WorldWideScience

Sample records for dimethyl ketone

  1. Synthesis of omega-hydroxy carboxylic acids and alpha,omega-dimethyl ketones using alpha,omega-diols as alkylating agents.

    Science.gov (United States)

    Iuchi, Yosuke; Hyotanishi, Megumi; Miller, Brittany E; Maeda, Kensaku; Obora, Yasushi; Ishii, Yasutaka

    2010-03-05

    Synthesis of omega-hydroxy carboxylic acids and alpha,omega-dimethyl diketones was successfully achieved by using alpha,omega-diols as alkylating agents under the influence of an iridium catalyst. For example, the alkylation of butyl cyanoacetate with 1,13-tridecanediol in the presence of [IrCl(cod)](2) or [IrCl(coe)(2)](2) gave rise to butyl 2-cyano-15-hydroxypentadecanoate in good yield which is easily converted to cyclopentadecanolide (CPDL). In addition, the alkylation of acetone with 1,10-decanediol in the presence of [IrCl(cod)](2) and KOH resulted in an important muscone precursor, 2,15-hexadecanedione (HDDO), in good yield.

  2. Ketones urine test

    Science.gov (United States)

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  3. Ketones blood test

    Science.gov (United States)

    Acetone bodies; Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood; Ketoacidosis - ketones blood test ... fat cells break down in the blood. This test is used to diagnose ketoacidosis . This is a ...

  4. Ketone EC50 values in the Microtox test.

    Science.gov (United States)

    Chen, H F; Hee, S S

    1995-03-01

    The Microtox EC50 values for the following ketones are reported in the following homologous series: straight chain methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hepatonone, 2-octanone, 2-decanone, and 2-tridecanone); methyl ketones substituted at one alpha carbon (3-methyl-2-butanone; 3,3-dimethyl-2-butanone); methyl substituted at two alpha carbons (2,4-dimethyl-3-pentanone; 2,2,4,4-tetramethyl-3-pentanone); phenyl groups replacing methyl in acetone (acetophenone; benzophenone); methyl groups substituted at the alpha carbons of cyclohexanone; and 2,3- 2,4-, and 2,5-hexanediones, most for the first time. While there were linear relationships between log EC50 and MW for the straight chain methyl ketones, and for methyl substitution at the alpha carbon for methyl ketones, there were no other linear relationships. As molecular weight increased, the EC50 values of soluble ketones decreased; as distance between two carbonyl groups decreased so too did EC50 values. Thus, for the ketones the geometry around the carbonyl group is an important determinant of toxicity as well as MW, water solubility, and octanol/water coefficient.

  5. Ketone bodies in epilepsy.

    Science.gov (United States)

    McNally, Melanie A; Hartman, Adam L

    2012-04-01

    Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  6. DIRECT AMIDOALKYLATION OF KETONES

    NARCIS (Netherlands)

    TENHOEVE, W; WYNBERG, H

    1994-01-01

    In a one-pot reaction aromatic aldehydes, urethane or acetamide and a variety of ketones condense in the presence of catalytic amounts of boron trifluoride or p-toluenesulfonic acid to furnish substituted carbamates or amides in good yield.

  7. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  8. Ketone Bodies Mediate Antiseizure Effects

    Directory of Open Access Journals (Sweden)

    Jena M. Krueger

    2015-10-01

    Full Text Available Investigators from The Barrow Neurological Institute, Creighton University, University of Kentucky and the University of Calgary Faculty of Medicine investigated the effect of ketone bodies and the ketogenic diet on epileptic Kcna1-null mice.

  9. Acyclic Ketones in the Defensive Secretion of a “Daddy Longlegs” (Leiobunum vittatum)

    Science.gov (United States)

    Meinwald, J.; Kluge, A. F.; Carrel, J. E.; Eisner, T.

    1971-01-01

    The defensive secretion of the “daddy longlegs” Leiobunum vittatum was analyzed and found to contain the acyclic ketones 4-methylheptan-3-one and E-4,6-dimethyl-6-octen-3-one as its major organic components. Although 4-methylheptan-3-one has been found previously as an alarm substance in certain ant genera, the second component, whose structure is confirmed by synthesis, is new. PMID:5283937

  10. Acyclic ketones in the defensive secretion of a "daddy longlegs" (Leiobunum vittatum).

    Science.gov (United States)

    Meinwald, J; Kluge, A F; Carrel, J E; Eisner, T

    1971-07-01

    The defensive secretion of the "daddy longlegs" Leiobunum vittatum was analyzed and found to contain the acyclic ketones 4-methylheptan-3-one and E-4,6-dimethyl-6-octen-3-one as its major organic components. Although 4-methylheptan-3-one has been found previously as an alarm substance in certain ant genera, the second component, whose structure is confirmed by synthesis, is new.

  11. Cerebral ketone body metabolism.

    Science.gov (United States)

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  12. Bacterial production of methyl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been

    2017-01-31

    The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.

  13. Weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensers for detection, monitoring and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii

    Science.gov (United States)

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in AWPM bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactroc...

  14. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  15. Polyether ether ketone film. Polyether ether ketone film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. (Sumitomo Chemical Co. Ltd., Tokyo (Japan))

    1990-07-05

    The characteristics and the film making process of polyether ether ketone (PEEK) resin, and the characteristics and the applications of PEEK film, are described. PEEK is aromatic polyketone with super thermal resistance. Though it is a crystalline polymer of which the crystallinity is controlled to 48% in a highest degree, it has also amorphous property, thus it shows unique property. The characteristics of PEEK resin are found in thermal resistance, incombusti-bility, transparency, chemical resistance, light resistance and radiation resistance. As for the film making process, casting method by T-die is generally adopted. The general properties of PEEK film are excellent in high thermal resistance, good electrical properties, chemical resistance, hydrolysis resistance, radiation resistance and imcombusti-bility. In the application of PEEK film, new development is expected in following fields; a high performance composite, flexible print substrate with high thermal resistance, insulating tape with thermal resistance, and a general film in the nuclear energy industry. 5 figs., 5 tabs.

  16. Use of ketonal in lumbago

    Directory of Open Access Journals (Sweden)

    P. R. Kamchatnov

    2014-01-01

    Full Text Available Lumbago is one of the most common musculoskeletal pain syndromes. The course of lumbago shows a tendency towards frequent relapses and is associated with the significant material costs of medical care. A wide range of analgesics, nonsteroidal anti-inflammatory drugs in particular, whose administration may be linked with an increased risk for adverse visceral reactions, is used to treat patient with lumbago. The risk of their side effects may be reduced by the extensive use of non-drug treatments and the early expansion of a motor regimen in a patient. Therapeutic effectiveness in reducing the likelihood of adverse reactions may be provided by short-term treatment with effective drugs. The advantages of using ketoprofen (ketonal formulations in patients with lumbago are considered.

  17. Steady-state and laser flash photolysis of 1 - benzocyclanones and their α, α - dimethyl derivatives

    International Nuclear Information System (INIS)

    Netto-Ferreira, Jose Carlos; Scaiano, J.C.

    1999-01-01

    Laser excitation of 0.01 M solutions of 1-indanone (Ia), 1-tetralone )ib), 1-benzo suberone (lc), and their α, α-dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum adsorption at 425 nm, and lifetimes ranging from 62 ns (IIIa) to 5.5μs (Ic). Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, IIIa-c, which show absorption spectra very similar to the parent ketone, with λ max at 430 nm and lifetime in excess of 20 μs. Steady state irradiations show that the α, α,-dimethyl ketones IIa form ortho-alkyl benzaldehydes probably derived from an initial α-cleavage of the corresponding triplet excited states. The characterization of products has been carried out using 1 H NMR. (author)

  18. Fragrance material review on 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one when used as a fragrance ingredient is presented. 1-(2,4-Dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, sensitization, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    Science.gov (United States)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  20. Homologation Reaction of Ketones with Diazo Compounds.

    Science.gov (United States)

    Candeias, Nuno R; Paterna, Roberta; Gois, Pedro M P

    2016-03-09

    This review covers the addition of diazo compounds to ketones to afford homologated ketones, either in the presence or in the absence of promoters or catalysts. Reactions with diazoalkanes, aryldiazomethanes, trimethylsilyldiazomethane, α-diazo esters, and disubstituted diazo compounds are covered, commenting on the complex regiochemistry of the reaction and the nature of the catalysts and promoters. The recent reports on the enantioselective version of ketone homologation reactions are gathered in one section, followed by reports on the use of cyclic ketones ring expansion in total synthesis. Although the first reports of this reaction appeared in the literature almost one century ago, the recent achievements, in particular, for the asymmetric version, forecast the development of new breakthroughs in the synthetically valuable field of diazo chemistry.

