WorldWideScience

Sample records for dinucleotide phosphate participates

  1. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar

    2013-01-01

    The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer...... dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...

  2. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  3. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  4. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.; Regan, John M.

    2015-01-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  5. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  6. Fluorimetric study of the interaction between nicotinamide adenine dinucleotide phosphate and tetracycline-europium complex and its application

    International Nuclear Information System (INIS)

    Peng Qian; Hou Faju; Ge Xiaoxia; Jiang Chongqiu; Gong Shubo

    2005-01-01

    A new spectrofluorimetric method was developed for the determination of trace amount of nicotinamide adenine dinucleotide phosphate (NADP). Using europium (Eu 3+ )-tetracycline (TC) complex as a fluorescent probe, in the buffer solution of pH 7.60. NADP can remarkably enhance the fluorescence intensity of the Eu 3+ -TC complex at λ = 612 nm and the enhanced fluorescence intensity of Eu 3+ ion is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 4.4 x 10 -7 to 2.2 x 10 -6 mol l -1 with detection limit of 6.9 x 10 -8 mol l -1 . This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples and in serum samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Eu 3+ -TC system and the Eu 3+ -TC-NADP system have been also discussed

  7. The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining.

    Science.gov (United States)

    Sims, K S; Williams, R S

    1990-01-01

    We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.

  8. Spectroscopy and Speciation Studies on the Interactions of Aluminum (III with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2012-08-01

    Full Text Available In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, 1H- and 31P-NMR, electrospray ionization mass spectrometry (ESI-MS, pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP and b-nicotinamide adenine dinucleotide phosphate (NADP with aluminum (III in aqueous solutions. Rank annihilation factor analysis (RAFA was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the mM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP]2+ and [Al(NADP] predominate in the aqueous solutions of the Al(III-CIP and Al(III-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP(HNADP] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III-NADP complexes under physiological condition.

  9. On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+.

    OpenAIRE

    Breslow, R; Huang, D L; Anslyn, E

    1989-01-01

    Cyclization/cleavage of the 2-(p-nitrophenyl) phosphate ester of propylene glycol is catalyzed by imidazole and, much more effectively, by Zn2+ with imidazole. In the latter case, the mechanism involves simultaneous Lewis acid/base catalysis. Similar Zn2+ and imidazole catalysis of cyclization/cleavage is seen with the dinucleotide 3',5'-UpU (uridylyluridine). Again, the zinc system is much more effective than is catalysis by imidazole alone, and in this case simultaneous Lewis acid/base cata...

  10. Reagentless phosphate ion sensor system for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Kurata, H.; Inoue, Y.; Shin, H. [Kyushu Institute of Technology, Fukuoka (Japan). Faculty of computer Science and Systems; Kubo, I. [Soka University, Tokyo (Japan). Faculty of Engineering; Nakamura, H.; Ikebukuro, K.; Karube, I. [The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1998-06-05

    Phosphate ion sensor system using an electrochemical detector was developed by the use of recombinant pyruvate oxidase (PyOD) from Lactobacillus plantarum, which needs no addition of thiamine pyrophosphate and flavin adenine dinucleotide for reaction. This system could detect 2 nM hydrogen peroxide. Response time for phosphate ion was 80 s and total measurement time for one sample was 3 min. Citrate buffer solution (pH 6.3) was most suitable for the measurement and optimum flow rate was 0.6 ml/min. Under these optimum conditions minimum detection limit of phosphate ion was 15 nM, which was enough for the determination of phosphate ion in dam-lake. 6 refs., 5 figs., 1 tab.

  11. Wear Particles Promote Reactive Oxygen Species-Mediated Inflammation via the Nicotinamide Adenine Dinucleotide Phosphate Oxidase Pathway in Macrophages Surrounding Loosened Implants

    Directory of Open Access Journals (Sweden)

    Weishen Chen

    2015-03-01

    Full Text Available Background/Aims: Prosthesis loosening is closely associated with chronic inflammatory cytokine secretion by macrophages, which are activated by wear particles or inflammatory stimulants such as lipopolysaccharide (LPS. Reactive oxygen species (ROS are critical regulators of inflammation, but their enzymatic sources in response to wear particles and their effects on peri-implant LPS-tolerance remain unclear. Methods: Three ROS-related enzymes—nicotinamide adenine dinucleotide phosphate oxidase (NOX-1 and -2 and catalase—were investigated in interface membrane tissues and in titanium (Ti particle-stimulated macrophages in vitro. The generation of ROS and downstream inflammatory effects were measured with or without pre-incubation with apocynin, an NOX inhibitor. Results: Pre-exposure to Ti particles attenuated NF-κB activation in LPS-stimulated macrophages, indicating that wear particles suppress immune response, which may lead to chronic inflammation. NOX-1 and -2 were highly expressed in aseptically loosened interface membranes and in macrophages stimulated with Ti particles; the particles induced a moderate amount of ROS generation, NF-κB activation, and TNF-a secretion in macrophages, and these effects were suppressed by apocynin. Conclusion: Wear particles induce ROS generation through the NOX signaling pathway, resulting in persistent inflammation and delayed loosening. Thus, the suppression of NOX activity may be a useful strategy for preventing prosthesis loosening.

  12. Automated genotyping of dinucleotide repeat markers

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Hoffman, E.P. [Carnegie Mellon Univ., Pittsburgh, PA (United States)]|[Univ. of Pittsburgh, PA (United States)

    1994-09-01

    The dinucleotide repeats (i.e., microsatellites) such as CA-repeats are a highly polymorphic, highly abundant class of PCR-amplifiable markers that have greatly streamlined genetic mapping experimentation. It is expected that over 30,000 such markers (including tri- and tetranucleotide repeats) will be characterized for routine use in the next few years. Since only size determination, and not sequencing, is required to determine alleles, in principle, dinucleotide repeat genotyping is easily performed on electrophoretic gels, and can be automated using DNA sequencers. Unfortunately, PCR stuttering with these markers generates not one band for each allele, but a pattern of bands. Since closely spaced alleles must be disambiguated by human scoring, this poses a key obstacle to full automation. We have developed methods that overcome this obstacle. Our model is that the observed data is generated by arithmetic superposition (i.e., convolution) of multiple allele patterns. By quantitatively measuring the size of each component band, and exploiting the unique stutter pattern associated with each marker, closely spaced alleles can be deconvolved; this unambiguously reconstructs the {open_quotes}true{close_quotes} allele bands, with stutter artifact removed. We used this approach in a system for automated diagnosis of (X-linked) Duchenne muscular dystrophy; four multiplexed CA-repeats within the dystrophin gene were assayed on a DNA sequencer. Our method accurately detected small variations in gel migration that shifted the allele size estimate. In 167 nonmutated alleles, 89% (149/167) showed no size variation, 9% (15/167) showed 1 bp variation, and 2% (3/167) showed 2 bp variation. We are currently developing a library of dinucleotide repeat patterns; together with our deconvolution methods, this library will enable fully automated genotyping of dinucleotide repeats from sizing data.

  13. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    Science.gov (United States)

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  14. Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate

    NARCIS (Netherlands)

    Hartog, A.F.; van Herk, T.; Wever, R.

    2011-01-01

    We report here a promising method to regenerate NADPH (nicotinamide adenine dinucleotide phosphate) using the intermediate formation of glucose 6-phosphate (G6P) from glucose and pyrophosphate (PPi) catalyzed by the acid phosphatase from Shigella flexneri (PhoN-Sf). The G6P formed is used in turn by

  15. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.

    Science.gov (United States)

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal

    2013-12-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.

  16. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    Science.gov (United States)

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  17. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  18. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    Science.gov (United States)

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  19. Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.

    Science.gov (United States)

    Fei, Na; Häussinger, Daniel; Blümli, Seraina; Laventie, Benoît-Joseph; Bizzini, Lorenzo D; Zimmermann, Kaspar; Jenal, Urs; Gillingham, Dennis

    2014-08-11

    We describe a simple method for the direct modification of nucleobases in cyclic purine dinucleotides, important signalling molecules in both prokaryotes and eukaryotes. The method tolerates all members of the cyclic dinucleotide family and could be used to modulate their function or introduce useful side-chains such as fluorophores and photo-crosslinking groups.

  20. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    Science.gov (United States)

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dinucleotide controlled null models for comparative RNA gene prediction.

    Science.gov (United States)

    Gesell, Tanja; Washietl, Stefan

    2008-05-27

    Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz

  2. Dinucleotide controlled null models for comparative RNA gene prediction

    Directory of Open Access Journals (Sweden)

    Gesell Tanja

    2008-05-01

    Full Text Available Abstract Background Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. Results We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. Conclusion SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require

  3. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures.

    Science.gov (United States)

    Upadhyay, Mohita; Vivekanandan, Perumal

    2015-01-01

    Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our

  4. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    Science.gov (United States)

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    OpenAIRE

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (?10 units) are present within exonic sequences of >350 genes, re...

  6. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    Science.gov (United States)

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  7. Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Guo Zhixin

    2012-08-01

    Full Text Available Abstract Background Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2 and nicotinamide adenine dinucleotide phosphate (NADPH oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1 in aorta in type 2 diabetic rats. Methods Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ. Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4, monocyte chemoattractant protein-1(MCP-1 and connective tissue growth factor (CTGFin the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-κB in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d by gavage for 12 weeks. Results Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P Conclusions Our results suggest that telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-κB in the abdominal aorta in diabetic rats.

  8. Defects in Nicotinamide-adenine Dinucleotide Phosphate Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Patti Hayes

    2015-09-01

    Full Text Available Background & Aims: Defects in intestinal innate defense systems predispose patients to inflammatory bowel disease (IBD. Reactive oxygen species (ROS generated by nicotinamide-adenine dinucleotide phosphate (NADPH oxidases in the mucosal barrier maintain gut homeostasis and defend against pathogenic attack. We hypothesized that molecular genetic defects in intestinal NADPH oxidases might be present in children with IBD. Methods: After targeted exome sequencing of epithelial NADPH oxidases NOX1 and DUOX2 on 59 children with very early onset inflammatory bowel disease (VEOIBD, the identified mutations were validated using Sanger Sequencing. A structural analysis of NOX1 and DUOX2 variants was performed by homology in silico modeling. The functional characterization included ROS generation in model cell lines and in in vivo transduced murine crypts, protein expression, intracellular localization, and cell-based infection studies with the enteric pathogens Campylobacter jejuni and enteropathogenic Escherichia coli. Results: We identified missense mutations in NOX1 (c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn and DUOX2 (c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys in 5 of 209 VEOIBD patients. The NOX1 p.Asp360Asn variant was replicated in a male Ashkenazi Jewish ulcerative colitis cohort. Patients with both NOX1 and DUOX2 variants showed abnormal Paneth cell metaplasia. All NOX1 and DUOX2 variants showed reduced ROS production compared with wild-type enzymes. Despite appropriate cellular localization and comparable pathogen-stimulated translocation of altered oxidases, cells harboring NOX1 or DUOX2 variants had defective host resistance to infection with C. jejuni. Conclusions: This study identifies the first inactivating missense variants in NOX1 and DUOX2 associated with VEOIBD. Defective ROS production from intestinal epithelial cells constitutes a risk factor for developing VEOIBD. Keywords: Inflammatory Bowel Disease, NADPH Oxidase

  9. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Juan M Sandoval

    Full Text Available The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH, which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH. Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P, suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH, better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.

  10. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    Science.gov (United States)

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  11. Effects of aqueous extract of Ruta graveolens and its ingredients on cytochrome P450, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH-quinone oxidoreductase in mice

    Directory of Open Access Journals (Sweden)

    Yune-Fang Ueng

    2015-09-01

    Full Text Available Ruta graveolens (the common rue has been used for various therapeutic purposes, including relief of rheumatism and treatment of circulatory disorder. To elucidate the effects of rue on main drug-metabolizing enzymes, effects of an aqueous extract of the aerial part of rue and its ingredients on cytochrome P450 (P450/CYP, uridine diphosphate (UDP-glucuronosyltransferase, and reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH:quinone oxidoreductase were studied in C57BL/6JNarl mice. Oral administration of rue extract to males increased hepatic Cyp1a and Cyp2b activities in a dose-dependent manner. Under a 7-day treatment regimen, rue extract (0.5 g/kg induced hepatic Cyp1a and Cyp2b activities and protein levels in males and females. This treatment increased hepatic UDP-glucuronosyltransferase activity only in males. However, NAD(PH:quinone oxidoreductase activity remained unchanged. Based on the contents of rutin and furanocoumarins of mouse dose of rue extract, rutin increased hepatic Cyp1a activity and the mixture of furanocoumarins (Fmix increased Cyp2b activities in males. The mixture of rutin and Fmix increased Cyp1a and Cyp2b activities. These results revealed that rutin and Fmix contributed at least in part to the P450 induction by rue.

  12. Identification of prophages in bacterial genomes by dinucleotide relative abundance difference.

    Directory of Open Access Journals (Sweden)

    K V Srividhya

    Full Text Available BACKGROUND: Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful. METHODOLOGY: Earlier dinucleotide relative abundance (DRA have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method. CONCLUSIONS: The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences.

  13. Evolution of function in the "two dinucleotide binding domains" flavoproteins.

    Directory of Open Access Journals (Sweden)

    Sunil Ojha

    2007-07-01

    Full Text Available Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the "two dinucleotide binding domains" flavoproteins (tDBDF superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD. Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are

  14. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.

    Science.gov (United States)

    Wang, Guodong; Pichersky, Eran

    2007-03-01

    Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.

  15. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING.

    Science.gov (United States)

    Ablasser, Andrea; Goldeck, Marion; Cavlar, Taner; Deimling, Tobias; Witte, Gregor; Röhl, Ingo; Hopfner, Karl-Peter; Ludwig, Janos; Hornung, Veit

    2013-06-20

    Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.

  16. galactosidase and α

    African Journals Online (AJOL)

    phosphate, fructose-6-phosphate, fructose-1- phosphate, α -nicotinamide adenosine dinucleotide (α ..... compared with that of α -nicotinamide adenine dinucleotide (16.3 ± 0.6%) and sodium phytate. (15.2 ± 1.8%) ..... 47: 829–835. Aritajat S., Saenphet K. & Srikalayanukul C., 2005. The toxicity of a crude enzyme extract from.

  17. Analysis of dinucleotide signatures in HIV-1 subtype B genomes

    Indian Academy of Sciences (India)

    It was also shown that the profile generated by taking all dinucleotides together ... Keywords. genome signature; DRAP; HIV-1; chaos game representation. Journal of .... be used to quantify low levels of variation as are observed within species ..... Dayton A.I., Sodroski J.G., Rosen C.A., Goh W.C. and Haseltine. W.A. 1986 ...

  18. Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis

    International Nuclear Information System (INIS)

    Pinkas-Sarafova, Adriana; Markova, N.G.; Simon, M.

    2005-01-01

    The function of many enzymes that regulate metabolism and transcription depends critically on the nicotinamide pyridine dinucleotides. To understand the role of NAD(P)(H) in physiology and pathophysiology, it is imperative to estimate both their amount and ratios in a given cell type. In human epidermis and in cultured epidermal keratinocytes, we found that the total dinucleotide content is in the low millimolar range. The dinucleotide pattern changes during proliferation and maturation of keratinocytes in culture. Differences in the concentrations of NAD(P)(H) of 1.5- to 12-fold were observed. This resulted in alteration of the NAD(P)H/NAD(P) ratio, which could impact the differential regulation of both transcriptional and metabolic processes. In support of this notion, we provide evidence that the two-step oxidation of retinol to retinoic acid, a nuclear hormone critical for epidermal homeostasis, can be regulated by the relative physiological amounts of the pyridine dinucleotides

  19. Enzymatic synthesis of 13N-β-nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Lambrecht, R.H.D.; Slegers, G.; Claeys, A.; Vandecasteele, C.

    1985-01-01

    Nitrogen-13-labelled β-nicotinamide adenine dinucleotide ( 13 N-NAD) is an interesting new compound for positron emission tomography. A semi-automatic production method is developed that yields a solution of 13 N-NAD of radiopharmaceutical quality, suitable for human intravenous administration. The 13 N-NAD is prepared enzymatically in one step from cyclotron-produced 13 NH 3 and nicotinic acid adenine dinucleotide (deamido-NAD). The enzyme NAD synthetase (E.C. 6.3.1.5), catalysing this reaction, is extracted and purified from Escherichia coli. The purified enzyme is immobilized by glutaraldehyde coupling to γ-aminopropylsilane-coated porous glass beads. The enzyme-loaded glass beads are packed in a column. The kinetic properties of the column are optimized. For synthetizing 13 N-NAD, the mixture of co-factors and substrates, containing 13 NH 3 , is pumped over the enzyme column. The unreacted 13 NH 3 is separated from 13 N-NAD by on-line passage over a cation exchanger. After passing over a millipore filter, a sterile solution of radiochemically pure 13 N-NAD is obtained, containing 70 mCi in 10 mL. The total synthesis time is 10 minutes. The specific activity is about 120 mCi/μmol at EOB. Quality control includes sterility and pyrogen tests, HPLC and HPTLC analysis. (author)

  20. Detection of Cyclic Dinucleotides by STING.

    Science.gov (United States)

    Du, Xiao-Xia; Su, Xiao-Dong

    2017-01-01

    STING (stimulator of interferon genes) is an essential signaling adaptor protein mediating cytosolic DNA-induced innate immunity for both microbial invasion and self-DNA leakage. STING is also a direct receptor for cytosolic cyclic dinucleotides (CDNs), including the microbial secondary messengers c-di-GMP (3',3'-cyclic di-GMP), 3',3'cGAMP (3',3'-cyclic GMP-AMP), and mammalian endogenous 2',3'cGAMP (2',3'-cyclic GMP-AMP) synthesized by cGAS (cyclic GMP-AMP synthase). Upon CDN binding, STING undergoes a conformational change to enable signal transduction by phosphorylation and finally to active IRF3 (Interferon regulatory factor 3) for type I interferon production. Here, we describe some experimental procedures such as Isothermal Titration Calorimetry and luciferase reporter assays to study the CDNs binding and activity by STING proteins.

  1. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  2. Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Widom, Julia R; Marcus, Andrew H; Johnson, Neil P; Von Hippel, Peter H

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analogue of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS)—a fluorescence-detected variation of 2D electronic spectroscopy—to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point–dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R 12 = 3.5 ± 0.5 Å , twist angle θ 12 = 5° ± 5° ), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV–2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein–nucleic acid complexes. (paper)

  3. Methods for detection of methyl-CpG dinucleotides

    Science.gov (United States)

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  4. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: a prospective cohort study.

    Science.gov (United States)

    Leung, Simon; McCormick, Brendan; Wagner, Jessica; Biyani, Mohan; Lavoie, Susan; Imtiaz, Rameez; Zimmerman, Deborah

    2015-12-09

    Removal of phosphate by peritoneal dialysis is insufficient to maintain normal serum phosphate levels such that most patients must take phosphate binders with their meals. However, phosphate 'counting' is complicated and many patients are simply prescribed a specific dose of phosphate binders with each meal. Therefore, our primary objective was to assess the variability in meal phosphate content to determine the appropriateness of this approach. In this prospective cohort study, adult patients with ESRD treated with peritoneal dialysis and prescribed phosphate binder therapy were eligible to participate. Participants were excluded from the study if they were unable to give consent, had hypercalcemia, were visually or hearing impaired or were expected to receive a renal transplant during the time of the study. After providing informed consent, patients kept a 3-day diet diary that included all foods and beverages consumed in addition to portion sizes. At the same time, patients documented the amount of phosphate binders taken with each meal. The phosphate content of the each meal was estimated using ESHA Food Processor SQL Software by a registered dietitian. Meal phosphate and binder variability were estimated by the Intra Class Correlation Coefficient (ICC) where 0 indicates maximal variability and 1 indicates no variability. Seventy-eight patients consented to participate in the study; 18 did not complete the study protocol. The patients were 60 (± 17) years, predominately male (38/60) and Caucasian (51/60). Diabetic nephropathy was the most common cause of end stage kidney disease. The daily phosphate intake including snacks ranged from 959 ± 249 to 1144 ± 362 mg. The phosphate ICC by meal: breakfast 0.63, lunch 0.16; supper 0.27. The phosphate binder ICC by meal: breakfast 0.68, lunch 0.73, supper 0.67. The standard prescription of a set number of phosphate binders with each meal is not supported by the data; patients do not appear to be adjusting their

  5. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING.

    Science.gov (United States)

    Diner, Elie J; Burdette, Dara L; Wilson, Stephen C; Monroe, Kathryn M; Kellenberger, Colleen A; Hyodo, Mamoru; Hayakawa, Yoshihiro; Hammond, Ming C; Vance, Russell E

    2013-05-30

    The presence of foreign DNA in the cytosol of mammalian cells elicits a potent antiviral interferon response. Recently, cytosolic DNA was proposed to induce the synthesis of cyclic GMP-AMP (cGAMP) upon binding to an enzyme called cGAMP synthase (cGAS). cGAMP activates an interferon response by binding to a downstream receptor called STING. Here, we identify natural variants of human STING (hSTING) that are poorly responsive to cGAMP yet, unexpectedly, are normally responsive to DNA and cGAS signaling. We explain this paradox by demonstrating that the cGAS product is actually a noncanonical cyclic dinucleotide, cyclic [G(2'-5')pA(3'-5')p], which contains a single 2'-5' phosphodiester bond. Cyclic [G(2'-5')pA(3'-5')p] potently activates diverse hSTING receptors and, therefore, may be a useful adjuvant or immunotherapeutic. Our results indicate that hSTING variants have evolved to distinguish conventional (3'-5') cyclic dinucleotides, known to be produced mainly by bacteria, from the noncanonical cyclic dinucleotide produced by mammalian cGAS. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Innate Immune DNA Sensor cGAS Produces a Noncanonical Cyclic Dinucleotide that Activates Human STING

    Directory of Open Access Journals (Sweden)

    Elie J. Diner

    2013-05-01

    Full Text Available The presence of foreign DNA in the cytosol of mammalian cells elicits a potent antiviral interferon response. Recently, cytosolic DNA was proposed to induce the synthesis of cyclic GMP-AMP (cGAMP upon binding to an enzyme called cGAMP synthase (cGAS. cGAMP activates an interferon response by binding to a downstream receptor called STING. Here, we identify natural variants of human STING (hSTING that are poorly responsive to cGAMP yet, unexpectedly, are normally responsive to DNA and cGAS signaling. We explain this paradox by demonstrating that the cGAS product is actually a noncanonical cyclic dinucleotide, cyclic [G(2′-5′pA(3′-5′p], which contains a single 2′-5′ phosphodiester bond. Cyclic [G(2′-5′pA(3′-5′p] potently activates diverse hSTING receptors and, therefore, may be a useful adjuvant or immunotherapeutic. Our results indicate that hSTING variants have evolved to distinguish conventional (3′-5′ cyclic dinucleotides, known to be produced mainly by bacteria, from the noncanonical cyclic dinucleotide produced by mammalian cGAS.

  7. A new sensitive 32P-postlabeling assay based on the specific enzymatic conversion of bulky DNA lesions to radiolabeled dinucleotides and nucleoside 5'-monophosphates

    International Nuclear Information System (INIS)

    Randerath, Kurt; Randerath, Erika; Danna, T.F.; Van Golen, K.L.; Putman, K.L.

    1989-01-01

    A new sensitive 32 P-postlabelling assay for DNA adducts has been developed. When DNA containing bulky adducts, X 1 , X 2 , .....X n , is digested with nuclease P1 at pH 5, normal nucleotides are released as 5'-monophosphates, pN, while adducts are excised as 5'-phosphorylated dinucleotides, pX i pN, because inter-nucleotide linkages on the 3' side of X resist attack by nuclease P1. Addition of prostatic acid phosphatase to such a digest results in 5'-dephosphorylation of the nucleotides to normal nucleosides, N, and adducted dinucleotides, X i pN, carrying a 5'-terminal free hydroxyl group. The dinucleotides but not nucleosides are converted to 5'- 32 P-labeled dinucleotides,[ 32 P]pX i pN, by T4 polynucleotide kinase-catalyzed [ 32 P]posphate transfer from [γ- 32 P]ATP. Upon mapping on polyethyleneimine-cellulose anion-exchange TLC, the labeled dinucleotide adducts produce characteristic autoradiographic fingerprints. Alternatively, they are further digested with snake venom phosphodiesterase to yield 5'-monophosphates, [ 32 P]pX i and pN. TLC profiles of the monophosphate adducts are distinct from those of the dinucleotides. These reactions provide the basis of the new 32 P-postlabeling scheme, which is compared in this paper with a previously reported protocol yielding adducts in the form of 5'- 32 P-labeled 3',5'-bisphosphates, [ 32 P]pX i p. (author)

  8. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    Science.gov (United States)

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  9. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  10. The spectrum of genomic signatures: from dinucleotides to chaos game representation.

    Science.gov (United States)

    Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila

    2005-02-14

    In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.

  11. Ultrafast photo-initiated molecular quantum dynamics in the DNA dinucleotide d(ApG) revealed by broadband transient absorption spectroscopy.

    Science.gov (United States)

    Stuhldreier, Mayra C; Temps, Friedrich

    2013-01-01

    The ultrafast photo-initiated quantum dynamics of the adenine-guanine dinucleotide d(ApG) in aqueous solution (pH 7) has been studied by femtosecond time-resolved spectroscopy after excitation at lambda = 260 nm. The results reveal a hierarchy of processes on time scales from tau 100 ps. Characteristic spectro-temporal signatures are observed indicating the transformation of the molecules in the electronic relaxation from the photo-excited state to a long-lived exciplex. In particular, broadband UV/VIS excited-state absorption (ESA) measurements detected a distinctive absorption by the excited dinucleotide around lambda = 335 nm, approximately 0.5 eV to the blue compared to the maximum of the broad and unstructured ESA spectrum after excitation of an equimolar mixture of the mononucleotides dAMP and dGMP. A similar feature has been identified as signature of the excimer in the dynamics of the adenine dinucleotide d(ApA). The lifetime of the d(ApG) exciplex was found to be tau = 124 +/- 4 ps both from the ESA decay time and from the ground-state recovery time, far longer than the sub-picosecond lifetimes of excited dAMP or dGMP. Fluorescence-time profiles measured by the up-conversion technique indicate that the exciplex state is reached around approximately 6 ps after excitation. Very weak residual fluorescence at longer times red-shifted to the emission from the photo-excited state shows that the exciplex is almost optically dark, but still has enough oscillator strength to give rise to the dual fluorescence of the dinucleotide in the static fluorescence spectrum.

  12. High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules

    Science.gov (United States)

    Baker, Bo Y; Shi, Wuxian; Wang, Benlian; Palczewski, Krzysztof

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4, and bGAPDH(NAD)3. The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54–56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies. PMID:25176140

  13. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    Science.gov (United States)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  14. Comparative Study between topical applications liposomally entrapped DNA repair enzymes and thymidine dinucleotide as radioprotectors

    International Nuclear Information System (INIS)

    Shabon, M.H.; El-Bedewi, A.F.

    2005-01-01

    The delivery of active agents to the skin by liposome carriers received great interest during the last three decades. This is based on their potential to enclose various types of biological materials and to deliver them to diverse cell types. Recent work suggests that liposomes as vehicles for topical drug delivery may be superior to conventional preparations. Also, topical application of DNA repair enzymes to irradiated skin increases the rate of repair of DNA potentially damaged cells. Moreover, thymidine dinucleotide is a new skin photo-protective agent against non-ionizing radiation through induction of DNA repair. Gamma irradiation can produce DNA damage in human skin. DNA mutations have an important role in the development of skin cancer and precancerous skin lesions. Albino rats were irradiated with Cobalt-60 gamma radiation with different doses (0.5, 1.5, 3 Gy), and were treated by either thymidine dinucleotide or liposomally entrapped DNA repair enzymes topically 24 hours before irradiation. Evaluation was done histopathologically by H and E stain. Computerized image analyzer using Masson's trichrome stain was also done. Gamma radiation produced epidermal thinning and dermal inflammatory cells together with collagen fragmentation and clumping in a dose-dependent manner. Comparing between both thymidine dinucleotide and liposomally entrapped DNA repair enzymes pretreated and irradiated rats. Low dose irradiation (0.5 Gy) together with previous drugs showed preservation of epidermis with no inflammatory cells and also it maintained the normal architecture of collagen bundles. However, they were ineffective with higher doses. In conclusion our results may suggest that the effects of gamma radiation on the skin at low dose could be minimized by the use of these drugs before exposure

  15. Cyclic Dinucleotides in the Scope of the Mammalian Immune System.

    Science.gov (United States)

    Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit

    2017-01-01

    First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.

  16. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  17. Dinucleotide repeat polymorphism in Fms-like tyrosine kinase-1 (Flt-1 gene is not associated with preeclampsia

    Directory of Open Access Journals (Sweden)

    Park So-Yeon

    2008-07-01

    Full Text Available Abstract Background Preeclampsia is a major cause of maternal and perinatal mortality and morbidity. The etiology of preeclampsia remains unclear. Recently, it was shown that misregulation of fms-like tyrosine kinase-1 (Flt-1 in the peripheral blood mononuclear cells of pregnant women results in over-expression of the soluble splice variant of Flt-1, sFlt-1, producing an additional (extra-placental source of sFlt-1 that can contribute to the etiology of preeclampsia. The aim of this study was to investigate the relationship between preeclampsia and a dinucleotide (threonine-glycine; TGn repeat polymorphism in the 3' non-coding region of the Flt-1 gene. Methods The number of the d(TGn repeats was analyzed in 170 patients with preeclampsia and in 202 normotensive pregnancies. The region containing the dinucleotide repeat polymorphism of the Flt-1 gene was amplified by polymerase chain reaction (PCR from the DNA samples and was analyzed by direct PCR sequencing. Results We found 10 alleles of the dinucleotide repeat polymorphism and designated these as allele*12 (A1 through allele*23 (A12 according to the number of the TG repeats, from 12 to 23. The frequency of the 14-repeat allele (A3 was most abundant (63.82% in preeclampsia and 69.06% in controls, followed by the 21-repeat allele (A10; 28.53% in preeclampsia and 23.76% in controls. There was no significant difference in the allele frequency between patients with preeclampsia and normal controls. The most common genotype in preeclamptic and normotensive pregnancies was heterozygous (TG14/(TG21 (41.76% and homozygous (TG14/(TG14 (45.05%, respectively. However, the genotype frequencies were not significantly different between preeclamptic patients and controls. Conclusion This is the first study to characterize the dinucleotide repeat polymorphism of the Flt-1 gene in patients with preeclampsia. We found no differences in the allele or genotype frequencies between patients with preeclampsia and

  18. Antimutagenic activity of oxidase enzymes

    International Nuclear Information System (INIS)

    Agabeili, R.A.

    1986-01-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity

  19. Solution structure of the 3'-5' cyclic dinucleotide d. A combined NMR, UV melting, and molecular mechanics study

    International Nuclear Information System (INIS)

    Blommers, M.J.J.; Haasnoot, C.A.G.; Walters, J.A.L.I.; van der Marel, G.A.; van Boom, J.H.; Hilbers, C.W.

    1988-01-01

    The 3'-5' cyclic dinucleotide d 1 H and 13 C NMR experiments, UV-melting experiments, and molecular mechanics calculations. The 1 H and 13 C NMR spectra were analyzed by means of 2-dimensional NMR experiments. J-Coupling analysis of the 1D and 2D 1 H and 13 C spectra was used to determine the conformation of the ring systems in the molecule. It appeared that at low temperature (283 K) the deoxyribose sugars adopt a N-type conformation. The geometry is best described by an intermediate between the 3 2 T and 3 E forms. In addition, the authors were able to derive all other torsion angles in the phosphate backbone ring system, i.e., α + , β/sup t/, γ + , δ (=89/degrees/), ε/sup t/ and /zeta/ + . When the molecule is subjected to an energy minimization procedure (using the program AMBER), the sugar ring system retains, practically speaking, the torsion angles found from the NMR experiments, while the torsion angles around the glycosidic bond adopt a value of 175/degrees/ in the minimum energy conformation. UV-melting experiments indicate that two molecules can form a dimer in which the adenine bases are intercalated. The feasibility of this structure is indicated by molecular mechanics calculations. At higher temperatures the dimer is converted into separate monomers. In the monomer form the sugars exhibit S-pucker 20% of the time. Concomitantly with the conversion of the N- to the S-conformation, the torsion angles α and γ change

  20. Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    HUAN GAO

    2009-01-01

    Full Text Available To address whether there are differences of variation among repeat motif types and among taxonomic groups, we present here an analysis of variation and correlation of dinucleotide microsatellite repeats in eukaryotic genomes. Ten taxonomic groups were compared, those being primates, mammalia (excluding primates and rodentia, rodentia, birds, fish, amphibians and reptiles, insects, molluscs, plants and fungi, respectively. The data used in the analysis is from the literature published in the Journal of Molecular Ecology Notes. Analysis of variation reveals that there are no significant differences between AC and AG repeat motif types. Moreover, the number of alleles correlates positively with the copy number in both AG and AC repeats. Similar conclusions can be obtained from each taxonomic group. These results strongly suggest that the increase of SSR variation is almost linear with the increase of the copy number of each repeat motif. As well, the results suggest that the variability of SSR in the genomes of low-ranking species seem to be more than that of high-ranking species, excluding primates and fungi.

  1. Radioactivity in the phosphate field: actions undertaken by IMPHOS

    International Nuclear Information System (INIS)

    Mrabet, T.; Kotti, M.M.

    2008-01-01

    In order to prevent a potentially negative impact on the phosphate industry of the European Council Directive 96/29/Euratom, IMPHOS participated in several events where discussions were held on the issue of NORM and the consequences of the application of the Directive for the non-nuclear industries, including all the NORM symposia from September 1997 to May 2004. In addition, IMPHOS has undertaken actions to establish an ad hoc committee with members designated by member companies and to initiate a desktop study conducted by CEPN to review the implications of applying the Directive for the phosphate industry. This study is an important collection of data on radiological protection, including doses expected to be received by exposed individuals and monitoring considerations. The main conclusions of these actions are that the radioactivity in the phosphate industry is relatively insignificant, with the total annual exposure of a phosphate worker being less than three thousandths of the limit recommended by the ICRP. (author)

  2. Sylwan manuscript revised

    African Journals Online (AJOL)

    이영준

    mature adipocytes and accumulate lipids, as an obesity model with cytotoxicity and ... 2,5-diphenyltetrazolium Bromide; NAC = N-acetyl-L-cysteine; NADPH = Nicotinamide adenine dinucleotide phosphate; OD = ..... ovariectomized rats.

  3. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    Science.gov (United States)

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay

  4. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression.

    Directory of Open Access Journals (Sweden)

    Francesca Bonvicini

    Full Text Available CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression.The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections.The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19.

