro downhole. Group 1 (Upper Sheeted Dike Sequence) occurs from 0 to 111.02 m, group II (Upper Gabbro Sequence) is from 111.02 to 127.89 m, group III (Lower Sheeted Dike Sequence) is between 127.89 to 233.84 m and group IV (Lower Gabbro Sequence) is from 233.84 to 400 m. Group II and IV are both associated with almost equal proportions of dikes to gabbroic lithologies, whereas group I & III have >95% dikes. The sheeted dikes were logged as either basalt (46.9 %) or diabase (26.2 %) depending on the predominant grain size of the dike. Gabbroic lithologies include (most to least abundant) gabbro, oxide gabbro and olivine gabbro. Other lithologies present include diorite (7.5%) and tonalite and trondhjemite (1%). Tonalite and trondhjemite are present as cm-sized dikelets and are found within group II and IV. Gabbroic lithologies generally display a varitextured appearance and are characterised by the co-existence of poikilitic and granular domains. Detailed observations of chilled margins and igneous contacts reveal

  6. Rhyacian evolution of the eastern São Luís Craton: petrography, geochemistry and geochronology of the Rosário Suite

    Directory of Open Access Journals (Sweden)

    Bruna Karine Correa Nogueira

    Full Text Available ABSTRACT: The São Luís Cráton comprises an area between northeast Pará state and northwest Maranhão that exposes Paleoproterozoic granitic suites and meta-volcanosedimentary sequences. In the east of this geotectonic unit, about 70 km south of São Luís, there is a portion of the São Luís Craton, represented by the intrusive Rosario Suite (RS. This work is focused on rocks of this suite, including petrographic, lithochemical and geochronological studies to understand the crustal evolution of these granitoid rocks. The rock spectrum varies from tonalitic to granodioritic, quartz dioritic and granitic compositions, and there are partial structural and mineralogical changes related to deformation along transcurrent shear zones. The geochemical studies show granitic metaluminous compositions of the calc-alkaline series with I-type affinity typical of magmatic arc. Rare earth elements show marked fractionation and slight Eu positive or negative anomalies (Eu/Eu* = 0.82 to 1.1. Zircon U-Pb data provided consistent ages of 2165 ± 7 Ma, 2170 ± 7 Ma, 2170 ± 7 Ma, 2161 ± 4 Ma and 2175 ± 8 Ma, dating emplacement of these granitoids as Paleoproterozoic (Rhyacian. Sm-Nd isotopic data provided model ages (TDM of 2.21 to 2.31 Ga with positive values of εNd +1.9 to +3.2 (t = 2.17 Ga, indicating predominantly Rhyacian crustal sources for the parental magmas, similar to those ones found in other areas of the São Luís Craton. The data, integrated with published geological and geochronological information, indicate the occurrence of an important continental crust formation event in this area. The Paleoproterozoic evolution between 2.17 and 2.15 Ga is related to the Transamazonian orogeny. The granitoids of the Rosario Suite represent the main phase of continental arc magmatism that has continuity in other parts of the São Luís Craton and can be correlated with Rhyacian accretionary magmatism in the northwestern portion of the Amazonian Craton that

  7. Crustal evolution of granitoids and gneisses from the Cambaizinho belt, southern Brazil: Review zircon Pb-Pb evaporation ages and Pb-Nd-Sr isotopes

    International Nuclear Information System (INIS)

    Remus, M.V.D; Macambira, M.B; Hartmann, L.A.; Beilfuss, M

    2001-01-01

    Deformed granitoids and gneisses from the Cambai Complex (900-700 Ma) along Cambaizinho Creek and in the Vila Nova do Sul region, state of Rio Grande do Sul, Brazil, were formed in a remarkably short time, about 10 m.y., between 704±13 and 697±3 Ma. The data base of this work includes eighteen zircon Pb/Pb evaporation analyses, five Pb isotope in feldspar and whole rock. The oldest known rocks in the region are polydeformed dioritic gneisses dated by conventional U-Pb zircon at 704±13 Ma. New Pb-Pb zircon evaporation data on the late transcurrent, less deformed and more evolved granitoids (Sanga do Jobim Granitoids) yield a 697± Ma age and indicates that the evolution of the plutonic magmatism in the area was nearly contemporaneous. These data contrast with previous interpretations based on Rb-Sr data which considered that these rock associations were formed during a longer time period (700-640 Ma). All these granitoids intruded the supracrustal sequence. These granitoids yield a minimum age of about 700 Ma for the formation of the supracrustal sequence and its regional dynamothermal metamorphism. Lead isotope composition of K-feldspar from Sanga do Jobim Granitoids plot close to, but slightly below the lead isotope evolution curve of orogeny in the Zartmann and Doe model (1981). This indicates that the setting for these granitoids was that of a juvenile magmatic arc. These new data plus previous data in the region also corroborate that the crustal evolution involved juvenile crust accreted between 760-700 Ma. In contrast, the Cacapava and Sao Sepe Granites intruded the supracrustal sequences along the eastern side of the Sao Gabriel Block at 562 Ma and 550 Ma, respectively, and show Pb and Nd isotope signatures from an old basement. This evidence suggests that the juvenile terrane was thrusted over the older basement situated along the eastern part of the shield during the Dom Feliciano collisional orogeny at about 620-590 Ma (au)

  8. Geochronology and geochemistry of early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East: Petrogenesis and tectonic implications

    Science.gov (United States)

    Xu, Ting; Xu, Wen-Liang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.

    2018-02-01

    This paper presents new geochronological and geochemical data for early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East, with the aim of elucidating the Paleozoic evolution and tectonic attributes of the Khanka Massif. New U-Pb zircon data indicate that early Paleozoic magmatism within the Khanka Massif can be subdivided into at least four stages: 502, 492, 462-445, and 430 Ma. The 502 Ma pyroxene diorites contain 58.28-59.64 wt% SiO2, 2.84-3.69 wt% MgO, and relatively high Cr and Ni contents. Negative εHf(t) values (- 1.8 to - 0.4), along with other geochemical data, indicate that the primary magma was derived from partial melting of mafic lower crust with the addition of mantle material. The 492 Ma syenogranites have high SiO2 and K2O contents, and show positive Eu anomalies, indicating the primary magma was generated by partial melting of lower crust at relatively low pressure. The 445 Ma Na-rich trondhjemites display high Sr/Y ratios and positive εHf(t) values (+ 1.8 to + 3.9), indicating the primary magma was generated by partial melting of thickened hydrous mafic crust. The 430 Ma granitoids have high SiO2 and K2O contents, zircon εHf(t) values of - 5.4 to + 5.8, and two-stage model ages of 1757-1045 Ma, suggesting the primary magma was produced by partial melting of heterogeneous Proterozoic lower crustal material. The geochemistry of these early Paleozoic intrusive assemblages indicates their formation in an active continental margin setting associated with the subduction of a paleo-oceanic plate beneath the Khanka Massif. The εHf(t) values show an increasingly negative trend with increasing latitude, revealing a lateral heterogeneity of the lower crust beneath the Khanka Massif. Regional comparisons of the magmatic events indicate that the Khanka Massif in the Russian Far East has a tectonic affinity to the Songnen-Zhangguangcai Range Massif rather than the adjacent Jiamusi Massif.

  9. Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Zhunsujihua granitoid intrusions associated with the molybdenum deposit, northern Inner Mongolia, China: implications for petrogenesis and tectonic setting

    Science.gov (United States)

    Zhang, Xiaojun; Lentz, David R.; Yao, Chunliang; Liu, Rui; Yang, Zhen; Mei, Yanxiong; Fan, Xianwang; Huang, Fei; Qin, Ying; Zhang, Kun; Zhang, Zhenfei

    2018-03-01

    The Zhunsujihua porphyry molybdenum deposit, located in northern Inner Mongolia of China that belongs to Central-Asian Orogenic Belt (CAOB), is the only Mo deposit formed in the late Carboniferous in this area so far. Its mineralization is mainly restricted to the Zhunsujihua granitoid intrusions, which are composed of the main granodiorite (GD) and crosscutting, virtually coeval minor syn-ore leucogranite (LG) and diorite porphyry (DP) dykes. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 300.0 ± 2.0, 299.3 ± 2.0, and 299.0 ± 2.6 Ma for the GD, LG, and DP, respectively. The major and trace element lithogeochemical data show that the GD and LG are metaluminous to weakly peraluminous, high-K calc-alkaline series with I-type granite characteristics, strongly oxidized, with low concentrations of Ba, Nb, Sr, P, and Ti and elevated K and Rb contents, indicating typical arc magmatic features. The LG is a product derived by extensive fractional crystallization of a parental magma similar to the GD as evident from the lower Eu/Eu*, Nb/Ta, Zr/Hf, and T Zr. The moderately altered DP exhibits high concentrations of K, Rb, Cs, LREE, Y, and low Sr/Y, with a positive ɛ Nd (300 Ma), which indicates a mantle or juvenile source associated with an arc setting. The Sr-Nd-Hf isotope data show low I Sr (0.70406-0.70461) and moderate ɛ Nd (300 Ma) (-0.9 to 1.5) for the GD and LG, and relatively high ɛ Hf (300 Ma) values (-3.6 to +11.2) for the GD, suggesting the magma mainly originated from the juvenile lower crust that was derived from depleted mantle, with a minor component of ancient continental crust. Lead isotope data have characteristics of a lower crust source with minor contamination by upper crustal material. Combined with previous research, the Zhunsujihua granitoid intrusions developed in an intracontinental volcanic arc (Uliastai) associated with northward subduction of the Paleo-Asian Ocean plate during late Carboniferous to early Permian; this suggests

  10. A Preliminary Heat Flow Model for Cooling a Batholith near Ica, Peru

    Science.gov (United States)

    Gonzalez, L. U.; Clausen, B. L.; Molano, J. C.; Martinez, A. M.; Poma, O.

    2014-12-01

    This research models the cooling of a suite in the Linga Super-unit located at the north end of the Arequipa segment in the Cretaceous Peruvian Coastal Batholith. The monzogabbro to granite Linga suite is approximately 50 km long and 15 km wide, with an estimated vertical extent of about 5 km originally intruded to a depth of 3 km. The emplacement was in andesitic volcanics on the west and the Pampahuasi diorite Super-unit on the east and has incorporated earlier gabbroic bodies. The Linga suite is thought to be the result of a sequence of three pulses: an elongate unit to the west then two elliptical units to the northeast and southeast. The data for modeling comes from field observations on internal and external contacts, some well-defined magma chamber walls and roof, pendant and stoped blocks, magma chamber zoning, the nature and distribution of enclaves and xenoliths, magmatic fabric, evidences of magma mingling, rock porosity, mineralogical associations in metamorphic aureoles, extensive mineralization and brecciated conduits, and the types of hydrothermal alteration varying with distance from contacts. More than forty hand samples, thin sections, and geochemical analyses were used to estimate water content, magma and country rock temperature, liquid density, and viscosity. Further data will come from: zircon U-Pb ages for country rock and magma batch timeframes, fluid inclusions for magma pressure and temperature, and δ18O data for source of hydrothermal fluids. Simple heat conduction calculations using MATLAB and HEAT 3D for a single tabular intrusion estimated a cooling time to solidus of about 300 k.y. More complex modeling includes magma convection and multiple intrusions. Extensive veining and pervasive alteration suggested the use of HYDROTHERM to model possible additional heat flow effects from hydrothermal fluids. Extensive propylitic and significant potassic alteration were observed and, with TerraSpec infrared spectroscopy to identify

  11. Mineralogy of the Chaparra IOCG deposit, southern Peru

    Science.gov (United States)

    Yáñez, Juan; Alfonso, Pura

    2014-05-01

    The Chaparra IOCG, located in southern Peru, near Chala, is mined and exploited by small-scale miners for gold, however, it has not been studied until now. Here we present a preliminary geological and mineralogic study of this deposit. Powder X ray diffraction, electron microscopy and electron microprobe were used to characterize the mineralization. This deposit is hosted in magmatic rocks from the Coastal Batholith. Host rocks belong to the Linga Super-unit, of Upper Cretaceous age and are mainly constituted by monzonites, monzogabbros and diorites. Major alterations are the propylitic (chlorite - albite - quartz), advanced argillic (jarosite - natrojarosite) and sericitic (muscovite-sericite-quartz). Gypsum and other alteration minerals such as potassium feldspar and phlogopite, vermiculite and natrolite are widespread. Mineralization occurs mainly in quartz veins up to 1 m thick, emplaced filling fractures. Ore mineralogy is mainly composed of hematite, goethite, and sulphides (mainly pyrite, chalcopyrite and covellite). Gold and REE-rich minerals also occur. Native gold can reach up to 1 mm in size, but usually is few μm in size. Its composition is 82-92 wt% Au, up to 12 wt% of Ag and Fe can reach up to 4 wt%. The paragenetic sequence in the Chaparra deposit was divided into three stages: (I) primary mineralization, (II) Fracture filling, and (III) supergene alteration. The sequence begins with the crystallization of magnetite, quartz, pyrrhotite and pyrite. Subsequently, native gold, native Bismuth and uraninite crystallices together with the former minerals, in which are enclosed. Later, monacite is formed, being enclosed in quartz. Pyrite also presents small grains of chalcopyrite inside. Galena, sphalerite and arsenopyrite also are formed, whether included in pyrite or outside. Scarce grains of sakuraiite also occur in this stage. Structural formula of sakuraiie from this deposit is Cu 01.78-1.90 Zn 0.07-12Fe 1.16-124In 0.22-0.26Sn 0.79-082S4). Indium

  12. Oxygen and Hydrogen Isotope Values for Unaltered and Hydrothermally Altered Samples from the Cretaceous Linga Plutonic Complex of the Peruvian Coastal Batholith near Ica.

    Science.gov (United States)

    Gonzalez, L. U.; Holk, G. J.; Clausen, B. L.; Poma Porras, O. A.

    2015-12-01

    A portion of the Peruvian Coastal Batholith near Ica, Peru is being studied using stable isotopes to determine the source of hydrothermal fluids that caused propylitic, phyllic, and potassic alteration in the mineralized Linga plutonic complex. Sources of hydrothermal fluids and water/rock ratios are estimated to understand the role of such fluids in alteration during cooling. A set of 64 mineral analysis from 18 igneous samples, 7 unaltered and 11 altered, were analyzed for D/H and 18O/16O isotopes. The δ18O values for whole rocks with no apparent alteration vary from +6.8‰ to +7.9‰, with sets of δ18O mineral values indicating isotopic equilibrium at closure temperatures from 571°C to 651°C, and no interaction with meteoric water. This conclusion is bolstered by hornblende (-87‰ to -64‰) and biotite (-81‰ to -74‰) δD values Most δ18O values for samples with hydrothermal alteration suggest that alteration results from magmatic fluids; however, several analyses indicate interaction with other fluids. The high δ18O values for plagioclase (+9.3‰) and hornblende (+6.3‰) from a metamorphic aureole in volcanic host rock near a plutonic intrusion may be due to interaction with metamorphic or low temperature magmatic fluids. Plagioclase (+2.6‰) and biotite (+0.1‰) δ18O values in a sample from the Jurassic volcanic envelope indicate a significant effect from meteoric-hydrothermal fluids. An altered monzonite yielded δ18O values for quartz (+5.5‰), K-spar (+5.6‰), and magnetite (+0.4‰), also suggesting interaction with meteoric fluids. A diorite from an area with strong epidotization produced an epidote δD value of -25.8‰ and a monzonite from a highly veined area has an epidote δD value of -36.1‰ suggesting interaction with sea water. This new data indicate that the Linga complex was primarily influenced by magmatic hydrothermal fluids, but metamorphic, meteoric, and sea water may have had some influence in producing alteration

  13. Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.

    2010-12-01

    The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into

  14. Shear-hosted base metal mineralisation at the Dana Peaks, Murchison Mountains, Fiordland, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.; Ashley, P.; Craw, D.

