WorldWideScience

Sample records for diode-pumped continuous wave

  1. Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal

    Science.gov (United States)

    Wang, Yi; Lan, Jinglong; Zhou, Zhiyong; Guan, Xiaofeng; Xu, Bin; Xu, Huiying; Cai, Zhiping; Wang, Yan; Tu, Chaoyang

    2017-04-01

    We report on a diode-pumped Tm:Gd3Ga5O12 (GGG) laser at 2004 nm operated in continuous-wave mode with two-mirror linear cavity configuration. The maximum output power reaches 0.58 W with laser threshold absorbed pump power of about 0.39 W and overall slope efficiency of about 18.4%, which is believed to be the highest output power for Tm:GGG laser up to now. The Tm:GGG laser shows obvious thermally induced saturation of the output power, which indicated that power and efficiency scaling could be furtherly realized by more efficient thermal removal of the laser crystal.

  2. Continuous-wave generation and tunability of eye-safe resonantly diode-pumped Er:YAG laser

    Science.gov (United States)

    Němec, Michal; Indra, Lukás.; Šulc, Jan; Jelínková, Helena

    2016-03-01

    Laser sources generating radiation in the spectral range from 1.5 to 1.7 μm are very attractive for many applications such as satellite communication, range finding, spectroscopy, and atmospheric sensing. The goal of our research was an investigation of continuous-wave generation and wavelength tuning possibility of diode pumped eye-safe Er:YAG laser emitting radiation around 1645 nm. We used two 0.5 at. % doped Er:YAG active media with lengths of 10 mm and 25 mm (diameter 5 mm). As a pumping source, a fibre-coupled 1452 nm laser-diode was utilized, which giving possibility of the in-band pumping with a small quantum defect and low thermal stress of the active bulk laser material. The 150 mm long resonator was formed by a pump mirror (HT @ 1450 nm, HR @ 1610 - 1660 nm) and output coupler with 96 % reflectivity at 1610 - 1660 nm. For continuous-wave generation, the maximal output powers were 0.7 W and 1 W for 10 mm and 25 mm long laser crystals, respectively. The corresponding slope efficiencies with respect to absorbed pump power for these Er:YAG lasers were 26.5 % and 37.8 %, respectively. The beam spatial structure was close to the fundamental Gaussian mode. A wavelength tunability was realized by a birefringent plate and four local spectral maxima at 1616, 1633, 1645, and 1657 nm were reached. The output characteristics of the designed and realized resonantly diode-pumped eye-safe Er:YAG laser show that this compact system has a potential for usage mainly in spectroscopic fields.

  3. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Science.gov (United States)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  4. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal

    Science.gov (United States)

    Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun

    2018-02-01

    We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.

  5. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  6. Diode-pumped continuous-wave blue laser operation of Nd:GGG at 467.0, 467.7, and 468.5 nm

    International Nuclear Information System (INIS)

    Xu, B; Camy, P; Doualan, J L; Braud, A; Moncorgé, R; Cai, Z P; Brenier, A

    2012-01-01

    Intra-cavity frequency doubling of continuous-wave (CW) laser emission on the quasi-three level ( 4 F 3/2 → 4 I 9/2 ) laser transition of Nd 3+ in Nd:GGG is reported by using a three-mirror folded resonator. The thermal lens experienced by the optically-pumped Nd:GGG laser crystal is measured as a function of the absorbed pump power and compared to that found, in the same conditions, in the case of Nd:YAG. Results are interpreted by using a simple model accounting for the absorbed pump power and the thermo-mechanical properties of each laser crystal. Diode-pumped blue laser operation is achieved, for the first time, at 467.0 and 468.5 nm with output powers of 230 and 450 mW, respectively. Simultaneous laser operation resulting both from frequency-doubling and frequency summing at the three 467.1, 467.7, and 468.1 nm laser wavelengths is also obtained with a total output power of 60 mW

  7. Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10laser with sapphire cooling at 1.57 μm.

    Science.gov (United States)

    Chen, Yujin; Hou, Qi; Huang, Yisheng; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Lin, Zhoubin; Huang, Yidong

    2017-08-07

    Efficient 1.57 μm continuous-wave laser was demonstrated in an X-cut, 2.0 mm-thick Er 3+ :Yb 3+ :LaMgB 5 O 10 crystal with sapphire cooling end-pumped by a 976 nm laser diode. In a plano-concave cavity, a laser with a maximum output power of 0.61 W and a slope efficiency of 23% was realized at an absorbed pump power of 4.0 W. A continuous-wave 1566 nm micro-laser with a maximum output power of 0.47 W and a slope efficiency of 16% was also obtained. The lasers were totally linear polarization parallel to the crystalline Z axis. The results show that the Er 3+ :Yb 3+ :LaMgB 5 O 10 crystal with high thermal conductivity may be a good gain medium for laser around 1.55 μm.

  8. Comparison of photosensitivity in germanium doped silica fibers using 244 nm and 266 nm continuous wave lasers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo; Varming, Poul; Liu, B.

    2001-01-01

    Diode pumped continuous-wave UV lasers offer an interesting alternative to frequency doubled argon-ion lasers. We report the first photosensitivity comparison using these lasers on deuterium loaded standard telecommunication fibers and unloaded experimental fibers.......Diode pumped continuous-wave UV lasers offer an interesting alternative to frequency doubled argon-ion lasers. We report the first photosensitivity comparison using these lasers on deuterium loaded standard telecommunication fibers and unloaded experimental fibers....

  9. Diode-pumped neodymium lasers

    Science.gov (United States)

    Albers, Peter

    1990-08-01

    Since the invention of diode lasers in the early 1960's there had been continuous investigations in laser diode pumped solid state lasers as has been reviewed in detail by a number of papers ( see e.g. [1] ). There are two main advantages of using diode lasers instead of flashlaraps as a pump source for solid state lasers: First the emission of the diode lasers matches well with the absorption bands of several Rare Earth ions that are doped in laser crystals ( mainly Nd3+, but also Er3, Tm3, Dy3', and others ) . This summary will report only about diode lasers at a wavelength of around BlOnm, which fits to an absorptionband of Nd3t Second diode lasers provide the possibility of longitudinally pumped configurations and therefore an excellent mode matching with the solid state laser mode. For both reasons the efficiency of a diode laser puniped solid state laser is nuch higher than of a flashlamp pumped one. Since the early 1980's a much wider interest in diode laser pumped solid state lasers arose. It was stimulated by the improved performance of the new generation of diode lasers in terms of reliability , operational lifetime and output power [21. Two important steps in direction to the diode lasers at present time were the developments of double hetero (DH) structure- and graded index separate confinement hetero (GrInSCH) structurediode lasers. In the same way the development of new production techniques were necessary to ensure the reliability of the diode lasers. Starting with the liquid phase epitaxy (LPE) the (GaAl)As structures are now grown by the molecular beam epitaxy (MBE), mainly used for very high precision laboratory investigations, and metal organic chemical vapour deposition (MOCVD), mainly used for commercial production. As a first commercial product SDL introduced a 100mW array in 1984. Since then the output power of the commercially available diode lasers increased by two orders of magnitude to lOW. These diode lasers are multi stripe bar arrays

  10. Diode-Pumped High Energy and High Average Power All-Solid-State Picosecond Amplifier Systems

    Directory of Open Access Journals (Sweden)

    Jiaxing Liu

    2015-12-01

    Full Text Available We present our research on the high energy picosecond laser operating at a repetition rate of 1 kHz and the high average power picosecond laser running at 100 kHz based on bulk Nd-doped crystals. With diode-pumped solid state (DPSS hybrid amplifiers consisting of a picosecond oscillator, a regenerative amplifier, end-pumped single-pass amplifiers, and a side-pumped amplifier, an output energy of 64.8 mJ at a repetition rate of 1 kHz was achieved. An average power of 37.5 W at a repetition rate of 100 kHz pumped by continuous wave laser diodes was obtained. Compact, stable and high power DPSS laser amplifier systems with good beam qualities are excellent picosecond sources for high power optical parametric chirped pulse amplification (OPCPA and high-efficiency laser processing.

  11. 808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature

    Science.gov (United States)

    Urata, Yoshiharu; Wada, Satoshi

    2005-05-01

    A high-quality gadolinium vanadate (GdVO4) crystal with 7-at. % thulium as the starting material was grown by the Czochralski technique. The measured absorption spectra exhibited sufficient absorption coefficients for laser diodes (LDs) for neodymium laser pumping: 6.0 cm^-1 for pi polarization and 6.2 cm^-1 for sigma polarization at 808 nm. Laser oscillation was carried out with single-stripe 808-nm LDs in an end-pumping configuration. A slope efficiency of 28% and a threshold of 750 mW were exhibited with respect to the absorbed pump power. An output power of 420 mW was achieved at an absorbed power of 2.4 W. It was demonstrated that Tm:GdVO4 is a useful material for 2-μm lasers, particularly in a compact LD-pumped system.

  12. Examination of potassium diode pumped alkali laser using He, Ar, CH4and C2H6as buffer gas.

    Science.gov (United States)

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2017-11-27

    We examined the performance of a potassium diode pumped alkali laser (K DPAL) using He, Ar, CH 4 , C 2 H 6 and a mixture of He and CH 4 as a buffer gas to provide spin-orbit mixing of the 4P 3/2 and 4P 1/2 states of Potassium atoms. We found that pure helium cannot be used as an efficient buffer gas for continuous wave lasing without using a flowing system with a considerable flow speed of about 100 m/s. In contrast, using a small amount of methane (10-20 Torr) mixed with helium, continuous wave lasing can be achieved using very moderate flow speeds of about 1 m/s.

  13. Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm

    International Nuclear Information System (INIS)

    Liu Bin; Wang Qing-Guo; Tang Hui-Li; Wu Feng; Luo Ping; Zhao Heng-Yu; Shi Jiao-Jiao; He Nuo-Tian; Li Na; Li Qiu; Guo Chao; Wang Zhan-Shan; Xu Jun; Zheng Li-He; Su Liang-Bi; Liu Jun-Fang; Liu Jie; Fan Xiu-Wei; Xu Xiao-Dong

    2017-01-01

    The 4-at.% Tm:Sc 2 SiO 5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave (CW) laser output of (100)-cut Tm:SSO with the dimensions of 3 mm× 3 mm× 3 mm under laser diode (LD)-pumping is realized. The full width at half maximum (FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW. (paper)

  14. Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO 4

    Science.gov (United States)

    Li, G.; Yao, B. Q.; Meng, P. B.; Duan, X. M.; Ju, Y. L.; Wang, Y. Z.

    2011-04-01

    Spectroscopic characterization of co-doped Tm,Ho:YVO 4 crystal grown by the Czochralski method has been performed including absorption spectrum, emitting spectrum and luminescence decay lifetime. The polarization emitting spectrum around 2 μm is accomplished by exciting a singly Ho 3+ doped YVO 4 crystal to exclude the influence of Tm 3+3F 4- 3H 6 transition and the emission cross section is deduced from both Fuchtbauer-Ladenburg (F-L) equation and reciprocity method (RM). In addition, we report up to 10.4 W continuous wave (CW) output with a conversion efficiency of 40% and 10.3 W Q-Switch output with 12.5 kHz pulse repetition rate of diode-pumped cryogenic Tm,Ho:YVO 4 laser. For Q-Switch operation, the minimum pulse width of 28.2 ns is obtained, all of which demonstrate that the Tm,Ho:YVO 4 is excellent laser material for 2 μm radiation.

  15. Dichroic mirror for diode pumped YAG:Nd-laser

    DEFF Research Database (Denmark)

    Dinca, Andreea; Skettrup, Torben; Lupei, V.

    1996-01-01

    The paper describes the design and realization of a dichroic mirror for a diode pumped YAG:Nd laser. The mirror is deposed on an optical glass substrate and works in optical contact with the laser crystal. The design was performed by admittance matching of the basic stack with the adjacent media...

  16. Modeling of diode pumped metastable rare gas lasers.

    Science.gov (United States)

    Yang, Zining; Yu, Guangqi; Wang, Hongyan; Lu, Qisheng; Xu, Xiaojun

    2015-06-01

    As a new kind of optically pumped gaseous lasers, diode pumped metastable rare gas lasers (OPRGLs) show potential in high power operation. In this paper, a multi-level rate equation based model of OPRGL is established. A qualitative agreement between simulation and Rawlins et al.'s experimental result shows the validity of the model. The key parameters' influences and energy distribution characteristics are theoretically studied, which is useful for the optimized design of high efficient OPRGLs.

  17. Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers.

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2017-06-12

    A physical model combining rate, power propagation, and transient heat conduction equations for diode-pumped alkali vapor lasers (DPAL) is applied to a pulsed Rb-CH 4 DPAL, which agrees well with the time evolution of laser power and temperature measured by K absorption spectroscopy. The output feature and temperature rise of a multi-pulse DPAL are also calculated in the time domain, showing that if we energize the pump light when the temperature rise decays to 1/2, rather than 1/e of its maximum, we can increase the duty cycle and obtain more output energy. The repetition rate of >100Hz is high enough to achieve QCW (quasi-continuous-wave) laser pulses.

  18. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  19. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  20. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  1. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  2. CONTINUOUS-WAVE MICROCHIP LASER GENERATION OF Tm:KLu(WO42 AND Tm:KY(WO42 CRYSTALS

    Directory of Open Access Journals (Sweden)

    O. P. Dernovich

    2016-01-01

    Full Text Available Diode-pumped solid-state lasers are attractive for a variety of practical applications in many fields of human activity due to their high efficiency, compactness, and long durability. For applications in remote sensing lasers emitting in the spectral range of about 2 microns are required. Materials doped with trivalent thulium ions are promising active media emitting in this spectral range. Potassium rare-earth tungstates are attractive materials among Tm-doped crystals due to their suitable characteristics, such as high values of absorption and stimulated emission cross sections, incignificant concentration quenching of luminescence, well-proven technology of the high quality crystals growth. The purpose of this paper was to compare lasing properties of lasers based on potassium lutetium and potassium yttrium tungstate crystals doped with thulium ions in continuous-wave regime. Experiments were carried out with a diode pumping in microchip cavity configuration. The maximum power of laser radiation at 1947 nm of 1010 mW was obtained with Tm:KY(WO42 crystal with the slope efficiency with respect to the absorbed pump power of 51 %. When Tm:KLu(WO42 crystal was utilized an output power of 910 mW at 1968 nm wavelength with the slope efficiency of 38 % was obtained. With Tm:KLu(WO42 laser a tuning range over 160 nm range was realized with a prism inserted into the laser cavity. 

  3. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  4. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  5. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  6. 100  J-level nanosecond pulsed diode pumped solid state laser.

    Science.gov (United States)

    Banerjee, Saumyabrata; Mason, Paul D; Ertel, Klaus; Jonathan Phillips, P; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilar, Jan; Smith, Jodie; Butcher, Thomas; Lintern, Andrew; Tomlinson, Steph; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John L

    2016-05-01

    We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

  7. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  8. Frequency-stabilized diode-pumped Tm,Ho:YLF local oscillator with +4 GHz of tuning range

    Science.gov (United States)

    Hemmati, Hamid; Esproles, Carlos; Menzies, Robert T.

    1998-09-01

    A tunable, single-frequency, frequency-stabilized, diode- pumped Tm,Ho:YLF laser is described. The laser, which demonstrates the function of a local-oscillator for coherent Doppler lidar in space, has continuous frequency tunability of more than 8 GHz. Active frequency stabilization is achieved by feedback electronics which allow for controlled tuning capability. Output power of more than 20 mW in single-transverse and -longitudinal mode operation with a short term frequency jitter of less than 100 kHz/ms is obtained.

  9. Diode pumped 1kHz high power Nd:YAG laser with excellent beam quality

    NARCIS (Netherlands)

    Godfried, Herman; Godfried, H.P; Offerhaus, Herman L.

    1997-01-01

    The design and operation of a one kilohertz diode pumped all solid-state Nd:YAG master oscillator power amplifier system with a phase conjugate mirror is presented. The setup allows high power scaling without reduction in beam quality.

  10. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  11. Diode-pumped fiber lasers: a new clinical tool?

    Science.gov (United States)

    Jackson, Stuart D; Lauto, Antonio

    2002-01-01

    Diode-pumped fiber lasers are a compact and an efficient source of high power laser radiation. These laser systems have found wide recognition in the area of lasers as a result of these very practical characteristics and are now becoming important tools for a large number of applications. In this review, we outline the basic physics of fiber lasers and illustrate how a number of clinical procedures would benefit from their employment. The pump mechanisms, the relevant pump and laser transitions between the energy levels, and the main properties of the output from fiber lasers will be briefly reviewed. The main types of high power fiber lasers that have been demonstrated will be examined along with some recent medical applications that have used these lasers. We will also provide a general review of some important medical specialties, highlighting why these fields would gain from the introduction of the fiber laser. It is established that while the fiber laser is still a new form of laser device and hence not commercially available in a wide sense, a number of important medical procedures will benefit from its general introduction into medicine. With the number of medical and surgical applications requiring high power laser radiation steadily increasing, the demand for more efficient and compact laser systems providing this capacity will grow commensurately. The high power fiber laser is one system that looks like a promising modality to meet this need. Copyright 2002 Wiley-Liss, Inc.

  12. Single- and multi-wavelength laser operation of a diode-pumped ND:GGG single crystal around 1.33 μm

    Science.gov (United States)

    Xu, Bin; Wang, Yi; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping; Moncorgé, Richard

    2015-06-01

    We report on the first continuous-wave laser operation of a diode-pumped Nd:GGG single crystal at several emission wavelengths in the 1.33 μm spectral domain. Multi-wavelength laser operation at 1324, 1331 and 1337 nm with a maximum laser output power of 1.83 W and a laser slope efficiency of 28.9% for an output coupler transmission of 2.2% is obtained in the free-running regime. By inserting and tilting a 0.1-mm BK7 glass etalon to modulate the losses inside the laser cavity, single wavelength lasing at 1324 nm and 1347 nm are also achieved with maximum output powers of about 0.77 W and 0.41 W as well as laser slope efficiencies of 15.2% and 12.6%, respectively. Further increasing the pump power, based on the position of the etalon leading to the single laser wavelength operation at 1347 nm, stable dual-wavelength laser operation is demonstrated at 1337 and 1347 nm with a maximum output power of 0.61 W.

  13. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  14. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    Science.gov (United States)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  15. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Science.gov (United States)

    Donin, V. I.; Yakovin, D. V.; Gribanov, A. V.

    2015-12-01

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses.

  16. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  17. Diode-pumped 1028 nm Ytterbium-doped fiber laser with near 90% slope efficiency

    Czech Academy of Sciences Publication Activity Database

    Harun, S.W.; Paul, M.C.; Moghaddam, M.R.A.; Das, S.; Sen, R.; Dhar, Anirban; Pal, M.; Bhadra, S.K.; Ahmad, H.

    2010-01-01

    Roč. 20, č. 3 (2010), s. 656-660 ISSN 1054-660X Institutional research plan: CEZ:AV0Z20670512 Keywords : Core composition * Oscillator * Diode-pumped Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.319, year: 2010

  18. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  19. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.

    2016-01-01

    Diode-pumping Ti: sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-la...

  20. A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping

    Science.gov (United States)

    Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung

    2014-01-01

    An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101

  1. Demonstration of a diode-pumped metastable Ar laser.

    Science.gov (United States)

    Han, Jiande; Glebov, Leonid; Venus, George; Heaven, Michael C

    2013-12-15

    Pulsed lasing from optically pumped rare gas metastable atoms (Ne, Ar, Kr, and Xe) has been demonstrated previously. The laser relies on a three-level scheme, which involves the (n+1)p[5/2](3) and (n+1)p[1/2](1) states from the np(5)(n+1)p electronic configuration and the metastable (n+1)s[3/2](2) level of the np(5)(n+1)s configuration (Racah notation). Population inversions were achieved using relaxation from ((n+1)p[5/2](3) to (n+1)p[1/2](1) induced by collisions with helium or argon at pressures near 1 atm. Pulsed lasing was easily achieved using the high instantaneous pump intensities provided by a pulsed optical parametric oscillator excitation laser. In the present study we examine the potential for the development of a continuous wave (CW) optically pumped Ar laser. We report lasing of the 4p[1/2](1)→4s[3/2](2) (912.547 nm) transition following CW diode laser excitation of the 4p[5/2](3)←4s[3/2](2) line (811.754 nm). A pulsed discharge was used to generate Ar 4s[3/2](2), and the time-resolved lasing kinetics provide insights concerning the radiative and collisional relaxation processes.

  2. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    International Nuclear Information System (INIS)

    Cheng, Y; Xu, X D; Xiao, X D; Li, D Z; Zhao, C C; Zhou, S M; Xin, Z; Yang, X B; Xu, J

    2009-01-01

    Laser crystal Nd:CaNb 2 O 6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd 3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb 2 O 6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10 -20 cm 2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10 -20 cm 2 . We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb 2 O 6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime

  3. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Xin, Z.; Yang, X. B.; Xiao, X. D.; Li, D. Z.; Zhao, C. C.; Xu, J.; Zhou, S. M.

    2009-10-01

    Laser crystal Nd:CaNb2O6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb2O6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10-20 cm2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10-20 cm2. We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb2O6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime.

  4. Tm:GGAG crystal for 2μm tunable diode-pumped laser

    Science.gov (United States)

    Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2016-04-01

    The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.

  5. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  6. Effects of atmospheric transmission of high power diode pumped alkali lasers

    Science.gov (United States)

    Rice, Christopher A.; Perram, Glen P.

    2013-03-01

    As diode pumped alkali lasers (DPAL) are scaled to powers exceeding 1 kW, the effects of atmospheric transmission, including thermal blooming, is explored. The cesium and rubidium lasers operate near 894 and 795 nm, respectively, in the vicinity of atmospheric water vapor absorption lines. The potassium laser line lies in the high rotational limit of the O2 X-b (0,0) band near 770 nm. We assess the effects of atmospheric transmission on high power propagation using the High Energy Laser End-to End Operational Simulation. HELEEOS uses the scaling laws of the Scaling the High energy laser And Relay Engagements (SHaRE) toolbox which is anchored to the wave optics code WaveTrain and all significant degradation effects, including thermal blooming due to molecular and aerosol absorption, scattering extinction, and optical turbulence, are represented in the model. The HELEEOS model enables the evaluation of uncertainty in low-altitude high energy laser engagements due to all major low altitude atmospheric effects to include physically-based representations of water clouds, fog, light rain, and aerosols. Worldwide seasonal, diurnal, and geographical spatial-temporal variability in key climatological parameters is organized into probability density function databases in HELEEOS using a variety of recently available resources to include the Extreme and Percentile Environmental Reference Tables (ExPERT) for 408 sites worldwide, the Surface Marine Gridded Climatology (SMGC) database which provides coverage over all ocean areas, the Master Database for Optical Turbulence Research in support of the Airborne Laser, and the Global Aerosol Data Set (GADS) used to provide worldwide aerosol densities. The spectral transmission model is anchored to field data from an open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope. The ruggedized system has been field deployed and tested

  7. Wavelength Stabilized High Brightness Direct Diode Pumps for Solid State LIDAR Systems at Eye-Safe Wavelengths, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a high power, high efficiency, high reliability compact eye-safe LIDAR source. The diode pump source is an electrically series-connected array of single...

  8. Wavelength Stabilized High Brightness Direct Diode Pumps for Solid State LIDAR Systems at Eye-Safe Wavelengths, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed innovation is to design and fabricate a diode pumped Er:YAG micro-chip laser capable of varied repetition rates and high pulse energies using the single...

  9. THERMAL LENSING MEASUREMENTS IN THE ANISOTROPIC LASER CRYSTALS UNDER DIODE PUMPING

    Directory of Open Access Journals (Sweden)

    P. A. Loiko

    2012-01-01

    Full Text Available An experimental setup was developed for thermal lensing measurements in the anisotropic diode-pumped laser crystals. The studied crystal is placed into the stable two-mirror laser cavity operating at the fundamental transversal mode. The output beam radius is measured with respect to the pump intensity for different meridional planes (all these planes contain the light propagation direction. These dependencies are fitted using the ABCD matrix method in order to obtain the sensitivity factors showing the change of the optical power of thermal lens due to variation of the pump intensity. The difference of the sensitivity factors for two mutually orthogonal principal meridional planes describes the thermal lens astigmatism degree. By means of this approach, thermal lensing was characterized in the diode-pumped monoclinic Np-cut Nd:KGd(WO42 laser crystal at the wavelength of 1.067 μm for light polarization E || Nm.

  10. Modeling of a diode-pumped thin-disk cesium vapor laser

    Science.gov (United States)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  11. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  12. Open-path atmospheric transmission for a diode-pumped cesium laser.

    Science.gov (United States)

    Rice, Christopher A; Lott, Gordon E; Perram, Glen P

    2012-12-01

    A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.

  13. Diode-pumped solid-state-laser drivers and the competitiveness of inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.

    1993-12-01

    Based on five technical advances at LLNL and a new systems-analysis code that we have written, we present conceptual designs for diode-pumped solid-state laser (DPSSL) drivers for Inertial Fusion Energy (IFE) power plants. Such designs are based on detailed physics calculations for the drive, and on generic scaling relationships for the reactor and balance of plant (BOP). We describe the performance and economics of such power plants, show how sensitive these results are to changes in the major parameters, and indicate how technological improvements can make DPSSL-driven IFE plants more competitive

  14. Laser-diode-pumped mirror-free Er sup 3+ -doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Suzuki, K.; Nakazawa, M. (Optical Communication Laboratory, NTT Transmission Systems Laboratories, Tokai, Ibaraki-ken 319-11, Japan (JP))

    1989-09-15

    We have demonstrated 1.47-{mu}m laser-diode-pumped Er{sup 3+}-doped fiber laser operation at 1.552 {mu}m, in which a cleaved fiber facet with 4% reflectivity is used as the output mirror. The pump source is a 1.47-{mu}m InGaAsP laser diode inserted into the fiber laser cavity. End pumping a 7-m-long Er{sup 3+}-doped fiber yields an output power of 1 mW for an absorbed pump power of 60 mW and a slope efficiency of 6.25%.

  15. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  16. Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C., LLNL

    1998-02-23

    We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.

  17. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  18. Self-organization of the Q-switched mode-locked regime in a diode-pumped Nd:YAG laser

    Science.gov (United States)

    Donin, V. I.; Yakovin, D. V.; Gribanov, A. V.

    2015-06-01

    A new Q-switched mode-locked generation regime of a solid-state laser, in which a Q-switch is "spontaneously" formed at the frequency of relaxation oscillations, has been observed for the first time. The new generation has been implemented by means of the previously proposed method of an acoustic modulator of a traveling wave in combination with a spherical mirror of a cavity. Stable pulse trains with a repetition frequency of ~30 kHz and a duration of ~2 µs have been observed in the diode-pump Nd:YAG laser with an average output power of ~3 W. Each train contains about 200 equispaced single pulses with a duration of ~45 ps.

  19. Selective removal of dental composite with a diode-pumped Er:YAG laser

    Science.gov (United States)

    Fried, William A.; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Selective removal of dental composite with high precision is best accomplished using lasers operating at high pulse repetition rates focused to a small spot size. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped Er:YAG lasers have become available operating at high pulse repetition rates. The purpose of this study was to compare the ablation rates and selectivity of enamel and composite for a 30 W diode-pumped Er:YAG laser operating with a pulse duration of 30-50-μs and evaluate it's suitability for the selective removal of composite from tooth surfaces. The depth of ablation and changes in surface morphology were assessed using digital microscopy. The fluence range of 30-50 J/cm2 appeared optimal for the removal of composite, and damage to sound enamel was limited to less than 100-μm after the removal of composite as thick as 700-800-μm. Future studies will focus on the use of methods of feedback to further increase selectivity.

  20. Selective removal of dental caries with a diode-pumped Er:YAG laser

    Science.gov (United States)

    Yan, Ruth; Chan, Kenneth H.; Tom, Henry; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped Er:YAG lasers have become available operating at high pulse repetition rates. The purpose of this study was to measure the ablation rate and selectivity of sound and demineralized enamel and dentin for a 30 W diode-pumped Er:YAG laser operating with a pulse duration of 20-30-μs and evaluate it's potential for the selective removal of natural occlusal lesions on extracted teeth. Microradiography was used to determine the mineral content of the demineralized enamel and dentin of 300-μm thick sections with natural caries lesions prior to laser ablation. The ablation rate was calculated for varying mineral content. In addition, near-IR reflectance measurements at 1500-1700- nm were used to guide the laser for the selective ablation of natural occlusal caries lesions on extracted teeth.

  1. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    International Nuclear Information System (INIS)

    Marshall, C.; Smith, L.; Payne, S.

    1994-01-01

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics ( 2 ). The saturation fluence for pumping has been measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm 3 . A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author's immediate experiments. These results further increase their optimism of being able to produce a ∼ 10% efficient diode-pumped solid state laser for inertial fusion energy

  2. Hough transform search for continuous gravitational waves

    International Nuclear Information System (INIS)

    Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano

    2004-01-01

    This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities

  3. Powerful visible (530???770 nm) luminescence in Yb,Ho:GGG with IR diode pumping.

    Science.gov (United States)

    Kir'yanov, Alexander; Aboites, V; Belovolov, A; Timoshechkin, M; Belovolov, M; Damzen, M; Minassian, A

    2002-08-12

    Powerful visible luminescence in a Gadolinium Gallium Garnet (GGG) crystal, co-activated with Yb3+ (~15 at.%) and Ho3+ (~0.1 at.%) ions, is investigated under CW laser diode pumping (lambda = 938 and 976 nm). The main visible emission band is observed in the green with its peak at lambda ~540 nm) and measured to be about 10% with respect to Yb3+ IR luminescence (lambda ~1000 nm). Red (lambda ~650 nm) and near-IR (lambda ~755 nm) emission bands are also observed but are weaker (about 3-5%). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+ - Ho3+ stepwise up-conversion is the mechanism explaining the phenomenon. Ho3+ ions embedded in the crystal in small concentration are shown to form an effective reservoir for energy transferred from the excited Yb3+ subsystem and to be an efficient source of the visible emission.

  4. Optimised design for a 1 kJ diode-pumped solid-state laser system

    Science.gov (United States)

    Mason, Paul D.; Ertel, Klaus; Banerjee, Saumyabrata; Phillips, P. Jonathan; Hernandez-Gomez, Cristina; Collier, John L.

    2011-06-01

    A conceptual design for a kJ-class diode-pumped solid-state laser (DPSSL) system based on cryogenic gas-cooled multislab ceramic Yb:YAG amplifier technology has been developed at the STFC as a building block towards a MJ-class source for inertial fusion energy (IFE) projects such as HiPER. In this paper, we present an overview of an amplifier design optimised for efficient generation of 1 kJ nanosecond pulses at 10 Hz repetition rate. In order to confirm the viability of this technology, a prototype version of this amplifier scaled to deliver 10 J at 10 Hz, DiPOLE, is under development at the Central Laser Facility. A progress update on the status of this system is also presented.

  5. ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers

    Science.gov (United States)

    Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory

    2018-03-01

    Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.

  6. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  7. STED microscopy with continuous wave beams.

    Science.gov (United States)

    Willig, Katrin I; Harke, Benjamin; Medda, Rebecca; Hell, Stefan W

    2007-11-01

    We report stimulated emission depletion (STED) fluorescence microscopy with continuous wave (CW) laser beams. Lateral fluorescence confinement from the scanning focal spot delivered a resolution of 29-60 nm in the focal plane, corresponding to a 5-8-fold improvement over the diffraction barrier. Axial spot confinement increased the axial resolution by 3.5-fold. We observed three-dimensional (3D) subdiffraction resolution in 3D image stacks. Viable for fluorophores with low triplet yield, the use of CW light sources greatly simplifies the implementation of this concept of far-field fluorescence nanoscopy.

  8. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  9. Single-frequency diode-pumped Nd:YAG prism laser with use of a composite laser crystal

    DEFF Research Database (Denmark)

    Pedersen, Christian; Hansen, P. L.; Buchhave, Preben

    1997-01-01

    A compact, stable, diode-pumped Nd:YAG laser suitable for high-power single-frequency operation is investigated theoretically as well as experimentally. Residual spatial hole burning has been eliminated with a unidirectional ring-laser design with a specially designed intracavity prism and a comp...... and a composite YAG laser crystal. A detailed Jones matrix analysis is performed, leading to design criteria for high loss difference and high-frequency stability....

  10. Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator

    Science.gov (United States)

    Kane, Thomas J.; Nilsson, Alan C.; Byer, Robert L.

    1987-01-01

    The frequency stability of laser-diode-pumped, monolithic Nd:YAG solid-state unidirectional nonplanar ring oscillators was studied by heterodyne measurements. CW single-axial- and transverse-mode power of 25 mW at 1064 nm was obtained at a slope efficiency of 19 percent. Two independent oscillators were offset-locked at 17 MHz with frequency fluctuations of less than + or - 40 kHz for periods of 8 min.

  11. Q-Switched and Mode Locked Short Pulses from a Diode Pumped, YB-Doped Fiber Laser

    Science.gov (United States)

    2009-03-26

    polarization maintaining (PM) at a length of 8.7 ± 0.1 m. The surface area of the PANDA -style fiber is pictured in figure 3.3 (a) [46]. The core diameter was...diode- pumped c-cut Nd:GdVO4 laser,” Optics Communications 231 (2004) pg 365-369. 36. W. G. Wagner, B. A. Lengyel, "Evolution of the giant pulse in a

  12. High repetition rate, high peak power, diode pumped Tm:YLF laser

    Science.gov (United States)

    Jabczynski, J. K.; Gorajek, Ł.; Zendzian, W.; Kwiatkowski, J.; Jelínková, H.; Šulc, J.; Němec, M.