  5. Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression

    Science.gov (United States)

    Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio

    2012-01-01

    CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013

  6. Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids.

    Science.gov (United States)

    Catana, Dan-Andrei; Renard, Brice-Loïc; Maturano, Marie; Payrastre, Corinne; Tarrat, Nathalie; Escudier, Jean-Marc

    2012-01-01

    We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.

  7. Dioxaphosphorinane-Constrained Nucleic Acid Dinucleotides as Tools for Structural Tuning of Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Dan-Andrei Catana

    2012-01-01

    Full Text Available We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.

  8. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    OpenAIRE

    Manju Tiwari

    2017-01-01

    Glucose 6 phosphate dehydrogenase (G6PD) is a key and rate limiting enzyme in the pentose phosphate pathway (PPP). The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). There are preponderance research findings that demonstrate the enzyme (G6PD) role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted f...

  9. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  10. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  11. Understanding the sequence preference of recurrent RNA building blocks using quantum chemistry: The intrastrand RNA dinucleotide platform

    Czech Academy of Sciences Publication Activity Database

    Mládek, Arnošt; Šponer, Judit E.; Kulhánek, P.; Lu, X.-J.; Olson, W.K.; Šponer, Jiří

    2012-01-01

    Roč. 8, č. 1 (2012), s. 335-347 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA ČR(CZ) GAP208/10/2302; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GD203/09/H046 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : RNA dinucleotide platform * quantum-chemical calculation Subject RIV: BO - Biophysics Impact factor: 5.389, year: 2012

  12. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    Science.gov (United States)

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  13. Do diosgenin ameliorate urinary bladder toxic effect of ...

    African Journals Online (AJOL)

    SWEET

    2012-01-26

    Jan 26, 2012 ... experimental animal models? ... BSO doses using a Swiss albino mouse model. Toxicity modulation ... bladder inflammation induced by CP in rats and mice .... 0.1 ml NADPH (nicotinamide adenine dinucleotide phosphate.

  14. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia.

    Science.gov (United States)

    Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang

    2018-02-23

    Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.

  16. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  17. A comparative study of the DG-OMEGA (DG Omega), DGII, and GAT method for the structure elucidation of a methylene-acetal linked thymine dinucleotide

    NARCIS (Netherlands)

    van Kampen, A. H. C.; Beckers, M. L. M.; Buydens, L. M. C.

    1997-01-01

    This research continues the investigation of the properties of the recently developed structure elucidation method DG-OMEGA (DG Omega). Towards this end it was applied for the structure determination of a methylene-acetal linked thymine dinucleotide. The performance of DG Omega was compared to the

  18. Phosphate-a poison for humans?

    Science.gov (United States)

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles.

    Science.gov (United States)

    Wang, Guangjie; Jin, Feng; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Li, Mengxia; Yuan, Ruo; Wang, Dong

    2012-03-01

    A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  1. Current Concepts of Hyperinflammation in Chronic Granulomatous Disease

    NARCIS (Netherlands)

    Rieber, Nikolaus; Hector, Andreas; Kuijpers, Taco; Roos, Dirk; Hartl, Dominik

    2012-01-01

    Chronic granulomatous disease (CGD) is the most common inherited disorder of phagocytic functions, caused by genetic defects in the leukocyte nicotinamide dinucleotide phosphate (NADPH) oxidase. Consequently, CGD phagocytes are impaired in destroying phagocytosed microorganisms, rendering the

  2. Fulltext PDF

    Indian Academy of Sciences (India)

    Madhsudhan

    in the rat vitamin C is synthesised from glucose via the glucuronic pathway of ..... guinea pig model, we have demonstrated that moderately large doses of vitamin C ... of nicotinamide adenine dinucleotide phosphate (NADPH) to microsomal ...

  3. The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1982-01-01

    The applicability of phenazine methosulfate, 1-methoxyphenazine methosulfate, menadione, and meldola blue as exogenous electron carriers for the cytochemical staining of nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent dehydrogenases has been studied quantitatively with tetranitro BT

  4. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes.

    Science.gov (United States)

    Fokina, K V; Yazykova, M Y; Danshina, P V; Schmalhausen, E V; Muronetz, V I

    2000-04-01

    Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.

  5. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α and GTPase myxovirus resistance 1 (MX1—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E and enterovirus 71 (EV71 infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG.

  6. Original Article Pubertal Development of Penile Nitric Oxide ...

    African Journals Online (AJOL)

    mn

    penile tissue in different age groups in the rat and to measure serum testosterone levels ... shaft specimen was taken for nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase ..... The rat as a model for the study of penile erection.

  7. Final report of the FAO/IAEA co-ordinated research project on the use of nuclear and related techniques for evaluating the agronomic effectiveness of phosphate fertilisers, in particular rock phosphates

    International Nuclear Information System (INIS)

    Zapata, F.

    1999-02-01

    Soils in developing countries are often deficient in available P, and therefore require inputs of P fertiliser for optimum plant growth and production of food and fibre. Due to economic considerations, the cost of applying imported or locally produced water-soluble P fertilisers is often more expensive than utilising indigenous phosphate rock. Phosphate rocks show large differences in their suitability for direct application and several factors influence their capability to supply phosphorus to crops. Therefore, quantifying the P availability of soils amended with phosphate rocks in a variety of crop management and environmental conditions in developing countries is imperative for making recommendations on the best type and rate of P fertiliser sources for maximum agronomic and economic benefits. P-32 isotope techniques are very useful for such studies. The background situation of phosphate research and the topics to be investigated using isotope techniques were critically examined in a Consultants Meeting held at the IAEA Headquarters, Vienna, Austria, from 10 to 12 May 1993. For detailed information please refer to IAEA Report CT-1112. Based on the recommendations of this Consultants' Meeting, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture with the generous support of the French Government decided to implement the Co-ordinated Research Project (CRP) on 'The Use of Nuclear and Related Techniques for Evaluating the Agronomic Effectiveness of Phosphate Fertilisers, in particular Rock Phosphates'. This final report describes the Fourth and Final RCM of the CRP which was held in Vienna, 16-20 November 1998. It also contains a full description of the project and the conclusions and recommendations of the CRP. The programme of the meeting, list of participants, summaries submitted by the participants and list of publications are included as annexes

  8. Final report of the FAO/IAEA co-ordinated research project on the use of nuclear and related techniques for evaluating the agronomic effectiveness of phosphate fertilisers, in particular rock phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, F

    1999-02-01

    Soils in developing countries are often deficient in available P, and therefore require inputs of P fertiliser for optimum plant growth and production of food and fibre. Due to economic considerations, the cost of applying imported or locally produced water-soluble P fertilisers is often more expensive than utilising indigenous phosphate rock. Phosphate rocks show large differences in their suitability for direct application and several factors influence their capability to supply phosphorus to crops. Therefore, quantifying the P availability of soils amended with phosphate rocks in a variety of crop management and environmental conditions in developing countries is imperative for making recommendations on the best type and rate of P fertiliser sources for maximum agronomic and economic benefits. P-32 isotope techniques are very useful for such studies. The background situation of phosphate research and the topics to be investigated using isotope techniques were critically examined in a Consultants Meeting held at the IAEA Headquarters, Vienna, Austria, from 10 to 12 May 1993. For detailed information please refer to IAEA Report CT-1112. Based on the recommendations of this Consultants' Meeting, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture with the generous support of the French Government decided to implement the Co-ordinated Research Project (CRP) on 'The Use of Nuclear and Related Techniques for Evaluating the Agronomic Effectiveness of Phosphate Fertilisers, in particular Rock Phosphates'. This final report describes the Fourth and Final RCM of the CRP which was held in Vienna, 16-20 November 1998. It also contains a full description of the project and the conclusions and recommendations of the CRP. The programme of the meeting, list of participants, summaries submitted by the participants and list of publications are included as annexes.

  9. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  10. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan

    Directory of Open Access Journals (Sweden)

    Matiullah Khan

    2012-05-01

    Full Text Available Phosphorus deficiency is wide spread in soils of Pakistan. It is imperative to explore the potential and economics of indigenous Hazara rock phosphate for preparation of single super phosphate fertilizer. For the subject study rock phosphate was collected from Hazara area ground at 160 mesh level with 26% total P2O5 content for manual preparation of single super phosphate fertilizer. The rock phosphate was treated with various concentrations of sulfuric acid (98.9%, diluted or pure in the field. The treatments comprised of 20 and 35% pure acid and diluted with acid-water ratios of 1:5, 1:2, 1:1 and 2:1 v/v for acidulation at the rate of 60 liters 100 kg-1 rock phosphate. The amount was prior calculated in the laboratory for complete wetting of rock phosphate. A quantity of 150 kg rock phosphate was taken as treatment. The respective amount of acid was applied with the spray pump of stainless steel or poured with bucket. After proper processing, chemical analysis of the products showed a range of available P2O5 content from 9.56 to 19.24% depending upon the amount of acid and its dilution. The results reveal at that 1:1 dilutions gave the highest P2O5 content (19.24%, lowest free acid (6 % and 32% weight increase. The application of acid beyond or below this combination either pure or diluted gave hygroscopic product and higher free acids. The cost incurred upon the manual processing was almost half the prevailing rates in the market. These results lead to conclude that application of sulfuric acid at the rate of 60 liters 100 kg-1 with the dilution of 50% (v/v can yield better kind of SSP from Hazara rock phosphate at lower prices.

  12. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    Science.gov (United States)

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H 2 O 2 . We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H 2 O 2 , which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H 2 O 2 . After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H 2 O 2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H 2 O 2 , and viability decreased in both groups in 40, 60, 80, and 120 µM H 2 O 2 . However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H 2 O 2 , and the reducing equivalents necessary for protection against H 2 O 2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  13. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  14. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  15. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Eunsoo Lim

    2018-03-01

    Full Text Available Background : For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods : We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48 or a control group (n = 22. We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results : The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0% patients achieved the primary goal, as compared with 16 (72.7% in the control group (P = 0.430. The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087, but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851. However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193. The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363 nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569. Conclusion : Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy.

  16. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  17. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  18. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  19. Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties

    NARCIS (Netherlands)

    Wolach, Baruch; Broides, Arnon; Zeeli, Tal; Gavrieli, Ronit; de Boer, Martin; van Leeuwen, Karin; Levy, Jacov; Roos, Dirk

    2011-01-01

    Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two

  20. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase

    DEFF Research Database (Denmark)

    Ebbesson, Lars O E; Tipsmark, Christian K; Holmqvist, Bo

    2005-01-01

    We investigated the relationship between nitric oxide (NO) and Na(+),K(+)-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphor...

  1. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  2. [Intensity of pentose phosphate metabolism of carbohydrates in various brain areas in normal and starved animals].

    Science.gov (United States)

    Kerimov, B F

    2002-01-01

    The activities of key enzymes of pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G-6 PD) and 6-phosphogluconate dehydrogenase (6-PGD), were studied in cytoplasmatic fractions of brain cortical (limbic, orbital, sensorimotor cortex) and subcortical (myelencefalon, mesencefalon, hypothalamus) structures of rats subjected to starvation for 1, 2, 3, 5 and 7 days. Short-term starvation (1-3 days) caused activation of 6-GPD and 6-PGD both in cortical and subcortical structures. Long-term starvation for 5-7 days caused a decrease of activities of the pentose phosphate pathway enzymes in all studied structures. It is suggested that enzymes of pentose phosphate pathway in nervous tissues are functionally and metabolically related to glutathione system and during starvation they indirectly participate in the regulation lipid peroxidation processes.

  3. Infrared and Raman Spectra of Magnesium Ammonium Phosphate Hexahydrate (Struvite) and its Isomorphous Analogues. VIII. Spectra of Protiated and Partially Deuterated Magnesium Rubidium Phosphate Hexahydrate and Magnesium Thallium Phosphate Hexahydrate.

    Science.gov (United States)

    Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor

    2011-09-01

    The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.

  4. Serum phosphate is associated with aortic valve calcification in the Multi-ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Linefsky, Jason P; O'Brien, Kevin D; Sachs, Michael; Katz, Ronit; Eng, John; Michos, Erin D; Budoff, Matthew J; de Boer, Ian; Kestenbaum, Bryan

    2014-04-01

    This study sought to investigate associations of phosphate metabolism biomarkers with aortic valve calcification (AVC). Calcific aortic valve disease (CAVD) is a common progressive condition that involves inflammatory and calcification mediators. Currently there are no effective medical treatments, but mineral metabolism pathways may be important in the development and progression of disease. We examined associations of phosphate metabolism biomarkers, including serum phosphate, urine phosphate, parathyroid hormone (PTH) and serum fibroblast growth factor (FGF)-23, with CT-assessed AVC at study baseline and in short-term follow-up in 6814 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). At baseline, AVC prevalence was 13.2%. Higher serum phosphate levels were associated with significantly greater AVC prevalence (relative risk 1.3 per 1 mg/dL increment, 95% confidence incidence: 1.1 to 1.5, pAVC. Average follow-up CT evaluation was 2.4 years (range 0.9-4.9 years) with an AVC incidence of 4.1%. Overall, phosphate metabolism biomarkers were not associated with incident AVC except in the top FGF-23 quartile. Serum phosphate levels are significantly associated with AVC prevalence. Further study of phosphate metabolism as a modifiable risk factor for AVC is warranted. Published by Elsevier Ireland Ltd.

  5. Radioactivity of phosphate ores from Karatas-Mazidag phosphate deposit of Turkey

    International Nuclear Information System (INIS)

    Akyuez, T.; Varinlioglu, A.; Kose, A.; Akyuez, S.

    2000-01-01

    The specific activities of 238 U, 226 Ra, 232 Th and 40 K in the composite samples of phosphate ores of type I (grey-coloured ore, with high P 2 O 5 (21-35%) and low calcite content) and of type II (grey coloured calcite ore, with low P 2 O 5 content (5-17%)) of Karatas-Mazidag phosphate deposit, Turkey, have been determined by gamma spectrometry together with phosphatic animal feed ingredients. The concentrations of 238 U, 226 Ra, 232 Th and 40 K were found to be up to 557, 625, 26 and 297 Bq x kg -1 , respectively. Radium equivalent activities of samples were calculated and compared with those given in the literature. Uranium concentration of the individual phosphate samples, from which composite samples of ores of type I and II have been prepared, were found to show and increasing trend with increasing P 2 O 5 and F concentrations. (author)

  6. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate

    International Nuclear Information System (INIS)

    Chrysochoou, Maria; Dermatas, Dimitris; Grubb, Dennis G.

    2007-01-01

    Phosphate treatment has emerged as a widely accepted approach to immobilize Pb in contaminated soils and waste media, relying on the formation of the highly insoluble mineral pyromorphite as solubility-controlling phase for Pb. As such, phosphate treatment has been proposed as a Best Management Practice (BMP) for firing ranges where Pb occurs in its metallic forms and several other phases (carbonates, oxides). While pyromorphite thermodynamically has the potential to control Pb solubility at low levels, its formation is kinetically controlled by pH, the solubility of the phosphate source, and the solubility of Pb species. Treatability studies have shown that excess quantities of soluble and acidic phosphate sources, such as phosphoric acid, are necessary for successful in situ treatment. Even under these conditions, Extended X-ray Absorption Fine Structure (EXAFS), the only reliable method to identify and quantify Pb speciation, showed that Pb conversion to pyromorphite in in situ treated soils was less than 45% after 32 months. Furthermore, the use of lime (CaO) to restore soil pH in acidified soil treatments inhibited further conversion. Additionally, phosphate treatment is known to reduce bioavailability through pyromorphite formation in the intestinal tract, and the phytoaccumulation of Pb; both desirable effects for Pb-impacted areas. Given the costs of phosphate treatment, the use of biogenic phosphate sources, such as bone meal, may be a more environmentally sustainable approach toward this end. In the many studies focusing on phosphate treatment, the attendant P leaching and eutrophication have been largely overlooked, along with other issues such as the enhanced leaching of oxyanionic contaminants, such as Se, As and W. The success and sustainability of applying phosphate as a BMP in firing range soils therefore remain questionable

  7. Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase

    NARCIS (Netherlands)

    Roos, Dirk; de Boer, Martin; Köker, M. Yavuz; Dekker, Jan; Singh-Gupta, Vinita; Ahlin, Anders; Palmblad, Jan; Sanal, Ozden; Kurenko-Deptuch, Magdalena; Jolles, Stephen; Wolach, Baruch

    2006-01-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by defects in any of four genes encoding components of the leukocyte nicotinamide dinucleotide phosphate, reduced (NADPH) oxidase. One of these is the autosomal neutrophil cytosolic factor 1 (NCF1) gene encoding the p47phox

  8. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes

    International Nuclear Information System (INIS)

    Ochsenfeld, W.; Schmieder, H.

    1976-01-01

    Fast breeder fuel elements which have been highly burnt-up are reprocessed by extracting uranium and plutonium into an organic solution containing tributyl phosphate. The tributyl phosphate degenerates at least partially into dibutyl phosphate and monobutyl phosphate, which form stable complexes with tetravalent plutonium in the organic solution. This tetravalent plutonium is released from its complexed state and stripped into aqueous phase by contacting the organic solution with an aqueous phase containing tetravalent uranium. 6 claims, 1 drawing figure

  9. Study on preventive effects of i.v. administration of flavin adenine dinucleotide (FAD) before irradiation on radiation stomatitis

    International Nuclear Information System (INIS)

    Nagai, Masao; Houzawa, Jiro; Hakamada, Masaru

    1984-01-01

    In order to compare the preventive effect on radiation stomatitis, flavin adenine dinucleotide (FAD) or vitamin C was administered intravenously until the blood level reached the maximum at the time of irradiation. Thirtyfive patients with cranial or cervical tumors were allocated into the group with FAD (15), the group with vitamin C (10), and the group with irradiation alone (10). The incidence of stomititis was significantly lower and the number of patients in whom the drug was withdrawn due to stomatitis was extremely smaller in the group with FAD than in the other groups. FAD administered before irradiation was considered very useful in preventing radiation stomatitis. (Namekawa, K.)

  10. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  11. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  12. Uranium-phosphate relationship in phosphated chalks of the Mons and Picardie Bassins

    Energy Technology Data Exchange (ETDEWEB)

    Quinif, Y; Charlet, J M; Dupuis, C; Robaszynski, F [Faculte Polytechnique de Mons (Belgium)

    1981-11-30

    The lithological and geochemical conditions relative to the ''Senonian'' phosphatic chalks are relatively simple in the Basins of Mons (Belgium) and of Picardy (France). Their characteristics permit us to study chiefly the uranium-phosphate relation. It appears a very good linear correlation between the phosphate and the uranium. The coefficient U/P/sub 2/O/sub 5/ remains a constant from the bottom to the top of the same section, but changes in space for synchronic formations (lateral variation of geochemical facies) and in time for two separated basins.

  13. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  14. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  15. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  16. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers

    International Nuclear Information System (INIS)

    El-Bahi, S.M.; Sroor, A.; Mohamed, Gehan Y.; El-Gendy, N.S.

    2017-01-01

    In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of "2"3"5U, "2"3"8U, "2"2"6Ra, "2"3"2Th and "4"0K was found as (45, 1031, 786, 85 and 765 Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819 Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870 Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897 Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. - Highlights: • Level of radioactivity of phosphate rocks and by-products samples. • The radiological health hazard parameters. • Radiological risk to the health of the population. • The excess lifetime cancer risk factor.

  17. Serum Phosphate Predicts Early Mortality among Underweight Adults Starting ART in Zambia: A Novel Context for Refeeding Syndrome?

    Directory of Open Access Journals (Sweden)

    John R. Koethe

    2013-01-01

    Full Text Available Background. Low body mass index (BMI at antiretroviral therapy (ART initiation is associated with early mortality, but the etiology is not well understood. We hypothesized that low pretreatment serum phosphate, a critical cellular metabolism intermediate primarily stored in skeletal muscle, may predict mortality within the first 12 weeks of ART. Methods. We prospectively studied 352 HIV-infected adults initiating ART in Lusaka, Zambia to estimate the odds of death for each 0.1 mmol/L decrease in baseline phosphate after adjusting for established predictors of mortality. Results. The distribution of phosphate values was similar across BMI categories (median value 1.2 mmol/L. Among the 145 participants with BMI <18.5 kg/m2, 28 (19% died within 12 weeks. Lower pretreatment serum phosphate was associated with increased mortality (odds ratio (OR 1.24 per 0.1 mmol/L decrement, 95% CI: 1.05 to 1.47; P=0.01 after adjusting for sex, age, and CD4+ lymphocyte count. A similar relationship was not observed among participants with BMI ≥18.5 kg/m2 (OR 0.96, 95% CI: 0.76 to 1.21; P=0.74. Conclusions. The association of low pretreatment serum phosphate level and early ART mortality among undernourished individuals may represent a variant of the refeeding syndrome. Further studies of cellular metabolism in this population are needed.

  18. Calcium phosphates: what is the evidence?

    Science.gov (United States)

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  19. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    International Nuclear Information System (INIS)

    Akana, J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (β/α) 8 -barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn 2+ which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn 2+ and inactive apoenzyme cannot be prepared, the affinity for Zn 2+ is decreased by alanine substitutions for the two histidine residues that coordinate the Zn 2+ ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn 2+ . The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn 2+ that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn 2+ and participate as acid/base catalysts are not conserved. We conclude that only the phosphate

  20. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  1. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    OpenAIRE

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-01-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the le...

  2. Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement

    International Nuclear Information System (INIS)

    Broderick, T.P.; Schaff, D.A.; Bertino, A.M.; Dush, M.K.; Tischfield, J.A.; Stambrook, P.J.

    1987-01-01

    The functional human adenine phosphoribosyltransferase (APRT) gene is <2.6 kilobases in length and contains five exons. The amino acid sequences of APRTs have been highly conserved throughout evolution. The human enzyme is 82%, 90%, and 40% identical to the mouse, hamster, and Escherichia coli enzymes, respectively. The promoter region of the human APRT gene, like that of several other housekeeping genes, lacks TATA and CCAAT boxes but contains five GC boxes that are potential binding sites for the Sp1 transcription factor. The distal three, however, are dispensable for gene expression. Comparison between human and mouse APRT gene nucleotide sequences reveals a high degree of homology within protein coding regions but an absence of significant homology in 5' flanking, 3' untranslated, and intron sequences, except for similarly positioned GC boxes in the promoter region and a 26-base-pair region in intron 3. This 26-base-pair sequence is 92% identical with a similarly positioned sequence in the mouse gene and is also found in intron 3 of the hamster gene, suggesting that its retention may be a consequence of stringent selection. The positions of all introns have been precisely retained in the human and both rodent genes. Retention of an elevated CpG dinucleotide content, despite loss of sequence homology, suggests that there may be selection for CpG dinucleotides in these regions and that their maintenance may be important for APRT gene function

  3. Phosphate additives in food--a health risk.

    Science.gov (United States)

    Ritz, Eberhard; Hahn, Kai; Ketteler, Markus; Kuhlmann, Martin K; Mann, Johannes

    2012-01-01

    Hyperphosphatemia has been identified in the past decade as a strong predictor of mortality in advanced chronic kidney disease (CKD). For example, a study of patients in stage CKD 5 (with an annual mortality of about 20%) revealed that 12% of all deaths in this group were attributable to an elevated serum phosphate concentration. Recently, a high-normal serum phosphate concentration has also been found to be an independent predictor of cardiovascular events and mortality in the general population. Therefore, phosphate additives in food are a matter of concern, and their potential impact on health may well have been underappreciated. We reviewed pertinent literature retrieved by a selective search of the PubMed and EU databases (www.zusatzstoffe-online.de, www.codexalimentarius.de), with the search terms "phosphate additives" and "hyperphosphatemia." There is no need to lower the content of natural phosphate, i.e. organic esters, in food, because this type of phosphate is incompletely absorbed; restricting its intake might even lead to protein malnutrition. On the other hand, inorganic phosphate in food additives is effectively absorbed and can measurably elevate the serum phosphate concentration in patients with advanced CKD. Foods with added phosphate tend to be eaten by persons at the lower end of the socioeconomic scale, who consume more processed and "fast" food. The main pathophysiological effect of phosphate is vascular damage, e.g. endothelial dysfunction and vascular calcification. Aside from the quality of phosphate in the diet (which also requires attention), the quantity of phosphate consumed by patients with advanced renal failure should not exceed 1000 mg per day, according to the guidelines. Prospective controlled trials are currently unavailable. In view of the high prevalence of CKD and the potential harm caused by phosphate additives to food, the public should be informed that added phosphate is damaging to health. Furthermore, calls for labeling

  4. Phosphate analysis of natural sausage casings preserved in brines with phosphate additives as inactivating agent - Method validation.

    Science.gov (United States)

    Wijnker, J J; Tjeerdsma-van Bokhoven, J L M; Veldhuizen, E J A

    2009-01-01

    Certain phosphates have been identified as suitable additives for the improvement of the microbial and mechanical properties of processed natural sausage casings. When mixed with NaCl (sodium chloride) and used under specific treatment and storage conditions, these phosphates are found to prevent the spread of foot-and-mouth disease and classical swine fever via treated casings. The commercially available Quantichrom™ phosphate assay kit has been evaluated as to whether it can serve as a reliable and low-tech method for routine analysis of casings treated with phosphate. The outcome of this study indicates that this particular assay kit has sufficient sensitivity to qualitatively determine the presence of phosphate in treated casings without interference of naturally occurring phosphate in salt used for brines in which casings are preserved.

  5. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  6. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  7. Glucose and fructose 6-phosphate cycle in humans

    International Nuclear Information System (INIS)

    Karlander, S.; Roovete, A.; Vranic, M.; Efendic, S.

    1986-01-01

    We have determined the rate of glucose cycling by comparing turnovers of [2- 3 H]- and [6- 3 H]glucose under basal conditions and during a glucose infusion. Moreover, the activity of the fructose 6-phosphate cycle was assessed by comparing [3- 3 H]- and [6- 3 H]glucose. The study included eight lean subjects with normal glucose tolerance. They participated in two randomly performed investigations. In one experiment [2- 3 H]- and [6- 3 H]glucose were given simultaneously, while in the other only [3- 3 H]glucose was given. The basal rate of glucose cycling was 0.32 +/- 0.08 mg X kg-1 X min-1 or 17% of basal glucose production (P less than 0.005). During glucose infusion the activity of endogenous glucose cycling did not change but since glucose production was suppressed it amounted to 130% of glucose production. The basal fructose 6-phosphate cycle could be detected only in three subjects and was suppressed during glucose infusion. In conclusion, the glucose cycle is active in healthy humans both in basal conditions and during moderate hyperglycemia. In some subjects, the fructose 6-phosphate cycle also appears to be active. Thus it is preferable to use [6- 3 H]glucose rather than [3- 3 H]glucose when measuring glucose production and particularly when assessing glucose cycle

  8. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  9. Phosphate and phosphate fertilizer sector: structure and future prospects. [Uranium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zenaidi, B

    1981-12-01

    A statement of the past evolution of this sector's structure is given. Various prospective studies which have been made are reviewed and lead to the precision of the phosphate requirement in the year 2000 which is between 200 and 250 Mt. Only a small section p. 696-697 is devoted to recovery of uranium contained in phosphate and prospects in this field are given.

  10. Better prospects for phosphate production

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The extraction of uranium as a by product of phosphate production is discussed. Techniques being commercially developed are described. The trend towards the wet process, in which sulphuric acid is used to dissolve the phosphate, producing phosphoric acid, is also the preferred method for uranium recovery. Recovery from a wet process phosphoric acid stream, integrated with phosphate fertilizer manufacture, is becoming increasingly commercially viable for the production of yellow-cake.

  11. The Oxygen Isotopic Composition of Phosphate: A Tracer for Phosphate Sources and Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, University of California, CA (United States); Young, M. B.; Paytan, A.; Kendall, C. [U.S. Geological Survey, University of California, CA (United States)

    2013-05-15

    Phosphorus (P) is a limiting macro-nutrient for primary productivity and anthropogenic P-loading to aquatic ecosystems is one of the leading causes of eutrophication in many ecosystems throughout the world. Because P has only one stable isotope, traditional isotope techniques are not possible for tracing sources and cycling of P in aquatic systems. However, much of the P in nature is bonded to four oxygen (O) atoms as orthophosphate (PO{sub 4}{sup 3-}). The P-O bonds in orthophosphate are strongly resistant to inorganic hydrolysis and do not exchange oxygen with water without biological mediation (enzyme-mediated recycling). Thus, the oxygen isotopic composition of dissolved inorganic phosphate ({delta}{sup 18}O{sub p}) may be used as a tracer for phosphate sources and cycling in aquatic ecosystems. Recently, several studies have been conducted utilizing {delta}{sup 18}O{sub p} as a tracer for phosphate sources and cycling in various aquatic environments. Specifically, work to date indicates that {delta}{sup 18}O{sub p} is useful for determining sources of phosphate to aquatic systems if these sources have unique isotopic signatures and phosphate cycling within the system is limited compared to input fluxes. In addition, because various processes imprint specific fractionation effects, the {delta}{sup 18}O{sub p} tracer can be utilized to determine the degree of phosphorous cycling and processing through the biomass. This chapter reviews several of these studies and discusses the potential to utilize the {delta}{sup 18}O{sub p} of phosphate in rivers and streams. (author)

  12. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  13. PHOSPHATE CRYSTALLURIA IN VARIOUS FORMS OF UROLITHIASIS AND POSSIBILITIES OF ITS PROGNOSTICATION IN PATIENTS WITH PHOSPHATE STONES

    Directory of Open Access Journals (Sweden)

    O. V. Konstantinova

    2017-01-01

    Full Text Available Purpose. Definition of types of crystalluria in various forms of urolithiasis and biochemical signs of phosphate crystals in the urine, while phosphate urolithiasis (infectious origin.Patients and methods. The study involved 144 patients with recurrent urolithiasis — 75 women and 69 men. Of these, 46 — diagnosed calculi with uric acid, 44 — calcium oxalate or mixed with a prevalence of calcium oxalate, in 54 — phosphate rocks (carbonate-apatite and/or struvite. The age of patients ranged from 21 to 74 years. 93 people have been under long-term, within 2–15 years, outpatient observation. The examination included the collection of anamnesis, general and microbiological analysis of urine, biochemical blood serum and urine on 10 indicators, reflecting renal function, state of the protein, water and electrolyte metabolism, uric acid metabolism, the chemical composition of the stone analysis.Results. It was found that in patients with calcium oxalate stones phosphaturia has been diagnosed in 2% of cases. And, along with calcium phosphate crystals they had oxalate crystals. In patients with phosphate urolithiasis phosphaturia observed in 96% of patients, in two patients (4% they determined except phosphates also oxalate salt in urine sediment. Patients with phosphate urolithiasis at occurrence of phosphate crystalluria have metabolic state changes: increased serum uric acid concentration from 0.322 ± 0.009 to 0.367 ± 0.018 mmol/l daily renal excretion of inorganic phosphate 23.94 ± 2.93 mmol/day to 32.12 ± 4.39 mmol/day, and reduced total calcium content in urine 6.61 ± 0.94 mmol/day to 3.37 ± 0.89 mmol/day. The results led to the following conclusion.Conclusion. Biochemical signs of occurrence of phosphate crystalluria in patients with stones of infectious origin can be: the approaching level of excretion in the urine of inorganic phosphates to 32,12 ± 4,39 mmol/day, serum uric acid concentration to 0,367 ± 0,018 mmol/l, and the

  14. on association of trialkyl phosphates

    International Nuclear Information System (INIS)

    Petkovic, D.M.; Maksimovic, Z.B.

    1976-01-01

    The association constants of tri-n-butyl (TBP), tri-n-propyl (TPP) and triethyl phosphate (TEP) with chloroform, carbon tetrachloride and benzene were determined by dielectric constant, proton magnetic resonance and vapor pressure measurements. Correlation of the trialkyl phosphate-chloroform association constants, using the Hammett equation, showed their increase with the number of carbon atoms in the aliphatic radicals. The change of trialkyl phosphate reactivity with temperature was used to determine the thermodynamic quantities. (author)

  15. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  16. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  17. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  18. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    3Department of Genetics and Plant Breeding, College of Agriculture, Lembucherra, Tripura 799 ... vated in soil like red and lateritic or acid, with low soluble phosphate content. ..... activation of genes involved in the adaptation of Arabidopsis to.

  19. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio.

    Science.gov (United States)

    Watanabe, Marcela T; Araujo, Raphael M; Vogt, Barbara P; Barretti, Pasqual; Caramori, Jacqueline C T

    2016-08-01

    Hyperphosphatemia is common in patients with chronic kidney disease (CKD) stages IV and V because of decreased phosphorus excretion. Phosphatemia is closely related to dietary intake. Thus, a better understanding of sources of dietary phosphate consumption, absorption and restriction, particularly inorganic phosphate found in food additives, is key to prevent consequences of this complication. Our aims were to investigate the most commonly consumed processed foods by patients with CKD on hemodialysis, to analyze phosphate and protein content of these foods using chemical analysis and to compare these processed foods with fresh foods. We performed a cross-sectional descriptive analytical study using food frequency questionnaires to rank the most consumed industrialized foods and beverages. Total phosphate content was determined by metavanadate colorimetry, and nitrogen content was determined by the Kjeldahl method. Protein amounts were estimated from nitrogen content. The phosphate-to-protein ratio (mg/g) was then calculated. Processed meat protein and phosphate content were compared with the nutritional composition of fresh foods using the Brazilian Food Composition Table. Phosphate measurement results were compared with data from the Food Composition Table - Support for Nutritional Decisions. An α level of 5% was considered significant. Food frequency questionnaires were performed on 100 patients (mean age, 59 ± 14 years; 57% male). Phosphate additives were mentioned on 70% of the product labels analyzed. Proteins with phosphate-containing additives provided approximately twice as much phosphate per gram of protein compared with that of fresh foods (p processed foods are higher than those of fresh foods, as well as phosphate-to-protein ratio. A better understanding of phosphate content in foods, particularly processed foods, may contribute to better control of phosphatemia in patients with CKD. Copyright © 2016 European Society for Clinical Nutrition and

  20. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  1. Pentose phosphates in nucleoside interconversion and catabolism.

    Science.gov (United States)

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  2. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    Science.gov (United States)

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  3. Analyses of uranium in some phosphate commercial products

    International Nuclear Information System (INIS)

    Kamel, N.H.M.; Sohsah, M.; Mohammad, H.M.; Sadek, M.

    2005-01-01

    The raw materials used in manufacturing of phosphate fertilizer products were derived from rocks. Rocks contain a remarkable of natural radioactivity. Uranium and phosphorous were originally initiated at the same time of the initiated rocks. The purpose of this research is to investigate solubility of uranium phosphate species at the phosphate fertilizer samples, samples including; raw phosphate material, single super phosphates (SSP) granules and powdered, triple super phosphates (TSP) and phosphogypsum samples were obtained from Abu-Zabal factory in Egypt. Solubility of uranium phosphate species was estimated. It was found that, less than half of the uranium phosphate species are soluble in water. The soluble uranium may be enter into the food chains by plant. Therefore, restriction should be done in order to limit contamination of land and the public

  4. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics.