  1. Colorimetric Recognition of Aldehydes and Ketones.

    Science.gov (United States)

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electronic structure and tautomerism of aryl ketones

    International Nuclear Information System (INIS)

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  3. Electronic structure and tautomerism of aryl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.

  4. Reduction of Aldehydes and Ketones by Sodium Dithionite

    NARCIS (Netherlands)

    Vries, Johannes G. de; Kellogg, Richard M.

    1980-01-01

    Conditions have been developed for the effective reduction of aldehydes and ketones by sodium dithionite, Na2S2O4. Complete reduction of simple aldehydes and ketones can be achieved with excess Na2S2O4 in H2O/dioxane mixtures at reflux temperature. Some aliphatic ketones, for example, pentanone and

  5. Atmospheric fate of methyl vinyl ketone

    DEFF Research Database (Denmark)

    Praske, Eric; Crounse, John D; Bates, Kelvin H

    2015-01-01

    First generation product yields from the OH-initiated oxidation of methyl vinyl ketone (3-buten-2-one, MVK) under both low and high NO conditions are reported. In the low NO chemistry, three distinct reaction channels are identified leading to the formation of (1) OH, glycolaldehyde, and acetyl...

  6. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    NARCIS (Netherlands)

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  7. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  8. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    International Nuclear Information System (INIS)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F.

    2013-01-01

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  9. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  10. Ketones in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Ketones: Urine; p. 351. Joslin Diabetes ...

  11. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    Science.gov (United States)

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  12. Dimethyl sulfoxide complexing with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Borovikov, Yu Ya; Serguchev, Yu A; Staninets, V I

    1986-01-01

    Dielectrometry, conductometry, IR-spectroscopy are used to study dimethyl sulfoxide complexing with iodine in binary system and in CCl/sub 4/, C/sub 6/H/sub 6/, C/sub 6/H/sub 5/Cl, C/sub 6/H/sub 5/CF/sub 3/, 1, 2-dichloroethane solutions. Complexes of 1:1 composition are formed in solutions, in the binary system of 2:1 and 2:2 composition. I/sub 2/ molecules add to oxygen atoms. In CCl/sub 4/ and in binary system gradual transformation of so called external charge transfer complexes (CTC-1) to internal ones (CTC-2) that are described by the 1st order reaction kinetic equations is observed. On dissolution of CTC of 2:2 composition they disproportionate into two CTC molecules 1:1. Enthalpy of forming CTC-1 1:1 is approximately 4 kcal/mol, CTC-2 1:1 - 8, CTC-1 2:1 - 8 kcal/mol.

  13. Production of methyl-vinyl ketone from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  14. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Science.gov (United States)

    2010-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of ketones is used in the diagnosis and treatment of acidosis (a condition characterized by abnormally high...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in...

  15. Oxidative Umpolung α‐Alkylation of Ketones

    DEFF Research Database (Denmark)

    Shneider, O. Svetlana; Pisarevsky, Evgeni; Fristrup, Peter

    2015-01-01

    We disclose a hypervalent iodine mediated α-alkylative umpolung reaction of carbonyl compounds with dialkylzinc as the alkyl source. The reaction is applicable to all common classes of ketones including 1,3-dicarbonyl compounds and regular ketones via their lithium enolates. The α...

  16. Injection characteristics of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.

    1996-09-01

    Dimethyl ether (DME) has proved to be a new ultra-clean alternative fuel for diesel engines. Engine tests have shown considerably lower NO{sub x} emissions, no particle emissions and lower noise compared to that obtained from normal diesel engine operation. DME also has demonstrated favorable response to Exhaust Gas Recirculation (EGR). The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME. Fundamental spray behaviour was characterized by fuel spray penetration and angle, atomization and droplet size and evaporation. The influence of fuel characteristics, nozzle geometry and ambient pressure on the DME and diesel spray behavior was investigated. Fuel was injected into an unheated injection chamber with a ambient pressure of 15 bar and 25 bar, respectively, giving a simplified simulation of the environment in an operating engine. Two nozzles were studied: a single hole nozzle and a pintle nozzle. A conventional fuel injection system was used for both nozzles. Injection parameters of RPM, throttle position, fuel line length and chamber environment were held constant for both nozzles. The sprays were visualized using schlieren and high speed photography. Results show that the general appearance of the DME spray is similar to that of diesel spray. The core of the DME spray seems less dense and the spray tip less sharp compared to diesel spray, indicating smaller droplets with a lower momentum in the core of the DME spray. Schlieren film shows that with both DME and diesel fuel, the spray tip only consists of liquid and that evaporation occurs after a brief time interval. Penetration of DME is about one third that of diesel using the pintle nozzle. Also, the spray angle is considerably larger for the DME spray compared to the diesel spray. A comparatively smaller difference in penetration is observed using the hole nozzle. Differences in penetration for the hole nozzle are within the limit of the penetration

  17. Is there an astrocyte-neuron ketone body shuttle?

    Science.gov (United States)

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  18. Direct α-alkylation of ketones with alcohols in water.

    Science.gov (United States)

    Xu, Guoqiang; Li, Qiong; Feng, Jiange; Liu, Qiang; Zhang, Zuojun; Wang, Xicheng; Zhang, Xiaoyun; Mu, Xindong

    2014-01-01

    The direct α-alkylation of ketones with alcohols has emerged as a new green protocol to construct C-C bonds with H2 O as the sole byproduct. In this work, a very simple and convenient Pd/C catalytic system for the direct α-alkylation of ketones with primary alcohols in pure water is developed. Based on this catalytic system, aqueous mixtures of dilute acetone, 1-butanol, and ethanol (mimicking ABE fermentation products) can be directly transformed into C5 -C11 or longer-chain ketones and alcohols, which are precursors to fuels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The reaction of organocerium reagents with easily enolizable ketones

    International Nuclear Information System (INIS)

    Imamoto, Tsuneo; Kusumoto, Tetsuo; Sugiura, Yasushi; Suzuki, Nobuyo; Takiyama, Nobuyuki

    1985-01-01

    Organocerium (III) reagents were conveniently generated by the reaction of organolithium compounds with anhydrous cerium (III) chloride. The reagents are less basic than organolithiums and Grignard reagents, and they react readily at -78 deg C with easily enolizable ketones such as 2-tetralone to afford addition products in high yields. Cerium (III) enolates were also generated from lithium enolates and cerium (III) chloride. The cerium (III) enolates undergo aldol addition with ketones or sterically crowded aldehyde to give the corresponding β-hydroxy ketones in good to high yields. (author)

  20. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    Science.gov (United States)

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of crystallization kinetics of poly (ether-ketone-ketone and poly (ether-ether-ketone by DSC

    Directory of Open Access Journals (Sweden)

    Gibran da Cunha Vasconcelos

    2010-08-01

    Full Text Available The poly (aryl ether ketones are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affect the developed structure, and the properties of the final product. The objective of this work was to evaluate the thermoplastics polymers PEKK e PEEK by DSC, aiming to obtain the relationship between kinetics, content, nucleation and geometry of the crystalline phases, according to the parameters of the Avrami and Kissinger models. The analysis of the Avrami exponents obtained for the studied polymers indicates that both showed the formation of crystalline phases with heterogeneous nucleation and growth geometry of the type sticks or discs, depending on the cooling conditions. It was also found that the PEEK has a higher crystallinity than PEKK.

  2. 21 CFR 172.133 - Dimethyl dicarbonate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... treatment, filtration, or other technologies prior to the use of dimethyl dicarbonate: (1) In wine, dealcoholized wine, and low alcohol wine in an amount not to exceed 200 parts per million. (2) In ready-to-drink...

  3. Inactivation of MXR1 Abolishes Formation of Dimethyl Sulfide from Dimethyl Sulfoxide in Saccharomyces cerevisiae

    OpenAIRE

    Hansen, Jørgen

    1999-01-01

    Dimethyl sulfide (DMS) is a sulfur compound of importance for the organoleptic properties of beer, especially some lager beers. Synthesis of DMS during beer production occurs partly during wort production and partly during fermentation. Methionine sulfoxide reductases are the enzymes responsible for reduction of oxidized cellular methionines. These enzymes have been suggested to be able to reduce dimethyl sulfoxide (DMSO) as well, with DMS as the product. A gene for an enzymatic activity lead...

  4. Synthesis and antidiabetic activity of β-acetamido ketones

    Directory of Open Access Journals (Sweden)

    Xing-hua Zhang

    2011-08-01

    Full Text Available This paper reports the use of trifluoroacetic acid as a catalyst in the Dakin–West reaction for the synthesis of β-acetamido ketones. The method has several advantages such as requiring only mild conditions and a low concentration of catalyst. Screening of 19 β-acetamido ketones for antidiabetic activity in vitro showed that their activity as peroxisome proliferator-activated receptor (PPAR agonists and as dipeptidyl peptidase 4 (DPP-IV inhibitors was fairly weak.