    2009-02-01

    The room-temperature, water-cooled, diode pumped Tm:YLF laser head was elaborated and examined. For pumping the fiber coupled (0.2 mm core diameter) 25-W laser diode bar emitting at 792-nm wavelength was deployed. Near 5 W of CW output power and 25% slope efficiency was demonstrated in a short, 70-mm long resonator. Tuning in 1845-1935 nm wavelength range by means of 2-plate Lyot filter was demonstrated only in free-running regime. The fused silica acousto-optic modulator with above 80% diffraction efficiency for 25-W power of RF was deployed as the Q-switch for such a laser. In the best case of Q-switching regime, up to 10-mJ output energy with 47-ns pulse duration, 220 kW peak power was demonstrated for 133 Hz. For higher repetition rate of 2 kHz, 12 kW peak power with 2.5 W of average power was achieved.

  13. [Comparative study on software demodulation for continuous wave and quasi-continuous wave wavelength modulation spectroscopy].

    Science.gov (United States)

    Shao, Xin; Liu, Fu-Gui; Chen, Wen-Liang

    2013-12-01

    According to the modulation signal applied on laser diodes, wavelength modulation spectroscopy (WMS) can be divided into continuous wave (CW) WMS and quasi-continuous wave (QCW) WMS. In order to deeply compare CW-WMS and QCW-WMS, we used a specific software-realized lock-in amplifier for continuous and quasi-continuous modulation signal demodulation. The invalid signal in quasi-continuous modulation spectrum was filtered off, and then the effective detection signal was demodulated to obtain the second harmonic signal (WMS-2f). It was compared with the 2f signal demodulated continuous laser modulation spectrum with software. The results show that while the same system parameters are set, the signal-to-noise of the quasi-continuous modulation spectrum is 5% higher than the continuous modulation spectrum with software demodulation measurements, and the detection limit is 11.3% lower. And without the invalid signal in quasi-continuous modulation spectrum, the standard WMS-2f signal can be demodulated, which has potential to be used for the investigation of gas absorption profile. This work has provided accurate reference for selections of the laser modulation spectroscopy.

  14. System study of a diode-pumped solid-state-laser driver for inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.; Payne, S.A.

    1995-01-01

    The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verified by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW e using a new gain medium [Yb 3+ -doped Sr 5 (PO 4 ) 3 F or Yb:S-FAP] includes a product of laser efficiency and target gain of ηG = 7, and a COE of 8.6 cents/kW·h, although values of ηG ≥ 11 and COEs ≤6.6 cents/kW·h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs

  15. Stochastic generation of continuous wave spectra

    DEFF Research Database (Denmark)

    Trulsen, J.; Dysthe, K. B.; Pécseli, Hans

    1983-01-01

    Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...

  16. Continuous wave MRI of heterogeneous materials

    Science.gov (United States)

    Fagan, Andrew J.; Davies, Gareth R.; Hutchison, James M. S.; Lurie, David J.

    2003-08-01

    A prototype continuous wave MRI system operating at 7 T has been used successfully to study a variety of heterogeneous materials exhibiting T 2 relaxation values ranging from 10 μs to 50 ms. Two-dimensional images of a poly(methly methacrylate) (PMMA) resolution phantom (T 2=38 μs) exhibited a spatial resolution of approximately 1 mm at a magnetic field gradient strength of 200 mT/m. The technique was used to study the hydration, drying, and subsequent water penetration properties of cement samples made from ordinary Portland cement, and revealed inhomogeneities arising from the cure conditions. Sandstone samples from an oil reservoir in the North Sea were also studied; structure within these materials, arising from the sedimentary bed layering in the reservoir, was found to have an effect on their water transport properties. A section from a confectionery bar (T 2* approximately 50-60 ms) was also imaged, and its internal structure could be clearly discerned.

  17. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  18. A Diode-Pumped DP2-447 Blue Laser for Monitoring CMS Lead Tungstate Crystals Calorimeter at the LHC

    CERN Document Server

    Zhang, Liyuan

    2012-01-01

    Monitoring the changes in channel response is crucial to maintain the energy resolution of the CMS electromagnetic calorimeter. A new diode-pumped solid state blue laser was commissioned and installed at CERN for 2012 operation. This laser has a simple structure and is more reliable than the existing lamp-pumped lasers used by the monitoring system. The stability of critical parameters, such as the pulse energy, width and centre timing, is much better than that of the lamp-pumped lasers. The characteristics of this blue laser are described. Its performance in-situ at LHC is elaborated. The prospects for improving the light monitoring precision are discussed.

  19. Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz

    Science.gov (United States)

    Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.

    1995-01-01

    An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.

  20. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  1. 1.8kW laser diode pumped YAG laser; Shutsuryoku 1.8kW no handotai laser reiki YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba Corporation, as a participant in Ministry of International Trade and Industry`s `photon measurement and processing technology project` since August, 1997, is engaged in the development of an energy-efficient LD (laser diode) pumped semiconductor YAG (yttrium-aluminum-garnet) laser device to be used for welding and cutting. It is a 5-year project and the goal is a mean output of 10kW and efficiency of 20%. In this article, a simulation program is developed which carries out calculation about element technology items such as the tracking of the beam from the pumping LD and the excitation distribution, temperature distribution, thermal stress distribution, etc., in the YAG rod. An oscillator is constructed, based on the results of the simulation, and it exhibits a world-high class continuous laser performance of a 1.8kW output and 13% efficiency. The record of 13% efficiency is five times higher than that achieved by the conventional lamp-driven YAG laser device. (translated by NEDO)

  2. Solitary Wave Generation from Constant Continuous Wave in Asymmetric Oppositely Directed Waveguide Coupler

    Directory of Open Access Journals (Sweden)

    Kazantseva E.V.

    2015-01-01

    Full Text Available In a model which describes asymmetric oppositely directed nonlinear coupler it was observed in numerical simulations a phenomenon of solitary wave generation from the input constant continuous wave set at the entrance of a waveguide with negative refraction. The period of solitary wave formation decreases with increase of the continuum wave amplitude.

  3. Scaling up and controlling beam quality of flowing-gas diode pumped potassium laser with different pumping geometries: 3D CFD modeling

    Science.gov (United States)

    Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Comprehensive analysis of the performance and beam quality of subsonic flowing-gas K diode-pumped alkali lasers (DPALs) with different pumping geometries, using 3D computational fluid dynamics model, is reported. The model is first applied to a K DPAL with transverse pumping and parameters similar to those of the 1.5 kW K DPAL [Pitz et al, Proc. SPIE 9729, 972902 (2016)] and the calculated results are in satisfactory agreement with the measurements. To study the possibility of scaling up the K DPAL the model is then applied to 100-kW class device with transverse and end pumping geometry. Dependence of the output power on the flow velocity and the pumping geometry is studied. Comparison between end and transverse pumping schemes shows that the output power is almost unaffected by the pumping geometry. However, the spatial intensity distribution of the output laser beam depends on the pumping geometry: it is uniform for the end pumping, whereas for the transverse pumping it is strongly non-uniform at high gas temperature (corresponding to large density of K atoms), becoming more uniform with temperature reduction. The model is applied to evaluation of the beam quality of flowing-gas K DPALs which strongly depends on the refractive index distribution in the gain medium. The beam divergence and the width of the intensity profile in the far field for the end pumping appear to be much smaller than for the transverse pumping. Wave front corrections of the transversely pumped device using cylindrical lens results in substantial reduction of the laser beam divergence and improvement of its quality which becomes comparable with that of the end pumped laser.

  4. SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS

    NARCIS (Netherlands)

    Aasi, J.; van den Brand, J.F.J.; Bulten, H.J.; Rabeling, D.S.

    2015-01-01

    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing

  5. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  6. Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser

    Science.gov (United States)

    Andreana, Marco; Le, Tuan; Hansen, Anders K.; Verhoef, Aart J.; Jensen, Ole B.; Andersen, Peter E.; Slezak, Paul; Drexler, Wolfgang; Fernández, Alma; Unterhuber, Angelika

    2017-09-01

    We have developed an epi-detected multimodal nonlinear optical microscopy platform based on a compact and cost-effective laser source featuring simultaneous acquisition of signals arising from hyperspectral coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence, and second harmonic generation. The laser source is based on an approach using a frequency-doubled distributed Bragg reflector-tapered diode laser to pump a femtosecond Ti:sapphire laser. The operational parameters of the laser source are set to the optimum trade-off between the spectral and temporal requirements for these three modalities, achieving sufficient spectral resolution for CARS in the lipid region. The experimental results on a biological tissue reveal that the combination of the epi-detection scheme and the use of a compact diode-pumped femtosecond solid-state laser in the nonlinear optical microscope is promising for biomedical applications in a clinical environment.

  7. A Diode-Pumped DP2-447 Blue Laser for Monitoring CMS Lead Tungstate Crystal Calorimeter at the LHC

    CERN Document Server

    Zhu, Kejun

    2012-01-01

    Monitoring the transparency of the lead tungstate crystals of the CMS electromagnetic calorimeter (ECAL) plays a crucial role in maintaining the ECAL energy resolution. To meet the stringent requirements on the light monitoring precision and stability a new commercial diode-pumped blue laser ("DP2-447") has been commissioned and installed at CERN for the 2012 operation of the CMS ECAL. The laser unit has a simple structure and is expected to be more reliable than the existing lamp-pumped lasers used by the monitoring system. The stability of critical quantities such as the intensity, width and timing, is better than that of the lamp-pumped lasers. The characteristics of the new blue laser will be elaborated. Its performance in-situ in CMS will be described and the prospects for improving the light monitoring precision will be discussed.

  8. Demonstration of a CW diode-pumped Ar metastable laser operating at 4  W.

    Science.gov (United States)

    Han, J; Heaven, M C; Moran, P J; Pitz, G A; Guild, E M; Sanderson, C R; Hokr, B

    2017-11-15

    Optically pumped rare gas lasers are being investigated as potential high-energy, high beam quality systems. The lasing medium consists of rare gas atoms (Rg=Ne, Ar, Kr, or Xe) that have been electric discharge excited to the metastable np 5 (n+1)s P3 2 state. Following optical excitation, helium (He) at pressures of 200-1000 Torr is used as the energy transfer agent to create a population inversion. The primary technical difficulty for this scheme is the discharge production of sufficient Rg* metastables in the presence of >200  Torr of He. In this Letter, we describe a pulsed discharge that yields >10 13   cm -3 Ar* in the presence of He at total pressures up to 750 Torr. Using this discharge, a diode-pumped Ar* laser providing 4.1 W has been demonstrated.

  9. Anti-Reflective Fluoride Coatings for Widely Tunable Deep-Ultraviolet Diode-Pumped Solid-State Laser Applications

    International Nuclear Information System (INIS)

    Bin-Cheng, Li; Da-Wei, Lin; Yan-Ling, Han; Chun, Guo; Yun-Dong, Zhang; Hong-Xiang, Liu

    2010-01-01

    An anti-reflective (AR) fluoride coating in the 170–230 nm spectral range is prepared by the thermal evaporation method for the applications of widely tunable deep-ultraviolet diode-pumped solid-state lasers. The transmittance of an AR coated calcium fluoride (CaF 2 ) window in thickness 3 mm is measured to be in the range of 95.8% at 170 nm to 97.1% at 230 nm, with the maximum transmittance 99.2% and the minimum residual reflectance 0.04% appeared at 195 nm. The experimental results indicate that treating the AR coated window and the bare substrate with ultraviolet irradiation can significantly improve their optical performance

  10. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    OpenAIRE

    E. D. Belousova

    2012-01-01

    The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave) activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clini...

  11. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for bone surgery

    Science.gov (United States)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Wurm, Holger; Lorenz, Swetlana; Hibst, Raimund

    2013-03-01

    Flashlamp pumped Er:YAG-lasers are successfully clinically used for both precise soft and hard tissue ablation. As an alternative, actually a novel diode pumped Er:YAG laser system (Pantec Engineering AG) becomes available, with mean laser power up to 15W and pulse repetition rate up to 1kHz. The aim of the presented study is to investigate the effect of this laser system on bone tissue at various irradiation parameters, particular at repetition rates exceeding 100 Hz. For reproducible experiments, firstly an appropriate experimental set-up was realized with a beam delivery and focusing unit, a computer controlled stepper unit with sample holder, and a shutter unit. It allowed to move the sample (1mm- 3mm sawed slices of pig bone) with a defined velocity while irradiation by various laser parameters. A water spray served to moisten the sample surfaces. After irradiation the grooves were analyzed by light microscopy and laser scanning microscopy regarding to the ablation quality, the groove geometry, the ablation efficacy, and the thermal effects. The resulting grooves are slightly cone shaped (groove depth up to 3mm, width about 200μm) with sharp edges at the surface. At 1W, 200Hz, 5mm/s sample movement and with water irrigation the measured ablation speed Δz/Δt is 10.8 mm/s. The ablation depth per pulse is 54μm. In conclusion, these first experiments demonstrate that the diode pumped Er:YAG laser system is an efficient tool for use in bone surgery.

  12. Continuous Dependence on the Density for Stratified Steady Water Waves

    Science.gov (United States)

    Chen, Robin Ming; Walsh, Samuel

    2016-02-01

    There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.

  13. Investigations on the potential of a novel diode pumped Er:YAG laser system for dental applications

    Science.gov (United States)

    Stock, Karl; Hausladen, Florian; Hibst, Raimund

    2012-01-01

    The successful clinical application of the Er:YAG-laser in dentistry is well known, documented by numerous published studies. These lasers are flash lamp pumped systems and emit pulses of typically some 100 μs duration with energies of up to 1 J. Pulse repetition rates can reach up to 100Hz, and mean powers are up to about 8W. As an alternative to these laser systems recently a novel diode pumped Er:YAG laser system (Pantec Engineering AG) became available. This laser can provide a pulse repetition rate up to 2kHz and a mean laser power up to 15W. The aim of the presented study is to investigate the effect of this laser system on dental hard and soft tissue at various irradiation parameters, particular at repetition rates more than 100 Hz. At first an appropriate experimental set-up was realized with a beam delivery and focusing unit, a computer controlled stepper unit with sample holder, and a shutter unit. The stepper unit allows to move the samples (dentin or enamel slides of extracted human teeth, chicken breast, pig bone) with a defined velocity during irradiation by various laser parameters. For rinsing the sample surface a water spray was also included. The laser produced grooves and cuts were analyzed by light microscopy and laser scanning microscopy regarding to the ablation quality, geometry, ablation efficacy, and thermal effects. The grooves in dentin and enamel show a rough surface, typical for Er:YAG laser ablation. The craters are slightly cone shaped with sharp edges on the surface. Water cooling is essential to prevent thermal injury. The ablation efficacy in dentin is comparable to literature values of the flash lamp pumped Er:YAG laser. The cutting of bone and soft tissue is excellent and appears superior to earlier results obtained with flash lamp pumped system. As a further advantage, the broad range of repetition rates allows to widely vary the thermal side effects. In conclusion, these first experiments with a diode pumped Er:YAG laser

  14. Toward continuous-wave operation of organic semiconductor lasers.

    Science.gov (United States)

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  15. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  16. Toward jet injection by continuous-wave laser cavitation

    NARCIS (Netherlands)

    Berrospe-Rodriguez, Carla; Visser, C.W.; Schlautmann, Stefan; Fernandez Rivas, David; Ramos-Garcia, Ruben

    2017-01-01

    This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and

  17. Continuous-wave laser generated jets for needle free applications

    NARCIS (Netherlands)

    Berrospe-Rodriguez, Carla; Visser, C.W.; Schlautmann, Stefan; Ramos-Garcia, Ruben; Fernandez Rivas, David

    2016-01-01

    We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel

  18. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication.

    Science.gov (United States)

    Xu, Jing; Kong, Meiwei; Lin, Aobo; Song, Yuhang; Han, Jun; Xu, Zhiwei; Wu, Bo; Gao, Shiming; Deng, Ning

    2017-05-01

    It is widely known that a diode-pumped solid-state laser (DPSSL) has very limited modulation bandwidth. Recently, we directed our attention toward the opportunities for directly modulating a DPSSL to generate high-speed green-light signals, with high power and superior beam quality, which are highly desirable in underwater wireless optical communication. The constraint imposed by the limited modulation bandwidth of a DPSSL is circumvented with the strategy of orthogonal frequency-division multiplexing and power loading. With a compact DPSSL dismantled from a low-cost laser pointer, we achieve net bit rates of 108.55 Mb/s for the 64 quadrature amplitude modulation (QAM) signal at a bit error rate (BER) of 6.42×10-4 and 89.55 Mb/s for the 32 QAM signal at a BER of 4.81×10-4, respectively, over a 2 m underwater channel. When the underwater transmission distance is increased to 6 m, the BERs are still below the forward error correction (FEC) limit of 3.8×10-3.

  19. Glass marking with diode-pumped Nd:YLF laser; Handotai reiki Nd:YLF laser ni yoru glass marking

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Hayashi, K. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1996-08-20

    The compact marking system based on a beam scanning system in which the fourth harmonic (FHG: 262 nm in wavelength) of a diode-pumped Nd:YLF (Nd:LiYf4) laser is used for the source of ultraviolet light is described. The result of application to the glass marking that caused a problem due to the generation of cracks is also explained. The machining characteristics significantly vary depending on the type of glass. During actual marking, sample processing must be beforehand carried out to optimize the processing conditions after confirming that there is no problem in practical use. For marking on the glass used for liquid-crystal board, it is valid to improve the density of a dot and increase the number of shots per dot for obtaining high visibility. However, cracks may occur in the clearance of each dot because of the thermal effect. Therefore, the processing conditions must be optimized according to the glass type and crack generation state. The generation of cracks can be suppressed by setting the processing conditions to the optimum level. As a result, satisfactory marking is obtained. 8 refs., 6 figs.

  20. Ultraviolet-Diode Pump Solid State Laser Removal of Titanium Aluminium Nitride Coating from Tungsten Carbide Substrate

    Science.gov (United States)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-09-01

    This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.

  1. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    Science.gov (United States)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  2. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  3. Sifting the gravitational-wave Universe via multimessenger astronomy: Forthcoming prospects for continuous-wave detection

    Science.gov (United States)

    Leaci, Paola

    2017-05-01

    The upgrade of worldwide gravitational-wave detector network has led to the first transient gravitational-wave detection, which has started to hone the comprehension we have about our Universe and some of its constituents. A broader picture would be however provided by the detection of continuous-wave signals, which could be more easily achieved by exploiting the synergy with multimessenger Astronomy. Thanks to electromagnetic observations we may indeed be able to know, with enough accuracy, the sky location, rotational and/or orbital parameters of a broad class of rapidly-rotating neutron stars. This would allow us to perform a multitude of targeted and directed continuous-wave searches, and would facilitate narrow-band searches for the same class of signals. We will describe the prospects for detecting continuous gravitational waves, by especially employing novel strategies for neutron stars in binary systems directed to sources whose parameters have been electromagnetically estimated. Employing those methods to analyze data from the ever-more-sensitive advanced detectors will remarkably increase the chances of a continuous-wave detection.

  4. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    Science.gov (United States)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  5. Automation of an "Aculight" continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Morrison, Alexander M; Liang, Tao; Douberly, Gary E

    2013-01-01

    We report the automation of a continuous-wave, singly resonant, optical parametric oscillator (Lockheed-Martin Aculight ARGOS 2400-SF-15). This commercially available optical parametric oscillator (OPO) is capable of producing >1 W of continuously tunable idler output between 2.2 and 4.6 μm. An algorithm based on the feedback from a high accuracy wavemeter is implemented to synchronize three separate OPO tuning elements; the translation of a fan-out type periodically poled lithium niobate crystal, the rotation of an intracavity etalon, and the continuous tuning of the pump and idler wavelengths via piezoelectric strain of the tunable fiber pump laser. This allows for several hundred wavenumbers of efficient, automatic, continuous tuning of the idler wave. Continuous feedback from the wavemeter limits the absolute frequency accuracy to ±20 MHz. The broad, automatic tuning of the OPO is demonstrated via its implementation as a probe laser for the infrared action spectroscopy of methanol solvated in helium nanodroplets. LabVIEW virtual instruments for the automation of this OPO laser system are reported, along with detailed schematics of the associated hardware developed at the University of Georgia.

  6. Efficient second harmonics generation of a laser-diode-pumped Nd:YAG laser and its applications. Laser diode reiki Nd:YAG laser no kokoritsu daini kochoha hassei to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Oka, M. (Sony Corp., Tokyo (Japan))

    1991-08-10

    Stabilization of the second harmonics in a laser-diode-pumped Nd:YAG laser and its application are described. The laser is a quantum noise limiting laser, in which a mode competing noise is generated from an interaction between the laser medium Nd:YAG and the type II nonlinear optical crystal KTiOPO{sub 4} when generating a second harmonics in the resonator. However, the quantum noise limiting second harmonics was obtained by means of inserting (1/4) wave length plate in the resonator to release the bond between two intersecting inherent polarization modes. This stabilized green laser is of a single lateral mode is nearly free of aberration. Therefore, an optical disc prototype having three times as much of the currently used density was made using an objective lens having high number of openings to collect lights, which was verified capable of regeneration at a high signal to noise ratio. In addition, higher output is possible by means of parallelizing the excitation, and high output is realized from edge excitation at a fiber bundle. 18 refs., 3 figs.

  7. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  8. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  9. Elastic Wave Propagation in Concrete and Continuous Wavelet Transform

    Science.gov (United States)

    Chiang, Chih-Hung; Gi, Yu-Fung; Pan, Chi-Ling; Cheng, Chia-Chi

    2005-04-01

    Elastic wave methods, such as the ultrasonic pulse velocity and the impact echo, are often subject to multiple reflections at the boundaries of various constituents of concrete. Current study aims to improve the feature identification of elastic wave propagation due to buried objects in concrete slabs and cylinders. Embedded steel reinforcement, steel and PVC tubes, wooden disks, and rubber spheres are tested. The received signals are analyzed using continuous wavelet transform. As a result, signals are decomposed into distinctive frequency bands with transient information preserved. The interpretation of multiple reflections at different boundary conditions thus becomes more straightforward. Features related to reflections from steel bar, PVC tube, and steel tube can be readily identified in the magnitude plot of wavelet coefficients. Vibration modes of the concrete slab corresponding to different buried objects can also be separated based on corresponding time duration.

  10. Diode-pumped passively Q-switched Nd:GGG laser with a Bi-doped GaAs semiconductor saturable absorber

    Science.gov (United States)

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-12-01

    Passive Q-switching of a diode-pumped Nd:GGG laser is demonstrated using Bi-doped GaAs as saturable absorber. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. Compared with the Q-switched laser by undoped GaAs semiconductor saturable absorber, the laser with Bi-doped GaAs as saturable absorber can produce higher output power, shorter pulses, higher single pulse energies and higher peak powers. These results suggest that Bi-doped GaAs can be a promising new candidate of semiconductor saturable absorber in Q-switched laser.

  11. Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM

    Science.gov (United States)

    Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.

    2018-04-01

    We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.

  12. All-optoelectronic continuous wave THz imaging for biomedical applications

    International Nuclear Information System (INIS)

    Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G

    2002-01-01

    We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed

  13. Continuous-wave organic dye lasers and methods

    Science.gov (United States)

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  14. Diode Pumped Fiber Laser.

    Science.gov (United States)

    1987-08-01

    3.15 Impermeability Tensor for Lithium Niobate upon Application of an Electric Field E. ? denotes the Optical Field ........... 99 3.16 Possible... electric field perpendicular to the c-axis, and a 7r or "high-gain polarization," X = 1.085 pm, with electric field parallel to the c-axis. The first...assunied unless (dl her- 71 wise specified. 6.2 Net Gain Cross Section The net gain cross section a is equal to the estimulated emission cross section a

  15. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    Energy Technology Data Exchange (ETDEWEB)

    Wisoff, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-28

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform and deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.

  16. [Characteristics of continuous spike-and-wave during slow wave sleep syndrome in children].

    Science.gov (United States)

    Wang, Lian; Deng, Yan-Chun; Liu, Yong-Hong; Huang, Yuan-Gui

    2010-02-01

    Continuous spike-and-wave during slow wave sleep (CSWS) syndrome is one of the presentations of electrical status epilepticus during sleep (ESES). The purpose of this study was to investigate the characteristics of CSWS syndrome in children. Between 2007 and 2009, a total of 778 nocturnal long-term or 24-hr video-EEG records were included. The EEG, clinical and neuroimaging characteristics were studied in children who met standard criteria for CSWS. Nine children met standard criteria for CSWS in video-EEGs. Their ages ranged 6 to 13 years. Their EEGs were characterized by continuous spike-and-wave (SW) discharges during non-rapid eye movement (NREM) sleep, accounting for 85%-100% of the period of NREM sleep. Clinically, these children had various types of epileptic seizures and exhibited different degrees of neuropsychiatric impairments, language dysfunction, and/or behavioral disturbances. Neuroimaging abnormalities were found in 6 cases, including atelencephalia or atrophy, gray matter heterotopia and leucomalacia. This study indicates the characteristics of CSWS syndrome in clinical manifestations, EEG and neuroimaging examinations. This will be helpful in understanding CSWS syndrome.

  17. Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser

    Science.gov (United States)

    Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Huang, J. H.; Luo, Z. D.; Huang, Y. D.

    2013-08-01

    Polarized spectroscopic properties related to 1.07 μm laser operation of a 1.8 at.% Nd3+:LaBO2MoO4 crystal grown by the Czochralski method were investigated at room temperature. Using a 2.2-mm-thick, Z-cut Nd3+:LaBO2MoO4 crystal as gain medium, orthogonally polarized dual-wavelength laser at 1,068 and 1,074 nm was first realized in a plano-concave resonator end-pumped by a quasi-continuous-wave 795 nm diode laser. A total output peak power of 1.2 W with slope efficiency of 26 % around 1.07 μm was obtained. The influences of resonator length and pump power on output laser wavelength were also investigated.

  18. Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique

    Science.gov (United States)

    Sangla, D.; Aubry, N.; Didierjean, J.; Perrodin, D.; Balembois, F.; Lebbou, K.; Brenier, A.; Georges, P.; Tillement, O.; Fourmigué, J.-M.

    2009-02-01

    Laser emission obtained from an Yb:YAG single-crystal fiber directly grown by the micro-pulling down technique is demonstrated for the first time. We achieved 11.2 W of continuous wave (CW) output power at 1031 nm for 55 W of incident pump power at 940 nm. In the Q-switched regime, we obtained pulses as short as 17 ns, for an average power of 2.3 W at 2 kHz corresponding to an energy of 1.15 mJ. In both cases, the M 2 factor was 2.5. This single-crystal fiber showed performance similar to a standard rod elaborated by the Czochralski method. The potential of Yb3+-doped single-crystal fibers is presented for scalable high-average and high-peak-power laser systems.

  19. Continuous-wave room-temperature diamond maser

    Science.gov (United States)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  20. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  1. Selective removal of natural caries lesions from dentin and tooth occlusal surfaces using a diode-pumped Er:YAG laser

    Science.gov (United States)

    Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2017-02-01

    Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.

  2. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  3. 1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser

    International Nuclear Information System (INIS)

    Mori, Y.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.

    2013-01-01

    A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 10 13 W cm −2 , and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 10 17 W cm −2 . HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking. (paper)

  4. Adaptive clustering procedure for continuous gravitational wave searches

    Science.gov (United States)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad

    2017-10-01

    In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-processing step because it reduces the number of noise candidates that are followed up at successive stages [J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013), 10.1103/PhysRevD.88.102002; B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91, 064007 (2015), 10.1103/PhysRevD.91.064007; M. A. Papa et al., Phys. Rev. D 94, 122006 (2016), 10.1103/PhysRevD.94.122006]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D (to be published)

  5. Continuous wave terahertz reflection imaging of human colorectal tissue

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  6. Continuous-wave laser-induced glass fiber generation

    Science.gov (United States)

    Nishioka, Nobuyasu; Hidai, Hirofumi; Matsusaka, Souta; Chiba, Akira; Morita, Noboru

    2017-09-01

    Pulsed-laser-induced glass fiber generation has been reported. We demonstrate a novel glass fiber generation technique by continuous-wave laser illumination and reveal the generation mechanism. In this technique, borosilicate glass, metal foil, and a heat insulator are stacked and clamped by a jig as the sample. Glass fibers are ejected from the side surface of the borosilicate glass by laser illumination of the sample from the borosilicate glass side. SEM observation shows that nanoparticles are attached on the glass fibers. High-speed imaging reveals that small bubbles are formed at the side surface of the borosilicate glass and the bursting of the bubble ejects the fibers. The temperature at the fiber ejection point is estimated to be 1220 K. The mechanism of the fiber ejection includes the following steps: the metal thin foil heated by the laser increases the temperature of the surrounding glass by heat conduction. Since the absorption coefficient of the glass is increased by increasing the temperature, the glass starts to absorb the laser irradiation. The heated glass softens and bubbles form. When the bubble bursts, molten glass and gas inside the bubble scatter into the air to generate the glass fibers.

  7. Dual-frequency continuous wave optical parametric oscillator

    Science.gov (United States)

    Sun, Bingjie; Wang, Xin; Yang, Suhui; Li, Kun

    2018-01-01

    This article shows a dual-frequency OPO with multi-grating (28.5-31.5 μm) periodically poled MgO:LiNbO3 (MgO:PPLN) pumped by a dual-frequency continuous wave at 1.064 μm. The wavelengths of idler and signal varying versus temperature at different periods of inverted domains were numerical simulated. It proves that as the temperature rises, or as the poling period increases, the idler wavelength shortens and signal wavelength lengthens. The pump is a 30 W dual-frequency fiber laser MOPA with beat note frequency varying from 125 MHz to 175 MHz. The pump threshold of the bow-tie ring cavity OPO was 3 W. An average dual-frequency idler output power of 2.6 W was obtained when the pump power was 17.2 W at 45 °C. The idler wavelength was 3.4 μm when the poling period was 30.5 μm. The idler wavelength could be tuned from 2.9 μm to 3.9 μm by changing the temperature and the poling period, and the beat note frequency was proved to be equal to that of the pump.

  8. Gravity Wave Emission by Spontaneous Imbalance of Baroclinic Waves in the Continuously Stratified Rotating Annulus

    Science.gov (United States)

    Borchert, Sebastian; Achatz, Ulrich; Rieper, Felix; Fruman, Mark

    2013-04-01

    We use a numerical model of the classic differentially heated rotating annulus experiment to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which is a major source of these waves in the atmosphere for which no satisfactory parameterization exists. Atmospheric observations are the main tool for the testing and verification of theoretical concepts but have their limitations. Given their specific potential for yielding reproducible data and for studying process dependence on external system parameters, laboratory experiments are an invaluable complementary tool. Experiments with a rotating annulus exhibiting a jet modulated by large-scale waves due to baroclinic instability have already been used to study GWs: Williams et al (2008) observed spontaneously emitted interfacial GWs in a two-layer flow, and Jacoby et al (2011) detected GWs emitted from boundary-layer instabilities in a differentially heated rotating annulus. Employing a finite-volume code for the numerical simulation of a continuously stratified liquid in a differentially heated rotating annulus, we here investigate the GWs in a wide and shallow annulus with relatively large temperature difference between inner and outer cylinder walls. In this atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency, various analyses suggest a distinct gravity wave activity. To identify regions of GW emission we decompose the flow into the geostrophic and ageostrophic part through the inversion of the quasi-geostrophic potential vorticity (e.g. Verkley, 2009). The analysis of the geostrophic sources of the ageostrophic flow indicates that, in addition to boundary layer instabilities, spontaneous imbalance in the jet region acts as an important source mechanism. Jacoby, T. N. L., Read, P. L., Williams, P. D. and Young, R. M. B., 2011: Generation of inertia-gravity waves in the rotating thermal annulus by a localised boundary layer instability. Geophys

  9. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  10. Tunable, continuous-wave Terahertz photomixer sources and applications

    Science.gov (United States)

    Preu, S.; Döhler, G. H.; Malzer, S.; Wang, L. J.; Gossard, A. C.

    2011-03-01

    This review is focused on the latest developments in continuous-wave (CW) photomixing for Terahertz (THz) generation. The first part of the paper explains the limiting factors for operation at high frequencies ˜ 1 THz, namely transit time or lifetime roll-off, antenna (R)-device (C) RC roll-off, current screening and blocking, and heat dissipation. We will present various realizations of both photoconductive and p-i-n diode-based photomixers to overcome these limitations, including perspectives on novel materials for high-power photomixers operating at telecom wavelengths (1550 nm). In addition to the classical approach of feeding current originating from a small semiconductor photomixer device to an antenna (antenna-based emitter, AE), an antennaless approach in which the active area itself radiates (large area emitter, LAE) is discussed in detail. Although we focus on CW photomixing, we briefly discuss recent results for LAEs under pulsed conditions. Record power levels of 1.5 mW average power and conversion efficiencies as high as 2 × 10-3 have been reached, about 2 orders of magnitude higher than those obtained with CW antenna-based emitters. The second part of the paper is devoted to applications for CW photomixers. We begin with a discussion of the development of novel THz optics. Special attention is paid to experiments exploiting the long coherence length of CW photomixers for coherent emission and detection of THz arrays. The long coherence length comes with an unprecedented narrow linewidth. This is of particular interest for spectroscopic applications, the field in which THz research has perhaps the highest impact. We point out that CW spectroscopy systems may potentially be more compact, cheaper, and more accurate than conventional pulsed systems. These features are attributed to telecom-wavelength compatibility, to excellent frequency resolution, and to their huge spectral density. The paper concludes with prototype experiments of THz wireless LAN

  11. COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES

    Science.gov (United States)

    Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...