    Science.gov (United States)

    Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse

    2017-09-01

    Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.

  5. [Phosphate-solubilizing activity of aerobic methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  6. Isolation and identification of a phosphate solubilising fungus from soil of a phosphate mine in Chaluse, Iran

    Directory of Open Access Journals (Sweden)

    Raheleh Jamshidi

    2016-07-01

    Full Text Available Microbial solubilisation of phosphorus from insoluble phosphates is an environmental friendly and cost effective approach in sustainable soil management. Introducing the indigenous microorganisms to soil requires shorter adaptation period and causes fewer ecological distortions than exogenous microorganisms. This study was conducted to isolate and identify the indigenous fungi for phosphate solubilisation in Mazandaran, Iran. A potent phosphate solubilising fungus was isolated from an Iranian phosphate mine and selected for solubilisation of rock phosphate (RP. The identified fungus was characterised by calmodulin-based polymerase chain reaction method as Aspergillus tubingensis SANRU (Sari Agricultural Sciences and Natural Resources University. The phosphate solubilisation ability of the fungal strain was carried out in shake-flask leaching experiments containing various concentrations of RP (1%, 2%, 4%, or 8% w/v. The maximum P solubilisation rate of 347 mg/l was achieved at 1% of RP concentration on day 9. The regression analysis indicated that the P solubilised mainly through acidification. This study shows the possibility of using A. tubingensis SANRU for application in the management of P fertilisation.

  7. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  8. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  9. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  10. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  11. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  12. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  13. Transfer of Some Major and Trace Elements From Phosphate Rock to Super-Phosphate Fertilizers

    International Nuclear Information System (INIS)

    El-Reefya, H.I.; Bin-Jaz, A.A.; Zaied, M.E.; Badran, H.M.; Badran, H.M.

    2014-01-01

    This study assesses the transfer of some major and trace elements from phosphate rock (PR) to single (SSP) and triple (TSP) superphosphate fertilizers. Samples from a fertilizer plant and local market were collected and analyzed using inductively coupled plasma spectrometer. Cluster analysis indicated that the inner-relationship among the concentration of the elements in PR, SSP, and TSP are different. Only one element (Mo) has concentration in SSP higher than phosphate rock. The production process of these two types of superphosphate leads to transfer higher portion of Mn, B, Cu, Mo, Sr, and V present in the phosphate rock to SSP than TSP. The potentially hazardous element Cd is also transmitted more to SSP than TSP, and Cr is equally transferred to both types. The mean elemental concentrations normalized to the percentage of P 2 O 5 demonstrate that for most elements they are the higher concentrations in SSP are linked to the phosphate contents

  14. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  15. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7

    Czech Academy of Sciences Publication Activity Database

    Doroshenko, I.; Žurková, J.; Moravec, Z.; Bezdička, Petr; Pinkas, J.

    2015-01-01

    Roč. 26, SEP (2015), s. 157-162 ISSN 1350-4177 Institutional support: RVO:61388980 Keywords : Uranium * Phosphates * Sonochemistry * Nuclear waste * Trimethyl phosphate * Triethyl phosphate Subject RIV: CA - Inorganic Chemistry Impact factor: 4.556, year: 2015

  16. Cerebrospinal Fluid Phosphate in Delirium after Hip Fracture

    Directory of Open Access Journals (Sweden)

    Ane-Victoria Idland

    2017-09-01

    Full Text Available Aims: Phosphate is essential for neuronal activity. We aimed to investigate whether delirium is associated with altered phosphate concentrations in cerebrospinal fluid (CSF and serum. Methods: Seventy-seven patients with hip fracture were assessed for delirium before and after acute surgery. Prefracture dementia was diagnosed by an expert panel. Phosphate was measured in CSF obtained immediately before spinal anesthesia (n = 77 and in serum (n = 47. CSF from 23 cognitively healthy elderly patients undergoing spinal anesthesia was also analyzed. Results: Hip fracture patients with prevalent delirium had higher CSF phosphate concentrations than those without delirium (median 0.63 vs. 0.55 mmol/L, p = 0.001. In analyses stratified on dementia status, this difference was only significant in patients with dementia. Serum phosphate was ∼1 mmol/L; there was no association between serum phosphate concentration and delirium status. CSF phosphate did not correlate with serum levels. Conclusion: Patients with delirium superimposed on dementia have elevated phosphate levels.

  17. 108 - 114_Tanko_ Anti-Diabetic

    African Journals Online (AJOL)

    pc

    2017-06-01

    Jun 1, 2017 ... excessive nicotinamide adenine dinucleotide phosphate- oxidase ... Acute toxicity study. The lethal dose (LD50) of the plant extract was determined by the method of Lorke (1983) using 12 mice. In the first phase, mice were divided into 3 groups of 3 ... They were observed for 24 hours for signs of toxicity.

  18. Radical-induced dephosphorylation of fructose phosphates in aqueous solution

    International Nuclear Information System (INIS)

    Zegota, H.; Sonntag, C. von

    1981-01-01

    Oxygen free N 2 O-saturated aqueous solutions of D-fructose-1-phosphate and D-fructose-6-phosphate were γ-irradiated. Inorganic phosphate and phosphate free sugars (containing four to six carbon atoms) were identified and their G-values measured. D-Fructose-1-phosphate yields (G-values in parentheses) inorganic phosphate (1.6), hexos-2-ulose (0.12), 6-deoxy-2,5-hexodiulose (0.16), tetrulose (0.05) and 3-deoxytetrulose (0.15). D-Fructose-6-phosphate yields inorganic phosphate (1.7), hexos-5-ulose (0.1), 6-deoxy-2,5-hexodiulose (0.36), 3-deoxy-2,5-hexodiulose and 2-deoxyhexos-5-ulose (together 0.18). On treatment with alkaline phosphatase further deoxy sugars were recognized and in fructose-1-phosphate G(6-deoxy-2,5-hexodiulose) was increased to a G-value of 0.4. Dephosphorylation is considered to occur mainly after OH attack at C-5 and C-1 in fructose-1-phosphate and at C-5 and C-6 in fructose-6-phosphate. Reaction mechanisms are discussed. (orig.)

  19. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  20. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  1. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  2. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  3. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  4. Conditions promoting and restraining agronomic effectiveness of water-insoluble phosphate sources, in particular phosphate rock (PR): I. Indices of phosphate rock use opportunity (PRUOIS) and of phosphate rock suitability for direct use (PRSIDU)

    International Nuclear Information System (INIS)

    Borlan, Z.; Gavriluta, I.; Soare, M.; Stefanescu, D.; Alexandrescu, A.

    2002-01-01

    Several issues of phosphate rock (PR) use are discussed in this paper. Maize for green fodder (Zea mays L) and ryegrass (Lolium multiflorum Lam.) were grown in 7 kg of dry soil and in small pots of 1.25 kg dry soil capacity, respectively, on several base unsaturated soils belonging to Hapludoll and Hapludalf soil groups. The amount of phosphate rock (PR) to apply was based on experimental data considering soil adsorbed acidity (Ah), humus content (H 2 ), cation exchange capacity (T), sum of exchangeable bases (SEB) and mobile (easily soluble) phosphate content (P A L) in the soil. The factors were combined in a rock phosphate use, opportunity index of the soil (PRUOIS): PRUOIS=(A h *H 2 *100)/SEB*10 0.0245*P AL Rock phosphate suitability for direct use was evaluated by means of the rate of PR-P dissolution (PRPRS) in a 0.6% ammonium heptamolybdate in 0.01M calcium chloride solution (ppm P) and by carbonate content (%CaCO 3 ) in PR. Both of these parameters combined provided a phosphate rock suitability index for direct use (PRSIDU): PRSIDU [ppmP/min]=PRPRS*(1-0.03*CaCO 3 ) Water insoluble P sources studied were PR from Kola-Russia, Morocco, Kneifiss-Siria, El Hassa-Jordan, Gafsa- Tunisia, North-Carolina (USA), and Arad-Israel. All PRs were compared with TSP applied at the same rate of P. Neither PRUOIS or PRSIDU considered separately could satisfactorily explain the variance of PR efficiency. An index obtained by multiplicative combination of PRUOIS x PRSIDU did correlate significantly with indices on the agronomic efficiency of PR. (author)

  5. Impaired Phosphate Tolerance Revealed With an Acute Oral Challenge.

    Science.gov (United States)

    Turner, Mandy E; White, Christine A; Hopman, Wilma M; Ward, Emilie C; Jeronimo, Paul S; Adams, Michael A; Holden, Rachel M

    2018-01-01

    Elevated serum phosphate is consistently linked with cardiovascular disease (CVD) events and mortality in the setting of normal and impaired kidney function. However, serum phosphate does not often exceed the upper limit of normal until glomerular filtration rate (GFR) falls below 30 mL/min/m 2 . It was hypothesized that the response to an oral, bioavailable phosphate load will unmask impaired phosphate tolerance, a maladaptation not revealed by baseline serum phosphate concentrations. In this study, rats with varying kidney function as well as normo-phosphatemic human subjects, with inulin-measured GFR (13.2 to 128.3mL/min), received an oral phosphate load. Hormonal and urinary responses were evaluated over 2 hours. Results revealed that the more rapid elevation of serum phosphate was associated with subjects and rats with higher levels of kidney function, greater responsiveness to acute changes in parathyroid hormone (PTH), and significantly more urinary phosphate at 2 hours. In humans, increases in urinary phosphate to creatinine ratio did not correlate with baseline serum phosphate concentrations but did correlate strongly to early increase of serum phosphate. The blunted rise in serum phosphate in rats with CKD was not the result of altered absorption. This result suggests acute tissue deposition may be altered in the setting of kidney function impairment. Early recognition of impaired phosphate tolerance could translate to important interventions, such as dietary phosphate restriction or phosphate binders, being initiated at much higher levels of kidney function than is current practice. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  6. Phosphate Reduction in Emulsifi ed Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Seline Glorieux

    2017-01-01

    Full Text Available Phosphate reduction is of important industrial relevance in the manufacturing of emulsifi ed meat products because it may give rise to a healthier product. The eff ect of seven diff erent phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP and sodium tripolyphosphate (STPP increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had litt le eff ect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06 % TSPP was suffi cient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsifi ed meat products can be signifi cantly reduced with minimal loss of product quality.

  7. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    Science.gov (United States)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  8. Kynureninase-type enzymes and the evolution of the aerobic tryptophan-to-nicotinamide adenine dinucleotide pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, F.H.; Shetty, A.S.

    1977-01-01

    Kynureninase-type (L-kynurenine hydrolase, EC 3.7.1.3) activity has been found to be present in the livers of fish, amphibia, reptiles, and birds. In addition to past information concerning this enzyme activity in mammalian liver, it is now clear that all the major classes of vertebrates carry a highly specialized kynureninase-type enzyme, which we have termed a hydroxykynureninase. To compare the reactivities of these enzymes with L-kynurenine and L-3-hydroxykynurenine, ratios of tau values (K/sub m//V) were used. Based on this comparison, the bacterium Pseudomonas fluorescens carries the most efficient kynureninase, whereas the amphibian Xenopus laevis has the most efficient hydroxykynurenase. In these two cases, the ratio of tau values differs by a factor of 38,000. It is hypothesized that the tryptophan-to-nicotinamide adenine dinucleotide biosynthetic pathway evolved from a catabolic system of enzymes, and that the differences observed in the kynureninase-type enzymes between lower and higher organisms reflect the specialization of the function of these enzymes from a strictly catabolic role to an anabolic one during the course of evolution.

  9. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit

    Czech Academy of Sciences Publication Activity Database

    Kruse, H.; Mládek, Arnošt; Gkionis, Konstantinos; Hansen, A.; Grimme, S.; Šponer, Jiří

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4972-4991 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * DENSITY-FUNCTIONAL THEORY * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 5.301, year: 2015

  10. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  11. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  12. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Isolation of phosphatase-producing phosphate solubilizing bacteria from Loriya hot spring: Investigation of phosphate solubilizing in the presence of different parameters

    Directory of Open Access Journals (Sweden)

    Maryam Parhamfar

    2014-04-01

    Full Text Available Introduction: Biofertilizers are the microorganisms that can convert useless nutrient to usable compounds. Unlike fertilizer, cost of biofertilizer production is low and doesn’t produce ecosystem pollution. Phosphate fertilizers can be replaced by phosphate biofertilizer to produce improvement. So, it is necessary to screen the climate-compatible phosphate solubilizing bacteria. Materials and methods: In this project samples were picked up from Loriya hot spring, which are located in Jiroft. Samples were incubated in PKV medium for 3 days. Screening of phosphate solubilizing bacteria was performed on the specific media, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Phosphate solubilizing activity of this strain was considered in different carbon, nitrogen, phosphate and pH sources. Results: Sequence alignment and phylogenetic tree results show that B. sp. LOR033 is closely related to Bacillus licheniformis, with 97% homology. In addition, results show that maximum enzyme production was performed after 2 days that incubation pH was decreased simultaneously when the time was increased. Carbon sources investigation show that glucose is the most appropriate in enzyme production and phosphate releasing. Furthermore, results show that the optimum initial pH for phytase production was pH5.0. Different phosphate sources show that tricalcium phosphate has the suitable effect on enzyme activity in three days of incubation. Discussion and conclusion: Phosphatase enzyme production capacity, growth in acidic pH and phosphate solubilizing potential in different salt and phosphate sources show that this strain has considerable importance as biofertilizers.

  14. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  15. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  16. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  17. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  18. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  19. Serum Phosphate Predicts Early Mortality among Underweight Adults Starting ART in Zambia: A Novel Context for Refeeding Syndrome?

    Science.gov (United States)

    Koethe, John R.; Blevins, Meridith; Nyirenda, Christopher K.; Kabagambe, Edmond K.; Chiasera, Janelle M.; Shepherd, Bryan E.; Zulu, Isaac; Heimburger, Douglas C.

    2013-01-01

    Background. Low body mass index (BMI) at antiretroviral therapy (ART) initiation is associated with early mortality, but the etiology is not well understood. We hypothesized that low pretreatment serum phosphate, a critical cellular metabolism intermediate primarily stored in skeletal muscle, may predict mortality within the first 12 weeks of ART. Methods. We prospectively studied 352 HIV-infected adults initiating ART in Lusaka, Zambia to estimate the odds of death for each 0.1 mmol/L decrease in baseline phosphate after adjusting for established predictors of mortality. Results. The distribution of phosphate values was similar across BMI categories (median value 1.2 mmol/L). Among the 145 participants with BMI refeeding syndrome. Further studies of cellular metabolism in this population are needed. PMID:23691292

  20. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  1. Phosphate Favors the Biosynthesis of CdS Quantum Dots in Acidithiobacillus thiooxidans ATCC 19703 by Improving Metal Uptake and Tolerance

    Directory of Open Access Journals (Sweden)

    Giovanni Ulloa

    2018-02-01

    Full Text Available Recently, we reported the production of Cadmium sulfide (CdS fluorescent semiconductor nanoparticles (quantum dots, QDs by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5. The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM, a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species.

  2. Phosphate Favors the Biosynthesis of CdS Quantum Dots in Acidithiobacillus thiooxidans ATCC 19703 by Improving Metal Uptake and Tolerance

    Science.gov (United States)

    Ulloa, Giovanni; Quezada, Carolina P.; Araneda, Mabel; Escobar, Blanca; Fuentes, Edwar; Álvarez, Sergio A.; Castro, Matías; Bruna, Nicolás; Espinoza-González, Rodrigo; Bravo, Denisse; Pérez-Donoso, José M.

    2018-01-01

    Recently, we reported the production of Cadmium sulfide (CdS) fluorescent semiconductor nanoparticles (quantum dots, QDs) by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5). The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM), a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species. PMID:29515535

  3. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  4. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    Ulrich, Andrea E.; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-01-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  5. Phosphate Salts

    Science.gov (United States)

    ... body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes ... Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some ...

  6. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  7. Serum phosphate predicts early mortality in adults starting antiretroviral therapy in Lusaka, Zambia: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Douglas C Heimburger

    Full Text Available BACKGROUND: Patients starting antiretroviral therapy (ART for acquired immunodeficiency syndrome (AIDS in sub-Saharan Africa have high rates of mortality in the initial weeks of treatment. We assessed the association of serum phosphate with early mortality among HIV-infected adults with severe malnutrition and/or advanced immunosuppression. METHODOLOGY/PRINCIPAL FINDINGS: An observational cohort of 142 HIV-infected adults initiating ART in Lusaka, Zambia with body mass index (BMI <16 kg/m(2 or CD4(+ lymphocyte count <50 cells/microL, or both, was followed prospectively during the first 12 weeks of ART. Detailed health and dietary intake history, review of systems, physical examination, serum metabolic panel including phosphate, and serum ferritin and high-sensitivity C-reactive protein (hsCRP were monitored. The primary outcome was mortality. Baseline serum phosphate was a significant predictor of mortality; participants alive at 12 weeks had a median value of 1.30 mmol/L (interquartile range [IQR]: 1.04, 1.43, compared to 1.06 mmol/L (IQR: 0.89, 1.27 among those who died (p<0.01. Each 0.1 mmol/L increase in baseline phosphate was associated with an incremental decrease in mortality (AHR 0.83; 95% CI 0.72 to 0.95. The association was independent of other metabolic parameters and known risk factors for early ART-associated mortality in sub-Saharan Africa. While participant attrition represented a limitation, it was consistent with local program experience. CONCLUSIONS/SIGNIFICANCE: Low serum phosphate at ART initiation was an independent predictor of early mortality among HIV patients starting ART with severe malnutrition or advanced immunosuppression. This may represent a physiologic phenomenon similar to refeeding syndrome, and may lead to therapeutic interventions that could reduce mortality.

  8. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  9. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of use...

  10. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    International Nuclear Information System (INIS)

    Yohai, L.; Schreiner, W.H.; Vázquez, M.; Valcarce, M.B.

    2013-01-01

    PO 4 3− ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu 3 (PO 4 ) 2 is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu 3 (PO 4 ) 2 participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu 2 O, CuO and Cu(OH) 2 . ► PO 4 3− is an effective inhibitor for Cu in tap water containing high NaClO dosages

  11. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the

  12. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... patterns. Four insoluble phosphate sources; purulia rock phosphate (PRP), mussourie rock phosphate. (MRP) ... community composition analysis (Garland, 1996a) and ..... the threshold level that enabled only a few species to.

  13. Sodium Phosphate Supplementation and Time Trial Performance in Female Cyclists

    Directory of Open Access Journals (Sweden)

    Christopher L. Buck

    2014-09-01

    Full Text Available This study investigated the effects of three doses of sodium phosphate (SP supplementation on cycling 500 kJ (119.5 Kcal time trial (TT performance in female cyclists. Thirteen cyclists participated in a randomised, Latin-square design study where they completed four separate trials after ingesting either a placebo, or one of three different doses (25, 50 or 75 mg·kg-1 fat free mass: FFM of trisodium phosphate dodecahydrate which was split into four equal doses a day for six days. On the day after the loading phase, the TT was performed on a cycle ergometer. Serum phosphate blood samples were taken at rest both before and after each loading protocol, while a ~21 day washout period separated each loading phase. No significant differences in TT performance were observed between any of the supplementation protocols (p = 0.73 with average completion times for the 25, 50 or 75 mg·kg-1 FFM being, 42:21 ± 07:53, 40:55 ± 07:33 and 40:38 ± 07:20 min respectively, and 40:39 ± 07:51 min for the placebo. Likewise, average and peak power output did not significantly differ between trials (p = 0.06 and p = 0.46, respectively. Consequently, 500 kJ cycling TT performance was not different in any of the supplementation protocols in female cyclists.

  14. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    Science.gov (United States)

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  15. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  16. Biosynthesis and characterization of layered iron phosphate

    International Nuclear Information System (INIS)

    Zhou Weijia; He Wen; Wang Meiting; Zhang Xudong; Yan Shunpu; Tian Xiuying; Sun Xianan; Han Xiuxiu; Li Peng

    2008-01-01

    Layered iron phosphate with uniform morphology has been synthesized by a precipitation method with yeast cells as a biosurfactant. The yeast cells are used to regulate the nucleation and growth of layered iron phosphate. The uniform layered structure is characterized by small-angle x-ray diffraction (SAXD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages in organic–inorganic hybrid iron phosphate. The likely synthetic mechanism of nucleation and oriented growth is discussed. The electrical conductivity of hybrid iron phosphate heat-treated at different temperatures is presented

  17. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  18. Method of decomposing treatment for radioactive organic phosphate wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1985-01-01

    Purpose: To decompose the organic phosphoric-acid ester wastes containing radioactive material, which is produced from spent fuel reprocessing facilities, into inorganic materials using a simple device, under moderate conditions and at high decomposing ratio. Method: Radioactive organic phosphate wates are oxidatively decomposed by H 2 O 2 in an aqueous phosphoric-acid solution of metal phosphate salts. Copper phosphates are used as the metal phosphate salts and the decomposed solution of the radioactive organic phosphate wastes is used as the aqueous solution of the copper phosphate. The temperature used for the oxidizing decomposition ranges from 80 to 100 0 C. (Ikeda, J.)

  19. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  20. The effect of different phosphate ion concentrations and ph of the phosphate buffer on lipase bioproduction by rhizopus oligosporus

    International Nuclear Information System (INIS)

    Haq, I.; Ali, S.; Awan, U.F.; Javed, W.; Mirza, S.

    2005-01-01

    In the present investigation, we report the effect of phosphate ion concentration and different ph of the phosphate buffer (as diluent) on lipase bioproduction by Rhizopus oligosporus. For this purpose, solid state fermentation was employed. Different agricultural by-products such as wheat bran, rice husk, almond meal, soybean meal and sunflower meal were used as substrate. The maximum lipase activity (72.60 U/g) was observed with the almond meal. Addition of phosphate ions (K/sub 2/HPO/sub 4/) influenced the lipase production. The ph of the phosphate buffer (7.0) was found to be effective for higher yield of lipase. (author)

  1. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  2. Lack of awareness among future medical professionals about the risk of consuming hidden phosphate-containing processed food and drinks.

    Directory of Open Access Journals (Sweden)

    Yoshiko Shutto

    Full Text Available Phosphate toxicity is an important determinant of mortality in patients with chronic kidney disease (CKD, particularly those undergoing hemodialysis treatments. CKD patients are advised to take a low phosphate-containing diet, and are additionally prescribed with phosphate-lowering drugs. Since these patients usually seek guidance from their physicians and nurses for their dietary options, we conducted a survey to determine the levels of awareness regarding the high phosphate content in commercially processed food and drinks among medical and nursing students at the Hirosaki University School of Medicine in Japan. For this survey, 190 medical and nursing students (average age 21.7±3 years were randomly selected, and provided with a list of questions aimed at evaluating their awareness of food and drinks containing artificially added phosphate ingredients. While 98.9% of these students were aware of the presence of sugar in commercially available soda drinks, only 6.9% were aware of the presence of phosphate (phosphoric acid. Similarly, only 11.6% of these students were aware of the presence of phosphate in commercially processed food, such as hamburgers and pizza. Moreover, around two thirds of the surveyed students (67.7% were unaware of the harmful effects of unrestricted consumption of phosphate-containing food and drinks. About 28% of the surveyed students consume such "fast food" once a week, while 40% drink at least 1∼5 cans of soda drinks/week. After realizing the potential long-term risks of consuming excessive phosphate-containing food and drinks, 40.5% of the survey participants considered reducing their phosphate intake by minimizing the consumption of commercially processed "fast food" items and soda drinks. Moreover, another 48.4% of students showed interest in obtaining more information on the negative health effects of consuming excessive amounts of phosphate. This survey emphasizes the need for educational initiative to raise

  3. Radiological impact of use of phosphate fertilizers

    International Nuclear Information System (INIS)

    Shukla, V.K.; Chinnaesakki, S.; Sartandel, S.J.; Shanbhag, A.A.; Puranik, V.D.

    2003-01-01

    The paper describes the results of gamma spectrometric measurements of 238 U, 233 Th, 226 Ra and 40 K in rock phosphates and various types of phosphate fertilizers and by-products. The increase in soil natural radioactivity has been assessed for major Indian crops. No significant increase in soil natural radioactivity is expected due to the application of phosphate fertilizers for agricultural productions. (author)

  4. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native soil phosphates in acidic soils

    International Nuclear Information System (INIS)

    Feng Guanglin; Xiong Liming

    2002-01-01

    Six plant species with contrasting capacity in utilizing rock phosphates were compared with regard to their responses to phosphorus starvation in hydroponic cultures. Radish, buckwheat and oil rapeseed are known to have strong ability to use rock phosphates while ryegrass, wheat and sesbania are less efficient. Whereas other plants acidified their culture solution under P starvation (-P), radish plants make alkaline the solution. When neutralizing the pH of the solutions cultured with plants under either -P or + P conditions, solutions with P starved buckwheat, rapeseed, and radish had a higher ability to solubilize Al and Fe phosphates than did those cultured with sesbania, ryegrass and wheat. Characterization of organic ligands in the solutions identified that citrate and malate were the major organic anions exuded by rapeseed and radish. Besides citrate and malate, buckwheat exuded a large amount of tartrate under P starvation. In contrast, ryegrass, wheat and sesbania secreted only a limited amount of oxalic acid, regardless of P status. Changes in activities of phosphoenolpyruvate carboxylase, acid phosphatase, and nitrate reductase in these plants were also compared under P- sufficient or -deficient conditions. The results indicated that plant ability to use rock phosphates or soil phosphates is closely related to their responses toward P starvation. The diversity of P starvation responses was discussed in the context of co-evolution between plants and their environment. Approaches to use plant factors to enhance the effectiveness of rock phosphates were also discussed. (author)

  5. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    International Nuclear Information System (INIS)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-01-01

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  6. The phosphate balance : current developments and future outlook

    NARCIS (Netherlands)

    Enk, van R.J.; Vee, van der G.; Acera, L.K.; Schuiling, R.; Ehlert, P.A.I.

    2011-01-01

    Phosphate is essential for agricultural production and therefore plays a key role in the global production of food and biofuels. There are no agricultural alternatives for phosphate, and a substantial fraction of our annual phosphate consumption is dispersed into the environment where it is largely

  7. The phosphate balance : Current developments and future outlook

    NARCIS (Netherlands)

    Enk, R.J. van; Acera, L.K.; Schuiling, R.D.; Ehlert, P.; de Wilt, J.G.; van Haren, R.J.F.

    2011-01-01

    Phosphate is essential for agricultural production and therefore plays a key role in the global production of food and biofuels. There are no agricultural alternatives for phosphate, and a substantial fraction of our annual phosphate consumption is dispersed into the environment where it is largely

  8. Radiological impacts of uranium recovery in the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.

    1981-01-01

    This article characterizes the occupational and public radiological health impacts associated with phosphate mining and milling. These impacts are related to the phosphate industry's uranium production potential and are compared with those associated with conventional uranium mining and milling. The radiological impacts resulting from occupational and nonoccupational exposures are assessed. Occupational exposures in phosphate facilities are compared to background exposures and radiological population dose assessments, which characterize important radionuclides and exposure pathways. The following conclusions were reached: (1) public consequences of phosphate mining will occur whether or not uranium is recovered as a by-product, (2) radiological consequences of phosphate mining may be comparable to those associated with uranium mining and milling per unit uranium production, (3) radiological impacts via surface waterways and crops fertilized with uranium-bearing phosphates are of minor consequence, and (4) major radiological public health problems associated with phosphate mining are related to radon and radon progeny exposures in structures built on reclaimed lands or with phosphate mining residues, although the magnitudes of these impacts are difficult to evaluate with current data

  9. Physico-chemical characterization of Ogun and Sokoto phosphate ...

    African Journals Online (AJOL)

    Gypsum, calcite and lime were associated with both rock phosphates indicating their liming potential in the soil. ORP was more soluble in water, probably because it ... fertilizers and direct application in crop production. Keywords: Phosphorus, apatite, crop production, fertilizer, Ogun rock phosphate, Sokoto rock phosphate ...

  10. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, B.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2004-01-01

    The article describes the potential and limitations for recovery of phosphate from secondary materials in the production process for white phosphorus. This thermal process involves the feeding of phosphate rock, cokes and pebbles to a furnace. The reducing conditions in the furnace promote the

  12. Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Binh, Truong; Zapata, F.

    2002-01-01

    Phosphate rocks (PR) are phosphate-bearing minerals that vary widely in their inherent characteristics and consequently their agronomic potential. In the framework of a FAO/IAEA networked research project, the evaluation of the agronomic effectiveness of natural and modified PR products under a variety of soil climate and crop management conditions was carried out. The characterization of phosphate rocks is the first and essential step in evaluating their suitability for direct application. If several PR sources are utilized, standardized methods should be used for comparison purposes to determine their agronomic potential. This paper describes the standard characterization of phosphate rock products utilized in the project, in particular the mineralogical and crystallographic analyses, physical analyses, chemical composition and solubility in conventional reagents. A total of 28 phosphate rock samples from 15 countries were collected and analyzed in specialized laboratories. The data on mineralogy, chemical composition and solubility in conventional reagents are closely interrelated. An arbitrary classification of the reactivity of the PR samples was made based on the solubility indices in conventional reagents. On another hand, the results of the crystallographic parameters, calculated indices of absolute solubility, specific surface and porosity reflect the variability of the physical state and the sample pre-conditioning treatment of the analyzed products. A proper characterization of phosphate rock samples should provide the maximum of basic information that can be obtained in a cost-effective manner in normal chemical laboratories. Based on the results of this characterization, the following determinations are recommended: a description of the sample, major elemental (total P, Ca, Mg) composition, solubility in conventional reagents (neutral ammonium citrate, citric and formic acid) and particle size analysis. The classification of PR samples for direct

  13. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    Energy Technology Data Exchange (ETDEWEB)

    Yohai, L. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Schreiner, W.H. [Laboratório de Superfícies e Interfases, Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, PR (Brazil); Vázquez, M., E-mail: mvazquez@fi.mdp.edu.ar [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Valcarce, M.B. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2013-05-15

    PO{sub 4}{sup 3−} ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu{sub 3}(PO{sub 4}){sub 2} is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu{sub 3}(PO{sub 4}){sub 2} participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu{sub 2}O, CuO and Cu(OH){sub 2}. ► PO{sub 4}{sup 3−} is an effective inhibitor for Cu in tap water containing high NaClO dosages.

  14. Radio phosphorus kinetics in the blood of sheep supplemented with dicalcium phosphate, mono ammonium phosphate, triple superphosphate and Tapira rock phosphate

    International Nuclear Information System (INIS)

    Abdalla, A.L.

    1992-01-01

    With the aim to study the kinetics of radio phosphorus ( 32 P) in the blood of animals supplemented with dicalcium phosphate (BIC), mono ammonium phosphate (MAP), triple superphosphate (SPT) and Tapira rock phosphate (TAP), 32 male sheep were kept in metabolic cages at the Animal Science Section / CENA - USP. Plasma was obtained by centrifugation and the specific activity, rate of disappearance and half life of 32 P in plasma were determined. In the red blood cells were determined the uptake rate of the radioisotope, the rate of disappearance and half life of 32 P up taken. It was observed a statistical significant difference (p 32 P in the plasma and erythrocytes. The specific activity and half life of 32 P in the plasma were statistically different (p<0,10) among sheep receiving the different phosphorus sources; the same was observed in respect to the red blood cells. It was concluded that the supplemented phosphorus source given in the diet of sheep may affect the kinetics of the radio phosphorus in the blood after been intravenously injected. (author)

  15. Overexpression, crystallization and preliminary X-ray analysis of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from Bifidobacterium breve

    International Nuclear Information System (INIS)

    Suzuki, Ryuichiro; Kim, Byung-Jun; Shibata, Tsuyoshi; Iwamoto, Yuki; Katayama, Takane; Ashida, Hisashi; Wakagi, Takayoshi; Shoun, Hirofumi; Fushinobu, Shinya; Yamamoto, Kenji

    2010-01-01

    Xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from B. breve was overexpressed and crystallized. The crystals belonged to the tetragonal space group I422 and diffracted to beyond 1.7 Å resolution. The xylulose-5-phosphate/fructose-6-phosphate phosphoketolase gene from Bifidobacterium breve was cloned and overexpressed in Escherichia coli. The enzyme was purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method. Crystals were obtained at 293 K using 0.05 mM thiamine diphosphate, 0.25 mM MgCl 2 , 24%(w/v) PEG 6000 and 0.1 M Bicine pH 9.0. The crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 174.8, c = 163.8 Å, and diffracted to beyond 1.7 Å resolution

  16. Clinical safety and efficacy of implantation of octacalcium phosphate collagen composites in tooth extraction sockets and cyst holes

    Directory of Open Access Journals (Sweden)

    Tadashi Kawai

    2016-09-01

    Full Text Available It was demonstrated that octacalcium phosphate collagen composite achieved notable bone regeneration in bone defects in preclinical studies. On the basis of the research results, an investigator-initiated exploratory clinical trial was conducted after approval from a local Institutional Review Board. This clinical study was performed as a single-arm non-randomized intervention study. Octacalcium phosphate collagen composite was implanted into a total of 10 cases of alveolar bone defects after tooth extractions and cystectomy. Safety assessment was performed in terms of the clinical course and several consecutive laboratory examinations, and sequential radiographs were used for efficacy assessment. All participants uneventfully completed the clinical trial without major problems in their general condition. Postoperative wound swelling was observed, as also commonly seen in tooth extraction or cystectomy. Although no serious liver dysfunction, renal dysfunction, electrolyte imbalance, or abnormal urinalysis results were recognized, the number of white blood cells and C-reactive protein level temporarily increased after the operation. An increase in radiopacity in the octacalcium phosphate collagen composite–implanted site was observed in all cases. Finally, the border between the original bone and the octacalcium phosphate collagen composite–implanted site became indistinguishable. These results suggest that octacalcium phosphate collagen composite could be utilized safely in clinical situations in the future.

  17. Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus.

    Directory of Open Access Journals (Sweden)

    Milan Žižić

    Full Text Available The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+ on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC, and polyphosphates, UDPG and ATP (31P NMR was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+, indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.

  18. Issues of natural radioactivity in phosphates

    International Nuclear Information System (INIS)

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-01-01

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs

  19. A phosphate-starvation-inducible outermembrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker

    DEFF Research Database (Denmark)

    Leopold, Kristine; Jacobsen, Susanne; Nybroe, Ole

    1997-01-01

    A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1, expressed at phosphate concentrations below0.08-0.13 mM, was purified and characterized. The purification method involved separation of outer-membrane proteins by SDS-PAGE andextraction of the protein from...... nitrocellulose or PVDF membranes after electrotransfer of proteins to the membranes. The N-terminal amino acidsequence of the purified protein, called Psi1, did not show homology to any known proteins, and in contrast to the phosphate-specific porin OprP ofP. aeruginosa its mobility in SDS-PAGE was not affected...