    2010-01-01

    Darran Suite dioritic, tonalitic and granodioritic plutonic rocks and schistose Loch Burn Formation volcaniclastic rocks in the central Murchison Mountains at the Dana Peaks have been affected by widespread biotite-sericite-chlorite-albite-quartz-pyrite ± carbonate ± epidote/clinozoisite ± titanite/rutile ± actinolite alteration. More intense, paler coloured sericite-albite-quartz-pyrite ± carbonate alteration is concentrated along orange weathered shear zones. Alteration assemblages are transitional between those commonly referred to as propylitic, potassic and phyllic. Altered rocks contain anomalous concentrations of copper, lead, zinc and silver over an area of c. 2.56 km. Metal concentrations 2-5 times those typical of Darran Suite plutonic rocks and the Loch Burn Formation are commonly associated with more extensive weak to moderate intensity alteration. Higher metal grades up to c. 0.5% copper, 1% zinc, 1.3% lead and 30 ppm silver are concentrated in or adjacent to the 1-5 m wide, more intensely altered shear zones which contain entrained lenses of pyritised country rock, breccias and quartz ± K-feldspar ± chlorite ± carbonate ± hematite ± tourmaline veins. Some mineralised rocks also contain traces of tungsten (2-7 ppm), arsenic (<5-35 ppm) and tellurium (0.2-5.4 ppm). Most samples lack detectable molybdenum (<3 ppm), gold (<0.004 ppm) or bismuth (<0.2 ppm), with atypical higher values (40, 0.03 and 50 ppm, respectively) generally restricted to the most intensely altered and/or deformed rocks. The mineralised rocks show a close spatial and temporal relationship with several narrow ductile shear zones that probably developed in the Early Cretaceous between c. 128 and 110 Ma. Mineralised shear zones form minor splays off larger shear zones that are part of a major intra-arc fault system, active along or near the boundary between inboard and outboard parts of the Median Batholith at this time. Traces of similar lead mineralisation are present at the

  15. P-T composition and evolution of paleofluids in the Paleoproterozoic Mag Hill IOCG system, Contact Lake belt, Northwest Territories, Canada

    Science.gov (United States)

    Somarin, A. Karimzadeh; Mumin, A. Hamid

    2014-02-01

    The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite-monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite-actinolite-apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz-sericite-pyrite), and propylitic (chlorite-epidote-carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper-gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite-actinolite-apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5-45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104-450 °C) and salinity (4.2-46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu-Ag-U-Zn-Co-Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by

  16. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China

    Science.gov (United States)

    Xiao, Xin; Zhou, Tao-fa; White, Noel C.; Zhang, Le-jun; Fan, Yu; Wang, Fang-yue; Chen, Xue-feng

    2018-03-01

    Xinqiao is a large copper-gold deposit and consists of two major mineralization types: stratabound and skarn. The skarn occurs along the contact between a quartz diorite intrusion and Carboniferous-Triassic limestone. Xinqiao has a strongly developed skarn zone, including endoskarn and exoskarn; the exoskarn is divided into proximal and distal exoskarn. We present systematic major, trace and rare earth element (REE) concentrations for garnets from the skarn zone, discuss the factors controlling the incorporation of trace elements into the garnets, and constrain the formation and evolution of the garnet from skarn zone in Xinqiao deposit. Grossular (Adr20-44Grs56-80) mostly occurs in endoskarn and has typical HREE-enriched and LREE-depleted patterns, with small Eu anomalies and low ∑REE. Garnets from the exoskarn show complex textures and chemical compositions. The composition of garnets range from Al-rich andradite (Adr63-81Grs19-47) to andradite (Adr67-98Grs2-33). Garnet in endoskarn has typical HREE-enriched and LREE-depleted patterns. Al-rich andradite in proximal skarn has small Eu anomalies and moderate ∑REE. Andradite from distal exoskarn shows strong positive Eu anomalies and has variable ∑REE. The U, Y, Fe and Al relationship with ∑REE shows that two mechanisms controlled incorporation of REE into the garnets: crystal chemistry (substitution and interstitial solid solution) mainly controlled in the endoskarn garnet (grossular) and the proximal exoskarn (Al-rich andradite), and fluid and rock chemistry (surface adsorption and occlusion) controlled REEs in the distal exoskarn. Furthermore, Al has a negative relationship with ∑REE indicating that REE3+ did not follow a coupled, YAG-type substitution into the garnets. Variations in textures and trace and rare earth elements of garnets suggest that the garnets in the endoskarn formed by slow crystal growth at low W/R ratios and near-neutral pH in a closed system during periods of diffusive metasomatism

  17. Exotic Members of Southern Alaska's Jurassic Arc

    Science.gov (United States)

    Todd, E.; Jones, J. V., III; Karl, S. M.; Box, S.; Haeussler, P. J.

    2017-12-01

    The Jurassic Talkeetna arc and contemporaneous plutonic rocks of the Alaska-Aleutian Range batholith (ARB) are key components of the Peninsular terrane of southern Alaska. The Talkeetna arc, considered to be a type example of an intra-oceanic arc, was progressively accreted to northwestern North America in the Jurassic to Late Cretaceous, together with associated components of the Wrangellia Composite terrane. Older Paleozoic and Mesozoic rock successions closely associated with the ARB suggest that at least part of the Peninsular terrane might be an overlap succession built on pre-existing crust, possibly correlative with the Wrangellia terrane to the east. However, the relationship between the Talkeetna arc, ARB, and any pre-existing crust remains incompletely understood. Field investigations focused on the petrogenesis of the ARB near Lake Clark National Park show that Jurassic to Late Cretaceous plutonic rocks commonly host a diverse range of mineralogically distinct xenolith inclusions, ranging in size from several cm to hundreds of meters. The modal fraction of these inclusions ranges from 50% in some outcrops. They are generally mafic in composition and, with few exceptions, are more mafic than host plutonic rocks, although they are observed as both igneous (e.g., gabbro cumulate, diorite porphyry) and metamorphic types (e.g., amphibolite, gneiss and quartzite). Inclusion shapes range from angular to rounded with sharp to diffuse boundaries and, in some instances, are found as planar, compositionally distinct bands or screens containing high-temperature ductile shear fabrics. Other planar bands are more segmented, consistent with lower-temperature brittle behavior. Comparison of age, geochemical fractionation trends, and isotope systematics between the inclusions and host plutons provides a critical test of whether they are co-genetic with host plutons. Where they are related, mafic inclusions provide clues about magmatic evolution and fractionation history

  18. Stable isotope (δ18O and δ2H) data for precipitation, stream water, and groundwater in Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Torres-Sanchez, Angel; Rosario-Torres, Manuel

    2014-01-01

    Puerto Rico is located in the northeastern Caribbean Sea (18.2 °N, 66.3 °W), with the Atlantic Ocean on its northern coast. The U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program study area in which most of these data were collected comprises the El Yunque National Forest and surrounding area of eastern Puerto Rico. Samples were collected in two forested watersheds, the Rio Mameyes and the Rio Icacos/Rio Blanco, on opposite sides of a ridge in the Luquillo Mountains on the eastern end of the island (fig. 1). Elevation in both watersheds ranges from sea level to approximately 1,000 meters (m). Near sea level, land use is mixed pasture, moist forest, and residential, grading to completely forested within the boundaries of El Yunque National Forest. Forest type changes with elevation from tabonuco to palo colorado to sierra palm to cloud forest above approximately 950 m (Murphy and others, 2012). The Rio Mameyes watershed is oriented north-northeast, and the basin is underlain by volcaniclastic bedrock (basaltic to andesitic volcanic sandstone/mudstone/conglomerate/breccia). The Rio Icacos/Rio Blanco watershed is oriented south-southeast. The Rio Icacos is one of the headwaters of the Rio Blanco and is underlain by quartz diorite. The lower Rio Blanco basin is underlain by andesitic volcaniclastic bedrock. This report also contains a long-term rain isotope dataset from the San Agustin site, in north-central Puerto Rico (fig. 1). Puerto Rico has a tropical climate dominated by easterly trade winds, and seasonal climate patterns affect the hydrology of the study area. The summer wet season is characterized by convective precipitation from tropical easterly waves, troughs, and cyclonic low-pressure systems, including tropical storms and hurricanes; in contrast, the drier winter season is characterized by trade-wind showers and frontal systems. The highest single-event rainfall totals tend to be associated with tropical storms

  19. Caracterización petrográfica y geoquímica y condiciones de deformación del plutón San Cristóbal, Sierra de Velasco (La Rioja, Argentina

    Directory of Open Access Journals (Sweden)

    Bellos, L. I.

    2010-12-01

    Full Text Available The San Cristóbal pluton is a 35 km2 granitic body that outcrops at the southestern tip of the Sierra de Velasco, located west of La Rioja city, Argentina. It is formed by monzogranites and syenogranites, together with scarce granodiorites, with medium to fine-grained, equigranular to slightly porphyritic textures. Their mineral assemblage consists of quartz + microcline + plagioclase + biotite ± muscovite + zircon + apatite + magnetite. The granite contains dioritic to tonalitic mafic enclaves. The central and eastern parts of the granite have been deformed by the NNW-SSE trending South Mylonitic shear zone formed by mylonitic rocks. The metamorphic host-rock is represented by scarce greenschist facies xenoliths and hornfels with the high T / P assemblage K-feldspar - cordierite - biotite ± sillimanite. The granites are calc-alkaline, weak- to moderately peraluminous, and formed as part of a continental magmatic arc developed along the active margin of western Gondwana during the Early Paleozoic. The depth of emplacement of the San Cristóbal pluton is estimated at ~12 km.

    El plutón San Cristóbal constituye un cuerpo granítico de 35 km2 que aflora en el extremo sudeste de la Sierra de Velasco, situada al oeste de la ciudad de La Rioja, Argentina. Está formado por monzogranitos y sienogranitos con escasas granodioritas, de texturas equigranulares de grano medio a fino a ligeramente porfíricas. La asociación mineral es cuarzo + microclino + plagioclasa + biotita ± moscovita + circón + apatito + magnetita. Contiene enclaves magmáticos máficos de composición diorítica a tonalítica. El granito fue afectado en su parte media y este por una zona de cizalla, formada por milonitas que integran la Faja Milonítica Sur, de rumbo NNO-SSE. La roca de caja se reconoce por xenolitos de esquistos y cuarcitas en facies esquistos verdes, y septos de corneanas con la paragénesis feldespato potásico cordierita

  20. Geochronology and geochemistry of the Borohoro pluton in the northern Yili Block, NW China: Implication for the tectonic evolution of the northern West Tianshan orogen

    Science.gov (United States)

    Wang, Meng; Zhang, Jinjiang; Zhang, Bo; Liu, Kai; Chen, Youxin; Zheng, Yanrong

    2018-03-01

    The closure of the North Tianshan Ocean between the Junggar Terrane and the Yili Block is a longtime debated issue in literature, because of the different understanding of the Carboniferous volcanic rocks in the northern margin of the Yili Block. This study presents new geochronological and whole-rock geochemical data for the granitic rocks from the Borohoro pluton to provide constraints on the tectonic regime for the northern West Tianshan during the Carboniferous. LA-ICP-MS U-Pb dating results reveal two magmatic phases for the Borohoro pluton. The former magmatic activity in the Early Carboniferous formed the fine-grained granodiorite (332 Ma). The later magmatic activity occurred during the Late Carboniferous (305-300 Ma), forming a diversity of granitic rocks, involving quartz diorite, granodiorite and granite. Geochemical and mineralogical studies reveal that the studied granitic rocks from the Borohoro pluton all belong to metaluminous to weakly peraluminous, calc-alkaline I-type granites. They are characterized by enrichment in LILEs relative to HFSEs, and depletion of Nb, Ti and P, typical of continental arc-type granites. The intermediate SiO2, high Al2O3, and relatively low Fe2O3T, MgO and TiO2 contents reflect that these granitic rocks are mainly crust-derived. But the high Mg# values for most samples and the occurrence of microgranular mafic enclaves indicate that their magma sources were mixed by mantle-derived components. Especially, the Late Carboniferous rocks define an elegant mixing trend in both the Rb-Rb/V and the 1/V-Rb/V diagrams, consistent with mixing between magmas from subcontinental lithospheric mantle and mafic lower crust. Taking into consideration of the facts that all the Devonian to Carboniferous granitoids belong to calc-alkaline I-type granites, and granitoids of A-type didn't appear until the Early Permian, we suggest that the subduction of the North Tianshan Ocean continued to the Late Carboniferous, generating the granitic

  1. Geology of the plutonic basement rocks of Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2004-01-01

    Exposures of basement rocks on Stewart Island provide a c. 70 km long by 50 km wide map of part of the Median Batholith that spans the margin of the Western Province. Because of their distance from the present plate boundary, these rocks are relatively unaffected by Cenozoic tectonism, allowing examination of unmodified Carboniferous-Cretaceous relationships within the Median Batholith. Thirty individual plutons (>c.20 km 2 ) have been mapped along with numerous relatively small intrusions ( 2 ). The large plutons form 85-90% of the Median Batholith on Stewart Island while the many smaller intrusions comprise 10-15%, mostly in the north. Lithologies include: biotite ± minor hornblende granodiorite, granite and leucogranite with accessory titanite - magmatic epidote and allanite (c. 50%); biotite ± muscovite ± garnet granite with S-type affinities (c. 10%); alkaline quartz monzonite, granite, and alkali feldspar granite with rare aegirine and blue-green amphibole (c. 3%); quartz monzodiorite and diorite with hornblende > biotite (c. 23%); gabbro and anorthosite (c. 12%) and ultramafic rocks (c. 2%). U-Pb zircon and monazite dating indicates that c. 12% of these plutonic rocks were emplaced during the Carboniferous between 345 and 290 Ma, c. 20% in the Early-Middle Jurassic at c. 170-165 Ma, c. 30% in the latest Jurassic to earliest Cretaceous between 152 and 128 Ma, and c. 38% in the Early Cretaceous between 128 and 100 Ma. The distribution of Pegasus Group schists and peraluminous granitoid rocks indicates that the northern limit of extensive early Paleozoic Western Province basement is located either within the Gutter Shear Zone or at the Escarpment Fault, 10-15 km south of the Freshwater Fault System previously thought to mark this boundary. Carboniferous and Middle Jurassic magmatism extended plutonic basement northwards as far as the Freshwater Fault System, while further magmatism during the latest Jurassic and earliest Cretaceous produced the basement

  2. New petrographic, geochemical and geochronological data for the Reguengos de Monsaraz pluton (Ossa Morena Zone, SW Iberian Massif, Portugal

    Directory of Open Access Journals (Sweden)

    Antunes, A.

    2010-06-01

    Full Text Available The Reguengos de Monsaraz pluton is a late to post-tectonic Variscan intrusion occurring in the Ossa Morena Zone (Iberian Variscan Chain. The dominant lithological types are tonalites and granodiorites, but the internal area of the massif is composed of gabbro-dioritic rocks. Field evidence shows that the intrusion is heterogeneous at mesoscopic scale suggesting that the emplacement of mafic and felsic magmas was contemporaneous. Petrographic and geochemical studies reveal that the different lithologic types define a continuous sequence with compositions varying from metaluminous to slightly peraluminous and a typical calc-alkaline signature. In Harker variation diagrams, it is possible to observe systematic rectilinear correlations pointing to the involvement of magma mingling/mixing processes in the petrogenesis of this sequence. Rb-Sr isotopic data, using a mineral-mineral pair from a granodiorite sample, yielded an age of 298 Ma, interpreted as a cooling age after igneous crystallization.

    El plutón de Reguengos de Monsaraz es una intrusión varisca tardi- a post- tectónica localizada en la Zona de Ossa Morena (Cadena Varisca Ibérica. Los tipos litológicos dominantes son las tonalitas y las granodioritas aunque la zona mas interna del macizo está formada por rocas gabro-dioríticas. Las evidencias de campo muestran que todos los tipos litológicos son heterogéneos a escala mesoscópica y sugieren que el emplazamiento de los magmas máficos y félsicos fue contemporáneo. Los estudios petrográficos y geoquímicos muestran que los diferentes litotipos definen una secuencia continua con una afinidad calcoalcalina típica y composiciones variando desde metaluminosas a peraluminosas. En los diagramas de Harker se observan correlaciones rectilíneas sistemáticas, lo que sugiere que la mezcla de magmas tuvo un papel decisivo en su petrogénesis. Los datos isotópicos de Rb-Sr, usando un par mineral-mineral de una granodiorita

  3. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes

    Science.gov (United States)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.