  12. Continuing studies of the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Joshi, C.

    1990-01-01

    This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus

  13. Noninvasive continuous monitoring of digital pulse waves during hemodialysis

    DEFF Research Database (Denmark)

    Burkert, Antje; Scholze, Alexandra; Tepel, Martin

    2009-01-01

    Intermittent hemodynamic instability during hemodialysis treatment is a frequent complication in patients with end-stage renal failure. A noninvasive method for continuous hemodynamic monitoring is needed. We used noninvasive digital photoplethysmography and an algorithm for continuous, investiga...

  14. Numerical continuation of travelling waves and pulses in neural fields

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2013-01-01

    We study travelling waves and pulses in neural fields. Neural fields are a macroscopic description of the activity of brain tissue, which mathematically are formulated as integro-differential equations. While linear and weakly nonlinear analysis can describe instabilities and small amplitude

  15. Free wave propagation in continuous pipes carrying a flowing fluid

    International Nuclear Information System (INIS)

    Espindola, J.J. de; Silva, J.B. da

    1982-01-01

    The propagation constants of a periodically supported pipe are computed. Use is made of a general free wave-propagation theory, based on transfer matrices. Comparison is made with previously published results, computed through a simpler, limited scope theory. (Author) [pt

  16. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    Science.gov (United States)

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  17. Blandford's argument: The strongest continuous gravitational wave signal

    International Nuclear Information System (INIS)

    Knispel, Benjamin; Allen, Bruce

    2008-01-01

    For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.

  18. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    Science.gov (United States)

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-06-05

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.

  19. Effect of energy density on low-shrinkage composite resins: diode-pumped solid state laser versus quartz-tungsten-halogen light-curing unit.

    Science.gov (United States)

    Heo, Young-Joon; Lee, Geun-Ho; Park, Jeong-Kil; Ro, Jung-Hoon; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2013-01-01

    The purpose of the present study was to evaluate the effect of energy density on the polymerization of low-shrinkage composite resins. The number of photons needs to initiate the polymerization process can be controlled by light intensity and curing time through the form of energy density. For the study, two methacrylate-based (Premise [PR] and Venus Diamond [VE]) and one silorane-based (Filtek LS [LS]) composite resins were light cured using a quartz-tungsten-halogen (QTH) light-curing unit (LCU) and a 473 nm diode-pumped solid state (DPSS) laser. Degree of conversion (DC), microhardness, refractive index, and polymerization shrinkage were evaluated under different energy densities. Through the study, the feasibility of DPSS laser as a light source was tested as well. LS showed the highest DC and refractive index both on the top and bottom surfaces, and the least polymerization shrinkage among the tested specimens. For the same or similar energy density, QTH and DPSS showed insignificant DC difference (p>0.05). On the other hand, for microhardness, except for one case at the bottom surface, QTH and DPSS showed significant difference (punit.

  20. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL

    Directory of Open Access Journals (Sweden)

    L. Quarrie

    2014-09-01

    Full Text Available The lifetime of Diode-Pumped Alkali Lasers (DPALs is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  1. Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser.

    Science.gov (United States)

    Reagan, Brendan A; Wernsing, Keith A; Curtis, Alden H; Furch, Federico J; Luther, Bradley M; Patel, Dinesh; Menoni, Carmen S; Rocca, Jorge J

    2012-09-01

    We demonstrate the operation of a gain-saturated table-top soft x-ray laser at 100 Hz repetition rate. The laser generates an average power of 0.15 mW at λ=18.9  nm, the highest laser power reported to date from a sub-20-nm wavelength compact source. Picosecond laser pulses of 1.5 μJ energy were produced at λ=18.9  nm by amplification in a Mo plasma created by tailoring the temporal intensity profile of single pump pulses with 1 J energy produced by a diode-pumped chirped pulse amplification Yb:YAG laser. Lasing was also obtained in the 13.9 nm line of Ni-like Ag. These results increase by an order of magnitude the repetition rate of plasma-based soft x-ray lasers opening the path to milliwatt average power table-top lasers at sub-20 nm wavelengths.

  2. Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity

    International Nuclear Information System (INIS)

    Huang, J Y; Zhuang, W Z; Huang, Y P; Huang, Y J; Su, K W; Chen, Y F

    2012-01-01

    We improve the performance of intracavity optical parametric oscillator (IOPO) pumped by a diode-pumped Q-switched Nd:YVO 4 /Cr 4+ :YAG laser. The IOPO cavity is formed independently by a monolithic KTP crystal that the mirrors are directly deposited on top of the nonlinear crystal. We study the performances of this IOPO cavity with different reflectivity of the output coupler at 1.5 μm (R s ) of 80 and 50%. The average power of 1.5 μm is up to 3.3 W at the maximum pump power of 16.8 W for both cases. The diode-to-signal conversion efficiency is up to 20%, which is the highest one for IOPOs to our best knowledge. At the maximum pump power, the pulse energies are 41 μJ with the pulse width of 3 ns at a pulse repetition rate (PRR) of 80 kHz for R s = 80% and 51 μJ with the pulse width of 1.2 ns at a PRR of 65 kHz for R s = 50%, respectively. The pulse amplitude fluctuations in standard deviation are 2.6% for R s = 80% and 4% for R s = 50%, respectively

  3. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  4. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    Science.gov (United States)

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  5. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  6. Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Gross, P.; Klein, M.E.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2002-01-01

    We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO3 crystal in a four-mirror ring cavity. At a pump

  7. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths

    DEFF Research Database (Denmark)

    Andersen, T.V.; Hilligsøe, Karen Marie; Nielsen, C.K.

    2004-01-01

    We demonstrate continuous-wave wavelength conversion through four-wave mixing in an endlessly single mode photonic crystal fiber. Phasematching is possible at vanishing pump power in the anomalous dispersion regime between the two zero-dispersion wavelengths. By mixing appropriate pump and idler...... line width lasers....

  8. Next wave EM technology : Electromagnetic communication technology continues to progress

    International Nuclear Information System (INIS)

    Ludwick, J.

    1998-01-01

    Alpine Oil Services Corp. and Ryan Energy Technologies Inc., have made technological advances in the use of real time electromagnetic (EM) data transmission, using low frequency radio waves to transmit well commands or geological information. The development of the telemetry activated tool was done in two steps. The first technology was real time EM data transmission from the subsurface which used the wellbore to transfer information. The second step was constructing a memory pack which involved an electronic instrument installed in the wellbore which was programmed to perform certain tasks at certain times by transmitting signals back and forth. The use of EM communication allows the geological steering information to come back faster. The EM signal is much faster compared to MWD systems for deeper directional wells. The EM technology also has immediate applications in underbalanced drilling. 1 fig

  9. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    Science.gov (United States)

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  10. Wave functions of continuous spectrum of the Coulomb two-center problem

    International Nuclear Information System (INIS)

    Pavlov, D.V.; Puzynin, I.V.; Vinitskij, S.I.; Dzholyakyan, B.

    2000-01-01

    The effective algorithm of the calculation of the wave functions of the continuous spectrum is proposed. For solving this problem the finite difference scheme of 4th-order and the continuous analog of Newton method are applied. The wave functions of the continuous spectrum of the two-center problem of positive molecular ion of hydrogen together with the phase shifts are calculated and the corresponding pictures are presented. The absolute accuracy of the calculated phase shift is order 10 -6 for the electron momentum k ≥ 1 and order 10 -4 for k ∼ 0.1. The matrix elements between the continuous and discrete spectrum are calculated

  11. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  12. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were...

  13. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    Science.gov (United States)

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  14. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  15. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  16. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    Energy Technology Data Exchange (ETDEWEB)

    Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu [Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  17. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  18. Spectroscopic properties and diode-pumped 1594 nm laser performance of Er:Yb:Li6Y(BO3)3 crystal

    Science.gov (United States)

    Zhao, Y. W.; Lin, Y. F.; Chen, Y. J.; Gong, X. H.; Luo, Z. D.; Huang, Y. D.

    2008-03-01

    An Er3+/Yb3+-codoped Li6Y(BO3)3 crystal was grown by the Czochralski method. The polarized absorption spectra and the fluorescence decay curve were recorded. The efficiency of energy transfer from Yb3+ to Er3+ ions was estimated. Quasi-continuous-wave output power of 325 mW at 1594 nm was realized under the absorbed pump power of 10.4 W in a hemispherical cavity. The absorbed pump threshold and slope efficiency of the laser are 6.0 W and 7.2%, respectively.

  19. Spectral broadening in narrow linewidth, continuous-wave high power fiber amplifiers

    Science.gov (United States)

    Feng, Yujun; Wang, Xiaojun; Ke, Weiwei; Sun, Yinhong; Zhang, Kai; Ma, Yi; Li, Tenglong; Wang, Yanshan; Wu, Juan

    2017-11-01

    We present an investigation on the spectrum broadening in continuous-wave, sub-nanometer linewidth high power fiber amplifiers caused by the multiple four-wave mixing (FWM) process. The spectrum broadening employing two different types of narrow linewidth seeds, including the multi-longitudinal-mode seed and the broadened single frequency seed generated by high speed phase modulation, is studied. It is shown both theoretically and experimentally that the multi-longitudinal-mode seed experiences serious spectrum broadening induced by the FWM among various longitudinal modes, while the modulated seed can maintain the spectrum profile during the amplifying process even with some noise fluctuation. The different broadening results are mainly caused by the random phase distribution of the multiple waves. It is further explained by an exact solution of the degenerate FWM with three waves. The theoretical predictions on the spectrum and power dependence of the output laser linewidth are in quantitative agreement with the experimental results up to kilowatt.

  20. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were...... recruited. Cathodal tDCS and sham stimulation were applied to the epileptic focus, before sleep (1 mA; 20 min). Cathodal tDCS did not reduce the spike-index in any of the patients....

  1. Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. S. Y.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoebeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Sigurdsson, S.

    2017-01-01

    We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of approximate to 2.7 kpc. The search covered a broad band of frequencies along with first and second frequency

  2. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    NARCIS (Netherlands)

    Aasi, J.; Agathos, M.; Beker, M.G.; Bertolini, A.; Blom, M.R.; Bulten, H.J.; Del Pozzo, W.; Jonker, R.; Li, T.G.F.; Meidam, J.; van den Brand, J.F.J.; van der Putten, S.; LIGO-Virgo Sci, Collaboration

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science

  3. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  4. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Olsen, M.K.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal

  5. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... Continuous-wave fibre laser; Q-switched fibre laser; nonlinearity; thermal effects; selfpulsing; Yb-doped fibre; nanosecond pulse ... intracore fibre Bragg gratings, low thermal problems due to large surface to volume ratio, diffraction-limited beam quality, compactness, reliability and fibre-optic beam delivery.

  6. A Continuous Millimeter-Wave Imaging Scanner for Art Conservation Science

    Directory of Open Access Journals (Sweden)

    Ayesha Younus

    2011-01-01

    Full Text Available A monochromatic continuous millimeter-wave imaging system coupled with an infrared temperature sensor has been used to investigate artistic objects such as painting artworks or antiquities preserved at the museum of Aquitaine. Especially, 2D and 3D analyses have been performed in order to reveal the internal structure of a nearly 3500-year-old sealed Egyptian jar.

  7. Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering

    Science.gov (United States)

    2016-09-01

    ARL-TN-0783 ● SEP 2016 US Army Research Laboratory Conversion of Radio -Frequency Pulses to Continuous- Wave Sinusoids by Fast...ARL-TN-0783 ● SEP 2016 US Army Research Laboratory Conversion of Radio -Frequency Pulses to Continuous- Wave Sinusoids by Fast...08/2016 4. TITLE AND SUBTITLE Conversion of Radio -Frequency Pulses to Continuous- Wave Sinusoids by Fast Switching and Narrowband Filtering 5a

  8. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-09-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

  9. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming

    2012-07-26

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field gradient required for the dielectrophoretic effect. When particles move electrokinetically through the channel, the experienced negative dielectrophoretic forces alternate directions within two adjacent semicircular microchannels, leading to a focused continuous-flow stream along the channel centerline. Both the experimentally observed and numerically simulated results of the focusing performance are reported, which coincide acceptably in proportion to the specified dimensions (i.e. inlet and outlet of the waved channel). How the applied electric field, particle size and medium concentration affect the performance was studied by focusing polystyrene microparticles of varying sizes. As an application in the field of biology, the focusing of yeast cells in the waved mcirochannel was tested. This waved microchannel shows a great potential for microflow cytometry applications and is expected to be widely used before different processing steps in lab-on-A-chip devices with integrated functions. © 2012 IOP Publishing Ltd.

  10. A continuous wave fan beam tomography system having a best estimating filter

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    A continuous wave fan beam tomographic system is described which continuously samples X-ray absorption values and a means of providing a best-estimate of the X-ray absorption values at discrete points in time determined by sampling signal s(t). The means to provide the best-estimate include a continuous filter having a frequency range defined by the geometry of the mechanical system. Errors due to the statistical variation in photon emissions of the X-ray source are thereby minimized and the effective signal-to-noise ratio of signals is enhanced, which in turn allows a significant reduction in radiation dosage. (author)

  11. Continuous wave operation of quantum cascade lasers with frequency-shifted feedback

    International Nuclear Information System (INIS)

    Lyakh, A.; Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Tsvid, G.; Patel, C. Kumar N.

    2016-01-01

    Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm −1 for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials

  12. Local Effects on Lung Parenchyma Using a 600 µm Bare Fiber with the Diode-Pumped Nd:YAG Laser LIMAX® 120

    Directory of Open Access Journals (Sweden)

    Peter Rexin

    2015-12-01

    Full Text Available Lung metastases are frequently removed with an Nd:YAG laser. The aim is to perform a non-anatomic resection of all intraoperatively palpable lung metastases completely in order to preserve the largest possible amount of healthy lung parenchyma. The surgeon can either work with a focusing handpiece or use a laser fiber of the so-called bare fiber with direct contact to the lung parenchyma. We currently use a 600 µm bare fiber for applications involving the lung parenchyma. Precise data on the local effect of the laser fiber on the lung parenchyma are not available, especially with regard to an increase in the laser energy. We want to study this question within the scope of an experimental model in pig lungs by means of systematic and reproducible tests. The lung lobes were removed from animals recently slaughtered in the abattoir and taken to the laboratory immediately, where the lobes were stored such that the surface of the lungs was parallel to the floor. A 600 µm bare fiber was attached to a mounting bracket vertically above the lung surface at a distance of either 0, 5, or 10 mm. This mounting bracket was in turn connected to a hydraulic feed motor. The feed motor is capable of moving the bare fiber forward across the lungs consistently at three different speeds (5 mm/s, 10 mm/s, or 20 mm/s. The bare fiber itself was connected to the diode-pumped Nd: YAG Laser LIMAX® 120 (Gebrüder Martin GmbH & Co KG, Tuttlingen, Germany. We carried out the tests using three different laser powers: 20 W, 60 W, and 120 W. The lung lesions caused by the laser in each of the lungs were resected and sent in for histological analysis. The exact size of the vaporization and coagulation zone was measured using the HE sections, and the respective mean values (with standard deviations were ascertained. For all laser powers, the extent of the vaporization was greatest with a motion speed of 5 mm/s for the respective laser power: 756.4 ± 1.2 µm (20 W, 1411.0 ± 2

  13. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS

    International Nuclear Information System (INIS)

    Ellis, J. A.; Siemens, X.; Creighton, J. D. E.

    2012-01-01

    Supermassive black hole binaries (SMBHBs) are expected to emit a continuous gravitational wave signal in the pulsar timing array (PTA) frequency band (10 –9 to 10 –7 Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper, we leverage methods developed for LIGO continuous wave gravitational searches and explore the use of the F-statistic for such searches in pulsar timing data. Babak and Sesana have used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar-dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of Monte Carlo simulations. We produce sensitivity curves for PTAs of various configurations and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.

  14. A prospective study of levetiracetam efficacy in epileptic syndromes with continuous spikes-waves during slow sleep

    DEFF Research Database (Denmark)

    Atkins, Mary; Nikanorova, Marina

    2011-01-01

    To evaluate the add-on effect of levetiracetam (LEV) treatment on the EEG and clinical status of children with continuous spikes-waves during slow sleep (CSWS).......To evaluate the add-on effect of levetiracetam (LEV) treatment on the EEG and clinical status of children with continuous spikes-waves during slow sleep (CSWS)....

  15. Epileptic encephalopathy with continuous spike and wave during sleep associated to periventricular leukomalacia.

    Science.gov (United States)

    De Grandis, Elisa; Mancardi, Maria Margherita; Carelli, Valentina; Carpaneto, Manuela; Morana, Giovanni; Prato, Giulia; Mirabelli-Badenier, Marisol; Pinto, Francesca; Veneselli, Edvige; Baglietto, Maria Giuseppina

    2014-11-01

    Periventricular leukomalacia is the most common type of brain injury in premature infants. Our aim is to describe the frequency and the features of epilepsy in a single-center population of 137 children with periventricular leukomalacia. Forty-two of the 137 (31%) patients presented epilepsy. Twelve percent of these patients presented West syndrome, whereas 19% showed a pattern of continuous spike-waves during slow sleep syndrome. In the latter group, outcome was frequently unfavorable, with a greater number of seizures and more drug resistance. A significant association was found between epilepsy and neonatal seizures, spastic tetraplegia, and mental retardation. Although less common than in other forms of brain injury, epilepsy is nevertheless a significant complication in children with periventricular leukomalacia. The fairly frequent association with continuous spike-waves during slow sleep syndrome deserves particular attention: electroencephalographic sleep monitoring is important in order to provide early treatment and prevent further neurologic deterioration. © The Author(s) 2013.

  16. High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation

    Directory of Open Access Journals (Sweden)

    D. H. Wu

    2017-03-01

    Full Text Available We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64 μm. A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400 μm radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1.

  17. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Foroughi Abari, Farzad; Mann, Jakob

    2012-01-01

    This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra ...... are investigated and a systematic approach for removing the noise is outlined. The suggested post processing procedures are applied to two sample time series acquired by a short-range WindScanner during one second each.......This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra...

  18. Helicopter downwash measured by continuous-wave Doppler lidars with agile beam steering

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per

    2012-01-01

    A ground-based remote sensing short-range WindScanner with agile beam steering based on a modified ZephIR continuous-wave wind lidar (LIght Detection And Ranging) and a double prism arrangement has recently been developed at the Department of Wind Energy at the DTU Risø campus. The WindScanner me......A ground-based remote sensing short-range WindScanner with agile beam steering based on a modified ZephIR continuous-wave wind lidar (LIght Detection And Ranging) and a double prism arrangement has recently been developed at the Department of Wind Energy at the DTU Risø campus. The Wind...

  19. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  20. Frequency Modulated Continuous Wave RADAR for Objects Mapping in Enclosed Spaces Using Smartphones and Arduino Components

    Science.gov (United States)

    Bar-Magen Numhauser, Jonathan; Zalevsky, Zeev

    2017-06-01

    Based on previous studies and using mobile portable device, we were able to realize a portable system capable of detecting metallic objects in a room surrounded by walls while also extracting the approximate position of such objects. Our hardware included only a smartphone device connected to several Arduino components and we were applying frequency-modulated continuous-wave electronics in each of the Arduino devices.

  1. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar

    OpenAIRE

    Angelou, Nikolas; Foroughi Abari, Farzad; Mann, Jakob; Mikkelsen, Torben; Sjöholm, Mikael

    2012-01-01

    This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra are presented. A method for determining the background noise spectrum without interrupting thetransmission of the laser beam is described. Moreover, the dependency between the determination of the thr...

  2. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  3. Lasing and Transport Properties of Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene)] (POFP) for the Application of Diode-Pumped Organic Solid Lasers

    Science.gov (United States)

    Tang, Zhenyu; Guo, Kunping; Gao, Yulai; Pan, Saihu; Si, Changfeng; Xu, Tao; Wei, Bin

    2017-11-01

    This paper demonstrates the lasing and transport properties of a green conjugated polymer, namely POFP. High photoluminescence yields and excellent electron transport of POFP film make it promising for gain media. Low threshold value of 4.0 μJ/cm2 for amplified spontaneous emissions under a pulsed Nd:YAG laser at 355 nm was obtained, as well as a high Q-factor of 159. An inverted waveguide microcavity scheme has been developed to fabricate diode-pumped organic solid lasers (OSLs) using POFP. Gain narrowing with significant radiance increase was observed in the devices, giving evidence of the interference enhancement induced by microcavity and the lasing properties of POFP.

  4. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  5. Experimental imaging research on continuous-wave terahertz in-line digital holography

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Wang, Yunxin

    2014-09-01

    The terahertz (THz) imaging is an advanced technique on the basis of the unique characteristics of terahertz radiation. Due to its noncontact, non-invasive and high-resolution capabilities, it has already shown great application prospects in biomedical observation, sample measurement, and quality control. The continuous-wave terahertz in-line digital holography is a combination of terahertz technology and in-line digital holography of which the source is a continuous-wave terahertz laser. Over the past decade, many researchers used different terahertz sources and detectors to undertake experiments. In this paper, the pre-process of the hologram is accomplished after the holograms' recording process because of the negative pixels in the pyroelectric detector and the air vibration caused by the chopper inside the camera. To improve the quality of images, the phase retrieval algorithm is applied to eliminate the twin images. In the experiment, the pin which terahertz wave can't penetrate and the TPX slice carved letters "THz" are chosen for the samples. The amplitude and phase images of samples are obtained and the twin image and noise in the reconstructed images are suppressed. The results validate the feasibility of the terahertz in-line digital holographic imaging technique. This work also shows the terahertz in-line digital holography technique's prospects in materials science and biological samples' detection.

  6. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    Science.gov (United States)

    Goetz, E.; Riles, K.

    2016-04-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors.

  7. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  8. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  9. Search for continuous gravitational waves: Metric of the multidetector F-statistic

    International Nuclear Information System (INIS)

    Prix, Reinhard

    2007-01-01

    We develop a general formalism for the parameter-space metric of the multidetector F-statistic, which is a matched-filtering detection statistic for continuous gravitational waves. We find that there exists a whole family of F-statistic metrics, parametrized by the (unknown) amplitude parameters of the gravitational wave. The multidetector metric is shown to be expressible in terms of noise-weighted averages of single-detector contributions, which implies that the number of templates required to cover the parameter space does not scale with the number of detectors. Contrary to using a longer observation time, combining detectors of similar sensitivity is therefore the computationally cheapest way to improve the sensitivity of coherent wide-parameter searches for continuous gravitational waves. We explicitly compute the F-statistic metric family for signals from isolated spinning neutron stars, and we numerically evaluate the quality of different metric approximations in a Monte Carlo study. The metric predictions are tested against the measured mismatches and we identify regimes in which the local metric is no longer a good description of the parameter-space structure

  10. Searching for continuous gravitational wave signals. The hierarchical Hough transform algorithm

    International Nuclear Information System (INIS)

    Papa, M.; Schutz, B.F.; Sintes, A.M.

    2001-01-01

    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk I will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere [8]. In this talk I will focus on some of the implementational aspects we are currently concerned with. (author)

  11. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    International Nuclear Information System (INIS)

    Kim, Chihoon; Ahn, Jae Sung; Eom, Joo Beom; Ji, Taeksoo

    2017-01-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz–800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis. (paper)

  12. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    Science.gov (United States)

    2017-04-18

    ed em is si on sp ec tra Wavenumbers (cm−1) Wavelength (µm) subthreshold 1480 mA 1530 mA 1600 mA 2000 mA 2500 mA 3000 mA Figure 3: Emission spectra of...cally authorized by the U.S. Government may violate any copyrights that exist in this work. Watt-level continuous-wave emission from a bi-functional...facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave

  13. Antiresonant ring output-coupled continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Esteban-Martin, A; Ebrahim-Zadeh, M

    2012-08-13

    We demonstrate the successful deployment of an antiresonant ring (ARR) interferometer for the attainment of optimum output coupling in a continuous-wave (cw) optical parametric oscillator (OPO). The cw OPO, configured as a singly-resonant oscillator (SRO), is based on a 50-mm-long MgO:PPLN crystal and pumped by cw Ytterbium-fiber laser at 1064 nm, with the ARR interferometer integrated into one arm of the standing-wave cavity. By fine adjustment of the ARR transmission, a continuously variable signal output coupling from 0.8% to 7.3% has been achieved, providing optimum output coupling for signal and optimum power extraction for the idler, at different input pumping levels. The experimental results are compared with theoretical calculations for conventional output-coupled cw SRO, and the study shows that by reducing the insertion loss of the ARR elements, the performance of the ARR-coupled cw SRO can be further enhanced. We also show that the use of the ARR does not lead to any degradation in the cw SRO output beam quality. The proof-of-principle demonstration confirms the effectiveness of the technique for continuous, in situ, and fine control of output coupling in cw OPOs to achieve maximum output power at any arbitrary pumping level above threshold.

  14. Quasi-continuous wave and continuous wave laser operation of Eu:KGd(WO4)2 crystal on a 5D0 → 7F4 transition

    International Nuclear Information System (INIS)

    Dashkevich, V I; Orlovich, V A; Bui, A A; Bagayev, S N; Vatnik, S M; Loiko, P A; Yumashev, K V; Kuleshov, N V; Pavlyuk, A A

    2015-01-01

    We report on the first demonstration of quasi-continuous wave (quasi-CW) and real CW room-temperature lasing on the 5 D 0  →  7 F 4 transition of Eu 3+ -doped material using a 25 at.%Eu 3+  : KGd(WO 4 ) 2 crystal pumped into the 7 F 1  →  5 D 1 transition by a diode-end-pumped Nd 3+  : KGd(WO 4 ) 2 /KTP green laser at 533.6 nm. The maximum CW output power of this laser at 702.3 nm is 5.3 mW with 1.4% green-to-red conversion efficiency. In quasi-CW operation mode with a 10% duty cycle, the peak power of ms long pulses reaches ∼54 mW, which corresponds to the optical conversion efficiency of 3.5%. (letter)

  15. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  16. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439 (United States); Illinois Institute of Technology, Chicago, IL 60616 (United States); Dickerson, C.; Ostroumov, P.N.; Zinkann, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-01-21

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied.

  17. Wide-band continuous-wave terahertz source with a vertically integrated photomixer

    Science.gov (United States)

    Peytavit, E.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2009-10-01

    A transverse electromagnetic horn antenna is monolithically integrated with a low temperature grown GaAs vertical photodetector on a silicon substrate forming a vertically integrated photomixer. Continuous-wave terahertz radiation is generated at frequencies up to 3.5 THz with a power level reaching 20 nW around 3 THz. Microwave and material concepts allow both qualitative and quantitative explanations of the experimental results. The thin film microstrip line topology has been adapted for active devices by an Au-Au thermocompression layer transfer technique and seems to be a promising generic tool for a new generation of efficient terahertz devices.

  18. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent ra...

  19. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    Science.gov (United States)

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  20. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  1. Electro-optic transparent frequency conversion of a continuous light wave based on multistage phase modulation.

    Science.gov (United States)

    Hisatake, Shintaro; Kobayashi, Tetsuro

    2006-02-15

    Frequency conversion of a continuous light wave based on multistage phase modulation has been investigated both analytically and numerically. The proposed frequency-conversion process consists of three stages: (i) phase modulation and chirp compression to generate a pulse train, (ii) Doppler shift of the pulse center frequency in a second phase modulation, and (iii) demodulation of the pulse train. By controlling the modulation power we can select the destination frequency from an equally spaced grid separated by the modulation frequency. A conversion efficiency of approximately 40% has been numerically confirmed with respect to a destination frequency of +/- 50 channels. Carrier frequency conversion of an analog data stream is numerically demonstrated.

  2. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.

    Science.gov (United States)

    Kretschmann, H M; Heine, F; Huber, G; Halldórsson, T

    1997-10-01

    A new resonator design for doubly resonant continuous-wave intracavity sum-frequency mixing is presented. We generated 212 mW of coherent radiation at 618 nm by mixing the radiation of a 1080-nm Nd(3+):YAlO(3) laser and a 1444-nm Nd(3+):YAG laser. Two different mixing resonator setups and several nonlinear-optical crystals were investigated. So far output is limited by unequal performance of the two fundamental lasers and coating problems of the nonlinear crystals.

  3. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  4. Unravelling the noise: the discrimination of wave function collapse models under time-continuous measurements

    Science.gov (United States)

    Genoni, Marco G.; Duarte, O. S.; Serafini, Alessio

    2016-10-01

    Inspired by the notion that environmental noise is in principle observable, while fundamental noise due to spontaneous localization would not be, we study the estimation of the diffusion parameter induced by wave function collapse models under continuous monitoring of the environment. We take into account finite measurement efficiencies and, in order to quantify the advantage granted by monitoring, we analyse the quantum Fisher information associated with such a diffusion parameter, identify optimal measurements in limiting cases, and assess the performance of such measurements in more realistic conditions.

  5. Helicopter downwash measured by continuous-wave Doppler lidars with agile beam steering

    OpenAIRE

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per; Hansen, Kasper Hjorth; Mikkelsen, Torben; Haga, Steinar; Silgjerd, Jon Arne; Starsmore, Neil

    2012-01-01

    A ground-based remote sensing short-range WindScanner with agile beam steering based on a modified ZephIR continuous-wave wind lidar (LIght Detection And Ranging) and a double prism arrangement has recently been developed at the Department of Wind Energy at the DTU Risø campus. The WindScanner measures the line-of-sight component of the wind and by rapid steering of the line-of-sight and the focus position, all locations within a cone with a full top angle of 120 can be reached from about 8 m...

  6. Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides.

    Science.gov (United States)

    Yao, Yicun; Dong, Ningning; Chen, Feng; Pang, Lilong; Wang, Zhiguang; Lu, Qingming

    2011-11-21

    We report on the fabrication of planar waveguide in Nd:YVO(4) crystal by using swift Ar(8+) ion irradiation. At room temperature continuous wave (cw) laser oscillation at wavelength of ~1067 nm has been realized through the optical pump at 808 nm with a low threshold of 9.3 mW. The slope efficiency of the waveguide laser system is of 8.5%. The optical-to-optical conversion efficiency is 6.6%. © 2011 Optical Society of America

  7. Optical phase locking of two infrared continuous wave lasers separated by 100 THz

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du-Burck, F.; Hrabina, Jan; Lours, M.; Chea, E.; Acef, O.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 2936-2939 ISSN 0146-9592 R&D Projects: GA ČR GPP102/11/P820; GA MŠk ED0017/01/01; GA MŠk EE2.4.31.0016; GA MŠk(CZ) LO1212; GA MŠk(CZ) 7AMB14FR040 Institutional support: RVO:68081731 Keywords : Continuous wave lasers * Frequency allocation * Harmonic generation * Laser optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.292, year: 2014

  8. The epileptic syndromes with continuous spikes and waves during slow sleep: definition and management guidelines.

    Science.gov (United States)

    Van Bogaert, P; Aeby, A; De Borchgrave, V; De Cocq, C; Deprez, M; De Tiège, X; de Tourtchaninoff, M; Dubru, J M; Foulon, M; Ghariani, S; Grisar, T; Legros, B; Ossemann, M; Tugendhaft, P; van Rijckevorsel, K; Verheulpen, D

    2006-06-01

    The authors propose to define the epileptic syndromes with continuous spikes and waves during slow sleep (CSWS) as a cognitive or behavioral impairment acquired during childhood, associated with a strong activation of the interictal epileptiform discharges during NREM sleep--whatever focal or generalized--and not related to another factor than the presence of CSWS. The type of syndrome will be defined according to the neurological and neuropsychological deficit. These syndromes have to be classified among the localization-related epileptic syndromes. Some cases are idiopathic and others are symptomatic. Guidelines for work-up and treatment are proposed.

  9. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  10. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  11. Impulsively Generated Sausage Waves in Coronal Tubes with Transversally Continuous Structuring

    Science.gov (United States)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Xiong, Ming; Guo, Ming-Zhe

    2016-12-01

    The frequency dependence of the longitudinal group speeds of trapped sausage waves plays an important role in determining impulsively generated wave trains, which have often been invoked to account for quasi-periodic signals in coronal loops. We examine how the group speeds ({v}{gr}) depend on angular frequency (ω) for sausage modes in pressureless coronal tubes with continuous transverse density distributions by solving the dispersion relation pertinent to the case where the density inhomogeneity of arbitrary form occurs in a transition layer of arbitrary thickness. We find that in addition to the transverse lengthscale l and density contrast {ρ }{{I}}/{ρ }{{e}}, the group speed behavior also depends on the detailed form of the density inhomogeneity. For parabolic profiles, {v}{gr} always decreases with ω first before increasing again, as happens for the much studied top-hat profiles. For linear profiles, however, the behavior of the ω -{v}{gr} curves is more complex. When {ρ }{{I}}/{ρ }{{e}}≲ 6, the curves become monotonical for large values of l. On the other hand, for higher density contrasts, a local maximum {v}{gr}\\max exists in addition to a local minimum {v}{gr}\\min when coronal tubes are diffuse. With time-dependent computations, we show that the different behavior of group speed curves, the characteristic speeds {v}{gr}\\min and {v}{gr}\\max in particular, is reflected in the temporal evolution and Morlet spectra of impulsively generated wave trains. We conclude that the observed quasi-periodic wave trains not only can be employed to probe such key parameters as density contrasts and profile steepness, but also have the potential to discriminate between the unknown forms of the transverse density distribution.

  12. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.