  20. Isolation of phosphate solubiliser fungi from Araza rhizosphere

    International Nuclear Information System (INIS)

    Vera, Diana Fernanda; Perez, Hernando; Valencia Hernando

    2002-01-01

    Araza is an eatable plant, original from the Amazon region, which has been described as a promising species for commercialization (Quevedo 1995). This plant has high productivity even in low content phosphate soil but the presence of phosphate solubilizing microorganisms may contribute to increase this element availability. In this study we report the isolation and characterization of solubilizing fungi processed using the soil washing method, from soil samples were araza is cultivated at two regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizing phosphate were obtained from 2 different sources. The most important species that solubilized phosphate from calcium were Trichoderma aureoviride, Aspergillus aculeatus, Trichoderma strain 1 y Trichoderma strain 2 and for phosphate from iron: Aspergillus oryzae, Paecilomyces strain 3, Gongronella butleri and Fusarium oxysporum

  1. Uranium from phosphates in the United Arab Republic

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-04-15

    In response to a request from the UAR Government, the IAEA sent a Soviet expert, to make an on-the-spot study of data on the mining and processing of phosphates in the UAR and to examine the possibility of recovering uranium from the phosphate ores. In his report to the IAEA Director General, he has listed the following conclusions: 1.The uranium content of run-of-the-mine phosphoric ores in the United Arab Republic is very low and the recovery of uranium from them is therefore hardly likely to be an economic proposition. 2. It is essential to press on with prospecting work in order to discover richer uranium deposits and regions of phosphoritic ores. 3. It is essential to organize scientific research work on the recovery of uranium from the various types of uranium-bearing phosphoritic ores in the United Arab Republic, using mechanical concentrating methods and chemical processing methods. 4. The Agency could assist in carrying out this work either by sending as many technicians as a required to help in planning and undertaking the research work in the UAR or by getting appropriate Member States to carry out this work on preliminary samples of ore with the participation of representatives of the UAR

  2. Oral antibodies to human intestinal alkaline phosphatase reduce dietary phytate phosphate bioavailability in the presence of dietary 1α-hydroxycholecalciferol.

    Science.gov (United States)

    Bobeck, Elizabeth A; Hellestad, Erica M; Helvig, Christian F; Petkovich, P Martin; Cook, Mark E

    2016-03-01

    While it is well established that active vitamin D treatment increases dietary phytate phosphate utilization, the mechanism by which intestinal alkaline phosphatase (IAP) participates in phytate phosphate use is less clear. The ability of human IAP (hIAP) oral antibodies to prevent dietary phytate phosphate utilization in the presence of 1α-hydroxycholecalciferol (1α-(OH) D3) in a chick model was investigated. hIAP specific chicken immunoglobulin Y (IgY) antibodies were generated by inoculating laying hens with 17 synthetic peptides derived from the human IAP amino acid sequence and harvesting egg yolk. Western blot analysis showed all antibodies recognized hIAP and 6 of the 8 antibodies selected showed modest inhibition of hIAP activity in vitro (6 to 33% inhibition). In chicks where dietary phosphate was primarily in the form of phytate, 4 selected hIAP antibodies inhibited 1α-(OH) D3-induced increases in blood phosphate, one of which, generated against selected peptide (MFPMGTPD), was as effective as sevelamer hydrochloride in preventing the 1α-(OH) D3-induced increase in blood phosphate, but ineffective in preventing an increase in body weight gain and bone ash induced by 1α-(OH) D3. These studies demonstrated that orally-delivered antibodies to IAP limit dietary phytate-phosphate utilization in chicks treated with 1α-(OH) D3, and implicate IAP as an important host enzyme in increasing phytate phosphate bioavailability in 1α-(OH) D3 fed chicks. © 2015 Poultry Science Association Inc.

  3. Dielectric aluminium phosphate thin films. Couches minces dielectriques de phosphate d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Daviero, S. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France)); Avinens, C. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France)); Ibanez, A. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France)); Giuntini, J.C. (Lab. Physicochimie des Materiaux Solides, 34 -Montpellier (France)); Philippot, E. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France))

    1993-04-01

    Aluminium phosphate thin films on silicium substrate have been carried out from tributylphosphate and aluminium acetylacetonate precursors in solution through the ''pyrosol'' process. It can be observed a large range of chemical analysis in terms of experimental conditions. These thin films have been characterized by X-ray diffraction and infrared spectrometry. Their electrical characteristics, defined from direct current and alternative current measurements, are quite different to those of the crystallized phosphate and can be explained by P-O and Al-O ''dangling bond'' existence. (orig.).

  4. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the

  5. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2013-01-01

    Full Text Available A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB and organic acids (oxalic & malic on phosphate (P solubilization from phosphate rock (PR and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM, and PSB strain (Bacillus sp. were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1, plant P uptake (0.78 P pot−1, and plant biomass (33.26 mg. Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1 compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.

  6. Effectiveness and cost-efficiency of phosphate binders in hemodialysis

    Directory of Open Access Journals (Sweden)

    Zsifkovits, Johannes

    2009-06-01

    Full Text Available Health political background: In 2006, the prevalence of chronic renal insufficiency in Germany was 91,718, of which 66,508 patients were on dialysis. The tendency is clearly growing. Scientific background: Chronic renal insufficiency results in a disturbance of the mineral balance. It leads to hyperphosphataemia, which is the strongest independent risk factor for mortality in renal patients. Usually, a reduction in the phosphate intake through nutrition and the amount of phosphate filtered out during dialysis are not sufficient to reduce the serum phosphate values to the recommended value. Therefore, phosphate binders are used to bind ingested phosphate in the digestive tract in order to lower the phosphate concentration in the serum. Four different groups of phosphate binders are available: calcium- and aluminium salts are the traditional therapies. Sevelamer and Lanthanum are recent developments on the market. In varying doses, all phosphate binders are able to effectively lower phosphate concentrations. However, drug therapies have achieved recommended phosphate levels in only 50 percent of patients during the last years. Research questions: How effective and efficient are the different phosphate binders in chronic renal insufficient patients? Methods: The systematic literature search yielded 1,251 abstracts. Following a two-part selection process with predefined criteria 18 publications were included in the assessment. Results: All studies evaluated conclude that serum phosphate, serum calcium and intact parathyroid hormone can be controlled effectively with all phosphate binders. Only the number of episodes of hypercalcaemia is higher when using calcium-containing phosphatebinders compared to Sevelamer and Lanthanum. Regarding the mortality rate, the cardiovascular artery calcification and bone metabolism no definite conclusions can be drawn. In any case, the amount of calcification at study start seems to be crucial for the further

  7. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  8. Photoelectron spectroscopy of phosphites and phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Findley, G.L.; McGlynn, S.P.

    1981-01-01

    The ultraviolet photoelectron spectra (UPS) of trimethyl and triethyl phosphite, trimethyl and triethyl phosphate and four substituted phosphates are presented. Assignments are based on analogies to the UPS of phosphorus trichloride and phosphoryl trichloride and are substantiated by CNDO/2 computations. The mechanisms of P-O (axial) bond formation is discussed.

  9. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Andersen, Frede Østergaard; Jensen, Henning S.

    2016-01-01

    Phosphate (Pi) uptake kinetics were determined in shoot and root tissues for four freshwater macrophyte species, Littorella uniflora, Potamogeton perfoliatus, Myriophyllum alterniflorum and Elodea canadensis, using a radioactive 33P phosphate technique. Collection of plant material in the oligotr...

  10. The variable charge of andisols as affected by nanoparticles of rock phosphate and phosphate solubilizing bacteria

    Science.gov (United States)

    Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.

    2018-02-01

    Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.

  11. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  12. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  13. Availability of native and added phosphates for the soil

    International Nuclear Information System (INIS)

    Scivittaro, W.B.; Boaretto, A.E.; Muraoka, T.

    1995-01-01

    In superficial composite samples of two Red-Yellow Latosols with different physical and chemical properties, analyses were carried out on inorganic form of phosphorus as well as the availability of native and added phosphates. The method applied was soil phosphorus fractionation associated with isotopic dilution technique ( 32 P). The samples were taken from pots containing soils incubated for a month with fluid phosphatic fertilizers (phosphoric acid and 10-30-00 suspension) and solid phosphatic fertilizers (mono ammonium phosphate and triple superphosphate), at the rate of 210 mg P 2 O 5 /kg of soil. A control treatment was included. In both soils the availability of inorganic phosphorus fractions decreased at the following order: H 2 O-P > Al-P > Fe-P > CA-P > occluded-P. The water soluble and aluminium phosphates represented the main source of available P for the newly fertilizer, the iron phosphates were also an important source of available phosphorus. The soil phosphorus fixing capacity influenced the availability of native and added phosphates. (author). 17 refs, 3 tabs

  14. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  15. Alpha-tocopheryl phosphate: a novel, natural form of vitamin E.

    Science.gov (United States)

    Gianello, Robert; Libinaki, Roksan; Azzi, Angelo; Gavin, Paul D; Negis, Yesim; Zingg, Jean-Marc; Holt, Phillip; Keah, Hooi-Hong; Griffey, Annike; Smallridge, Andrew; West, Simon M; Ogru, Esra

    2005-10-01

    We have detected alpha-tocopheryl phosphate in biological tissues including liver and adipose tissue, as well as in a variety of foods, suggesting a ubiquitous presence in animal and plant tissue. Alpha-tocopheryl phosphate is a water-soluble molecule that is resistant to both acid and alkaline hydrolysis, making it undetectable using standard assays for vitamin E. A new method was therefore developed to allow the extraction of both alpha-tocopheryl phosphate and alpha-tocopherol from a single specimen. We used ESMS to detect endogenous alpha-tocopheryl phosphate in biological samples that also contained alpha-tocopherol. Due to the significance of these findings, further proof was required to unequivocally demonstrate the presence of endogenous alpha-tocopheryl phosphate in biological samples. Four independent methods of analysis were examined: HPLC, LCMS, LCMS/MS, and GCMS. Alpha-tocopherol phosphate was identified in all instances by comparison between standard alpha-tocopheryl phosphate and extracts of biological tissues. The results show that alpha-tocopheryl phosphate is a natural form of vitamin E. The discovery of endogenous alpha-tocopheryl phosphate has implications for the expanding knowledge of the roles of alpha-tocopherol in biological systems.

  16. P contribution derived from phosphate solubilizing microorganism activity, rock phosphate and SP-36 determination by isotope "3"2P technique

    International Nuclear Information System (INIS)

    Anggi Nico Flatian; Iswandi Anas; Atang Sutandi; Ishak

    2016-01-01

    The "3"2P isotope technique has been used to trace P nutrients in the soil and soil-plant systems. The use of the isotope "3"2P has made it possible to differentiate the P contribution derived from phosphate solubilizing microorganism activity and the fertilizer P in the soil. The aims of the study were to obtain the quantitative data of P contribution derived from phosphate-solubilizing microorganism activity (Aspergillus niger and Burkholderia cepacia), rock phosphate and SP-36 through P uptake by the plants using isotope "3"2P technique and also to study the effects on growth and production of corn plants. The results were showed that phosphate-solubilizing microorganism, rock phosphate and SP-36 was produced specific activity ("3"2P) lower than control. The results were indicated that all treatments could contribute P for the plants. The lower specific activity was caused by supply P from rock phosphate and SP-36, and also was caused by solubilized of unavailable "3"1P from PSM activity, which decreased specific activity on labeled soil. The combination of phosphate-solubilizing microorganism and SP-36 treatments produced the highest P contribution, significantly higher than control and SP-36 only. Phosphate derived from combination of microorganism and SP-36 treatments ranging from 56.06% - 68.54% after 50 days planting, after 35 days planting, 51.96% - 59.65% on stover, 46.33% - 47.70% on grain and 53.02% - 59.87% on corn cob. In addition, the treatments could significantly support the plant growth and yield. It is expressed by increased number of leave at 35 days after planting, dry weight of leave at 35 days after planting and dry weight of grain. (author)

  17. Interaction of Microbial and Abiotic Processes in Soil Leading to the (Bio)Conversion and Ultimate Attenuation of New Insensitive Munitions Compounds

    Science.gov (United States)

    2016-12-30

    adenine dinucleotide (phosphate) NC Camp Butner soil (alternative abbreviation, soil is from North Carolina) NCBI National Center for Biotechnology ...knowledge and perspectives of bioelimination of xenobiotic compounds. Journal of Biotechnology 51, 287-295, doi:http://dx.doi.org/10.1016/S0168...McKenzie, R. M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine 38, 493-502

  18. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  19. Reduction of nucleotides by ionizing radiation: uridine 5' phosphate, and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1974-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x irradiated at 4.2 0 K. The hyperfine coupling tensor for the C 6 -H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92 and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 -H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98 and -14.68 MHz. (U.S.)

  20. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  1. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  2. A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis.

    Science.gov (United States)

    Nguyen, Thanh Trung; Nguyen, Minh Hung; Nguyen, Huy Thuan; Nguyen, Hoang Anh; Le, Thi Hoi; Schweder, Thomas; Jürgen, Britta

    2016-08-28

    The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.

  3. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    Science.gov (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  4. Phosphate rock costs, prices and resources interaction.

    Science.gov (United States)

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  6. Cyanotoxins: a poison that frees phosphate.

    Science.gov (United States)

    Raven, John A

    2010-10-12

    Autotrophic organisms obtain phosphorus from the environment by secreting alkaline phosphatases that act on esters, resulting in inorganic phosphate that is then taken up. New work shows that the cyanobacterium Aphanizomenon ovalisporum obtains inorganic phosphate by secreting the cyanotoxin cylindrospermopsin, which induces alkaline phosphatase in other phytoplankton species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  8. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  9. Global radiological impact of the phosphate fertilizers

    International Nuclear Information System (INIS)

    Morales, Rudnei Karam; Alves, Rex Nazare

    1996-01-01

    About ninety percent of the products obtained in the phosphate industry are directly used in agriculture as fertilizers. The uranium, thorium and radium content in phosphate fertilizers pollute the soil, water and air, creating risks due to associated natural radiation. This work shows the concentration of radionuclides present in various products of the national and American phosphate fertilizers industry, and compared them with worldwide mean values. The radiological impact of the products on the environment is evaluated and suggestions are presented in order to minimize the risks due to radioactivity. (author)

  10. Determination of radioactivity in Chinese phosphate rock and fertilizer

    International Nuclear Information System (INIS)

    Chen Jingjian; Zhu Yongyi; Yang Juncheng

    1993-01-01

    The presented paper reported the radioactivity of U-238, Ra-226, Th-232 and K-40 in Chinese phosphate rocks by gamma spectrographic analysis during 1985-1990. The results showed that the decay chain of U-238-Ra-226 was the main source of radionuclides in phosphate rocks. The radionuclides in phosphate fertilizer differed from the forms of phosphate fertilizer. U-238 was the most important radionuclide in phosphoric compound fertilizer. The transfer rate of radionuclides was also estimated. (2 figs., 1 tab.)

  11. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  12. Phosphate and Cardiovascular Disease beyond Chronic Kidney Disease and Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sinee Disthabanchong

    2018-01-01

    Full Text Available Phosphate is essential for life but its accumulation can be detrimental. In end-stage renal disease, widespread vascular calcification occurs as a result of chronic phosphate load. The accumulation of phosphate is likely to occur long before the rise in serum phosphate above the normal range since several observational studies in both general population and early-stage CKD patients have identified the relationship between high-normal serum phosphate and adverse cardiovascular outcomes. Consumption of food high in phosphate increases both fasting and postprandial serum phosphate and habitual intake of high phosphate diet is associated with aging, cardiac hypertrophy, endothelial dysfunction, and subclinical atherosclerosis. The decline in renal function and dietary phosphate load can increase circulating fibroblast growth factor-23 (FGF-23 which may have a direct impact on cardiomyocytes. Increased FGF-23 levels in both CKD and general populations are associated with left ventricular hypertrophy, congestive heart failure, atrial fibrillation, and mortality. Increased extracellular phosphate directly affects endothelial cells causing cell apoptosis and vascular smooth muscle cells (VSMCs causing transformation to osteogenic phenotype. Excess of calcium and phosphate in the circulation can promote the formation of protein-mineral complex called calciprotein particles (CPPs. In CKD, these CPPs contain less calcification inhibitors, induce inflammation, and promote VSMC calcification.

  13. An efficient method for qualitative screening of phosphate-solubilizing bacteria.

    Science.gov (United States)

    Mehta, S; Nautiyal, C S

    2001-07-01

    An efficient protocol was developed for qualitative screening of phosphate-solubilizing bacteria, based upon visual observation. Our results indicate that, by using our formulation containing bromophenol blue, it is possible to quickly screen on a qualitative basis the phosphate-solubilizing bacteria. Qualitative analysis of the phosphate solubilized by various groups correlated well with grouping based upon quantitative analysis of bacteria isolated from soil, effect of carbon, nitrogen, salts, and phosphate solubilization-defective transposon mutants. However, unlike quantitative analysis methods that involve time-consuming biochemical procedures, the time for screening phosphate-solubilizing bacteria is significantly reduced by using our simple protocol. Therefore, it is envisaged that usage of this formulation based upon qualitative analysis will be salutary for the quick screening of phosphate-solubilizing bacteria. Our results indicate that the formulation can also be used as a quality control test for expeditiously screening the commercial bioinoculant preparations, based on phosphate solubilizers.

  14. Influence of protonation or alkylation of the phosphate group on the e. s. r. spectra and on the rate of phosphate elimination from 2-methoxyethyl phosphate 2-yl radicals. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, G; Koltzenburg, G; Ritter, A; Schulte-Frohlinde, D [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1978-02-01

    The e.s.r. spectra of l-yl, 2-yl and 3'-yl methoxethyl phosphate radicals derived from CH/sub 3/OCH/sub 2/CH/sub 2/-OPO/sub 3/H/sub 2/ by hydrogen abstraction have been measured in aqueous solutions and the hyperfine constants determined. The coupling constants vary strongly with protonation or alkylation of the phosphate group. The 2-yl radicals eliminate phosphate. The rate-constants for the elimination (ksub(e)) have been estimated by e.s.r. measurements and by product studies as a function of pH using /sup 60/Co ..gamma..-radiolysis. The ksub(e) values vary from approximately 0.3 s/sup -1/ for the CH/sub 3/OCHCH/sub 2/OPO/sub 3//sup - -/ radical and approximately 10/sup 3/s/sup -1/ for CH/sub 3/OCHCH/sub 2/OPO/sub 3/H/sup -/, to approximately 3 x 10/sup 6/s/sup -1/ for CH/sub 3/OCHCH/sub 2/OPO/sub 3/H/sub 2/. Alkylation of the phosphate group increased the elimination rate-constant to a similar extent as protonation. The results support a recent mechanism which described the OH-radical-induced single-strand breaks of DNA in aqueous solution starting from the C-4' radical of the sugar moiety. It is further concluded the C-4' radical of DNA eliminates the 3'-phosphate group faster than the 5'-phosphate group.

  15. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    International Nuclear Information System (INIS)

    Naus, Dan J.; Mattus, Catherine H.; Dole, Leslie Robert

    2007-01-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a 'primer' on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a 'bench-scale' laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the 'primer,' a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures

  16. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  17. Serum phosphate and cognitive function in older men.

    Science.gov (United States)

    Slinin, Yelena; Vo, Tien; Taylor, Brent C; Murray, Anne M; Schousboe, John; Langsetmo, Lisa; Ensrud, Kristine

    2018-01-01

    Determine whether serum phosphate is associated with concurrent cognitive impairment and subsequent cognitive decline in older men independent of demographic covariates and atherosclerotic risk factors. In a prospective study of 5529 men enrolled in the Osteoporotic Fractures in Men study, we measured baseline serum phosphate, baseline cognitive function, and change in cognitive function between baseline and follow-up exams an average of 4.6 years later using the Modified Mini-Mental State (3MS) Examination and Trails B. There was no association between serum phosphate and odds of cognitive impairment as assessed by baseline 3MS score or risk of cognitive decline as assessed by longitudinal change in 3MS score. Higher baseline serum phosphate was associated with higher odds of poor executive function as assessed by Trails B with fully adjusted odds ratios 1.12 (95% confidence interval: 0.83-1.52), 1.31 (0.97-1.77), and 1.45 (1.08-1.94) for men in the second, third, and fourth versus the bottom quartile (referent group) of serum phosphate (p-trend 0.007). However, higher phosphate level was not associated with risk of decline in executive function as assessed by longitudinal change in Trails B score with fully adjusted odds ratios 0.94 (95% confidence interval 0.69-1.28), 0.96 (0.70-1.32), and 1.21 (0.89-1.66) for men in the second, third, and fourth versus the bottom quartile (referent group) of serum phosphate (p-trend 0.22). Higher serum phosphate in older men was associated with a higher likelihood of poor executive function, but not with impaired global cognitive function or decline in executive or global cognition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. EFFECT OF SODIUM PHOSPHATES ON SELECTED FOOD GRADE BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2011-04-01

    Full Text Available The aim of this study was to examine the inhibitory effect in vitro of selected sodium phosphates (under the corporate names Hexa 68, Hexa 70, Trikrystal, FST, Pyro 52, KPS, Didi on selected gram-positive and gram-negative bacteria. Seven different concentrations of each phosphate were used. Sensitivity of the bacterial strains to phosphates was observed in broth supplemented with salts. In vitro was showed a negative effect of various phosphates on growth of selected gram-positive bacteria. Orthophosphates and diphosphates (pyrophosphates did not have significant inhibitory effect on tested bacteria at neutral pH. With the exception of phosphate Trikrystal has not been found in vitro significant inhibitory effects on gram-negative bacteria.doi:10.5219/141

  19. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  20. The role of complex formation between cytochrome c and nad in the manifestation of the protective effect of dinucleotide with respect to hemoprotein

    International Nuclear Information System (INIS)

    Artyukhov, V.G.; Loboda, T.

    1990-01-01

    UV-irradiation of free ferricytochrome solutions, pH 8, induces photorecovery of protein molecules. Hemoproteide photorecovery does not occur after irradiation of the ferricytochrome c/NAD mixture, pH 6 and 8: dinucleotide exerts a photoprotective effect with respect to ferricytochrome. This NAD effect is not observed afterexposure of the ferricytochrome c/NAD system, pH 4. With this pH value, each component of the above mixture is eluted from a gel-chromatogarphic column by its peak, whereas with pH 6 and 8, NAD and ferricytochrome c leave the column as one fraction. This indicates that the photoprotective effect of the coenzyme manifests itself upon formation of complex with hemoprotein

  1. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish; (UAB)

    2009-06-08

    The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate

  2. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish

    2009-02-01

    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  3. Preparation and Characterization of Porous Calcium Phosphate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    Honglian Dai; Xinyu Wang; Yinchao Han; Xin Jiang; Shipu Li

    2011-01-01

    β-tricalcium phosphate (β-TCP) powder and Na2O-CaO-MgO-P2O5 glass binder were synthesized and mixed, and then the biodegradable porous calcium phosphate ceramics were successfully prepared by foaming and sintering at 850℃. The as-prepared ceramics possess a high porosity with partial three-dimension interconnected macro- and micro-pores. As in vitro experiment testified, the calcium phosphate ceramics (CPCs) has good degradability.

  4. Titrimetric determination of uranium in tributyl phosphate

    International Nuclear Information System (INIS)

    Sobkowska, A.

    1978-01-01

    The titrimetric method involving the reduction of U(VI) to uranium(IV) by iron(II) in phosphoric acid, selective oxidation of the excess of iron(II) and potentiometric titration with dichromate was directly used for the determination of uranium in tributyl phosphate mixtures. The procedure was applied to solutions containing more than 2 mg of uranium in the sample but the highest precision and accuracy were obtained in the range from 20 to 200 mg of uranium. Dibutyl phosphate and monobutyl phosphate as well as the other radiolysis products of TBP had no influence on the results of determinations. (author)

  5. Fibroblast Growth Factor 23 (FGF23 and Disorders of Phosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Tasuku Saito

    2009-01-01

    Full Text Available Derangements in serum phosphate level result in rickets/osteomalacia or ectopic calcification indicating that healthy people without these abnormalities maintain serum phosphate within certain ranges. These results indicate that there must be a regulatory mechanism of serum phosphate level. Fibroblast growth factor 23 (FGF23 was identified as the last member of FGF family. FGF23 is produced by bone and reduces serum phosphate level by suppressing phosphate reabsorption in proximal tubules and intestinal phosphate absorption through lowering 1,25-dihydroxyvitamin D level. It has been shown that excess and deficient actions of FGF23 result in hypophosphatemic rickets/osteomalacia and hyperphosphatemic tumoral calcinosis, respectively. These results indicate that FGF23 works as a hormone, and several disorders of phosphate metabolism can be viewed as endocrine diseases. It may become possible to treat patients with abnormal phosphate metabolism by pharmacologically modifying the activity of FGF23.

  6. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii.

    Science.gov (United States)

    Bongiorno, Vagner Alexandre; Ferreira da Cruz, Angela; Nunis da Silva, Antonio; Corrêa, Luiz Carlos

    2012-09-01

    The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.

  7. A study of the inhibiton of copper corrosion by triethyl phosphate and triphenyl phosphate self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    HOUYI MA

    2006-02-01

    Full Text Available Two kinds of phosphates, triethyl phosphate (TEP and triphenyl phosphate (TPP, were used to form self-assembled monolayers for the inhibition of the corrosion of copper in 0.2 mol dm–3 NaCl solution. Electrochemical impedance spectroscopy (EIS was applied to investigate the inhibition effects. The results showed that their inhibition ability first increased with increasing immersion time in ethanolic solutions of the corresponding compounds. However, when the immersion time was increased over some critical point, the inhibition effect decreased. For the same immersion time, the inhibition effect of the TPP monolayer was more pronounced than that of the TEP monolayer. Thus, ab initio calculations were used to interpret the relationship between the inhibition effects and the structures of the compounds.

  8. Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents.

    Science.gov (United States)

    Kurzbaum, Eyal; Raizner, Yasmin; Cohen, Oded; Rubinstein, Guy; Bar Shalom, Oded

    2017-06-01

    Adsorption has been suggested as an effective method for removing phosphates from agricultural wastewater effluents that contain relatively high phosphate concentrations. The present study focused on the use of a bentonite-lanthanum clay (Phoslock ® ) for reducing the dissolved phosphate concentration in fishpond effluents. Batch experiments with synthetic phosphate-spiked solutions and with fishpond effluents were performed in order to determine adsorption equilibrium isotherms and kinetics as well as to determine the efficiency of Phoslock ® in removing phosphate from these solutions. In the synthetic phosphate-spiked solution, the mean maximum phosphate adsorption capacity was 92 mg Phoslock ® /mg phosphate removal. A ratio of 50, 100, and 200 mg Phoslock ® /mg phosphate removal was found for complete phosphate removal from the fishpond effluents, where higher doses of Phoslock ® led to a faster removal rate (94% removal within the first 150 min). These results show that bentonite-lanthanum clay can be employed for designing a treatment process for efficient phosphate removal from fishpond effluents.

  9. Prevention of radioactive contamination in the manufacture of phosphate fertilizers

    International Nuclear Information System (INIS)

    Romero G, E.T.

    1995-01-01

    In this work was studied the separation of uranium from the phosphate rock to decrease the level of radioactivity in the phosphate fertilizers, this prevents the redistribution of uranium in the environment. The uranium leaching conditions from phosphate rock were estimated using alkaline solutions. The changes in the natural phosphate rock after leaching were studied. The amenability to separate the uranium from phosphate rock with ammonium carbonate / bicarbonate solution was determined. The uranium extraction was approximately 40%. The leaching conditions showed high selectivity for uranium without changes in the ore structure. The bulk ore was not dissolved. (Author)

  10. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  11. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    Science.gov (United States)

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  12. Evaluation methods used for phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    This work aimed to evaluate the different selection methods and select inorganic phosphorus-solubilizing bacteria as potential plant-growth promoters. Bacterial isolates obtained from sugarcane roots and soil were tested using solid growth media containing bicalcium phosphate and Irecê Apatite ground rock phosphate as ...

  13. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  14. Preparation and Characterization of Apatitic Biphasic Calcium Phosphate

    International Nuclear Information System (INIS)

    Thin Thin Nwe; Kyaw Naing; Khin Mar Tun; Nyunt Wynn

    2005-09-01

    The apatitic biphasic calcium phosphate (ABcp) consisting of hydroxyapatite (HA) and -tricalcium phosphate ( -Tcp) has been prepared by precipitation technique using slaked lime and orthophosphoric acid. The X-ray diffraction analysis of the product I (hydroxyapatite) revealed that ABcp was partially crystalline state. However, on heating at 800 C for 8 hrs, XRD pattern indicated a perfectly crystalline form of ABcp. This observation was supported by FT-IR measurement. The change in morphology regarding in the functional nature was infered by the shift in the FT-IR frequency. The optimization of the apatitic biphasic calcium phosphate was done by the variation of disodium hydrogen phosphate concentration, setting time, hardening time as well as compressive strength. The perpared cement may be used as an artificial substitution bone

  15. Characterization of cement calcium phosphate for use dental

    International Nuclear Information System (INIS)

    Barros, C.M.B.; Oliveira, S.V.; Silva, M.C.; Marques, J.B.; Fook, M.V.L.

    2011-01-01

    Calcium phosphates are interesting biological and medical attention due to its occurrence in different animal species and humans. Ceramics based on calcium phosphate in the form of implants or porous particulate materials, have proven to be suitable replacements for bone tissue when they are only subjected to small mechanical stresses. Was obtained research laboratory DEMA/UFCG a calcium phosphate phase. The goal is to characterize the material by X-ray diffraction (XRD) in order to analyze what the phases and infrared spectroscopy (FTIR) to identify the absorption bands of the bonding characteristic. Was identified by XRD phase present in the sample is hydroxyapatite Ca/P 1.67. In infrared spectroscopy has absorption bands characteristic of the phosphate group at 1032 cm1 region. (author)

  16. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  17. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A. [Argonne National Lab., IL (United States)

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  18. A novel biphasic calcium phosphate derived from fish otoliths

    Science.gov (United States)

    Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.

    2017-12-01

    Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.

  19. Metal complex derivatives of hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Grohol, D.; Blinn, E.L.

    1994-01-01

    Derivatives of hydrogen uranyl phosphate were prepared by incorporating transition metal complexes into the uranyl phosphate matrix. The transition metal complexes employed include bis(ethylenediamine)copper(II), bis(1,3-propanediamine)copper(II) chloride, (triethylenetetramine)copper(II), (1,4,8,11-tetraazacyclotetradecane)copper(II), (1,4,8,12-tetraazacyclopentadecane)copper(II), (1,4,8,11-tetraazacyclotetradecane)nickel(II) chloride, (triethylenetetramine)nickel(II) and others. The chemical analyses of these derivatives indicated that the incorporation of the transition metal complexes into the uranyl phosphate matrix via ion exchange was not stoichiometric. The extent of ion exchange is dependent on the size and structure of the transition metal complex. All complexes were characterized by X-ray powder diffractometry, electronic and infrared spectra, thermal analyses and chemical analysis. An attempt was made to correlate the degree of quenching of the luminescence of the uranyl ion to the spacing between the uranyl phosphate layers in the derivatives

  20. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti

    2008-12-01

    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  1. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  2. Cloning and expression of pineapple sucrose- phosphate synthase ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... phosphate; EDTA, ethylene diamine tetraacetic acid; Ivr, invertase; SS .... phenolics, tannins and artifacts due to differences of tissue composition ..... Banana sucrose-phosphate synthase gene expression during fruit ripening.

  3. The reduction of nucleotides by ionizing radiation: uridine 5' phosphate and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1975-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x-irradiated at 4.2 degreeK. The hyperfine coupling tensor for the C 6 --H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92, and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 --H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98, and -14.68 MHz

  4. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... glycolytic pathway; in this step, a molecule called glucose-6-phosphate is converted to another molecule called fructose-6-phosphate. When GPI remains a single molecule (a monomer) it is involved in the development and maintenance of nerve cells ( neurons ). In this context, it is often known as ...

  5. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    Science.gov (United States)

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  6. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    International Nuclear Information System (INIS)

    Kim, K.H.; Ammons, J.T.

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for 90 Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of 90 Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially 85 Sr-contaminated acid soil as well as 90 Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl 2 solution. Most of the 85 Sr coprecipitated with the metal phosphate compounds. Immobilization of 85 Sr and 90 Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected 85 Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for 90 Sr-contaminated sites. 15 refs., 3 figs., 1 tab

  7. Phosphate-rich sedimentary rocks: significance for organic facies and petroleum exploration

    Energy Technology Data Exchange (ETDEWEB)

    Waples, D W

    1982-03-01

    Phosphorus-bearing rocks and sediments can be divided into two genetically distinct classes: phosphatic shales or limestones and phosphorites. Phosphatic shales are primary sediments in which phosphate nodules or micronodules have formed diagenetically by precipitation of calcium phosphates derived mainly from organic phosphorus. The nodules form in reducing environments at shallow depths within the sediments, where loss of phosphate by diffusion to the overlying water column is minimized. Highly biogenic sediments containing large amounts of organic matter and some fine clastic debris provide ideal environments for the formation of phosphate nodules. Phosphorites, in contrast, represent concentrated accumulations of reworked phosphate nodules which originated in phosphatic shales or limestones. Currents, wave action, recrystallization, and erosion and resedimentation are important mechanisms in the concentration process. Phosphatic shales and limestones may become excellent oil source rocks if thermal maturity is achieved. They are useful facies indicators for anoxic or nearly anoxic depositional environments, and are often associated with restricted basins, or, during certain geologic periods, with broad shelves developed during transgressions. Phosphorites, in contrast, are often correlated with sea-level regressions or uplifts. They are modest source rocks because of their low organic carbon contents and the fact that they were reworked under oxidizing conditions. Nevertheless, because phosphorites are derived from, and often grade into, phosphatic shales, they also are of potential utility in the search for oil source beds.

  8. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    Directory of Open Access Journals (Sweden)

    Piyaphong Panpisut

    Full Text Available This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM, tristrontium phosphate (TSrP and antimicrobial polylysine (PLS. The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine.Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt% and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM. The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained.Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64% but was always higher than that of Z250 (54%. Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7% followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa.The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and

  9. Isolation and characterisation of a dinucleotide microsatellite set for a parentage and biodiversity study in domestic guinea pig (Cavia porcellus

    Directory of Open Access Journals (Sweden)

    Diana Aviles

    2015-10-01

    Full Text Available The domestic guinea pig is a valuable genetic resource because it is part of local folklore and food tradition in many South American countries. The economic importance of the guinea pig is due to its high feed efficiency and the quality of animal protein produced. For these reasons, our study is aimed to design a complete dinucleotide microsatellite marker set following international recommendation to assess the genetic diversity and genealogy management of guinea pigs. We selected a total of 20 microsatellites, looking for laboratory efficiency and good statistical parameters. The set was tested in 100 unrelated individuals of guinea pigs from Ecuador, Peru, Colombia, Bolivia and Spain. Our results show a high degree of polymorphisms with a total of 216 alleles and a mean number of 10.80±3.49 for markers with a combined exclusion probability of 0.99.