    2018-01-01

    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore

  4. Norite and charnockites from the Venda Nova Pluton, SE Brazil: Intensive parameters and some petrogenetic constraints

    Directory of Open Access Journals (Sweden)

    Julio Cezar Mendes

    2012-11-01

    Full Text Available The Venda Nova Pluton (VNP is a zoned ring structure emplaced in the southern portion of the Neoproterozoic Araçuai Belt, in Espírito Santo, Brazil. It is a slightly westward tilted cylinder-like intrusion, with an almost circular horizontal section. In the center of this structure, an off-centered gabbro-noritic core, surrounded by syeno-monzonitic rocks, intrudes an outer ring of charnockites and norite. These envelop the syeno-monzonitic and gabbro-noritic center, as a narrow discontinuous belt. While, in the core intrusion, mingling and mixing processes are widespread and well documented in the literature, in the outer ring, the norite and charnockite layers show predominantly homogeneous and isotropic internal structures. Nevertheless, smaller interaction zones between charnockites and norite denote a comparatively more restricted mingling process. The norite is a fine-grained rock with hypidiomorphic granular to intergranular texture. The charnockites are medium-grained and made up of: (a orthopyroxene-tonalite, (b orthopyroxene-quartz-diorite, and (c orthopyroxene-granodiorite with hypidiomorphic granular to porphyritic textures. In all lithotypes both ortho- and clinopyroxene are replaced by hornblende and biotite. Two contrasting compositional sequences have been recognized, based on whole rock geochemistry: (1 a basic, with tholeiitic affinities (norite and, (2 an intermediate, medium-K calc-alkaline, comprising the charnockites. Estimated crystallization temperatures, which have been calculated from micro-probe analysis of pyroxenes, range from 915 ± 25 °C to 960 ± 50 °C. Re-equilibration temperature (ilmenite-magnetite calibration is around 600 ± 50 °C. This indicates oxygen fugacities four order of magnitude below the FMQ-buffer and a reduced environment. Coeval pressure conditions estimated from the Al-content in hornblende range from 5.5 ± 0.6 kbar. Data obtained for the norite point toward an evolution from

  5. Geochemistry and Nd-Sr isotopic signatures of the Pensamiento Granitoid Complex, Rondonian-San Ignacio Province, eastern precambrian shield of Bolivia: petrogenetic constraints for a mesoproterozoic magmatic arc setting

    International Nuclear Information System (INIS)

    Matos, Ramiro; Teixeira, Wilson; Bettencourt, Jorge Silva; Geraldes, Mauro Cesar

    2009-01-01

    The Pensamiento Granitoid Complex (PGC), located in the northern part of the eastern Precambrian shield of Bolivia, is tectonically assigned to the Rondonian-San Ignacio Province (1.55 - 1.30 Ga) of the Amazonian Craton that is made up by Archean and Proterozoic provinces. The Proterozoic ones result from accretionary orogens that become successively younger south westwards, such as the Rondonian/San Ignacio (1.37 - 1.32 Ga) and the Sunsas orogenies (1.20 - 1.00 Ga). The PGC crops out mainly on the 'Paragua craton' bounded to the south by the Sunsas belt, and composed of granites and subvolcanic terms, and subordinately of syenites, granodiorites, tonalites, trondhjemites and diorites as orogenic representatives of the Rondonian/San Ignacio Orogeny, intrusive into the Lomas Maneches (ca. 1.68 Ga) and Chiquitania (ca. 1.7 Ga) complexes. Thirteen whole rock chemical analyses for major, trace and REE elements were performed for the La Junta, San Martin, Diamantina, Porvernir, San Cristobal, Piso Firme plutons of the PGC. The negative trends of MgO, Al 2 O 3 and CaO contents with increasing SiO 2 suggest that fractional crystallization played an important role in the petrogenesis of the investigated rocks. The data also indicate a mainly peraluminous, sub-alkaline to high-K calc-alkaline composition, and fractionated LREE/HREE patterns are consistent with a magmatic arc character for these plutons. SHRIMP U-Pb zircon ages of the La Junta and San Martin syn- to late-kinematic plutons are 1347 ± 21 Ma and 1373 ± 20 Ma respectively, and the Sm-Nd T DM model ages are between 1.9 to 2.0 Ga, while ε Nd(1330) values range from +1.8 to -4.3, respectively. In addition, the late- to post-kinematic Diamantina pluton yields SHRIMP U-Pb zircon age of 1340 ± 20 Ma, and variable Sm-Nd T DM model ages (1.6 to 1.9 Ga) and ε Nd(1330) values (+0.4 to -1.2) that are comparable with previous results found for other coeval plutons. The Porvenir, San Cristobal and Piso Firme plutons

  6. Metasedimentary, granitoid, and gabbroic rocks from central Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    1997-01-01

    A NNE-NE trending strip, 3-8 km wide, extending from the Freshwater valley across Mt Rakeahua Table Hill, and Mt Allen to the northern end or the Tin Range was mapped at a scale of 1:12,500 to locate and investigate the boundary between the Median Tectonic Zone (MTZ) and Western Province on Stewart Island. A NNE-trending fault, herein termed the Escarpment Fault, separates predominantly ductily deformed rocks on its south side from essentially undeformed rocks to the north. North of the Escarpment Fault, a small (2-3 km 2 ) pluton of alkali-feldspar granite (Freds Camp) intruded gabbroic rocks tentatively considered to be associated with gabbro/anorthosite/diorite of the Rakeahua pluton, centred on Mt Rakeahua. Both units were subsequently intruded by I-type biotite granite of the South West Arm pluton. South of the Escarpment Fault the oldest intrusions are biotite tonalite-granite orthogneisses (Ridge and Table Hill plutons) intercalated with the sillimanite-cordierite-bearing Pegasus Group metasedimentary rocks, considered to represent the Western Province. They contain titanite, allanite, and magmatic epidote-bearing assemblages, implying affinities with I-type granitoids. These older granitoids have been affected by at least three phases of ductile deformation. Immediately south of the Escarpment Fault, the Escarpment pluton (hornblende, biotite, quartz, monzonite-quartz monzodiorite) only exhibit effects of the third phase of deformation. Minor gabbroic intrusives concordant with the S 3 fabric intrude the Pegasus Group and intercalated orthogneisses. Plutons of two-mica, garnet ±cordierite granite (Blaikies and Knob) and younger biotite-titanite-magmatic epidote granite (Campsite) cut fabrics associated with the third phase of ductile deformation. Preliminary U-Pb dating indicate Devonian-Carboniferous, Jurassic, and Early Cretaceous emplacement ages for Ridge Orthogneiss, Freds Camp pluton, South West Arm pluton, and Blaikies pluton, respectively. South

  7. Geochronology, geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration

    Science.gov (United States)

    Yin, Shuo; Ma, Changqian; Xu, Jiannan

    2017-12-01

    A general consensus has emerged that high field strength elements (HFSE) can mobile to some extent in a hydrothermal fluid. However, there are hot debates on whether sub-solidus hydrothermal alteration can lower the Nb/Ta ratio in evolved melts. In this study, we present petrography, geochronology and geochemistry of the barren and mineralized rocks in the Yemaquan skarn iron deposit, northern Qinghai-Tibet Plateau, to probe magmatic-hydrothermal transition. The barren rocks consist of diorites, granodiorites, granites and syenogranites, whereas the porphyritic granodiorites are associated with mineralization for an excellent consistency between the magmatic zircon U-Pb age (225 ± 2 Ma) and the hydrothermal phlogopite 40Ar-39Ar age (225 ± 1.5 Ma). The Sr-Nd-Hf-Pb isotopic data demonstrate that the Yemaquan granitoids are originated from a relatively homogenous enriched mantle with different degrees of crust contamination (assimilation fractional crystallization, AFC). Trace elements signatures indicate that the porphyritic granodiorites related to mineralization display amphibole crystallization for high water contents, whereas the barren granites have gone through biotite crystallization due to potassium enrichment by continuous upper crust contamination, both of which are responsible for their Nb/Ta ratios, respectively. Modeling results suggest that a basaltic melt with Nb/Ta ratio of 15.3 can reach a minimum Nb/Ta ratio of 12 in the producing granodioritic melt by amphibole fractional crystallization based on partition coefficients of Nb and Ta between amphibole and melts from previous experiments. This may explain the average Nb/Ta ratio (13.7) of the barren granodiorites, while it cannot account for the average Nb/Ta ratio (8.4) of the mineralized porphyritic granodiorites, and it is even lower than that of the granites (10.3) with biotite fractional crystallization. Exsolution of a magmatic-hydrothermal fluid is inevitable when a water saturated magma

  8. Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.

    Science.gov (United States)

    Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.

    1980-08-01

    This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite. The mineralogical nature of this gouge is decidedly different from the "clay gouge" reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis. Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H 2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining). Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material. The original fabric of these rocks is commonly not disrupted during the

  9. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  10. Lithological model of the South China crust based on integrated geophysical data

    International Nuclear Information System (INIS)

    Zhao, Bing; Bai, Zhiming; Xu, Tao; Zhang, Zhi; Badal, José

    2013-01-01

    The structure and petrology of the earth's crust is critical to understand the growth and evolution of the continents. In this paper, we present the crustal lithological model along the 400-km-long seismic profile between Lianxian, near Hunan Province, and Gangkou Island, near Guangzhou City, South China. This model is based on an integrated geophysical data set including P-wave velocity (V P ), S-wave velocity (V S ), V P /V S ratio, mass density (ρ) and Lamé impedances (ρλ, ρµ), which are compared to those determined by laboratory measurements on a variety of crustal rock samples. The Bouguer gravity anomaly together with the seismic velocity enables us to constrain density. The heat flow and thermal field allow us to carry out corrections for temperature. Pressure correction is based on depth. We directly compare the property parameters determined from the South China seismic data with laboratory measurements made at the same conditions of pressure and temperature. Inversion of the available data for rock lithology indicates that there are substantial differences in the crustal lithology of the Yangtze and Cathaysia blocks. While the average lithology of the upper crust in both blocks is mainly characterized by granite–granodiorite and biotite gneiss, the granite–granodiorite layer is much thicker beneath the Cathaysia block. The middle crust in these two domains is not entirely similar, being granite–granodiorite and granite gneiss as the best fit for the Yangtze block, and granite gneiss and biotite gneiss for the Cathaysia block. The lower crust is composed of biotite gneiss, paragranulite and amphibolite for the Yangtze block, whereas biotite gneiss, paragranulite, diorite, mica quartz schist, amphibolite, green schist facies basalt and hornblende provide the best fit for the Cathaysia block. The results demonstrate that to the east of the Chenzhou–Linwu fault (CLF) that is the southern segment of the Jiangshan–Shaoxing fault, the lithology

  11. Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps

    Science.gov (United States)

    Roda, Manuel; Zucali, Michele; Li, Zheng-Xiang; Spalla, Maria Iole; Yao, Weihua

    2018-06-01

    In the Southern Steep Belt, Italian Central Alps, relicts of the pre-Alpine continental crust are preserved. Between Valtellina and Val Camonica, a poly-metamorphic rock association occurs, which belongs to the Austroalpine units and includes two classically subdivided units: the Languard-Campo nappe (LCN) and the Tonale Series (TS). The outcropping rocks are low to medium grade muscovite, biotite and minor staurolite-bearing gneisses and micaschists, which include interlayered garnet- and biotite-bearing amphibolites, marbles, quartzites and pegmatites, as well as sillimanite-bearing gneisses and micaschists. Permian intrusives (granitoids, diorites and minor gabbros) emplaced in the metamorphic rocks. We performed a detailed structural, petrological and geochronological analysis focusing on the two main lithotypes, namely, staurolite-bearing micaschists and sillimanite-bearing paragneisses, to reconstruct the Variscan and Permian-Triassic history of this crustal section. The reconstruction of the tectono-metamorphic evolution allows for the distinction between two different tectono-metamorphic units during the early pre-Alpine evolution (D1) and predates the Permian intrusives, which comprise rocks from both TS and LCN. In the staurolite-bearing micaschists, D1 developed under amphibolite facies conditions (P = 0.7-1.1 GPa, T = 580-660 °C), while in the sillimanite-bearing paragneisses formed under granulite facies conditions (P = 0.6-1.0 GPa, T> 780 °C). The two tectono-metamorphic units coupled together during the second pre-Alpine stage (D2) under granulite-amphibolite facies conditions at a lower pressure (P = 0.4-0.6 GPa, T = 620-750 °C) forming a single tectono-metamorphic unit (Languard-Tonale Tectono-Metamorphic Unit), which comprised the previously distinguished LCN and TS. Geochronological analyses on zircon rims indicate ages ranging between 250 and 275 Ma for D2, contemporaneous with the emplacement of Permian intrusives. This event developed under

  12. Source and tectonic implications of tonalite-trondhjemite magmatism in the Klamath Mountains

    Science.gov (United States)

    Barnes, C.G.; Petersen, S.W.; Kistler, R.W.; Murray, R.; Kays, M.A.

    1996-01-01

    In the Klamath Mountains, voluminous tonalite-trondhjemite magmatism was characteristic of a short period of time from about 144 to 136 Ma (Early Cretaceous). It occurred about 5 to l0 m.y. after the ??? 165 to 159 Ma Josephine ophiolite was thrust beneath older parts of the province during the Nevadan orogeny (thrusting from ??? 155 to 148 Ma). The magmatism also corresponds to a period of slow or no subduction. Most of the plutons crop out in the south-central Klamath Mountains in California, but one occurs in Oregon at the northern end of the province. Compositionally extended members of the suite consist of precursor gabbroic to dioritic rocks followed by later, more voluminous tonalitic and trondhjemitic intrusions. Most plutons consist almost entirely of tonalite and trondhjemite. Poorlydefined concentric zoning is common. Tonalitic rocks are typically of the Iow-Al type but trondhjemites are generally of the high-Al type, even those that occur in the same pluton as low-Al tonalite??. The suite is characterized by low abundances of K2O, Rb, Zr, and heavy rare earth elements. Sr contents are generally moderate ( ???450 ppm) by comparison with Sr-rich arc lavas interpreted to be slab melts (up to 2000 ppm). Initial 87Sr/ 86Sr, ??18O, and ??Nd are typical of mantle-derived magmas or of crustally-derived magmas with a metabasic source. Compositional variation within plutons can be modeled by variable degrees of partial melting of a heterogeneous metabasaltic source (transitional mid-ocean ridge to island arc basalt), but not by fractional crystallyzation of a basaltic parent. Melting models require a residual assemblage of clinopyroxene+garnet??plagioclase??amphibole; residual plagioclase suggests a deep crustal origin rather than melting of a subducted slab. Such models are consistent with the metabasic part of the Josephine ophiolite as the source. Because the Josephine ophiolite was at low T during Nevadan thrusting, an external heat source was probably

  13. Genetic Affiliation of Gold and Uranium Mineralization in El-Missikat Granite, Central Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ammar, F.A.; Omar, S.A.M.; El Sawey, El.H.

    2016-01-01

    Gabal El-Missikat granitic pluton is affected by two fault systems trending NW-SE (the oldest) and ENE-WSW directions. It is one of the uranium occurrences in the Eastern Desert of Egypt. The northwestern margins of El-Missikat pluton, along its contact with the gneissose quartz diorite, are dissected by numerous reactivated fractured shear zones running generally ENE-WSW to NE-SW and dipping about 60°-70° to SE. Many white (oldest), smoky or black and jasperoid (youngest) silica veinlets fill the fractures of these shear zones. These veins are of irregular shape and variable thickness ranging from few centimeters to about three meters. They are chiefly affected by silicification, sericitization, hematitization , kaolinization and hydrothermal alterations processes. The smoky black veins are hosting secondary uranium and fluorite-, sulphide-gold mineralizations. Polished surface studies, ICP-ES and Atomic Absorption as well as Scanning Electron Microscope measurements recorded galena, pyrite chalcopyrite, sphalerite and molybdenite in the black and jasperoid mineralized veins. Gold associated with ore mineral assemblage as pyrite, chalcopyrite, sphalerite, galena, sheelite and iron oxides. The identified sulphide minerals not bearing gold are recorded. Gold are relatively coarse-grained, massive and metallic yellow or stretched bronze colored particles. The recorded secondary U minerals associates the sulphide gold-mineralization in the black and jasperoid silica veins. Regarding the mobility of both uranium and gold, U 4+ mobilized in oxidizing medium and migrate and transport as U 6+ , then deposited later as U 4+ when the medium changes to be reducing characterized by high /O 2 . On contrary, gold mobilized when the medium is complex AuCl 3- ion bearing. Consequently, El- Missikat granitic pluton affected by oxidizing Au and Cl 3- bearing high temperature hydrothermal solutions that leached U 4+ , W and Mo from the granitic mass as U 6 + , later decrease of

  14. Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India

    Science.gov (United States)

    Ackerman, Lukáš; Magna, Tomáš; Rapprich, Vladislav; Upadhyay, Dewashish; Krátký, Ondřej; Čejková, Bohuslava; Erban, Vojtěch; Kochergina, Yulia V.; Hrstka, Tomáš

    2017-07-01

    Two Neoproterozoic carbonatite suites of spatially related carbonatites and associated silicate alkaline rocks from Sevattur and Samalpatti, south India, have been investigated in terms of petrography, chemistry and radiogenic-stable isotopic compositions in order to provide further constraints on their genesis. The cumulative evidence indicates that the Sevattur suite is derived from an enriched mantle source without significant post-emplacement modifications through crustal contamination and hydrothermal overprint. The stable (C, O) isotopic compositions confirm mantle origin of Sevattur carbonatites with only a modest difference to Paleoproterozoic Hogenakal carbonatite, emplaced in the same tectonic setting. On the contrary, multiple processes have shaped the petrography, chemistry and isotopic systematics of the Samalpatti suite. These include pre-emplacement interaction with the ambient crustal materials with more pronounced signatures of such a process in silicocarbonatites. Calc-silicate marbles present in the Samalpatti area could represent a possible evolved end member due to the inability of common silicate rocks (pyroxenites, granites, diorites) to comply with radiogenic isotopic constraints. In addition, Samalpatti carbonatites show a range of C-O isotopic compositions, and δ13CV-PDB values between + 1.8 and + 4.1‰ found for a sub-suite of Samalpatti carbonatites belong to the highest values ever reported for magmatic carbonates. These heavy C-O isotopic signatures in Samalpatti carbonatites could be indicative of massive hydrothermal interaction with carbonated fluids. Unusual high-Cr silicocarbonatites, discovered at Samalpatti, seek their origin in the reaction of pyroxenites with enriched mantle-derived alkali-CO2-rich melts, as also evidenced by mantle-like O isotopic compositions. Field and petrographic observations as well as isotopic constraints must, however, be combined with the complex chemistry of incompatible trace elements as indicated

  15. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  16. Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization

    Science.gov (United States)

    Kwelwa, S. D.; Sanislav, I. V.; Dirks, P. H. G. M.; Blenkinsop, T.; Kolling, S. L.