    Science.gov (United States)

    Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  13. Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser

    Science.gov (United States)

    Pan, Qikun; Chen, Fei; Xie, Jijiang; Wang, Chunrui; He, Yang; Yu, Deyang; Zhang, Kuo

    2018-03-01

    A theoretical model describing the dynamic process of a continuous-wave Fe2+:ZnSe laser is presented. The influence of some of the operating parameters on the output characteristics of an Fe2+:ZnSe laser is studied in detail. The results indicate that the temperature rise of the Fe2+:ZnSe crystal is significant with the use of a high power pump laser, especially for a high doped concentration of crystal. The optimal crystal length increases with decreasing the doped concentration of crystal, so an Fe2+:ZnSe crystal with simultaneous doping during growth is an attractive choice, which usually has a low doped concentration and long length. The laser pumping threshold is almost stable at low temperatures, but increases exponentially with a working temperature in the range of 180 K to room temperature. The main reason for this phenomenon is the short upper level lifetime and serious thermal temperature rise when the working temperature is higher than 180 K. The calculated optimum output mirror transmittance is about 35% and the performance of a continuous-wave Fe2+:ZnSe laser is more efficient at a lower operating temperature.

  14. One step linear reconstruction method for continuous wave diffuse optical tomography

    Science.gov (United States)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  15. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  16. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.

    Science.gov (United States)

    Scholkmann, Felix; Kleiser, Stefan; Metz, Andreas Jaakko; Zimmermann, Raphael; Mata Pavia, Juan; Wolf, Ursula; Wolf, Martin

    2014-01-15

    This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data

    Science.gov (United States)

    Ming, Jing; Papa, Maria Alessandra; Krishnan, Badri; Prix, Reinhard; Beer, Christian; Zhu, Sylvia J.; Eggenstein, Heinz-Bernd; Bock, Oliver; Machenschalk, Bernd

    2018-02-01

    In this paper we design a search for continuous gravitational waves from three supernova remnants: Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron stars emitting quasiperiodic gravitational radiation detectable by the advanced LIGO detectors. Our search is designed to use the volunteer computing project Einstein@Home for a few months and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science run. For all three supernova remnants, the sky positions of their central compact objects are well known but the frequency and spin-down rates of the neutron stars are unknown which makes the searches computationally limited. In a previous paper we have proposed a general framework for deciding on what target we should spend computational resources and in what proportion, what frequency and spin-down ranges we should search for every target, and with what search setup. Here we further expand this framework and apply it to design a search directed at detecting continuous gravitational wave signals from the most promising three supernova remnants identified as such in the previous work. Our optimization procedure yields broad frequency and spin-down searches for all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave strain h0 for Cas A is expected to be 2 times smaller than the most sensitive upper limits published to date, and our proposed search, which was set up and ran on the volunteer computing project Einstein@Home, covers a much larger frequency range.

  18. Travelling waves solutions to the K-P-P equation at the critical wave speed: continuing Simon Harris' probabilistic analysis

    NARCIS (Netherlands)

    Kyprianou, A.E.

    2000-01-01

    Recently Harris using probabilistic arguments alone has given new proofs of the known existence asymptotics and unique ness of travelling wave solutions to the KPP equation This paper is a sequel to Kyprianou b which provides alternative probabilistic arguments for supercritical wave speeds We

  19. Application of autofocusing methods in continuous-wave terahertz in-line digital holography

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Zhou, Xun; Li, Zeyu; Wang, Yunxin

    2015-07-01

    Terahertz digital holography is a combination of terahertz imaging and digital holography. During reconstruction, the key point is to find accurately the propagation distance from which the distribution of focused samples can be reconstructed. In this paper, we use a continuous-wave terahertz in-line digital holographic imaging system to record holograms. Moreover, the autofocusing algorithms through which the reconstructed distance can be calculated are applied to the reconstruction. The in-line schematic is beneficial to the terahertz wave imaging, which, however, inevitably produces the object's twin image. In the refocusing process, both the reconstructed image with low signal-to-noise ratio and contrast and the twin image induce the formation of false peaks corresponding to improper distances on the autofocusing curves. To restrain the disturbance factors and improve the accuracy of the judgment, a phase retrieval method is implemented in the reconstruction. The results demonstrate the feasibility of the autofocusing method with phase retrieval in terahertz in-line digital holographic imaging system. The proposed method provides an automated and efficient evaluation which helps to obtain the optimized propagation distance.

  20. A continuous map of near-surface S-wave attenuation in New Zealand

    Science.gov (United States)

    Van Houtte, Chris; Ktenidou, Olga-Joan; Larkin, Tam; Holden, Caroline

    2018-04-01

    Quantifying the near-surface attenuation of seismic waves at a given location can be important for seismic hazard analysis of high-frequency ground motion. This study calculates the site attenuation parameter, κ0, at 41 seismograph locations in New Zealand. Combined with results of a previous study, a total of 46 κ0 values are available across New Zealand. The results compare well with previous t* studies, revealing high attenuation in the volcanic arc and forearc ranges, and low attenuation in the South Island. However, for site-specific seismic hazard analyses, there is a need to calculate κ0 at locations away from a seismograph location. For these situations, it is common to infer κ0 from weak correlations with the shear wave velocity in the top 30 m, VS30, or to adopt an indicative regional value. This study attempts to improve on this practice. Geostatistical models of the station-specific κ0 data are developed, and continuous maps are derived using ordinary kriging. The obtained κ0 maps can provide a median κ0 and its uncertainty for any location in New Zealand, which may be useful for future site-specific seismic hazard analyses.

  1. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    Science.gov (United States)

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  2. Selective trace gas detection of complex molecules with a continuous wave optical parametric oscillator using a planar jet expansion

    NARCIS (Netherlands)

    Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Verbraak, H.; Linnartz, H.

    2007-01-01

    The authors present a trace gas detection method for complex molecules using continuous cavity ring-down spectroscopy in combination with a continuous wave optical parametric oscillator (tunability wavelength: 2.8-4.8 mu m; power: 1 W) sampling a supersonic planar jet expansion (nozzle dimension: 3

  3. Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection

    NARCIS (Netherlands)

    Ngai, A.K.Y.; Persijn, S.T.; Basum, G. von; Harren, F.J.M.

    2006-01-01

    We present a high-power (2.75 W), broadly tunable (2.75-3.83 mu m) continuous-wave optical parametric oscillator based on MgO-doped periodically poled lithium niobate. Automated tuning of the pump laser, etalon and crystal temperature results in a continuous wavelength coverage up to 450 cm(-1) per

  4. Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves

    NARCIS (Netherlands)

    Gagarina, Elena; Ambati, V.R.; van der Vegt, Jacobus J.W.; Bokhove, Onno

    2014-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element

  5. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves

    NARCIS (Netherlands)

    Gagarina, Elena; van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno

    A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is

  6. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics

    International Nuclear Information System (INIS)

    Prix, Reinhard; Krishnan, Badri

    2009-01-01

    We investigate the Bayesian framework for detection of continuous gravitational waves (GWs) in the context of targeted searches, where the phase evolution of the GW signal is assumed to be known, while the four amplitude parameters are unknown. We show that the orthodox maximum-likelihood statistic (known as F-statistic) can be rediscovered as a Bayes factor with an unphysical prior in amplitude parameter space. We introduce an alternative detection statistic ('B-statistic') using the Bayes factor with a more natural amplitude prior, namely an isotropic probability distribution for the orientation of GW sources. Monte Carlo simulations of targeted searches show that the resulting Bayesian B-statistic is more powerful in the Neyman-Pearson sense (i.e., has a higher expected detection probability at equal false-alarm probability) than the frequentist F-statistic.

  7. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    International Nuclear Information System (INIS)

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-01-01

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  8. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  9. On the shape of continuous wave infrared stimulated luminescence signals from feldspars: A case study

    DEFF Research Database (Denmark)

    Pagonis, V.; Jain, Mayank; Thomsen, Kristina Jørkov

    2014-01-01

    The continuous-wave IRSL (CW-IRSL) signals from feldspars are known to decay in a non-exponential manner, and their exact mathematical description is of great importance in dosimetric and dating studies. This paper investigates the possibility of fitting experimental CW-IRSL curves from a variety...... of feldspar samples, by using an analytical equation derived within the framework of a new model based on localized electronic recombinations of donor–acceptor pairs. 24 different types of feldspars were studied and their CW-IRSL signals are analyzed in order to establish the range and precision of numerical...... values for the fitting parameters in the analytical equation. The study finds systematic trends in the fitting parameters, and possible systematic differences between K and Na rich extracts from the same feldspar samples. Furthermore, results are compared with natural samples, freshly irradiated samples...

  10. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures

    International Nuclear Information System (INIS)

    Canedy, C. L.; Kim, C. S.; Merritt, C. D.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.; Kim, M.

    2015-01-01

    Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm 2 for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electrical to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers

  11. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  12. Electronic defect levels in continuous wave laser annealed silicon metal oxide semiconductor devices

    Science.gov (United States)

    Cervera, M.; Garcia, B. J.; Martinez, J.; Garrido, J.; Piqueras, J.

    1988-09-01

    The effect of laser treatment on the bulk and interface states of the Si-SiO2 structure has been investigated. The annealing was performed prior to the gate metallization using a continuous wave Ar+ laser. For low laser powers the interface state density seems to decrease slightly in comparison with untreated samples. However, for the highest irradiating laser powers a new bulk level at 0.41 eV above the valence band with concentrations up to 1015 cm-3 arises probably due to the electrical activation of the oxygen diluted in the Czochralski silicon. Later postmetallization annealings reduce the interface state density to values in the 1010 cm-2 eV-1 range but leave the concentration of the 0.41-eV center nearly unchanged.

  13. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  14. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  15. Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects.

    Science.gov (United States)

    Alberucci, Alessandro; Laudyn, Urszula A; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A; Assanto, Gaetano

    2017-07-01

    We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

  16. Cavity-augmented frequency tripling of a continuous wave mode-locked laser

    International Nuclear Information System (INIS)

    McConnell, Gail; Ferguson, Allister I.; Langford, Nigel

    2001-01-01

    We present a model and experimental investigation of a singly-resonant optical cavity to enhance the nonlinear conversion efficiency of a continuous wave mode-locked all-solid-state laser source to produce an efficient source of ultraviolet radiation. For input pulses of approximately 33 ps duration at 4.4 ns intervals, our model predicts greater than 30% conversion from fundamental to third harmonic which is particularly attractive for fundamental sources of modest average power. Experimentally, we have achieved overall optical conversion efficiencies from fundamental to third harmonic wavelength typically greater than 11%, compared with less than 0.4% in a single pass geometry. We have measured an average power of 320 mW at λ=355 nm at picosecond pulse duration, which corresponds to a generated third harmonic average power of 0.5 W. (author)

  17. Dual Channel S-Band Frequency Modulated Continuous Wave Through-Wall Radar Imaging

    Directory of Open Access Journals (Sweden)

    Ying-Chun Li

    2018-01-01

    Full Text Available This article deals with the development of a dual channel S-Band frequency-modulated continuous wave (FMCW system for a through-the-wall imaging (TWRI system. Most existing TWRI systems using FMCW were developed for synthetic aperture radar (SAR which has many drawbacks such as the need for several antenna elements and movement of the system. Our implemented TWRI system comprises a transmitting antenna and two receiving antennas, resulting in a significant reduction of the number of antenna elements. Moreover, a proposed algorithm for range-angle-Doppler 3D estimation based on a 3D shift invariant structure is utilized in our implemented dual channel S-band FMCW TWRI system. Indoor and outdoor experiments were conducted to image the scene beyond a wall for water targets and person targets, respectively. The experimental results demonstrate that high-quality imaging can be achieved under both experimental scenarios.

  18. Continuous-wave solutions and modulational instability in spinor condensates of positronium

    Science.gov (United States)

    Bhat, Ishfaq Ahmad; Mithun, T.; Malomed, B. A.; Porsezian, K.

    2018-02-01

    We obtain general continuous-wave (CW) solutions in the model of a spinor positronium condensate in the absence of magnetic field. The CW solutions with both in-phase (n = 0) and out-of-phase (n = 1) spin components exist, with their ranges limited by the total particle density, ρ. In the limit of negligible population exchange between the spin components, the CW solutions are found to be stable or unstable, depending on the particle density of the para-positronium. Ortho-positronium, in the F = 1 spinor state, forms a ferromagnetic condensate with stable in-phase CW solutions only. Subsequent examination of the modulational instability is carried out both in the limit case of identical wavenumbers in the spin components, {{Δ }}k\\equiv {k}1-{k}-1=0, and in the more general case of {{Δ }}k\

  19. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  20. A contactless approach for respiratory gating in PET using continuous-wave radar.

    Science.gov (United States)

    Ersepke, Thomas; Büther, Florian; Heß, Mirco; Schäfers, Klaus P

    2015-08-01

    Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient's torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient's torso. A 24 GHz carrier frequency was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [(18)F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69-0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53-0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Accurate respiratory signals were

  1. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    Directory of Open Access Journals (Sweden)

    Bhanu Neupane

    2015-09-01

    Full Text Available Stimulated emission depletion (STED microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante and live rat chondrosarcoma cells (RCS transfected with actin-green fluorescent protein (GFP. Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed.

  2. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Science.gov (United States)

    Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao

    2018-02-01

    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.

  3. Reduced Order Modelling in searches for continuous gravitational waves - I. barycentering time delays

    Science.gov (United States)

    Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.

    2018-02-01

    The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the solar system barycentre (SSB). We study the use of Reduced Order Modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.

  4. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power

    Science.gov (United States)

    Grandusky, James R.; Chen, Jianfeng; Gibb, Shawn R.; Mendrick, Mark C.; Moe, Craig G.; Rodak, Lee; Garrett, Gregory A.; Wraback, Michael; Schowalter, Leo J.

    2013-03-01

    In this letter, the achievement of over 60 mW output power from pseudomorphic ultraviolet light-emitting diodes in continuous wave operation is reported. Die thinning and encapsulation improved the photon extraction efficiency to over 15%. Improved thermal management and a high characteristic temperature resulted in a low thermal rolloff up to 300 mA injection current with an output power of 67 mW, an external quantum efficiency (EQE) of 4.9%, and a wall plug efficiency (WPE) of 2.5% for a single-chip device emitting at 271 nm in continuous wave operation.

  5. Quasi continuous-wave lasing in organic thin-film semiconductors (Conference Presentation)

    Science.gov (United States)

    Sanadanayaka, Atula S. D.; Yoshida, Kou; Ribierre, Jean-Charles; Matsushima, Toshinori; Adachi, Chihaya

    2016-09-01

    Since the discovery of organic solid-state lasers, great efforts have been devoted to the development of continuous-wave (cw) lasing in organic materials. However, the operation of organic solid-state lasers under optical cw excitation or pulse excitation at a very high repetition rate (quasi-cw excitation) is extremely challenging. In this work, we have demonstrated quasi-continuous-wave (quasi-cw) surface-emitting lasing in a distributed feedback device which combines a second-order grating with an organic thin film of a host material 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) blended with an organic laser dye 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz). When pumping the device with optical picosecond pulse excitation, the quasi-cw laser operation maintained up to a repetition rate of 8 MHz. The lasing threshold was around 0.25 μJ cm-2 which was almost independent of the repetition rates. For our laser devices, the maximum repetition rate (8 MHz) is the highest ever reported, and the lasing threshold (0.25 μJ cm-2) is the lowest ever reported. These superior quasi-cw lasing characteristics in BSBCz are accomplished by the less generation of triplet excitons via intersystem crossing because a photoluminescence quantum yield of the blend film is nearly 100% and there is no significant spectral overlap between laser and triplet absorption.[1,2] Triplet quenchers, generally used for the fabrication of organic thin-film lasers, were not necessary in our devices because of negligible accumulation of triplet excitons and a small spectral overlap between emission and triplet absorption. Therefore, we believe that BSBCz is the most promising candidate for the first realization of electrically pumped organic laser diodes in terms of optical characteristics. However, electrical characteristics such as charge carrier mobility, charge carrier capture cross section, etc., are also extremely important and will need further investigation and enhancement for realization of

  6. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  7. Experimental investigation on thermal ablation of carbon-fiber/epoxy composite irradiated by continuous wave laser

    Science.gov (United States)

    He, Minbo; Ma, Zhiliang; Chen, Linzhu; Lin, Xinwei; Zhou, Menglian

    2015-05-01

    The tests of carbon-fiber/epoxy composite laminates, subjected to a tangential gas-flow and 1070 nm continuous wave laser are carried out to acquire the ablation laws of samples on the conditions of different gas-flow. Simultaneously, considered the images from camera of large dynamic range, the damage laws of samples are also obtained for various laser power densities. Experimental results reveal that, without airflow on sample surface, the smoke caused by laser heating can be quickly on fire which causes a burn damage on the surface of samples so that the mass loss is most of all. However, the tangential airflow can remove away the smoke which has a weakening effect on the energy of incidence laser. So the ablation depth has an obvious increase in laser irradiation area. Unlike airflow, nitrogen flow can obviously restrain oxidation ablation on surface so that the ablation damage in laser irradiation area is relatively not severe. On the other hand, as laser power density increases, the mass loss of samples continues to rise but isn't proportional. And the ablation heat with the increase of power density shows a complex change. Below power density of 390 W/cm2, the mass loss mainly depends on the pyrolysis of epoxy while the ablation heat has a gradual decrease. Along with power density increasing but less than 1330 W/cm2 , the oxidation ablation of carbon fibers will be a leading factor and the ablation heat shows a little increase. Above power density of 1330 W/cm2 , the carbon fibers turn up the phenomenon of sublimation. What's more, airflow removed effects will be enhanced in high temperature. In this case, the ablation heat again has a trend of decrease.

  8. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    Science.gov (United States)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  9. A CO trace gas detection system based on continuous wave DFB-QCL

    Science.gov (United States)

    Dang, Jingmin; Yu, Haiye; Sun, Yujing; Wang, Yiding

    2017-05-01

    A compact and mobile system was demonstrated for the detection of carbon monoxide (CO) at trace level. This system adopted a high-power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at ∼22 °C as excitation source. Wavelength modulation spectroscopy (WMS) as well as second harmonic detection was used to isolate complex, overlapping spectral absorption features typical of ambient pressures and to achieve excellent specificity and high detection sensitivity. For the selected P(11) absorption line of CO molecule, located at 2099.083 cm-1, a limit of detection (LoD) of 26 ppb by volume (ppbv) at atmospheric pressure was achieved with a 1 s acquisition time. Allan deviation analysis was performed to investigate the long term performance of the CO detection system, and a measurement precision of 3.4 ppbv was observed with an optimal integration time of approximate 114 s, which verified the reliable and robust operation of the developed system.

  10. Doppler limited rotational transitions of OH and SH radicals measured by continuous-wave terahertz photomixing

    Science.gov (United States)

    Eliet, Sophie; Martin-Drumel, Marie-Aline; Guinet, Mickaël; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2011-12-01

    A continuous-wave terahertz (CW-THz) source generated by photomixing has been employed to detect and quantify radicals produced in a cold plasma probing their spin-rotation transitions. Due to their dual interest for both atmospherists and astrophysicists, the hydroxyl OH and the mercapto SH radicals have been chosen. The photomixing technique which can access the largest range of THz frequencies of any known coherent source, allowed to resolve the Doppler-limited hyperfine transitions of OH in the 2.5 THz frequency region. Line profile analysis of the hyperfine components demonstrated that OH radicals have been detected in this region at a ppm level at a temperature close to 490 K. The hyperfine structure of SH has been resolved for the first time above 1 THz. Ten new frequency transitions have been measured in the 1.3-2.6 THz frequency range using the CW-THz synthesizer based on a frequency comb. With relative uncertainties better than 10 -7, the CW-THz frequencies measured in this study are now competitive with those measured by other instruments such as frequency multiplication chains or FT-FIR spectrometers and are now capable to improve the predictions of the complete high-resolution spectra of these radicals collected in the atmospheric and astrophysical spectroscopic databases. versioncorrigeeAC 2011-07-18 17:32 2011 Arnaud Cuisset.

  11. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification

    Science.gov (United States)

    Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël

    2008-03-01

    Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).

  12. Fiber fuse behavior in kW-level continuous-wave double-clad field laser

    Science.gov (United States)

    Jun-Yi, Sun; Qi-Rong, Xiao; Dan, Li; Xue-Jiao, Wang; Hai-Tao, Zhang; Ma-Li, Gong; Ping, Yan

    2016-01-01

    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. Project supported by the Key Laboratory of Science and Technology on High Energy Laser and China Academy of Engineering Physics (Grant No. 2014HEL02) and the National Natural Science Foundation of China (Grant No. 61307057).

  13. Continuous-wave and passively Q-switched Nd:YVO4 laser at 1085 nm

    Science.gov (United States)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Zhang, Jiyan

    2017-11-01

    An admirable and efficient Nd:YVO4 laser at 1085 nm is demonstrated with a compact 35 mm plano-plano cavity. A chosen narrow bandpass filter with high-transmittance (HT) coating at 1064 nm (T=96%) and optimized part-reflection (PR) coating at 1085 nm (T=15%) is used as the output coupler. In the continuous-wave (CW) regime, the maximum output power reaches 3110 mW at the pump power of 11.41 W. Based on a Cr:YAG crystal with initial-transmittance of 91%, the first passively Q-switched Nd:YVO4 laser at 1085 nm is achieved. When the pump power is changed from the threshold of 4.50 to 6.08 W, the dual-wavelength lines at 1064 and 1085 nm are generated simultaneously. However, at the pump power of above 6.08 W, the single-wavelength line at 1085 nm is achieved. The largest output power, the highest peak power, and the narrowest pulse width are 1615 mW, 878 W and 26.2 ns, respectively.

  14. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures

    Science.gov (United States)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun

    2018-01-01

    Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.

  15. Pulse propagation dynamics in the presence of a continuous-wave field

    International Nuclear Information System (INIS)

    Dimitrijević, Jelena; Arsenović, Dušan; Jelenković, Branislav M

    2013-01-01

    We present theoretical results for the propagation dynamics of an electromagnetic field pulse through rubidium vapor, while another field, a continuous-wave electromagnetic field, is present. The frequencies of both electromagnetic fields are resonant with the transition between the ground and excited state hyperfine levels of Rb, F g  → F e  = F g  ± 1. Detuning from resonance is done by the magnetic field oriented along the light propagation direction (Hanle configuration). When both the electromagnetic fields are simultaneously interacting with Rb atoms, either electromagnetically induced transparency or absorption is induced. Propagation dynamics was obtained solving the set of Maxwell–Bloch equations for the interacting atoms with two electromagnetic fields. Motivated by recent results (Brazhnikov et al 2011 Eur. Phys. J. D 63 315–25; Brazhnikov et al 2010 JETP Lett. 91 625–9; Kou et al 2011 Phys. Rev. A 84 063807), we have analyzed the influence of experimental parameters, laser polarization, and mutual phases between lasers, which can lead to optical switching, i.e. the transformation from electromagnetically induced absorption to transparency and vice versa. (paper)

  16. Investigation of flexible perforation of thin materials using a continuous-wave CO2 laser

    Science.gov (United States)

    Xia, Linglin; Chen, Peifeng; Wang, Ying; Luo, Xi; Chao, Chuang

    2012-09-01

    Thin material laser perforation improves the flexibility and quality of materials such as tipping paper, medicated sticking plaster and breathable plastic film for storage. Perforation processing requires reliable, high speed, robust and adaptable optoelectronic systems to provide controllable permeability and flexibility in thin materials. This article provides descriptions on the design and performance of a new laser perforation system developed to meet such stringent requirements. This system is applicable for on-line thin material perforation. The optoelectronics include a continuous wave CO2 laser whose beam can be modulated into sequences of pulsed laser beams by a mechanical chopper. The focusing characteristics of a real laser beam in the perforation system have been investigated. This allowed laser beams to be focused on the moving thin material to be perforated and adaptable software control to provide the desired pattern distribution of the circular holes perforated on this material. A galvanometer scanner system allows sequential scanning of pulsed laser beams. This unique optoelectronic, mechanical and dedicated embedded control system has been designed and implemented to synchronize the actions of mechanical choppers, galvanometer scanners and the movement characteristics of the thin material. A practical implementation of the sticking plaster and tipping paper laser perforation system has been completed and successfully tested. Results show for example that circular holes with two geometrical distribution patterns are achievable, and unique patterns of perforation can be designed to discourage counterfeiting.

  17. Analysis and active compensation of microphonics in continuous wave narrow-bandwidth superconducting cavities

    Directory of Open Access Journals (Sweden)

    A. Neumann

    2010-08-01

    Full Text Available Many proposals for next generation light sources based on single pass free electron lasers or energy recovery linac facilities require a continuous wave (cw driven superconducting linac. The effective beam loading in such machines is very small and in principle the cavities can be operated at a bandwidth of a few Hz and with less than a few kW of rf power. However, a power reserve is required to ensure field stability. A major error source is the mechanical microphonics detuning of the niobium cavities. To understand the influence of cavity detuning on longitudinal beam stability, a measurement program has been started at the horizontal cavity test facility HoBiCaT at HZB to study TESLA-type cavities. The microphonics detuning spectral content, peak detuning values, and the driving terms for these mechanical oscillations have been analyzed. In combination with the characterization of cw-adapted fast tuning systems based on the piezoelectric effect this information has been used to design a detuning compensation algorithm. It has been shown that a compensation factor between 2–7 is achievable, reducing the typical detuning of 2–3 Hz rms to below 0.5 Hz rms. These results were included in rf-control simulations of the cavities, and it was demonstrated that a phase stability below 0.02° can be achieved.

  18. Systolic Time Interval Estimation Using Continuous Wave Radar With On-Body Antennas.

    Science.gov (United States)

    Buxi, Dilpreet; Hermeling, Evelien; Mercuri, Marco; Beutel, Fabian; van der Westen, Roberto Garcia; Torfs, Tom; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2018-01-01

    The estimation of systolic time intervals (STIs) is done using continuous wave (CW) radar at 2.45 GHz with an on-body antenna. In the state of the art, typically bioimpedance, heart sounds and/or ultrasound are used to measure STIs. All three methods suffer from insufficient accuracy of STI estimation due to various reasons. CW radar is investigated for its ability to overcome the deficiencies in the state of the art. Ten healthy male subjects aged 25-45 were asked to lie down at a 30 incline. Recordings of 60 s were taken without breathing and with paced breathing. Heart sounds, electrocardiogram, respiration, and impedance cardiogram were measured simultaneously as reference. The radar antennas were placed at two positions on the chest. The antennas were placed directly on the body as well as with cotton textile in between. The beat to beat STIs have been determined from the reference signals as well as CW radar signals. The results indicate that CW radar can be used to estimate STIs in ambulatory monitoring. The results pave way to a potentially more compact method of estimating STIs, which can be integrated into a wearable device.

  19. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    Science.gov (United States)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  20. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  1. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  2. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    Science.gov (United States)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  3. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  4. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure

    Science.gov (United States)

    Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie

    2018-02-01

    Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.

  5. Continuous-wave and passively Q-switched cryogenic Yb: KLu(WO.sub.4./sub.).sub.2./sub. laser

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Petr; Jambunathan, Venkatesan; Paul David, Samuel; Yue, Fangxin; Serres, J.M.; Mateos, X.; Aguilo, M.; Diaz, F.; Griebner, U.; Petrov, V.; Lucianetti, Antonio; Mocek, Tomáš

    2017-01-01

    Roč. 25, č. 21 (2017), s. 25886-25893 ISSN 1094-4087 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 EU Projects: European Commission(XE) 739573 - HiLASE CoE Grant - others:OP VVV - HiLASE-CoE(XE) CZ.02.1.01/0.0/0.0/15_006/0000674 Institutional support: RVO:68378271 Keywords : diode-pumped lasers * laser materials Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.307, year: 2016

  6. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves)

    OpenAIRE

    Jeonghun Nam; Jae Young Kim; Chae Seung Lim

    2017-01-01

    We present continuous, sheathless microparticle patterning using conductive liquid (CL)-based standing surface acoustic waves (SSAWs). Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls...

  7. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Jeonghun Nam

    2017-01-01

    Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  8. Relationship between serum albumin and pulse wave velocity in patients on continuous ambulatory peritoneal dialysis

    Directory of Open Access Journals (Sweden)

    Li-Tao Cheng

    2008-08-01

    Full Text Available Li-Tao Cheng1, Li-Jun Tang1,2, Hui-Min Chen1,3, Wen Tang1, Tao Wang11Division of Nephrology, Peking University Third Hospital, Beijing, China; 2Division of Nephrology, Qilu Hospital of Shandong University, Ji’nan, China; 3Division of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, ChinaBackground: Hypoalbuminemia is a risk factor for cardiovascular events and mortality in dialysis patients, but the underlying mechanism remains unclear. Meanwhile, increased pulse wave velocity (PWV, the marker of arterial stiffness, has been proved to be an independent predictor of cardiovascular disease. The relationship between serum albumin and PWV in continuous ambulatory peritoneal dialysis patients (CAPD was studied.Methods: Sixty-two CAPD patients were studied. The average age was 63 ± 12 years and dialysis duration was 23 ± 22 months. Serum albumin, C-reactive protein (CRP, and carotid-femoral PWV were measured.Results: Among these patients, 43.5% were men. The mean serum albumin concentration was 37 ± 4 g/L and PWV was 11.9 ± 2.3 m/s. PWV positively correlated with age (r = 0.35, P < 0.01, diabetes (yes = 1, no = 0; r = 0.292, P < 0.05, systolic blood pressure (SBP; r = 0.493, P < 0.001 and CRP (r = 0.295, P < 0.05, but negatively correlated with serum albumin (r = −0.357, P < 0.01. In multiple regression analysis, SBP (β = 0.615, P < 0.001, age (β = 0.414, P < 0.01, albumin (β = −0.315, P < 0.05 and total cholesterol (β = 0.275, P < 0.05 were independent determinants of PWV. In a non-inflamed subgroup (CRP < 3 mg/L, n = 30, albumin still negatively correlated with PWV (r = −0.66, P < 0.001.Conclusion: Serum albumin inversely correlated with increased PWV in CAPD patients, suggesting that increased arterial stiffness might be the link between hypoalbuminemia and increased cardiovascular mortality in dialysis patients.Keywords: hypoalbuminemia, cardiovascular events, pulse wave velocity, arterial

  9. Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator

    NARCIS (Netherlands)

    Verbraak, H.; Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Linnartz, H.

    2007-01-01

    A sensitive infrared detection scheme is presented in which continuous wave cavity ring down spectroscopy is used to record rovibrational spectra of molecular ions in direct absorption through supersonically expanding planar plasma. A cw optical parametric oscillator is used as a light source and

  10. Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation

    NARCIS (Netherlands)

    Mulder, W.A.; Zhebel, E.; Minisini, S.

    2013-01-01

    We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the

  11. Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics

    International Nuclear Information System (INIS)

    Keitel, David

    2016-01-01

    Non-axisymmetries in rotating neutron stars emit quasi-monochromatic gravitational waves. These long-duration ‘continuous wave’ signals are among the main search targets of ground-based interferometric detectors. However, standard detection methods are susceptible to false alarms from instrumental artefacts that resemble a continuous-wave signal. Past work [Keitel, Prix, Papa, Leaci and Siddiqi 2014, Phys. Rev. D 89 064023] showed that a Bayesian approach, based on an explicit model of persistent single-detector disturbances, improves robustness against such artefacts. Since many strong outliers in semi-coherent searches of LIGO data are caused by transient disturbances that last only a few hours or days, I describe in a recent paper [Keitel D 2015, LIGO-P1500159] how to extend this approach to cover transient disturbances, and demonstrate increased sensitivity in realistic simulated data. Additionally, neutron stars could emit transient signals which, for a limited time, also follow the continuous-wave signal model. As a pragmatic alternative to specialized transient searches, I demonstrate how to make standard semi-coherent continuous-wave searches more sensitive to transient signals. Focusing on the time-scale of a single segment in the semi-coherent search, Bayesian model selection yields a simple detection statistic without a significant increase in computational cost. This proceedings contribution gives a brief overview of both works. (paper)

  12. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Design and cold model experiment of a continuous-wave deuteron radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2017-12-01

    Full Text Available A deuteron radio-frequency quadrupole (RFQ is being built by the RFQ group at Peking University. It is a very compact high-current RFQ, operating at 162.5 MHz in continuous-wave mode. By optimizing the beam dynamics design, our simulations reached 98% transmission efficiency for acceleration of the 50-mA deuteron beam from 50 keV to 1 MeV, with an intervane voltage of 60 kV and a length of 1.809 m. This RFQ adopts a window-type structure, with low power consumption and sufficient mode separation, with no stabilizing rods required. Its magnetic coupling windows have been optimized by both electromagnetic simulation and the construction of an equivalent circuit model. The empirical equation based on the circuit model provides a new way to evaluate the effect of the window size on the frequency. In addition, an aluminum model of the full-length RFQ has been built and tested, and the results show good agreement with the simulations. During the tuning process, the magnetic coupling effect between quadrants was found to be unique to the window-type RFQ. We also propose a method to estimate the effects of different degrees of electric field unflatness on the beam transmission. For the cooling system design, the results of thermostructural analysis, verified by comparing results from ansys and cst, show that the special cooling channels provide a high cooling efficiency around the magnetic coupling windows. The maximal deformation of the structure was approximately 75  μm. The beam-loading effect caused by a high current, and the coupler design, are also discussed.

  14. Design and cold model experiment of a continuous-wave deuteron radio-frequency quadrupole

    Science.gov (United States)

    Fu, Q.; Zhu, K.; Lu, Y. R.; Easton, M. J.; Gao, S. L.; Wang, Z.; Jia, F. J.; Li, H. P.; Gan, P. P.; He, Y.