  10. Complex formation of uranium(VI) with fructose and glucose phosphates

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.; Fanghaenel, T.

    2002-01-01

    The uptake of heavy metals into plants is commonly quantified by the soil-plant transfer factor. Up to now little is known about the chemical speciation of actinides in plants. To compare the obtained spectroscopic data of uranium complexes in plants with model compounds, we investigate the complexation of uranium with relevant bioligands of various functionalities. A very important class of ligands consists of phosphate esters, which serve as phosphate group and energy transmitters as well as energy storage media in biological systems. Heavy metal ions bound to the phosphate esters can be transported into living cells and then deposited. Therefore, in our study we present the results of uranium complexation with glucose-6-phosphate (G6P), and fructose-6-phosphate (F6P) obtained by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The experiments were performed at a fixed uranyl concentration (10 -5 M) as a function of the ligand concentrations (10 -5 to 10 -3 M) in a pH range from 2 to 4.5. For the glucose phosphate system we observed, using increasing ligand concentrations, a decrease in the fluorescence intensity and a small red shift of the emission bands. From this we conclude that the complexed uranyl glucose phosphate species show only minor or no fluorescence properties. The TRLFS spectra of the glucose phosphate samples indicated the presence of a single species with fluorescence properties. This species has a lifetime of approximately 1.5 μs and was identified as the free uranyl ion. An opposite phenomenon was observed for the fructose phosphate system: there was no decrease in fluorescence intensity. However, a strong red shift of the spectra was observed, illustrating the fluorescence properties of the uranyl fructose phosphate complex. The TRLFS spectra of the fructose phosphate system showed a second lifetime ( 2 2+ UO 2 (lig) x (2-y)+ + y H + (lig = sugar phosphate). Applying the mass action law and transformation to the logarithmic

  11. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  12. Unsymmetrical phosphate as extractant for the extraction of nitric acid

    International Nuclear Information System (INIS)

    Gaikwad, R.H.; Jayaram, R.V.

    2016-01-01

    Tri-n-butyl phosphate (TBP) was first used as an extractant in 1944, during Manhattan project for the separation of actinides and further explored by Warf in 1949 for the extraction of Ce(IV) from aqueous nitric acid. TBP was further used as an extractant in the Plutonium Uranium Recovery by Extraction (PUREX) process. To meet the stringent requirements of the nuclear industry TBP has been extensively investigated. In spite of its wide applicability, TBP suffers from various disadvantages such as high aqueous solubility, third phase formation, chemical and radiation degradation leading to the formation of undesired products. It also suffers from incomplete decontamination of the actinides from fission products. Various attempts have been made to overcome the problems associated with TBP by way of using higher homologues of TBP such as Tri-iso amyl phosphate (TiAP), Tri-secondary butyl phosphate (TsBP), Tri amyl phosphate (TAP). It was found that in some cases the results were considerably better than those obtained with TBP for uranium/thorium extraction. The extraction of nitric acid by TBP and its higher homologues which are symmetrical are well documented. However, no solvent has emerged clearly superior than TBP. Here in we report the extraction of nitric acid with neutral unsymmetrical phosphates and study them as extractants for the extraction of nitric acid. Dibutyl secbutyl phosphate, dibutyl pentyl phosphate and dibutyl heptyl phosphate were synthesised for this purpose and the extraction of nitric acid was studied in n-dodecane. The results indicate that the substitution of one of the alkyl groups of the symmetrical phosphate adjacent to the phosphoryl (P=O) group of the phosphate does not have any pronounced effect on the extraction capacity of nitric acid. (author)

  13. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.

    Science.gov (United States)

    Gebril, Hoda M; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Jekabsons, Mika B

    2016-02-01

    Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a

  14. The Changes of P-fractions and Solubility of Phosphate Rock in Ultisol Treated by Organic Matter and Phosphate Rock

    Directory of Open Access Journals (Sweden)

    Heru Bagus Pulunggono

    2012-09-01

    Full Text Available Phosphorus (P is one of the essential elements for plant, however, its availability is mostly very low in acid soils. It is well documented that application of phosphate rock and organic matter are able to change the level of availability of P-form in acid soils. The objective of the research were to evaluate the changes of P-fractions ( resin-P, NaHCO3-Pi, and NaHCO3-Po and phosphate rock dissolution which were induced by application of organic matter (Imperata cylindrica, Pueraria javanica, dan Colopogonium mucunoides and phosphate rock in Utisol Lampung. The experiment was designed in a completely randomized design with three factors and three replications. The first factor was the types of organic matter (I. cylindrica, P. javanica, and C. mucunoides, the second factor was the rate of organic matter (0, 2.5, and 5%, and the third factor was the rate of phosphate rock (0, 40, and 80 mg P kg-1. The results showed that in the rate of 0 and 1% organic matter, the type of organic matter did not affect P-fraction of NaHCO3-Pi, but in the rate of 2.5 and 5%, NaHCO3-Pi due to application of P. javanica, and C. mucunoides higher than due to application of I. cylindrica. However, the increasing rate of organic matter increased NaHCO3-Pi. Then, P-fraction of Resin-Pi was affected by the type of organic matter, the rate of organic matter, and the rate of phosphate rock, respectively. P-fraction of resin-Pi due to application of P. javanica, and C. mucunoides was higher than due to application of I. cylindrica, but the effect of P. javanica, and C. mucunoides was not different. Increasing the rate of organic matter and phosphate rock increased P-fraction of resin-Pi and NaHCO3-Pi, but P-fraction of NaHCO3-Po was not affected by all treatments. Meanwhile, dissolution of phosphate rock was affected by the kind of organic matter and soil reaction. In the rate of 5% organic matter, dissolution of phosphate rock by application of I. cylindrica (70% was higher

  15. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  16. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.

    Science.gov (United States)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-22

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  17. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  18. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    Science.gov (United States)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  19. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.

    Science.gov (United States)

    Harrison, M J; van Buuren, M L

    1995-12-07

    Vesicular-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a transmembrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

  20. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  1. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  2. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    Science.gov (United States)

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-05

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.

  3. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... To evaluate phosphate solubilization of ... and MHB had the potential to solubilize these phosphates by decreasing the pH and confirmed that ... Minerals like N, P, K, Ca, S, Zn, Cu and Sr are ... sterile distilled water, chopped, homogenized in 10 ml sterile .... The role of carbon source is important in mineral.

  4. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  5. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-01-01

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  6. [Tetany secondary to phosphate enema toxicity, case report].

    Science.gov (United States)

    Núñez Sánchez, María José; Leighton Swaneck, Sofía; Díaz, Franco

    2017-06-01

    Phosphate enemas are frequently used in the treatment of constipation. Errors in dosage and administration can lead to severe complications. To report a case of severe toxicity of phosphate enemas in a child with no risk factors. 2 years old female, with functional constipation, was brought to emergency department because abdominal pain. She was diagnosed with fecal impaction and received half a bottle of Fleet Adult® (Laboratorio Synthon, Chile) two times, with no clinical resolution, deciding to start proctoclisis in pediatric ward. Soon after admission, she presented painful tetany, but alert and oriented. Patient was transferred to PICU where severe hyperphosphatemia and secondary hypocalcemia were confirmed. Her treatment included electrolyte correction; removal of residual phosphate enema and hyperhydration. Tetany resolved over 2 hours after admission and no other complications. Proctoclisis was performed and patient was discharged three days after admission with pharmacological management of constipation. Phosphate enemas may cause serious complications in children with no risk factors. Errors in dosage, administration and removal of the enema are causes of toxicity in this group. Pediatricians and health personnel must be aware of risks and signs of toxicity of phosphate enema.

  7. Degradation processes of reinforced concretes by combined sulfate–phosphate attack

    Energy Technology Data Exchange (ETDEWEB)

    Secco, Michele, E-mail: michele.secco@unipd.it [Inter-Departmental Research Center for the Study of Cement Materials and Hydraulic Binders (CIRCe), University of Padova, Via Gradenigo 6, 35131 Padova (Italy); Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, Via Marzolo 9, 35131 Padova (Italy); Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ Cambridge (United Kingdom); Schlegel, Moritz-Caspar, E-mail: moritz-caspar.schlegel@helmholtz-berlin.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Helmholtz-Zentrum Berlin fürMaterialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Maritan, Lara, E-mail: lara.maritan@unipd.it [Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova (Italy); Zorzi, Federico, E-mail: federico.zorzi@unipd.it [Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova (Italy)

    2015-02-15

    A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associated with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.

  8. Occupational radiation risks in conveyance of bulk phosphate and potash

    International Nuclear Information System (INIS)

    Grof, Y.; Even, O.; Schlesinger, T.; Margaliot, M.

    1996-01-01

    The issue of occupational ionizing radiation risks encountered in the conveyance and storage of Phosphates and Potash as loose cargo got very minor attention from the national health and occupational safety authorities in the world. In Israel, the Phosphates include an average 100- 150 ppm of Uranium in equilibrium with its daughters, while in Phosphates produced in most other countries the inaction reaches regularly only few ppm up to 50 ppm. Because of the high content of the Uranium in the Phosphate in Israel we must take into consideration the radiological implications involved in the handling of this mineral. The radiological implications of handling Potash are less significant but can not be neglected as we demonstrate bellow In this presentation we will estimate the occupational radiological risks involved in the storing and transportation of Phosphate and Potash. Note, that the main risk in working with Phosphate and Potash is the risk from the dust itself (authors)

  9. Occupational radiation risks in conveyance of bulk phosphate and potash

    Energy Technology Data Exchange (ETDEWEB)

    Grof, Y; Even, O; Schlesinger, T; Margaliot, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    The issue of occupational ionizing radiation risks encountered in the conveyance and storage of Phosphates and Potash as loose cargo got very minor attention from the national health and occupational safety authorities in the world. In Israel, the Phosphates include an average 100- 150 ppm of Uranium in equilibrium with its daughters, while in Phosphates produced in most other countries the inaction reaches regularly only few ppm up to 50 ppm. Because of the high content of the Uranium in the Phosphate in Israel we must take into consideration the radiological implications involved in the handling of this mineral. The radiological implications of handling Potash are less significant but can not be neglected as we demonstrate bellow In this presentation we will estimate the occupational radiological risks involved in the storing and transportation of Phosphate and Potash. Note, that the main risk in working with Phosphate and Potash is the risk from the dust itself (authors).

  10. Reducing the cadmium content of crude phosphates and mineral fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Plessen, H von; Schimmel, G

    1987-10-01

    Crude sedimentary phosphates generally contain cadmium together with traces of other heavy metals. These Cd traces generally end up in fertilizers produced from the crude phosphates. Processes have therefore been developed to separate the Cd from the crude phosphate or from the crude phosphoric acids arising therefrom as intermediates. In this way, the Cd content of the crude phosphate can be reduced to less the 10% of its original value, and to 50% thereof by extractive treatment with acidic calcium nitrate solution. Older calcination processes for crude phosphate have been improved to give residual Cd contents of 10 to 50% at temperatures of 800 to 1000/sup 0/C. Cadmium can be removed almost quantitatively from crude phosphate by means of dialkyl dithiophosphoric acid esters by extraction, binding to adsorbents, or ion flotation. Cadmium can be extracted from crude acids in high yield by long-chained amines. After partial neutralization of the crude acids, precipitation as cadmium sulphide is also possible.

  11. Degradation processes of reinforced concretes by combined sulfate–phosphate attack

    International Nuclear Information System (INIS)

    Secco, Michele; Lampronti, Giulio Isacco; Schlegel, Moritz-Caspar; Maritan, Lara; Zorzi, Federico

    2015-01-01

    A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associated with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation

  12. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co......-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment......H always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control....

  13. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  14. Detection of Mycosphaerella graminicola in Wheat Leaves by a Microsatellite Dinucleotide Specific-Primer

    Directory of Open Access Journals (Sweden)

    Joseph-Alexander Verreet

    2011-01-01

    Full Text Available Early detection of infection is very important for efficient management of Mycosphaerella graminicola leaf blotch. To monitor and quantify the occurrence of this fungus during the growing season, a diagnostic method based on real-time PCR was developed. Standard and real-time PCR assays were developed using SYBR Green chemistry to quantify M. graminicola in vitro or in wheat samples. Microsatellite dinucleotide specific-primers were designed based on microsatellite repeats of sequences present in the genome of M. graminicola. Specificity was checked by analyzing DNA of 55 M. graminicola isolates obtained from different geographical origins. The method appears to be highly specific for detecting M. graminicola; no fluorescent signals were observed from 14 other closely related taxa. Primer (CT 7 G amplified a specific amplicon of 570 bp from all M. graminicola isolates. The primers did not amplify DNA extracted from 14 other fungal species. The approximate melting temperature (Tm of the (CT 7 G primer was 84.2 °C. The detection limit of the real-time PCR assay with the primer sets (CT 7 G is 10 fg/25 µL, as compared to 10 pg/25 µL using conventional PCR technology. From symptomless leaves, a PCR fragment could be generated two days after inoculation. Both conventional and real-time PCR could successfully detect the fungus from artificially inoculated wheat leaves. However, real-time PCR appeared much more sensitive than conventional PCR. The developed quantitative real-time PCR method proved to be rapid, sensitive, specific, cost-effective and reliable for the identification and quantification of M. graminicola in wheat.

  15. 21 CFR 184.1697 - Riboflavin-5′-phosphate (sodium).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Riboflavin-5â²-phosphate (sodium). 184.1697 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1697 Riboflavin-5′-phosphate (sodium). (a) Riboflavin-5′-phosphate (sodium) (C17H20N4O9PNa·2H2O, CAS Reg. No 130-40-5) occurs as the dihydrate in yellow...

  16. 40 CFR 422.40 - Applicability; description of the defluorinated phosphate rock subcategory.

    Science.gov (United States)

    2010-07-01

    ... defluorinated phosphate rock subcategory. 422.40 Section 422.40 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphate Rock Subcategory § 422.40 Applicability; description of the defluorinated phosphate rock... phosphate rock by application of high temperature treatment along with wet process phosphoric acid, silica...

  17. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  18. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  19. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.S.; Kumar, S.; Babita, K. [Thapar Institute of Engineering and Technology, Patiala (India). School of Biotechnology; Reddy, M.S. [Auburn University, AL (United States). Department of Entomology and Plant Pathology

    2002-09-01

    Three isolates of Aspergillus tubingensis and two isolates of Aspergillus niger isolated from rhizospheric soils were tested on solubilization of different rock phosphates. All the isolates of Aspergillus were capable of solubilizing all the natural rock phosphates. A. tubingensis (AT1) showed maximum percent solubilization in all the rock phosphates tested in this study when compared to other isolates. This isolate also showed highest phosphorus (P) solubilization when grown in the presence of 2% of rock phosphate. A. tubingensis (AT1) seems to be more efficient in solubilization of rock phosphates compared to other isolates reported elsewhere. This is the first report of rock phosphate solubilization by A. tubingensis and might provide an efficient large scale biosolubilization of rock phosphates intended for P fertilizer. (author)

  20. The radiological impact of the Belgian phosphate industry

    Energy Technology Data Exchange (ETDEWEB)

    Vanmarcke, H.; Paridaens, J. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium)

    2006-07-01

    The Belgian phosphate industry processes huge amounts of phosphate ore (1.5 to 2 Mton/year) for a wide range of applications, the most important being the production of phosphoric acid, fertilizers and cattle food. Marine phosphate ores show high specific activities of the natural uranium decay series (usually indicated by Ra-226) (e.g. 1200 to 1500 Bq/kg for Moroccan ore). Ores of magmatic origin generally contain less of the uranium and more of the thorium decay series (up to 500 Bq/kg). These radionuclides turn up in by-products, residues or product streams depending on the processing method and the acid used for the acidulation of the phosphate rock. Sulfuric acid is the most widely used, but also hydrochloric acid and nitric acid are applied in Belgium. For Flanders, the northern part of Belgium, we already have a clear idea of the production processes and waste streams. The five Flemish phosphate plants, from 1920 to 2000, handled 54 million ton of phosphate ore containing 65 TBq of radium-226 and 2.7 TBq of thorium- 232. The total surface area of the phosphogypsum and calcium fluoride sludge deposits amounts to almost 300 ha. There is also environmental contamination along two small rivers receiving the waste waters of the hydrochloric production process: the Winterbeek (> 200 ha) and the Grote Laak (12 ha). The data on the impact of the phosphate industry in the Walloon provinces in Belgium is less complete. A large plant produced in 2004 0.8 Mton of phosphogypsum, valorizing about 70 % of the gypsum in building materials (plaster, cement), in fertilizers, and in other products such as paper. The remainder was stored on a local disposal site. The radiological impact of the Belgian phosphate industry on the local population will be discussed. At present most contaminated areas are still recognizable as waste deposits and inaccessible to the population. However as gypsum deposits and other contaminated areas quickly blend in with the landscape, it is

  1. Volumetric, acoustic and viscometric behaviour of dipotassium hydrogen phosphate and disodium hydrogen phosphate in aqueous solution of N-acetyl glycine at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Mittal, Heena

    2016-01-01

    Highlights: • Densities, speeds of sound, viscosities of phosphate salts in aqueous N-acetyl glycine. • Large values of partial molar volume for dipotassium hydrogen phosphate. • Partial molar volume of transfer are positive for phosphate salts. • Positive B-coefficient values indicate ion–solvent interactions. - Abstract: Densities, speeds of sound and viscosities of dipotassium hydrogen phosphate (DPHP) and disodium hydrogen phosphate (DSHP) in aqueous solutions of N-acetyl glycine (AcGly) are reported at different temperatures. Densities and speeds of sound have been used to calculate apparent molar volume, apparent molar isentropic compression, partial molar volume, partial molar isentropic compression, partial molar volume of transfer, partial molar isentropic compression of transfer and partial molar expansivity. Pair and triplet interaction coefficients have also been calculated. Experimental viscosities have been used to determine B-coefficients. Further pair and triplet interaction coefficients have also been calculated. The results are discussed in terms of solute–solvent interactions.

  2. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism

    Science.gov (United States)

    He, Yinhai; Lin, Hai; Dong, Yingbo; Wang, Liang

    2017-12-01

    The adsorbent, where lanthanum oxide was incorporated onto porous zeolite (La-Z), of preferable adsorption towards phosphate was prepared by hydrothermal synthesis. Based on pH effect results, La-Z would effectively sequestrate phosphate over wider pH range of 3.0-7.0, alkaline conditions were unfavorable for phosphate. The adsorption of phosphate was not significantly influenced by ionic strength and by coexisting anions of chloride, nitrate and sulfate but bicarbonate showed slightly greater negative effects, indicating La-Z possessed highly selectivity to phosphate. Adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by intra-particle diffusion. Equilibrium adsorption demonstrated that Langmuir model was more suitable than Freundlich model for description phosphate adsorption and the adsorption capacity was 17.2 mg P g-1, which exhibited 95% utilization of incorporated La. Over 95% phosphate was eliminated in real effluent treatment when the dose was 2 g L-1. The underlying mechanism for phosphate capture was probed with Zeta potential and X-ray photoelectron spectroscope analysis, and the formation of La-P inner-sphere complexation was testified to be the dominant pathway. All the results suggested that the porous zeolite-supported lanthanum oxide can serve as a promising adsorbent for phosphate removal in realistic application.

  3. Synthesis and Characterization of Metal Phosphates for Photocatalytic Applications

    KAUST Repository

    Al-Sabban, Bedour

    2012-07-01

    Solar energy is the most abundant efficient and important source of renewable energy. The objective of this study is to develop highly efficient visible light responsive photocatalysts for overall water splitting. This is done by using silver or copper containing materials. Phosphate compounds have caught much attention due to their rigid structure, thermal stability and resistance to chemical attacks. Solid phosphates can be prepared by direct solid-state reaction between metal cations and phosphate anions at high temperatures. Double metal phosphates of the Nasion-type structure had shown further technological importance. It has been reported that well-crystallized double metal phosphate particles have excellent ordering and cationic conduction channels in the Nasicon framework. In this study, several Nasion-type structured materials have been synthesized by solid-state method (e.g. CuTi2(PO4)3 and AgTi2(PO4)3) heated up under different temperatures (400–1100C) in N2 or air atmosphere. These materials were characterized by XRD, SEM, DR-UV-Vis spectroscopy and tested for photocatalytic applications. A new method for direct synthesis of photoelectrode on Ti Plate had been demonstrated. Further investigations on controlling the size and morphology for better performance of single and double metal phosphates will be done.

  4. Effect of Phosphate levels on vegetables irrigated with wastewater

    Science.gov (United States)

    Oladeji, S. O.; Saeed, M. D.

    2018-04-01

    This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.

  5. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 3D printing of octacalcium phosphate bone substitutes

    Directory of Open Access Journals (Sweden)

    Vladimir S. Komlev

    2015-06-01

    Full Text Available Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here we proposed a relatively simple route for 3D printing of octacalcium phosphates in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed octacalcium phosphate blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed octacalcium phosphates bone substitutes, which allowed 2.5-time reducing of defect’s diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  7. Biodegradation of tert-butylphenyl diphenyl phosphate

    International Nuclear Information System (INIS)

    Heitkamp, M.A.; Freeman, J.P.; Cerniglia, C.E.

    1986-01-01

    The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [ 14 C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14 CO 2 . Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to 14 CO 2 in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to 14 CO 2 in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP. The authors observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals

  8. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  9. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    Science.gov (United States)

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  10. Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers†

    OpenAIRE

    Abbas, Charles A.; Sibirny, Andriy A.

    2011-01-01

    Summary: Riboflavin [7,8-dimethyl-10-(1′-d-ribityl)isoalloxazine, vitamin B2] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pterid...

  11. Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan

    International Nuclear Information System (INIS)

    Adam, Abdel Majid A.; Eltayeb, Mohamed Ahmed H.

    2012-01-01

    Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the radioactive data in two types of Sudanese phosphate deposits; Kurun and Uro phosphate, using several multivariate statistical methods. Pearson correlation coefficient revealed that a U-238 distribution in Kurun phosphate is controlled by the variation of K-40 concentration, whereas in Uro phosphate it is controlled by the variation of U-235 and U-234 concentration. Histograms and normal Q–Q plots clearly show that the radioactive variables did not follow a normal distribution. This non-normality feature observed may be attributed to complicating influence of geological factors. The principal components analysis (PCA) gives a model of five components for representing the acquired data from Kurun phosphate, where 89.5% of the total variance is explained. A model of four components was sufficient to represent the acquired data from Uro phosphate, where 87.5% of the total data variance is explained. The hierarchical cluster analysis (HCA) indicates that U-238 behaves in the same manner in the two types of phosphates; it associated with a group of four radionuclides; U-234, Po-210, Ra-226, Th-230, which the most abundant radionuclides, and all belong to the uranium-238 decay series. Two parameters have been adapted for the direct differentiate between the two phosphates. Firstly, U-238 in Uro phosphate have shown higher degree of mobility (CV% = 82.6) than that in Kurun phosphate (CV% = 64.7), and secondly, the activity ratio of Th-230/Th-232 in Uro phosphate is nine times than that in Kurun phosphate. - Highlights: ► Multivariate statistical techniques were used to characterize radioactive data. ► U-238 in Uro phosphate shows higher degree of mobility (CV% = 82.6). ► U-238 in Kurun phosphate shows lower degree of mobility (CV% = 64.7). ► The radioactive variables did not follow a normal distribution. ► The ratio of Th

  12. Preparation of Edible Corn Starch Phosphate with Highly Reactive ...

    African Journals Online (AJOL)

    1Food & Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003 ... Purpose: To prepare edible corn starch phosphate under optimized experimental conditions. ... In food industry, starch phosphate.

  13. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    Directory of Open Access Journals (Sweden)

    Cédric Tarayre

    2016-05-01

    Full Text Available Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs, accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.

  14. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...... of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or >CaHPO4- as the adsorbed surface species...

  15. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  16. Development of a fully injectable calcium phosphate cement

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/boms/026/04/0415-0422. Keywords. Calcium phosphate cements; hydroxyapatite; bioceramics; bone substitute; orthopedic; dental. Abstract. A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented.

  17. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    Mineral phosphate solubilizing bacterial community in agro-ecosystem. N Saha, S Biswas. Abstract. The present communication deals with the assessment of phosphate solubilizing bacterial community structure across artificially created fertility gradient with regards to N, P and K status of soil in the experimental site.

  18. Potential for phosphate mitigation from agricultural runoff by three aquatic macrophytes

    Science.gov (United States)

    Phosphate from agricultural runoff is considered a contributor to eutrophication. Three aquatic macrophyte species, Leersia oryzoides, Typha latifolia, and Sparganium americanum, were investigated for their phosphate mitigation ability. Mesocosms were exposed to flowing phosphate enriched water (1...

  19. Investigation of calcium phosphate coatings for biomedical applications

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Muhammad Jamal Md Isa; Mohamad Abd Razak; Hyzan Mohd Yusof

    1999-01-01

    Calcium phosphate is the main constituent of our bone and tooth minerals. The use of this bioactive material for coating implant such as artificial joint prosthesis, therefore, can promote biological fixation and enhance biocompatibility. Our initial work has been focused on the evaluation of experimental conditions of coating preparation and the effects of post-deposition calcium phosphate coatings on stainless steel substrates. The coating layers were produced by the precipitation technique and coatings were carried out in sol-gel by the dipping method. For comparison purposes a wet method was used to obtain a fine calcium phosphate ceramic powder for fabrication of microcrystal suspension used as a coating material. Scanning electron microscopy (SEM), energy dispersive microanalysis (EDS), energy dispersive x-ray fluorescence (EDXRF) and x-ray diffraction (XRD) were used to characterise the morphology, chemical composition and structure of the coatings. The results showed that the dip coating of stainless steel substrates using viscous solutions lead to the formation of porous calcium phosphate layers. These results suggested that fabrication of bioactive calcium phosphate coatings using this route offers significant advantages over the currently used methods due to considerably lower temperature process involved and may produce better result for substrates with complex shapes

  20. Lar mountain phosphate ore processing using flotation approach

    International Nuclear Information System (INIS)

    Gharabaghi, M.; Noaparast, M.; Shafaei Tonkaboni, S. Z.

    2007-01-01

    The sample of Lar Mountain Phosphate deposit which is located in the southwest of Iran, was studied to upgrade its phosphate grade. The results obtained from mineralogical studies showed the presence of apatite, CaO, Al 2 O 3 , Fe 2 O 3 and SiO 2 , in which carbonate was detected as the main gangue. Two sets of direct and reverse flotation tests were performed using samples from this deposit with 10% P 2 O 5 . In phosphate flotation (direct approach), the samples were conditioned with sodium silica, oleic acid-fuel oil and Armac T-fuel oil. The direct flotation at pH=9.2 yielded a product with 23.2% of P 2 O 5 and 75.16% recovery. The reverse flotation tests were carried out at pH=5.2, with floating carbonate and pulp de-oiling, using H 2 SO 4 and wash water, and phosphate was then floated from siliceous gangue. In the second sets of the reverse approach, depressing the phosphate and floating silica with Amines in natural pH were done. However the best concentrate assay was 31.2% P 2 O 5 with a 71.12% recovery, which was obtained from reverse tests

  1. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  2. Uranium Extraction from Phosphates: - Background, Opportunities, Process Overview & Way Forward for Commercialisation

    International Nuclear Information System (INIS)

    Tulsidas, Harikrishnan; Hilton, Julian; Kumar Haldar, Tapan

    2014-01-01

    Uranium Extraction from Phosphate - an attractive proposition: • Uranium is co-product of phosphate Industry and makes phosphate Industry economically viable & socially more acceptable; • Enable utilisation of mineral deposits having low Phosphate value through economic co-production of Phosphatic fertiliser & Uranium; • Bring new countries in global map of Uranium resources; • Enables socio-economic up-gradation of major part of global population by achieving Energy, food & Environmental security - so important in today’s scenario

  3. Phosphate, urea and creatinine clearances: haemodialysis adequacy assessed by weekly monitoring.

    Science.gov (United States)

    Debowska, Malgorzata; Wojcik-Zaluska, Alicja; Ksiazek, Andrzej; Zaluska, Wojciech; Waniewski, Jacek

    2015-01-01

    The specific distribution of phosphate and the control mechanisms for its plasma level makes phosphate kinetics during haemodialysis (HD) considerably different from those of urea and creatinine and makes the quantitative evaluation of adequacy of phosphate removal difficult. We propose the application of equivalent continuous clearance (ECC) as a phosphate adequacy parameter and compare it with ECC for creatinine and urea. Three consecutive dialysis sessions were evaluated for 25 patients on maintenance HD. Concentrations of phosphate, urea and creatinine in plasma were measured every 1h during the treatment and 45 min after, and every 30 min in dialysate. ECC was calculated using the removed solute mass assessed in dialysate and weekly solute profile in plasma. Similar calculations were performed also for the midweek dialysis session only. Different versions of the reference concentration for ECC were applied. ECC with peak average reference concentration was 5.4 ± 1.0 for phosphate, 7.0 ± 1.0 for urea and 4.7 ± 1.0 mL/min for creatinine. ECC for urea and creatinine were well correlated in contrast to the correlations of ECC for phosphate versus urea and creatinine. Midweek ECC were higher than weekly ECC, but they were well correlated for urea and creatinine, but only weakly for phosphate. HD adequacy monitoring for phosphate may be performed using ECC, but it is less predictable than similar indices for urea and creatinine. The values of ECC for phosphate are within the range expected for its molecular size compared with those for urea and creatinine. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. Synthesis of β-tricalcium phosphate.

    Science.gov (United States)

    Chaair, H; Labjar, H; Britel, O

    2017-09-01

    Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Development of zirconium/magnesium phosphate composites for immobilization of fission products

    International Nuclear Information System (INIS)

    Singh, D.; Tlustochowicz, M.; Wagh, A.S.

    1999-01-01

    Novel chemically bonded phosphate ceramics have been investigated for the capture and stabilization of volatile fission-product radionuclides. The authors have used low-temperature processing to fabricate zirconium phosphate and zirconium/magnesium phosphate composites. A zirconium/magnesium phosphate composite has been developed and shown to stabilize ash waste that has been contaminated with a radioactive surrogate of the 137 Cs and 90 Sr species. Excellent retention of cesium in the phosphate matrix system was observed in both short- and long-term leaching tests. The retention factor determined by the USEPA Toxicity Characteristic Leaching Procedure was one order of magnitude better for cesium that for strontium. The effective diffusivity, at room temperature, for cesium and strontium in the waste forms was estimated to be as low as 2.4 x 10 -13 and 1.2 x 10 -11 m 2 /s, respectively. This behavior was attributed to the capture of cesium in the layered zirconium phosphate structure via an intercalation ion-exchange reaction, followed by microencapsulation. However, strontium is believed to be precipitated out in its phosphate form and subsequently microencapsulated in the phosphate ceramic. The performance of these final waste forms, as indicated by the compression strength and the durability in aqueous environments, satisfies the regulatory criteria

  6. Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydro-sphingosine 1-phosphate in human neural progenitor cells

    Science.gov (United States)

    In-vivo and in-vitro studies suggest a crucial role for Sphingosine 1-phosphate (S1P) and its receptors in the development of the nervous system. Dihydrosphingosine 1-phosphate (dhS1P), a reduced form of S1P, is an active ligand at S1P receptors, but the pharmacology and physiology of dhS1P has not...

  7. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  8. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  9. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  10. Interaction between calcium and phosphate adsorption on goethite

    NARCIS (Netherlands)

    Rietra, R.P.J.J.; Hiemstra, T.; Riemsdijk, van W.H.

    2001-01-01

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in

  11. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    Science.gov (United States)

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  12. Origin of Life and the Phosphate Transfer Catalyst

    Science.gov (United States)

    Piast, Radosław W.; Wieczorek, Rafał M.

    2017-03-01

    In this paper, we revisit several issues relevant to origin-of-life research and propose a Phosphate Transfer Catalyst hypothesis that furthers our understanding of some of the key events in prebiotic chemical evolution. In the Phosphate Transfer Catalyst hypothesis, we assume the existence of hypothetical metallopeptides with phosphate transfer activity that use abundant polyphosphates as both substrates and energy sources. Nonspecific catalysis by this phosphate transfer catalyst would provide a variety of different products such as phosphoryl amino acids, nucleosides, polyphosphate nucleotides, nucleic acids, and aminoacylated nucleic acids. Moreover, being an autocatalytic set and metabolic driver at the same time, it could possibly replicate itself and produce a collective system of two polymerases; a nucleic acid able to catalyze peptide bond formation and a peptide able to polymerize nucleic acids. The genetic code starts at first as a system that reduces the energy barrier by bringing substrates (2'/3' aminoacyl-nucleotides) together, an ancestral form of the catalysis performed by modern ribosomes.

  13. Inorganic phosphate inhibits sympathetic neurotransmission in canine saphenous veins

    International Nuclear Information System (INIS)

    Edoute, Y.; Vanhoutte, P.M.; Shepherd, J.T.

    1987-01-01

    Inorganic phosphate has been proposed as the initiator of metabolic vasodilatation in active skeletal muscle. The present study was primarily designed to determine if this substance has an inhibitory effect on adrenergic neurotransmission. Rings of canine saphenous veins were suspended for isometric tension recording in organ chambers. A comparison was made of the ability of inorganic phosphate (3 to 14 mM) to relax rings contracted to the same degree by electrical stimulation, exogenous norepinephrine, and prostaglandin F/sub 2α/. The relaxation during electrical stimulation was significantly greater at all concentrations of phosphate. In strips of saphenous veins previously incubated with [ 3 H]norepinephrine, the depression of the contractile response caused by phosphate during electrical stimulated was accompanied by a significant reduction in the overflow of labeled neurotransmitter. Thus inorganic phosphate inhibits sympathetic neurotransmission and hence may have a key role in the sympatholysis in the active skeletal muscles during exercise. By contrast, in this preparation, it has a modest direct relaxing action on the vascular smooth muscle

  14. Uranium traps in the phosphate bearing sudr chalk, in northeastern sinai, Egypt

    International Nuclear Information System (INIS)

    Hussein, H.A.; El-Aassy, I.E.; Mahdy, M.A.; Dabbour, G.A.; Mansour, M.Gh.; Morsy, A.M.