  5. Labelling by 14C and 3H on 4,4-dimethyl-1-(3,4-methylenedioxyphenyl)-1-pentene-3-ol or stiripentol

    International Nuclear Information System (INIS)

    Madelmont, J.C.; Rapp, M.; Labarre, P.; Maurizis, J.C.; Dupuy, J.M.; Lepage, F.; Veyre, A.

    1992-01-01

    4,4-dimethyl-1-(3,4-methylenedioxyphenyl)-1-pentene-3-ol or stiripentol was labelled by 14 C and 3 H. 14 C labelling was performed on the carbon 1 of the pentene group via a four step procedure. The radiochemical yield calculated from the precursor (Ba 14 CO 3 ) is 28%. 3 H labelling was performed on the position 3 of the pentene chain by reduction of the corresponding ketone via NaBT 4 . The radiochemical yield calculated from the precursor (NaBT 4 ) is 40%. (author)

  6. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    Science.gov (United States)

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  7. ESR, electrochemical and cyclodextrin-inclusion studies of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives

    Science.gov (United States)

    Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.

    2008-11-01

    The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.

  8. Reaction of dimethyl hydrogen phosphite with acecyclone

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Fuzhenkova, A.V.; Tyryshkin, N.I.

    1987-01-01

    In the presence of bases acecyclone reacts with dimethyl hydrogen phosphite with the formation of gamma-keto phosphonates with conjugated and unconjugated structures, and also an enol phosphate, a product containing a bond between oxygen of the cyclone and phosphorus. In the absence of bases, as well as the beta-keto phosphonate, gamma-keto phosphonates of cis and trans structure are formed; they are products of the 1,4 addition of dimethyl hydrogen phosphite to the conjugated fragment C=C-C=O of the cyclone. The compositions of the reaction mixture were determined by IR and NMR spectroscopy and TLC. Full-scale analysis of chemical shifts and spin-spin coupling constants was performed

  9. (α,α-dimethyl)glycyl (dmg) PNAs

    Science.gov (United States)

    Gourishankar, Aland; Ganesh, Krishna N.

    2012-01-01

    The design and facile synthesis of sterically constrained new analogs of PNA having gem-dimethyl substitutions on glycine (dmg-PNA-T) is presented. The PNA oligomers [aminoethyl dimethylglycyl (aedmg) and aminopropyl dimethylglycyl (apdmg)] synthesized from the monomers 6 and 12) effected remarkable stabilization of homothyminePNA2:homoadenine DNA/RNA triplexes and mixed base sequence duplexes with target cDNA or RNA. They show a higher binding to DNA relative to that with isosequential RNA. This may be a structural consequence of the sterically rigid gem-dimethyl group, imposing a pre-organized conformation favorable for complex formation with cDNA. The results complement our previous work that had demonstrated that cyclohexanyl-PNAs favor binding with cRNA compared with cDNA and imply that the biophysical and structural properties of PNAs can be directed by introduction of the right rigidity in PNA backbone devoid of chirality. This approach of tweaking selectivity in binding of PNA constructs by installing gem-dimethyl substitution in PNA backbone can be extended to further fine-tuning by similar substitution in the aminoethyl segment as well either individually or in conjunction with present substitution. PMID:22679528

  10. Labelling by [sup 14]C and [sup 3]H on 4,4-dimethyl-1-(3,4-methylenedioxyphenyl)-1-pentene-3-ol or stiripentol. Marquage par [sup 14]C et [sup 3]H du 4,4-dimethyl-1-(methylendioxy-3,4 phenyl)-1-petene-3-ol ou stiripentol

    Energy Technology Data Exchange (ETDEWEB)

    Madelmont, J.C.; Rapp, M.; Labarre, P.; Maurizis, J.C. (Institut National de la Sante et de la Recherche Medicale (INSERM), 63 - Clermont-Ferrand (France)); Dupuy, J.M. (Centre Jean Perrin, Clermont-Ferrand (France)); Lepage, F. (Laboratoires BIOCODEX, Compiegne (France)); Veyre, A. (Clermont-Ferrand-1 Univ., 63 - Aubiere (France))

    1992-11-01

    4,4-dimethyl-1-(3,4-methylenedioxyphenyl)-1-pentene-3-ol or stiripentol was labelled by [sup 14]C and [sup 3]H. [sup 14]C labelling was performed on the carbon 1 of the pentene group via a four step procedure. The radiochemical yield calculated from the precursor (Ba[sup 14]CO[sub 3]) is 28%. [sup 3]H labelling was performed on the position 3 of the pentene chain by reduction of the corresponding ketone via NaBT[sub 4]. The radiochemical yield calculated from the precursor (NaBT[sub 4]) is 40%. (author).

  11. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  12. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  13. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    International Nuclear Information System (INIS)

    Zhi, Chen; Dudu, Wu

    2012-01-01

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the α-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  14. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Chen; Dudu, Wu [Guangdong Medical College, Dongguan (China)

    2012-06-15

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the {alpha}-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  15. Rhodium Catalyzed Intramolecular C-H Insertion of α-Aryl-α-diazo Ketones

    Science.gov (United States)

    Taber, Douglass F.; Tian, Weiwei

    2011-01-01

    Direct diazo transfer proceeds smoothly with α-aryl ketones. The derived α-aryl-α-diazo ketones cyclize efficiently with Rh catalysis to give the corresponding α-aryl cyclopentanones. PMID:17385917

  16. Synthesis and Consecutive Reactions of α-Azido Ketones: A Review

    Directory of Open Access Journals (Sweden)

    Sadia Faiz

    2015-08-01

    Full Text Available This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones.

  17. Contribution to the study of gamma radiolysis of 2-furyl butyl or substituted phenyl ketones in isopropanol

    International Nuclear Information System (INIS)

    El Dessouky Aly, M.M.

    1982-03-01

    The following ketones: 2-furyl butyl ketone (I), 2 furyl phenyl ketone (II), 2-furyl p-methylphenyl ketone (III) and 2-furyl p-methoxyphenyl ketone (IV) were synthesised and characterised. The yields of hydrogen and methane obtained during radiolysis of the mixtures ketones (I to IV)-2-propanol were determined. These yields are always lower than with pure 2-propanol. Radiolysis products for ketones (I) and (II) are studied. Analysis of radiolitical products were conducted by gas chromatography. Effect of radiation dose and ketone concentration is determined. Reaction mechanisms are studied [fr

  18. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    Science.gov (United States)

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Delayed dermal burns caused by dimethyl acetylenedicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Slovak, A J; Payne, A R

    1984-07-01

    A chemical operator handling dimethyl acetylenedicarboxylate (DMAD) developed delayed and pain-free burns on one of his feet 2 days after a supposed spillage of DMAD. The injuries were confirmed to be associated with DMAD by chemical analysis of the operator's safety boot and patch tests. DMAD easily penetrates some protective clothing and dilute solutions can still be hazardous: the toxic effect is compounded by being delayed and painless. The lachrymatory irritant properties of undiluted DMAD are not adequate warning of its presence or spillage in quantities sufficient to cause significant skin damage.

  20. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones.

    Science.gov (United States)

    Xu, Qing; Chen, Jianhui; Tian, Haiwen; Yuan, Xueqin; Li, Shuangyan; Zhou, Chongkuan; Liu, Jianping

    2014-01-03

    Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by CC bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of tritium labelled methyl vinyl ketone and its use in copolymer analysis

    International Nuclear Information System (INIS)

    Burfield, D.R.; Savariar, C.M.

    1980-01-01

    The synthesis of tritiated methyl vinyl ketone by base catalysed exchange and its use in determining the ketone content of styrene/methyl vinyl ketone copolymers are reported. Methods of assay are described in detail and the general applicability of the method is discussed. (author)

  2. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  3. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.

    Science.gov (United States)

    Mehta, Meera; Holthausen, Michael H; Mallov, Ian; Pérez, Manuel; Qu, Zheng-Wang; Grimme, Stefan; Stephan, Douglas W

    2015-07-06

    Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catecholamine, Corticosteroid and Ketone Excretion in Exercise and Hypoxia,

    Science.gov (United States)

    OHCS excretion tended to be higher during the experimental period and subsequently lower overnight during the hypoxia week. Ketosis occurred in two...subjects. In one of these it could be readily related to previous extraneous stress. Excretion of unidentified ketones in overnight urines was sometimes suspected and occurred beyond doubt following gross ketosis . (Author)

  5. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    Energy Technology Data Exchange (ETDEWEB)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  6. Process for conversion of levulinic acid to ketones

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Vanessa M.; Dagle, Robert A.

    2017-05-30

    A method for generating desired platform chemicals from feedstocks such as cellulosic biomass feedstocks containing levulinic acid by decarboxylating a feed stock comprising levulinic acid to generate ketones. This is done by passing a feed stock comprising levulinic acid in a gas phase over a non-precious metal catalyst on a neutral support.

