WorldWideScience

Sample records for dineutrons

  1. Exploring the manifestation and nature of a dineutron in two-neutron emission using a dynamical dineutron model

    Science.gov (United States)

    Grigorenko, L. V.; Vaagen, J. S.; Zhukov, M. V.

    2018-03-01

    Emission of two neutrons or two protons in reactions and decays is often discussed in terms of "dineutron" or "diproton" emission. The discussion often leans intuitively on something described by Migdal-Watson approximation. In this work we propose a way to formalize situations of dineutron emission. It is demonstrated that properly formally defined dineutron emission may reveal properties which are drastically different from those traditionally expected, and properties which are actually observed in three-body decays.

  2. SU(3) symmetries in exotic neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hayes, A.C.

    1991-01-01

    We examine the structure of the exotic neutron-rich nucleus 11 Li with an emphasis on understanding the origin of the soft E1 resonance and the neuron halo. The similarities and differences between shell model and di-neutron cluster model descriptions of the system are displayed using the Hecht expansion techniques. We find that the ground state 11 Li as described in large shell model calculations is well approximated by the di-neutron cluster state. In contrast to the ground state, the soft E1 model of 11 Li appears to have a more complicated structure and the E1 strength of this resonance is very sensitive to cancellations between p→s and p→d contributions to the dipole matrix elements. 12 refs., 6 figs., 3 tabs

  3. Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle

    International Nuclear Information System (INIS)

    MacDonald, J.; Mullan, D. J.

    2009-01-01

    Contrary to a common argument that a small increase in the strength of the strong force would lead to destruction of all hydrogen in the big bang due to binding of the diproton and the dineutron with a catastrophic impact on life as we know it, we show that provided the increase in strong force coupling constant is less than about 50% substantial amounts of hydrogen remain. The reason is that an increase in strong force strength leads to tighter binding of the deuteron, permitting nucleosynthesis to occur earlier in the big bang at higher temperature than in the standard big bang. Photodestruction of the less tightly bound diproton and dineutron delays their production to after the bulk of nucleosynthesis is complete. The decay of the diproton can, however, lead to relatively large abundances of deuterium.

  4. Understanding the two neutron transfer reaction mechanism in {sup 206}Pb({sup 18}O,{sup 16}O){sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, A.; Sonika [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Roy, B.J., E-mail: bjroy@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Jha, V.; Pal, U.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Sinha, T. [High Energy Nuclear and Particle Physics Division, Saha Institute of Nuclear Physics, Kolkata - 700 064 (India); Pandit, S.K.; Parkar, V.V.; Ramachandran, K.; Mahata, K.; Santra, S.; Mohanty, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India)

    2015-08-15

    The absolute cross sections for elastic scattering and two-neutron transfer reaction for {sup 18}O + {sup 206}Pb system have been measured at an incident energy near the Coulomb barrier. Detailed coupled reaction channel calculations have been carried out for description of the measured angular distributions for the elastic scattering and transfer reactions simultaneously. The two-neutron transfer reaction {sup 206}Pb({sup 18}O, {sup 16}O){sup 208}Pb in the g.s. → g.s. transition is analyzed in (i) extreme cluster model assuming a di-neutron transfer, (ii) two-step successive transfer, and (iii) microscopic approach (independent coordinate scheme) of simultaneous transfer of two neutrons. The relative importance of one step simultaneous transfer versus two-step successive transfer has been studied. Present analysis suggests dominance of cluster transfer of a di-neutron. The contribution from the two-step sequential processes is less significant, however, the combined “two-step plus simultaneous (microscopic)” calculations give a reasonably good agreement with the measurement. The possibility of multi-step route via projectile and target excitations and contribution from such indirect transfer paths to the present two-neutron transfer cross section has been investigated.

  5. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  6. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  7. Cold dilute neutron matter on the lattice. II. Results in the unitary limit

    International Nuclear Information System (INIS)

    Lee, Dean; Schaefer, Thomas

    2006-01-01

    This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature

  8. Neutron correlations in the decay of the first excited state of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.K., E-mail: jsmith@triumf.ca [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T.; Bazin, D. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Brown, J. [Department of Physics, Wabash College, Crawfordsville, IN 47933 (United States); DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49422 (United States); Frank, N. [Department of Physics and Astronomy, Augustana College, Rock Island, IL 61201 (United States); Jones, M.D. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kohley, Z. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Luther, B. [Department of Physics, Concordia College, Moorhead, MN 56562 (United States); Marks, B. [Department of Physics, Hope College, Holland, MI 49422 (United States); Spyrou, A. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Stephenson, S.L. [Department of Physics, Gettysburg College, Gettysburg, PA 17325 (United States); Thoennessen, M. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Volya, A. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States)

    2016-11-15

    The decay of unbound excited {sup 11}Li was measured after being populated by a two-proton removal from a {sup 13}B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the {sup 9}Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded.