    1998-01-01

    The maastrichtian sudr formation in northeastern sinai is composed of three members, the lower chalk, the middle phosphate and chart-bearing and the upper chalk members. Lemon yellow secondary uranium mineralization, distributed in the lower chalk member and in some phosphate beds from the middle phosphate member are observed. The XRD analyses of some samples from the uranium bearing chalk and the phosphate beds showed the presence of the secondary uranium minerals carnotite, bergenite and upalite. The mode of uranium occurrences could be interpreted as a result of the phosphatic beds decomposition and their subjection to later diagenetic processes. Uranium leaching circulation from phosphate rocks led to the liberation of uranium from the phosphates, and vanadium from the bituminous material and clay minerals. These migrated and were deposited locally and within the underlying chalk beds which acted as a lithologic trap

  15. Recovery of uranium and the lanthanides from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Habashi, F; Awadalla, F T; Zailaf, M

    1986-06-01

    A process is proposed for the treatment of phosphate rock for the recovery of uranium and lanthanides. The process assures the production of phosphatic fertilisers without polluting the environment with radioactive material.

  16. Radiation exposure due to agricultural uses of phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; AL-Sewaidan, H.A.

    2008-01-01

    Radiological impacts of phosphate rocks mining and manufacture could be significant due to the elevated radioactivity contents of the naturally occurring radioactive materials (NORM), such as 238 U series, 232 Th series and 40 K, in some phosphate deposits. Over the last decades, the land reclamation and agriculture activities in Saudi Arabia and other countries have been widely expanded. Therefore, the usage of chemical fertilizers is increased. Selected phosphate fertilizers samples were collected and the specific activities of NORM were measured using a gamma ray spectrometer based on a hyper pure germanium detector and alpha spectrometer based on surface barrier detector. The obtained results show remarkable wide variations in the radioactivity contents of the different phosphate fertilizer samples. The mean (ranges) of specific activities for 226 Ra, 210 Po, 232 Th and 40 K, and radium equivalent activity are 75 (3-283), 25 (0.5-110), 23 (2-74), 2818 (9-6501) Bq/kg and 283 (7-589) Bq/kg, respectively. Based on dose calculations, the increment of the public radiation exposure due to the regular agricultural usage of phosphate fertilizers is negligible. Its average value 1 m above the ground is about 0.12 nGy/h where the world average value due to the NORM in soil is 51 nGy/h. Direct radiation exposures of the farmers due to phosphate fertilizers application was not considered in our study

  17. Uptake of 15N-labelled urea and 32P-labelled phosphate from acid-based urea phosphate and granular fertilizers

    International Nuclear Information System (INIS)

    Bole, J.B.

    1986-01-01

    The availability of nitrogen and phosphorus in fertilizer products labelled with both 32 P and 15 N was measured in a growth chamber experiment. The uptake of N and P by soft white spring wheat (Triticum aestivum L.) from a solution of acid urea phosphate fertilizer did not differ significantly from that of a mixture of granular urea and monammonium phosphate fertilizer. The fertilizer-P uptake efficiency of both sources was higher in a neutral soil than in acid or calcareous soils. Banding either fertilizer increased the uptake of fertilizer P compared with sources mixed with the soil, but did not significantly affect fertilizer-N uptake. The increase in fertilizer-P efficiency due to banding was significantly greater for the urea-monammonium phosphate than for the acid urea phosphate solution. Banding fertilizer did not increase the uptake of fertilizer P in the calcareous soil, and decreased the uptake of fertilizer N in that soil compared with mixed treatments. It is suggested that soluble Ca formed from the reaction of acid with naturally occurring lime may have reduced the availability of fertilizer P in the band

  18. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished

    DEFF Research Database (Denmark)

    Schneider, Anja; Häusler, Rainer E; Kolukisaoglu, Uner

    2002-01-01

    The Arabidopsis thaliana tpt-1 mutant which is defective in the chloroplast triose phosphate/phosphate translocator (TPT) was isolated by reverse genetics. It contains a T-DNA insertion 24 bp upstream of the start ATG of the TPT gene. The mutant lacks TPT transcripts and triose phosphate (TP)-spe...

  19. Phosphate adsorption using modified iron oxide-based sorbents

    Science.gov (United States)

    Phosphate RemovalThis dataset is associated with the following publication:Lalley , J., C. Han , G. RamMohan , T. Speth , J. Garland , M. Nadagouda , and D. Dionysiou. Phosphate Removal using Modified Bayoxide®E33 Adsorption Media. WATER RESEARCH. Elsevier Science Ltd, New York, NY, USA, issue}: 96-107, (2015).

  20. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  1. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  2. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  3. Radionuclide containment in soil by phosphate treatment

    International Nuclear Information System (INIS)

    Lee, S.Y.; Francis, C.W.; Timpson, M.E.; Elless, M.P.

    1995-01-01

    Radionuclide transport from a contaminant source to groundwater and surface water is a common problem faced by most US Department of Energy (DOE) facilities. Containment of the radionuclide plume, including strontium-90 and uranium, is possible using phosphate treatment as a chemical stabilizer. Such a chemical process occurs in soils under natural environmental conditions. Therefore, the concept of phosphate amendment for radiostrontium and uranium immobilization is already a proven principle. In this presentation, results of bench-scale experiments and the concept of a field-scale demonstration are discussed. The phosphate treatment is possible at the source or near the advancing contaminant plume. Cleanup is still the ideal concept; however, containment through stabilization is a more practical and costeffective concept that should be examined by DOE Environmental Restoration programs

  4. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Oftentimes caries lesions develop in protected sites that are difficult to access by self-performed mechanical tooth cleaning. At present, there is a growing interest in chemical adjuncts to mechanical procedures of oral hygiene that aim at biofilm control rather than biofilm eradication. Calcium......-phosphate-osteopontin particles are a new promising therapeutic approach to caries control. They are designed to bind to dental biofilms and interfere with biofilm build-up, lowering the bacterial burden on the tooth surface without affecting bacterial viability in the oral cavity. Moreover, they dissolve when pH in the biofilm...... drops to 6 or below and release buffering phosphate ions that stabilize biofilm pH above the critical level for enamel dissolution. With that twofold approach, calcium-phosphate-osteopontin particles may make a relevant contribution to clinical caries control....

  5. Interfacial Precipitation of Phosphate on Hematite and Goethite

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2018-05-01

    Full Text Available Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the bioavailability of phosphates. We used in situ atomic force microscopy (AFM to image the kinetic processes of phosphate-bearing solutions interacting with hematite or goethite surfaces. The nucleation of nanoparticles (1.0–4.0 nm in height of iron phosphate (Fe(III-P phases, possibly an amorphous phase at the initial stages, was observed during the dissolution of both hematite and goethite at the earliest crystallization stages. This was followed by a subsequent aggregation stage where larger particles and layered precipitates are formed under different pH values, ionic strengths, and organic additives. Kinetic analysis of the surface nucleation of Fe-P phases in 50 mM NH4H2PO4 at pH 4.5 showed the nucleation rate was greater on goethite than hematite. Enhanced goethite and hematite dissolution in the presence of 10 mM AlCl3 resulted in a rapid increase in Fe-P nucleation rates. A low concentration of citrate promoted the nucleation, whereas nucleation was inhibited at higher concentrations of citrate. By modeling using PHREEQC, calculated saturation indices (SI showed that the three Fe(III-P phases of cacoxenite, tinticite, and strengite may be supersaturated in the reacted solutions. Cacoxenite is predicted to be more thermodynamically favorable in all the phosphate solutions if equilibrium is reached with respect to hematite or goethite, although possibly only amorphous precipitates were observed at the earliest stages. These direct observations at the nanoscale may improve our understanding of phosphate immobilization in iron oxide-rich acid soils.

  6. Role of p73 Dinucleotide Polymorphism in Prostate Cancer and p73 Protein Isoform Balance

    Directory of Open Access Journals (Sweden)

    L. Michael Carastro

    2014-01-01

    Full Text Available Background. Molecular markers for prostate cancer (PCa risks are currently lacking. Here we address the potential association of a dinucleotide polymorphism (DNP in exon 2 of the p73 gene with PCa risk/progression and discern any disruption of p73 protein isoforms levels in cells harboring a p73 DNP allele. Methods. We investigated the association between p73 DNP genotype and PCa risk/aggressiveness and survival by fitting logistic regression models in 1,292 incident cases and 682 controls. Results. Although we detected no association between p73 DNP and PCa risk, a significant inverse relationship between p73 DNP and PCa aggressiveness (AT/AT + GC/AT versus GC/GC, OR = 0.55, 95%Cl = 0.31–0.99 was detected. Also, p73 DNP is marginally associated with overall death (dominant model, HR = 0.76, 95%Cl = 0.57–1.00, P=0.053 as well as PCa specific death (HR = 0.69, 95%Cl = 0.45–1.06, P=0.09. Western blot analyses for p73 protein isoforms indicate that cells heterozygous for the p73 DNP have lower levels of ∆Np73 relative to TAp73 (P<0.001. Conclusions. Our findings are consistent with an association between p73 DNP and low risk for PCa aggressiveness by increasing the expressed TAp73/∆Np73 protein isoform ratio.

  7. Hypermutability of CpG dinucleotides in the propeptide-encoding sequence of the human albumin gene

    International Nuclear Information System (INIS)

    Brennan, S.O.; Peach, R.; Myles, T.; George, P.; Arai, Kunio; Madison, J.; Watkins, S.; Putnam, F.W.; Laurell, C.B.; Galliano, M.

    1990-01-01

    An electrophoretically slow albumin variant was detected with a phenotype frequency of about 1:1,000 in Sweden and was also found in a family of Scottish descent from Kaikoura, New Zealand, and in five families in Tradate, Italy. Structural study established that the major variant component was arginyl-albumin, in which arginine at the -1 position of the propeptide is still attached to the processed albumin. A minor component with the amino-terminal sequence of proalbumin was also present as 3-6% of the total albumin. After amplification of the gene segment encoding the prepro sequence of albumin, specific hybridization of DNA to an oligonucleotide probe encoding cysteine at position -2 indicated the mutation of arginine at the -2 position to cysteine (-2 Arg → Cys). This produced the propeptide sequence Arg-Gly-Val-Phe-Cys-Arg. This was confirmed by sequence analysis after pyridylethylation of the cysteine. This mutation produces an alternate signal peptidase cleavage site in the variant proalbumin precursor of arginyl-albumin giving rise to two possible products, arginyl-albumin and the variant proalbumin. Another plasma from Bremen had an alloalbumin with a previously described substitution (1 Asp → Val), which also affects propeptide cleavage. Hypermutability of two CpG dinucleotides in the codons for the diarginyl sequence may account for the frequency of mutations in the propeptide. Mutation at these two sites results in a series of recurrent proalbumin variants that have arisen independently in diverse populations

  8. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands

    Science.gov (United States)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.

    2014-12-01

    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  9. Liming effect on P availability from Maardu phosphate rock

    International Nuclear Information System (INIS)

    Sidlauskas, G.; Masauskas, S.; Ezerinskas, V.

    2002-01-01

    Thirty years ago phosphate rock from the Maardu deposit was intensively used for soil fertilization in Lithuania. However, the application of finely ground product caused an undesirable dusty operation. Afterwards, a super-phosphate production plant was built in Kedainiai and the use of phosphate rock was completely abandoned. Field experiments with fodder beets and barley were carried out to evaluate the P availability of granulated superphosphate and Maardu phosphate rock. The comparison was made at three acidity levels: a) unlimed acid soil with a high content of Al (pH kcl 4.3-4.4, hydrolytic acidity was 41-44 meq/kg soil), b) soil limed with 0.5n rate CaCO 3 powder limestone based on hydrolytic acidity, and c) soil limed with 1.0n rate CaCO 3 . Two field experiments were carried out with fodder beets. In 1997 the yield increased significantly due to liming. However, no significant yield increases were found due to the application of phosphorus fertilizers. Differences between the effect of superphosphate and phosphate rock were also not observed. This might have been caused by a severe drought during the vegetative growth of plants. In the following year, 1998, a soil with similar acidity was chosen, however it contained even lower amounts of available phosphorus in the arable soil (about 50 mg/kg soil A-L method). In the unlimed soil the yield was low, the effect of superphosphate was better than that of phosphate rock. A good fodder beet yield of 32 to 35 t/ha was obtained and the effect of phosphate rock was better than that of superphosphate at 0.5n CaCO 3 rate. When liming with at the high rate (1.0n CaCO 3 rate according to hydrolytic acidity) the action of phosphate rock declined, and a better yield was obtained with superphosphate. Barley was grown after fodder beets in the 1997 experimental field and the residual effect of superphosphate and phosphate rock was investigated. Weather conditions were favorable for barley growth. Therefore a normal yield

  10. SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters.

    Directory of Open Access Journals (Sweden)

    Chi-Jiunn Pan

    Full Text Available Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P into glucose and phosphate (P(i. This reaction depends on coupling the G6P transporter (G6PT with glucose-6-phosphatase-α (G6Pase-α. Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a P(i-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:P(i exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, P(i-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.

  11. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    International Nuclear Information System (INIS)

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert; Saba, Julie D.

    2009-01-01

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an ω-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K m of 35 μM for BODIPY-sphingosine 1-phosphate.

  12. Reaction of Thymidine with Hypobromous Acid in Phosphate Buffer.

    Science.gov (United States)

    Suzuki, Toshinori; Kitabatake, Akihiko; Koide, Yuki

    2016-01-01

    When thymidine was treated with hypobromous acid (HOBr) in 100 mM phosphate buffer at pH 7.2, two major product peaks appeared in the HPLC chromatogram. The products in each peak were identified by NMR and MS as two isomers of 5-hydroxy-5,6-dihydrothymidine-6-phosphate (a novel compound) and two isomers of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol) with comparable yields. 5-Hydroxy-5,6-dihydrothymidine-6-phosphate was relatively stable, and decomposed with a half-life of 32 h at pH 7.2 and 37°C generating thymidine glycol. The results suggest that 5-hydroxy-5,6-dihydrothymidine-6-phosphate in addition to thymidine glycol may have importance for mutagenesis by the reaction of HOBr with thymine residues in nucleotides and DNA.

  13. Radiotracer study of phosphate exchange between whey and casein micelles in cow's milk

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Verburg, T.G.; Dijk, H.J.M. van

    1998-01-01

    Radiotracer method has been applied to study exchange of calcium ions between the whey calcium salts and micellar calcium phosphate (MCP). The present paper deals with a similar study pertaining to phosphate ions. 32 P-labelled Na 2 HPO 4 was used as the radiotracer for inorganic phosphates of milk. After addition of the radiotracer to skimmed-milk, samples were taken regularly for 700 hours. In the samples casein micelles were separated from whey by ultracentrifugation and finally the radiotracer quantity i.e. 32 P-concentration in the whey samples was measured using a Liquid Scintillation Counter. Compartmental analysis and modelling were used to evaluate the thus obtained time curves for radiotracer quantity in whey. This analysis revealed the presence of three phosphate compartments i.e. exchangeable phosphate entities; one being the whey phosphate. The other two are associated with the exchangeable phosphates of MCP. The mean residence times of phosphate in the latter two compartment differ considerably pointing at two distinctly different embeddings of phosphate groups in the structure of the micellar calcium phosphate of the cow's milk casein. The obtained results are in fair agreement with the mentioned model of MCP

  14. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  15. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  16. Removal of organic wastes containing tributyl phosphate

    International Nuclear Information System (INIS)

    Drobnik, S.

    TBP in dodecane and kerosene is one of the waste solutions from the reprocessing of spent nuclear fuels by the Purex process. The following methods were investigated for removing the organic solvents: adsorption on suitable solids, extraction, reaction with neutral salts, and saponification with acids or alkalis. Results showed that the best method of TBP removal is saponification with alkali hydroxides, either with dibutyl phosphate or with ortho-phosphate

  17. Potentially Prebiotic Syntheses of Condensed Phosphates

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  18. Amorphous calcium phosphate and its application in dentistry

    Directory of Open Access Journals (Sweden)

    Sun Wei-bin

    2011-07-01

    Full Text Available Abstract Amorphous Calcium Phosphate (ACP is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  19. Characterisation of phosphate rocks at kurun mountain, Sudan

    International Nuclear Information System (INIS)

    Abdelgader, G. A. M.

    2014-08-01

    This main objective of this study was to characterise some Sudanese phosphate raw materials collected from Jebel Kurun, located in the eastern part of Nuba Mountain, Western Sudan. The study also aimed to investigate the association between uranium and phosphate and to determine the concentration of some essential elements and trace elements in the phosphate rock. A total of 30 samples were collected from Karun's eastran mountains, near Abujibiha City and have been analyzed for the selected elements using x-ray fluorescence. The obtained results showed that the average concentration of elements was Ca (11.3) and Fe (1.7) as a percentage, while it was Cu (1617.7), Ni (258.4), Pb (185.9), Ti (27.62), V (3779.9), U (160.9), Zn (152.8) and Mn (776.3) in ppm. The average total phosphorus content (analyzed as P O5 %) using UV-visible spectrometer was found to be 30.54%. This could be considered is acceptable percentage for phosphate to be 30.54%. This could be considered is acceptable percentage for phosphate to be used in industrial fertilizers and phosphoric acid production. The average total calcium carbonate was 15.7%. For the elements distribution, uranium found to be more concentrated in the summit of Jebel Kurun, and it displayed a correlation with lead. Furthermore, four groups of association have been noticed, based on elements concentrations.(Author)

  20. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    Science.gov (United States)

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  1. Removal of Phosphate from Synthetic Aqueous Solution by Adsorption with Dolomite from Padalarang

    Directory of Open Access Journals (Sweden)

    Fadjari Lucia Nugroho

    2014-12-01

    Full Text Available The presence of phosphate in wastewaters can cause eutrophication of surface water bodies leading to algal-blooming in the aquatic environment and degradation of water quality. Phosphate removal from wastewaters by conventional biological treatment removes only 10-30% of the phosphate, whilst chemical treatment using precipitants such as calcium or iron salts, although effective, is expensive and produces water-rich sludge which must be further treated. Hence, phosphate removal by adsorption in the form of Ca -phosphate has been proposed as an alternative to the more traditional methods. This study investigated the feasibility of using dolomite–a common sedimentary rock–from Padalarang, West Java, Indonesia as the adsorbent for the removal of phosphate from synthetic aqueous solution. Chemical analysis revealed that the Padalarang dolomite contains 33.6-36.2% CaO. Batch experiments at room temperature indicated that optimum removal of phosphate was achieved at pH 9. At 25°C , where increasing concentrations of phosphate (10–100 mg/L increased phosphate adsorption (2.15-31.3 mg/g by the dolomite. The adsorption of phosphate could be described by the Langmuir isotherm model, with constants Qm= 476.19 mg/g, K L= 0,00106 L/mg and equilibrium parameter (R L: 0.904 – 0.989. Phosphate adsorption by dolomite not only permits its removal but also its potential recovery for reuse.

  2. Advances in process technology for eco-friendly phosphates by separation of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H; Mukherjee, T K [Uranium and Rare Earths Extraction Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Phosphates are used in the industry for fertilizers, industrial chemicals (detergents, water-treatment chemicals) and food-additives. The source of phosphates for the industry is rock-phosphate. Over 90% of phosphate rocks of the world are associated with uranium and its radioactive daughter products. Processing and use of phosphates is accompanied by radiation hazards. The concentration of radionuclides is low, but in view of large number of persons exposed to the hazards, the cumulative societal pollution load is high, and a matter of concern for international organisations. Chemical engineering techniques have been developed for the reduction of societal radiation hazard from the phosphates. In this paper, brief details of the process and developmental efforts in India are described. (author). 4 refs., 1 fig.

  3. Obtaining tetracalcium phosphate and hydroxyapatite in powder form by wet method

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Sara Verusca de; Fook, Marcus Vinicius Lia; Araujo, Elaine Patricia; Medeiros, Keila Machado; Rabello, Guilherme Portela; Barbosa Renata; Araujo, Edcleide Maria, E-mail: saraveruscadeoliveira@yahoo.com.br, E-mail: marcusvinicius@dema.ufcg.edu.br, E-mail: elainepatriciaaraujo@yahoo.com.br, E-mail: keilamm@ig.com.br, E-mail: guilhermeportel@hotmail.com, E-mail: rrenatabarbosa@yahoo.com, E-mail: edcleide@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), Campina Grande, PB (Brazil)

    2009-07-01

    The development of research in the area of advanced materials and tissue engineering has increased greatly in recent years found that bioceramics are outstanding in the replacement and regeneration of bone tissue, mainly formed by the calcium phosphate ceramics. The objective of this research is to obtain the calcium phosphate where Ca/P = 1.67 and 2.0, to observe the formation of phases after having subjected these materials to heat treatment. The calcium phosphate was produced by the wet method using a direct reaction of neutralization and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray microanalysis (EDS). The XRD results confirm the presence of hydroxyapatite phase in the sample with Ca/P = 1.67, whereas the phosphates prepared with Ca/P = 2.0 ratio show a combination of hydroxyapatite and phase β- tricalcium phosphate. The micrographs obtained are characteristic of ceramic material called calcium phosphate. EDS confirmed the presence of Ca, P and O in the material. (author)

  4. Obtaining tetracalcium phosphate and hydroxyapatite in powder form by wet method

    International Nuclear Information System (INIS)

    Oliveira, Sara Verusca de; Fook, Marcus Vinicius Lia; Araujo, Elaine Patricia; Medeiros, Keila Machado; Rabello, Guilherme Portela; Barbosa Renata; Araujo, Edcleide Maria

    2009-01-01

    The development of research in the area of advanced materials and tissue engineering has increased greatly in recent years found that bioceramics are outstanding in the replacement and regeneration of bone tissue, mainly formed by the calcium phosphate ceramics. The objective of this research is to obtain the calcium phosphate where Ca/P = 1.67 and 2.0, to observe the formation of phases after having subjected these materials to heat treatment. The calcium phosphate was produced by the wet method using a direct reaction of neutralization and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray microanalysis (EDS). The XRD results confirm the presence of hydroxyapatite phase in the sample with Ca/P = 1.67, whereas the phosphates prepared with Ca/P = 2.0 ratio show a combination of hydroxyapatite and phase β- tricalcium phosphate. The micrographs obtained are characteristic of ceramic material called calcium phosphate. EDS confirmed the presence of Ca, P and O in the material. (author)

  5. Increased serum phosphate concentrations in patients with advanced chronic kidney disease treated with diuretics.

    Science.gov (United States)

    Caravaca, Francisco; García-Pino, Guadalupe; Martínez-Gallardo, Rocío; Ferreira-Morong, Flavio; Luna, Enrique; Alvarado, Raúl; Ruiz-Donoso, Enrique; Chávez, Edgar

    2013-01-01

    Serum phosphate concentrations usually show great variability in patients with advanced chronic kidney disease (ACKD) not on dialysis. Diuretics treatment can have an influence over the severity of mineral-bone metabolism alterations related to ACKD, but their effect on serum phosphate levels is less known. This study aims to determine whether diuretics are independently associated with serum phosphate levels, and to investigate the mechanisms by which diuretics may affect phosphate metabolism. 429 Caucasian patients with CKD not on dialysis were included in this cross-sectional study. In addition to conventional serum biochemical measures, the following parameters of renal phosphate excretion were assessed: 24-hours urinary phosphate excretion, tubular maximum phosphate reabsorption (TmP), and fractional excretion of phosphate (FEP). 58% of patients were on treatment with diuretics. Patients on diuretics showed significantly higher mean serum phosphate concentration (4.78 ± 1.23 vs. 4.24 ± 1.04 mg/dl; Pdiuretics. By multivariate linear and logistic regression, significant associations between diuretics and serum phosphate concentrations or hyperphosphataemia remained after adjustment for potential confounding variables. In patients with the highest phosphate load adjusted to kidney function, those treated with diuretics showed significantly lower FEP than those untreated with diuretics. Treatment with diuretics is associated with increased serum phosphate concentrations in patients with ACKD. Diuretics may indirectly interfere with the maximum renal compensatory capacity to excrete phosphate. Diuretics should be considered in the studies linking the relationship between serum phosphate concentrations and cardiovascular alterations in patients with CKD.

  6. Immunoassays for riboflavin and flavin mononucleotide using antibodies specific to d-ribitol and d-ribitol-5-phosphate.

    Science.gov (United States)

    Ravi, G; Venkatesh, Yeldur P

    2017-06-01

    Riboflavin (vitamin B 2 ), a water-soluble vitamin, plays a key role in maintaining human health. Though, numerous methods have been reported for the determination of total riboflavin (TRF) content in foods and biological samples, very few methods are reported for quantifying riboflavin and its coenzymes [flavin mononucleotide (FMN); flavin adenine dinucleotide (FAD)] individually. Recently, we have demonstrated that antibodies specific to d-ribitol and d-ribitol-5-phosphate also recognize riboflavin and FMN, respectively, and not vice-versa. In this study, we have evaluated these two antibodies for the analysis of riboflavin and FMN by indirect competitive ELISA (icELISA) in selected foods and pharmaceuticals. Under the optimal assay conditions, 50% inhibition concentration (IC 50 ) and limit of detection (LOD, IC 10 ) were 3.41ng/mL and 0.02ng/mL for riboflavin, and 7.84ng/mL and 0.24ng/mL for FMN, respectively, with detectable concentration range between 0.1 and 100ng of analytes and riboflavin and FMN) from the same food samples showed variation in their values compared to TRF, and were in good agreement with values obtained from HPLC and AOAC methods. Further, spiking and recovery analysis of food samples and pharmaceuticals showed no significant matrix effects. The immunoassays were validated in terms of accuracy and precision using inter- and intra-assays. The immunoassays developed in this study are sensitive and appears feasible for screening a large number of samples in the quantification of riboflavin and FMN in various biological samples, pharmaceuticals and natural/processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  8. Allergic contact dermatitis from sodium dihydroxycetyl phosphate, a new cosmetic allergen?

    DEFF Research Database (Denmark)

    Lomholt, H; Rastogi, S C; Andersen, Klaus Ejner

    2001-01-01

    Sodium dihydroxycetyl phosphate (trade name Dragophos S 2/918501) was identified as a contact allergen in a herbal moisturizing cream causing severe acute contact dermatitis on the hands and face of a 41-year-old woman. Sodium dihydroxycetyl phosphate is a complex mixture of phosphate esters of d...

  9. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  10. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions

    International Nuclear Information System (INIS)

    Cao Xinde; Harris, Willie G.; Josan, Manohardeep S.; Nair, Vimala D.

    2007-01-01

    Precipitation of Ca phosphates plays an important role in controlling P activity and availability in environmental systems. The purpose of this study was to determine inhibitory effects on Ca phosphate precipitation by Mg 2+ , SO 4 2- , CO 3 2- , humic acid, oxalic acid, biogenic Si, and Si-rich soil clay commonly found in soils, sediments, and waste streams. Precipitation rates were determined by measuring decrease of P concentration in solutions during the first 60 min; and precipitated solid phases identified using X-ray diffraction and electron microscopy. Poorly-crystalline hydroxyapatite (HAP: Ca 5 (PO 4 ) 3 OH) formed in control solutions over the experiment period of 24 h, following a second-order dependence on P concentration. Humic acid and Mg 2+ significantly inhibited formation of HAP, allowing formation of a more soluble amorphous Ca phosphate phase (ACP), and thus reducing the precipitation rate constants by 94-96%. Inhibition caused by Mg 2+ results from its incorporation into Ca phosphate precipitates, preventing formation of a well-crystalline phase. Humic acid likely suppressed Ca phosphate precipitation by adsorbing onto the newly-formed nuclei. Presence of oxalic acid resulted in almost complete inhibition of HAP precipitation due to preemptive Ca-oxalate formation. Carbonate substituted for phosphate, decreasing the crystallinity of HAP and thus reducing precipitation rate constant by 44%. Sulfate and Si-rich solids had less impact on formation of HAP; while they reduced precipitation in the early stage, they did not differ from the control after 24 h. Results indicate that components (e.g., Mg 2+ , humic acid) producing relatively soluble ACP are more likely to reduce P stability and precipitation rate of Ca phosphate in soils and sediments than are components (e.g., SO 4 2- , Si) that have less effect on the crystallinity

  11. PHOSPHATES REMOVAL FROM REJECT WATER FROM DIGESTION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    Elżbieta Sperczyńska

    2016-06-01

    Full Text Available The aim of the research work was to evaluate if coagulants used on technical scale are useful in phosphates removal from reject water. Effectiveness of phosphorus compounds removal from reject water from digestion of sewage sludge was examined. Selected prehydrolysed alkaline aluminium polychlorides were used. The results were compared to the ones obtained with aluminium sulphate. Reject water from digestion of sewage sludge form WWTP of 100 000 PE were examined. Commercial agents – prehydrolysed PAX 18, PAX XL10, PAX-XL1905 as well as aluminium sulphate were used. Various doses of coagulants: 0.7; 1.0; 1.5 – time higher than stoichiometric dose were applied. Stoichiometric dose was calculated based on chemical reaction of insoluble aluminium phosphate formation. Concentrations of Kiejdahl nitrogen (891 mgNKj/dm3, phosphates (125 mgPO43-/dm3 and organic compounds - COD (592 mgO2/dm3 in reject water were very high. The effectiveness of coagulation process increased as the doses of chemical agents increased. The most effective doses were the highest ones used during the experiment. The most effective agent was PAX 18 (96% removal efficiency. As the phosphates concentration decreased COD content declined simultaneously. Maximum COD removal (47% was obtained when highly alkaline PAX XL 1905 was used. Use of the lowest dose of Al2(SO43 allowed for 50% phosphates removal, whereas the lowest dose of PAX 18 decreased phosphates concentration by 83%.

  12. Procedure for the separation of cerium from crude phosphates and rare earth concentrates

    International Nuclear Information System (INIS)

    Richter, H.; Koenig, O.; Schmitt, A.; Grauss, H.; Freitag, S.

    1986-01-01

    The invention has to do with a procedure for the separation of cerium from crude phosphates and rare earth phosphate concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions. It is aimed at the cerium separation from the raw material at an early stage of reprocessing without preceding elimination of other components and impurities. The rare earth phosphate concentrates or crude phosphates are dissolved in nitric acid, the Ce 3+ is oxidized with potassium permanganate or magnanese(IV) hydroxide, and cerium(IV) phosphate is precipitated as pure substance by decreasing the acidity of the solution

  13. Enhanced phosphate selectivity from wastewater using copper-loaded chelating resin functionalized with polyethylenimine.

    Science.gov (United States)

    An, Byungryul; Nam, Juhee; Choi, Jae-Woo; Hong, Seok-Won; Lee, Sang-Hyup

    2013-11-01

    In water and wastewater, phosphate is considered a critical contaminant due to cause algae blooms and eutrophication. To meet the stringent regulation of phosphate in water, a new commercial chelating resin functionalized with polyethylenimine was tested for phosphate removal by loading Cu(2+) and Fe(2+)/Fe(3+) to enhance selectivity for phosphate. Batch and column experiments showed that CR20-Cu exhibited high selectivity for phosphate over other strong anions such as sulfate. The average binary phosphate/nitrate and phosphate/sulfate factors for CR20-Cu were calculated to be 7.3 and 4.8, respectively, which were more than 0.97 and 0.22 for a commercial anion exchanger (AMP16). The optimal pH for the phosphate removal efficiency was determined to be 7. According to the fixed-bed column test, the breakthrough sequence for multiple ions was HPO4(2-)>SO4(2-)>NO3(-)>Cl(-). Saturated CR20-Cu can be regenerated using 4% NaCl at pH 7. More than 95% of the phosphate from CR20-Cu was recovered, and the phosphate uptake capacity for CR20-Cu was not reduced after 7 regeneration cycles. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Phosphate homeostasis in Bartter syndrome: a case-control study.

    Science.gov (United States)

    Bettinelli, Alberto; Viganò, Cristina; Provero, Maria Cristina; Barretta, Francesco; Albisetti, Alessandra; Tedeschi, Silvana; Scicchitano, Barbara; Bianchetti, Mario G

    2014-11-01

    Bartter patients may be hypercalciuric. Additional abnormalities in the metabolism of calcium, phosphate, and calciotropic hormones have occasionally been reported. The metabolism of calcium, phosphate, and calciotropic hormones was investigated in 15 patients with Bartter syndrome and 15 healthy subjects. Compared to the controls, Bartter patients had significantly reduced plasma phosphate {mean [interquartile range]:1.29 [1.16-1.46] vs. 1.61 [1.54-1.67] mmol/L} and maximal tubular phosphate reabsorption (1.16 [1.00-1.35] vs. 1.41 [1.37-1.47] mmol/L) and significantly increased parathyroid hormone (PTH) level (6.1 [4.5-7.7] vs. 2.8 [2.2-4.4] pmol/L). However, patients and controls did not differ in blood calcium, 25-hydroxyvitamin D, alkaline phosphatase, and osteocalcin levels. In patients, an inverse correlation (P Bartter patients.

  15. Development of chemically engineered porous metal oxides for phosphate removal

    International Nuclear Information System (INIS)

    Delaney, Paul; McManamon, Colm; Hanrahan, John P.; Copley, Mark P.; Holmes, Justin D.; Morris, Michael A.

    2011-01-01

    In this study, the application of ordered mesoporous silica (OMS) doped with various metal oxides (Zr, Ti, Fe and Al) were studied for the removal of (ortho) phosphate ions from water by adsorption. The materials were characterized by means of N 2 physisorption (BET), powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM). The doped materials had surface areas between 600 and 700 m 2 g -1 and exhibited pore sizes of 44-64 A. Phosphate adsorption was determined by measurement of the aqueous concentration of orthophosphate using ultraviolet-visible (UV-vis) spectroscopy before and after extraction. The effects of different metal oxide loading ratios, initial concentration of phosphate solution, temperature and pH effects on the efficiency of phosphate removal were investigated. The doped mesoporous materials were effective adsorbents of orthophosphate and up to 100% removal was observed under appropriate conditions. 'Back extracting' the phosphate from the doped silica (following water treatment) was also investigated and shown to have little adverse effect on the adsorbent.