    2018-03-01

    The Geita Greenstone Belt is a late Archean greenstone belt located in the Tanzania Craton, trending approximately E-W and can be subdivided into three NW-SE trending terrains: the Kukuluma Terrain to the east, the Central Terrain in the middle and the Nyamullilima Terrain in the west. The Kukuluma Terrain, forms a NW-SE trending zone of complexly deformed sediments, intruded by the Kukuluma Intrusive Complex which, contains an early-syntectonic diorite-monzonite suite and a late-syntectonic granodiorite suite. Three gold deposits (Matandani, Kukuluma and Area 3W) are found along the contact between the Kukuluma Intrusive Complex and the sediments. A crystal tuff layer from the Kukuluma deposits returned an age of 2717 ± 12 Ma which can be used to constrain maximum sedimentation age in the area. Two granodiorite dykes from the same deposit and a small granodiorite intrusion found along a road cut yielded zircon ages of 2667 ± 17 Ma, 2661 ± 16 Ma and 2663 ± 11 Ma respectively. One mineralized granodiorite dyke from the Matandani deposit has an age of 2651 ± 14 Ma which can be used to constrain the maximum age of the gold mineralization in the area. The 2717 Ma crystal tuff has zircon grains with suprachondritic 176Hf/177Hf ratios (0.28108-0.28111 at 2717 Ma) and positive (+1.6 to +2.6) εHf values indicating derivation from juvenile mafic crust. Two of the granodiorite samples have suprachondritic 176Hf/177Hf ratios (avg. 0.28106 and 0.28107 at 2663 and 2651 Ma respectively) and nearly chondritic εHf values (avg. -0.5 and -0.3 respectively). The other two granodiorite samples have chondritic 176Hf/177Hf ratios (avg. 0.28104 and 0.28103 at 2667 and 2661 Ma respectively) and slightly negative εHf values (avg. -1.1 and -1.5 respectively). The new zircon age and isotope data suggest that the igneous activity in the Kukuluma Terrain involves a significant juvenile component and occurred within the 2720 to 2620 Ma period which, is the main period of crustal growth

  17. Charge Generation and Propagation in Igneous Rocks

    Science.gov (United States)

    Freund, Friedemann

    2002-01-01

    Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, approximately 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, approximately 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2-3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g., defect electrons in the O(2-) sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\\XO3, with X=Si(4+), Al(3+), etc. PHPs are introduced into the minerals by way of hydroxyl,O3X-OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be

  18. Early Cretaceous wedge extrusion in the Indo-Burma Range accretionary complex: implications for the Mesozoic subduction of Neotethys in SE Asia

    Science.gov (United States)

    Zhang, Ji'en; Xiao, Wenjiao; Windley, Brian F.; Cai, Fulong; Sein, Kyaing; Naing, Soe

    2017-06-01

    ± 3 Ma and 115 Ma, which are close to the zircon ages of nearby calc-alkaline granite and diorite, which belong to an active continental margin arc that extends along the western side of the Shan-Thai block. The IBR accretionary complex and the active continental margin arc were generated during Early Cretaceous (115-128 Ma) subduction of the Neotethys Ocean.

  19. Current state of uranium exploration in central Colombia: Regional perspective and selected case studies

    International Nuclear Information System (INIS)

    Moreno, G.; Perez, A.

    2014-01-01

    The Colombian Geological Survey has been working in a regional exploration program focus on the ancients massifs of the Eastern Cordillera. The general geology distribution in these massifs (Santander and Quetame) includes a core of meta sedimentary to medium grade metamorphic rocks of pellitic origin presumed to be of Cambro – Ordovician age, intruded by Ordovician age plutons that grade from granodiorite to quartz diorite. This igneous – metamorphic core is unconformable overlain by a Devonian age sedimentary cover that includes conglomerates of continental origin, black mudstone of marine origin and red sandstones of deltaic environments with some calcareous intervals. In the Santander Massif a sequence of continental red beds of Jurasic age is present and in the Zapatoca (Santander) area contains uranium. In the Santander Massif, mineral exploration in an area on 1300 km"2 with 1235 sample locations, gives average uranium values of 5.44 ppm, an a maximum of 20 ppm, located in Ordovician plutonic rocks. In the Quetame Massif, mineral exploration in an area on 1000 km"2 with 1274 samples locations, gives average uranium values of 6.13 ppm, and a maximum of 2763 ppm, located in Devonian to Carboniferous sedimentary rocks. In the Paipa area, 140 kilometers from Bogota, the Colombian Geological Survey has undertaken exploratory drilling. As a result there is an anomalous area of 500 m"2 with values of 2000 ppm uranium and rare earth associations has been identified. The volcanic system has been studied by several authors and is important for its location and extention. In recent years, exploration by private companies was reactivated. In early 2000 several junior companies such as KPS/Energentia Resources Inc., Mega Uranium, U3O8 Corp, Energentia Resources Inc., Blue Sky Uranium Corp, Sprott Resource Corp. and UrAmericaLtd and began exploratory work in Colombia. The Berlin project, located in the central mountain range, is perhaps the most developed in the

  20. Stable Isotope Evidence for a Complex Fluid Evolution of the Northwestern British Columbia Coast Ranges Related to Terrane Accretion

    Science.gov (United States)

    Moertle, J.; Holk, G. J.

    2015-12-01

    Stable isotope geochemistry reveals a complex fluid evolution for the Western Metamorphic Belt (WMB), Coast Ranges Batholith (CRB), Central Gneiss Complex (CGC) and Coast Ranges Megalineament (CRM). These fluids are a product of a complex tectonic history related to terrane accretion that includes oblique convergence, metamorphism, magmatism, and orogenic collapse. From W-to-E, these fluid systems are as follows. High-pressure greenschist-to-amphibolite facies metasedimentary rocks of the WMB record variable mineral δD (-61 to -104‰) and δ18O (e.g., quartz +9.6 to +13.4‰) values with multiple minerals in apparent isotopic equilibrium (T ~ 450-550°C) suggest a low W/R system dominated by metamorphic fluids. Variable and non-equilibrium δD (-53 to -143‰) and δ18O (e.g., biotite +2.3 to +5.3‰) values from diorites of the Quottoon pluton affected by the ductile CRM suggest a complex evolution that involved both metamorphic and meteoric-hydrothermal fluids in this dextral shear zone; these results differ from those 300 km along strike to the north that documented only metamorphic fluids in the CRM (Goldfarb et al., 1988). Our data and those of Magaritz and Taylor (1976) from granulite facies metasediments of the CGC and plutons of the western CRB reveal homogeneous δD values (-62 to -78‰) and a restricted range of δ18O values (e.g., quartz +8.5 to +11.5‰) with all minerals in equilibrium at T > 570°C indicate a system dominated by magmatic fluids. Calculated whole-rock δ18O values (~ +7‰) for the Quottoon pluton and CRB intrusive rocks suggest a mantle origin for these magmas. Reinterpretation of very low δD (< -150‰) and quartz-feldspar δ18O pairs that display extreme disequilibrium (feldspar δ18O values as low as -5‰) from the Ponder pluton, eastern CRB, and Hazelton Group point reveals that the major meteoric-hydrothermal system that affected these rocks was related to Eocene detachment faulting along the Shames Lake fault system, a

  1. Thermal properties at Aespoe HRL. Analysis of distribution and scale factors

    International Nuclear Information System (INIS)

    Sundberg, Jan

    2003-04-01

    A thermal model for the Aespoe HRL as well as a general strategy for thermal modelling is under development. As a part of that work, thermal conductivities have been modelled from reference values of thermal conductivity of different minerals and from the mineral composition of all Aespoe samples in the Sicada database. The produced thermal conductivity database has been analysed in terms of frequency, type of distribution, spatial distribution, variogram etc. A correction factor has been estimated to compensate for discrepancies between measured and calculated values. The calculated values have been corrected according to measured values. The data has been analysed according to different rock types. However, there are uncertainties in the base material of rock classification, mainly due to problem to distinguish between Aespoe diorite and Aevroe granite, but also because of different classification systems. There is a relationship between thermal conductivity and density for the rock types at Aespoe. Equations of the relationship have been developed based on all thermal conductivity, heat capacity and density measurements. The equations have been tested on two bore holes at Aespoe with promising results. It may be possible to evaluate the spatial distribution of the thermal properties from density loggings. However, more work is needed to develop a complete model including the handling of high and low density zones. There is an insufficient knowledge in the variation of thermal properties at different scales. If the whole variation within a rock type is in the cm-m scale the thermal influence on the canister is small. This is due to the fact that the small-scale variation in thermal properties is mainly averaged out in the 5-10 m scale. If the main variation within rock types is in the 5-10 m scale there is probably a significant effect on the canister temperature. However, it is likely that the observed variation occurs in both these scales. Simulation has been

  2. Implication of Spectral Characteristic of Chlorite Based on Spectrums SWIR in Nuri Deposit of Tibet

    Science.gov (United States)

    Huang, Z.

    2017-12-01

    This contribution reports the spectral characterization of chlorite in Nuri deposit of Tibet. Nuri Cu polymetallic deposit locates in south rim of Eastern of Gangdise in Tibet. It is presented for large metallogenic scale and special mineralized combination. The study area is underlain extensively by lower Cretaceous rocks of Bima Formation, upper Cretaceous to Paleogene Danshiting Formation and the Quaternary Aeolian Sand. Intrusive bodies, which mainly are quartz diorite, granodiorite, monzonitic granitite, moyite, granite porphyry and so on, feature growth gigantic composite granitic batholith. Distribution of Chlorite is very significant for range and degree of influence of hydrothermal alteration in magmatic hydrothermal deposit. From measuring the spectral of rock and mineral using SVC portable spectrograph, it derived consequence of exists some main altered mineral chlorite. The spectra of chlorite show the absorption features at 1390, 2000, 2250, 2340nm which reflect either O-H stretching vibrations and/or Fe-OH and Mg-OH bending vibrations. Chlorite with Mg-rich shows a strong band at 2324 with a shoulder at 2245nm. The iron-rich chlorite has two absorption features which occur at 2356 and 2256nm. From 110 samples containing chlorite which measured in situ using SVC portable spectrometer, the secondary characteristic absorption wavelengths of chlorite were extracted using TSG software and the diagnosis absorption characteristic of chlorite near 2250nm wavelength is from 2232 to 2266nm. According to the absorption characteristics wavelength position near 2250nm, the samples containing chlorite divided into four categories, i.e. Mg-chlorite whose wavelength less than 2245nm, MgFe-chlorite whose wavelength between 2245 and 2250nm, FeMg-chlorite whose wavelength between 2250 and 2258nm, and Fe-chlorite whose wavelength greater than 2258nm. And then chemical composition of chlorite is analyzed by electron probe with JXA-8230 device which shows that the Fe and

  3. Timing of maturation of a Neoproterozoic oceanic arc during Pan-African Orogeny: the Asmlil complex (Anti-Atlas, South Morocco)

    Science.gov (United States)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Watlet, Arnaud; Vandycke, Sara

    2016-04-01

    Many intra-oceanic paleo-arcs are exposed in the Pan-African belt surrounding the West African Craton. In the Moroccan Anti-Atlas, remnants of Intra-Oceanic Subduction Zone (IOSZ) are preserved in few erosional windows moulded along the Anti-Atlas Major fault. These complexes highlight a Neoproterozoic paleo-suture made of 760 My back-arc ophiolites thrusted to the south onto a dismembered band of oceanic arc relics. The Asmlil arc complex, located in the southern part of the Bou Azzer inlier, is made of (i) 755 to 745 My- intermediate banded gneiss interpreted as metavolcanic products of a juvenile oceanic arc. This latter has been intruded by (ii) medium-grained hornblende-gabbro and dioritic magmas, in turn intruded by (iii) medium- to coarse grained hornblenditic-granodioritic decametric intrusions under sub-magmatic HT conditions. Hornblende-gabbros are made of garnet + amphibole/cpx relics + epidote + rutile paragenesis. Calculated pseudosections yielded P ~ 11-12 kbar for T ranging between 600 and 720°C for garnet growth. Measured Zr-in-rutile thermometer gave slightly higher temperature ranging between 710-790°C. On the field, garnet-rich leucocratic veinlets suggest that moderate partial melting of the mafic rock or localized dehydration reactions took place under garnet-granulite conditions (>800°C for hydrated chemical system). New geochronological data on garnet-bearing leucogabbros constrain their emplacement at 700 ±7 My (U-Pb zircon with low Th/U volcanic to subvolcanic massifs. Second event occurred around 700 My and results from mafic products intruding previous arc. A last event also dated at 660-650 My in the Sirwa window marks the emplacement of hot hornblenditic arc-magmas into older arc massifs during the tectonic extrusion of the arc section. This late event is also related to intense melt production at different level of the arc contributing to differentiation of the whole arc complex. We thus interpreted the Asmlil complex as the final

  4. Sr-Nd evidence of paleoproterozoic mantle metasomatism in the lithospheric mantle beneath northeastern Brazil

    International Nuclear Information System (INIS)

    Hollanda, M.H.B.M.; Pimentel, M.M.; Jardim de Sa, E.F

    2001-01-01

    In the Borborema Province (Northeastern Brazil), the Brasiliano/Pan-African Cycle is expressed by two prominent and penecontemporaneous features: a regional network of transcurrent shear zones and associated large granitoid magmatism. The Rio Grande do Norte Domain (RGND) is an orogenic domain located in the northeastern part of the Borborema Province, and its tectonic evolution is largely related to the Brasiliano orogeny (ca. 600 Ma). This domain includes four major tectonic terranes, which are represented by two metavolcanosedimentary sequences Jaguaribe-Oeste Potiguar and Serido belts, and its gneiss-migmatite Paleoproterozoic basement the Rio Piranhas and Sao Jose de Campestre massifs (Brito Neves et al., 2000). The rocks have been metamorphosed up to the amphibolite facies. Its deformational fabrics are dominated by extensive Brasiliano ductile shear zones displaying predominantly dextral transcurrent kinematic regime. These structures control the emplacement of several Neoproterozoic granitoid intrusions which are made up mainly by porphyritic granitoid suites with subalkaline monzonitic affinity. These occur as isolated plutons of various sizes or as composite intrusions, associated with basic-tointermediate suites. In the latter case, magma mingling and mixing attest that these are contemporaneous igneous suites. Several features suggest coeval relationships with granitic magmas, possibly implying processes such as assimilation or magma mixing. Field evidence of magma mixing include (i) extensive capture of feldspar phenocrysts of the acid mushes by the basic magmas, (ii) common presence of globular to ellipsoidal basic enclaves in the granitic suites, (iii) stockwork-type features consisting of felsic material veining through a diorite host and (iv) syn-plutonic basic dykes intruded into the porphyritic granites (Jardim de S 1994). In this work, Rb-Sr and Sm-Nd isotopic compositions from six distinct basic-to-intermediate suites were investigated to

  5. Petrochemical and Sr-Nd isotope investigations of Cretaceous intrusive rocks and their enclaves in the Togouchi-Yoshiwa district, northwest Hiroshima prefecture, SW Japan

    International Nuclear Information System (INIS)

    Ishioka, Jun; Iizumi, Shigeru

    2003-01-01

    Petrographic, petrochemical and Sr-Nd isotopic data are presented for granitoids and microdioritic enclaves from two Cretaceous stocks (Togouchi granodiorite and Tateiwayama granite porphyry) from the Togouchi-Yoshiwa district, northwest Hiroshima prefecture, SW Japan. The data are used to examine the genetic relationships between the microdioritic enclaves and their granitoid hosts. The granodiorite, granite porphyry and the microdioritic enclaves are all calc-alkaline in nature, and belong to the I-type ilmenite series. The Togouchi graniodiorite has a Rb-Sr whole rock isochron age of 85.6±4.7 Ma with an initial Sr isotope ratio (SrI) of 0.70634±0.00012 (2σ). The Tateiwayama granite porphyry has a slightly younger Rb-Sr whole isochron age (77.4±3.1 Ma) but similar SrI of 0.70653±0.00015, suggesting that both stocks may have been derived from the same source. Despite diverse whole rock chemistry, the microdioritic enclaves in the respective intrusives have quite similar initial Sr and Nd isotope ratios, suggesting that they formed by fractional crystallization of a single magma, and also that the source of the enclaves in both intrusives had similar geochemical characteristics. In both stocks, however, the enclaves have distinctly lower initial Sr isotope ratios than their respective host rocks, indicating that they were derived from a different source than their hosts. In view of the geochemical and Sr-Nd isotope data, we infer that the enclave magmas were derived from a similar LILE- and LREE-enriched source to that of the Cretaceous basalts and gabbroic-dioritic rocks that are sporadically distributed in SW Japan. Such mafic to intermediate magmas were probably derived from the upper mantle, and transferred both heat and material to the lower crust, thus producing granitic magmas by partial melting. Successive mafic magmas or their differentiates could then have been injected into the granitic magma chamber, trapped and quenched, resulting in the formation

  6. Thermomechanical earthquake cycle simulations with rate-and-state friction and nonlinear viscoelasticity

    Science.gov (United States)

    Allison, K. L.; Dunham, E. M.