  9. Neutron correlations in the decay of the first excited state of "1"1Li

    International Nuclear Information System (INIS)

    Smith, J.K.; Baumann, T.; Bazin, D.; Brown, J.; DeYoung, P.A.; Frank, N.; Jones, M.D.; Kohley, Z.; Luther, B.; Marks, B.; Spyrou, A.; Stephenson, S.L.; Thoennessen, M.; Volya, A.

    2016-01-01

    The decay of unbound excited "1"1Li was measured after being populated by a two-proton removal from a "1"3B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the "9Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded.

  10. Studies with radioactive beams - properties of neutron halo

    International Nuclear Information System (INIS)

    Tanihata, I.

    1992-01-01

    Interaction cross sections σ I and 9 Li transverse momentum distributions of 11 Li reactions were measured using p, d, Be and C targets at 800 A and 400 A MeV. The density distribution of 11 Li nucleus has been determined, for the first time, combining the interaction cross sections with various targets and energies. It was confirmed that only the distribution with long tail describe the observed data. The momentum correlation of two neutrons in the neutron halo is extracted from the P T distribution of 9 Li and that of neutron. It is found that the two neutrons are moving in the same direction in average and thus strongly suggests a formation of di-neutron in 11 Li

  11. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  12. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  13. The role of the Pauli principle in three-cluster systems composed of identical clusters

    International Nuclear Information System (INIS)

    Lashko, Yu.A.; Filippov, G.F.

    2009-01-01

    Within the microscopic model based on the algebraic version of the resonating group method the role of the Pauli principle in the formation of continuum wave function of nuclear systems composed of three identical s-clusters has been investigated. Emphasis is placed upon the study of the exchange effects contained in the genuine three-cluster norm kernel. Three-fermion, three-boson, three-dineutron (3d ' ) and 3α systems are considered in detail. Simple analytical method of constructing the norm kernel for 3α system is suggested. The Pauli-allowed basis functions for the 3α and 3d ' systems are given in an explicit form and asymptotic behavior of these functions is established. Complete classification of the eigenfunctions and the eigenvalues of the 12 C norm kernel by the 8 Be=α+α eigenvalues has been given for the first time. Spectrum of the 12 C norm kernel is compared to that of the 5 H system.

  14. Equivalence between deep energy-dependent and shallow angular momentum dependent potentials

    International Nuclear Information System (INIS)

    Fiedeldey, H.; Sofianos, S.A.; Papastylianos, A.; Amos, K.A.; Allen, L.J.

    1989-01-01

    Recently Baye showed that supersymmetry can be applied to determine a shallow l-dependent potential phase equivalent to a deep potential, assumed to be energy-independent and have Panli forbidden states (PFS), for α-α scattering. The PFS are eliminated by this procedure. Such deep potentials are generated as equivalent local potentials (ELP) to the Resonating Group Model (RGM) and are generally energy-dependent. To eliminate this E-dependence as required for the application of Baye's method, l-dependent, but E-independent, deep local potentials were generated by the exact inversion method of Marchenko. Subsequently, the supersymmetric method was used to eliminate the PFS, ensuring that the generalized Levinson theorem is satisfied. As an example, the method was applied to the simple model of two dineutrons scattering in the RGM, where the deep ELP of Horiuchi has a substantial energy-dependence and one PFS only for l=O. 16 refs., 5 figs

  15. Monte Carlo calculations and experimental results of Bonner spheres systems with a new cylindrical Helium-3 proportional counter

    CERN Document Server

    Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L

    2002-01-01

    The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...