    2017-12-01

    A deuteron radio-frequency quadrupole (RFQ) is being built by the RFQ group at Peking University. It is a very compact high-current RFQ, operating at 162.5 MHz in continuous-wave mode. By optimizing the beam dynamics design, our simulations reached 98% transmission efficiency for acceleration of the 50-mA deuteron beam from 50 keV to 1 MeV, with an intervane voltage of 60 kV and a length of 1.809 m. This RFQ adopts a window-type structure, with low power consumption and sufficient mode separation, with no stabilizing rods required. Its magnetic coupling windows have been optimized by both electromagnetic simulation and the construction of an equivalent circuit model. The empirical equation based on the circuit model provides a new way to evaluate the effect of the window size on the frequency. In addition, an aluminum model of the full-length RFQ has been built and tested, and the results show good agreement with the simulations. During the tuning process, the magnetic coupling effect between quadrants was found to be unique to the window-type RFQ. We also propose a method to estimate the effects of different degrees of electric field unflatness on the beam transmission. For the cooling system design, the results of thermostructural analysis, verified by comparing results from ansys and cst, show that the special cooling channels provide a high cooling efficiency around the magnetic coupling windows. The maximal deformation of the structure was approximately 75 μ m . The beam-loading effect caused by a high current, and the coupler design, are also discussed.

  15. Gold nanorod reshaping in vitro and in vivo using a continuous wave laser.

    Directory of Open Access Journals (Sweden)

    David Harris-Birtill

    Full Text Available Gold nanorods (GNRs are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the

  16. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source.

    Science.gov (United States)

    Aadhi, A; Sharma, Varun; Singh, R P; Samanta, G K

    2017-09-15

    We report on a high-power, continuous-wave source of optical vortices tunable in the mid-infrared (mid-IR) wavelength range. Using the orbital angular momentum (OAM) conservation of the parametric processes and the threshold conditions of the cavity modes of the singly resonant optical parametric oscillator (SRO), we have transferred the OAM of the pump beam at the near-infrared wavelength to the idler beam tunable in the mid-IR. Pumped with a vortex beam of order l p =1 at 1064 nm, the SRO, configured in a four curved mirror-based ring cavity with a 50 mm long MgO-doped periodically poled LiNbO 3 crystal, produces an idler beam with an output power in excess of 2 W in a vortex spatial profile with the order l i =1, tunable across 2217-3574 nm and corresponding signal beam in Gaussian intensity distribution across 1515-2046 nm. For pump vortices of the order l p =1 and 2, and a power of 22 W, the SRO produces idler vortices of the same order as that of the pump beam with a maximum power of 5.23 and 2.3 W, corresponding to near-IR to mid-IR vortex conversion efficiency of 23.8% and 10.4%, respectively. The idler vortex beam has a spectral width, and a passive rms power stability of 101 MHz and 4.9% over 2 h, respectively.

  17. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen

    International Nuclear Information System (INIS)

    Bourzeix, S.

    1995-01-01

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  18. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

    Directory of Open Access Journals (Sweden)

    Paolo Visconti

    2017-01-01

    Full Text Available This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW xenon (Xe light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp. The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source. Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.

  19. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  20. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2012-11-01

    Full Text Available The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ. While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS. Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O^{5+} ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  1. Reproductive Performance of Mouse Oocyte after In Vivo Exposure of The Ovary to Continuous Wave Ultrasound

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Akhond

    2012-01-01

    Full Text Available Background: There is a lack of studies regarding the effects of ultrasound (US and replicationof its exposure on pre-implantation events in mammals. Thus, this study assesses the reproductiveperformance of mouse oocytes that have been obtained from ovaries irradiated with US wavesversus non-irradiated ovaries. Also comparision of their parthenogenesis, ovulation, fertilization,and pre-implantation development rates.Materials and Methods: In this experimental study, we divided extracted ovaries into threeexperimental groups that received the same dosage, but different replicates of radiation for eachgroup. Results were compared with the control and sham groups. Continuous wave (CW US,at a spatial average intensity of 355 mW/cm2 and a frequency of 3.28 MHz, was administeredfor 5 minutes to the ovaries at an interval between pregnant mare serum gonadotropin (PMSGand human chorionic gonadotropin (hCG injections. Statistical analysis was performed using theANOVA test and the level of significance was determined to be 0.05.Results: Data collection was based on microscopic visualization. According to the obtained results,metaphase II (MII oocyte numbers and the percentage of blastocysts significantly reduced in the USexposedgroups versus the unexposed groups. Fertilization rate was comparable between groups whileparthenogenesis was significantly higher in the US-exposed groups compared to the unexposed groups.Conclusion: Structural damage to cells, intracellular organelles and proteins, as well as changesin signaling pathways induced by US may be reasons for some of the observed adverse effects ingroups that have received more US exposure.

  2. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  3. Evaluation of cellular effects of pulsed and continuous wave radiofrequency radiation

    International Nuclear Information System (INIS)

    Pavicic, Ivan; Trosic, Ivancica

    2008-01-01

    Full text: In less than twenty years, the mobile telephone has gone from being rare, expensive equipment of the business elite to a pervasive, low-cost personal item. Since the introduction of mobile phones, concerns have been raised about the potential detrimental impacts on living beings from regular use. The first 'modern' network technology on second generation cellular technology was launched in 1991 in Finland on the Global System for Mobile Communications (GSM) standard. This study evaluates cellular effects of, both, continuous (CW) and pulsed GSM modulated waves (PW). Continuous cell culture of Chinese hamster lung cells, line V79, was used in this study. Cell growth and colony forming ability (CFA) was analyzed after 1, 2 and 3 hours of exposure to the both frequency fields, 935 MHz CW and 915 MHz PW. Selected frequency fields were generated inside gigahertz transversal electromagnetic mode cell (GTEM) equipped with the signal generators. Hewlett Packard HP8657A signal generator was used to generate CW 935 MHz frequency field. Anritzu MS2711B spectrum analyzer with tracking generator and Micro devices RF 3146 power amplifier module generated PW radiofrequency field of 915 MHz. Averaged specific absorption rate (SAR) belonging to the CW 935 MHz frequency field was calculated to be 0.12 W/kg, and for GSM modulated 915 MHz field was 0.23 W/kg. Cell samples were irradiated in triplicate. The sham exposed control cell samples were included in the study. The temperature inside the exposure set-up was recorded in ten-minute intervals through the irradiation treatment. Both, sham-exposed and exposed cell samples were kept in the same condition, except in the time of irradiation for experimental samples when signal generator was switched on. To determine cell growth, V79 samples were plated in concentration of 1x10 4 cells/mL. Cells were maintained in the standard laboratory conditions, which are humidified atmosphere, 37 C degrees, and 5% CO 2 . Cell

  4. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    wave fibre laser; Q-switched fibre laser; nonlinearity; thermal effects; selfpulsing; Yb-doped fibre; nanosecond pulse ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  5. Continued development of a test for fire booms in waves and flames

    International Nuclear Information System (INIS)

    McCourt, J.; Buist, I.; Mullin, J.

    1998-01-01

    The durability of a fire resistant boom and its ability to contain oil during an in situ burn without creating any environmental damage as a result of the burning crude was evaluated. The screening test included four stages: (1) the pre-burn wave stress stage, where the test boom was flexed under tension in waves to simulate deployment of the boom and transit to the spill site, (2) the burn in wave stage, where the test boom was exposed to waves and repeated on hourly cycles of a propane gas fire to simulate oil burning operations, (3) the post-burn wave stress stage, where the test boom was again flexed under tension in waves to simulate retrieval of the boom, and (4) the oil-containment stage, where the ability of the boom to contain thick pools of hot oil was assessed. Three recommendations were made after the test program: (1) increase the heat generated by fire, (2) increase the tension on the boom, and (4) improve the data acquisition system. 10 refs., 10 tabs., 13 figs

  6. Effect of Early Diagnosis and Treatment on the Prognosis of Children with Epilepsy Accompanied by Continuous Spikes and Waves during Slow Wave Sleep

    Directory of Open Access Journals (Sweden)

    Jiahua Ju

    2014-03-01

    Full Text Available Objective: To emphasize the importance of early diagnosis and treatment on the prognosis of children with epilepsy accompanied by continuous spikes and waves during slow wave sleep (CSCW. Methods: The clinical characteristics, electroencephalogram (ECG features, treatment and prognosis of 12 children with CSCW in our hospital were retrospectively analyzed, and the followup of 6 months to 4 years was given. Results: Imaging showed that 8 children suffered from brain lesions, while other 4 were normal. The initial onset of 10 children was at night, whereas 2 began with absence seizure in lucid interval, and they gradually appeared comprehensive brain function decline, meanwhile, ECG was characterized by continuous discharge during slow wave sleep. After 3 months of treatment with valproic acid, clonazepam, lamotrigine and hormones, the clinical symptoms and ECG of 10 children improved significantly, in which 3 ones recurred after 6 months of comprehensive treatment. Conclusion: The early manifestation of CSWS is untypical, and hence, early diagnosis and treatment can ameliorate the epileptic seizures of children, effectively inhibit epileptic electrical activity and has favorable prognosis.

  7. SeismicWaveTool: Continuous and discrete wavelet analysis and filtering for multichannel seismic data

    Science.gov (United States)

    Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.

    2013-01-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems

  8. A non-intrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2016-01-01

    Full Text Available To design longshore breakwaters, the evaluation of the wave motion transformations over the structures and of the energy they are able to absorb, dissipate and reflect is necessary. To characterize features and transformations of monochromatic wave trains above a breakwater, both submerged and emerged, we have designed and developed a non-intrusive and continuous-in-space technique, based on Image Analysis, and carried out an experimental campaign, in a laboratory flume equipped with a wave-maker, in order to test it. The investigation area was lighted with a light sheet and images were recorded by a video-camera. The working fluid was seeded with non buoyant particles to make it bright and clearly distinct from dark background and breakwater. The technique, that is based on a robust algorithm to identify the free surface, has showed to properly work also in prohibitive situations for traditional resistive probes (e.g., very shallow waters and/or breaking waves and to be able to measure the free surface all over the investigation field in a non-intrusive way. Two kind of analysis were mainly performed, a statistical and a spectral one. The peculiarities of the measurement technique allowed to describe the whole wave transformation and to supply useful information for design purposes.

  9. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  10. High-Temperature Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-wave (FM-CW) Radar Techniques

    International Nuclear Information System (INIS)

    Varghese, B.; DeConick, C.; Cartee, G.; Zoughi, R.; Velez, M.; Moore, R.

    2005-01-01

    Furnaces are among the most crucial components in the glass and metallurgical industry. Nowadays, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear on the furnace refractory lining. Consequently, there is a great need for a nondestructive tool that can accurately measure refractory wall thickness at high temperatures. In this paper the utility of a frequency-modulated continuous-wave (FM-CW) radar is investigated for this purpose

  11. Thermal effects of continuous wave CO sub 2 laser exposure on human teeth: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Miserendino, L.J.; Neiburger, E.J.; Walia, H.; Luebke, N.; Brantley, W.

    1989-07-01

    The thermal effects of continuous wave carbon dioxide laser irradiation on human teeth were investigated. Internal temperature changes were monitored by means of electrical thermistors implanted within the pulp chambers of 20 extracted, unerupted human molar teeth. One-hundred test exposures at various powers and durations were obtained. Linear regression/correlation analysis of the data suggests a direct relationship between the independent variable, exposure energy (joules), and the dependent variable, internal temperature, under the conditions of this study.

  12. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes; Revised September 3, 2003

    International Nuclear Information System (INIS)

    Rochau, Gary E.; Caffey, Thurlow W.H.; Bahram Nassersharif; Garcia, Gabe V.; Jedlicka, Russell P.

    2003-01-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis

  13. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh

    2016-01-01

    A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375

  14. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001

    2003-05-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.

  15. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    International Nuclear Information System (INIS)

    Lemons, Don S.

    2012-01-01

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  16. Time Resolved Particle Image Velocimetry Techniques with Continuous Wave Laser and their Application to Transient Flows

    Science.gov (United States)

    Esposito, Chiara

    The demand to increase the temporal resolution of Stereo-Particle Image Velocimetry systems used in the measurement of highly unsteady flow fields is limited by the low repetition rate of the pulse lasers and cameras. The availability of high-frame-rate digital cameras and CW lasers opens new possibilities in the development of continuous PIV systems with increased temporal resolution. Time-Resolved Particle Image Velocimetry (TR-PIV) with continuous wave (CW) laser sheet technique and a high frame-rate camera is introduced here to be used in gas flows at low to moderate Reynolds numbers. This experimental technique can measure velocity of the flow in a planar field with good spatial and temporal resolution. Additional modifications led to the development of a Split view TR-PIV system capable of resolving three-component velocity fields. The optical setup consists of a single high-frame-rate camera which can accommodate two simultaneous stereo view images of the deforming fluid on its CMOS chip obtained by using four different planar mirrors, appropriately positioned. This approach offers several advantages over traditional systems with two different cameras. First, it provides identical system parameters for the two views which minimize their differences and thus facilitating robust stereo matching. Second, it reduces calibration time since only one camera is used and third its cost is substantially lower than the cost of a system with two cameras. The TR-PIV with the CW laser technique has been evaluated in canonical turbulent boundary layer flows and the results were compared to data from the vast literature. Particular attention has been given to the performance of the system components, such as the high speed cameras, and the CW lasers. The techniques were also investigated in terms of the duration of exposure of PIV images. The effect of the duration of exposure was proven to be particularly important, and it has a negative effect for the case with higher

  17. First low frequency all-sky search for continuous gravitational wave signals

    NARCIS (Netherlands)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, C. D.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Bustillo, J. Calderon; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Dia, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. A.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gossler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammer, D. X.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, D.H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, J. P.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Luck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Ma, H.Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Racz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosins, D.; Rowan, S.; Rud, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tap, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; Van Bakel, N.; Van Beuzekom, Martin; Van den Brand, J. F. J.; Van Den Broeck, C.F.F.; van der Schaaf, L.; van der Sluys, M. V.; Eijningen, J. V.; Eggel, A. A. V.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, MT; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10−23/√Hz at 100 Hz, the product of observable volume and measurement time

  18. Comparison of high-power diode pumped actively Q-switched double-clad flower shape co-doped-Er3+:Yb3+fiber laser using acousto-optic and mechanical (optical) modulators

    Science.gov (United States)

    El-Sherif, Ashraf F.; Harfosh, Amr

    2015-09-01

    A diode-pumped acousto-optic Q-switching Er3+:Yb3+ co-doped high-power fiber laser is reported, laser output average power in excess of 1.65 W was achieved for Q-switching at relatively high repetition rates from 10 to 100 kHz. The shortest pulse duration obtained was 10 ns, giving a highest peak power of 9.8 kW and 98 μJ energy per pulse, this is the highest power yet reported from any type of actively Q-switched flower double-clad Er3+:Yb3+ fiber laser operating in low order mode at 1550 nm. The pulse train with high pulse-to-pulse stability of 95% occurred at a range of repetition rates up to 100 kHz with peak power of 0.4 kW, 40 ns pulse width and 16 μJ energy per pulse at 1550 nm for a launched pump power of 5 W. With the mechanical modulation Q-switching of the Er3+:Yb3+ co-doped fiber laser, it was found that the narrowest pulse width of 35 ns was obtained with peak power of 15.5 kW and energy per pulse 0.5 mJ at pulse repetition frequency of 1 kHz. A moderate pulse-to-pulse stability of 75% occurred over a range of high repetition rates. A comparison between mechanical modulation and acousto-optic Q-switching has been made at a repetition rate of 20 kHz. The energy per pulse, pulse width, and the average power of a mechanical optical Q-switching laser were greater than for the acousto-optic Q-switching, but the pulse width is narrower and so the high peak power of an acousto-optic Q-switching pulse is greater than for the mechanical (optical) Q-switching laser at repetition rates of up to 100 kHz.

  19. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber-to-chip co......We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber...

  20. On the analytical continuation of the partial wave S-matrix using complex scaling techniques

    International Nuclear Information System (INIS)

    Rittby, M.; Elander, N.; Braendas, E.

    1989-01-01

    The analytic properties of the partial wave S-matrix and related quantities are studied and numerically investigated. The analysis is carried out by means of integration along paths in the complex k-plane. The domain for the choice of integration contours can be rigorously defined by the use of complex scaling techniques. A generalization of Levinson's theorem incorporating the poles in the lower half k-plane is proved and exemplified. An expansion theorem for the partial wave S-matrix in terms of its poles and residues is derived and analyzed. The connections between poles and associated residues and their relationships with the Breit-Wigner ansatz and the Fano line shape parameters are discussed and numerically realized. Finally, the implications of the present development in connection with the inversion problem are indicated. (orig.)

  1. Continuous-wave optical parametric oscillation tunable up to 8 μm wavelength

    Science.gov (United States)

    Breunig, Ingo; Fürst, Josef Urban; Hanka, Kevin; Buse, Karsten

    2017-06-01

    We demonstrate the first cw OPO emitting mid-infrared light at wavelengths up to 8 μm. This device is based on a 3.5-mm-diameter whispering gallery resonator made of silver gallium selenide (AgGaSe2) pumped by a compact distributed feedback laser diode emitting light at 1.57 μm wavelength. Phase-matching is achieved for a c-cut resonator disk pumped with extraordinarily polarized light at this wavelength. The oscillation thresholds are in the mW region, while the output power ranges from 10 to 800 μW. Wavelength tuning is achieved via changing the radial mode number of the pump wave and by changing the resonator temperature. Simulations predict that whispering gallery OPOs based on AgGaSe2 with diameters around 2 mm can generate idler waves exceeding 10 μm wavelength.

  2. Stone clearance in lower pole nephrolithiasis after extra corporeal shock wave lithotripsy – the controversy continues

    Directory of Open Access Journals (Sweden)

    Akhtar Sobia

    2003-01-01

    Full Text Available Abstract Background To determine factors influencing the clearance of fragments after extra-corporeal shock wave lithotripsy (ESWL for lower pole calyceal (LPC stones. Methods In the period between July 1998 and Oct 2001, 100 patients with isolated lower polar calyceal calculi ≤ 20 mm, in patients aged ≥ 14 years, were included in the study. Intravenous urograms (IVU were reviewed to define the LPC anatomy (width of the infundibulum and pelvicalyceal angle. Study end points i.e. stone free status; number of shock waves used and number of sessions were correlated with variables like LPC anatomy, body mass index and stone size. Results At three months follow up the clearance for stone size ≤ 10 mm, 11–15 mm and 16–20 mm were 95, 96 and 90% respectively. Patients with acute LPC (90° had stone clearance of 94 and 100% respectively. For the infundibular width of 4 mm, it was 100%. For body mass index (BMI less than and > 30 kg/m2, the stone clearance was 92 and 95% respectively. Conclusions There is a trend towards more ESWL sessions and shock wave requirement in patients with acute pelvi-calyceal angle and narrow infundibulum but it is not statistically significant. Size (≤ 20 mm and BMI has no relation with stone clearance. With modern lithotripter, stones up to 20 mm could primarily be treated by ESWL, irrespective of an un-favorable lower polar calyceal anatomy and body habitus.

  3. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720-1740 (United States); Lee, Daeho [Department of Mechanical Engineering, Gachon University, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  4. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    Science.gov (United States)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  5. Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm.

    Science.gov (United States)

    Siltanen, Mikael; Vainio, Markku; Halonen, Lauri

    2010-06-21

    We report a continuous-wave singly resonant optical parametric oscillator pumped by a widely tunable titanium-doped sapphire ring laser. It produces up to 0.8 W of mid-infrared power. The wavelength can be tuned in a few seconds from 2.5 to 3.5 microm or from 3.4 to 4.4 microm and scanned up to 40 GHz without mode-hops by only changing the pump beam wavelength. Spectroscopic capability is demonstrated by measuring parts of the photoacoustic absorption spectrum of NH(3) near 3196 cm(-1).

  6. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating.

    Science.gov (United States)

    Zeil, Peter; Thilmann, Nicky; Pasiskevicius, Valdas; Laurell, Fredrik

    2014-12-01

    A continuous-wave singly-resonant optical parametric oscillator (SRO) with an optimum extraction efficiency, that can be adjusted independent of the pump power, is demonstrated. The scheme employs a variable-reflectivity volume Bragg grating (VBG) as the output coupler of a ring cavity, omitting any additional intra-cavity elements. In this configuration, we obtained a 75%-efficient SRO with a combined signal (19 W @ 1.55 µm) and idler (11 W @ 3.4 µm) output power of 30 W.

  7. Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser

    Science.gov (United States)

    Haberland, Udo; Jansen, Peter; Blazek, Vladimir; Schmitt, Hans J.

    1997-05-01

    A new near-infrared coherent imaging technique that can reveal scattering bodies embedded in highly scattering media is presented. Its underlying principle is extended from frequency modulated continuous wave radar systems. This technique has advantages over low coherence tomography as it does not require the reference mirror to be scanned. The tunable laser is characterized and the system's performance is demonstrated on images recorded from solid scattering phantoms. Furthermore a combination of our chirp-tomography (C-OCT) and laser Doppler perfusion imaging (LDPI) is demonstrated. The influence of moving scatterers on the tomographic images are discussed.

  8. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    International Nuclear Information System (INIS)

    Liu, J. Chien-Chih

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li 2 BeF 4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel

  9. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Samanta, G K; Ebrahim-Zadeh, M

    2011-08-15

    We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. © 2011 Optical Society of America

  10. Narrow-Band Search of Continuous Gravitational-Wave Signals from Crab and Vela Pulsars in Virgo VSR4 Data

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; hide

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  11. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    Science.gov (United States)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  12. Note: Electronic damping of microphonics in superconducting resonators of a continuous wave linac

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal [BARC, Mumbai 400085 (India); Sahu, Bhuban Kumar [IUAC, New Delhi 110067 (India); Agarwal, Vivek; Kumar, Girish [IITB, Mumbai 400076 (India)

    2014-02-15

    The paper presents an implementation technique to damp the microphonics in superconducting resonators utilizing the coupling between the electromagnetic and the mechanical modes of a resonator. In the technique used the resonant frequency variations are fed back to modulate the field amplitude through a suitable transfer function. Of the two transfer functions used in the experiments, one emulates a derivative action and is placed in a negative feedback configuration. The other transfer function is essentially a parallel combination of second order low pass filters and is used in a positive feedback configuration. Experiments with the Quarter Wave resonators of IUAC, New Delhi linac demonstrate that the damping of some of the modes increases significantly with the introduction of this feedback leading to a reduction in power required for field stabilization and quieter operation of the RF control system.

  13. Topologically protected elastic waves in one-dimensional phononic crystals of continuous media

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-01-01

    We report the design of silica-based 1D phononic crystals (PnCs) with topologically distinct complete phononic bandgaps (PnBGs) and the observation of a topologically protected state of elastic waves at their interface. By choosing different structural parameters of unit cells, two PnCs can possess a common PnBG with different topological natures. At the interface between the two PnCs, a topological interface mode with a quality factor of ∼5,650 is observed in the PnBG. Spatial confinement of the interface mode is also confirmed by the photoelastic imaging technique. Such topologically protected elastic states are potentially applicable in the construction of novel phononic devices.

  14. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance and ...

  15. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  16. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  17. Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering

    International Nuclear Information System (INIS)

    Lee, Dae-Geon; Kim, Dong Keun; Moon, Yoon-Jae; Moon, Seung-Jae

    2013-01-01

    To determine the effect of temperature on the specific electrical conductance of inkjet-printed ink during continuous wave laser sintering, the temperature of the sintered ink was estimated. The ink, which contained 34 wt.% silver nanoparticles with an average size of approximately 50 nm, was inkjet-printed onto a liquid crystal display glass substrate. The printed ink was irradiated with a 532 nm continuous wave laser for 60 s with various laser intensities. During laser irradiation, the in-situ electrical conductance of the sintered ink was measured to estimate the transient thermal conductivity of the ink. The electrical conductance and thermal conductivity of the ink was coupled to obtain the transient temperature by applying the Wiedemann–Franz law to a two-dimensional transient heat conduction equation. The electrical conductance of laser-sintered ink was highly dependent on the sintering temperature of the ink. - Highlights: • The in-situ electrical conductance was measured during the laser sintering process. • Wiedemann–Franz law coupled the electrical conductance with transient temperature. • The transient temperature of the laser-sintered Ag nanoparticle ink was estimated

  18. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  19. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  20. Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm.

    Science.gov (United States)

    Samanta, G K; Kumar, S Chaitanya; Das, Ritwick; Ebrahim-Zadeh, M

    2009-08-01

    We report a high-power, cw, singly resonant optical parametric oscillator (SRO) using a simple, compact fiber pump laser architecture in the green. The SRO, based on MgO:sPPLT, is pumped by 9.6 W of single-frequency cw radiation at 532 nm obtained by single-pass second-harmonic generation (SHG) of a 30 W Yb fiber laser, also in MgO:sPPLT. Using two identical crystals of 30 mm length for SHG and SRO, we generate cw idler powers of up to 2 W over 855-1408 nm, with a peak-to-peak power stability <11.7% over 40 min, in a TEM(00) spatial mode with M(2)<1.26. Using finite output coupling of the resonant wave, we extract 800 mW of signal power with peak-to-peak power stability <10.7% over 40 min, and a frequency stability <75 MHz over 15 min. The signal and idler output have TEM(00) beam profile with M(2)<1.52 across the tuning range.

  1. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  2. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...

  3. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance.

    Science.gov (United States)

    De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo

    2017-09-01

    Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond

  4. Continuity and completeness in physical theory: Schroedinger's return to the wave interpretation of quantum mechanics in the 1950's

    International Nuclear Information System (INIS)

    D'Agostino, S.

    1992-01-01

    In the 50s, Schroedinger proposed a new conception of a continuous theory of Quantum Mechanics, which remarkably modified his 1926 ideas on ondulatory mechanics. The lack of individuality of the atomic particles presented in the new statistics, and in Heisenberg's Indeterminacy Relations, was by him considered as an aspect of a more general crisis in the anthology itself of classical atomism. Unlike his 1926 ideas, he proposed now to represent the wave equation in an n-dimensional space and he considered second-quantization technique as the proper mathematical tool for his new physical conception. Although he accepted that space-time discontinuities and casual gaps may appear here and there on the observational level (e.g. in the Indeterminacy Relations), he was convinced that they could be made compatible with a continuous pure theory, provided one accepted a suitable conception of the theory's epistemiological status. For him, only a continuous theory satisfied the conditions for a complete theory. On these matters, he thought he was somehow orthodox to the ideas of Hertz and Boltzmann, which were also reflected in the teaching of Exner. (author). 69 refs

  5. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  6. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar

    Science.gov (United States)

    Tegtmeier Pedersen, A.; Abari, C. F.; Mann, J.; Mikkelsen, T.

    2014-06-01

    A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2.

  7. Crystal growth, spectroscopic characterization, and continuous wave laser operation of Nd3+-doped LiLuF4 crystal

    Science.gov (United States)

    Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Li, R.; Yu, T.; Chen, W. B.

    2011-04-01

    Nd3+-doped LiLuF4 single crystal with high optical quality was grown by Czochralski technique. The segregation coefficient of Nd3+ in LiLuF4 crystal was determined by the inductively coupled plasma atomic emission spectrometry method. Polarized absorption and fluorescence spectra were investigated. The peak absorption cross section at 792 nm and peak emission cross section at 1053 nm are 6.94×10-20 and 7.60×10-20 cm2, respectively. With a laser-diode as the pump source, a maximum 6.22 W continuous-wave laser output at 1053 nm has been obtained with a slope efficiency of 37.2% with respect to the pump power.

  8. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    9% and 3% of the freestream longitudinal wind speed were measured for the abovementioned high and low CP values, respectively. Turbulence statistics, calculated using 2.5-min time series, suggest that the standard deviation of the longitudinal wind component decreases close to the rotor, while...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  9. Research on influence of parasitic resistance of InGaAs solar cells under continuous wave laser irradiation

    Science.gov (United States)

    Li, Guangji; Zhang, Hongchao; Zhou, Guanglong; Lu, Jian; Zhou, Dayong

    2017-06-01

    InGaAs solar cells were irradiated by 1060-1080nm continuous wave (CW) laser, and studied the laser-electrical conversion and damage experiment with the power density as 97mW/cm2 and 507W/cm2 respectively. The result indicated that there is no obvious damage phenomenon but air layer appeared in the damaged region, and there is no direct relationship between the area and the extent of damage. Moreover, the p-n junction in the damage zone was destroyed, lost the ability of photoelectric conversion. The region acts as a resistance between the two electrodes, resulting in an increase in the leakage current of the solar cells and a decrease in the parallel resistance, which is the main reason leading to the decline of open circuit voltage, short circuit current and conversion efficiency. This paper would provide a reference for wireless energy transmission and the subsequent laser damage of solar cells.

  10. Formation of (100)-oriented large polycrystalline silicon thin films with multiline beam continuous-wave laser lateral crystallization

    Science.gov (United States)

    Thuy Nguyen, Thi; Hiraiwa, Mitsuhisa; Koganezawa, Tomoyuki; Yasuno, Satoshi; Kuroki, Shin-Ichiro

    2018-03-01

    Low-temperature crystallization to (100)-oriented polycrystalline silicon (poly-Si) thin films is a key requirement for high-performance low-temperature poly-Si thin-film transistors (LTPS-TFTs). Biaxially (100)-oriented poly-Si thin films were formed by multiline beam continuous-wave laser lateral crystallization in single scans. By overlapping scanning, the (100) preferential orientation was stable and (100) silicon crystals were developed over a large area. The crystallinities of the poly-Si films were precisely characterized, especially by two-dimensional X-ray diffraction. It was found that the poly-Si thin films predominantly had (100)-surface-oriented crystals. The crystallinity of the laser-crystallized poly-Si films was dependent on the scanning speed and overlapping condition. The (100) poly-Si films were formed at scanning speeds below the threshold for lateral-crystallized silicon.

  11. Epilepsia partialis continua in type 1 diabetes: evolution into epileptic encephalopathy with continuous spike-waves during slow sleep.

    Science.gov (United States)

    Baglietto, Maria Giuseppina; Mancardi, Maria Margherita; Giannattasio, Alessandro; Minuto, Nicola; Rossi, Andrea; Capovilla, Giuseppe; Veneselli, Edvige; Lorini, Renata; d'Annunzio, Giuseppe

    2009-12-01

    Hyperglycemic status may be rarely complicated by Epilepsia partialis continua (EPC) that usually responds to metabolic normalization. Anti-glutamic acid decarboxylase antibodies (GAD-Ab) play a pivotal role in the autoimmune process that leads to clinical onset of type 1 diabetes mellitus (T1DM). GAD-Ab have been recently reported in association with rare forms of refractory epilepsy, with or without association to T1DM. Here we describe a young patient who developed EPC five months after T1DM onset; GAD-Ab were detected in his cerebrospinal fluid with evidence of oligoclonal bands. His epileptic disorder evolved over time into drug-resistant epilepsy with continuous spike-waves during slow sleep and severe behavioral impairment. The role of both metabolic imbalance and GAD autoimmunity is discussed.

  12. Analysis of single point and continuous wave of condensation root filling techniques by micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Daniele Angerame

    2012-01-01

    Full Text Available The aim of the present microtomographic study was to investigate the quality of root canal filling and the voids formation in canals of extracted teeth instrumented with a simultaneous technique and filled with two different methods. Twenty-four single-rooted teeth were assigned to two experimental groups (no. = 12; canals were shaped with NiTi rotary files, irrigated with NaOCl and filled either with the single point (group 1 or the continuous wave of condensation technique (group 2. Specimens underwent microtomographic scanning. Collected data were statistically analyzed by nonparametric methods. Void mean percentages were found to be limited and similar between the two groups; the single point technique led to greater sealer thickness in partially oval canals.

  13. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes.

    Science.gov (United States)

    Han, Jung Woo; Choi, Juhye; Kim, Young Shin; Kim, Jina; Brinkmann, Ralf; Lyu, Jungmook; Park, Tae Kwann

    2018-02-01

    This study investigated microglia and inflammatory cell responses after selective retina therapy (SRT) with microsecond-pulsed laser in comparison to continuous-wave laser photocoagulation (cwPC). Healthy C57BL/6 J mice were treated with either a train of short pulses (SRT; 527-nm, Q-switched, 1.7-μs pulse) or a conventional thermal continuous-wave (532-nm, 100-ms pulse duration) laser. The mice were sacrificed and their eyes were enucleated 1, 3, 7, and 14 days after both laser treatments. Pattern of cell death on retinal section was evaluated by TUNEL assay, and the distribution of activated inflammatory cells and glial cells were observed under immunohistochemistry. Consecutive changes for the expression of cytokines such as IL-1β, TNF-α, and TGF-β were also examined using immunohistochemistry, and compared among each period after quantification by Western blotting. The numbers of TUNEL-positive cells in the retinal pigment epithelium (RPE) layer did not differ in SRT and cwPC lesions, but TUNEL-positive cells in neural retinas were significantly less on SRT. Vague glial cell activation was observed in SRT-treated lesions. The population of inflammatory cells was also significantly decreased after SRT, and the cells were located in the RPE layer and subretinal space. Proinflammatory cytokines, including IL-1β and TNF-α, showed significantly lower levels after SRT; conversely, the level of TGF-β was similar to the cwPC-treated lesion. SRT resulted in selective RPE damage without collateral thermal injury to the neural retina, and apparently produced negligible glial activation. In addition, SRT showed a markedly less inflammatory response than cwPC, which may have important therapeutic implications for several macular diseases.

  14. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  15. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Chien-Chih Liu, James [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li2BeF4 (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.

  16. Epileptic encephalopathy with continuous spike-waves during sleep: the need for transition from childhood to adulthood medical care appears to be related to etiology.

    Science.gov (United States)

    de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard

    2014-08-01

    Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  17. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    Science.gov (United States)

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  18. A prospective study of dexamethasone therapy in refractory epileptic encephalopathy with continuous spike-and-wave during sleep.