    2017-12-01

    We simulate earthquake cycles on a 2D strike-slip fault, modeling both rate-and-state fault friction and an off-fault nonlinear power-law rheology. The power-law rheology involves an effective viscosity that is a function of temperature and stress, and therefore varies both spatially and temporally. All phases of the earthquake cycle are simulated, allowing the model to spontaneously generate earthquakes, and to capture frictional afterslip and postseismic and interseismic viscous flow. We investigate the interaction between fault slip and bulk viscous flow, using experimentally-based flow laws for quartz-diorite in the crust and olivine in the mantle, representative of the Mojave Desert region in Southern California. We first consider a suite of three linear geotherms which are constant in time, with dT/dz = 20, 25, and 30 K/km. Though the simulations produce very different deformation styles in the lower crust, ranging from significant interseismc fault creep to purely bulk viscous flow, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. This indicates that bulk viscous flow and interseismic fault creep load the brittle crust similarly. The simulations also predict unrealistically high stresses in the upper crust, resulting from the fact that the lower crust and upper mantle are relatively weak far from the fault, and from the relatively small role that basal tractions on the base of the crust play in the force balance of the lithosphere. We also find that for the warmest model, the effective viscosity varies by an order of magnitude in the interseismic period, whereas for the cooler models it remains roughly constant. Because the rheology is highly sensitive to changes in temperature, in addition to the simulations with constant temperature we also consider the effect of heat generation. We capture both frictional heat generation and off-fault viscous shear heating, allowing these in turn to alter the

  7. Preliminary study of the uranium favorability of granitic and contact-metamorphic rocks of the Owens Valley area, Inyo and Mono Counties, California, and Esmeralda and Mineral Counties, Nevada

    International Nuclear Information System (INIS)

    Cupp, G.M.; Mitchell, T.P.

    1978-01-01

    Granitic and contact-metamorphic rocks of the Owens Valley area were sampled to determine their favorability for uranium. Uranium deposits associated with these rocks were examined to determine the mode of occurrence. Metamorphic rocks near contacts with intrusive rocks include skarns, schists, quartzites, metaconglomerates, hornfels, gneisses, and metavolcanics. The grade of contact metamorphism ranges from slight to intense, depending upon the distance from the intrusive contact. The average U 3 O 8 content of the metamorphic rock samples is 3 ppM. Metamorphic rock samples in a roof pendant at the Claw prospect contain as much as 3 percent U 3 O 8 . Skarn samples from the Birch Creek pluton contain as much as 114 ppM U 3 O 8 ; those from the Santa Rita Flat pluton contain as much as 23 ppM U 3 O 8 . Most of the intrusive rocks are granite, quartz monzonite, or monzonite. Granodiorite and diorite are less common, and gabbro is rare. The average U 3 O 8 content of the crystalline rock samples is 4 ppM. Samples from a quartz-monzonite pluton east of Lone Pine, California, and quartz monzonite in the Santa Rosa Hills had maximum contents of 28 and 13 ppM U 3 O 8 , respectively. Areas of contact metamorphism and metasomatism, such as those at the Claw prospect and Birch Creek pluton, are probably the most favorable sites for uranium deposits. There are many miles of granitic and contact-metamorphic zones in which undiscovered uranium deposits may exist. Although the overall uranium content of granitic rocks appears to be low, the pluton east of Lone Pine and the Hunter Mountain pluton in the area of the Santa Rosa Hills have sufficient uranium to have acted as uranium and detrital source rocks for uranium deposits that may now be buried in Tertiary sediments in the basins around the plutons. The Claw deposit is the only known uranium deposit of a size and grade to be of possible commercial interest

  8. Geochronologic Constraints on the Location of the Sino-Korean/Yangtze Suture and Evolution of the Northern Dabie Shan

    Science.gov (United States)

    Bryant, D. L.; Ayers, J. C.; Gao, S.; Miller, C. F.; Zhang, H.

    2002-05-01

    The Northern Dabie Complex (NDC) has been proposed to be either a Paleozoic magmatic arc, an exhumed piece of subducted continental crust, or young crust produced almost entirely by Cretaceous extensional magmatism. Ion microprobe zircon 238U-206Pb ages of separates from NDC gneisses center around 689Ma (+/- 31(95%CL)), consistent with the characteristic zircon dates of the Yangtze Craton [1]. Field observations also show that these gneisses, ranging from granitic to dioritic composition, make up a sizeable area ( ~30%) of the NDC. Zircon separates from the Baimajian granitoid, the largest of the widespread Cretaceous intrusions in the NDC, have yielded ages clustered around 677Ma (+/- 79), and 120Ma (+/- 3.4), the latter of which agrees with ion probe Th-Pb monazite ages. The ~700Ma age indicates that this intrusion may be linked with partial melting of underlying Yangtze crust, while the 120Ma age is the age of its crystallization. Granitic intrusions from Sanzushi and Yerenshai in the Dabie ultrahigh-pressure (UHP) region also show clusters of ages at 714Ma (+/- 55) from zircon cores, as well as rims around 250Ma (+/- 38), which is interpreted as the time of collision of the two continental blocks. These age data support the hypothesis set forth by Zhang et al. [2] using Sm-Nd and Pb isotopic data, that the Yangtze block lies beneath the exhumed UHP belt and outcrops as the NDC, which lies between the UHP belt and the Sino-Korean/Yangtze suture. The Baimajian granitoid, however, also shows a range of older zircon core ages from 1.4-2.0Ga, which may represent the early stages of formation of the Yangtze craton. Zhang et al. [2] suggested craton formation at 1.6-2.4Ga but few such ages have been reported for rocks of the Yangtze or Sino-Korean cratons. 1. Hacker, et al. (2000) Journal of Geophysical Research. Vol. 105. p. 13,339. 2. Zhang, et al. (In press) Chemical Geology.

  9. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    Science.gov (United States)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide

  10. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications

    Science.gov (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu

    2017-08-01

    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  11. Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite, India: Implications for petrogenesis

    Directory of Open Access Journals (Sweden)

    Ajoy Dey

    2018-03-01

    Full Text Available The Naga Hills Ophiolite (NHO represents one of the fragments of Tethyan oceanic crust in the Himalayan Orogenic system which is exposed in the Phek and Kiphire districts of Nagaland, India. The NHO is composed of partially serpentinized dunite, peridotite, gabbro, basalt, minor plagiogranite, diorite dyke and marine sediments. The basalts are mainly composed of fine grained plagioclase feldspar, clinopyroxene and orthopyroxene and show quenching and variolitic textures. The gabbros are characterized by medium to coarse grained plagioclase, orthopyroxene and clinopyroxene with ophitic to sub-ophitic textures. The ultramafic cumulates are represented by olivine, Cpx and Opx. Geochemically, the basalts and gabbros are sub-alkaline to alkaline and show tholeiitic features. The basalts are characterized by 44.1–45.6 wt.% of SiO2 with 28–38 of Mg#, and the gabbros by 38.7–43.7 wt.% of SiO2, and 26–79 of Mg#. The ultramafic rocks are characterized by 37.4–52.2 wt.% of SiO2, and 80–88 of Mg#. In multi-element diagrams (spidergrams both basalts and gabbros show fractionated trends with strong negative anomalies of Zr, Nb, Sr and a gentle negative anomaly of P. However, the rare earth element (REE plots of the basalts and gabbros show two distinct patterns. The first pattern, represented by light REE (LREE depletion, suggests N-MORB features and can be interpreted as a signature of Paleo-Tethyan oceanic crust. The second pattern, represented by LREE enrichment with negligible negative Eu anomaly, conforms to E-MORB, and may be related to an arc tectonic setting. In V vs. Ti/1000, Cr vs. Y and AFM diagrams, the basalts and gabbros plot within Island Arc Tholeiite (IAT and MORB fields suggesting both ridge and arc related settings. The ultramafic rocks exhibit two distinct patterns both in spidergrams and in REE plots. In the spidergram, one group displays highly enriched pattern, whereas the other group shows near flat pattern compared

  12. Geologic map of the Yacolt quadrangle, Clark County, Washington

    Science.gov (United States)

    Evarts, R.C.

    2006-01-01

    The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area

  13. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    increased as well as decrease magnetization. The former most likely indicate the distribution of Aevroe granite-granodiorite and Aespoe diorite, and the latter indicate linear or semi-linear low magnetic features, most likely related to possible deformation zones. The results of the 2D forward modelling of low resistivity zones of various dips indicates that it is not possible to reliably estimate the dip of these zones based on a data from a dipole-dipole survey with fixed electrode spacing (the type of data collected in 1988). A reliable dip estimation would most likely require 2D pseudo section data from new electric measurements with multi electrode configuration

  14. Evaluation of the geological, geophysical and hydrogeological conditions at Kamlunge

    International Nuclear Information System (INIS)

    Ahlbom, K.; Albino, B.; Carlsson, L.; Danielsson, J.; Nilsson, G.; Olsson, O.; Sehlstedt, S.; Stejskal, V.; Stenberg, L.

    1983-05-01

    The Kamlunge study site constitutes a 16 km 2 mountain plateau. The topography of the plateau is flat, the soil cover is thin, and in the western part, there is a high percentage of outcrops. The most commonly occurring rock types are gneisses and red granite (Lina granite). A rock type with granodioritic to dioritic composition also occurs. Concentrations of economically valuable minerals are so small that mining operations are not feasible in the area. The rock mass exhibits a fracture frequency of more than 4.0 fractures per metre down to a depth of 200 metres. Below 300 metres, the fracture frequency is approximately 2.0 fractures per metre. The Kamlunge study site is surrounded by regional fracture zones to the north, east and west delimiting a 16 km 2 triangular block. The regional zone to the west of the study site has a width of about 550 m. Only local fracture zones spaced 500-l 500 m. apart occur within the study site. The local fracture zones are generally steeply inclined and strike to the north-west and the north-east. At a depth of 555 m below Kamlungekoelen, a horizontal fracture zone has been encountered in 4 of the deep drill holes. This fracture zone is permeable to water but less crushed and weathered than the steeply inclined fracture zones. Moreover, horizontal fractures of large lateral extent can occur in the upper 100-200 metres. Common fracture minerals in the fracture zones are calcite, chlorite, laumontite, smectite and various types of iron oxides. The hydraulic conductivity of the rock mass decreases markedly with depth. It decreases from about 2 x 10 -9 m/s at a depth of 100 metres to about 10 -11 m/s at a depth of 500 metres. The hydraulic conductivity of the local fracture zones at Kamlunge is 7 x 10 -10 m/s at a depth of 500 m. The hydraulic conductivity decreases with depth more slowly in the fracture zones than in the rock mass. The large hydraulic gradients found on the margins of the Kamlungekoelen do not affect the groundwater

  15. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province

    Science.gov (United States)

    Larsen, Rune B.; Grant, Thomas; Sørensen, Bjørn E.; Tegner, Christian; McEnroe, Suzanne; Pastore, Zeudia; Fichler, Christine; Nikolaisen, Even; Grannes, Kim R.; Church, Nathan; ter Maat, Geertje W.; Michels, Alexander

    2018-01-01

    The Seiland Igneous Province (SIP), Northern Norway, contains > 5000 km2 of mafic and ultramafic intrusions with minor alkaline, carbonatite and felsic rocks that were intruded into the lower continental crust at a depth of 25 to as much as 35 km. The SIP can be geochemically and temporally correlated to numerous dyke swarms throughout Scandinavia at 560-610 Ma, and is linked to magmatic provinces in W-Greenland and NE-America that are collectively known as the Central Iapetus Magmatic Province (CIMP). Revised mapping show that the SIP exposes 85-90% layered tholeiitic- alkaline- and syeno-gabbros, 8-10% peridotitic complexes, 2-5% carbonatite, syenite and diorite that formed within a narrow (mela-gabbro over pyroxenites that grades in to an olivine-clinopyroxenite zone, which is followed by a wehrlite zone and, finally, the centre of the complexes comprises pure dunite. From pyroxenite to dunite, olivine changes from Fo72 to Fo85 and clinopyroxene from Di80 to Di92 i.e. the complexes observe a reverse fractional crystallisation sequence with time. Parental melt compositions modelled from early dykes indicate komatiitic to picritic melts with 16-22 wt% MgO, Cr of 1594 ppm and Ni of 611 ppm, which were emplaced at 1450-1500 °C. Melt compositions calculated from clinopyroxene compositions from Reinfjord are OIB-like with LREE enriched over HREE. The high abundance of carbonatites and lamproites demonstrates the volatile-rich nature of the mantle source region and is further corroborated by the unusually high abundance of magmatic sulphides (0.5-1%) and carbonated and hydrous assemblages (c. 1%) throughout the region. In Reinfjord, they are also closely associated with PGE-Cu-Ni reef deposits. Essentially, the ultramafic complexes in the SIP comprises deep-seated transient magma chambers that facilitated mixing and homogenisation of a rich diversity of fertile asthenospheric melts en route to the upper parts of the continental crust.

  16. Metasomatized and hybrid rocks associated with a Palaeoarchaean layered ultramafic intrusion on the Johannesburg Dome, South Africa

    Science.gov (United States)

    Anhaeusser, Carl R.

    2015-02-01

    The Johannesburg Dome occurs as an inlier of Palaeoarchaean-Mesoarchaean granitic rocks, gneisses and greenstones in the central part of the Kaapvaal Craton, South Africa. In the west-central part of the dome a large greenstone remnant is surrounded and intruded by ca. 3114 Ma porphyritic granodiorites. Referred to locally as the Zandspruit greenstone remnant, it consists of a shallow-dipping ultramafic complex comprised of a number of alternating layers of harzburgite and pyroxenite. The ultramafic rocks are metamorphosed to greenschist grade and have largely been altered to serpentinite and amphibolite (tremolite-actinolite). In the granite-greenstone contact areas the porphyritic granodiorite has partially assimilated the greenstones producing a variety of hybrid rocks of dioritic composition. The hybrid rocks contain enclaves or xenoliths of greenstone and, in places, orbicular granite structures. Particularly noteworthy is an unusual zone of potash-metasomatized rock, occurring adjacent to the porphyritic granodiorite, consisting dominantly of biotite and lesser amounts of carbonate, quartz and sericite. Large potash-feldspar megacrysts and blotchy aggregated feldspar clusters give the rocks a unique texture. An interpretation placed on these rocks is that they represent metasomatized metapyroxenites of the layered ultramafic complex. Field relationships and geochemical data suggest that the rocks were influenced by hydrothermal fluids emanating from the intrusive porphyritic granodiorite. The adjacent greenstones were most likely transformed largely by the process of infiltration metasomatism, rather than simple diffusion, as CO2, H2O as well as dissolved components were added to the greenstones. Element mobility appears to have been complex as those generally regarded as being immobile, such as Ti, Y, Zr, Hf, Ta, Nb, Th, Sc, Ni, Cr, V, and Co, have undergone addition or depletion from the greenstones. Relative to all the rocks analyzed from the greenstones

  17. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield

    Science.gov (United States)

    Sonbul, Abdullah R.; El-Shafei, Mohamed K.; Bishta, Adel Z.