  16. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    Science.gov (United States)

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  18. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  19. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  20. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility

    International Nuclear Information System (INIS)

    Ko, Chia-Ling; Chen, Jian-Chih; Hung, Chun-Cheng; Wang, Jen-Chyan; Tien, Yin-Chun; Chen, Wen-Cheng

    2014-01-01

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30 MPa after 24 h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution. - Highlights: • Bone cement precursor with nanocrystals is characterized. • DCP-rich CPCs with nanocrystals exhibited biphasic product phases. • Nanocrystals in cement significantly affected the interlocking ability. • Nanocrystals in cement exhibited higher strength and anti-dispersion. • DCP-rich CPCs increase the potential of bioresorption after reaction

  1. Phosphate binding therapy in dialysis patients: focus on lanthanum carbonate

    Directory of Open Access Journals (Sweden)

    Ismail A Mohammed

    2008-11-01

    Full Text Available Ismail A Mohammed, Alastair J HutchisonManchester Institute of Nephrology and Transplantation, Manchester Royal Infirmary, Oxford Road, Manchester, UKAbstract: Hyperphosphatemia is an inevitable consequence of end stage chronic kidney disease and is present in the majority of dialysis patients. Recent observational data has associated hyperphosphatemia with increased cardiovascular mortality among dialysis patients. Dietary restriction of phosphate and current dialysis prescription practices are not enough to maintain serum phosphate levels within the recommended range so that the majority of dialysis patients require oral phosphate binders. Unfortunately, conventional phosphate binders are not reliably effective and are associated with a range of limitations and side effects. Aluminium-containing agents are highly efficient but no longer widely used because of well established and proven toxicity. Calcium based salts are inexpensive, effective and most widely used but there is now concern about their association with hypercalcemia and vascular calcification. Sevelamer hydrochloride is associated with fewer adverse effects, but a large pill burden and high cost are limiting factors to its wider use. In addition, the efficacy of sevelamer as a monotherapy in lowering phosphate to target levels in severe hyperphosphatemia remains debatable. Lanthanum carbonate is a promising new non-aluminium, calcium-free phosphate binder. Preclinical and clinical studies have demonstrated a good safety profile, and it appears well tolerated and effective in reducing phosphate levels in dialysis patients. Its identified adverse events are apparently mild to moderate in severity and mostly GI related. It appears to be effective as a monotherapy, with a reduced pill burden, but like sevelamer, it is significantly more expensive than calcium-based binders. Data on its safety profile over 6 years of treatment are now available.Keywords: hyperphosphatemia, lanthanum

  2. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  3. Expansion of GA Dinucleotide Repeats Increases the Density of CLAMP Binding Sites on the X-Chromosome to Promote Drosophila Dosage Compensation.

    Directory of Open Access Journals (Sweden)

    Guray Kuzu

    2016-07-01

    Full Text Available Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.

  4. Association of six CpG-SNPs in the inflammation-related genes with coronary heart disease

    OpenAIRE

    Chen, Xiaomin; Chen, Xiaoying; Xu, Yan; Yang, William; Wu, Nan; Ye, Huadan; Yang, Jack Y.; Hong, Qingxiao; Xin, Yanfei; Yang, Mary Qu; Deng, Youping; Duan, Shiwei

    2016-01-01

    Background Chronic inflammation has been widely considered to be the major risk factor of coronary heart disease (CHD). The goal of our study was to explore the possible association with CHD for inflammation-related single nucleotide polymorphisms (SNPs) involved in cytosine-phosphate-guanine (CpG) dinucleotides. A total of 784 CHD patients and 739 non-CHD controls were recruited from Zhejiang Province, China. Using the Sequenom MassARRAY platform, we measured the genotypes of six inflammatio...

  5. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  6. Functional and structural analysis of yeast trx system reveals structural elements of substrate specificity

    International Nuclear Information System (INIS)

    Oliveira, Marcos Antonio; Discola, Karen Fulan; Alves, Simone Vidigal; Netto, Luis Eduardo Soares; Amorim, Gisele Cardoso; Pinheiro, Anderson Sa; Valente, Ana Paula; Almeida, Fabio Ceneviva Lacerda; Medrano, Francisco Javier; Guimaraes, Beatriz Gomes

    2006-01-01

    Thioredoxin reductases (Trr) are members of the nucleotide pyridine disulfide oxide reductase family, which includes glutathione reductase (Gr), alkyl hydroperoxide reductase F (AhpF) and lipoamide dehydrogenase (Lpd). Constituents of this family are homodimeric flavoproteins containing one redoxactive disulfide and one tightly bound flavin adenine dinucleotide (FAD) per subunit. Trr catalyzes the disulfide reduction of oxidized Thioredoxin (Trx) using nicotinamide adenine dinucleotide phosphate (NADPH) via a FAD molecule and a redox-active cysteine motif. In this context, FAD transfers the reducing equivalents from NADPH molecule to the reactive cysteines and then to the Trx. Trx, Trr and NADPH comprise the Trx system. Trx are low molecular weight proteins (∼12 KDa) which are involved in several thiol-dependent cellular reactions such as synthesis of deoxyribonucleotides, sulphur metabolism, regulation of the gene expression and oxidative stress defenses. Remarkably, Trr - Trx interactions presents high species and organelle specificities. (author)

  7. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  8. Calcium phosphate saturation in seawater around the Andaman Island

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Ionic product (IP) of calcium phosphate is calculated at some stations around Andaman Island. The depthwise variations of the ionic product of calcium phosphate seem to follow a normal trend with maximum saturation value between 100 to 200 m. Using...

  9. Uranium determination in phosphatized materials by drop electrode polarography

    International Nuclear Information System (INIS)

    Sequeira, F.M.C. de; Abrao, A.

    1987-01-01

    An uranium determination procedure in phosphate rocks and crude phosphoric acid is outlined polarography is used. Uranium is previously separedted by extraction with tri-n-byte phosphate 10%-petroleum ether using aluminium nitrate as salting out agent. (M.L.J.) [pt

  10. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    International Nuclear Information System (INIS)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-01-01

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups - bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2) - are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467

  11. Investigation of alternative phosphating treatments for nickel and hexavalent chromium elimination

    International Nuclear Information System (INIS)

    Jazbinsek, Luiz Antonio Rossi

    2014-01-01

    The phosphating processes are widely used in industry as surface treatments for metals, especially for low thickness plates, improving the adhesion between the metallic surface and the paint coating, and increasing the durability of paint systems against corrosion attacks. The tricationic phosphates containing zinc, nickel and manganese are commonly applied on steel. There is much discussion about the replacement of nickel by another element in order to have an environmentally friendly phosphating process. Niobium as a replacement for nickel has been evaluated. The most significant environmental impacts of phosphating processes are related to the presence of nickel and hexavalent chromium used in the process, this last as a passivation treatment. Nickel and hexavalent chromium are harmful to human and environment leading to contamination of water and soil. In the present study phosphate layers containing zinc, manganese and niobium have been evaluated and characterized on galvanized steel, and the results were compared with phosphates containing zinc, manganese and nickel, or a bicationic phosphate layer with zinc and manganese. Although the use of hexavalent chromium is not recommended worldwide, it is still used in processes for sealing the porosity of phosphate layers. This element is carcinogenic and has been associated with various diseases. Due to the passivation characteristics of niobium, this study also evaluated the tricationic bath containing niobium ammonium oxalate as a passivation treatment. The results showed that it could act as a replacement for the hexavalent chromium. The results of the present study showed that formulations containing niobium are potential replacements for hexavalent chromium and similar corrosion protection was obtained for the phosphate containing nickel or that with niobium. The morphology observed by scanning electron microscopy, gravimetric tests, porosity and adhesion evaluation results indicated that the phosphate

  12. Role of magnesium on the biomimetic deposition of calcium phosphate

    Science.gov (United States)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  13. Contribution to the study of uranyl salts in butyl phosphate solutions; Contribution a l'etude des solutions de sels d'uranyle dans les phosphates butyliques

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from {approx} 1270 cm{sup -1} to {approx} 1180 cm{sup -1}. A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [French] Une etude spectroscopique dans l'infrarouge moyen portant sur les associations: - phosphates trialcoyliques (tributylique - triethylique - trimethylique) - sels d'uranyle (nitrate, chlorure, acetate) a confirme l'existence d'une interaction entre le groupement phosphoryle et l'atome d'uranium, se manifestant par un deplacement de la bande d'absorption de la vibration de valence P = 0 de {approx} 1270 cm{sup -1} a {approx} 1180 cm{sup -1}. Une etude preparative, analytique et spectroscopique des solides obtenus par precipitation de sels d'uranyle par les phosphates butyliques acides a ete effectuee. La spectrophotomerie infrarouge met en evidence l'association, anterieure a toute introduction d'uranium, des phosphates tributylique et dibutylique dans des diluants non polaires. L'extraction de sels d'uranyle, d'une solution aqueuse acide par un melange dilue de phosphates tributylique et dibutylique, s'effectue suivant des processus differents a la nature de l'anion (nitrate ou chlorure). (auteur)

  14. Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers.

  15. Study on the adsorption and desorption of fertilizer phosphates by the soil suspensions

    International Nuclear Information System (INIS)

    Puspodikoro, S.

    1978-01-01

    The adsorption and desorption of fertilizer phosphate by soil suspensions were studied with the purpose to improve the efficiency of the use of phosphate fertilizer in rice growing countries. Experiments have shown that the applied phosphate fertilizer was quickly adsorbed by the soil and that the bulk of the fertilizer phosphate got bound to the soil complex. These bound fertilizer phosphates could readily be desorbed by flooding of the soil up to a certain amount. (author)

  16. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin; Effets du sulfate de magnesium sur l'absorption foliaire de phosphates chez le potiron

    Energy Technology Data Exchange (ETDEWEB)

    Chamel, A

    1962-07-01

    The foliar absorption of phosphates labelled with {sup 32}P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of {sup 32}P. (O.M.) [French] Nous avons etudie l'absorption foliaire de phosphates marques au {sup 32}P appliques, avec et sans sulfate de magnesium, sur la premiere feuille de jeunes plants de potirons. Le sulfate de magnesium applique avec le phosphate diminue nettement le taux d'absorption du {sup 32}P. (auteur)

  17. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M.

    2004-01-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th 4 (PO 4 ) 4 P 2 O 7 ) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th 2 (PO 4 ) 2 (HPO 4 ). H 2 O, TPHP, solubility product log(K S,0 0 ) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th 2-x/2 An x/2 (PO 4 ) 2 (HPO 4 ). H 2 O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  18. Exploring the challenges associated with the greening of supply chains in the South African manganese and phosphate mining industry

    Directory of Open Access Journals (Sweden)

    R.I. David Pooe

    2014-11-01

    Full Text Available As with most mining activities, the mining of manganese and phosphate has serious consequences for the environment. Despite a largely adequate and progressive framework for environmental governance developed since 1994, few mines have integrated systems into their supply chain processes to minimise environmental risks and ensure the achievement of acceptable standards. Indeed, few mines have been able to implement green supply chain management (GrSCM. The purpose of this article was to explore challenges related to the implementation of GrSCM and to provide insight into how GrSCM can be implemented in the South African manganese and phosphate industry. This article reported findings of a qualitative study involving interviews with 12 participants from the manganese and phosphate industry in South Africa. Purposive sampling techniques were used. Emerging from the study were six themes, all of which were identified as key challenges in the implementation of GrSCM in the manganese and phosphate mining industry. From the findings, these challenges include the operationalisation of environmental issues, lack of collaboration and knowledge sharing, proper application of monitoring and control systems,lack of clear policy and legislative direction, the cost of implementing GrSCM practices, and the need for strong leadership and management of change. On the basis of the literature reviewed and empirical findings, conclusions were drawn and policy and management recommendations were accordingly made.

  19. Preparation and characterization of bioceramics produced from calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Andriotis, O.; Katsamenis, O.L. [Department of Materials Science, University of Patras, 26504, Patras (Greece); Mouzakis, D.E. [Technological Educational Institute of Larisa, Department of Mechanical Engineering, T.E.I of Larissa, 411 10, Larissa (Greece); Bouropoulos, N. [Foundation for Research and Technology, Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, FORTH/ICE-HT, P.O. Box 1414, 26504 Rio Patras (Greece)

    2010-03-15

    The present work reports a method for preparing calcium phosphate ceramics by calcination of calcium phosphate cements composed mainly of calcium deficient hydroxyapatite (CDHA). It was found that hardened cements calcinied at temperatures from to 600 to 1300 C were transformed to tricalcium phosphates. Moreover the compressive strength was determined and porosity was estimated as a function of the calcination temperature. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  1. Determination of uranium content in phosphate ores using different measurement techniques

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Eshaikh

    2016-01-01

    Full Text Available The most important unconventional source of uranium is found in phosphate deposits; unfortunately, nowadays its exploitation is limited by economic constraints. The uranium concentrations in phosphate ores in the world vary regionally and most countries with large phosphate deposits have either plant in operation to extract uranium or are at the stage of pilot extraction plants. The aim of this investigation is to evaluate uranium content in the Saudi phosphate ores for, at least, two reasons: firstly, upgrading the phosphate quality by removing the uranium content in order to reduce the radioactivity in the fertilizer products. Secondly, getting benefit from the extracted uranium for its domestic use as a fuel in nuclear power and desalination plants. The results of this study show that the uranium concentration in Saudi phosphate rocks is relatively low (less than 100 ppm, which is not economically encouraging for its direct extraction. However, its extraction as a byproduct from the phosphoric acid, which will have higher concentration could be quite promising and worth exploiting.

  2. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  3. Molecular diagnosis of Prader-Willi syndrome: Parent-of-origin dependent methylation sites and non-isotopic detection of (CA){sub n} dinucleotide repeat polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Lerer, I.; Meiner, V.; Pashut-Lavon, I.; Abeliovich, D.

    1994-08-01

    We describe our experience in the molecular diagnosis of 22 patients suspected of Prader-Willi syndrome (PWS) using a DNA probe PW71 (D15S63) which detects a parent-of-origin specific methylated site in the PWS critical region. The cause of the syndrome was determined as deletion or uniparental disomy according to the segregation of (CA){sub n} dinucleotide repeat polymorphisms of the PWS/AS region and more distal markers of chromosome 15. In 10 patients the clinical diagnosis was confirmed by the segregation of (CA){sub n}, probably due to paternal microdeletion in the PWs critical region which did not include the loci D15S97, D15S113, GABRB3, and GABRA5. This case demonstrates the advantage of the DNA probe PW71 in the diagnosis of PWS. 31 refs., 2 figs., 3 tabs.

  4. Kinetics of strontium sorption in calcium phosphate

    International Nuclear Information System (INIS)

    Bacic, S.; Komarov, V.F.; Vukovic, Z.

    1989-01-01

    Kinetics of strontium sorption by highly dispersed solids: tricalcium phosphate (Ca 3 (PO 4 ) 2 , TCP) and hydroxyapatite (Ca 5 (PO 4 ) 3 )H, HAP) were investigated. Analysis of sorption data was made taking into consideration composition and morphology of ultra micro particles. Conclusion is that the isomorphous strontium impurity is structurally sensitive element for calcium phosphate. It was determined that the beginning of strontium desorption corresponds to the beginning of transformation of the TCP - HAP (author)

  5. Bacterial formation of phosphatic laminites off Peru.

    Science.gov (United States)

    Arning, E T; Birgel, D; Brunner, B; Peckmann, J

    2009-06-01

    Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10 degrees 01' S and 10 degrees 24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS(2)) and sphalerite (ZnS). Low delta(34)S(pyrite) values (average -28.8 per thousand) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C(15:0), i/ai-C(17:0) and 10MeC(16:0)) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.

  6. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  7. Phosphate retention by soil in relation to waste disposal

    NARCIS (Netherlands)

    Beek, J.

    1979-01-01

    The disposal of large amounts of domestic sewage water and liquid manure, both containing dissolved phosphates, is often problematic. Discharge of these into (shallow and standing) surface waters is highly undesirable, as phosphate is considered to be one of the prime causes of eutrophication. If,

  8. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    The aim of the present study was the removal of phosphate and nitrate by sodium alginate seagrass (Cymodocea rotundata) beads from aqueous solutions. The adsorption characteristics of phosphate and nitrate on the seagrass beads were optimized under different operational parameters like adsorbent dosage, initial ...

  9. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  10. The Australian national reactive phosphate rock project - Aims, experimental approach, and site characteristics

    International Nuclear Information System (INIS)

    McLaughlin, M.J.

    2002-01-01

    Field-based cutting trials were established across Australia in a range of environments to evaluate the agronomic effectiveness of 5 phosphate rocks, and 1 partially acidulated phosphate rock, relative to either single super-phosphate or triple superphosphate. The phosphate rocks differed in reactivity, as determined by the degree of carbonate substitution for phosphate in the apatite structure and solubility of phosphorus present in the fertilizers in 2% formic acid, 2% citric acid and neutral ammonium citrate. Sechura (Bayovar) and North Carolina phosphate rocks were highly reactive (>70% solubility in 2% formic acid), whilst Khouribja (Moroccan) and Hamrawein (Egypt) phosphate rock were moderately reactive. Duchess phosphate rock from Queensland was relatively unreactive ( 2 , from 4.0 to 5.1, and Colwell extractable phosphorus ranged from 3 to 47 μg/g prior to fertilizer application. Two core experiments were established at each site. The first measured the effects of phosphate rock reactivity on agronomic effectiveness, while the second core experiment measured the effects of the degree of water solubility of the phosphorus source on agronomic effectiveness. The National Reactive Phosphate Rock Project trials provided the opportunity to confirm the suitability of accepted procedures to model fertilizer response and to develop new approaches for comparing different fertilizer responses. The Project also provided the framework for subsidiary studies such as the effect of fertilizer source on soil phosphorus extractability; cadmium and fluorine concentrations in herbage; evaluation of soil phosphorus tests; and the influence of particle size on phosphate rock effectiveness. The National Reactive Phosphate Rock Project presents a valuable model for a large, Australia-wide, collaborative team approach to an important agricultural issue. The use of standard and consistent experimental methodologies at every site ensured that maximum benefit was obtained from data

  11. Recovery of uranium from phosphatic rock and its derivatives

    International Nuclear Information System (INIS)

    Romero Guzman, E.T.

    1992-01-01

    The recovery of uranium present in the manufacture process of phosphoric acid and fertilizers has been one interesting field of study in chemistry. It is true that the recovery of uranium it is not very attractive from the commercial point of view, however the phosphatic fertilizers have an important amount of uranium which comes from the starting materials (phosphatic rock), therefore there must be many tons of uranium that are dispersed in the environmental together with the fertilizers used in agriculture every year. They are utilized for the enrichment of the nutrients which are exhausted in the soil. In this work, uranium was identified and quantified in the phosphatic rocks and in inorganic fertilizers using Gamma Spectroscopy, Neutron Activation Analysis, UV/Visible Spectrophotometry, Alpha Spectroscopy. On the other hand, it was done a correlation of the behaviour of uranium with inorganic elements present in the samples such as phosphorus, calcium and iron; which were determined by UV/Visible Spectrophotometry for phosphorus and Atomic Absorption Spectrometry for calcium and iron. The quantity of uranium found in the phosphatic rock, phosphoric acid and fertilizers was considerable (70-200 ppm). The adequate conditions for the recovery of 40% of total of uranium from the phosphatic rock with the addition of leaching solutions were stablished. (Author)

  12. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    Science.gov (United States)

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  13. Isolation of phosphate solubilizer fungi from Araza rhizosphere

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available Araza is an eatable plant, original from the Amazon region which has been describedas a promising species for commercialization (Quevedo 1995. This plant has highproductivity even in low content phosphate soil but the presence of phosphatesolubilizazing microorganisms may contribute to increase this element availability.In this study we report the isolation and characterization of solubilizing fungiprocessed using the soil washing method, from soil samples were Araza is cultivated attwo regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizingphosphate were obtained from 2 different sources. The most importat species that solubilized phosphate from calcium were Trichodermaaureoviride, Aspergillus aculeatus,Trichodermastrain 1 y Trichodermastrain 2 and for phosphate from iron: Aspergillus oryzae,Paecilomycesstrain 3, Gongronella butleri& Fusarium oxysporum

  14. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-11-01

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 1600 0 C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO 5 , was studied in some detail. (Auth.)

  15. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  16. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation.

    Directory of Open Access Journals (Sweden)

    Misty L Kuhn

    Full Text Available The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase.

  17. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Vivian; Bosco, Giulianna E. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André CEP 09210-170, SP (Brazil); Fadini, Pedro S.; Mozeto, Antonio A. [Laboratório de Biogeoquímica Ambiental, Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos CEP 13565-905, SP (Brazil); Cestari, Antonio R. [Department of Chemistry/CCET, Universidade Federal de Sergipe, São Cristóvão CEP 49100-000, SE (Brazil); Carvalho, Wagner A., E-mail: wagner.carvalho@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André CEP 09210-170, SP (Brazil)

    2014-06-01

    Highlights: • A phosphate adsorbent was prepared from unpurified natural bentonite. • Physisorption was found to the main phosphate interaction mechanism. • The retention has reached 95% of the phosphate present in solution at room temperature. • The rate sorption was about 4 times faster than commercial phosphate adsorbents. - Abstract: A bentonite from the Northeast Brazilian region was modified with lanthanum (NT-25La) using an ion exchange process. Lanthanum incorporation in the natural clay, as well as the properties of the clay materials, were confirmed by X-ray diffraction, X-ray fluorescence, specific surface area and scanning electron microscopy (SEM/EDX). Phosphate adsorption equilibrium and kinetic tests were performed at different temperatures. The adsorption data have shown that NT-25La reaches equilibrium between modified clay and phosphate solution within 60 min of contact. The phosphate retention at room temperature reached 95%, when initial phosphate concentration in solution was 5 mg L{sup −1}. A kinetic-order variable model provided satisfactory fitting of the kinetic data. Adsorption of phosphate was best described by a Langmuir isotherm, with maximum phosphate sorption capacity of 14.0 mg g{sup −1}. Two distinct adsorption mechanisms were observed that may influence the adsorption processes. The investigation pointed out that the phosphate adsorption occurs via physisorption processes and that the use of NT-25La provides a maximum phosphate sorption capacity higher than many commercial adsorbents.

  18. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  19. Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties

    OpenAIRE

    Redondo, Clara; Breslin, Carmel B.

    2007-01-01

    Highly adherent and homogenous polypyrrole films were electrodeposited at copper from a dihydrogen phosphate solution. The polypyrrole films were electrosynthesized in the overoxidized state by cycling the copper electrode from –0.4 to 1.8 V (SCE) in a pyrrole-containing phosphate solution. The growth of the polypyrrole films was facilitated by the initial oxidation of the copper electrode in the phosphate solution to generate a mixed copper–phosphate, copper oxide or hydroxide layer. This la...

  20. Purification of Sodium Phosphates as by Product of Rirang Ore Decomposition Process

    International Nuclear Information System (INIS)

    Sugeng-Walujo; Hafni-LN; Susilaningtyas; Mukhlis; Budi-Sarono; Widowati

    2004-01-01

    The aim of this experiment is to get purification condition of sodium phosphates from the filtration result of mixing mother liquor and filtrate of washing residue from Rirang monazite decomposition by alkaline. The method of purification which has been used is dissolved the precipitation of sodium phosphates into agitated water 5 minutes and solution settling for 12 hours until appear of sodium phosphate crystals. The variable of experiment included dissolution time and ratio of the amount precipitate sodium phosphate volume of water to solvent. Experimental data shown that the good temperature of dissolution is 70 o C with the ratio of precipitate sodium phosphate is 80 gram/ 40 ml to water. The recovery of sodium phosphate crystallisation is 87.4314 % with 54.0105 % pure of Na 3 PO 4 , U content is 0.0004%, NaOH content and other impurities is 45.9889%. (author)

  1. Synthesis and characterization of porous calcium phosphate

    International Nuclear Information System (INIS)

    Granados C, F.; Serrano G, J.; Bonifacio M, J.

    2007-01-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO 3 ) 2 .4H 2 O and NH 4 H 2 PO 4 salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  2. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  3. Effect of phosphate supplementation on oxygen delivery at high altitude

    Science.gov (United States)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  4. Chemistry of tetravalent actinides phosphates. The thorium phosphate-diphosphate as immobilisation matrix of actinides

    International Nuclear Information System (INIS)

    Dacheux, N.

    2002-01-01

    The author presents in this document its scientific works from 1992 to 2001, in order to obtain the enabling to manage scientific and chemical researches at the university Paris Sud Orsay. The first part gives an abstract of the thesis on the characterizations, lixiviation and synthesis of uranium and thorium based phosphate matrix in the framework of the search for a ceramic material usable in the radioactive waste storage. The second part presents briefly the researches realized at the CEA, devoted to a reliable, independent and accurate measure of some isotopes activity. The last part presents the abstracts of researches activities from 1996 to 2001 on the tetravalent actinides phosphates chemistry, the sintering of PDT and solid solutions of PDTU and the kinetic and thermodynamical studies of the PDT dissolution. Many references and some publication in full text are provided. (A.L.B.)

  5. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    Science.gov (United States)

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystal structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled

  7. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  8. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  9. Recovery of uranium from 30 vol % tributyl phosphate solvents containing dibutyl phosphate

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1986-01-01

    A number of solid sorbents were tested for the removal of uranium and dibutyl phosphate (DBP) from 30% tributyl phosphate (TBP) solvent. The desired clean uranium product can be obtained either by removing the DBP, leaving the uranium in the solvent for subsequent stripping, or by removing the uranium, leaving the DBP in the solvent for subsequent treatment. The tests performed show that it is relatively easy to preferentially remove uranium from solvents containing uranium and DBP, but quite difficult to remove DBP preferentially. The current methods could be used by removing the uranium (as by a cation exchange resin) and then using either an anion exchange resin in the hydroxyl form or a conventional treatment with a basic solution to remove the DBP. Treatment of a solvent with a cation exchange resin could be useful for recovery of valuable metals from solvents containing DBP and might be used to remove cations before scrubbing a solvent with a basic solution to minimize emulsion formation. 6 refs., 9 figs

  10. Mechanistic studies with solubilized rat liver steroid 5 alpha-reductase: Elucidation of the kinetic mechanism

    International Nuclear Information System (INIS)

    Levy, M.A.; Brandt, M.; Greway, A.T.

    1990-01-01

    A solubilized preparation of steroid 5 alpha-reductase from rat liver has been used in studies focused toward an understanding of the kinetic mechanism associated with enzyme catalysis. From the results of analyses with product and dead-end inhibitors, a preferentially ordered binding of substrates and release of products from the surface of the enzyme is proposed. The observations from these experiments were identical with those using the steroid 5 alpha-reductase activity associated with rat liver microsomes. The primary isotope effects on steady-state kinetic parameters when [4S-2H]NADPH was used also were consistent with an ordered kinetic mechanism. Normal isotope effects were observed for all three kinetic parameters (Vm/Km for both testosterone and NADPH and Vm) at all substrate concentrations used experimentally. Upon extrapolation to infinite concentration of testosterone, the isotope effect on Vm/Km for NADPH approached unity, indicating that the nicotinamide dinucleotide phosphate is the first substrate binding to and the second product released from the enzyme. The isotope effects on Vm/Km for testosterone at infinite concentration of cofactor and on Vm were 3.8 +/- 0.5 and 3.3 +/- 0.4, respectively. Data from the pH profiles of these three steady-state parameters and the inhibition constants (1/Ki) of competitive inhibitors versus both substrates indicate that the binding of nicotinamide dinucleotide phosphate involves coordination of its anionic 2'-phosphate to a protonated enzyme-associated base with an apparent pK near 8.0. From these results, relative limits have been placed on several of the internal rate constants used to describe the ordered mechanism of the rat liver steroid 5 alpha-reductase

  11. L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.

    Science.gov (United States)

    Benaroya, Rony Oren; Zamski, Eli; Tel-Or, Elisha

    2004-02-01

    L-Myo-inositol 1-phosphate synthase (INPS EC 5.5.1.4) catalyzes the conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate. INPS is a key enzyme involved in the biosynthesis of phytate which is a common form of stored phosphates in higher plants. The present study monitored the increase of INPS expression in Azolla filiculoides resulting from exposure to inorganic phosphates, metals and salt stress. The expression of INPS was significantly higher in Azolla plants that were grown in rich mineral growth medium than those maintained on nutritional growth medium. The expression of INPS protein and corresponding mRNA increased in plants cultured in minimal nutritional growth medium when phosphate or Zn2+, Cd2+ and NaCl were added to the growth medium. When employing rich mineral growth medium, INPS protein content increased with the addition of Zn2+, but decreased in the presence of Cd2+ and NaCl. These results indicated that accumulation of phytate in Azolla is a result of the intensified expression of INPS protein and mRNA, and its regulation may be primarily derived by the uptake of inorganic phosphate, and Zn2+, Cd2+ or NaCl.

  12. Phosphate removal from water using lithium intercalated gibbsite.

    Science.gov (United States)

    Wang, Shan-Li; Cheng, Chia-Yi; Tzou, Yu-Min; Liaw, Ren-Bao; Chang, Ta-Wei; Chen, Jen-Hshuan

    2007-08-17

    In this study, lithium intercalated gibbsite (LIG) was investigated for its effectiveness at removing phosphate from water and the mechanisms involved. LIG was prepared through intercalating LiCl into gibbsite giving a structure of [LiAl2(OH)6]+ layers with interlayer Cl- and water. The results of batch adsorption experiments showed that the adsorption isotherms at various pHs exhibited an L-shape and could be fitted well using the Langmuir model. The Langmuir adsorption maximum was determined to be 3.0 mmol g(-1) at pH 4.5 and decreased with increasing pH. The adsorption of phosphate was mainly through the displacement of the interlayer Cl- ions in LIG. In conjunction with the anion exchange reaction, the formation of surface complexes or precipitates could also readily occur at lower pH. The adsorption decreased with increasing pH due to decreased H(2)PO(4)(-)/HPO4(2-) molar ratio in solution and positive charges on the edge faces of LIG. Anion exchange is a fast reaction and can be completed within minutes; on the contrary, surface complexation is a slow process and requires days to reach equilibrium. At lower pH, the amount of adsorbed phosphate decreased significantly as the ionic strength was increased from 0.01 to 0.1M. The adsorption at higher pH showed high selectivity toward divalent HPO4(2-) ions with an increase in ionic strength having no considerable effect on the phosphate adsorption. These results suggest that LIG may be an effective scavenger for removal of phosphate from water.

  13. Phosphate removal from water using lithium intercalated gibbsite

    International Nuclear Information System (INIS)

    Wang, S.-L.; Cheng, C.-Y.; Tzou, Y.-M.; Liaw, R.-B.; Chang, T.-W.; Chen, J.-H.

    2007-01-01

    In this study, lithium intercalated gibbsite (LIG) was investigated for its effectiveness at removing phosphate from water and the mechanisms involved. LIG was prepared through intercalating LiCl into gibbsite giving a structure of [LiAl 2 (OH) 6 ] + layers with interlayer Cl - and water. The results of batch adsorption experiments showed that the adsorption isotherms at various pHs exhibited an L-shape and could be fitted well using the Langmuir model. The Langmuir adsorption maximum was determined to be 3.0 mmol g -1 at pH 4.5 and decreased with increasing pH. The adsorption of phosphate was mainly through the displacement of the interlayer Cl - ions in LIG. In conjunction with the anion exchange reaction, the formation of surface complexes or precipitates could also readily occur at lower pH. The adsorption decreased with increasing pH due to decreased H 2 PO 4 - /HPO 4 2- molar ratio in solution and positive charges on the edge faces of LIG. Anion exchange is a fast reaction and can be completed within minutes; on the contrary, surface complexation is a slow process and requires days to reach equilibrium. At lower pH, the amount of adsorbed phosphate decreased significantly as the ionic strength was increased from 0.01 to 0.1 M. The adsorption at higher pH showed high selectivity toward divalent HPO 4 2- ions with an increase in ionic strength having no considerable effect on the phosphate adsorption. These results suggest that LIG may be an effective scavenger for removal of phosphate from water

  14. Neutron activation analysis of alternative phosphate rocks used in animal nutrition

    International Nuclear Information System (INIS)

    Canella, Artur A.; Ferreira, Walter M.

    2005-01-01

    Since 1980's, Bovine Sponghiform Encephalophaty has insidiously created a fierce battleground between farmers, scientists, environmentalists and consumers. The use of meat and bone meals is currently prohibited in ruminant feeds throughout the world. Some inorganic sources offer the combination of high phosphorus content and acceptable animal digestibility make them options as supplemental phosphorus, for instance phosphate rocks, general term applied to minerals valued chiefly for their phosphorus content. However, phosphate rocks are long been known containing hazardous elements, make them sometimes unsuitable for animal nutrition. Neutron Activation Analysis has been supportive to the mineral evaluation of alternative phosphate rocks. This evaluation is subject of on-going doctoral thesis which has been carried-out by the main author. The NAA method has been very efficient due to its highly sensitive and multi-elemental nature. In this paper results of Vanadium content from three different phosphate rocks are presented. Their values have been pointed out that Brazilian phosphate rocks present hazardous elements at the same levels of phosphate rocks from some countries of Africa, North America and Middle East, data from our study (Brazilian data) and FAO - Food and Agriculture Organization (others countries). (author)

  15. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick

    2015-12-01

    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  16. Effect of shelf life on compressive strength of zinc phosphate cement

    Science.gov (United States)

    Dwiputri, D. R.; Damiyanti, M.; Eriwati, Y. K.

    2017-08-01

    Usage of zinc phosphate cements with no account of the shelf life left before the expiry date can affect its compressive strength. The aim of this study is to determine the different compressive strength values of zinc phosphate cement with different shelf lives before expiry. Three groups of zinc phosphate cement (GC Elite cement 100) with different expiry dates were tested for compressive strength using a universal testing machine (crosshead speed 1 mm/min: load cell of 250 kgF). The results showed that there was a significant difference (p<0.05) between the compressive strengths of zinc phosphate cement in group III (2 months before expiry date), group I (2 years and 5 months before expiry date), and group II (11 months before expiry date). It can be concluded that there is a significant decrease in compressive strength of zinc phosphate cement near its expiry date.

  17. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  18. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  19. Trehalose-6-Phosphate: connecting plant metabolism and development

    Directory of Open Access Journals (Sweden)

    Jathish ePonnu

    2011-11-01

    Full Text Available Beyond their metabolic roles, sugars can also act as messengers in signal transduction. Trehalose, a sugar found in many species of plants and animals, is a non-reducing disaccharide composed of two glucose moieties. Its synthesis in plants is a two-step process, involving the production of trehalose-6-phosphate (T6P catalyzed by TREHALOSE-6-PHOSPHATE SYNTHASE (TPS and its consecutive dephosphorylation to trehalose, catalyzed by TREHALOSE-6-PHOSPHATE PHOSPHATASE (TPP. T6P has recently emerged as an important signaling metabolite, regulating carbon assimilation and sugar status in plants. In addition, T6P has also been demonstrated to play an essential role in plant development. This review recapitulates the recent advances in our understanding the role of T6P in coordinating diverse metabolic and developmental processes.

  20. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress.