  7. Novel deep cavity calix[4]pyrroles derived from steroidal ketones

    Czech Academy of Sciences Publication Activity Database

    Dukh, Mykhaylo; Drašar, Pavel; Černý, Ivan; Pouzar, Vladimír; Shriver, J. A.; Král, V.; Sessler, J. L.

    2002-01-01

    Roč. 14, 2-3 (2002), s. 237-244 ISSN 1061-0278 R&D Projects: GA MŠk OC D12.20 Grant - others:NIH(US) GM58907 Institutional research plan: CEZ:AV0Z4055905 Keywords : ketones * steroid Subject RIV: CC - Organic Chemistry Impact factor: 1.820, year: 2002

  8. On the Metabolism of Exogenous Ketones in Humans

    Directory of Open Access Journals (Sweden)

    Brianna J. Stubbs

    2017-10-01

    Full Text Available Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE; (R-3-hydroxybutyl (R-3-hydroxybutyrate, or ketone salts (KS; sodium plus potassium βHB.Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001, which returned to baseline within 3–4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001, but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12 or a continuous nasogastric infusion (n = 4 to maintain blood D-βHB concentrations greater than 1 mM. Both drinks

  9. Footwear contact dermatitis from dimethyl fumarate.

    Science.gov (United States)

    Švecová, Danka; Šimaljakova, Maria; Doležalová, Anna

    2013-07-01

    Dimethyl fumarate (DMF) is an effective inhibitor of mold growth. In very low concentrations, DMF is a potent sensitizer that can cause severe allergic contact dermatitis (ACD). It has been identified as the agent responsible for furniture contact dermatitis in Europe. The aim of this study was to evaluate patients in Slovakia with footwear ACD associated with DMF, with regard to clinical manifestations, patch test results, and results of chemical analysis of their footwear. Nine patients with suspected footwear contact dermatitis underwent patch testing with the following allergens: samples of their own footwear, commercial DMF, the European baseline, shoe screening, textile and leather dye screening, and industrial biocides series. The results were recorded according to international guidelines. The content of DMF in footwear and anti-mold sachets was analyzed using gas chromatography and mass spectrometry. Acute ACD was observed in nine Caucasian female patients. All patients developed delayed sensitization, as demonstrated by positive patch testing using textile footwear lining. Seven patients were patch tested with 0.1% DMF, and all seven were positive. Chemical analysis of available footwear showed that DMF was present in very high concentrations (25-80 mg/Kg). Dimethyl fumarate is a new footwear allergen and was responsible for severe ACD in our patients. To avoid an increase in the number of cases, the already approved European preventive measures should be accepted and commonly employed. © 2013 The International Society of Dermatology.

  10. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    Energy Technology Data Exchange (ETDEWEB)

    Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-12

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.

  11. Dimethyl ether as a drift-chamber gas

    International Nuclear Information System (INIS)

    Bari, G.; Basile, M.; Bonvicini, G.; Cara Romeo, G.; Casaccia, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; D'Ali, G.; Del Papa, C.; Focardi, S.; Iacobucci, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Prisco, G.; Sartorelli, G.; Susinno, G.; Votano, L.; Zichichi, A.; Istituto Nazionale di Fisica Nucleare, Bologna; European Organization for Nuclear Research, Geneva; Istituto Nazionale di Fisica Nucleare, Frascati; Michigan Univ., Ann Arbor; Palermo Univ.

    1986-01-01

    We have continued the testing of dimethyl ether as a drift-chamber gas in order to improve the understanding of its properties. In particular, we report on measurement accuracy, on systematic effects, and some preliminary data on the ageing of a detector filled with dimethyl ether. (orig.)

  12. Synthesis and thermal behavior of new organometallic poly ketones and co-poly ketones based on diferrocenylidene piperidone

    International Nuclear Information System (INIS)

    Aly, K.I.

    2005-01-01

    A new interesting category of organometallic poly ketones and copolyketones were synthesized via Friedel - Crafts reaction through the polymerization of 2,6-[Bis (2-ferrocenyl )methylene] N-methylpiperidone (II) with different diacid chlorides. The model compound was synthesized by reacting the monomer (II) with benzoyl chloride and characterized by HNMR, IR and elemental analyses. The poly ketones and copolyketones were insoluble in most organic solvents but soluble easily in protic solvents. The thermal properties of these poly ketones and copolyketones were evaluated and correlated to their structural units by TGA and DSC measurements, and had inherent viscosity 0.34-0.52 dl g-1. Moreover, the electrical conductivity of one of the poly ketones, as selected example, Va and copolyketone VI were investigated above the temperature range (300-500 K) and showed that it followed an Arrhenius equation with activation energy 2.09 eV, also the morphological properties of selected examples of poly-and copolyketones were detected by SEM

  13. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  14. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  15. Microwave Assisted Condensation Reactions of 2-Aryl Hydrazonopropanals with Nucleophilic Reagents and Dimethyl Acetylenedicarboxylate

    Directory of Open Access Journals (Sweden)

    Rita M. Borik

    2007-08-01

    Full Text Available The reaction of methyl ketones 1a-g with dimethylformamide dimethylacetal (DMFDMA afforded the enaminones 2a-g, which were coupled with diazotized aromatic amines 3a,b to give the corresponding aryl hydrazones 6a-h. Condensation of compounds 6a-h with some aromatic heterocyclic amines afforded iminoarylhydrazones 9a-m. Enaminoazo compounds 12a,b could be obtained from condensation of 6c with secondary amines. The reaction of 6e,h with benzotriazolylacetone yielded 14a,b. Also, the reaction of 6a,b,d-f,h with glycine and hippuric acid in acetic anhydride afforded pyridazinone derivatives 17a-f. Synthesis of pyridazine carboxylic acid derivatives 22a,b from the reaction of 6b,e with dimethyl acetylenedicarboxylate (DMAD in the presence of triphenylphosphine at room temperature is also reported. Most of these reactions were conducted under irradiation in a microwave oven in the absence of solvent in an attempt to improve the product yields and to reduce the reaction times.

  16. Selectivity control of carbonylation of methanol to dimethyl oxalate and dimethyl carbonate over gold anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Takenaka, Sakae; Otsuka, Kiyoshi

    2004-05-05

    New and unique electrocatalysis of gold for the carbonylation of methanol to dimethyl oxalate (DMO) and dimethyl carbonate (DMC) was found. The selectivity to DMO and DMC could be controlled over gold anode by electrochemical potential, as you like. Drastic changes of gold electrocatalysis was due to changes of the oxidation state of gold, Au0 or Au3+.

  17. Study on the synthesis of dimethyl 1,4-cyclohexanedicarboxylate by catalytic hydrogenation of dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    LI Yuanhua

    2016-12-01

    Full Text Available In the field of polymer industry,1,4-cyclohexanedimethanol (CHDM occupies an important position especially for the synthesis of highly valued polyester products.In industry,CHDM is prepared from dimethyl terephthalate (DMT through a two-step hydrogenation process Palladium supported on magnesium oxide (Pd/MgO was prepared by animpregnation method and was characterized by x-ray diffraction (XRD,transmission electron microscope (TEM and scan electron microscope (SEM.During the hydrogenation of DMT to synthesize dimethyl 1,4-cyclohexanedicarboxylate (DMCD,the as-prepared Pd/MgO was used as the catalyst with methyl acetate as the solvent.Under optimized reaction conditions (reaction temperature:180 ℃,reaction pressure:4.5 MPa,the conversion of DMT was 100% and the selectivity of DMCD was 99%.Such a catalyst shows a good potential in industrial applications.

  18. Dual-isotope technique for determination of in vivo ketone body kinetics

    International Nuclear Information System (INIS)

    Miles, J.M.; Schwenk, W.F.; McClean, K.L.; Haymond, M.W.