    2016-05-01

    Modern earth resource satellites provide huge amounts of digital imagery at different resolutions. These satellite imageries are considered one of the most significant sources of data for mineral exploration. Image processing techniques were applied to the exposed rocks around the Al-Aqiq area of the Asir terrane in the southern part of the Arabian Shield. The area under study has two sub-parallel N-S trending metamorphic belts of green-schist facies. The first belt is located southeast of Al-Aqiq, where the Al-Hajar Gold Mine is situated. It is essentially composed of metavolcanics and metasedimentary rocks, and it is intruded by different plutonic rocks of primarily diorite, syenite and porphyritic granite. The second belt is located northwest of Al-Aqiq, and it is composed of metavolcanics and metasedimentary rocks and is intruded by granite bodies. The current study aimed to distinguish the lithological units, detect and map the alteration zones, and extract the major fault lineaments around the Al-Hajar gold prospect. Digital satellite imageries, including Landsat 7 ETM + multispectral and panchromatic and SPOT-5 were used in addition to field verification. Areas with similar spectral signatures to the prospect were identified in the nearby metamorphic belt; it was considered as a target area and was inspected in the field. The relationships between the alteration zones, the mineral deposits and the structural elements were used to locate the ore-bearing zones in the subsurface. The metasedimentary units of the target area showed a dextral-ductile shearing top-to-the-north and the presence of dominant mineralized quartz vein-system. The area to the north of the Al-Hajar prospect showed also sub-parallel shear zones along which different types of alterations were detected. Field-based criteria such as hydrothermal breccia, jasper, iron gossans and porphyritic granite strongly indicate the presence of porphyry-type ore deposits in Al-Hajar metamorphic belt that

  18. How Saharan Dust Slows River Knickpoints: Coupling Vegetation Canopy, Soils and the Foundation of the Critical Zone

    Science.gov (United States)

    Brocard, G. Y.; Willenbring, J. K.; Harrison, E. J.; Scatena, F. N.

    2015-12-01

    Forest succession theory maintains that trees drape existing landscapes as passive niche optimizers, but in the Luquillo Mountains in Puerto Rico, the forest exerts a powerful control on erosion. The Luquillo Critical Zone observatory is set in the Luquillo Mountains, an isolated massif at the northeastern tip of Puerto Rico Island which receives up to five meters of rainfall annually. Most of the rainfall received in the mountains is conveyed as quick flow through soil macropores, inhibiting soil erosion by overland flow. Physical erosion is kept low, occurring in the form of infrequent shallow landslides, thus increasing the residence time of minerals in the near-surface environment. The extensive chemical alteration of minerals generates a thick saprolite covered by fine-grained soil. Over the quartz diorite bedrock that characterizes the southern side of the mountains, the weathering process generates saprolite tens of meters deep that is almost completely devoid of weatherable minerals. Soils forming over this saprolite are nutrient-poor, forcing the rainforest to retrieve its nutrients from atmospheric fluxes, such as Saharan dust and marine aerosols. These atmospheric inputs are thus indirectly essential for the forest to be able to maintain slow erosion rates over the mountains. At lower elevation, using cosmogenic nuclide-derived denudation rates, we identified a wave of incision which has been propagating upstream over the past 4 My in the form of very steep and slowly migrating knickpoints. Bedrock abrasion and plucking are infrequent along the knickpoint faces, because the bedrock is massive and because rivers are bedload-starved. This situation is due to the highly weathered upland soils and slow erosion rates and high weathering rate upstream, which acts to reduce bedload grain size and limits bedload fluxes to the knickpoint, respectively. The soils change radically where the wave of erosion has passed and has increased erosion rates. There, nutrient

  19. The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin?

    Science.gov (United States)

    Azizi, Hossein; Lucci, Federico; Stern, Robert J.; Hasannejad, Shima; Asahara, Yoshihiro

    2018-05-01

    The tectonic setting in which Jurassic igneous rocks of the Sanandaj-Sirjan Zone (SaSZ) of Iran formed is controversial. SaSZ igneous rocks are mainly intrusive granodiorite to gabbroic bodies, which intrude Early to Middle Jurassic metamorphic basement; Jurassic volcanic rocks are rare. Here, we report the age and petrology of volcanic rocks from the Panjeh basaltic-andesitic rocks complex in the northern SaSZ, southwest of Ghorveh city. The Panjeh magmatic complex consists of pillowed and massive basalts, andesites and microdioritic dykes and is associated with intrusive gabbros; the overall sequence and relations with surrounding sediments indicate that this is an unusually well preserved submarine volcanic complex. Igneous rocks belong to a metaluminous sub-alkaline, medium-K to high-K calc-alkaline mafic suite characterized by moderate Al2O3 (13.7-17.6 wt%) and variable Fe2O3 (6.0-12.6 wt%) and MgO (0.9-11.1 wt%) contents. Zircon U-Pb ages (145-149 Ma) define a Late Jurassic (Tithonian) age for magma crystallization and emplacement. Whole rock compositions are enriched in Th, U and light rare earth elements (LREEs) and are slightly depleted in Nb, Ta and Ti. The initial ratios of 87Sr/86Sr (0.7039-0.7076) and εNd(t) values (-1.8 to +4.3) lie along the mantle array in the field of ocean island basalts and subcontinental metasomatized mantle. Immobile trace element (Ti, V, Zr, Y, Nb, Yb, Th and Co) behavior suggests that the mantle source was enriched by fluids released from a subducting slab (i.e. deep-crustal recycling) with some contribution from continental crust for andesitic rocks. Based the chemical composition of Panjeh mafic and intermediate rocks in combination with data for other gabbroic to dioritic bodies in the Ghorveh area we offer two interpretations for these (and other Jurassic igneous rocks of the SaSZ) as reflecting melts from a) subduction-modified OIB-type source above a Neo-Tethys subduction zone or b) plume or rift tectonics involving

  20. A conceptual model of flow to the Waikoropupu Springs, NW Nelson, New Zealand, based on hydrometric and tracer (18O, Cl,3H and CFC evidence

    Directory of Open Access Journals (Sweden)

    J. T. Thomas

    2008-01-01

    Full Text Available The Waikoropupu Springs, a large karst resurgence 4 km from the coast, are supplied by the Arthur Marble Aquifer (AMA underlying the Takaka Valley, South Island, New Zealand. New evidence on the recharge sources in the catchment, combined with previous results, is used to establish a new recharge model for the AMA. Combined with the oxygen-18 mass balance, this yields a quantitative description of the inputs and outputs to the aquifer. It shows that the Main Spring is sourced mainly from the karst uplands (74%, with smaller contributions from the Upper Takaka River (18% and valley rainfall (8%, while Fish Creek Spring contains mostly Upper Takaka River water (50%. In addition, much of the Upper Takaka River contribution to the aquifer (58% bypasses the springs and is discharged offshore via submarine springs. The chemical concentrations of the Main Spring show input of 0.5% of sea water on average, which varies with flow and derives from the deep aquifer. Tritium measurements spanning 40 yr, and CFC-11 measurements, give a mean residence time of 8 yr for the Main Spring water using the preferred two-component model. Our conceptual flow model, based on the flow, chloride, oxygen-18 and age measurements, invokes two different flow systems with different recharge sources to explain the flow within the AMA. One system contains deeply penetrating old water with mean age 10.2 yr and water volume 3 km3, recharged from the karst uplands. The other, at shallow levels below the valley floor, has much younger water with mean age 1.2 yr and water volume 0.4 km3, recharged by Upper Takaka River and valley rainfall. The flow systems contribute in different proportions to the Main Spring, Fish Creek Springs and offshore springs. Their very different behaviours, despite being in the same aquifer, are attributed to the presence of a diorite intrusion below the surface of the lower valley, which diverts the deep flow towards the Waikoropupu Springs and allows

  1. An isotopic study of mafic microgranular enclaves in the Katsuragi adakitic tonalite, southwestern Japan.

    Science.gov (United States)

    Tezuka, N.; Tsuboi, M.; Asahara, Y.

    2017-12-01

    The Cretaceous Katsuragi tonalite in southwestern Japan has been regarded as adakite formed by the partial melting of lower crust a) b). The tonalite is 10 x 15 km in areal extent, is composed of hornblende-biotite tonalite with a mineral assemblage of plagioclase, biotite, quartz and hornblende, and contains mafic microgranular enclaves (MME). The MME has dioritic composition with a mineral assemblage of plagioclase, biotite, hornblende and quartz. The boundary between the tonalite and the MME is sharp. To reveal the relationship between the MME and adakitic feature of the host tonalite, we have focused on the chemical and Sr-Nd isotopic compositions of the MME in the Katsuragi tonalite. Three models have been proposed for the origin of MME: restite, magma-mixing, and cumulate c). In the restite model, MME is regarded as a residual material of partial melting, and therefore chemical compositions of MME and host should show a linear trend on the Harker's diagram. However, the Katsuragi tonalite and its MME do not show one linear trend. Based on mixing of two magmas, initial 87Sr/86Sr (SrI) value of MME is basically different from that of its host. However, the SrI value of the MME is 0.70725-0.70749 and is identical to the value of 0.70728 in the Katsuragi tonalite d), indicating one magma source for the MME and its host. According to the cumulate model, MME forms from cumulate piles by subsequent feeding of congenetic magma immediately after the early crystallized minerals are solidified. The concordance of the age and SrI between the Katsuragi tonalite and its MME strongly indicate the cumulate origin c). Furthermore, the mineral assemblage of the MME resembles with the common mineral assemblage of andesitic cumulate such as plagioclase, hornblende and quartz c), and this is consistent with the cumulate model. Based on the cumulate origin of the MME, the adakitic feature of chemical composition in the host rock is potentially formed by the separation of cumulate

  2. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites

    Science.gov (United States)

    Gilg, H. Albert; Frei, Robert

    1994-05-01

    Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions ( 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event

  3. Avalonian (Pan-African) mylonitic deformation west of Boston, U.S.A.

    Science.gov (United States)

    Rast, N.; Skehan, J. W.

    1995-07-01

    Siluro-Devonian gabbro-diorites.

  4. Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the Tifnoute Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting

    Science.gov (United States)

    Toummite, A.; Liegeois, J. P.; Gasquet, D.; Bruguier, O.; Beraaouz, E. H.; Ikenne, M.

    2013-10-01

    In the Tifnoute Valley, three plutonic units have been defined: the Askaoun intrusion, the Imourkhssen intrusion and the Ougougane group of small intrusions. They are made of quartz diorite, granodiorite and granite and all contain abundant mafic microgranular enclaves (MME). The Askaoun granodiorite and the Imourkhssen granite have been dated by LA-ICP-MS on zircon at 558 ± 2 Ma and 561 ± 3 Ma, respectively. These granitic intrusions are subcontemporaneous to the widespread volcanic and volcano-detrital rocks from the Ouarzazate Group (580-545 Ma), marking the post-collisional transtensional period in the Anti-Atlas and which evolved towards alkaline and tholeiitic lavas in minor volume at the beginning of the Cambrian anorogenic intraplate extensional period. Geochemically, the Tifnoute Valley granitoids belong to an alkali-calcic series (high-K calc-alkaline) with typical Nb-Ta negative anomalies and no alkaline affinities. Granitoids and enclaves display positive ɛNd-560Ma (+0.8 to +3.5) with young Nd-TDM between 800 and 1200 Ma and relatively low 87Sr/86Sr initial ratios (Sri: 0.7034 and 0.7065). These values indicate a mainly juvenile source corresponding to a Pan-African metasomatized lithospheric mantle partly mixed with an old crustal component from the underlying West African Craton (WAC). Preservation in the Anti-Atlas of pre-Pan-African lithologies (c. 2.03 Ga basement, c. 800 Ma passive margin greenschist-facies sediments, allochthonous 750-700 Ma ophiolitic sequences) indicates that the Anti-Atlas lithosphere has not been thickened and was never an active margin during the Neoproterozoic. After a transpressive period, the late Ediacaran period (580-545 Ma) is marked by movement on near vertical transtensional faults, synchronous with the emplacement of the huge Ouarzazate Group and the Tifnoute Valley granitoids. We propose here a geodynamical model where the Tifnoute Valley granitoids as well as the Ouarzazate Group were generated during the post

  5. Sample-scale zircon geochemical and geochronological heterogeneities as indicators of residual liquid infiltration events in the incrementally assembled Caleu Pluton, Central Chile

    Science.gov (United States)

    Molina, P. G.; Parada, M. A.; Gutiérrez, F. J.; Ma, C.; Li, J.; Liu, Y.

    2013-12-01

    The Upper Cretaceous metaluminous Caleu Pluton is emplaced at a depth equivalent of 2kbar and consists of four lithological zones: the Gabbro-Dioritic Zone (GDZ), the Quartz-Monzodioritic Zone (QMDZ), the Granodioritic Zone (GZ) and the Monzogranitic Zone (MGZ). The zones would have been fed from a deeper magma reservoir emplaced at a 4 kbar. U238/Pb206 LA-ICP-MS geochronology of zircon grains of the four lithological zones (82 analyzed spots, 4 samples) indicates a maximum zircon crystallization range of ca. 106-91 Ma for the pluton as a whole. The U-Pb zircon age distribution of the four samples shows three inflection points at about 101, 99 and 96 Ma, separating four zircon crystallization events with the following weighted average ages and 2σ confidence intervals: 103.×1.6 Ma (n=4), 100.3×0.68 Ma (n=14), 97.49×0.49 Ma (n=25) and 94.66×0.44 Ma (n=30). The GDZ sample records the first three events, the GZ and QMDZ samples record the last three events while the MGZ only have zircons formed during the last two events. It is interesting to note that the youngest event of zircon formation coincide with the Ar/Ar cooling ages (95-93 Ma) previously obtained in hornblende, biotite and plagioclase of the four lithological zones, as a consequence of a rapid pluton exhumation. Temperatures of zircon crystallization (Ti-in-Zrn) obtained in each sample are variable and roughly lower than the zircon saturation temperatures. Most of the Ti-in-Zrn temperatures indicate late-stage crystallization conditions, consistent with the calculated melt composition from which zircons would have crystallized and the observed coexistence of zircons with quartz-orthoclase symplectites, hornblende and interstitial anhedral biotite. There are variable and overlapped total incompatible element concentrations in zircons of the four lithological zones regardless its age and Ti-in-Zrn temperatures, indicating that the melts from which zircon crystallized at different moments, were equivalent

  6. The whole space three-dimensional magnetotelluric inversion algorithm with static shift correction

    Science.gov (United States)

    Zhang, K.

    2016-12-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results.The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm. The verification and application example of 3D inversion algorithm is shown in Figure 1. From the comparison of figure 1, the inversion model can reflect all the abnormal bodies and terrain clearly regardless of what type of data (impedance/tipper/impedance and tipper). And the resolution of the bodies' boundary can be improved by using tipper data. The algorithm is very effective for terrain inversion. So it is very useful for the study of continental shelf with continuous exploration of land, marine and underground.The three-dimensional electrical model of the ore zone reflects the basic information of stratum, rock and structure. Although it cannot indicate the ore body position directly, the important clues are provided for prospecting work by the delineation of diorite pluton uplift range. The test results show that, the high quality of

  7. Insights into crystal growth rates from a study of orbicular granitoids from western Australia

    Science.gov (United States)

    Zhang, J.; Lee, C. T.

    2017-12-01

    The purpose of this study is to develop new tools for constraining crystal growth rate in geologic systems. Of interest is the growth of crystals in magmatic systems because crystallization changes the rheology of a magma as well as provides surfaces on which bubbles can nucleate. To explore crystal growth in more detail, we conducted a case study of orbicular granitoids from western Australia. The orbicules occur as spheroids dispersed in a granitic matrix. Most orbicules have at least two to three concentric bands, composed of elongate and radially oriented hornblende surrounded by interstitial plagioclase. We show that mineral modes and hence bulk composition at the scale of the band is homogeneous from rim to core. Crystal number density decreases and crystal size increases from rim to core. These observations suggest that the orbicules crystallized rapidly from rim to core. We hypothesize that the orbicules are blobs of hot dioritic liquid injected into a cold granitic magma and subsequently cooled and solidified. Crystals stop growing when the mass transport rate tends to zero due to the low temperature. We estimated cooling timescales based on conductive cooling models, constraining crystal growth rates to be 10-6 to 10-5 m/s. We also show that the oscillatory banding is controlled by disequilibrium crystallization, wherein hornblende preferentially crystallizes, resulting in the diffusive growth of a chemical boundary layer enriched in plagioclase component, which in turns results in crystallization of plagioclase. We show that the correlation between the width of each crystallization couplet (band) with distance from orbicule rim is linear, with the slope corresponding to the square root of the ratio between chemical diffusivity in the growth medium and thermal diffusivity. We estimate chemical diffusivity of 2*10-7 m2/s, which is remarkably fast for silicate liquids but reasonable for diffusion in hot aqueous fluids, suggesting that crystallization

  8. Quantifying elemental compositions of primary minerals from granitic rocks and saprolite within the Santa Catalina Mountain Critical Zone Observatory

    Science.gov (United States)

    Lybrand, R. A.; Rasmussen, C.