    Science.gov (United States)

    Chen, Jin; Cai, Fangcheng; Jiang, Li; Hu, Yue; Feng, Chenggong

    2016-02-01

    Epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS) is an intractable form of epilepsy that has no consensus protocol for corticosteroid therapy. This prospective study aimed to evaluate the efficacy and tolerability of dexamethasone for the treatment of CSWS. Patients (age: 4 years to 12 years and 5 months) with CSWS that failed to respond to several antiepileptic drugs and prednisolone at our pediatric neurology outpatient clinic between 2007 and 2015 were treated with dexamethasone and prospectively analyzed. An initial 4-week dexamethasone (0.15 mg/kg/day p.o.) scheme was employed, and response was assessed. If effective, dexamethasone was maintained for 2-3 months and then slowly weaned over several months, depending on individual patient response at each follow-up. Systemic evaluations (clinical evaluations, electroencephalography recordings, and analysis of side effects) were performed regularly thereafter. Among 15 patients, 7 were defined as initial responders after 4-week dexamethasone treatment based on comprehensive clinical and electroencephalogram evaluations. The duration of dexamethasone treatment (including weaning) in these 7 patients was 6 to 10 months, and the follow-up duration was 6 months to 7 years. Three patients had no relapse after dexamethasone withdrawal at last follow-up. Among the other 4 patients, relapse was observed during dexamethasone withdrawal (n=1) or at 2-6 months after discontinuation of dexamethasone therapy (n=3). There were no serious or life-threatening side effects, and all observed side effects were reversible after discontinuation of dexamethasone. Continuous oral dexamethasone treatment is an effective and tolerable therapy and should be an option for the treatment of CSWS. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Ultrafast broadband frequency modulation of a continuous wave reflectometry system to measure density profiles on ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.; Manso, M.E.; Cupido, L.; Albrecht, M.; Serra, F.; Varela, P.; Santos, J.; Vergamota, S.; Eusebio, F.; Fernandes, J.; Grossmann, T.; Kallenbach, A.; Kurzan, B.; Loureiro, C.; Meneses, L.; Nunes, I.; Silva, F.; Suttrop, W. [Associacao EURATOM/IST-Centro de Fusao Nuclear/Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal); the ASDEX Upgrade Team

    1996-12-01

    A reflectometry system has been developed for ASDEX Upgrade to measure the plasma profile from the scrape-off layer until the bulk plasma, simultaneously at the high and low field sides. Unique features of the system are the ultrafast broadband frequency modulation of a continuous wave using solid state stable hyper abrupt tuned oscillators (down to 10 {mu}s), high and low field side channels and fully remote control operation, via optical fiber links. Due to the special design of the transmission line, with decoupled in going and out going lines and one-antenna configuration, the system is optimized for reception and spurious reflections are eliminated. The ultrafast operation guarantees that the effect of plasma turbulence is greatly reduced. Both features determine the high performance of the diagnostic. A dedicated data acquisition system handles the large amounts of data generated by the broadband operation. Recent developments include the operation of new channels and an automatic and accurate frequency calibration circuit. Also, advanced digital signal processing techniques were applied to obtain density profiles with high spatial and temporal (20 {mu}s) resolutions under turbulent plasma regions, e.g., the scrape-off layer. Experimental results are presented showing the great sensitivity of the diagnostic to plasma radial movements and its tolerance to vertical movements of the plasma. Density profiles measured in ELMy regimes illustrate the capabilities of the diagnostic to detect fast profile changes. {copyright} {ital 1996 American Institute of Physics.}

  20. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  1. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

    Science.gov (United States)

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M.; Hunter, Robert I.; Hill, Stephen; Smith, Graham M.; Fanucci, Gail E.

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.

  2. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  3. A comparative study of the plasmon effect in nanoelectrode THz emitters: Pulse vs. continuous-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Han, Sang-Pil; Kim, Hyun-Soo; Park, Kyung Hyun, E-mail: khp@etri.re.kr [Terahertz Basic Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Jeongyong [Metal-Insulator Transition Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Lee, Donghun [Optical Internet Components Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)

    2016-08-15

    Plasmonic field enhancement in terahertz (THz) generation is one of the recently arisen techniques in the THz field that has attracted considerable interest. However, the reported levels of enhancement of THz output power in the literature are significantly different from each other, from less than two times to about two orders of magnitude of enhancement in power, which implies the existence of other major limiting factors yet to be revealed. In this work, the contribution of the plasmonic effect to the power enhancement of THz emitters is revisited. We show that the carrier collection efficiency in a THz emitter with plasmonic nanostructures is more critical to the device performance than the plasmonic field enhancement itself. The strong reverse fields induced by the highly localized plasmonic carriers in the vicinity of the nanoelectrodes screen the carrier collections and seriously limit the power enhancement. This is supported by our experimental observations of the significantly enhanced power in a plasmonic nanoelectrode THz emitter in continuous-wave radiation mode, while the same device has limited enhancement with pulsed radiation. We hope that our study may provide an intuitive but practical guideline in adopting plasmonic nanostructures with an aim of enhancing the efficiency of optoelectronic devices.

  4. Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO4)2

    Science.gov (United States)

    Rico, M.; Liu, J.; Cano-Torres, J. M.; García-Cortés, A.; Cascales, C.; Zaldo, C.; Griebner, U.; Petrov, V.

    2005-09-01

    Continuous-wave Yb3+ laser operation is studied in single crystals of disordered NaLa(MoO4)2 at room temperature. The sample used was grown by the Czochralski technique and incorporates an Yb ion density of 3.1×1020 cm-3. The effect of the Yb concentration on some of the crystal properties is described as well as the spectroscopic Yb3+ properties at 5 K. Maximum slope efficiencies of about 40% for π and 38% for σ polarization were obtained under Ti:sapphire laser pumping near 976 nm, respectively. The maximum output power for the π polarization was 400 mW at 1039.5 nm, the threshold in this case amounted to 240 mW (absorbed pump power). The laser emission was tunable between 1016 and 1064 nm with a Lyot filter. Lasing was also realized by pumping with a fiber-coupled diode laser module. Maximum output power of 900 mW at 1035 nm was achieved in this case for the π polarization and the threshold was 280 mW. The results, in terms of output power and tunability, are superior in comparison to all previous reports on Yb-doped disordered double tungstate or molybdate crystals and represent a significant improvement in comparison to earlier experiments with low-doped Yb:NaLa(MoO4)2.

  5. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    Science.gov (United States)

    Sannibale, F.; Filippetto, D.; Johnson, M.; Li, D.; Luo, T.; Mitchell, C.; Staples, J.; Virostek, S.; Wells, R.; Byrd, J. M.

    2017-11-01

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R&D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wave successfully demonstrated in the past few years the targeted brightness and reliability. Nevertheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. In this paper, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.

  6. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy.

    Science.gov (United States)

    Mellon, Daniel; King, Simon J; Kim, Jin; Reid, Jonathan P; Orr-Ewing, Andrew J

    2011-02-10

    Cavity ring-down spectroscopy using a fiber-coupled continuous wave distributed feedback laser at a wavelength of 1520 nm has been used to measure extinction of light by samples of nearly monodisperse aerosol particles analysis of the sample extinction that is based on the Poisson statistics of the number of particles within the intracavity laser beam: variances of measured extinction are used to derive values of the scattering cross section for size-selected aerosol particles, without need for knowledge of the particle number density or sample length. Experimental parameters that influence the performance of the CRD system and the application and limitations of the statistical model are examined in detail. Determinations are reported of the scattering cross sections for polystyrene spheres (PSSs), sodium chloride, and ammonium sulfate, and, for particles greater than 500 nm in diameter, are shown to be in agreement with the corresponding values calculated using Mie theory or Discrete Dipole Approximation methods. For smaller particles, the experimentally derived values of the scattering cross section are larger than the theoretical predictions, and transmission of a small fraction of larger particles into the cavity is argued to be responsible for this discrepancy. The effects of cubic structure on the determination of optical extinction efficiencies of sodium chloride aerosol particles are examined. Values are reported for the real components of the refractive indices at 1520 nm of PSS, sodium chloride, and ammonium sulfate aerosol particles.

  7. Reconstruction of the first derivative EPR spectrum from multiple harmonics of the field-modulated continuous wave signal

    Science.gov (United States)

    Tseitlin, Mark; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    Selection of the amplitude of magnetic field modulation for continuous wave electron paramagnetic resonance (EPR) often is a trade-off between sensitivity and resolution. Increasing the modulation amplitude improves the signal-to-noise ratio, S/N, at the expense of broadening the signal. Combining information from multiple harmonics of the field-modulated signal is proposed as a method to obtain the first derivative spectrum with minimal broadening and improved signal-to-noise. The harmonics are obtained by digital phase-sensitive detection of the signal at the modulation frequency and its integer multiples. Reconstruction of the first derivative EPR line is done in the Fourier conjugate domain where each harmonic can be represented as the product of the Fourier transform of the 1st derivative signal with an analytical function. The analytical function for each harmonic can be viewed as a filter. The Fourier transform of the 1st derivative spectrum can be calculated from all available harmonics by solving an optimization problem with the goal of maximizing the S/N. Inverse Fourier transformation of the result produces the 1st derivative EPR line in the magnetic field domain. The use of modulation amplitude greater than linewidth improves the S/N, but does not broaden the reconstructed spectrum. The method works for an arbitrary EPR line shape, but is limited to the case when magnetization instantaneously follows the modulation field, which is known as the adiabatic approximation. PMID:21349750

  8. Intensity-Modulated Continuous-Wave Lidar at 1.57 Micrometer for Atmospheric CO2 Measurements

    Science.gov (United States)

    Lin, Bing; Ismail, Syed; Browell, Edward; Meadows, Byron; Nehrir, Amin; Harrison, Wallace F.; Dobler, Jeremy; Obland, Michael

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc proposes to use the intensity-modulated, continuous-wave (IM-CW) lidar approach for the ASCENDS mission. Prototype instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space lidar systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW lidar system for the active space CO2 mission ASCENDS.

  9. Distance measurement using frequency-modulated continuous-wave ladar with calibration by a femtosecond frequency comb

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Lin, Jiarui; Zhu, Jigui

    2018-01-01

    Precise distance measurement is of interest for large-scale manufacturing, future space satellite missions, and other industrial applications. The ranging system with femtosecond optical frequency comb (FOFC) could offer high accuracy, stability and direct traceability to SI definition of the meter. Here, we propose a scheme for length measurement based on the frequency-modulated continuous-wave (FMCW) ladar with a FOFC. In this scheme, the reference interferometer in the FMCW ladar is calibrated by the intensity detection using the FOFC in the time domain within an optical wavelength resolution. With analysis of the theoretical model, this system has the potential to a high-speed, high-accuracy absolute distance measurement. Then, based on the experimental results, the evaluation of the performance of the calibration of the reference arm is discussed. In addition, the performance of this system is evaluated by a single position measurement with different tuning velocities of wavelength. The experimental results show that the reproducibility of the distance measurement is 10-5 level.

  10. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  11. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  12. Quasi-continuously pumped passively mode-locked 2.4% doped Nd:YAG oscillator-amplifier system in a bounce geometry

    Science.gov (United States)

    Jelínek, Michal; Kubecek, Vaclav; Cech, Miroslav; Hirsl, Petr

    2010-02-01

    We report on oscillator-amplifier system based on two highly doped 2.4 at. % crystalline Czochralski grown Nd:YAG crystals in a diode pumped bounce geometry configuration under quasi-continuous pumping. The oscillator was passively mode-locked by the semiconductor saturable absorber in transmission mode. The output pulse train consisted of 5 pulses with total energy of 270 μJ and pulse duration of 75 ps. The output train from the oscillator was amplified to the energy of 1 mJ by single pass amplifier.

  13. Continuous-wave pump-enhanced optical parametric oscillator with ring resonator for wide and continuous tuning of single-frequency radiation.

    Science.gov (United States)

    Stothard, David; Lindsay, Ian; Dunn, Malcolm

    2004-02-09

    We demonstrate a PPLN based pump-enhanced, singly-resonant optical parametric oscillator configured in a traveling wave geometry and pumped by a Ti:sapphire laser. The inclusion of a low finesse etalon within the OPO cavity stabilizes the signal frequency, and rotation of the etalon allows this frequency to be systematically hopped from axial mode to nearest neighbor axial mode over the entire free spectral range of the etalon (83GHz). Tuning of the pump frequency allows the signal frequency to be smoothly tuned over a cavity free spectral range. More than 35mW of single frequency idler power was generated in the spectral range 2800-3000nm for 600mW pump power. The superiority of traveling wave over standing wave geometries in these regards is discussed.

  14. DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science

    International Nuclear Information System (INIS)

    Seth J. Putterman

    2006-01-01

    FINAL REPORT ON : NON-LINEAR WAVES IN CONTINUOUS MEDIA Doe DE FG03-87ER13686 (001312-001) Submitted January 10, 2006 by Seth J. Putterman 310-8252269 Physics Department University of California Los Angeles, CA 90095 puherman at ritva.physics.ucla.edu NON-LINEAR WAVES IN CONTINUOUS MEDIA I am happy to report that this project has been a big success. For over 10 years the DOE [Division of Materials Sciences and Engineering] has funded our research program on the overarching theme of spontaneous energy focusing phenomena. These effects occur when a nonlinear macroscopic system is excited so as to drive it far from equilibrium. The subsequent relaxation to equilibrium does not occur smoothly but instead is accompanied by the formation of structured domains where the energy density is highly concentrated. A signature example is picosecond sonoluminescence [1] wherein a smooth sound wave has its energy density focused by 12 orders of magnitude to generate a clock-like string of picosecond flashes of ultraviolet light. Our earlier work on solitons [2] demonstrated how uniform surface waves break up into stable localized structures. Our experimental work on turbulence produced photos of localized structures lying many standard deviations outside the range of gaussian statistics[3]. This effect is referred to as intermittency. Our recent work on friction finds its motivation in those theories of sonoluminescence which invoke frictional electricity. In its most common form this is the generation of a spark when we touch a doorknob after walking over a carpet. Our reading of the literature on this subject indicated that frictional electricity like sonoluminescence is not understood. So to probe triboelectrification we set up a modern version of an experiment performed by Bernoulli in 1700. Here sparking is caused by the rubbing of glass against mercury. We indeed observed flashes of light which were accompanied by events of stick-slip friction at the interface between the

  15. Signal Processing and Calibration of Continuous-Wave Focused CO2 Doppler Lidars for Atmospheric Backscatter Measurement

    Science.gov (United States)

    Rothermel, Jeffry; Chambers, Diana M.; Jarzembski, Maurice A.; Srivastava, Vandana; Bowdle, David A.; Jones, William D.

    1996-01-01

    Two continuous-wave(CW)focused C02 Doppler lidars (9.1 and 10.6 micrometers) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic and spectrum analyzer and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is approximately 3 x 10(exp -12)/m/sr at 9.1 micrometers and approximately 9 x 10(exp -12)/m/sr at 10.6 micrometers. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6 micrometer lidar intercomparisons were made. Measurements at 9.1 micrometers, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope C-12 O(2)-18 gas.

  16. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.

    Science.gov (United States)

    Wang, Aichen; Lu, Renfu; Xie, Lijuan

    2016-01-01

    Spatially resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of an infinitely small light beam. The method is, however, prone to error in measurement because the actual boundary condition and light beam often deviate from that used in deriving the analytical solutions. It is therefore important to quantify the effect of different boundary conditions and light beams on spatially resolved diffuse reflectance in order to improve the measurement accuracy of the technique. This research was aimed at using finite element method (FEM) to model light propagation in turbid media, subjected to normal illumination by a continuous-wave beam of infinitely small or finite size. Three types of boundary conditions [i.e., partial current (PCBC), extrapolated (EBC), and zero (ZBC)] were evaluated and compared against Monte Carlo (MC) simulations, since MC could provide accurate fluence rate and diffuse reflectance. The effect of beam size was also investigated. Overall results showed that FEM provided results as accurate as those of the analytical method when an appropriate boundary condition was applied. ZBC did not give satisfactory results in most cases. FEM-PCBC yielded a better fluence rate at the boundary than did FEM-EBC, while they were almost identical in predicting diffuse reflectance. Results further showed that FEM coupled with EBC effectively simulated spatially resolved diffuse reflectance under the illumination of a finite size beam. A large beam introduced more error, especially within the region of illumination. Research also confirmed an earlier finding that a light beam of less than 1 mm diameter should be used for estimation of optical parameters. FEM is effective for modeling light propagation in biological tissues and can be used for improving the optical property measurement by the spatially resolved

  17. A continuous microwave discharge maintained by two crossing millimeter-wave beams in hydrogen and argon: numerical simulation and experiment

    Science.gov (United States)

    Chernov, V. V.; Gorbachev, A. M.; Vikharev, A. L.; Radishev, D. B.; Kozlov, A. V.

    2016-12-01

    The results of numerical simulation of a continuous microwave discharge in two crossing wave beams of 30 GHz radiation in a mixture of hydrogen and argon are presented. The model describes the steady state of the gas discharge in Ar-H2-H through the self-consistent solution of the following equations: Maxwell’s equations, the electron balance equation, the transport of hydrogen atoms in the ternary mixture, the heat conduction equation and the equation of state of ideal gas. In Maxwell’s equations the effect of the plasma is taken into account through the conduction current. It is assumed that the generation of electrons occurs due to ionization processes and their loss occurs due to processes of electron-ion recombination and ambipolar diffusion. In the model the heat transfer is considered to be due to gas thermal conductivity and transfer of dissociation energy through the flow of hydrogen atoms. The gas pressure is assumed to be constant, and convection effects are neglected. The other approximations and reductions used in the model are discussed. The adequacy of the obtained model is confirmed by comparing the calculation results to experimental data. For comparison the distributions of gas temperature along the substrate in the center of the discharge and the atomic hydrogen flow to the substrate are used. The temperature is experimentally obtained through the analysis of the optical emission of the C2 Swan line. The atomic hydrogen flow to the substrate is measured from the etching of graphite samples imbedded into the substrate. The possibility of obtaining large-area uniform plasma layers in hydrogen with a small addition of methane is predicted. The applications of such gas discharge are discussed.

  18. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy

    International Nuclear Information System (INIS)

    Fantini, S.; Franceschini, M.A.; Gratton, E.; Hueber, D.; Rosenfeld, W.; Maulik, D.; Stubblefield, P.G.; Stankovic, M.R.

    1999-01-01

    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 μM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured

  19. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Topiramate in childhood epileptic encephalopathy with continuous spike-waves during sleep: A retrospective study of 21 cases.

    Science.gov (United States)

    Vrielynck, P; Marique, P; Ghariani, S; Lienard, F; de Borchgrave, V; van Rijckevorsel, K; Bonnier, C

    2017-03-01

    Encephalopathy with continuous spike-wave during sleep (CSWS) is a particularly difficult-to-treat childhood epileptic syndrome. This study sought to present the EEG improvement and clinical efficacy of topiramate (TPM), a broad spectrum antiepileptic drug (AED), in a series of 21 children with CSWS encephalopathy. We retrospectively reviewed the EEG results and clinical data of children with CSWS followed-up in our institution and treated with TPM. Sleep EEGs were performed 0-3 months prior to TPM introduction and then at 3 and 12 months. The exclusion criteria were (1) introduction of another AED and (2) withdrawal of a potentially aggravating AED during the first 3 months of treatment. In addition to spike index (SI), the severity of EEG abnormalities was rated using an original scale that also considered the spatial extent of interictal epileptiform discharges. 21 patients were included (18 males, 4-14y, three symptomatic cases). At 3 months, sleep EEG was improved in 14 and normalized in four (TPM doses: 2-5.5 mg/kg/day). Among these 18 patients, 16 manifested cognitive or behavioural improvement. In a subgroup of seven patients with frequent seizures, five became seizure-free and one had over 75% decrease in seizure frequency. At the one-year follow-up, 20 children were still on TPM and 10 exhibited persistent EEG improvement without any other AED being introduced, most of them with clinical benefits. TPM can decrease EEG abnormalities in epileptic encephalopathy with CSWS, achieving clinical improvement in the majority of patients. However, relapse may occur in the long-term in nearly half of cases. Otherwise, TPM has proven particularly useful in reducing seizure frequency in refractory cases. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Clinical and histologic effects of facial skin rejuvenation with pulsed- and continuous-wave flash-scanned CO(2) lasers.

    Science.gov (United States)

    Trelles, M A; Pardo, L; Trelles, O; Velez, M; García-Solana, L; Rigau, J; Chamorro, T J

    2001-09-01

    The reader is presumed to have some understanding of the use of lasers in skin resurfacing. After studying the article, the participant should be able to: Physicians may earn 1 hour of Category 1 CME credit by successfully completing the examination based on material covered in this article. The examination begins on page 409. The selection of the ideal laser for facial resurfacing is debatable. The purpose of the study was to determine whether any clinical and histologic differences existed in short- and long-term results after treatment with the Coherent UltraPulse 5000G laser (a pulsed laser; PL) and the Sharplan Silk Touch laser (a continuous-wave laser [CWL] with a flash scanner). Eight patients underwent facial resurfacing treatment on different areas. In each case, one side was treated with the PL and the other with the CWL. The condition of the patients and the treated tissue were monitored periodically after treatment. Histologic assessment of punch biopsies was performed 3 months and 1 year after treatment with hematoxylin-eosin, Masson trichromic, and Verhoeff's stains. The areas treated with the PL achieved earlier epithelialization with a good appearance. Longer-lasting erythema was observed on the side treated with the CWL. On a histologic level, although the PL-treated tissue epithelialized more quickly, at 3 months and 1 year the collagen was better compacted and better aligned in the CWL-treated tissue, and the macroscopic appearance of the CWL-treated areas was more enhanced. The more active vascularization seen in the CWL-treated tissue, associated with the longer-lasting erythema and possibly greater collateral thermal injury, is possibly the reason for the better collagenization and remodeling of collagen and elastin fibers as compared with the results with the PL-treated tissue. This may explain the longer effect associated with CWL treatment. The clinician would do well to bear in mind the histologic findings as well as the macroscopic

  2. Substrate-mediated effects in photothermal patterning of alkanethiol self-assembled monolayers with microfocused continuous-wave lasers

    Directory of Open Access Journals (Sweden)

    Anja Schröter

    2012-01-01

    Full Text Available In recent years, self-assembled monolayers (SAMs have been demonstrated to provide promising new approaches to nonlinear laser processing. Most notably, because of their ultrathin nature, indirect excitation mechanisms can be exploited in order to fabricate subwavelength structures. In photothermal processing, for example, microfocused lasers are used to locally heat the substrate surface and initiate desorption or decomposition of the coating. Because of the strongly temperature-dependent desorption kinetics, the overall process is highly nonlinear in the applied laser power. For this reason, subwavelength patterning is feasible employing ordinary continuous-wave lasers. The lateral resolution, generally, depends on both the type of the organic monolayer and the nature of the substrate. In previous studies we reported on photothermal patterning of distinct types of SAMs on Si supports. In this contribution, a systematic study on the impact of the substrate is presented. Alkanethiol SAMs on Au-coated glass and silicon substrates were patterned by using a microfocused laser beam at a wavelength of 532 nm. Temperature calculations and thermokinetic simulations were carried out in order to clarify the processes that determine the performance of the patterning technique. Because of the strongly temperature-dependent thermal conductivity of Si, surface-temperature profiles on Au/Si substrates are very narrow ensuring a particularly high lateral resolution. At a 1/e spot diameter of 2 µm, fabrication of subwavelength structures with diameters of 300–400 nm is feasible. Rapid heat dissipation, though, requires high laser powers. In contrast, patterning of SAMs on Au/glass substrates is strongly affected by the largely distinct heat conduction within the Au film and in the glass support. This results in broad surface temperature profiles. Hence, minimum structure sizes are larger when compared with respective values on Au/Si substrates. The required

  3. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite–Gaussian beams

    Science.gov (United States)

    Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.

    2018-01-01

    Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite–Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.

  4. Quasi-continuous-wave 589-nm radiation based on intracavity frequency-doubled Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Yang; Liu, Zhaojun; Cong, Zhenhua; Men, Shaojie; Rao, Han; Xia, Jinbao; Zhang, Sasa; Zhang, Huaijin

    2016-07-01

    Quasi-continuous-wave (QCW) 589-nm radiation was realized based on a frequency-doubled crystalline Raman laser. The fundamental wave with macro-micro-pulse trains was generated from an acousto-optically Q-switched QCW diode side-pumped Nd:GGG laser. Intracavity Raman conversion was accomplished by a BaWO4 crystal and the second harmonic generation was finished by a KTP crystal. Under a pumping power of 126.0 W with a macro-pulse frequency of 300 Hz and duration of 300 μs, the maximum 589 nm output power of 4.2 W was obtained at a micro-pulse frequency of 33.3 kHz. The micro-pulse width was 13.6 ns.

  5. Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches

    Science.gov (United States)

    Mukherjee, Arunava; Messenger, Chris; Riles, Keith

    2018-02-01

    The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.

  6. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    Science.gov (United States)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  7. Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth

    Science.gov (United States)

    Hamaguchi, Tatsushi; Fuutagawa, Noriyuki; Izumi, Shouichiro; Murayama, Masahiro; Narui, Hironobu

    2016-02-01

    We have succeeded in achieving continuous-wave operation of gallium nitride (GaN) based vertical-cavity surfaceemitting lasers (VCSELs), which was fabricated by epitaxial lateral overgrowth (ELO) using dielectric distributed Bragg reflectors(DBRs) as masks for selective growth. The device exhibited CW operation at a wavelength of 453.9nm. The maximum output power was 1.1 mW, which is the highest value reported in previously published articles. The ELO process used for this study represents a breakthrough for challenges which were indicated by other former reports for GaN-based VCSELs and is suitable for mass production.

  8. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.

  9. A novel multi-dimensional absolute distance measurement system using a basic frequency modulated continuous wave radar and an external cavity laser with trilateration metrology

    Science.gov (United States)

    Xiong, Xingting; Qu, Xinghua; Zhang, Fumin

    2018-01-01

    We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.

  10. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1 /√{Hz }] . At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 ×1 0-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 ×1 0-24. At 55 Hz we can exclude sources with ellipticities greater than 1 0-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 .

  11. Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. II. Binary orbital phase tracking

    Science.gov (United States)

    Suvorova, S.; Clearwater, P.; Melatos, A.; Sun, L.; Moran, W.; Evans, R. J.

    2017-11-01

    A hidden Markov model (HMM) scheme for tracking continuous-wave gravitational radiation from neutron stars in low-mass x-ray binaries (LMXBs) with wandering spin is extended by introducing a frequency-domain matched filter, called the J -statistic, which sums the signal power in orbital sidebands coherently. The J -statistic is similar but not identical to the binary-modulated F -statistic computed by demodulation or resampling. By injecting synthetic LMXB signals into Gaussian noise characteristic of the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), it is shown that the J -statistic HMM tracker detects signals with characteristic wave strain h0≥2 ×10-26 in 370 d of data from two interferometers, divided into 37 coherent blocks of equal length. When applied to data from Stage I of the Scorpius X-1 Mock Data Challenge organized by the LIGO Scientific Collaboration, the tracker detects all 50 closed injections (h0≥6.84 ×10-26), recovering the frequency with a root-mean-square accuracy of ≤1.95 ×10-5 Hz . Of the 50 injections, 43 (with h0≥1.09 ×10-25) are detected in a single, coherent 10 d block of data. The tracker employs an efficient, recursive HMM solver based on the Viterbi algorithm, which requires ˜105 CPU-hours for a typical broadband (0.5 kHz) LMXB search.

  12. Tunable continuous wave and passively Q-switched Nd:LuLiF4 laser with monolayer graphene as saturable absorber

    International Nuclear Information System (INIS)

    Wang, Feng; Luo, Jianjun; Li, Shixia; Li, Tao; Li, Ming

    2015-01-01

    Tunable continuous wave and passively Q-switched Nd:LuLiF 4 laser performances were demonstrated. Employing a 2 mm thick quartz plate as the birefringence filter, three continuous tuning ranges from 1045.2 to 1049.9 nm, 1051 to 1055.1 nm and 1072.1 to 1074.3 nm could be obtained. Q-switched laser operation was realized by using a monolayer graphene as a saturable absorber. At an incident pump power of 5.94 W, the maximum average output power was 669 mW with the pulse duration of 210 ns and the pulse repetition rate of 145 kHz at T = 10%. (paper)

  13. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  14. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    Science.gov (United States)

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Continuous Shear Wave Signals from around a Subducted Seamount Following 2014 Mw 6.8 Slow-slip Event in the Hikurangi Subduction Margin Offshore New Zealand

    Science.gov (United States)

    Iwasaki, Y.; Mochizuki, K.; Ishise, M.; Todd, E. K.; Schwartz, S. Y.; Henrys, S. A.; Savage, M. K.; Sheehan, A.; Ito, Y.; Wallace, L.; Webb, S. C.; Zal, H. J.; Yamada, T.; Shinohara, M.

    2017-12-01

    From May 2014 to June 2015 a marine seismic and geodetic experiment was conducted at the Hikurangi subduction margin. During this experiment, a slow-slip event (SSE) with equivalent moment magnitude of Mw 6.8 occurred for two weeks starting in late September 2014, directly beneath the ocean bottom seismometer (OBS) network (Wallace et al., 2016). In this study, we used the continuous waveform data recorded by these OBSs. We calculated a cross correlation coefficient between the two horizontal components and applied a polarization analysis every 10 seconds for 30 second-long OBS waveform records. As a result, we detected the continuous arrival of S-wave signals that appeared to have started in the latter half of the SSE. This continuous signal was identified as tremor and its source location was determined by the envelope cross-correlation method (Todd et al., 2017, in prep). Our result, however, suggests that these signals occur continuously rather than as sporadic individual events, and that they last for more than two weeks. Polarization directions changed at the same time and then remained stable through the two week duration. Such stable polarized directions can only be identified during this period. Our analysis requires fewer OBS than other methods for monitoring such S-wave signals, which may enable us to detect as yet unidentified signals in the Hikurangi margin where seismic attenuation has been shown to be large. The continuous signals with a stable polarization direction were only observed at OBS stations in a limited region, which suggests that the signals were generated near the up-dip edge of the slow slip area and surrounding a subducted seamount. Sources of the continuous signals appear to have migrated from south to north . This observation is consistent with the location of individual tremors identified with envelope cross-correlation methods (Todd et al., 2017, in prep). The slow slip along the plate interface circumvented the subducted seamount

  16. Application of a Hough Search for Continuous Gravitational Waves on Data from the Fifth LIGO Science Run

    Science.gov (United States)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R. X.; hide

    2014-01-01

    We report on an all-sky search for periodic gravitational waves in the frequency range 50-1000 Hertz with the first derivative of frequency in the range -8.9 × 10(exp -10) Hertz per second to zero in two years of data collected during LIGO's fifth science run. Our results employ a Hough transform technique, introducing a chi(sup 2) test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95% confidence upper limits on the strain amplitude h(sub 0). The most stringent upper limit from year 1 is 1.0 × 10(exp -24) in the 158.00-158.25 Hertz band. In year 2, the most stringent upper limit is 8.9 × 10(exp -25) in the 146.50-146.75 Hertz band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein@Home search, will be important for 'quicklook' searches in the Advanced LIGO and Virgo detector era.

  17. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  18. Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources

    Science.gov (United States)

    2010-05-01

    Huber , V. I. Levchenko, and V. N. Yakimovich, "Continuous wave diode pumped Cr2+:ZnSe and high power laser operation," in Advanced Solid-State...chalcogenide lasers," in Solid State Lasers and Amplifiers, A. Sennaroglu, J. G. Fujimoto , and C. R. Pollock, eds. (SPIE, Bellingham, WA, 2004), pp

  19. Fabrication and stability of fiber bragg gratings for WDM applications using a 266 nm cw-laser

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær; Jensen, Jesper Bo Damm

    2003-01-01

    Diode pumped continuous wave all solid state UV-lasers operating at 266 nm offer an interesting alternative to frequency doubled argon ion lasers. We compare photosensitivity, UV-writing of Bragg gratings and thermal decay at 244, 257 and 266 nm....

  20. Changes in clot lysis levels of reteplase and streptokinase following continuous wave ultrasound exposure, at ultrasound intensities following attenuation from the skull bone

    Directory of Open Access Journals (Sweden)

    Roijer Anders

    2008-08-01

    Full Text Available Abstract Background Ultrasound (US has been used to enhance thrombolytic therapy in the treatment of stroke. Considerable attenuation of US intensity is however noted if US is applied over the temporal bone. The aim of this study was therefore to explore possible changes in the effect of thrombolytic drugs during low-intensity, high-frequency continuous-wave ultrasound (CW-US exposure. Methods Clots were made from fresh venous blood drawn from healthy volunteers. Each clot was made from 1.4 ml blood and left to coagulate for 1 hour in a plastic test-tube. The thrombolytic drugs used were, 3600 IU streptokinase (SK or 0.25 U reteplase (r-PA, which were mixed in 160 ml 0.9% NaCl solution. Continuous-wave US exposure was applied at a frequency of 1 MHz and intensities ranging from 0.0125 to 1.2 W/cm2. For each thrombolytic drug (n = 2, SK and r-PA and each intensity (n = 9 interventional clots (US-exposed, n = 6 were submerged in thrombolytic solution and exposed to CW-US while control clots (also submerged in thrombolytic solution, n = 6 were left unexposed to US. To evaluate the effect on clot lysis, the haemoglobin (Hb released from each clot was measured every 20 min for 1 hour (20, 40 and 60 min. The Hb content (mg released was estimated by spectrophotometry at 540 nm. The difference in effect on clot lysis was expressed as the difference in the amount of Hb released between pairs of US-exposed clots and control clots. Statistical analysis was performed using Wilcoxon's signed rank test. Results Continuous-wave ultrasound significantly decreased the effects of SK at intensities of 0.9 and 1.2 W/cm2 at all times (P 2 and at 1.2 W/cm2, following 40 min exposure at 0.3, 0.6, 0.9 and at 1.2 W/cm2, and following 60 min of exposure at 0.05 0.3, 0.6, 0.9 and at 1.2 W/cm2 (all P Conclusion Increasing intensities of CW-US exposure resulted in increased clot lysis of r-PA-treated blood clots, but decreased clot lysis of SK-treated clots.