    Science.gov (United States)

    Solís-Guzmán, María Gloria; Argüello-Astorga, Gerardo; López-Bucio, José; Ruiz-Herrera, León Francisco; López-Meza, Joel Edmundo; Sánchez-Calderón, Lenin; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2017-11-01

    Sucrose is synthesized from UDP-Glc and Fru-6-phosphate via the activity of sucrose-phosphate synthase (SPS) enzymes, which produce Suc-6-phosphate. Suc-6-phosphate is rapidly dephosphorylated by phosphatases to produce Suc and inorganic phosphate. Arabidopsis has four sps genes encoding SPS enzymes. Of these enzymes, AtSPS1F and AtSPS2F have been grouped with other dicotyledonous SPS enzymes, while AtSPS3F and AtSPS4F are included in groups with both dicotyledonous and monocotyledonous SPS enzymes. In this work, we generated Arabidopsis thaliana transformants containing the promoter region of each sps gene fused to gfp::uidA reporter genes. A detailed characterization of expression conferred by the sps promoters in organs and tissues was performed. We observed expression of AtSPS1F, AtSPS2F and AtSPS3F in the columella roots of the plants that support sucrose synthesis. Hence, these findings support the idea that sucrose synthesis occurs in the columella cells, and suggests that sucrose has a role in this tissue. In addition, the expression of AtSPS4F was identified in embryos and suggests its participation in this developmental stage. Quantitative transcriptional analysis of A. thaliana plants grown in media with different osmotic potential showed that AtSPS2F and AtSPS4F respond to osmotic stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation

    KAUST Repository

    Woo, Jongchan

    2012-05-03

    Background: Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes a genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation.Results: Genome-wide profiling by micro- and tiling-arrays (accessible from GEO: GSE34004) revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of specific versus generic members of closely related gene families with respect to phosphate-starvation. Thus, among others, we showed that PHR1-regulated members of closely related phosphate-responsive families (PHT1;1, PHT1;7-9, SPX1-3, and PHO1;H1) display greater specificity to phosphate-starvation than their more generic counterparts. Conclusion: Our results uncover much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the most complete genome-wide data on plant nutrient stress to-date. 2012 Woo et al.; licensee BioMed Central Ltd.

  2. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-01-01

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO 4 ) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO 4 2− . In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg 3 (PO 4 ) 2 , AlPO 4 , MgO and MgAl 2 O 4 after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: ► The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. ► The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature. ► The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. ► The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  3. Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine.

    Science.gov (United States)

    Forte, Lucia; Torricelli, Paola; Bonvicini, Francesca; Boanini, Elisa; Gentilomi, Giovanna Angela; Lusvardi, Gigliola; Della Bella, Elena; Fini, Milena; Vecchio Nepita, Edoardo; Bigi, Adriana

    2018-01-01

    In this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution. The amount of deposited AgNPs can be modulated by varying the concentration of silver nitrate solution and the type of substrate. The results of in vitro tests carried out with osteoblast-like MG63 cells indicate that the combination of AgNPs with OCP provides more biocompatible materials than those obtained using αTCP as substrate. In particular, the study of osteoblast activity and differentiation was focused on the samples OCPdAg5 (silver content=8.2wt%) and αTCPdAg5 (silver content=4.7wt%), which did not show any cytotoxicity, and compared with those obtained on pure OCP and αTCP. The results demonstrate that the AgNPs loaded materials support osteoblast viability and differentiation, whereas they significantly inhibit the growth of relevant antibiotic-resistant pathogenic bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The role of inorganic phosphate in intact human erythrocytes

    International Nuclear Information System (INIS)

    Nishiguchi, Eiko; Umeda, Masahiro.

    1988-01-01

    The role of inorganic phosphate in intact human erythrocytes was investigated by phosphorus-31 nuclear magnetic resonance ( 31 P NMR). When erythrocytes stored for 5 weeks were incubated at 37 deg C, pH 7.4, in medium containing 2 mM adenine and 10 mM inosine, with or without 5 mM glucose, a substance of around 4 ppm, as assessed by 31 P NMR chemical shift, was detected in the mixture. However, this substance disappeared by the addition of inorganic phosphate. When erythrocytes stored for 4 weeks in acid citrate dextrose (ACD) solution were incubated with 2 mM adenine, 10 mM inosine, 5 mM glucose, 50 mM inorganic phosphate and 10 mM pyruvate at 37 deg C, pH 7.4, the 2,3-DPG level increased gradually, whereas the ATP level initially increased and then decreased. Intracellular inorganic phosphate appeared to be used for the synthesis of ATP and 2,3-DPG during the first 30 min. of the reaction. These results suggests that the inorganic phosphate accelerates glycolysis by increasing the activity of glycolytic enzymes rather than its direct involvement in synthesizing organic phosphorus compounds in stored erythrocytes. The results also suggests that the reserve energy from ATP synthesis is not sufficient for the synthesis of 2,3-DPG. (author)

  5. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  6. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

    Science.gov (United States)

    Guerriero, Réjean M; Patel, Archana A; Walsh, Brian; Baumer, Fiona M; Shah, Ankoor S; Peters, Jurriaan M; Rodan, Lance H; Agrawal, Pankaj B; Pearl, Phillip L; Takeoka, Masanori

    2017-11-01

    Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Adherence to phosphate binders in hemodialysis patients: prevalence and determinants.

    Science.gov (United States)

    Van Camp, Yoleen P M; Vrijens, Bernard; Abraham, Ivo; Van Rompaey, Bart; Elseviers, Monique M

    2014-12-01

    Phosphate control is a crucial treatment goal in end-stage renal disease, but poor patient adherence to phosphate binder therapy remains a challenge. This study aimed to estimate the extent of phosphate binder adherence in hemodialysis patients and to identify potential determinants. Phosphate binder adherence was measured blindly in 135 hemodialysis patients for 2 months using the medication event monitoring system. Patient data, gathered at inclusion through medical records, ad hoc questionnaires and the short form (SF)-36 health survey, included: (1) demographics, (2) perceived side-effects, belief in benefit, self-reported adherence to the therapy, (3) knowledge about phosphate binder therapy, (4) social support, and (5) quality of life (SF-36). Phosphatemia data was collected from charts. 'Being adherent' was defined as missing adherent' as missing adherent. Over the entire 8-week period, 22 % of patients were totally adherent. Mean phosphatemia levels were 0.55 mg/dl lower in adherent than nonadherent patients (4.76 vs. 5.31 mg/dl). Determinants for being totally adherent were living with a partner, higher social support (both were interrelated) and higher physical quality of life. Experiencing intake-related inconvenience negatively affected adherence. The social support and quality of life physical score explained 26 % of the variance in adherence. Phosphate binder nonadherence remains a major problem. Interventions should aim, at least, to improve social support. With few associated factors found and yet low adherence, an individualized approach seems indicated.

  8. Gene Cloning of Iranian Leishmania major Mannose-1-Phosphate Guanyltransferase

    Directory of Open Access Journals (Sweden)

    R Salehi

    2009-07-01

    Full Text Available "nBackground: Leishmania is an obligatory intracellular protozoan parasite, which infects human be­ings when infected sand fly vector takes a blood meal.  Most efforts are towards designing an effective vaccine to prevent leishmaniasis. In this way, development of candidate antigen for vaccine has spe­cial im­portant. In this study, we cloned mannose-1-phosphate guanyltransferase gene of Iranian L .major in pET32a expression vector. "nMethods: Primers based on L. major mannose-1-phosphate guanyltransferase sequence gene was de­signed and synthesized. DNA of Leishmania promastigotes was extracted and PCR reaction was done. PCR product was cloned into pTZ57R and sub cloned into pET32a expression vector. "nResults: Recombinant plasmid containing 1140 bp as L. major mannose-1-phosphate guanyltrans­ferase gene was extracted and confirmed by restriction analysis. PCR product was sequenced and de­posited to GenBank. There were some differences in amino acid sequences between Iranian L. major mannose-1-phosphate guanyltransferase and others previously accepted in GenBank "nConclusion: We amplified and cloned Iranian L. major mannose-1-phosphate guanyltransferase successfully.

  9. Effects of magnesium sulfate on the foliar absorption of phosphates at the pumpkin; Effets du sulfate de magnesium sur l'absorption foliaire de phosphates chez le potiron

    Energy Technology Data Exchange (ETDEWEB)

    Chamel, A

    1962-07-01

    The foliar absorption of phosphates labelled with {sup 32}P and applied with or without magnesium sulfate on the first leaf of pumpkin seedlings have been studied. The magnesium sulfate applied with the phosphate reduces plainly the absorption rate of {sup 32}P. (O.M.) [French] Nous avons etudie l'absorption foliaire de phosphates marques au {sup 32}P appliques, avec et sans sulfate de magnesium, sur la premiere feuille de jeunes plants de potirons. Le sulfate de magnesium applique avec le phosphate diminue nettement le taux d'absorption du {sup 32}P. (auteur)

  10. Adsorption of 2-mercaptobenzothiazole on copper surface from phosphate solutions

    International Nuclear Information System (INIS)

    Kazansky, L.P.; Selyaninov, I.A.; Kuznetsov, Yu.I.

    2012-01-01

    Analysis of the electrochemical and XPS results has shown that adsorption of 2-mercaptobenzothiazole (MBT) on copper electrodes in neutral phosphate solutions proceeds through the formation of the chemical bonds by copper (I) cations with exo-sulfur and nitrogen atoms. A protection layer formed of Cu(I)MBT complex prevents precipitation of copper (II) phosphate on a copper surface. The thickness of the surface film consisting of a complex [Cu(I)MBT] n (having probably polymeric nature), where MBT acts as at least three-dentate ligand, increases depending on the exposure time, reaching 8-9 nm after immersing for 12 h in test solution. Even in a case of the preliminary formation of copper (II) phosphate on the copper electrode at the anodic potential addition of small amounts of MBT results in complete removal of copper (II) phosphate from the surface.

  11. Investigation of the benzotriazole as addictive for carbon steel phosphating

    International Nuclear Information System (INIS)

    Annies, V.; Cunha, M.T.; Rodrigues, P.R.P.; Banczek, E.P.; Terada, M.

    2010-01-01

    This work studied the viability of substitution of sodium nitrite (NaNO 2 ) for benzotriazole (BTAH) in the zinc phosphate bath (PZn+NaNO 2 ) for phosphating of carbon steel (SAE 1010). The characterization of the samples was carried out by Scanning Electron Microscopy, Optical Microscopy and X-ray diffraction. The chemical composition was evaluated by Energy Dispersive Spectroscopy. The corrosion behavior of the samples was investigated by Open Circuit Potential, Electrochemical Impedance Spectroscopy and Anodic Potentiodynamic Polarization Curves in a 0.5 mol L -1 NaCl electrolyte. The experimental results showed that the phosphate layer obtained in the solution with benzotriazole (PZn+BTAH) presented better corrosion resistance properties than that obtained in sodium nitrite. The results demonstrated that the sodium nitrite NaNO 2 can be replaced by benzotriazole (BTAH) in zinc phosphate baths. (author)

  12. Inhalation dose assessment inside various storage godowns of a phosphatic fertiliser plant

    International Nuclear Information System (INIS)

    Shukla, V.K.; Eapen, C.D.; Mishra, U.C.

    1995-01-01

    The paper presents the assessment of inhalation dose from 222 Rn daughters received by the persons working inside various godowns, meant for storing rock phosphate and different types of phosphatic fertilisers produced by a plant at Bombay. The dose assessment was made by measuring the respirable airborne concentrations of 222 Rn daughters inside the godowns. Rock phosphate is the base material for the production of phosphatic fertilisers and it contains significant quantities of 226 Ra. 226 Ra activity in rock phosphate from different places is ranging between 5 (Udaipur, India) to 1480 Bq/kg (Florida, USA) and its range in NP: 20-20-0 and NPK: 15-15-15 type fertilisers is 254 to 272 Bq/kg and 127 to 208 Bq/kg respectively. 226 Ra is the source of emanation of 222 Rn inside the godowns. It was observed that though the specific activity of 218 Po, 214 Pb and 214 Bi in the total airborne particulate matter was higher inside the rock phosphate godown but the specific activity of the aforementioned radionuclides in the respirable fractions inside the phosphatic fertilisers' godown were more. The reasons for these observations are discussed in the paper. (author). 7 refs., 2 tabs

  13. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  14. Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Arahira, Takaaki; Maruta, Michito, E-mail: maruta@college.fdcnet.ac.jp; Matsuya, Shigeki

    2017-05-01

    Biphasic calcium phosphate consisting of hydroxyapatite (HA) and β-tricalcium phosphate(β-TCP) is an excellent bone substitute with controllable bioresorbability. Fabrication of biphasic calcium phosphate with self-setting ability is expected to enhance its potential application as bone substitute. In this study, mixtures of α-TCP and β-TCP with various compositions were prepared through α-β phase transition of α-TCP powder at 1000 °C for various periods. These powders were mixed with 0.25 M Na{sub 2}HPO{sub 4} at a P/L ratio of 2, and then hardened at 37 °C at 100% RH for up to 24 h. Material properties of biphasic HA/β-TCP cement with different α-TCP/β-TCP composition were characterized. These cements were also evaluated with respect to cell response in vitro using MC3T3-E1 cell lines. In conclusion, mechanical and biological properties of HA/β-TCP cement could be controlled by changing the heat treatment time of α-TCP powder at 1000 °C. In vitro results indicated that cell proliferation and ALP activity increased with increase β-TCP content. - Highlights: • We could fabricate biphasic HA/β-TCP cements using heat treated α-TCP powder. • It is easy to control the ratio of α-TCP to β-TCP changing the heat treatment time up to 48 h. • Both cell number and ALP activity increased with increase in β-TCP content. • In vitro results showed that β-TCP has superior cell affinity to HA.

  15. The use of nuclear and related techniques for evaluating the agronomic effectiveness of phosphate fertilizers, in particular rock phosphate, in Venezuela: I. phosphorus uptake, utilization and agronomic effectiveness

    International Nuclear Information System (INIS)

    Casanova, E.; Salas, A.M.; Toro, M.

    2002-01-01

    Field experiments were conducted to evaluate the efficiency of natural and modified rock phosphate using conventional and isotopic techniques in an acid soil from El Pao, Cojedes state, Venezuela, using maize and sorghum with the application of different phosphate fertilizers to measure dry matter production, P accumulated in plant, efficiency parameters using isotopic techniques or yield. Finally, commercial plots were established with the application of soluble P fertilizers and rock phosphate products to validate the results obtained in the field experiments. The results showed highly significant differences between partially acidulated rock phosphate, natural rock phosphate, and the check plot in dry matter production, and P accumulation in plant and grain yield. When the efficiency parameters were evaluated in microplots with 32 P-TSP at 60 days of plant growth, it confirmed results obtained in semi commercial plots where the P in the plant derived from the fertilizer was 46% with partially acidulated rock phosphate (PAR) and 14% with natural Riecito rock phosphate (RR). Utilization coefficients of P by the plants were 34.2 and 8.8% for both treatments, respectively. The Substitution relation parameter showed that just 0.8 kg of P of PAR or 3.1 kg P of RR was required to produce the same yield as 1 kg P of TSP. These results were further validated in 5 ha commercial plots using corn and sorghum. (author)

  16. A randomised study to compare salivary pH, calcium, phosphate and calculus formation after using anticavity dentifrices containing Recaldent(®) and functionalized tri-calcium phosphate.

    Science.gov (United States)

    Sharma, Ena; Vishwanathamurthy, Ramesh Alampalli; Nadella, Manjari; Savitha, A N; Gundannavar, Gayatri; Hussain, M Ahad

    2012-10-01

    The aim of this study was to estimate the pH of saliva, concentration of calcium and inorganic phosphate, and calculus formation before and after usage of Recaldent(®) (GC Tooth Mousse Plus™), Functionalized Tricalcium Phosphate (3M ESPE ClinPro™ Tooth Crème) and standard dentifrice (Colgate dental cream). Randomized double-blind study. A total of 50 subjects were recruited, the subjects were assessed at their first visit, on the 21(st) day and on the 42(nd) day. At the first visit, scaling was carried out and oral hygiene instructions were given. After 21 days, the subjects were given coded dentifrices where the operator and the subjects both were unaware of the type of dentifrice. Clinical parameters assessed were Plaque index, Gingival index, and Calculus index. Salivary samples were obtained to measure calcium, phosphate levels, and pH at 21(st) day and 42(nd) day. ANOVA test, t-test, Mann-Whitney test, Kruskal-Wallis test. The mean salivary calcium level and mean salivary phosphate level were higher in Group III (functionalized tricalcium phosphate (3M ESPE ClinPro™ Tooth Creme) as compared to Group II (Recaldent(®) GC Tooth Mousse Plus™) and Group I (Colgate dental cream) on the 42(nd) day after using dentifrices, which was statistically significant. This showed that the usage of remineralizing dentifrices led to an increase in the salivary calcium, phosphate, and pH but it did not reach the level of super saturation of the ions caused by elevated pH which could lead to calculus formation. Thought here was a statistically significant increase in salivary calcium and phosphate level in all three groups from baseline to 42(nd) day, there was no calculus formation.

  17. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    International Nuclear Information System (INIS)

    Chen Huixia; Xiu Zhilong; Bai Fengwu

    2014-01-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD + -linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation

  18. Ap/sub 4/A interactions with a multiprotein form of DNA polymerase. cap alpha. - primase from HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Baril, E F; Owen, M W; Vishwanatha, J K; Zamecnik, P C

    1984-06-01

    In previous studies, it was shown that Ap/sub 4/A can function as a primer for in vitro DNA synthesis by the multiprotein form of DNA polymerase ..cap alpha.. with single-stranded DNA and an octadecamer double-stranded DNA template. In these studies, the authors show that Ap/sub 4/A that is greater than 99% pure by high performance liquid chromatography also stimulates the incorporation of (..cap alpha../sup 32/P)ATP into the 10-15 oligoribonucleotide primer with poly(dT) template by the primase that is resolved from the polymerase ..cap alpha.. core enzyme. Other dinucleotides or dinucleotide polyphosphates (e.g. ApA, Ap/sub 2/A or Ap/sub 3/A) do not enhance the incorporation of (..cap alpha../sup 32/P)ATP in this reaction. The results from phosphate transfer experiments demonstrate a covalent linkage between (/sup 3/H)Ap/sub 4/A and the /sup 32/P-labeled oligoriboadenylate that is synthesized by the primase.

  19. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2011-01-01

    Full Text Available Alcohol dehydrogenases (ADH are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD or nicotinamide adenine dinucleotide phosphate (NADP, as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+. The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3, and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH.

  20. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    Science.gov (United States)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  1. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J-J; Cygan, R.T.; Alam, T.M.

    1999-07-09

    A new forcefield model was developed for the computer simulation of phosphate materials that have many important applications in the electronics and biomedical industries. The model provides a fundamental basis for the evaluation of phosphate glass structure and thermodynamics. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the forcefield model. A high concentration of three-membered rings (P{sub 3}O{sub 3}) occurs in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series. Molecular orbital calculations of various phosphate ring clusters indicate an increasing stabilization of the phosphate ring structure going from two- to four-membered rings.

  2. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Phosphate Solubilising Fungi from Mangroves of Bhitarkanika, Orissa

    Directory of Open Access Journals (Sweden)

    NIBHA GUPTA

    2008-06-01

    Full Text Available Mangroves have evolved several adaptations to swampy and saline environments. It is situated at the inter-phase between marine and terrestrial environment, which is highly productive providing nutrients to surrounding micro biota. Similar adaptive characteristics in the form and function may occur with the associated microflora in such environments. Several free living and symbiotic microorganisms occurred in such saline habitats and some of them are reported for their beneficial activity in mangrove ecosystem like biomineralization of organic matter and bio-transformation of minerals. In view of this, 106 fungi isolated from rhizosphere and phyllosphere of mangrove plants grown in Bhitarkanika, Orissa were screened on plate culture containing Pikovaskaya medium for the phosphate solubilization. Selected fungi were evaluated for their phosphate solubilization potential under different cultural conditions. A total of 36 fungi were isolated that showed variable halo zone on medium containing tricalcium phosphate when grown under different pH and temperature. The highest zone was formed by Aspergillus PF8 (63 mm and Aspergillus PF127 (46.5 mm. The observation on tricalcium phosphate solubilization activity of Paecilomyces, Cladobotrytis, Helminthosporium is rare. However, a detailed and elaborative studies are needed to confirm better mineral solubilization potential of these fungi.

  4. Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products

    International Nuclear Information System (INIS)

    Nanzyo, M.

    1986-01-01

    Infrared absorption spectra of phosphate sorbed on iron hydroxide gel were obtained by applying the differential diffuse reflectance method. Absorption bands due to P-O stretching vibration were observed at 1,110 and 1,010 cm -1 at pH 12.3. With decreasing pH, these absorption bands gradually shifted to 1,100 and 1,020 cm -1 at pH 4.9. At pH 2.3, they became a broad single absorption band at 1,060 cm -1 . At pH 11 or above, the difference in the Na + adsorption between phosphated iron hydroxide gel and iron hydroxide gel was almost equal to the amount of phosphate sorption. This finding shows that phosphate was retained on the iron hydroxide gel surface as a bidentate ligand at a high pH. It was concluded that at a high pH phosphate was sorbed on iron hydroxide gel as a binuclear surface complex similar to that on goethite; the change in spectra for P-O stretching vibration with decreasing pH value was mainly caused by an increase in the fraction of amorphous iron phosphate; at pH 2.3, the phosphate sorption product consisted of amorphous iron phosphate. (author)

  5. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  6. Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent

    Science.gov (United States)

    Yang, Yanju; Wang, Juanjuan; Qian, Xiaoqing; Shan, Yuhua; Zhang, Haipeng

    2018-01-01

    Excess phosphate discharge into water bodies can lead to severe eutrophication. Adsorption has been considered as one of the most effective approaches for phosphate removal and recovery. A new aminopropyl-functionalized mesoporous carbon CMK-3 (denoted as APTMS-CMK-3) was prepared and the materials were used as adsorbents for the removal of phosphate in water. The structure, functional groups and surface charge of the materials were characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption-desorption, elemental analysis, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and zeta potential measurements. The effects of contact time, initial phosphate concentration, solution pH, coexisting anions and dissolved humic acid were studied. The adsorption capacity of APTMS-CMK-3 was 38.09 mg g-1 at the equilibrium concentration of 49.06 mg L-1, and the adsorption data were well fitted with the Freundlich model. As for the reuse of APTMS-CMK-3, a relatively stable adsorption performance was observed after five adsorption-desorption cycles. Therefore, the way of grafting aminopropyl groups on the CMK-3 efficiently enhanced the capability for phosphate adsorption, indicating that it could be used as potential adsorbents for the removal of phosphate in water.

  7. INTERACTIONS AMONG PHOSPHATE AMENDMENTS, MICROBES AND URANIUM MOBILITY IN CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A

    2007-08-30

    The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for long-term environmental cleanup. This study evaluated the influence of four phosphate amendments and two microbial amendments on U availability. The synchrotron X-ray fluorescence mapping of the untreated U-contaminated sediment showed that U was closely associated with Mn. All tested phosphate amendments reduced aqueous U concentration more than 90%, likely due to formation of insoluble phosphate precipitates. The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 63% and 31% respectively. Uranium sorption in phosphate treatments was significantly reduced in the presence of microbes. However, increased microbial activity in the treated sediment led to reduction of phosphate effectiveness. The average U concentration in 1 M MgCl{sub 2} extract from U amended sediment was 437 {micro}g/kg, but in the same sediment without microbes (autoclaved sediment), the extractable U concentration was only 103 {micro}g/kg. When the autoclaved amended sediment was treated with autoclaved biological apatite, U concentration in the 1 M MgCl{sub 2} extract was {approx}0 {micro}g/kg. Together these tests suggest that microbes may enhance U leaching and reduce phosphate amendment remedial effectiveness.

  8. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode

    International Nuclear Information System (INIS)

    De Silva Munoz, L.; Bergel, A.; Basseguy, R.; Feron, D.

    2010-01-01

    The catalytic properties of phosphate species, already shown on the reduction reaction in anaerobic corrosion of steels, are exploited here for hydrogen production. Phosphate species work as a homogeneous catalyst that enhances the cathodic current at mild pH values. A voltammetric study of the hydrogen evolution reaction is performed using phosphate solutions at different concentrations on 316L stainless steel and platinum rotating disk electrodes. Then, hydrogen is produced in an electrolytic cell using a phosphate solution as the catholyte. Results show that 316L stainless steel electrodes have a stable behaviour as cathodes in the electrolysis of phosphate solutions. Phosphate (1 M, pH 4. 0/5. 0) as the catholyte can equal the performance of a KOH 25%w solution with the advantage of working at mild pH values. The use of phosphate and other weak acids as catalysts of the hydrogen evolution reaction could be a promising technology in the development of electrolysis units that work at mild pH values with low-cost electrodes and construction materials. (authors)

  9. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela; van der Valk, C.M.; van Blitterswijk, Clemens; de Groot, K.

    2004-01-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT–PBT)

  10. Chemical activation of gasification carbon residue for phosphate removal

    Science.gov (United States)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  11. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Clearfield, A.; Frianeza, T.N.

    1978-01-01

    α-titanium phosphate, Ti(HPO 4 ) 2 .H 2 O, was found to form two sodium ion exchanged phases. A half exchanged phase of ideal composition TiNaH(PO 4 ) 2 .4H 2 O formed first. However, before all of the titanium phosphate was converted to this phase a second phase of higher Na + content formed. Thus, a three phase solid existed until sufficient sodium ion uptake (approximately 5.5 meq/g) produced only the two exchanged phases. Finally, the half exchanged phase was converted to the more highly loaded one and this latter phase existed from 6 to 8 meq/g of Na + uptake. Severe disordering of the crystal lattice during exchange is proposed to explain this unusual exchange behavior. A broad range of titanium phosphate-zirconium phosphate solid solutions was found to form. Their behavior towards Na + -H + exchange was determined and interpreted on the basis of the known behavior of the pure phases. Mixed Ti-Zr solid solutions of their pyrophosphates were obtained at elevated temperatures. (author)

  12. Analysis of some heavy metals in the rock phosphates

    International Nuclear Information System (INIS)

    Boujemaa, Chaker; Ayari, Taher

    2005-01-01

    The rock phosphates occupy an important place in the fields of the chemical industry. They are used for the manufacture of sevral products, mainly food manures, manures of the ground, the synthesis of certain acids and sevral other products of agricultural use. The quality of phosphates is related directly to the certain metals pose of the harmful problems for health and the environment. For the importance of these rock phosphates, the CNSTN proposed to carry out the proportioning of some toxic heavy metals by Atomic Absorption Spectrometry, within the framework of a project of end of studies, in order to evaluate the rate of toxicity by comparing it with the tolerable limits.(author). 3 refs

  13. Phosphate solubilizing ability of two Arctic Aspergillus niger strains

    Directory of Open Access Journals (Sweden)

    Shiv Mohan Singh,

    2011-06-01

    Full Text Available Many filamentous fungi were isolated from the soils of Ny-Ålesund, Spitsbergen, Svalbard, and were screened in vitro for their phosphate solubilizing ability. Two strains of Aspergillus niger showed good tricalcium phosphate (TCP solubilizing ability in Pikovskaya's medium. The TCP solubilization index was calculated at varying levels of pH and temperatures. The ability of Aspergillus niger strain-1 to solubilize and release inorganic-P was 285 µg ml–1, while Aspergillus niger strain-2 solubilized 262 µg ml–1 from 0.5% TCP after seven days. This is the first report of TCP solubilization by Arctic strains that may serve as very good phosphate solubilizers in the form of biofertilizer.

  14. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  15. Variability of nitrate and phosphate

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sundar, D.

    Nitrate and phosphate are important elements of the biogeochemical system of an estuary. Observations carried out during the dry season April-May 2002, and March 2003 and wet season September 2002, show temporal and spatial variability of these two...

  16. Microbial Leaching of Some Valuable Elements From Egyptian Phosphate Rock

    International Nuclear Information System (INIS)

    Kamal, H.M.; Hassanein, R.A.; Mahdy, H.M.A.; Mahmoud, K.F.; Abouzeid, M.A.

    2012-01-01

    Four phosphate rock samples representing different phosphate mineralization modes in Egypt were selected from Abu Tartar, Nile valley and Red sea areas. Factors affecting the phosphate rock solubilization and some of the contained valuable elements by Aspergillus niger, Penicillium sp. and Pseudomonas fluorescence, were studied with especial orientation towards the completion of phosphate rock samples solubilization especially die low grade one. Effect of nitrogen source type on leaching efficiency by Aspergillus niger when two nitrogen sources on the phosphate bioleaching efficiency, it is clear that the ammonium chloride is more favorable as nitrogen source than sodium nitrate in the bioleaching of phosphate rocks. When Aspergillus niger was applied under die following conditions: 50 g/1 of sucrose as a carbon source, 0.1 N of ammonium chloride as a nitrogen source, 10 days incubation period, 0.5% solid: liquid ratio for P 2 O 5 and 5% for U and REE and - 270 mesh of grain size. The optimum leaching of P 2 O 5 , U and REE from phosphate rock samples reached (23.27%, 17.4%, 11.4%, respectively), while at -60 mesh they reached to 16.58%, 28.9%, 30.2% respectively. The optimum conditions for the maximal leaching efficiencies of P 2 O 5 , U and REE when applying the Penicillium sp. from the phosphate rock samples were: 100 g/1 of sucrose as a carbon source for P 2 O 5 and U and 10 g/1 for REE, 7,15 and 10 days incubation period for P 2 O 5 , U and REE, respectively, 0.5% solid: liquid ratio for P 2 O 5 and 5% for U and REE. Finally, the application of phosphate rock samples grinded to -270 mesh of grain size for P 2 O 5 and (-60 to -140) for U and REE. The studied leaching efficiency of P 2 O 5 , U and REE gave at -270 mesh 33.66%, 24.3%, 15.9% respectively, while at -60 mesh they gave 33.76%, 26.7%, 17.8% and at -140 mesh gave 31.32%, 27.9%, 17.6%, respectively.The optimum conditions for the P 2 O 5 leaching efficiency when applying the Pseudomonas fluorescence were

  17. Natural radionuclides in phosphatic fertilizer and their behaviour of absoption and accumulation in soils and crops

    International Nuclear Information System (INIS)

    Chen Jingjian; Zhu Yongyi; Yang Juncheng; Gu Baming

    1990-06-01

    The systematic data on the radioactivity of U, Th, Ra and 40 K in phosphate rocks, phosphatic fertilizers and soil are given. The radioactive composition and radioactivity in phosphatic fertilizers vary with different kinds of phosphatic fertilizers. The radioactive compositions in the phosphatic fertilizers made from phosphate rock are the same as that in the original phosphate rock, but the radioactivity is only 50∼60% of the original. The natural uranium in the compound fertilizer made from phosphoric acid is several times higher than that in the phosphate rock, and the other radionuclides were separated during the process of forming phosphoric acid. In soil, the radioactivity varies with the soil types. The U content is slightly higher in the south region with red earth and the 40 K is higher in the north region with black earth, but all are in normal level. Usually, the radioactivity of phosphate rock and phosphatic fertilizer is between the natural background of soil and the limitation of radioactive protection, but the radioactivity of 226 Ra in some phosphate rocks and phosphatic fertilizers in Guizhou and Hunan is higher than the permitted limitation set by the government

  18. Procedure for the separation of cerium from rare earth phosphate mixtures

    International Nuclear Information System (INIS)

    Richter, H.; Grauss, H.; Schmitt, A.; Schade, H.; Lindeholz, M.; Lorenz, E.; Weickart, J.

    1986-01-01

    The invention is concerned with a procedure for the separation of cerium from rare earth concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions without preceding elimination of impurities from the raw material. The rare earth phosphates are treated with an excess of concentrated nitric acid through which the Ce 3+ , contained in the solution, is oxidized to Ce 4+ and precipitated as cerium(IV) phosphate by neutralization with alkalis

  19. Thermodynamics of the hydrolysis reactions of α-D-galactose 1-phosphate, sn-glycerol 3-phosphate, 4-nitrophenyl phosphate, phosphocreatine, and 3-phospho-D-glycerate

    International Nuclear Information System (INIS)

    Goldberg, Robert N.; Lang, Brian E.; Lo, Catherine; Ross, David J.; Tewari, Yadu B.

    2009-01-01

    Microcalorimetry, high-performance liquid chromatography (h.p.l.c.), and an enzymatic assay have been used to conduct a thermodynamic investigation of five phosphate hydrolysis reactions: {α-D-galactose 1-phosphate(aq) + H 2 O(l) = D-galactose(aq) + orthophosphate(aq)} (1), {sn-glycerol 3-phosphate(aq) + H 2 O(l) = glycerol(aq) + orthophosphate(aq)} (2), {4-nitrophenyl phosphate(aq) + H 2 O(l) = 4-nitrophenol(aq) + orthophosphate(aq)} (3), {phosphocreatine(aq) + H 2 O(l) = creatine(aq) + orthophosphate(aq)} (4), and {3-phospho-D-glycerate(aq) + H 2 O(l) = D-glycerate(aq) + orthophosphate(aq)} (5). Calorimetrically determined enthalpies of reaction Δ r H(cal) were measured for reactions (1)-(5) and the apparent equilibrium constant K' was measured for reaction (2). The pKs and standard enthalpies of reaction Δ r H 0 for the H + and Mg 2+ binding reactions of the reactants and products in the aforementioned reactions were obtained either from the literature or by estimation. A chemical equilibrium model was then used to calculate standard equilibrium constants K and standard enthalpies of reaction Δ r H 0 for chemical reference reactions that correspond to the overall biochemical reactions that were studied experimentally. Property values from the literature and thermodynamic network calculations were used to obtain values of the equilibrium constants for the chemical reference reactions that correspond to the overall biochemical reactions (1). These values were compared with other results from the literature and also correlated with structural features. The results obtained in this study can be used in the chemical equilibrium model to calculate values of K', the standard apparent Gibbs free energy changes Δ r G '0 , the standard apparent enthalpy changes Δ r H '0 , changes in binding of the proton Δ r N(H + ), and the position of equilibrium for the overall biochemical reactions considered in this study over a reasonably wide range of temperature, pH, p

  20. Radiochemical studies on amorphous zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A; Moores, G E [Salford Univ. (UK). Dept. of Chemistry and Applied Chemistry

    1981-01-01

    Amorphous zirconium phosphate (ZrP) is used in some hemodialysis machines for the regeneration of dialysate. Its function is to adsorb ammonium ions formed by the pretreatment of urea by urease. It also adsorbs Ca, Mg and K ions but leaches phosphate ions which are then removed (along with F/sup -/ ions) by a bed of hydrous zirconium oxide. The sodium form of ZrP is used although other forms have been suggested for use. The work reported here describes some preliminary radiochemical studies on the mechanism of release of phosphate ions and its possible relationship to sodium ion-exchange. /sup 32/P labelled material (HHZrP) was used for elution experiments with deionized water and buffer solutions having the pH's 4.2, 7.0 and 9.2. Buffer solutions used were as supplied by BDH. Elution was at four different temperatures in the range 293 to 363/sup 0/C. In the second series of experiments HHZrP was suspended in a NaCl solution labelled with /sup 22/Na. From this, /sup 22/Na labelled ZrP (NaHZrP) was prepared and eluted in the same way as the HHZrP. Results are given and discussed.