    2011-12-01

    Granitic terrain comprises a significant area of the earth's land surface (>15%). Quantifying weathering processes involved in the transformation of granitic rock to saprolite and soil is central to understanding landscape evolution in these systems. The quantification of primary mineral composition is important for assessing subsequent mineral transformations and soil production. This study focuses on coupling detailed analysis of primary mineral composition to soil development across an array of field sites sampled from the Santa Catalina Mountain Critical Zone observatory (SCM-CZO) environmental gradient. The gradient spans substantial climate-driven shifts in vegetation, ranging from desert scrub to mixed conifer forests. The parent material is a combination of Precambrian and Tertiary aged granites and quartz diorite. Primary mineral type and composition are known to vary among the various aged granitic materials and this variability is hypothesized to manifest as significant variation in regolith forming processes across the SCM-CZO. To address this variability, the mineral composition and mineral formulae of rock and saprolite samples were determined by electron microprobe chemical analyses. The rocks were pre-dominantly quartz, biotite, muscovite, orthoclase and calcium/sodium-rich plagioclase feldspars. Trace minerals observed in the samples included sphene, rutile, zircon, garnet, ilmenite, and apatite. Mineral formulae from electron microprobe analyses were combined with quantitative x-ray diffraction (QXRD) and x-ray fluorescence (XRF) data to quantify both primary and secondary mineralogical components in soil profiles from each of the field sites. Further, electron microprobe analyses of <2mm mixed conifer saprolite revealed weathered plagioclase grains coated with clay-sized particles enriched in silica and aluminum (~25% and 15%, respectively), suggesting kaolin as the secondary phase. The coatings were interspersed within each plagioclase grain, a

  9. Late Palaeozoic magmatism in the northern New England Orogen - evidence from U-Pb SHRIMP dating in the Yarrol and Connors provinces, central Queensland

    International Nuclear Information System (INIS)

    Withnall, I.W.; Hutton, L.J.; Hayward, M.A.; Blake, P.; Fanning, C.M.; Burch, G.

    1999-01-01

    a major period of intrusive and extrusive activity in the Auburn Arch. Four granites have SHRIMP ages of ∼319-324Ma and the Torsdale Volcanics have ages of ∼313-324Ma. In the Connors Arch, granites have SHRIMP ages of ∼314-332Ma and one ignimbrite unit is ∼311Ma. A second region-wide break at the beginning of the Stephanian is marked by extensive conglomerates that overlie the late Visean to Namurian volcanics and granites, particularly in the Auburn Arch (at the base of the Camboon Volcanics) and Yarrol Province (Youlambie Conglomerate). In the Connors Arch, the Leura Volcanics are also unconformable on granites. In the Auburn Arch, an ignimbrite at the base of the Camboon Volcanics which gave an age of ∼308Ma, is the oldest dated rock in this episode, but an ignimbrite elsewhere in the unit gave ∼298Ma. Ignimbrites in the Youlambie Conglomerate have a mean age of ∼303Ma. In the Connors Arch, an extensive ignimbrite, the Lotus Creek Rhyolite, also has an age of ∼303Ma. An ignimbrite from the overlying Leura Volcanics yielded zircons with a mean age of ∼299Ma, but elsewhere, the unit has been intruded by the South Creek Quartz Diorite (∼304Ma) and the Iron Pot Granite (∼300Ma). Magmatism continued into the Early Permian in both the Auburn (upper Camboon Volcanics) and Connors Arches (including the Lizzie Creek Volcanics, Mt Benmore Volcanics and Carmila beds). The Camboon Volcanics do not appear to have a significant break between the Stephanian and the boundary with the Artinskian Buffel Formation. However, massive conglomerate at the base of the Lizzie Creek Volcanics in the northern Connors Arch may indicate a localised break. The Coppermine Andesite (∼297Ma) at the base of the Mt Benmore Volcanics unconformably overlies the South Creek Quartz Diorite and the alteration system at Mt Mackenzie, also indicating at least a local hiatus. Ages of ∼291Ma for the Lizzie Creek Volcanics and ∼293Ma for the Carmila beds help to define the span

  10. Compiling Data from Geological, Mineralogical and Geophysical (IP/RS Studies on Mahour Deposit, Northwest of Deh-salm, Lut Block

    Directory of Open Access Journals (Sweden)

    Arash Gorabjeiri Puor

    2015-10-01

    Full Text Available Introduction The Mahour exploration area is a polymetallic system containing copper, zinc and silver. The mineralization can be seen in two forms of veins and disseminations. This area is structurally within the Lut block, west of Deh-salm Village. Recent exploration work and studies carried out by geologists on this volcanic-plutonic area of Lut demonstate its importance indicating new reserves of copper, gold, and lead and zinc. Several articles have been published on the Mahour deposit in recent years, including work on fluid inclusions (Mirzaei et al., 2012a; Mirzaei et al., 2012b. The present report aims at completion of previous studies on Mahour. During the course of this research, the IP/RS geophysical methods were used to locate the extent and depth of sulfide veins in order to locate drill sites. The IP/RS method has been used extensively worldwide in locating sulfide mineralization at deposits such as Olympic Dam in Australia (Esdale et al., 1987, Hishikari epithermal gold deposit in Kagoshima, Japan (Okada, 1995 and Cadia-Ridgeway copper and gold deposit in New South Wales, Australia (Rutley et al., 2001. Materials and Methods 1. Determination of mineralogy of ore and alteration by examination of 70 thin sections and 45 polished sections. 2. Compilation of geological and mineralization maps of the studied area at a scale of 1:1000. 3. Geological, alteration, mineralization and trace element geochemical studies of 6 drill holes. 4. IP/RS measurements for 2585 points on a rectangular grid with profile intervals of 50 meters and electrode intervals of 20 meters. 5. Interpretation of IP/RS results. Discussion The Mahour area is covered by a volcanic sequence of basalt, andesite, dacite, rhyolite and pyro-clastics. During the Late Eocene through Early Oligocene this volcanic complex was intruded by several diorite and quartz-diorite bodies, which were responsible for mineralization of the area. Mineralized veins hosted by dacite show NNE

  11. Geology, Alteration, Mineralization, Geochemistry and Petrology of intrusive units in the Shah Soltan Ali prospect area (Southwest of Birjand, South Khorasan province

    Directory of Open Access Journals (Sweden)

    Samaneh Nadermezerji

    2017-07-01

    Full Text Available Introduction The Shah Soltan Ali area is located 85 km southwest of Birjand in the South Khorasan province. This area is part of the Tertiary volcanic-plutonic rocks in the east of the Lut block. The Lut block is bounded to the east by the Nehbandan and associated faults, to the north by the Doruneh and related faults (Sabzevar zone, to the south by the Makran arc and Bazman volcanic complex and to the west by the Nayband Fault. The Lut block is the main metallogenic province in the east of Iran (Karimpour et al., 2012, that comprises of numerous porphyry Cu and Cu–Au deposits, low and high sulfidation epithermal Au deposits, iron oxide deposits, base-metal deposits and Cu–Pb–Zn vein-type deposits. The geology of Shah Soltan Ali area is dominated by volcanic rocks, comprised of andesite and basalt, which are intruded by subvolanic units such as monzonite porphyry, monzodiorite porphyry and diorite porphyry. Materials and methods 1. 170 thin sections of the rock samples as well as 25 polished and thin polished sections were prepared for petrography, alteration and mineralization. 2. Twenty five samples were analyzed for Cu, Pb, Zn, Sb, Mo and As elements by the Aqua regia method in the Zarazama laboratory in Tehran, Iran. 3. Nine samples were analyzed for trace elements [including rare earth elements (REEs]. As a result of these analyses, trace elements and REE were determined by inductively coupled plasma mass spectrometry (ICP-MS in the ACME Analytical Laboratories (Vancouver Ltd., Canada. 4. Ten samples were analyzed for major elements by wavelength dispersive X-ray fluorescence spectrometry in the East Amethyst laboratory in Mashhad, Iran. 5. Five samples were analyzed for Firre Assay analysis in the Zarazma Laboratory in Tehran, Iran. 6. The results of XRD analysis were used for 4 samples. Discussion and results Petrographic studies indicate that subvolcanic rocks consist of diorite porphyry, monzonite porphyry and monzodiorite

  12. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2017-06-01

    packages as well as one cask with the fuel assemblies from the shut down research reactor DIORIT of PSI and six casks with waste from the decommissioning of the experimental nuclear power plant at Lucens. During 2016 only one campaign to incinerate and melt radioactive waste was carried out. ENSI recorded no reportable events at Zwilag during the reporting year. The nuclear facilities at PSI consist of the hot laboratory, the three former research reactors SAPHIR, DIORIT and PROTEUS now in varying phases of decommissioning, the former experimental incineration plant and the facilities for the disposal of radioactive materials including the Federal Government's interim storage facility. During 2016, no events were reported at the PSI, at EPFL or at UniB. In 2016, the amount of radioactive material released into the environment via waste water and exhaust air from the nuclear power plants, Zwilag and the nuclear facilities at PSI, Basel and Lausanne was significantly less than the limits specified in the operating licenses. Analyses showed that the maximum dose for persons in the immediate vicinity of a plant was less than 1% of the annual exposure to natural radiation. The waste produced during reprocessing at the reprocessing facilities of La Hague (France) and Sellafield (United Kingdom) must be returned to Switzerland. In the reporting year, compacted, metallic, intermediate level waste and intermediate level vitrified residue packets were transported to Zwilag. All nuclear waste from Swiss fuel assemblies sent abroad for reprocessing is now stored at Zwilag. During 2016, all transports of radioactive substances to and from Swiss nuclear installations took place without any incidents. The site selection procedure for the storage of radioactive waste has been running since 2008. ENSI bears overall responsibility for the safety assessment of the geological site areas. The National Cooperative for the Disposal of Radioactive Waste (Nagra) submitted its suggestion for

  13. Diversity, origin and tectonic significance of the Mesoarchean granitoids of Ourilândia do Norte, Carajás province (Brazil)

    Science.gov (United States)

    da Silva, Luciano Ribeiro; de Oliveira, Davis Carvalho; dos Santos, Maria Nattânia Sampaio

    2018-03-01

    This study investigates the diversity, origin and tectonic significance of the Ourilândia do Norte Mesoarchean granitoids, emplaced near Rio Maria-Carajás domains boundary, southeastern Amazonian Craton (Brazil). In this area, previous works has identified sanukitoids (∼2.87 Ga), (quartz) diorites of BADR affinity and undifferentiated leucogranites, with charnockites cross-cutting the other granitoids. New geological mapping data allowed to differentiate three new groups of granitoids: (i) biotite monzogranites (BMzG); (ii) epidote-biotite granodiorites (EBGd); and (iii) porphyritic granitoids (pGrt). Thus, this paper aims to define their classification, nature, formation processes and deformation aspects, and discuss the relations between plutonism and deformation for the Ourilandia do Norte granitoids. The petrographic data showed that each one of these groups can be subdivided into two facies. The BMzG is differentiated into equigranular (eBMzG) and heterogranular (hBMzG) and the EBGd into heterogranular (hEBGd) and sparsely porphyritic (spTEBGd). These granitoids constitute two batholiths separated by a rock strip of sanukitoid and BADR affinities. Both are largely dominated by BMzG rocks, with less abundant EBGd lenses. The pGrt is individualized in porphyritic granodiorites (pBHGd) and trondhjemites (pEBTd), which occur as smaller bodies. Structurally, the central portions these plutons represent lower strain domains, while their borders are marked by large-scale shear zones, where occur submagmatic and mylonitic fabrics of ENE-WSW main direction and subvertical dip, respectively. The meso- and microstructural data indicate that the rocks studied are syn-to late-tectonic and were affected by high temperature deformation (>500 °C) and low differential stress, in a sinistral transpression regime, indicating that both fabrics are related to the a same deformational event. Geochemically, except the pEBTd facies that has sodic affinity, the Ourilândia do

  14. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2016 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-15

    packages as well as one cask with the fuel assemblies from the shut down research reactor DIORIT of PSI and six casks with waste from the decommissioning of the experimental nuclear power plant at Lucens. During 2016 only one campaign to incinerate and melt radioactive waste was carried out. ENSI recorded no reportable events at Zwilag during the reporting year. The nuclear facilities at PSI consist of the hot laboratory, the three former research reactors SAPHIR, DIORIT and PROTEUS now in varying phases of decommissioning, the former experimental incineration plant and the facilities for the disposal of radioactive materials including the Federal Government's interim storage facility. During 2016, no events were reported at the PSI, at EPFL or at UniB. In 2016, the amount of radioactive material released into the environment via waste water and exhaust air from the nuclear power plants, Zwilag and the nuclear facilities at PSI, Basel and Lausanne was significantly less than the limits specified in the operating licenses. Analyses showed that the maximum dose for persons in the immediate vicinity of a plant was less than 1% of the annual exposure to natural radiation. The waste produced during reprocessing at the reprocessing facilities of La Hague (France) and Sellafield (United Kingdom) must be returned to Switzerland. In the reporting year, compacted, metallic, intermediate level waste and intermediate level vitrified residue packets were transported to Zwilag. All nuclear waste from Swiss fuel assemblies sent abroad for reprocessing is now stored at Zwilag. During 2016, all transports of radioactive substances to and from Swiss nuclear installations took place without any incidents. The site selection procedure for the storage of radioactive waste has been running since 2008. ENSI bears overall responsibility for the safety assessment of the geological site areas. The National Cooperative for the Disposal of Radioactive Waste (Nagra) submitted its suggestion for

  15. Bedrock transport properties. Preliminary site description Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Byegaard, Johan; Gustavsson, Eva [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-06-01

    hydraulically conductive structures are mostly associated with the presence of gouge-filled faults. The mineralogy of the different fracture coatings cannot be correlated to their corresponding host rock type. The hydrogeochemistry has been included in the model by identifying four different groundwater types: (I) fresh diluted Ca-HCO{sub 3} water present in the upper 100 m of the bedrock, (II) groundwater with marine character (Na-(Ca)-Mg-Cl, 5,000 mg/L Cl), (III) groundwater of Na-Ca-Cl type (8,800 mg/L Cl), i.e. present groundwater at repository level in the Simpevarp peninsula, and (IV) brine type water of very high salinity (Ca-Na-Cl type water with Cl content of 45,000 mg/L). The retardation data included in the present model are porosities, diffusivities (expressed in terms of formation factors) and sorption coefficients for intact (non-altered) and altered varieties of the rock types at Simpevarp. Porosities and formation factors have been measured for the major rock types using site specific materials from the Simpevarp area. Mean values for the major rock types have been obtained in the range of 0.17-0.40 vol-% for the porosity and 1. 10{sup -4}-2.9 x 10{sup -4} for the formation factor. Due to lack of site specific sorption data, Kd-values have been imported from previous investigations of Aespoe diorite at Aespoe HRL. This import was justified on the basis of the mineralogical similarity of the major rock types of the Simpevarp site and the Aespoe diorite. Only K{sub d} for the Sr{sup 2+} and Cs{sup +} interaction in a groundwater of type III were available; values of 4.2 x 10{sup -5} m{sup 3}/kg (Sr{sup 2+}) and 0.06 m{sup 3}/kg (Cs{sup +}) were given. The descriptions of bedrock geology and fracture mineralogy are used as a basis for identifying a set of fracture types considered typical for the boreholes in the Simpevarp subarea. Four fracture types were identified and described in terms of geometry (thicknesses of different layers) and retardation parameters

  16. Thermal modelling. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Wrafter, John; Back, Paer-Erik; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2006-02-15

    This report presents the thermal site descriptive model for the Laxemar subarea, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for five different lithological domains: RSMA (Aevroe granite), RSMBA (mixture of Aevroe granite and fine-grained dioritoid), RSMD (quartz monzodiorite), RSME (diorite/gabbro) and RSMM (mix domain with high frequency of diorite to gabbro). A base modelling approach has been used to determine the mean value of the thermal conductivity. Four alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological domain model for the Laxemar subarea, version 1.2 together with rock type models based on measured and calculated (from mineral composition) thermal conductivities. For one rock type, Aevroe granite (501044), density loggings have also been used in the domain modelling in order to evaluate the spatial variability within the Aevroe granite. This has been possible due to an established relationship between density and thermal conductivity, valid for the Aevroe granite. Results indicate that the means of thermal conductivity for the various domains are expected to exhibit a variation from 2.45 W/(m.K) to 2.87 W/(m.K). The standard deviation varies according to the scale considered, and for the 0.8 m scale it is expected to range from 0.17 to 0.29 W/(m.K). Estimates of lower tail percentiles for the same scale are presented for all five domains. The temperature dependence is rather small with a decrease in thermal conductivity of 1.1-5.3% per 100 deg C increase in temperature for the dominant rock types. There are a number of important uncertainties associated with these

  17. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    Science.gov (United States)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    ]. Analyses of cores of some zircons from granodiorites of Lupveem batholith indicate Precambrian age of protolith (717, 1070.4 and 1581.5 m.a.) [15]. 40Ar-39Ar age of synmetamorphic biotite varies from 108 to 103 m.a. [15]. Intrusive rocks of Alarmaut dome are represented by wide spectrum of rocks: diorites, Q diorites, Q monzodiorites, granodiorites, tonalites, granites. Granodiorites and granites contain mafic enclaves of monzonites and Q monzonites. SiO2 contents in rocks of Alarmaut dome varies from 58,55% in diorites to 71,3% in granites; in enclaves - from 54,6% in monzonites to 61.89% in Q monzonites. Granitoids are normal and subalkaline rocks according to SiO2 vs K2O+Na2O and belong to high-K calc-alkaline and shoshonite series according to K2O vs SiO2. They are mainly metaluminous rocks (ASI intermediate rocks are characterized by LREE enrichment, HREE depletion and insignificant negative Eu-anomaly (LaN/YbN=8,42-15,69; Eu/Eu*=0,66-0,94). Granodiorites and granites REE patterns are more enriched in LREE, more depleted in HREE and have deeper negative Eu-anomaly (LaN/YbN=11,48-45,6; Eu/Eu*=0,47-0,81). REE patterns of monzonites from enclaves in granites and granodiorites are similar to patterns of host rocks. REE patterns of intermediate rocks and granodiorites are well correlated with those of "mafic root" rocks of K2 Kigluaik pluton from the core part of the same name gneiss dome, Seward Peninsula, Alaska [16], and K1-2 granitoids of Chauna fold zone, West Chukotka [17]. Spidergrams of granitoids and enclaves are similar and characterized by LILE, LREE enrichment and Nb, Sr, P, Ti depletion, typical for supra-subduction magmatites. On F1-F2 diagram [18], separating granitoids by geodynamic settings, granitoids fall in the field of collisional granites; on Rb vs Y+Nb diagram, along the boundary between the fields of syncollisional granites and volcanic arc granites, but within the field of postcollisional [19]. Geochronological and structural data indicate temporal

  18. A regional soil and sediment geochemical study in northern California

    International Nuclear Information System (INIS)

    Goldhaber, Martin B.; Morrison, Jean M.; Holloway, JoAnn M.; Wanty, Richard B.; Helsel, Dennis R.; Smith, David B.