    1986-01-01

    Total ketone body specific activity has been widely used in studies of ketone body metabolism to circumvent so-called isotope disequilibrium between the two major ketone body pools, acetoacetate and beta-hydroxybutyrate. Recently, this approach has been criticized on theoretical grounds. In the present studies, [13C]acetoacetate and beta-[14C]hydroxybutyrate were simultaneously infused in nine mongrel dogs before and during an infusion of either unlabeled sodium acetoacetate or unlabeled sodium beta-hydroxybutyrate. Ketone body turnover was determined using total ketone body specific activity, total ketone body moles % enrichment, and an open two-pool model, both before and during the exogenous infusion of unlabeled ketone bodies. Basal ketone body turnover rates were significantly higher using [13C]acetoacetate than with either beta-[14C]hydroxybutyrate alone or the dual-isotope model (3.6 +/- 0.5 vs. 2.2 +/- 0.2 and 2.7 +/- 0.2 mumol X kg-1 X min-1, respectively, P less than 0.05). During exogenous infusion of unlabeled sodium acetoacetate, the dual-isotope model provided the best estimate of ketone body inflow, whereas 14C specific activity underestimated the known rate of acetoacetate infusion by 55% (P less than 0.02). During sodium beta-hydroxybutyrate infusion, [13C]-acetoacetate overestimated ketone body inflow by 55% (P = NS), while better results were obtained with 14C beta-hydroxybutyrate alone and the two-pool model. Ketone body interconversion as estimated by the dual-isotope technique increased markedly during exogenous ketone body infusion. In conclusion, significant errors in estimation of ketone body inflow were made using single-isotope techniques, whereas a dual-isotope model provided reasonably accurate estimates of ketone body inflow during infusion of exogenous acetoacetate and beta-hydroxybutyrate

  19. Forging C-C Bonds Through Decarbonylation of Aryl Ketones.

    Science.gov (United States)

    Somerville, Rosie J; Martin, Ruben

    2017-06-06

    The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microbial transformation of sesquitepenoid ketone, (+) Nootkatone by Macrophomia phaseolina

    OpenAIRE

    Vajira P. Bulugahapitiya; Syed Ghulam Musharaff

    2009-01-01

    Microbial transformation is an effective tool for the structural modification of bioactive natural and synthetic compounds leading to synthesis of more potent derivatives. Its application in asymmetric synthesis is increasing due to its versatility and ease. This article presents biotransformation of sesquiterpenoid ketone, (+)-Nootkatone (1) by M. phaseolina, a plant pathogenic fungus. The transformation afforded four main compounds. They were determined to be 1:6 stereoisomeric mixture of 1...

  1. Analysis of Ketones by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Wang, T.; Španěl, Patrik

    2003-01-01

    Roč. 17, - (2003), s. 2655-2660 ISSN 0951-4198 R&D Projects: GA ČR GA202/03/0827; GA ČR GA203/02/0737 Institutional research plan: CEZ:AV0Z4040901 Keywords : mass spectrometry * selected ion flow tube * ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2003

  2. Silica sulfuric acid and as an efficient catalyst for the Friedlander quinoline synthesis from simple ketones and ortho - amino aryl ketones under microwave irradiation

    International Nuclear Information System (INIS)

    Zolfigol, M. A.; Salehi, P.; Shiri, M.; Faal Rastegar, T.; Ghaderi, A.

    2008-01-01

    The synthesis of quinoline derivatives via Friedlander method from ortho-amino aryl ketones in the presence of a catalytic amount of silica sulfuric acid under solvent-free condition and microwave irradiation was described. A good range of simple ketones such as cyclohexanone and deoxybenzoin were used

  3. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  4. Contribution to the study of the structure and reactivity of ketones using deuterium substitution of the α - ketone hydrogens

    International Nuclear Information System (INIS)

    Frejaville, G.

    1966-02-01

    This work is an attempt to obtain more knowledge about the structure and the reactivity of ketones; it is also a contribution to conformational analysis based on infrared signals associated with the C-D vibration in mono-deuterated compounds. In the first chapter the various dosage and synthetic methods used in this work are described. In the second chapter the infrared spectra in the 2100-2200 cm -1 region for mono-deuterated ketones are interpreted on the basis of a simple model. This model is then studied in detail, and also critically and precisely, in the case of the mono deuterated acetone molecule. In the third chapter is studied the mechanism of the Favorskii reaction and the reactivity of all the α-ketonic hydrogens of 2 chloro-cyclohexanone are classified. In a technical appendix is described a counter-current exchange method for obtaining a great variety of solvents and deuterated pure raw materials under advantageous conditions. (author) [fr

  5. Blood ketone response to norepinephrine-induced free fatty acid in diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Blackard, W G; Omori, Yoshiaki

    1963-04-18

    During 90-minute norepinephrine infusions, blood free fatty acid and ketone responses of Japanese nondiabetic and diabetic subjects were determined. Nonobese diabetic subjects with and without fasting hyperglycemia demonstrated significantly greater blood ketone elevations than nondiabetics. An inverse correlation between obesity and blood ketone response to nonrepinephrine was observed in diabetics. This correlation could not be attributed to varying degrees of fasting hyperglycemia or free fatty acid elevation. Nonobese diabetics with mild fasting hyperglycemia (90 to 150 mg%) exhibited an unexpected greater increase in blood ketones than nonobese diabetics with moderate fasting hyperglycemia (150 to 250 mg%). Differences in free fatty acid elevations were not responsible for this apparent paradox. The magnitude of the hyperketonemic response, though dependent on free fatty elevation, seemed more sensitive to the degree of obesity and the fasting blood glucose level. Fractional ketone body measurements attributed the blood ketone elevations predominantly to ..beta..-hydroxybutyric acid increases. 43 references, 6 figures, 1 table.

  6. Baeyger-Villiger oxidation of bicyclic ketones. Study of the reaction mechanisms

    International Nuclear Information System (INIS)

    Moutin, Michel

    1968-01-01

    Steric effects occur with the substituents in the ring enlargement of ketones leading to lactones. Different theories which have been proposed are examined, the case of camphor being of particular interest. The following ketones are examined: episo- and iso-fenchone, α and β fenchocamphorone and camphenylone, and the lactone yields are predicted. The identification of the lactones produced is discussed. The case of α fencho-camphorone, which contradicts previous theory, is underlined. The synthesis of the ketones is discussed. (author) [fr

  7. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  8. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Science.gov (United States)

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  9. Cyclodextrin ketones as oxidation catalysts: investigation of bridged derivatives

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Marinescu, Lavinia; Bols, Mikael

    2009-01-01

    A series of alpha-cyclodextrin derivatives containing a 3, 4 or 5 membered ether-linked bridge between the 6A and 6D oxygen atoms, with and without a ketone, were prepared. The synthesis used perbenzylated alpha-cyclodextrin A,D-diol as a starting material upon which O-alkylation and further modi...... derivatives were also made. The 6A,6D-di-O-(propa-2-on-1,3-diyl)-6C,6F-di-O-methyl and di-O-pivaloyl derivatives were also prepared. The new compounds were analysed for catalysis of the oxidation of amines and alcohols....

  10. Methylenation of perfluoroalkyl ketones using a Peterson olefination approach.

    Science.gov (United States)

    Hamlin, Trevor A; Kelly, Christopher B; Cywar, Robin M; Leadbeater, Nicholas E

    2014-02-07

    An operationally simple, inexpensive, and rapid route for the olefination of a wide array of trifluoromethyl ketones to yield 3,3,3-trifluoromethylpropenes is reported. Using a Peterson olefination approach, the reaction gives good to excellent yields of the alkene products and can be performed without purification of the β-hydroxysilyl intermediate. The reaction can be extended to other perfluoroalkyl substituents and is easily scaled up. The alkenes prepared can be readily transformed into a variety of other perfluoroalkyl-containing compounds.

  11. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  12. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    International Nuclear Information System (INIS)

    Abdel-Messeih, P.L.

    2012-01-01

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T 4 were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T 4 as compared to controls. There were significant negative correlations between NO and both ADMA (r 2 = 0.84) and free T 4 (r 2 = 0.95) in overt hypothyroid group while significant positive correlation (r 2 = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females

  13. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Messeih, P. L. [Health Radiation Research Department, National Centre for Radiation Research and Technology, Cairo (Egypt)

    2012-07-01

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T{sub 4} were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T{sub 4} as compared to controls. There were significant negative correlations between NO and both ADMA (r{sup 2} = 0.84) and free T{sub 4} (r{sup 2} = 0.95) in overt hypothyroid group while significant positive correlation (r{sup 2} = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females.

  14. Fotólise no estado estacionário e com pulso de laser de 1-benzociclanonas e de seus derivados a,a -dimetilados Steady-state and laser flash photolysis of 1 - benzocyclanones and their a,a -dimethyl derivatives

    Directory of Open Access Journals (Sweden)

    José Carlos Netto-Ferreira

    1999-07-01

    Full Text Available Laser excitation of 0.01 M solutions of 1-indanone (Ia, 1-tetralone (Ib, 1-benzosuberone (Ic, and their a,a -dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum absorption at 425 nm, and lifetimes ranging from 62 ns (IIa to 5.5ms (Ic. Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, i.e. IIIa-c, which show absorption spectra very similar to the parent ketone, with lmax at 430 nm and lifetime in excess of 20 ms. Steady state irradiations show that the a,a -dimethyl ketones IIa and IIc form ortho-alkyl benzaldehydes probably derived from an initial a-cleavage of the corresponding triplet excited states.

  15. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  16. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  17. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  18. Fenofibrate induces ketone body production in melanoma and glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Maja M Grabacka

    2016-02-01

    Full Text Available Ketone bodies (beta-hydroxybutyrate, bHB, acetoacetate are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of nontransformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and down-regulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic therapeutic approaches against glioblastoma.