  16. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Directory of Open Access Journals (Sweden)

    J. Tanaka

    2017-11-01

    Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  17. Existence of diproton-like particles in 3+1 lattice QCD with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, A. Francisco

    2011-01-01

    Starting from quarks, gluons, and their dynamics, we consider the existence of two-baryon bound states of total isospin I=1 in an imaginary-time formulation of a strongly coupled 3+1-dimensional SU(3) c lattice QCD with two flavors and 4x4 spin matrices, defined using the Wilson action. For a small hopping parameter κ>0 and a much smaller gauge coupling 0 2 . By isospin symmetry, for each diproton there is also a dineutron bound state with the same mass and binding energy. The dominant two-baryon interaction is an energy-independent spatial range-one potential with an O(κ 2 ) strength. There is also an attraction arising from gauge field correlations associated with six overlapping bonds, but it is subdominant. The overall range-one potential results from a quark-antiquark exchange with no meson exchange interpretation (wrong spin indices). The repulsive or attractive nature of the interaction does depend on the isospin and spin of the two-baryon states. A novel representation in term of permanents is obtained for the spin, isospin interaction between the baryons, which is valid for any isospin sector.

  18. Low energy nuclear reaction polyplasmon postulate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, John L. [201 Heritage Drive, Apt. 208, Canton, GA 30093 (United States)], E-mail: RUSSELLJL@aol.com

    2008-11-15

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is

  19. Low energy nuclear reaction polyplasmon postulate

    International Nuclear Information System (INIS)

    Russell, John L.

    2008-01-01

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is absorbed in the plasmon

  20. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Science.gov (United States)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  1. Influence of neutron halo in the interaction of {sup 6}He nucleus of 35 MeV/nucleon with {sup 197}Au and {sup 238}U; Influence du halo de neutrons dans l`interaction du noyau {sup 6}He de 35 MeV/nucleon avec {sup 197}Au et {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Perier, Yann [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1997-10-27

    In this study, we have attempted to answer some of the questions still open concerning neutron halo nuclei. The interest of the latter lies in their very peculiar structure. The analysis of the kinematical features of the halo nucleus fragments originating from the dissociation following the interaction with a target nucleus is an essential tool for probing this structure. We studied the {sup 6}He + Au, U at 35 A.MeV system with a new method. Simultaneous measurements of the halo nucleus core, the halo neutrons and the excitation energy deposited in the target nucleus assessed with ORION allowed us to obtain information about the formation of the {sup 5}He nucleus and about the partial validity of the sudden approximation at moderate bombarding energy. The study of the core nucleus and neutron angular distributions confirmed that it is difficult to extract information on the internal structure at the halo neutrons from their widths. The halo neutron longitudinal momentum distributions were studied. Their widths were found to increase as the impact parameter decreases. The {sup 4}He - core parallel momentum distributions were also investigated. The widths are weakly dependent on the excitation energy deposited in the target nucleus, but increase with the {sup 4}He emission angle as for the halo neutrons. The ratio between one- and two-neutron stripping cross sections seems to indicate that the two halo neutrons are strongly correlated with a large dineutron component, as ascertained by a calculation in the framework of the Serber model. (author) 84 refs., 98 figs., 17 tabs.

  2. Search for the existence of the tetra-neutron through the He8(d,Li6)4n nuclear reaction

    International Nuclear Information System (INIS)

    Rich, E.

    2005-10-01

    The He 8 (d,Li 6 )4n reaction is studied through reverse kinematics: a radioactive beam of He 8 nuclei impinges on a CD 2 target. The measurement of the energy spectrum and emission angle distribution of Li 6 has allowed us to determine by applying kinematics laws the excitation energy spectrum of the 4 neutrons system released in the reaction. The first chapter recalls the main features of the nucleon-nucleon interaction and reviews recent experiments on multi-neutrons. The second chapter presents the experimental setting from the production of the He 8 beam at GANIL to the detection system of the reaction products via the data acquisition system. The method of the missing mass gives the mass of the 4 neutron system. The third and fourth chapters deal with the calibration of the detection system, the missing mass method is applied to the following reactions: C 12 (d,Li 6 )Be 8 , C 12 (d,t)C 11 and C 12 (d,He 3 )B 11 . The last chapter presents the experimental results. The analysis of the excitation energy spectrum of the 4 neutron systems shows no evidence for the existence of a bound state. We get a maximal limit of 60 μb for the production cross section of a bound state. Complementary results concerning the excitation energy spectra of the di-neutron and tri-neutron released in the reactions: He 8 (d,Li 8 )2n and He 8 (d,Li 7 )3n are also presented. (A.C.)