  1. [Comparison of continuous cardiac output measurement methods: non-invasive estimated CCO using pulse wave transit time and CCO using thermodilution].

    Science.gov (United States)

    Tsutsui, Masato; Yamada, Takashige; Sugo, Yoshihiro; Sato, Tetsufumi; Akazawa, Toshimasa; Sato, Nobukazu; Yamashita, Koichi; Ishihara, Hironori; Kazama, Tomiei; Takeda, Junzo

    2012-09-01

    esCCO (estimated continuous cardiac output, Nihon Kohden, esCCO) is a new cardiac output measurement system which uses pulse wave transit time to calculate cardiac output continuously and non-invasively. One of the most commonly used methods to monitor cardiac output is continuous cardiac output CCO (Edwards Lifesciences) which has an accuracy equivalent to that of thermodilution method. We compared esCCO to CCO in 67 operating room patients and 128 intensive care unit patients. CCO and esCCO were measured simultaneously in patients with a pulmonary artery catheter inserted after admission to the operating room or intensive care unit. CCO and esCCO showed a high correlation with a correlation coefficient of 0.84 in 496 total data points, and 95% limits of agreement between these two methods were -2.49 to 2.35 l x min(-1). This result suggests that esCCO could be used to measure cardiac output accurately and non-invasively in different cases.

  2. Detection and Classification of Finer-Grained Human Activities Based on Stepped-Frequency Continuous-Wave Through-Wall Radar.

    Science.gov (United States)

    Qi, Fugui; Liang, Fulai; Lv, Hao; Li, Chuantao; Chen, Fuming; Wang, Jianqi

    2016-06-15

    The through-wall detection and classification of human activities are critical for anti-terrorism, security, and disaster rescue operations. An effective through-wall detection and classification technology is proposed for finer-grained human activities such as piaffe, picking up an object, waving, jumping, standing with random micro-shakes, and breathing while sitting. A stepped-frequency continuous wave (SFCW) bio-radar sensor is first used to conduct through-wall detection of finer-grained human activities; Then, a comprehensive range accumulation time-frequency transform (CRATFR) based on inverse weight coefficients is proposed, which aims to strengthen the micro-Doppler features of finer activity signals. Finally, in combination with the effective eigenvalues extracted from the CRATFR spectrum, an optimal self-adaption support vector machine (OS-SVM) based on prior human position information is introduced to classify different finer-grained activities. At a fixed position (3 m) behind a wall, the classification accuracies of six activities performed by eight individuals were 98.78% and 93.23%, respectively, for the two scenarios defined in this paper. In the position-changing experiment, an average classification accuracy of 86.67% was obtained for five finer-grained activities (excluding breathing) of eight individuals within 6 m behind the wall for the most practical scenario, a significant improvement over the 79% accuracy of the current method.

  3. Detection and Classification of Finer-Grained Human Activities Based on Stepped-Frequency Continuous-Wave Through-Wall Radar

    Directory of Open Access Journals (Sweden)

    Fugui Qi

    2016-06-01

    Full Text Available The through-wall detection and classification of human activities are critical for anti-terrorism, security, and disaster rescue operations. An effective through-wall detection and classification technology is proposed for finer-grained human activities such as piaffe, picking up an object, waving, jumping, standing with random micro-shakes, and breathing while sitting. A stepped-frequency continuous wave (SFCW bio-radar sensor is first used to conduct through-wall detection of finer-grained human activities; Then, a comprehensive range accumulation time-frequency transform (CRATFR based on inverse weight coefficients is proposed, which aims to strengthen the micro-Doppler features of finer activity signals. Finally, in combination with the effective eigenvalues extracted from the CRATFR spectrum, an optimal self-adaption support vector machine (OS-SVM based on prior human position information is introduced to classify different finer-grained activities. At a fixed position (3 m behind a wall, the classification accuracies of six activities performed by eight individuals were 98.78% and 93.23%, respectively, for the two scenarios defined in this paper. In the position-changing experiment, an average classification accuracy of 86.67% was obtained for five finer-grained activities (excluding breathing of eight individuals within 6 m behind the wall for the most practical scenario, a significant improvement over the 79% accuracy of the current method.

  4. Group velocity dispersion measurement method using sinusoidally phase-modulated continuous wave light based on cyclic nature of optical waveform change by group velocity dispersion.

    Science.gov (United States)

    Yamamoto, Takashi; Mori, Takayoshi; Sakamoto, Taiji; Kurokawa, Kenji; Tomita, Shigeru; Tsubokawa, Makoto

    2010-09-20

    We show that any optical pulse train recovers its original waveform after passing through a group velocity dispersion (GVD) device when the total GVD value of the device is equal to an integral multiple of 1/(2πf(rep)(2)), where f(rep) is the repetition rate of the optical pulse train. In addition, we detail our proposed GVD measurement method, or optical phase-modulation (PM) method, which utilizes a sinusoidally PM continuous wave (CW) light as a probe light. The total GVD B(2) of a device under test (DUT) is derived by using a very simple equation, |B(2)|=1/(2πf(null)(2)), where f(null) is the smallest modulation frequency at which the sinusoidally PM light becomes CW light again after passing through the DUT.

  5. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Weng, Guoen; Mei, Yang; Liu, Jianping; Hofmann, Werner; Ying, Leiying; Zhang, Jiangyong; Bu, Yikun; Li, Zengcheng; Yang, Hui; Zhang, Baoping

    2016-07-11

    Low threshold continuous-wave (CW) lasing of current injected InGaN quantum dot (QD) vertical-cavity surface-emitting lasers (VCSELs) was achieved at room temperature. The VCSEL was fabricated by metal bonding technique on a copper substrate to improve the heat dissipation ability of the device. For the first time, lasing was obtained at yellow-green wavelength of 560.4 nm with a low threshold of 0.61 mA, corresponding to a current density of 0.78 kA/cm2. A high degree of polarization of 94% were measured. Despite the operation in the range of "green gap" of GaN-based devices, single longitudinal mode laser emission was clearly achieved due to the high quality of active region based on InGaN QDs and the excellent thermal design of the VCSELs.

  6. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  7. Multicenter study verifying a method of noninvasive continuous cardiac output measurement using pulse wave transit time: a comparison with intermittent bolus thermodilution cardiac output.

    Science.gov (United States)

    Yamada, Takashige; Tsutsui, Masato; Sugo, Yoshihiro; Sato, Tetsufumi; Akazawa, Toshimasa; Sato, Nobukazu; Yamashita, Koichi; Ishihara, Hironori; Takeda, Junzo

    2012-07-01

    Many technologies have been developed for minimally invasive monitoring of cardiac output. Estimated continuous cardiac output (esCCO) measurement using pulse wave transit time is one noninvasive method. Because it does not require any additional sensors other than those for conducting 3 basic forms of monitoring (electrocardiogram, pulse oximeter wave, and noninvasive (or invasive) arterial blood pressure measurement), esCCO measurement is potentially useful in routine clinical circulatory monitoring for any patient including low-risk patients. We evaluated the efficacy of noninvasive esCCO using pulse wave transit time in this multicenter study. We compared esCCO and intermittent bolus thermodilution cardiac output (TDCO) in 213 patients, 139 intensive care units (ICUs), and 74 operating rooms (ORs), at 7 participating institutions. We performed electrocardiogram, pulse oximetry, TDCO, and arterial blood pressure measurements in patients in ICUs and ORs; a single calibration was performed to measure esCCO continuously. TDCO measurement was performed once daily for ICU patients and every hour for OR patients, and just before the removal of the pulmonary arterial catheter from patients in both the ICU and OR. We evaluated esCCO against TDCO with correlation analysis and Bland and Altman analysis and also assessed the change of bias over time. Furthermore, we inspected the impact of change in systemic vascular resistance (SVR) on change in bias because abnormal SVR was assumed to be a factor contributing to the change of the bias. From among 588 esCCO and TDCO datasets (excluding calibration points), 587 datasets were analyzed for 213 patients. The analysis results show a correlation coefficient of 0.79 (P time intervals over 48 hours after calibration (repeated-measures analysis of variance P = 0.781) in the ICU. The influence of SVR on esCCO analysis showed a correlation coefficient between SVR and an error of 0.37 (P < 0.0001, 95% confidence interval 0

  8. Quasi-continuously pumped operation of 2.4% doped crystalline Nd:YAG in a bounce geometry

    Science.gov (United States)

    Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Hiršl, Petr

    2009-02-01

    We report on efficient operation of highly doped 2.4 at. % crystalline Czochralski grown Nd:YAG at 1.06μm, 1.3μm and 1.4μm in a diode pumped bounce amplifier configuration under quasi-continuous pumping. At wavelength of 1064nm the linearly polarized pulses with energy of 16.8 mJ in free running regime with repetition rate of 10 Hz (optical to optical efficiency of 44.6 % and slope efficiency of 50%) and 1 mJ in passively Q-switched regime with pulse duration of 6.4 ns were generated.The passively Q switched operation at 1.3μm was also demonstrated.

  9. Temperature influence on diode pumped Yb:GGAG laser

    Science.gov (United States)

    Veselský, Karel; Boháček, Pavel; Šulc, Jan; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2017-05-01

    We present temperature influence (in range from 78 up to 400,K) on spectroscopic properties and laser performance of new Yb-doped mixed garnet Gd3GaxAl5-xO12 (Yb:GGAG). The sample was 2.68 mm thick plane-parallel face-polished Yb:GGAG single-crystal plate which was AR coated for pump (930 nm) and generated (1030 nm) laser radiation wavelength. The composition of sample was Gd3.098Yb0:0897Ga2:41Al2.41O12 (3 at % Yb/Gd). The Yb:GGAG crystal was mounted in temperature controlled copper holder of the liquid nitrogen cryostat. The 138 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T > 90 % @ 930 nm, HR @ 1030 nm) placed inside cryostat, and a curved output coupler (r = 150 mm, R = 94.5 % @ 1030 nm) placed outside cryostat. For longitudinal pumping a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 20 Hz repetition rate) at wavelength 928.5 nm. The absorption spectrum was measured for the temperatures from 78 to 400 K, and absorption lines narrowing was observed with temperature decrease. Zero-phonon line at 970 nm has width 1 nm (FWHM) at 100 K. The fluorescence intensity decay time was measured and it increased linearly with temperature from 864 μs @ 78 K to 881 μs @ 300 K. The temperature of active medium has strong influence mainly on laser threshold which was 5 times lower at 100 K than at 300 K, and on slope efficiency which was 3 times higher at 100 K than at 300 K.

  10. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    Science.gov (United States)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and

  11. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As Augments Dermal Wound Healing in Immunosuppressed Rats.

    Directory of Open Access Journals (Sweden)

    Gaurav K Keshri

    Full Text Available Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM or low-level laser (light therapy (LLLT emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2 with pulsed (10 and 100 Hz, 50% duty cycle and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α, augmenting wound contraction (α-SM actin, enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF, re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz for promoting dermal wound healing in immunosuppressed subjects.

  12. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats.

    Science.gov (United States)

    Keshri, Gaurav K; Gupta, Asheesh; Yadav, Anju; Sharma, Sanjeev K; Singh, Shashi Bala

    2016-01-01

    Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM) or low-level laser (light) therapy (LLLT) emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2) with pulsed (10 and 100 Hz, 50% duty cycle) and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α), augmenting wound contraction (α-SM actin), enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF), re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz) for promoting dermal wound healing in immunosuppressed subjects.

  13. 8.2  kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier.

    Science.gov (United States)

    Chen, Zhong-Zheng; Xu, Yi-Ting; Guo, Ya-Ding; Wang, Bao-Shan; Xu, Jian; Xu, Jia-Lin; Gao, Hong-Wei; Yuan, Lei; Yuan, Hong-Tao; Lin, Yan-Yong; Xiao, Yun-Sheng; Bo, Yong; Peng, Qin-Jun; Lei, Wen-Qiang; Cui, Da-Fu; Xu, Zu-Yan

    2015-06-01

    An 8 kW level quasi-continuous-wave (QCW) face-pumped 1064 nm slab laser with high beam quality was developed by a master oscillator power amplifier (MOPA) system. A single-mode fiber seed laser was amplified by two-stage single-pass Nd:YAG rod preamplifiers and four face-pumped Nd:YAG slab amplifiers. The slab amplifiers were well designed with uniform pumping and uniform cooling for well-distributed thermal and stress. A dynamically feedbacked optical aberration compensation device was employed to correct low-order optical aberration, and the residue high-order optical aberration was corrected by an adaptive optics system. The QCW MOPA delivered up to an average power of 8.2 kW with a pulse duration of 200 μs at a repetition rate of 400 Hz. The beam quality factor was measured to be β=3.5.

  14. Laser diode end-pumped continuous-wave laser operation at 1339 nm in Nd : GGG with nearly diffraction-limited beam quality

    Science.gov (United States)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Chen, Nan; Xu, Huiying; Cai, Zhiping

    2015-08-01

    We report on the laser diode end-pumped continuous-wave laser operation of a Nd : GGG single crystal at 1339 nm in a plane parallel laser cavity configuration, for the first time to our knowledge. A simultaneous tri-wavelength laser at 1324, 1331 and 1337 nm is obtained at first with a maximum output power up to 1.66 W in a free-running laser operation with a slope efficiency of about 27.6% with respect to the absorbed pump power. By inserting a 0.1 mm glass etalon into the laser cavity and finely tilting it to a suitable angle, a single wavelength lasing at 1339 nm can be realized with a maximum output power of 0.58 W and slope efficiency of about 12.9%. The output power stability is simply estimated to be about 4.1% and the output beam quality is measured to be as near the diffraction limit as 1.33 and 1.16 in x and y directions, respectively.

  15. Polarimetric SAR tomography in the X-band by continuous wave multi-baseline SAR tracks in a convex optimization approach

    Science.gov (United States)

    Biondi, Filippo; Sarri, Antonio; Fiori, Luca; Dell'Omodarme, Kevin

    2014-10-01

    SAR Tomography is the extension of the conventional interferometric radar signal processing, extended in the height dimension. In order to improve the vertical resolution with respect to the classical Fourier methods, high resolution approaches, based on the Convex Optimization (CVX), has been implemented. This methods recast in the Compressed Sensing (CS) framework that optimize tomographic smooth profiles via atomic decomposition, in order to obtain sparsity. The optimum solution has been estimated by Interior Point Methods (IPM). The problem for such kind of signal processing is that the tomographic phase information may be suppressed and only the optimized energy information is available. In this paper we propose a method in order to estimate an optimized spectra and phase information projecting each vector components of each tomographic resolution cell spanned in the real and the imaginary component. The tomographic solutions has been performed by processing multi-baseline SAR datasets, in a full polarimetric mode, acquired by a portable small Continuous Wave (CW) radar in the X band.

  16. Reduced dimer production in solar-simulator-pumped continuous wave iodine lasers based on model simulations and scaling and pumping studies

    Science.gov (United States)

    Costen, Robert C.; Heinbockel, John H.; Miner, Gilda A.; Meador, Willard E., Jr.; Tabibi, Bagher M.; Lee, Ja H.; Williams, Michael D.

    1995-01-01

    A numerical rate equation model for a continuous wave iodine laser with longitudinally flowing gaseous lasant is validated by approximating two experiments that compare the perfluoroalkyl iodine lasants n-C3F7I and t-C4F9I. The salient feature of the simulations is that the production rate of the dimer (C4F9)2 is reduced by one order of magnitude relative to the dimer (C3F7)2. The model is then used to investigate the kinetic effects of this reduced dimer production, especially how it improves output power. Related parametric and scaling studies are also presented. When dimer production is reduced, more monomer radicals (t-C4F9) are available to combine with iodine ions, thus enhancing depletion of the laser lower level and reducing buildup of the principal quencher, molecular iodine. Fewer iodine molecules result in fewer downward transitions from quenching and more transitions from stimulated emission of lasing photons. Enhanced depletion of the lower level reduces the absorption of lasing photons. The combined result is more lasing photons and proportionally increased output power.

  17. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  18. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    International Nuclear Information System (INIS)

    Li, D Z; Xu, X D; Zhou, D H; Xia, C T; Wu, F; Xu, J; Cong, Z H; Zhang, J; Tang, D Y

    2011-01-01

    High quality Nd 3+ -doped Lu 2 SiO 5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω 2,4,6 were obtained to be 2.59, 4.90, and 5.96×10 -20 cm 2 , respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10 -20 cm 2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material

  19. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal

    Science.gov (United States)

    Li, D. Z.; Xu, X. D.; Zhou, D. H.; Xia, C. T.; Wu, F.; Xu, J.; Cong, Z. H.; Zhang, J.; Tang, D. Y.

    2011-01-01

    High quality Nd3+-doped Lu2SiO5 (Nd:LSO) crystal has been grown by the Czochralski technique. The cell parameters were analyzed with X-ray diffraction (XRD). Room temperature absorption and fluorescence spectra and fluorescence lifetime of the Nd:LSO crystal were measured and analyzed. The Judd-Ofelt intensity parameters Ω2,4,6 were obtained to be 2.59, 4.90, and 5.96×10-20 cm2, respectively. The absorption and emission cross sections and the branching ratios were calculated. The peak emission cross section is 5.8 and 6.6×10-20 cm2 at 1075 and 1079 nm, respectively, with full width at half maximum (FWHM) of 2.8 and 5.1 nm in turn. Pumped by a laser diode, a maximum 2.54 W continuous-wave laser output has been obtained with a slope efficiency of 32%. All the results show that this crystal is a promising laser material.

  20. Signal Processing for a Multiple-Input, Multiple-Output (MIMO Video Synthetic Aperture Radar (SAR with Beat Frequency Division Frequency-Modulated Continuous Wave (FMCW

    Directory of Open Access Journals (Sweden)

    Seok Kim

    2017-05-01

    Full Text Available In this paper, we present a novel signal processing method for video synthetic aperture radar (ViSAR systems, which are suitable for operation in unmanned aerial vehicle (UAV environments. The technique improves aspects of the system’s performance, such as the frame rate and image size of the synthetic aperture radar (SAR video. The new ViSAR system is based on a frequency-modulated continuous wave (FMCW SAR structure that is combined with multiple-input multiple-output (MIMO technology, and multi-channel azimuth processing techniques. FMCW technology is advantageous for use in low cost, small size, and lightweight systems, like small UAVs. MIMO technology is utilized for increasing the equivalent number of receiving channels in the azimuthal direction, and reducing aperture size. This effective increase is achieved using a co-array concept by means of beat frequency division (BFD FMCW. A multi-channel azimuth processing technique is used for improving the frame rate and image size of SAR video, by suppressing the azimuth ambiguities in the receiving channels. This paper also provides analyses of the frame rate and image size of SAR video of ViSAR systems. The performance of the proposed system is evaluated using an exemplary system. The results of analyses are presented, and their validity is verified using numerical simulations.

  1. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  2. A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets

    Science.gov (United States)

    Diop, Mamadou; Elliott, Jonathan T.; Tichauer, Kenneth M.; Lee, Ting-Yim; St. Lawrence, Keith

    2009-05-01

    Near-infrared spectroscopy (NIRS) is a promising technique for assessing brain function in newborns, particularly due to its portability and sensitivity to cerebral hemodynamics and oxygenation. Methods for measuring cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) have been developed based on broadband continuous-wave NIRS. However, broadband NIRS apparatus typically have only one detection channel, which limits their applicability to measuring regional CBF and CMRO2. In this study, a relatively simple multiplexing approach based on electronically controlled mechanical shutters is proposed to expand the detection capabilities from one to eight channels. The tradeoff is an increase in the sampling interval; however, this has negligible effects on CBF measurements for intervals less than or equal to 1 s. The ability of the system to detect focal brain injury was demonstrated in piglets by injecting endothelin-1 (ET-1) into the cerebral cortex. For validation, CBF was independently measured by computed tomography (CT) perfusion. The average reduction in CBF from the source-detector pair that interrogated the injured region was 51%±9%, which was in good agreement with the CBF reduction measured by CT perfusion (55%±5%). No significant changes in regional CMRO2 were observed. The average regional differential pathlength prior to ET-1 injection was 8.4±0.2 cm (range of 7.1-9.6 cm) and did not significantly change after the injury.

  3. Generation of silicon nanocrystals by damage free continuous wave laser annealing of substrate-bound SiO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Fricke-Begemann, T., E-mail: fricke-begemann@llg-ev.de; Ihlemann, J. [Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany); Wang, N.; Peretzki, P.; Seibt, M. [IV. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-09-28

    Silicon nanocrystals have been generated by laser induced phase separation in SiO{sub x} films. A continuous wave laser emitting at 405 nm is focused to a 6 μm diameter spot on 530 nm thick SiO{sub x} films deposited on fused silica substrates. Irradiation of lines is accomplished by focus scanning. The samples are investigated by atomic force microscopy, TEM, Raman spectroscopy, and photoluminescence measurements. At a laser power of 35 mW corresponding to an irradiance of about 1.2 × 10{sup 5 }W/cm{sup 2}, the formation of Si-nanocrystals in the film without any deterioration of the surface is observed. At higher laser power, the central irradiated region is oxidized to SiO{sub 2} and exhibits some porous character, while the surface remains optically smooth, and nanocrystals are observed beside and beneath this oxidized region. Amorphous Si-nanoclusters are formed at lower laser power and around the lines written at high power.

  4. Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager

    Science.gov (United States)

    Lin, Yuanqing; Lech, Gwen; Nioka, Shoko; Intes, Xavier; Chance, Britton

    2002-08-01

    This article focuses on optimizing the signal to noise ratio (SNR) of a three-wavelength light-emitting diode (LED) near-infrared continuous-wave (cw) imager and its application to in vivo muscle metabolism measurement. The shot-noise limited SNR is derived and calculated to be 2 x104 for the physiological blood concentrations of muscle. Aiming at shot-noise limited SNR performance and fast imaging, we utilize sample and hold circuits to reduce high-frequency noise. These circuits have also been designed to be parallel integrating, through which SNR of 2 x103 and 2 Hz imaging acquisition rate have been achieved when the probe is placed on a muscle model. The noise corresponds to 2 x10-4 optical density error, which suggests an in vitro resolution of 15. 4 nM blood volume and 46.8 nM deoxygenation changes. A 48 dB digital gain control circuit with 256 steps is employed to enlarge the dynamic range of the imager. We utilize cuff ischemia as a living model demonstration and its results are reported. The instrument is applied during exercise to measure the changes of blood volume and deoxygenation, which provides important information about muscle metabolism. We find that the primary source of noise encountered during exercise experiment is from the random motion of muscle. The results demonstrate that the LED cw imager is ideal for the noninvasive study of muscle metabolism.

  5. In-vivo quantitative measurement of tissue oxygen saturation of human webbing using a transmission type continuous-wave near-infrared spectroscopy

    Science.gov (United States)

    Aizimu, Tuerxun; Adachi, Makoto; Nakano, Kazuya; Ohnishi, Takashi; Nakaguchi, Toshiya; Takahashi, Nozomi; Nakada, Taka-aki; Oda, Shigeto; Haneishi, Hideaki

    2018-02-01

    Near-infrared spectroscopy (NIRS) is a noninvasive method for monitoring tissue oxygen saturation (StO2). Many commercial NIRS devices are presently available. However, the precision of those devices is relatively poor because they are using the reflectance-model with which it is difficult to obtain the blood volume and other unchanged components of the tissue. Human webbing is a thin part of the hand and suitable to measure spectral transmittance. In this paper, we present a method for measuring StO2 of human webbing from a transmissive continuous-wave nearinfrared spectroscopy (CW-NIRS) data. The method is based on the modified Beer-Lambert law (MBL) and it consists of two steps. In the first step, we give a pressure to the upstream region of the measurement point to perturb the concentration of deoxy- and oxy-hemoglobin as remaining the other components and measure the spectral signals. From the measured data, spectral absorbance due to the components other than hemoglobin is calculated. In the second step, spectral measurement is performed at arbitrary time instance and the spectral absorbance obtained in the step 1 is subtracted from the measured absorbance. The tissue oxygen saturation (StO2) is estimated from the remained data. The method was evaluated on an arterial occlusion test (AOT) and a venous occlusion test (VOT). In the evaluation experiment, we confirmed that reasonable values of StO2 were obtained by the proposed method.

  6. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  7. Nonvolatile two-step, two-color holography with continuous-wave lights for both congruent and near-stoichiometric LiNbO3:Fe

    International Nuclear Information System (INIS)

    Shen Yan; Zhang Guoquan; Fu Bo; Xu Qingjun; Xu Jingjun

    2004-01-01

    We have studied theoretically the steady-state nonvolatile two-step, two-color holographic recording performance for both the congruent and the near-stoichiometric LiNbO 3 :Fe based on the two-center model (the deep-trap and the shallow-trap centers are Fe 2+ /Fe 3+ and Nb Li 4+ /Nb Li 5+ , respectively). The results show that the direct electron exchange between the Fe 2+ /Fe 3+ centers and the Nb Li 4+ /Nb Li 5+ centers due to the tunneling effect dominates the charge-transfer process during the nonvolatile two-step, two-color holography and determines the two-step, two-color holography performance in LiNbO 3 :Fe. We have further studied the effects of the crystal stoichiometry on the performance of the two-step, two-color holography. It is shown that, as far as the total space-charge field is considered, the nonvolatile two-step, two-color holography performance in the near-stoichiometric LiNbO 3 :Fe is much better than that in the congruent LiNbO 3 :Fe within the intensity range reachable by the continuous-wave lights

  8. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen; Laser continu a 205 nm: application a la mesure du deplacement de lamb dans l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Bourzeix, S

    1995-01-15

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  9. Modeling the effect of the seismic wave propagation in buried continuous pipelines; Modelacion del efecto de propagacion de ondas sismicas en tuberias continuas enterradas

    Energy Technology Data Exchange (ETDEWEB)

    Melchor Garcia, Nicolas Ageo

    2005-02-15

    This work presents the state of art of the behavior of buried pipelines facing the effect of the propagation of seismic waves. Special attention has been given to the modeling of the soil-piping system. Some analytical models are presented and discussed in great detail. The purpose of this is to contribute, in particular, to the following aspects: First, it attempts to be a reference work for the geotechnical engineers facing problems related to the seismic wave propagation phenomenon in buried structures, since within the consulted literature there are many of the principles presented in here, that are related with the seismic engineering, the reaction module, as well as expressions or investigations performed in piles. Second, a cuasi-static numerical model is presented that analyzes the continuous piping through a stress vector of sinusoidal type. The analysis of the stresses and deformations that the ground transmits to the pipe is made using a ground-to-pipe interaction model. For a low level of deformations an elastic behavior of transference in the interface is considered in the inter-phase ground-piping. In the case of greater deformations it is assumed that sliding is presented because the surrounding ground presents fault by shearing stress in the surrounding ground. The analysis covers solely the case with axial deformations in straight sections. Finally, it intends to give a series of recommendations for future research works on the modeling of buried pipelines. In this work, the influence of several aspects on the response of the pipelines to the propagation of seismic waves is analyzed and discussed; such as the conditions of topography, geology, ground stratigraphy and the rigidity changes in the surrounding ground of the pipe. [Spanish] Este trabajo presenta el estado del arte sobre el comportamiento de tuberias enterradas ante efecto de programacion de ondas sismicas. Una especial atencion ha sido dada a la modelacion del sistema suelo

  10. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    Science.gov (United States)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  11. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    Science.gov (United States)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  12. Nanoshell-mediated targeted photothermal therapy of HER2 human breast cancer cells using pulsed and continuous wave lasers: an in vitro study.

    Science.gov (United States)

    Khosroshahi, Mohammad E; Hassannejad, Zahra; Firouzi, Masoumeh; Arshi, Ahmad R

    2015-09-01

    In this study, we report the apoptosis induction in HER2 overexpressed breast cancer cells using pulsed, continuous wave lasers and polyvinylpyrrolidone (PVP)-stabilized magneto-plasmonic nanoshells (PVP-MPNS) delivered by immunoliposomes. The immunoliposomes containing PVP-MPNS were fabricated and characterized. Heating efficiency of the synthesized nanostructures was calculated. The effect of functionalization on cellular uptake of nanoparticles was assessed using two cell lines of BT-474 and Calu-6. The best uptake result was achieved by functionalized liposome (MPNS-LAb) and BT-474. Also, the interaction of 514 nm argon (Ar) and Nd/YAG second harmonic 532-nm lasers with nanoparticles was investigated based on the temperature rise of the nanoshell suspension and the release value of 5(6)-carboxyfluorescein (CF) from CF/MPNS-loaded liposomes. The temperature increase of the suspensions after ten consecutive pulses of 532 nm and 5 min of irradiation by Ar laser were measured approximately 2 and 12 °C, respectively. The irradiation of CF/MPNS-loaded liposomes by Ar laser for 3 min resulted in 24.3 % release of CF, and in the case of 532 nm laser, the release was laser energy dependent. Furthermore, the comparison of CF release showed a higher efficiency for the Ar laser than by direct heating of nanoshell suspension using circulating water. The percentage of cell apoptosis after irradiation by Ar and 532 nm lasers were 44.6 and 42.6 %, respectively. The obtained results suggest that controlling the NP-laser interaction using optical properties of nanoshells and the laser parameters can be used to develop a new cancer therapy modality via targeted nanoshell and drug delivery.

  13. Imaging of active faults with the step continuous wave radar system. In case of Senzan faults in Awaji-island; Step shiki renzokuha chichu radar tansaho ni yoru katsudanso no imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Koga, K.; Hara, H.; Kasai, H.; Ito, M. [Kawasaki Geological Engineering Co. Ltd., Tokyo (Japan); Yoshioka, T. [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    Validity of continuous wave radar exploration was verified when the said technique and some other probing methods were investigated at the Senzan Faults in Awaji Island. The signal transmitted by a continuous wave exploration system is a collection of sinusoidal waves different in frequency, and the frequencies are so controlled that they form steps relative to the sweep time. Exploration into great depths is carried out by prolonging the transmission signal sweep time, where high resolution is maintained by use of widened transmission frequency bandwidths. On-site measurements were made using a triplicated multichannel method, and electromagnetic wave propagation velocities required for depth conversion of the reflected cross section were determined in compliance with the wide angle method. On the basis of the analytical cross section using the profiles obtained by continuous radar reflection exploration conducted from the ground surface, interpretation was made of the geological structure. The presence and position and the geological development of the Senzan Faults were identified by the study of discontinuities in reflective structures such as the strata. 4 refs., 5 figs., 2 tabs.

  14. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acemese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwa, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Arker, Bd.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Be, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitoss, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Boutfanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, O.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, C.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Dreyer, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Egizenstein, H. -B.; Ehrens, P.; Eichholel, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, O.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Far, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.M.; Fournier, J. -D.; Frasca, J. -D; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritsche, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garuti, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gi, K.; Glaetke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Granta, A.; Gras, S.; Cray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, S.; Hennig, J.; Henry, J.A.; Heptonsta, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howel, E. J.; Hu, Y. M.; Huang, O.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Lyer, B. R.; Fzumi, K.; Jaccimin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jones, R.; Jonker, R. J. G.; Ju, L.; Wads, k; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keh, M. S.; Keite, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kimbre, S. J.; King, E. J.; King, P. J.; Kisse, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringe, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Liick, H.; Lundgren, A. P.; Lynch, R.; Ivia, Y.; Machenschalk, B.; Maclnnis, M.; Macleod, D. M.; Magafia-Sandoval, F.; Zertuche, L. Magafia; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Manse, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matiehard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mende, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Miche, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecehia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Hang, S.; Ohme, F.; Oliver, M.; Oppermann, P.; Ram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, . J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powel, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, .; Punturo, M.; Purrer, PuppoM.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rowan, RosiliskaS.; Ruggi, RiidigerP.; Ryan, K.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabe, R.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Sielleez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazus, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sunil, Suns; Sutton, P. J.; Swinkels, B. L.; Szczepariczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tomasi, Z.; Torres, C. V.; Tome, C.; Tot, D.; Travasso, F.; Traylor, G.; Trifire, D.; Tringali, M. C.; Trozz, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Valente, G.; Valdes, G.; van Bake, N.; Van Beuzekom, Martin; Van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; Van Heilningen, J. V.; Van Vegge, A. A.; Vardaro, M.; Vass, S.; Vaslith, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Vvang, G.; Wang, O.; Wang, X.; Wiang, Y.; Ward, R. L.; Wiarner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weliels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; WilIke, B.; Wimmer, M. H.; Whinkler, W.; Wipf, C. C.; De Witte, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.J.; Zhu, X.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant

  15. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis

    NARCIS (Netherlands)

    Sitnikova, E.Y.; Hramov, A.E.; Koronovskii, A.A.; Luijtelaar, E.L.J.M. van

    2009-01-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. A relationship between SWD and normal sleep spindles is often assumed. This study compares time-frequency parameters of SW and sleep spindles as recorded in the EEG in the

  16. Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: First results

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Bonomi, F. A. M.; Fišer, Jiří; Cabrera, M. A.; Ezquer, R. G.; Burešová, Dalia; Laštovička, Jan; Baše, Jiří; Hruška, František; Molina, M. G.; Ise, J. E.; Cangemi, J. I.; Šindelářová, Tereza

    2014-01-01

    Roč. 119, č. 8 (2014), s. 6954-6965 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR GP13-09778P Institutional support: RVO:68378289 Keywords : low latitude ionosphere * Ionospheric irregularities * equatorial spread F * gravity waves * scintillation * remote sensing * Doppler sounding Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.426, year : 2014 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020184/abstract

  17. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing with a line...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser......A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  18. Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2

    Science.gov (United States)

    Liu, J.; Cano-Torres, J. M.; Cascales, C.; Esteban-Betegón, F.; Serrano, M. D.; Volkov, V.; Zaldo, C.; Rico, M.; Griebner, U.; Petrov, V.