  19. The role of point-of-care blood testing for ketones in the diagnosis of ...

    African Journals Online (AJOL)

    estimated that the annual cost of treating DKA in the USA exceeds. 1 billion ... If urinary ketones are positive, patients are referred for further management – often ... To evaluate a hand-held electrochemical (point-of-care testing; POCT) ketone monitor and compare it with the gold-standard ..... renal failure may be present.

  20. Enzymatic Baeyer-Villiger Oxidation of Benzo-Fused Ketones : Formation of Regiocomplementary Lactones

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Fraaije, Marco W.; Gotor, Vicente

    Baeyer-Villiger monooxygenases (BVMOs) are enzymes that are known to catalyse the Baeyer-Villiger oxidation of ketones in aqueous media using O(2) as oxidant. Herein, we describe the oxidation of a set of diverse benzo-fused ketones by three different BVMOs in both aqueous and non-conventional

  1. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    transformation. The retro benzyl reaction was shown by the addition of benzylmagnesium chloride to di-tert-butyl ketone followed by exchange of both the benzyl and the ketone moiety with another substrate. Similar experiments were performed with phenylmagnesium bromide and tert-butylmagnesium chloride...

  2. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    Science.gov (United States)

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  3. Further research on the biological activities and the safety of raspberry ketone is needed

    Directory of Open Access Journals (Sweden)

    Jungmin Lee

    2016-03-01

    Full Text Available Raspberry ketone supplements have grabbed consumer attention with the possibility that they might help burn fat and aid weight loss. While raspberry ketone occurs naturally, and is found in raspberry fruit, most is synthetically produced for use in commercial products as flavorings, fragrances, or dietary supplements. Currently, the amount of raspberry ketone in dietary supplements (currently sold in the US is well above the maximum concentration recommended for food and fragrance products, so additional toxicology work is needed to ensure that such concentrations of raspberry ketone are safe. In addition to safety data, clinical studies are also needed to validate any health benefits. Without research on the effects of consuming high concentrations of raspberry ketone, consumers should be wary of unsubstantiated claims and mindful of potential harm to their health.

  4. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG JinXian; WEI BangGuo; ZHAO LianBiao; HU YuLai; KANG LiQing

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  5. Value of point-of-care ketones in assessing dehydration and acidosis in children with gastroenteritis.

    Science.gov (United States)

    Levy, Jason A; Waltzman, Mark; Monuteaux, Michael C; Bachur, Richard G

    2013-11-01

    Children with gastroenteritis often develop dehydration with metabolic acidosis. Serum ketones are frequently elevated in this population. The goal was to determine the relationship between initial serum ketone concentration and both the degree of dehydration and the magnitude of acidosis. This was a secondary analysis of a prospective trial of crystalloid administration for rapid rehydration. Children 6 months to 6 years of age with gastroenteritis and dehydration were enrolled. A point-of-care serum ketone (beta-hydroxybutyrate) concentration was obtained at the time of study enrollment. The relationship between initial serum ketone concentration and a prospectively assigned and previously validated clinical dehydration score, and serum bicarbonate concentration, was analyzed. A total of 188 patients were enrolled. The median serum ketone concentration was elevated at 3.1 mmol/L (interquartile range [IQR] = 1.2 to 4.6 mmol/L), and the median dehydration score was consistent with moderate dehydration. A significant positive relationship was found between serum ketone concentration and the clinical dehydration score (Spearman's rho = 0.22, p = 0.003). Patients with moderate dehydration had a higher median serum ketone concentration than those with mild dehydration (3.6 mmol/L vs. 1.4 mmol/L, p = 0.007). Additionally, the serum ketone concentration was inversely correlated with serum bicarbonate concentration (ρ = -0.26, p Children with gastroenteritis and dehydration have elevated serum ketone concentrations that correlate with both degree of dehydration and magnitude of metabolic acidosis. Point-of-care serum ketone measurement may be a useful tool to inform management decisions at the point of triage or in the initial evaluation of children with gastroenteritis and dehydration. © 2013 by the Society for Academic Emergency Medicine.

  6. Synthesis of dimethyl-1,1 guanylguanidine-{sup 14}C-2,4 (dimethyl-1-1 biguanide) hydrochloride; Synthese du chlorhydrate de dimethyl-1,1 guanylguanidine {sup 14}C-2,4 (dimethyl-1-1 biguanide)

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, M; Pichat, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A description of the synthesis of dimethyl-1,1 guanylguanidine-{sup 14}C-2,4 hydrochloride passing through the {sup 14}C{sub 2} dicyandiamide. The overall yield with respect to Ba{sup 14}CO{sub 3} is 38 per cent. (author) [French] Description de la synthese du chlorhydrate de dimethyl-1,1 guanylguanidine {sup 14}C-2,4 par l'intermediaire de la dicyandiamide {sup 14}C{sub 2}. Le rendement global par rapport a {sup 14}CO{sub 3}Ba est de 38 pour cent. (auteur)

  7. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  8. Decryptification of Acid Phosphatase in Arthrospores of Geotrichum Species Treated with Dimethyl Sulfoxide and Acetone

    Science.gov (United States)

    Cotter, David A.; Martel, Anita J.; MacDonald, Paul

    1975-01-01

    Decryptification of acid phosphatase in Geotrichum sp. arthrospores was accomplished using acetone or dimethyl sulfoxide treatment. Both dimethyl sulfoxide and acetone irreversibly destroyed the integrity of the spore membranes without solubilizing acid phosphatase. PMID:1167386

  9. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  10. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  11. The Microwave Spectrum of Methyl Vinyl Ketone Revisited

    Science.gov (United States)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-06-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one) from 6 to 18.9 GHz. Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis with XIAM resulted in V3 barrier heights of 433.8(1) and 376.6(2) Cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  12. Regulation of Ketone Body Metabolism and the Role of PPARα

    Directory of Open Access Journals (Sweden)

    Maja Grabacka

    2016-12-01

    Full Text Available Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK, PPARγ coactivator 1α (PGC-1α, and mammalian (mechanistic target of rapamycin (mTOR and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21. This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.

  13. Optical activities of steroid ketones - Elucidation of the octant rule.

    Science.gov (United States)

    Hatanaka, Masashi; Sayama, Daisuke; Miyasaka, Makoto

    2018-04-21

    Theoretical calculations of optical activities in steroid ketones are presented by using modern semi-empirical PM7 wavefunctions. Both circular dichroism (CD) and specific rotation, which is proportional to optical rotation dispersion (ORD), are well simulated, and signs of the Cotton effect at the most long-wavelength region are fully in accordance with the experimental results. The good accordance is related to the octant rule, which is deduced within the framework of the perturbation theory. Our treatment is promising to predict the signs of the Cotton effect of large molecules, and thus, the absolute configurations can also be grasped without demanding procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  15. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad, JH 826 004 (India)

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  16. Preparation of poly (imine imine ketone) s microshells

    International Nuclear Information System (INIS)

    Cui Yi; Luo Xuan; Fan Yongheng; Zhang Lin; Liu Lei; Lin Runxiong

    2010-01-01

    Large diameter (0.6 ∼ 2.0 mm) microshells of poly (imine imine ketone) s (PIIKs) were prepared by micro-liquid technique and double-layer latex technique. A double T-channel droplet generator was designed and developed for the fabrication of PIIKs microshells of controlled size continuously. Manipulative conditions of the diameter and thickness of shells were studied, and the effect of density mismatch on shell quality was discussed. Phase separation during the preparation process affects the morphology of shells. Spinodal phase separation tends to occur at the outer surface of the shells, while binodal phase separation at the inner surface. The diameters of PIIKs shells were measured, 88% of which vary in ± 5% of the average diameter. The sphericity is better than 99%. (authors)

  17. Biomarkers, ketone bodies, and the prevention of Alzheimer's disease.

    Science.gov (United States)

    VanItallie, Theodore B

    2015-03-01

    Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Breath Ketone Testing: A New Biomarker for Diagnosis and Therapeutic Monitoring of Diabetic Ketosis

    Directory of Open Access Journals (Sweden)

    Yue Qiao

    2014-01-01

    Full Text Available Background. Acetone, β-hydroxybutyric acid, and acetoacetic acid are three types of ketone body that may be found in the breath, blood, and urine. Detecting altered concentrations of ketones in the breath, blood, and urine is crucial for the diagnosis and treatment of diabetic ketosis. The aim of this study was to evaluate the advantages of different detection methods for ketones, and to establish whether detection of the concentration of ketones in the breath is an effective and practical technique. Methods. We measured the concentrations of acetone in the breath using gas chromatography-mass spectrometry and β-hydroxybutyrate in fingertip blood collected from 99 patients with diabetes assigned to groups 1 (−, 2 (±, 3 (+, 4 (++, or 5 (+++ according to urinary ketone concentrations. Results. There were strong relationships between fasting blood glucose, age, and diabetic ketosis. Exhaled acetone concentration significantly correlated with concentrations of fasting blood glucose, ketones in the blood and urine, LDL-C, creatinine, and blood urea nitrogen. Conclusions. Breath testing for ketones has a high sensitivity and specificity and appears to be a noninvasive, convenient, and repeatable method for the diagnosis and therapeutic monitoring of diabetic ketosis.