  3. Influence of neutron halo in the interaction of 6He nucleus of 35 MeV/nucleon with 197Au and 238U

    International Nuclear Information System (INIS)

    Perier, Yann

    1997-01-01

    In this study, we have attempted to answer some of the questions still open concerning neutron halo nuclei. The interest of the latter lies in their very peculiar structure. The analysis of the kinematical features of the halo nucleus fragments originating from the dissociation following the interaction with a target nucleus is an essential tool for probing this structure. We studied the 6 He + Au, U at 35 A.MeV system with a new method. Simultaneous measurements of the halo nucleus core, the halo neutrons and the excitation energy deposited in the target nucleus assessed with ORION allowed us to obtain information about the formation of the 5 He nucleus and about the partial validity of the sudden approximation at moderate bombarding energy. The study of the core nucleus and neutron angular distributions confirmed that it is difficult to extract information on the internal structure at the halo neutrons from their widths. The halo neutron longitudinal momentum distributions were studied. Their widths were found to increase as the impact parameter decreases. The 4 He - core parallel momentum distributions were also investigated. The widths are weakly dependent on the excitation energy deposited in the target nucleus, but increase with the 4 He emission angle as for the halo neutrons. The ratio between one- and two-neutron stripping cross sections seems to indicate that the two halo neutrons are strongly correlated with a large dineutron component, as ascertained by a calculation in the framework of the Serber model. (author)

  4. Search for the existence of the tetra-neutron through the He{sup 8}(d,Li{sup 6})4n nuclear reaction; Recherche de l'existence eventuelle du tetraneutron via la reaction de transfert {sup 8}He(d, {sup 6}Li)4n

    Energy Technology Data Exchange (ETDEWEB)

    Rich, E

    2005-10-15

    The He{sup 8}(d,Li{sup 6})4n reaction is studied through reverse kinematics: a radioactive beam of He{sup 8} nuclei impinges on a CD{sub 2} target. The measurement of the energy spectrum and emission angle distribution of Li{sup 6} has allowed us to determine by applying kinematics laws the excitation energy spectrum of the 4 neutrons system released in the reaction. The first chapter recalls the main features of the nucleon-nucleon interaction and reviews recent experiments on multi-neutrons. The second chapter presents the experimental setting from the production of the He{sup 8} beam at GANIL to the detection system of the reaction products via the data acquisition system. The method of the missing mass gives the mass of the 4 neutron system. The third and fourth chapters deal with the calibration of the detection system, the missing mass method is applied to the following reactions: C{sup 12}(d,Li{sup 6})Be{sup 8}, C{sup 12}(d,t)C{sup 11} and C{sup 12}(d,He{sup 3})B{sup 11}. The last chapter presents the experimental results. The analysis of the excitation energy spectrum of the 4 neutron systems shows no evidence for the existence of a bound state. We get a maximal limit of 60 {mu}b for the production cross section of a bound state. Complementary results concerning the excitation energy spectra of the di-neutron and tri-neutron released in the reactions: He{sup 8}(d,Li{sup 8})2n and He{sup 8}(d,Li{sup 7})3n are also presented. (A.C.)

  5. Two-nucleon emitters within a pseudostate method: The case of 6Be and 16Be

    Science.gov (United States)

    Casal, J.

    2018-03-01

    Background: Since the first experimental observation, two-nucleon radioactivity has gained renewed attention since the early 2000s. The 6Be system is the lightest two-proton ground-state emitter, while 16Be was recently proposed to be the first two-neutron ground-state emitter ever observed. A proper understanding of their properties and decay modes requires a reasonable description of the three-body continuum. Purpose: Study the ground-state properties of 6Be and 16Be within a general three-body model and investigate their nucleon-nucleon correlations in the continuum. Method: The pseudostate (PS) method in hyperspherical coordinates, using the analytical transformed harmonic oscillator (THO) basis for three-body systems, is used to construct the 6Be and 16Be ground-state wave functions. These resonances are approximated as a stable PS around the known two-nucleon separation energy. Effective core-N potentials, constrained by the available experimental information on the binary subsystems 5Li and 15Be, are employed in the calculations. Results: The ground state of 16Be is found to present a strong dineutron configuration, with the valence neutrons occupying mostly an l =2 state relative to the core. The results are consistent with previous R -matrix calculations for the actual continuum. The case of 6Be shows a clear symmetry with respect to its mirror partner, the two-neutron halo 6He: The diproton configuration is dominant, and the valence protons occupy an l =1 orbit. Conclusions: The PS method is found to be a suitable tool in describing the properties of unbound core+N +N ground states. For both 16Be and 6Be, the results are consistent with previous theoretical studies and confirm the dominant dinucleon configuration. This favors the picture of a correlated two-nucleon emission.