    2009-01-01

    Regional-scale variations in soil geochemistry were investigated in a 20,000-km 2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km 2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated

  19. The age, nature and likely genesis of the Cambrian Khantaishir arc, Lake Zone, Mongolia

    Science.gov (United States)

    Janoušek, Vojtěch; Jiang, Yingde; Schulmann, Karel; Buriánek, David; Hanžl, Pavel; Lexa, Ondrej; Ganchuluun, Turbat; Battushig, Altanbaatar

    2014-05-01

    Recent discovery of the huge Cambrian arc in the Khantaishir Mountain Range (SE Mongolian Altai) suggests that the principal Neoproterozoic and Devonian-Carboniferous episodes of crustal growth in the Central Asian Orogenic Belt (CAOB) (Sengör et al. 1993) have to be revised. This probably the largest arc system known in the Mongolian tract of the CAOB is seemingly intrusive into the Neoproterozoic accretionary wedge (the Lake Zone) in the N and underthrust southwards below the Palaeozoic volcanosedimentary prism (Gobi Altai Zone). The arc shows a section from deep, ultramafic cumulates to shallower crustal levels of the magmatic system and thus provides an excellent opportunity to study this important period of crustal growth in the Mongolian CAOB. The magmatic rocks are intermediate to ultrabasic (SiO2 = 39.2-61.8 wt. %), rather primitive (mg# = 45-60) Amp-Bt tonalites to coarse-grained Amp gabbros and hornblendites. They are Na-rich (Na2O/K2O = 1.3-9.7 by wt.), exclusively metaluminous and mostly subalkaline, except for the ultrabasic types that enter the alkaline domain due to accumulation of Amp crystals. The P-T conditions calculated using the Amp thermobarometer of Ridolfi et al. (2010) show that the gabbro crystallized at 930-950 ° C and 0.36-0.43 GPa. The (normal-) calc-alkaline chemistry and characteristic trace-element enrichment in hydrous-fluid mobile large-ion lithophile elements (LILE: Rb, Ba, Th, U, K and Pb) over high-field strength elements (HFSE: Nb and Ta) confirm an origin within an igneous arc. The newly obtained LA ICP-MS zircon ages for three tonalites-diorites range between 516 ± 2 Ma and 494 ± 3 Ma. While zircons in two of them give high initial ɛHf values (+8 to +14), implying a derivation by (near) closed-system fractionation from little modified, depleted-mantle derived magmas, the third contains significantly different component (ɛHf = +3 to +6). The latter component may have come from a distinct, less depleted

  20. Geology and mineral resources of central Antioquia Department (Zone IIA), Colombia

    Science.gov (United States)

    Hall, R.B.; Alvarez A., Jairo; Rico H., Hector

    1973-01-01

    Antioquian batholith. Displacement along the great Romeral wrench fault may have begun in the Cretaceous. Plutonism continued into the Cenozoic, exemplified by the hornblende-diorite Sabanalarga pluton. Intermontane basins were filled with molasse derived from the erosion of adjacent highlands; Tertiary sedimentation in marshy areas included organic carboniferous matter subsequently converted to lignite or subbituminous coal. The Sabanalarga fault system originated in the Late Tertiary; intermittent displacement continued on the older wrench faults such as the Romeral. Epeirogenic uplift, which probably began in the Pliocene and continued through the Pleistocene and Holocene, brought on renewed erosion which has sculptured the mountains into their present form. Mineral resources in subzone IIA are varied but not of outstanding importance. Gold and silver mining, significant in past centuries, is minor today. Ferruginous laterite on serpentinite once considered as a potential source of iron ore is not economically exploitable. IMN has explored nickeliferous laterite at the extreme northwest corner of subzone IIA; this is a potential resource, exploitable only after exhaustion of the larger and richer nickel laterite deposit at Cerro Matoso, farther to the north and outside the boundaries of Zone If. Known deposits of mercury, chromium, manganese, and copper are small, with limited economic potential. Nonmetallic resources include raw materials for cement, including portland cement. Saprolite clay is widely used in making common red brick and tile, still a dominant construction material in all but the most modern multistory buildings. Aggregate materials are varied and abundant. Kaolin of good quality near La Union is important as a ceramic raw mineral filler. Tertiary subbituminous coal beds are an important energy resource in western subzone IIA, and have a good potential for greater development. Deposits of sodic feldspar, talc, decorative stone, and silica a

  1. Geology of quadrangles H-12, H-13, and parts of I-12 and I-13, (zone III) in northeastern Santander Department, Colombia

    Science.gov (United States)

    Ward, Dwight Edward; Goldsmith, Richard; Cruz, Jaime B.; Restrepo, Hernan A.

    1974-01-01

    Permian-Carboniferous Diamante Formation, sedimentary rocks younger than Devonian are unmetamorphosed. The effects of Precambrian regional dynamothermal metamorphism and plutonism on Precambrian geosynclinal deposits reached the upper amphibolite facies in the Bucaramanga Gneiss. The geosynclinal Silgara Formation was subjected to similar conditions in Late Ordovician and Early Silurian time but reached only the greenschist or lower amphibolite facies. Orthogneisses generally show a concordance of foliation and lineation with the neighboring Silgara Formation and the Bucaramanga Gneiss as well as similarities in grade of metamorphism. Regional dynamothermal metamorphism in Late Permian and Triassic time reached, low grade in the Floresta Formation and caused recrystallization of limestone of the Diamante Formation. The Bucaramanga and Silgara metamorphic rocks show evidence of metrogressive metamorphism accompanied by high activity or potassium and water, but whether this occurred at the time the Floresta was metamorphosed or later is not clear. Batholiths, plutons, and stocks of igneous rocks in the Santander massif range from diorite to granite. Radioactive age data indicate that most belong to a single plutonic interval. These are referred to as the Santander Plutoniq Group and are Jurassic and Jurassic-Triassic- Two suites of this group are pink granite and quartz monzonite, and gray quartz monzonite and granodiorite. Contact relations indicate that the pink and more granitic rocks are younger than the gray and more mafic rocks, but radioactive age data are in conflict with this. Undated plutonic rocks that are not clearly related to the group are assigned to relatively older or younger age positions. West of the Bucanamanga fault rhyolite makes up a small body at one locality and forms an intrusive sheet with granophyre and intrusive breccias in Triassic sedimentary rocks at another locality. Its age is unknown, but it probably is younger than the

  2. Forsmark site investigation. Assessment of the validity of the rock domain model, version 1.2, based on the modelling of gravity and petrophysical data

    International Nuclear Information System (INIS)

    Isaksson, Hans; Stephens, Michael B.

    2007-11-01

    model response shows a somewhat different extension of the gravity anomaly (Z-shape) than the original data indicates. A small mass deficiency is also apparent in RFM017, indicating that the rock domain is slightly underestimated in density and/or volume compared to rock domain RFM029. In the south-eastern part of rock domain RFM023, the occurrence of less dense, subordinate granitic rocks has not been sufficiently accounted for. All these rock domains are situated more or less completely outside the local model volume. The modelling work carried out here is strongly restricted by the paucity of quantitative data that bear on the volumetric proportions of subordinate rock types in each domain. This problem has been addressed to some extent by the development of alternative models that do not solely take account of the average density of the dominant rock type. Finally, the strong gravity anomaly (5-7 mgal) that is situated c 3 km northwest of the Forsmark nuclear power plant needs to be mentioned, even though it is located outside the regional model area. A continuation and enlargement of the diorite-gabbro domain RFM025 towards the northwest, including also a higher density corresponding to rocks with more mafic or even ultramafic composition, may explain this gravity high. However, the shape and wavelength of the anomaly, and the fact that iron oxide mineralisation is known in the area, imply that an association to an metallic but non-magnetic ore can not be ruled out

  3. A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation

    Science.gov (United States)

    Gettings, M.E.

    1983-01-01

    with gravity highs contain a large proportion of gabbroic and dioritic intrusive rocks and that the bulk density of the upper crust associated with some of the batholithic complexes has been lowered by the large-scale intrusion of granitic material at depth, as well as by that exposed at the surface. A comparison of known base and precious metals occurrences with the Bouguer gravity anomaly field shows, in some cases, a correlation between such occurrences and the features of the gravity anomaly map. Several areas were identified between known mineral occurrences along gravity-defined structures that may contain mineral deposits if the lithologic environment is favorable.

  4. Proterozoic to Quaternary events of fracture mineralisation and oxidation in SE Sweden

    International Nuclear Information System (INIS)

    Drake, Henrik

    2008-12-01

    Fracture minerals and altered wall rock have been analysed to reveal the low-temperature evolution, especially regarding redox conditions, of the Simpevarp area, SE Sweden. This area is one of the two areas in Sweden investigated by the Swedish Nuclear fuel and Waste Management Co. in order to find a potential geological repository for spent nuclear fuel. The 1.8 Ga granitic to dioritic rocks in the area are generally un-metamorphosed and structurally well-preserved, although low-grade ductile shear zones and repeatedly reactivated fractures exist. Investigations of cross-cutting fractures along with a wide variety of fracture mineral analyses, such as stable isotopes and 40Ar/39Ar geochronology, have been used to distinguish a sequence of fracture filling generations. The characteristics of these generations indicate the low-temperature evolution of the area, including information of e.g. fluid origin, formation temperature, paleo stresses and relation to known geological events. Knowledge of the fracture mineral evolution is important for the conceptual geological and hydrogeochemical understanding of the site and supports predictions of future scenarios in the safety assessment. The fracture mineral generations identified have been formed at widely varying conditions starting in the Proterozoic with formation from inorganic hydrothermal fluids, continuing in the Paleozoic with formation from lower temperature brine type fluids with organic influence, and ranging into minerals formed from waters of varying salinity and with significant organic influence at conditions similar to the present conditions. However, the amount of potentially recent precipitates is very small compared to Proterozoic and Paleozoic precipitates. The fracture mineral parageneses have been associated, with varying confidence, to far-field effects of at least four different orogenies; the Svecokarelian orogeny (>1.75 Ga), the Danapolonian orogeny (∼1.47-1.44 Ga), the Sveconorwegian orogeny

  5. Genesis of the Permian Kemozibayi sulfide-bearing mafic-ultramafic intrusion in Altay, NW China: Evidence from zircon geochronology, Hf and O isotopes and mineral chemistry

    Science.gov (United States)

    Tang, Dongmei; Qin, Kezhang; Xue, Shengchao; Mao, Yajing; Evans, Noreen J.; Niu, Yanjie; Chen, Junlu

    2017-11-01

    The recently discovered Kemozibayi mafic-ultramafic intrusion and its associated magmatic Cu-Ni sulfide deposits are located at the southern margin of the Chinese Altai Mountain, Central Asian Orogenic Belt in north Xinjiang, NW China. The intrusion is composed of olivine websterite, norite, gabbro and diorite. Disseminated and net-textured Ni-Cu sulfide ores are hosted in the center of the gabbro. In this work, new zircon U-Pb ages, Hf-O isotopic and sulfide S isotopic data, and whole rock and mineral chemical analyses are combined in order to elucidate the characteristics of the mantle source, nature of subduction processes, degree of crustal contamination, geodynamic setting of bimodal magmatism in the region, and the metallogenic potential of economic Cu-Ni sulfide deposit at depth. SIMS zircon U-Pb dating of the gabbro yields Permian ages (278.3 ± 1.9 Ma), coeval with the Kalatongke Cu-Ni deposit and with Cu-Ni deposits in the Eastern Tianshan and Beishan areas. Several lines of evidence (positive εHf(t) from + 7.1 to + 13.3, Al2O3, TiO2 and SiO2 contents in clinopyroxene from olivine websterite, high whole rock TiO2 contents) suggest that the primary magma of the Kemozibayi intrusion was a calc-alkaline basaltic magma derived from depleted mantle, and that the degree of partial melting in the magma source was high. The evolution of the Kemozibayi mafic-ultramafic complex was strongly controlled by fractional crystallization and the crystallization sequence was olivine websterite, norite, and then gabbro. This is evidenced by whole rock Fe2O3 contents that are positively correlated with MgO and negatively correlated with Al2O3, CaO and Na2O, similar LREE enrichment and negative Nb, Ta, Hf anomalies in chondrite and primitive mantle-normalized patterns, and a decrease in total REE and trace elements contents and magnetite content from gabbro through to norite and olivine websterite. Varied and low εHf(t) (+ 7.1 to + 13.3) and high δ18O values (+ 6.4‰ to

  6. Petrography and Geochemistry of the Zamora Batholith in the south of the sub-Andean zone (Ecuador)

    Science.gov (United States)

    Villares, F. M.

    2013-05-01

    The Zamora Batholith is an intrusive complex that is located in the extreme south-east of Ecuador. It has dimensions of 200 x 50 km approximately. It is mainly located in the Zamora Chinchipe province from which it takes its name. This study consisted in the petrographic and geochemical characterization of the Zamora Batholith in the area covered by 1: 50,000 geological maps of Centro Shaime, Guayzimi, Paquisha, Los Encuentros and El Pangui. Fieldwork was done by the "Proyecto Mapeo Geológico escala 1:50.000 (zonas prospectivas mineras)" of the Instituto Nacional de Investigación Geológico, Minero, Metalúrgico of Ecuador. This research was performed with 59 thin sections and 10 whole - rock chemical analysis done in the C.I.C of the Granada University. The Zamora Batholith intrudes Triassic to Jurassic volcanic rocks. It is overlaid by sandstones of the Hollin Formation of the Upper Aptian age and shale and limestone from the Napo Formation. Post-cretaceous deposits of ash and lava flows of andesitic to rhyolitic compositions cover the batholith. The petrography of the Zamora Batholith ranges from tonalite to monzogranite with the same qualitative mineralogy. The rocks are composed by different proportions of plagioclase, amphibole, feldspar K, quartz, biotite, opaque, pyroxene and epidote, as accessory minerals has zircon, sphene and apatite. To the south of the Conguime and Guayzimi towns, the dominant petrography is medium to coarse grained amphibole granodiorite with tonalitic and monzogranitic subordinates. To the north monzogranites are dominant rocks and subordinate granodiorites. To the East of Santa Elena the sienogranites are associated with El Hito porphyritic granite that intrudes to Zamora Batholith. Frequently the batholith has propylitic alteration; which produces a primary association of chlorite, epidote, calcite and pyrite. The granitoids have dioritic to granitic compositions (60.09 to 73.6 wt.% SiO2) and are I - type, medium to high-K calc

  7. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    Science.gov (United States)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Prov