  19. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Science.gov (United States)

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  20. 40 CFR 721.6167 - Piperdinium, 1,1-dimethyl-, chloride.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Piperdinium, 1,1-dimethyl-, chloride... Substances § 721.6167 Piperdinium, 1,1-dimethyl-, chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as piperdinium, 1,1-dimethyl-, chloride. (PMN...

  1. Validation of a tracer technique to determine nonsteady-state ketone body turnover rates in man

    International Nuclear Information System (INIS)

    Keller, U.; Sonnenberg, G.E.; Stauffacher, W.

    1981-01-01

    The features of a single-compartment model of total ketone bodies were evaluated using primed constant infusions of [3-14C]acetoacetate (AcAc) and of D-[3-14C]beta-hydroxybutyrate (beta OHB) in 12 postabsorptive subjects. The volume of distribution (VD) of AcAc was 0.18 +- 0.01 liter/kg (n = 9), and that of beta OHB was similar, 0.18 +- 0.02 liter/kg (n = 3). The production rate of total ketone bodies was calculated using the combined specific activity of AcAc and of beta OHB. The mean basal total ketone body production rates were similar using either [14C]AcAc (6.5 mumol . kg-1 . min-1) or [14C]beta OHB (6.8 mumol . kg-1 . min-1). To determine the pool fraction that was rapidly mixed during nonsteady state of ketone body inflow, unlabeled AcAc was infused with stepwise increasing and decreasing rates between 5 and 25 mumol . kg-1 . m-1 to mimic nonsteady-state ketone body production rates. The functional pool fraction P was determined as the pool fraction that provided the best match between tracer-determined rates of ketone production and rates of AcAc infusion. P of total ketone bodies was almost equal to 1 using either [14C]AcAc (1.05 +- 0.16) or [14C]beta OHB (1.00 +- 0.06), suggesting rapid mixing of ketone bodies throughout the entire pool. The described pool model may be used to determine total ketone body kinetics during acute perturbations of the steady state

  2. Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Růžička, M.

    2011-01-01

    Roč. 303, č. 2 (2011), s. 205-216 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : thiophene sulfolane * dimethyl sulfoxide * vapor pressure * heat capacity * vaporization enthalpy * recommended vapor pressure equation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  3. Dimethyl ether in diesel engines - progress and perspectives

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    2001-01-01

    A review of recent developments related to the use of dimethyl ether (DME) in engines is presented Research work discussed is in the areas of engine performance and emissions, fuel injection systems, spray and ignition delay, and detailed chemical kinetic modeling. DME's properties and safety asp...

  4. Fixation of carbon dioxide into dimethyl carbonate over ...

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.

  5. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    Science.gov (United States)

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  6. EFFICACY OF PARENTERAL ADMINISTERED KETONAL IN ARTICULAR SYNDROME OF DIFFERENT ETIOLOGY

    Directory of Open Access Journals (Sweden)

    E. I. Shmidt

    2002-01-01

    Full Text Available Objective. To assess intramuscular ketonal application efficacy in joint syndrome. Methods. 30 patients with different joint diseases were included. Intramuscular monotherapy with ketonal was given for 7 days. Before and after treatment pain at rest and at movement was assessed using visual analog scale. Results. Mean pain at movement before treatment was 76 mm, after treatment - 47 mm. Pain at rest was 54 mm and 24 mm respectively. In 14 patients efficacy was considered by the physician as good and in 15 - as fair. The drug was well tolerated in all cases. Conclusion. Intramuscular application of ketonal is highly effective and well tolerated treatment in different joint diseases.

  7. Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones

    International Nuclear Information System (INIS)

    Vieira, Gizelle A.B.; Araujo, Daniel M. de Freitas; Lemos, Telma L.G.; Mattos, Marcos Carlos de; Oliveira, Maria da Conceicao F. de; Melo, Vania M.M.; Gonzalo, Gonzalo de; Gotor-Fernandez, Vicente; Gotor, Vicente

    2010-01-01

    The reactivity and stereoselectivity showed by a new strain of Candida tropicalis in the reduction of prochiral ketones have been compared with the ones previously attained in our laboratory using microorganisms from the Brazilian biodiversity. In this manner, Candida tropicalis has demonstrated its versatility as stereoselective agent in the bioreduction of a series of aromatic ketones. These prochiral compounds were converted into their corresponding optically alcohols with moderate to excellent stereopreference depending on the substrate structure. Among ketones tested, nitroacetophenones were enzymatically reduced to enantiopure (S)-alcohol with complete conversion. (author)

  8. Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Gizelle A.B.; Araujo, Daniel M. de Freitas; Lemos, Telma L.G.; Mattos, Marcos Carlos de; Oliveira, Maria da Conceicao F. de; Melo, Vania M.M., E-mail: mcdmatto@ufc.b [Universidade Federal do Ceara (DQOI/UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Gonzalo, Gonzalo de; Gotor-Fernandez, Vicente; Gotor, Vicente [Universidad de Oviedo, Oviedo (Spain). Inst. Univ. de Biotecnologia de Asturias. Dept. de Quimica Organica e Inorganica

    2010-07-01

    The reactivity and stereoselectivity showed by a new strain of Candida tropicalis in the reduction of prochiral ketones have been compared with the ones previously attained in our laboratory using microorganisms from the Brazilian biodiversity. In this manner, Candida tropicalis has demonstrated its versatility as stereoselective agent in the bioreduction of a series of aromatic ketones. These prochiral compounds were converted into their corresponding optically alcohols with moderate to excellent stereopreference depending on the substrate structure. Among ketones tested, nitroacetophenones were enzymatically reduced to enantiopure (S)-alcohol with complete conversion. (author)

  9. Effects of dimethyl fumarate on neuroprotection and immunomodulation

    Directory of Open Access Journals (Sweden)

    Albrecht Philipp

    2012-07-01

    Full Text Available Abstract Background Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate is a promising novel oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. These effects are presumed to originate from a combination of immunomodulatory and neuroprotective mechanisms. We aimed to clarify whether neuroprotective concentrations of dimethyl fumarate have immunomodulatory effects. Findings We determined time- and concentration-dependent effects of dimethyl fumarate and its metabolite monomethyl fumarate on viability in a model of endogenous neuronal oxidative stress and clarified the mechanism of action by quantitating cellular glutathione content and recycling, nuclear translocation of transcription factors, and the expression of antioxidant genes. We compared this with changes in the cytokine profiles released by stimulated splenocytes measured by ELISPOT technology and analyzed the interactions between neuronal and immune cells and neuronal function and viability in cell death assays and multi-electrode arrays. Our observations show that dimethyl fumarate causes short-lived oxidative stress, which leads to increased levels and nuclear localization of the transcription factor nuclear factor erythroid 2-related factor 2 and a subsequent increase in glutathione synthesis and recycling in neuronal cells. Concentrations that were cytoprotective in neuronal cells had no negative effects on viability of splenocytes but suppressed the production of proinflammatory cytokines in cultures from C57BL/6 and SJL mice and had no effects on neuronal activity in multi-electrode arrays. Conclusions These results suggest that immunomodulatory concentrations of dimethyl fumarate can reduce oxidative stress without altering neuronal network activity.

  10. Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A Source of Artemisia Ketone

    Science.gov (United States)

    Haider, S. Z.; Andola, H. C.; Mohan, M.

    2012-01-01

    The essential oils isolated from the aerial parts of two different populations of Artemisia gmelinii growing in Uttarakhand Himalaya region were analysed by gas chromatography and gas chromatography/mass spectrometry (GC-MS) in order to determine the variation of concentration in their constituents. Artemisia ketone was detected as a major constituent in both the populations i.e., Niti valley and Jhelum samples. Niti oil was found to have considerably greater amounts of artemesia ketone (53.34%) followed by α-thujone (9.91%) and 1,8-cineole (6.57%), Similarly, the first major compound in Jhelum oil was artemesia ketone (40.87%), whereas ar-curcumene (8.54%) was identified as a second major compound followed by α-thujone (4.04%). Artemisia ketone can be useful for perfumery and fragrance to introduce new and interesting herbaceous notes. PMID:23439844

  11. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    Science.gov (United States)

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  12. Bedside ketone determination in diabetic children with hyperglycemia and ketosis in the acute care setting.