    2005-03-01

    Single crystals of disordered NaLa(WO4)2 and NaLa(MoO4)2 doped with Yb3+ are grown by the Czochralski method from the melt. Continuous-wave laser operation with Ti:sapphire laser pumping is demonstrated at room temperature without special cooling. Tunability from 1017 to 1057 nm and from 1015 to 1053 nm is achieved for Yb:NaLa(WO4)2 and Yb:NaLa(MoO4)2, respectively. A maximum output power of 205 mW is obtained with Yb:NaLa(WO4)2.

  19. Luminescent and laser properties of Yb Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers

    Science.gov (United States)

    Denker, B.; Galagan, B.; Ivleva, L.; Osiko, V.; Sverchkov, S.; Voronina, I.; Hellstrom, J. E.; Karlsson, G.; Laurell, F.

    2004-09-01

    We present for the first time 1.5-μm laser emission in Yb Er:GdCa4O(BO3)3 (GdCOB). The crystals were grown by the Czochralski method from platinum crucibles. Spectroscopic and laser tests of the crystals are described. A continuous-wave output power of 80 mW was achieved in a monolithic microchip cavity under laser-diode pumping.

  20. Crystal growth, spectroscopic characterization and laser operation of Tm3+ and Ho3+ codoped LiLuF4 crystal

    Science.gov (United States)

    Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Gong, J.; Yu, T.; Chen, W. B.

    2012-02-01

    Laser crystal Tm3+ and Ho3+ codoped LiLuF4 with high optical quality was grown by Czochralski technique. Its absorption and fluorescence spectra were investigated. A continuous wave output power of 1.12 W at 2066 nm was obtained with a slope efficiency of 24% by use of diode pumping. In the Q-switched mode, a slope efficiency of 18.9% and a maximum average power of 0.65 W were obtained.

  1. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    Science.gov (United States)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  2. Continuity and innovation in the data collection protocols of the second Wave of the National Social Life, Health, and Aging Project.

    Science.gov (United States)

    Jaszczak, Angela; O'Doherty, Katie; Colicchia, Michael; Satorius, Jennifer; McPhillips, Jane; Czaplewski, Meredith; Imhof, Laurie; Smith, Stephen

    2014-11-01

    The second Wave (W2) of the National Social Life, Health, and Aging Project (NSHAP), a nationally representative, longitudinal survey of older adults now between the ages of 62 and 90, conducted approximately 3,400 interviews. Selected coresidential romantic partners as well as W1 panel nonrespondents were selected for W2. Data collection included in-person questionnaires, up to 15 biomeasures, and a post-interview questionnaire. A proxy questionnaire also collected data on respondents that were deceased or in too poor health to participate in W2. Biomeasure collection included height, weight, hip and waist circumference, blood pressure, heart rate, and preventricular contraction, timed walk and chair stands, smell, saliva collection using a Salivette (cortisol), saliva passive drool in a tube (dehydroepiandrosterone, estradiol, progesterone, testosterone), dried blood spots (Epstein-Barr virus antibody titers, C-reactive protein, glycosylated hemoglobin, hemoglobin, cholesterol, high-density lipoprotein), whole blood in a microtainer (cytokines), urine (creatinine, vasopressin, oxytocin), Oragene (genotype), respondent-administered vaginal swabs (bacterial vaginosis,yeast, and vaginal cell cytology), and Actiwatch (sleep patterns and activity). Measures, such as response and cooperation rates, are also provided to evaluate design and implementation. This article describes both innovation in the development and implementation of W2 as well as fidelity to W1 study design and data collection procedures. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Continuity and Innovation in the Data Collection Protocols of the Second Wave of the National Social Life, Health, and Aging Project

    Science.gov (United States)

    Jaszczak, Angela; O’Doherty, Katie; Colicchia, Michael; Satorius, Jennifer; McPhillips, Jane; Czaplewski, Meredith; Imhof, Laurie

    2014-01-01

    Background. The second Wave (W2) of the National Social Life, Health, and Aging Project (NSHAP), a nationally representative, longitudinal survey of older adults now between the ages of 62 and 90, conducted approximately 3,400 interviews. Selected coresidential romantic partners as well as W1 panel nonrespondents were selected for W2. Data collection included in-person questionnaires, up to 15 biomeasures, and a post-interview questionnaire. Methods. A proxy questionnaire also collected data on respondents that were deceased or in too poor health to participate in W2. Biomeasure collection included height, weight, hip and waist circumference, blood pressure, heart rate, and preventricular contraction, timed walk and chair stands, smell, saliva collection using a Salivette (cortisol), saliva passive drool in a tube (dehydroepiandrosterone, estradiol, progesterone, testosterone), dried blood spots (Epstein–Barr virus antibody titers, C-reactive protein, glycosylated hemoglobin, hemoglobin, cholesterol, high-density lipoprotein), whole blood in a microtainer (cytokines), urine (creatinine, vasopressin, oxytocin), Oragene (genotype), respondent-administered vaginal swabs (bacterial vaginosis,yeast, and vaginal cell cytology), and Actiwatch (sleep patterns and activity). Results. Measures, such as response and cooperation rates, are also provided to evaluate design and implementation. Discussion. This article describes both innovation in the development and implementation of W2 as well as fidelity to W1 study design and data collection procedures. PMID:24939998

  4. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo

    2012-01-01

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  5. Cu(In,Ga)Se2 thin films annealed using a continuous wave Nd:YAG laser (λ0 = 532 nm): Effects of laser-annealing time

    Science.gov (United States)

    Yoo, Myoung Han; Ko, Pil Ju; Kim, Nam-Hoon; Lee, Hyun-Yong

    2017-12-01

    Preparation of Cu(In,Ga)Se2 (CIGS) thin films has continued to face problems related to the selenization of sputtered Cu-In-Ga precursors when using H2Se vapor in that the materials are highly toxic and the facilities extremely costly. Another obstacle facing the production of CIGS thin films has been the required annealing temperature, as it relates to the decomposition temperature of a typical flexible polymer substrate. A novel laser-annealing process for CIGS thin films, which does not involve the selenization process and which can be performed at a lower temperature, has been proposed. Following sputtering with a Cu0.9In0.7Ga0.3Se2 target, the laser-annealing of the CIGS thin film was performed using a continuous 532-nm Nd:YAG laser with an annealing time of 200 - 1000 s at a laser optical power of 2.75 W. CIGS chalcopyrite (112), (220/204), and (312/116) phases, with some weak diffraction peaks corresponding to the Cu-Se- or the In-Se-related phases, were successfully obtained for all the CIGS thin films that had been laser-annealed at 2.75 W. The lattice parameters, the d-spacing, the tetragonal distortion parameter, and the strain led to the crystallinity being worse and grain size being smaller at 600 s while better crystallinity was obtained at 200 and 800 s, which was closely related to the deviations from molecularity and stoichiometry, which were greatest at 600 s while the values exhibited near-stoichiometric compositions at 200 and 800 s. The band gaps of the laser-annealed CIGS thin films were within a range of 1.765 - 1.977 eV and depended on the internal stress. The mean absorbance of the laser-annealed CIGS thin films was within a range of 1.598 - 1.900, suggesting that approximately 97.47 - 98.74% of the incident photons in the visible spectral region were absorbed by this 400-nm film. The conductivity types exhibited the same deviations (Δ m > 0 and Δ s < 0) in all the laser-annealed CIGS thin films. After laser-annealing, the resistivity

  6. Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2

    International Nuclear Information System (INIS)

    Liu, J.; Rico, M.; Griebner, U.; Petrov, V.; Cano-Torres, J.M.; Cascales, C.; Esteban-Betegon, F.; Serrano, M.D.; Volkov, V.; Zaldo, C.

    2005-01-01

    Single crystals of disordered NaLa(WO 4 ) 2 and NaLa(MoO 4 ) 2 doped with Yb 3+ are grown by the Czochralski method from the melt. Continuous-wave laser operation with Ti:sapphire laser pumping is demonstrated at room temperature without special cooling. Tunability from 1017 to 1057 nm and from 1015 to 1053 nm is achieved for Yb:NaLa(WO 4 ) 2 and Yb:NaLa(MoO 4 ) 2 , respectively. A maximum output power of 205 mW is obtained with Yb:NaLa(WO 4 ) 2 . (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  8. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  9. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  10. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  11. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by

  12. Espícula-onda contínua durante o sono: aspectos clínicos e eletrencefalográficos Continuous spike-wave activity during sleep: clinical and electroencephalographical aspects

    Directory of Open Access Journals (Sweden)

    Laura M.F. Ferreira Guilhoto

    1997-01-01

    Full Text Available Dezessete crianças com espícula-onda contínua durante o sono foram estudadas retrospectivamente. Cinco apresentavam distúrbio da fala após desenvolvimento normal da linguagem e crises epilépticas (síndrome de Landau e Kleffner - grupo 1. Doze crianças tinham atraso do desenvolvimento neuropsicomotor e/ou deficiência mental (grupo 2. Crises epilépticas estavam presentes em 11 pacientes deste grupo, tetraparesia em 5, hemiparesia em 2, microcefalia em 2, distúrbios de comportamento em 4 casos. O eletrencefalograma mostrou em todos os casos espícula-onda contínua durante o sono. Pacientes do grupo 1 apresentavam atividade epileptiforme difusa com acentuação das descargas nas regiões temporais em 4 de 5 casos; e os do grupo 2, descargas difusas, incluindo atividade multifocal (5/ 12, por vezes com predomínio anterior (7/12. Concluímos que espícula-onda contínua durante o sono é um padrão eletrográfico inespecífico de certos tipos de epilepsia na infância com diferentes manifestações clínicas, que mostra no entanto certa diferenciação topográfica, de acordo com os prováveis sítios lesionais.Seventeen children were retrospectively evaluated. They exhibited continuous spike-wave activity during slow wave sleep (CSWS. Five of these had only speech problems and seizures (Landau-Kleffner syndrome (group 1. The other cases had developmental milestones acquisition delay and/or mental retardation (group 2. Epileptic seizures were present in 11 of these, tetraparesis was observed in 5, hemiparesis in 2, microcephaly in 2 and behavior disturbances in 4 cases. The electroencephalogram showed in all cases diffuse CSWS. Group 1 showed diffuse activity, at times accentuated in the centrotemporal region (4/5. Group 2 had widespread discharges, including multifocal activity (5/12, sometimes with anterior predominance (7/12. We concluded that CSWS is a non specific electrographic pattern observed in some types of epilepsy in childhood

  13. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  14. Introduction to THz wave photonics

    CERN Document Server

    Zhang, X-C

    2009-01-01

    Introduction to THz Wave Photonics examines the science and technology related to terahertz wave technologies, taking a dual approach between presenting the field 's history while simultaneously providing an overview of existing technology. The latest research in developing THz areas such as electromagnetic waves are presented, along with an introduction to continuous wave THz technology. Authors X.-C. Zhang and Jingzhou Xu place particular emphasis on pulsed THz technology, among many other facets of THz technology including: Complete coverage of THz wave spectroscopy and imagingA discussion

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  16. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  17. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    Science.gov (United States)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  18. Sequence stratigraphy, depositional facies and reservoir continuity of a storm-wave - and tide-dominated Delta: An example from the Lower Cretaceous Ben Nevis and Avalon Formations, Jeanne D'Arc Basin, Grand Banks, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, H. (Mobil Oil Canada, Calgary, Alberta (Canada))

    1990-05-01

    The Avalon Formation is recognized as a regressive/transgressive sequence of Barremian to late Aptian age, overlain unconformably (sequence boundary) by the Aptian to Albian Ben Nevis transgressive sequence. Sedimentation took place in a Mesozoic failed-rift basin setting dominated by an inferred delta complex that occupied the southern end of the Jeanne D'Arc basin. Geostrophic events, namely storm waves and tidal currents, dispersed and fractionated sediments northward into mainly thin-bedded clean sands with interbedded argillaceous, silty beds. The Avalon and Ben Nevis formations contain collectively four reservoir zones separated by two shale markers representing marine-flooding surfaces. Based on detailed sedimentologic investigation of over 6,000 ft of Avalon and Ben Nevis cores, the following geologic history of events and depositional model are proposed. Prior to the Avalon sequence, a lowstand prograding wedge of the eastern Shoals Formation terminated with lagoonal red mudstones and was locally emergent and rooted. During deposition of the basal Avalon (late Barremian), a slow transgression, marked by brackish water sediments, started, resulting in the formation of transgressive barrier bars and migrating tidal inlets in the Hibernia area. These transgressive shoreline sands display good reservoir continuity across the basin with large oil recoveries, e.g., Hibernia 0-35 field. A subsequent slow drop in relative sea level in the central part of the basin resulted in deposition and development of a prograding delta-front platform. Close to the end of Avalon deposition (middle Aptian), an ensuing rapid drop in relative sea level initiated very rapid seaward progradation of the coastal zone and incision of fluvial/estuarine channels into the older now-exposed delta-front platform.

  19. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies...

  20. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  1. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  2. Forerunning mode transition in a continuous waveguide

    OpenAIRE

    Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady

    2014-01-01

    We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....

  3. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  4. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    Science.gov (United States)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  5. Wave Overtopping of Marine Structures

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    During the past 50 years tools for predicting wave overtopping of sea defense structures have continuously been refined. However, developers of wave energy converters have raised questions about how to predict the overtopping of structures with layouts significantly different from those of sea de...

  6. Collected papers on wave mechanics

    CERN Document Server

    Schrödinger, Erwin

    1929-01-01

    Quantisation as a problem of proper values ; the continuous transition from micro- to macro-mechanics ; on the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger ; the Compton effect ; the energy-momentum theorem for material waves ; the exchange of energy according to wave mechanics

  7. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  8. Continuous spike-waves during slow waves sleep: a clinical and electroencephalografic study in fifteen children Ponta-onda contínua do sono lento: estudo clínico e eletrencefalográfico em quinze crianças

    Directory of Open Access Journals (Sweden)

    ADRIANA A. F. DJABRAIAN

    1999-09-01

    Full Text Available We report on the clinical and EEG features of 15 patients with the syndrome of "continuous spike waves during slow wave sleep" (CSWSS. The differential diagnosis of CSWSS includes benign epilepsy of childhood with centro-temporal spikes, and Landau-Kleffner and Lennox-Gastaut syndromes. We found normal CT and MRI features in 6 cases, periventricular leukomalacia with and without diffuse brain atrophy in 4 cases and hydrocephalus in 1 case. There was no association between specific neurological findings and CSWSS. Nine of our cases had relatively focal discharges, like some cases from the literature. The occurrence of CSWSS appears to be age-related, generaly between the ages of 5 to 12 years, with a strong temporal relation to the neupsychological deterioration in its nature, severity and prognosis. We believe that this striking disorder has been overlooked and that routine sleep EEG studies on epileptic children may disclose additional cases of CSWSS.Relatamos as características clínicas e eletroencefalográficas de 15 patientes com a síndrome de ponta-onda contínua do sono não-REM (POCSNR. O diagnóstico diferencial da POCSNR inclue a epilepsia benigna da infância com pontas centro-temporais e as síndromes de Landau-Kleffner e Lennox-Gastaut. Encontramos TC e RNM de crânio normais em 6 casos, leucomalácia periventricular em 4 e hidrocefalia em 1. Não houve associação de achados neurológicos específicos e a POCSNR. Nove dos nossos casos tinham descargas relativamente focais, como alguns casos da literatura. A ocorrência da POCSNR parece ser idade-dependente, geralmente entre 5 e 12 anos, com forte relação temporal à deteriorização neurocognitiva, em sua natureza, severidade e prognóstico. Acreditamos que esta síndrome tem sido pouco diagnosticada e que a realização rotineira de EEG em sono em crianças epilépticas possa revelar novos casos de POCSNR.

  9. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...

  10. Overview of the LULI diode-pumped laser chain proposal for HIPER kJ beamlines

    Science.gov (United States)

    Chanteloup, J.-C.; Lucianetti, A.; Albach, D.; Novo, T.

    2011-06-01

    A major challenge the HiPER project is facing is to derive laser architectures satisfying simultaneously all HiPER requirements; among them, high wall-plug efficiency (~ 10%) and repetition rate (5 to 10 Hz) are the most challenging constraints. The active mirror Yb:YAG amplifier proposal from LULI is described.

  11. Simulation of a Diode Pumped Alkali Laser; a Three Level Numerical Approach

    Science.gov (United States)

    2010-03-01

    further iteration of the three level numerical model should include this effect as it is a persistent issue for DPAL systems and without its effects a...1 26.24 * 10-9 H*Lewis Hz*L; A32@85D = 0; A32@87D = 0; III. Parameters Printed by Mathematica for Students 65 III. Parameters A. Enviromental

  12. Micro machining workstation for a diode pumped Nd:YAG high brightness laser system

    NARCIS (Netherlands)

    Kleijhorst, R.A.; Offerhaus, Herman L.; Bant, P.

    1998-01-01

    A Nd:YAG micro-machining workstation that allows cutting on a scale of a few microns has been developed and operated. The system incorporates a telescope viewing system that allows control during the work and a software interface to translate AutoCad files. Some examples of the performance are

  13. Generation of Laguerre-Gaussian Beams Using a Diode Pumped Solid-State Digital Laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-10-01

    Full Text Available The solid state digital laser was used in generation of Laguerre-Gaussian modes, LGpl, of different orders. This work demonstrates that we can generate high-order Laguerre-Gaussian modes with high purity using a digital laser....

  14. Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers

    Science.gov (United States)

    Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.

    2017-12-01

    Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end

  15. High-power diode-pumped Tm:YLF slab laser

    CSIR Research Space (South Africa)

    Schellhorn, M

    2009-06-01

    Full Text Available The aim is to develop a high-power Tm:YLF slab laser which can be utilized to pump a Ho slab laser. A 68 W Tm:YLF slab laser was recently presented in [1] pumped from one end by a single 6-bar stack delivering ~300 W of pump power. In this work, we...

  16. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    Science.gov (United States)

    2009-03-30

    original work of Wagener et al. [5]. This simulator solves the coupled laser rate equations numerically to predict the output performance of the fiber... Wagener , D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller Matrix Formalism for Modeling Polarization Effects in Erbium-Doped Fiber,” IEEE...J. Lightwave Technol., vol. 16, No. 2, 1998, pp. 200-206. [6] D. G. Falquier, J. L. Wagener , M. J. F. Digonnet and H. J. Shaw, “Polarized

  17. High power 2 {mu}m diode-pumped Tm:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scaleable diode end-pumping technology developed at LLNL, we have demonstrated a compact Tm:YAG laser capable of generating more than 50 W of cw 2 {mu}m laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed.

  18. New possibilities for efficient laser surface treatment by diode-pumped kW-class lasers

    Czech Academy of Sciences Publication Activity Database

    Brajer, Jan; Švábek, Roman; Rostohar, Danijela; Divoký, Martin; Lucianetti, Antonio; Mocek, Tomáš; Madl, J.; Pitrmuc, Z.

    2015-01-01

    Roč. 2015, Aug (2015), s. 1-3 ISSN 1823-3430 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : amplifier Subject RIV: BH - Optics, Masers, Lasers

  19. RESEARCH OF THERMO-OPTICAL INHOMOGENEITIES IN Yb-Er GLASS AT DIODE PUMPING

    Directory of Open Access Journals (Sweden)

    V. Khramov

    2016-03-01

    Full Text Available Subject of Research. Investigation method of thermo-optical distortions in solid-state lasers was developed and presented. The method can be easily used for research of small diameter (approximately 2 mm active elements. Method. The experimental method described in this paper is based on the registration of deviation of the energy center of the probe beam passing through the thermally stressed active element. Main Results. We have presented experimental results of the thermal lens optical power research in the active element made of Yb-Er glass pumped transversely by a laser diode in the following modes: without generating, free-running and Q-switching. We have submitted obtained dependences of the optical power on the pumping energy. The measurements have been performed for the two polarization components at two wavelengths (632.8 nm and 1550 nm showing the absence of explicit astigmatism of the thermal lens. Practical Relevance. Knowledge of the thermal regime of such lasers gives the possibility for more precise calculation of the resonator parameters in terms of the thermal lens occurrence.

  20. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available , with zero radial-order (p = 0) were generated. Pulses of duration 200 ms and intensities as high as 1 mW with repetition speed of 60 Hz were produced at 1 um wavelength. The maximum peak power-conversion efficiency measured was 1.3%....

  1. Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    2012-09-01

    reflectivity of the background. This device can be configured to detect hydrogen fluoride , hydrogen sulfide, or methane. Other related papers with the...absorption spectroscopy and in-situ gas chromatography ”. volume 3758, 109–115. SPIE, October 1999. 42. Hunsmann, S., K. Wunderle, S. Wagner, U. Rascher, U...black), 1 atm He (dashed black) and 10 atm He (short dash back), each with a buffer gas mixture including 100 Torr C2H6. Gain profiles are normalized

  2. Diode Pumped Frequency Doubled ND:Yag Laser for the Treatment of Glaucoma and Retinal Disease

    National Research Council Canada - National Science Library

    Skutnik, Bolesh

    2002-01-01

    .... The Nd:YAG laser achieved equivalent treatments as the Argon ion laser, at slightly lower power levels - Successful clinical trials were performed for the treatment of glaucoma and for one type of retinal disease...

  3. Diode Pumped Frequency Doubled ND:YAG Laser for the Treatment of Glaucoma and Retinal Disease

    National Research Council Canada - National Science Library

    Skutnik, Bolesh

    2002-01-01

    .... The Nd:YAG laser achieved equivalent treatments as the Argon ion laser, at slightly lower power levels - Successful clinical trials were performed for the treatment of glaucoma and for one type of retinal disease...

  4. 100 J-level nanosecond pulsed diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Banerjee, S.; Mason, P.D.; Ertel, K.; Phillips, P.J.; De Vido, M.; Chekhlov, O.; Divoký, Martin; Pilař, Jan; Smith, J.; Butcher, T.; Lintern, A.; Tomlinson, S.; Shaikh, W.; Hooker, Ch.; Lucianetti, Antonio; Hernandez-Gomez, C.; Mocek, Tomáš; Edwards, Ch.; Collier, J.L.

    2016-01-01

    Roč. 41, č. 9 (2016), s. 2089-2092 ISSN 0146-9592 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : high average power * efficiency * amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.416, year: 2016

  5. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions

    Science.gov (United States)

    Damzen, M. J.; Thomas, G. M.; Teppitaksak, A.; Minassian, A.

    2017-11-01

    Satellite-based remote sensing using laser-based lidar techniques provides a powerful tool for global 3-D mapping of atmospheric species (e.g. CO2, ozone, clouds, aerosols), physical attributes of the atmosphere (e.g. temperature, wind speed), and spectral indicators of Earth features (e.g. vegetation, water). Such information provides a valuable source for weather prediction, understanding of climate change, atmospheric science and health of the Earth eco-system. Similarly, laser-based altimetry can provide high precision ground topography mapping and more complex 3-D mapping (e.g. canopy height profiling). The lidar technique requires use of cutting-edge laser technologies and engineered designs that are capable of enduring the space environment over the mission lifetime. The laser must operate with suitably high electrical-to-optical efficiency and risk reduction strategy adopted to mitigate against laser failure or excessive operational degradation of laser performance.

  6. Business continuity

    International Nuclear Information System (INIS)

    Breunhoelder, Gert

    2002-01-01

    This presentation deals with the following keypoints: Information Technology (IT) Business Continuity and Recovery essential for any business; lessons learned after Sept. 11 event; Detailed planning, redundancy and testing being the key elements for probability estimation of disasters

  7. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  8. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  9. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  10. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  11. Basic concepts of kinematic-wave models

    Science.gov (United States)

    Miller, J.E.

    1984-01-01

    The kinematic-wave model is one of a number of approximations of the dynamic-wave model. The dynamic-wave model describes onedimensional shallow-water waves (unsteady, gradually varied, openchannel flow). This report provides a basic reference on the theory and applications of the kinematic-wave model and describes the limitations of the model in relation to the other approximations of the dynamic-wave model. In the kinematic-wave approximation, a number of the terms in the equation of motion are assumed to be insignificant. The equation of motion is replaced by an equation describing uniform flow. Thus, the kinematic-wave model is described by the continuity equation and a uniform-flow equation such as the wellknown Chezy or Manning formulas. Kinematic-wave models are applicable to overland flow where lateral inflow is continuously added and is a large part of the total flow. For channel-routing applications, the kinematic-wave model always predicts a steeper wave with less dispersion and attenuation than actually occurs. The effect of the accumulation of errors in the kinematic-wave model shows that the approximations made in the development of the kinematic-wave equations are not generally justified for most channel-routing applications. Modified flow-routing models can be used which help to stop the accumulation of errors that occur when the kinematic-wave model is applied.

  12. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...

  13. Heat Waves

    Science.gov (United States)

    ... quickly. - Drink plenty of water regularly and often. - Eat small meals and eat more often. - Avoid using salt tablets ... plenty of water during a heat wave and eat smaller, more frequent meals. Text from "Are You Prepared?" by the Cass ( ...

  14. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  16. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  17. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  18. Continuation calculus

    Directory of Open Access Journals (Sweden)

    Bram Geron

    2013-09-01

    Full Text Available Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head reduction, and argue that it is suitable for modeling programs with control. It is demonstrated how to define programs, specify them, and prove them correct. This is shown in detail by presenting in CC a list multiplication program that prematurely returns when it encounters a zero. The correctness proof includes termination of the program. In continuation calculus we can model both call-by-name and call-by-value. In addition, call-by-name functions can be applied to call-by-value results, and conversely.

  19. Study of coherent and continuous terahertz wave emission in equilateral triangular mesas of superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Delfanazari, Kaveh, E-mail: s-kaveh@ims.tsukuba.ac.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, International Center for Materials Nanoarchitectonics, Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Asai, Hidehiro [Electronics and Photonics Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Tsujimoto, Manabu; Kashiwagi, Takanari; Kitamura, Takeo [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, International Center for Materials Nanoarchitectonics, Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Yamamoto, Takashi [Semiconductor Analysis and Radiation Effects Group, Japan Atomic Energy Agency, Gunma 370-1292 (Japan); Sawamura, Masashi; Ishida, Kazuya [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); WPI-MANA, International Center for Materials Nanoarchitectonics, Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tachiki, Masashi [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Klemm, Richard A. [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); and others

    2013-08-15

    Highlights: ► We observed intense and coherent THz waves in the equilateral triangular mesas. ► We numerically investigated EM modes of the mesas which emitted intense THz waves. ► Irreversible (IR)-type THz radiation is observed in the equilateral triangular mesas. -- Abstract: We report on intense and coherent terahertz (THz) electromagnetic (EM) waves emitted from equilateral triangular mesa structures of the intrinsic Josephson junctions (IJJs) in single crystalline high-T{sub c} superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The focused ion beam milling technique is used for mesa fabrication. THz radiation is observed when the emission frequency is in the vicinity of the primary cavity resonance frequency determined by the mesa geometry. We also investigated numerically the THz radiation from such mesas using the finite difference time domain method. We found an apparent EM mode similar to the known TM(1, 0) = TM(0, 1) cavity mode during the THz emission.

  20. Wave calculus based upon wave logic

    International Nuclear Information System (INIS)

    Orlov, Y.F.

    1978-01-01

    A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)

  1. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  2. Crystal growth, spectroscopic and CW laser properties of Nd0.03Lu2.871Gd0.099Al5O12 crystal

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Cheng, S. S.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.

    2011-11-01

    Nd0.03Lu2.871Gd0.099Al5O12 (Nd:LuGdAG) crystal was grown by the Czochralski method. The absorption, fluorescence spectra and fluorescence lifetime of Nd:LuGdAG crystal at room temperature were investigated for the first time. We reported the continuous-wave (CW) Nd:LuGdAG laser operation under diode pumping. Output power of 1.43 W at 1064 nm was achieved with a slope efficiency of 34.1%. All the results show that Nd:LuGdAG crystal is a promising laser material.

  3. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.; Tang, D. Y.

    2011-10-01

    Three mixed crystals, Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG, were grown by Czochralski method. We report the continuous-wave (CW) Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG laser operation under laser diode pumping. The maximum output powers are 4.11, 5.31, and 7.47 W, with slope efficiency of 73.0, 55.3, and 57.1%, respectively. With replacing Lu3+ or Y3+ ions with large Gd3+ ions, the pump efficiency increases.

  4. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  5. Thulium fiber laser for the use in low-invasive endoscopic and robotic surgery of soft biological tissues

    Science.gov (United States)

    Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Gogler, S.; Swiderski, J.

    2016-12-01

    An all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser operated at a wavelength of 1.94 μm was developed. 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm was demonstrated. The laser output beam quality factor M2 was measured to be 1.2. The output beam was very stable with power fluctuations system is to be implemented as a scalpel for surgery of soft biological tissues.

  6. Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves

    Science.gov (United States)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-01-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.

  7. Nondispersive Wave Packets.

    Science.gov (United States)

    Shaarawi, Amr Mohamed

    In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.

  8. A first course in vibrations and waves

    CERN Document Server

    Samiullah, Mohammad

    2015-01-01

    This book builds on introductory physics and emphasizes understanding of vibratory motion and waves based on first principles. The book is divided into three parts. Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers a simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, standing waves, and Fourier series. Part II ends with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves. Here, the emphasis is on the discussion of common aspects of all types of waves. The applications to sound, electromagnetic, and matter waves are illustrated. The book also includes examples from water waves and electromagnetic waves on a transmission line. The emphasis of the book is to bring out the similarities among various types of waves. The book includes treatment of reflection a...

  9. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  10. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.

  11. Southern California Hindcast Wave Information

    Science.gov (United States)

    1992-12-01

    Dr. J. M. Hubertz, the Program Manager during the study was Mr. J. M. Hemsley, and is now Ms. C. M. Holmes. The HQUSACE Technical Monitor is Mr. John H...1956-1975) in 2-month intervals with pro - visions for continuity between runs. This ensured continuous simulation of the wave environment without loss in...Thor.: MIS 1956-75; NOBI ( 1982,83.84 Co Co Il- o- ,s tvN Li 0-HNIS C.- CLi 4~co c.) PERIOD (s) A8 ENERGY BASEO WAVE HEIGHT COMPARISON STATION 46024

  12. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  13. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  15. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  16. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  17. Nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Lamwers, Stephanie; Tepel, Martin

    2012-01-01

    Obstructive sleep apnoea (OSA) is linked to increased cardiovascular risk. This risk can be reduced by nasal continuous positive airway pressure (nCPAP) treatment. As OSA is associated with an increase of several vasoconstrictive factors, we investigated whether nCPAP influences the digital volume...... pulse wave. We performed digital photoplethysmography during sleep at night in 94 consecutive patients who underwent polysomnography and 29 patients treated with nCPAP. Digital volume pulse waves were obtained independently of an investigator and were quantified using an algorithm for continuous.......01; n = 94) and the arousal index (Spearman correlation, r = 0.21; p CPAP treatment, the AHI was significantly reduced from 27 ± 3 events · h(-1) to 4 ± 2 events · h(-1) (each n = 29; p

  18. Curves along which plane waves can interfere

    Energy Technology Data Exchange (ETDEWEB)

    Karp, S.N.; Machover, M.

    1977-07-01

    Partial results are given on a conjecture in inverse scattering theory concerning the interference of two-dimensional plane waves. The conjecture states that an odd number of plane waves of the same frequency can only cancel each other at isolated points and not along a simple continuous curve. It is partially confirmed here for curves which are nearly flat at some point. An analysis is also made for various possible nodes for an even number of plane waves.

  19. Energy in one-dimensional linear waves

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, C E; Roatta, A; Welti, R J, E-mail: welti@fceia.unr.edu.ar [Laboratorio de Vibraciones y Ondas, Departamento de Fisica, Escuela de Formacion Basica, Facultad de Ciencias Exactas, IngenierIa y Agrimensura (UNR), Pellegrini 250, S2000BTP Rosario (Argentina)

    2011-11-15

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  20. S-Band Doppler Wave Radar System

    Directory of Open Access Journals (Sweden)

    Zezong Chen

    2017-12-01

    Full Text Available In this paper, a novel shore-based S-band microwave Doppler coherent wave radar (Microwave Ocean Remote SEnsor (MORSE is designed to improve wave measurements. Marine radars, which operate in the X band, have been widely used for ocean monitoring because of their low cost, small size and flexibility. However, because of the non-coherent measurements and strong absorption of X-band radio waves by rain, these radar systems suffer considerable performance loss in moist weather. Furthermore, frequent calibrations to modify the modulation transfer function are required. To overcome these shortcomings, MORSE, which operates in the S band, was developed by Wuhan University. Because of the coherent measurements of this sensor, it is able to measure the radial velocity of water particles via the Doppler effect. Then the relation between the velocity spectrum and wave height spectrum can be used to obtain the wave height spectra. Finally, wave parameters are estimated from the wave height spectra by the spectrum moment method. Comparisons between MORSE and Waverider MKIII are conducted in this study, and the results, including the non-directional wave height spectra, significant wave height and average wave period, are calculated and displayed. The correlation coefficient of the significant wave height is larger than 0.9, whereas that of the average wave period is approximately 0.4, demonstrating the effectiveness of MORSE for the continuous monitoring of ocean areas with high accuracy.