    Science.gov (United States)

    Ham, Melissa R; Okada, Pamela; White, Perrin C

    2004-03-01

    Diabetic ketoacidosis (DKA) is a serious complication of diabetes mellitus marked by characteristic biochemical derangements. Diagnosis and management involve frequent evaluation of these biochemical parameters. Reliable bedside equivalents for these laboratory studies may help reduce the time to treatment and reduce costs. We evaluated the precision and bias of a bedside serum ketone meter in the acute care setting. Serum ketone results using the Precision Xtra glucometer/ketone meter (Abbott Laboratories, MediSense Products Inc., Bedford, MA, USA) correlated strongly with the Children's Medical Center of Dallas' laboratory values within the meter's value range. Meter ketone values steadily decreased during the treatment of DKA as pH and CO(2) levels increased and acidosis resolved. Therefore, the meter may be useful in monitoring therapy for DKA. This meter may also prove useful in identifying patients at risk for DKA in physicians' offices or at home.

  13. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  14. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    Science.gov (United States)

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  15. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  16. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation.

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E; Egan, Brendan

    2017-05-01

    Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β-hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post-exercise recovery period, and the ability to utilise ketone bodies is higher in exercise-trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Improved cerebral energetics and ketone body metabolism in db/db mice

    DEFF Research Database (Denmark)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D

    2017-01-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate...... metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism....

  18. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo.

    Science.gov (United States)

    Chowdhury, Golam M I; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L

    2014-07-01

    The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-(13)C₂]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (V(acCoA-kbN)) and pyruvate (V(pdhN)), and the glutamate-glutamine cycle (V(cyc)) were determined by metabolic modeling of (13)C label trapped in major brain amino acid pools. V(acCoA-kbN) increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (V(tcaN)), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons.

  19. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone.

    Science.gov (United States)

    Kai, Hiroomi; Hirashima, Keita; Matsuda, Osamu; Ikegami, Hidetoshi; Winkelmann, Traud; Nakahara, Takao; Iba, Koh

    2012-06-01

    Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing α,β-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants.

  20. Local deformation behavior of surface porous polyether-ether-ketone.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available The ketogenic diet (KD is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB. Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H2O2, significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.

  2. Determination of acetone and methyl ethyl ketone in water

    Science.gov (United States)

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  3. Microbial transformation of sesquitepenoid ketone, (+ Nootkatone by Macrophomia phaseolina

    Directory of Open Access Journals (Sweden)

    Vajira P. Bulugahapitiya

    2009-09-01

    Full Text Available Microbial transformation is an effective tool for the structural modification of bioactive natural and synthetic compounds leading to synthesis of more potent derivatives. Its application in asymmetric synthesis is increasing due to its versatility and ease. This article presents biotransformation of sesquiterpenoid ketone, (+-Nootkatone (1 by M. phaseolina, a plant pathogenic fungus. The transformation afforded four main compounds. They were determined to be 1:6 stereoisomeric mixture of 11,12-dihydroxy- 11,12-dihydronootkatone (2, 3, 13-hydroxynootkaone (4 and 12-hydroxy-11,12- dihydronootkatone (5 with the help of EI-MS, HR-FAB-MS(pos, HR-FAB-MS (neg, 1H-NMR, 13CNMR, COSY-450, NOESY, HMBC, HMQC spectral analyses. The compound 4 was firstchandana- amarasingha-samayawardana-avifauna-Bundala-1.1-28.07 identified as Nootkatone metabolites in this study. Further, the parental compound (1 and the transformed products 4 and 5 were found to be present significant antiprotozoal activity.

  4. Radioprotection by dimethyl sulfoxide on two biological system

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Villavicencio, A.L.C.H.; Del Mastro, N.L.

    1990-01-01

    The effects of dimethyl sulfoxide treatment on two biological systems are examined: a) In vivo, the level of albinic mouse survive from IPEN, when irradiated with 9 Gy of 60 Co., 1 hour after the injection ip of DMSO 0,025M. b) In vivo, molecular level, when DMSO 1M, is added 10 min. before the irradiation with 25.000 Gy of 60 Co, from an aqueous solution of proteins from crystalline bovine. (C.G.C.) [pt

  5. Diapause prevention effect of Bombyx mori by dimethyl sulfoxide.

    Directory of Open Access Journals (Sweden)

    Takayuki Yamamoto

    Full Text Available HCl treatment has been, for about 80 years, the primary method for the prevention of entry into embryonic diapauses of Bombyx mori. This is because no method is as effective as the HCl treatment. In this study, we discovered that dimethyl sulfoxide (DMSO prevented entry into the diapause of the silkworm, Bombyx mori. The effect of diapause prevention was 78% as a result of treatment with 100% DMSO concentration, and the effect was comparable to that of the HCl treatment. In contrast, in the case of non-diapause eggs, hatchability was decreased by DMSO in a concentration-dependent manner. The effect of DMSO was restricted within 24 hours after oviposition of diapause eggs, and the critical period was slightly shorter than the effective period of the HCl treatment. DMSO analogs, such as dimethyl formamide (DMF and dimethyl sulfide (DMS, did little preventive effect against the diapause. Furthermore, we also investigated the permeation effects of chemical compounds by DMSO. When treated with an inhibitor of protein kinase CK2 (CK2 dissolved in DMSO, the prevention rate of the diapause was less than 40%. This means that the inhibition effect by the CK2 inhibitor was the inhibition of embryonic development after diapause prevention by DMSO. These data suggest that DMSO has the effects of preventing from entering into the diapause and permeation of chemicals into diapause eggs.

  6. Fragrance material review on 2,2-dimethyl-3-phenylpropanol.

    Science.gov (United States)

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2,2-dimethyl-3-phenylpropanol when used as a fragrance ingredient is presented. 2,2-Dimethyl-3-phenylpropanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,2-dimethyl-3-phenylpropanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    Science.gov (United States)

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    Science.gov (United States)

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  9. Ketone body metabolism in normal and diabetic human skeletal muscle

    International Nuclear Information System (INIS)

    Nosadini, R.; Avogaro, A.; Sacca, L.

    1985-01-01

    Although the liver is considered the major source of ketone bodies (KB) in humans, these compounds may also be formed by nonhepatic tissues. To study this aspect further, 3-[ 14 C]hydroxybutyrate (BOH) or [3- 14 C]acetoacetate (AcAc) were constantly infused after a priming dose and contemporaneous arterial and venous samples were taken at splanchnic, heart, kidney, and leg sites in eight normal subjects (N) undergoing diagnostic catheterization and at the forearm site in five normal and six ketotic diabetic (D) subjects. After 70 min of infusion, tracer and tracee levels of AcAc and BOH reached a steady state in the artery and vein in both normal and diabetic subjects. The venous-arterial (V-A) difference at the forearm step for cold KB was negligible both in normal and diabetic subjects, whereas for labeled KB it was approximately 10-fold higher in diabetic subjects (V-A AcAc, -31 +/- 7 and -270 +/- 34 dpm/ml in N and D, respectively; V-A BOH, -38 +/- 6 and -344 +/- 126 dpm/ml in N and D, respectively). The authors assumed that the V-A difference in tracer concentration was consistent with dilution of the tracer by newly synthesized tracee inside the muscle and calculated that the forearm muscle produces KB at a rate of 16.2 +/- 3.3 mumol/min in D and 0.9 +/- 0.9 mumol/min in N. These findings can be accounted for by the hypothesis that the disappearance flux of KB from circulation was replaced by an equivalent flux of KB entering the vein at the muscle step in D but not in N. Moreover, in N KB were not only produced but also utilized by the splanchnic area (39 +/- 9 mumol/min)

  10. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    Science.gov (United States)

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  11. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG; JinXian

    2001-01-01

    Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.……

  12. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  13. Temporal variations in dimethylsulphoniopropionate and dimethyl sulphide in the Zuari estuary, Goa (India)

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoy, D.M.; Patil, J.S.

    . F., & Wakeham, S. G. (1998). Temporal variability of dimethyl sulfide and dimethylsulfoniopropionate in the Sargasso Sea. DeepSeaRes.PartI, 45, 2085– 2104. DeSouza, M. P., & Yoch, D. C. (1996). Differential metabolism of dimethyl...) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month.GlobalBiogeochemicalCycles,13, 399–444. Kiene, R. P. (1990). Dimethyl sulfide production from dimethyl-sulfoniopropionate in coastal seawater samples...

  14. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  15. Performance of long straw tubes using dimethyl ether

    International Nuclear Information System (INIS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Guaraldo, C.; Lanaro, A.; Lucherini, V.; Mecozzi, A.; Passamonti, L.; Russo, V.; Sarwar, S.

    1995-01-01

    A cylindrical tracking detector with an inner radius of one meter employing straw tubes is being envisaged for the FINUDA experiment aimed at hyper-nuclear physics at DAΦNE, the Frascati φ-factory. A prototype using several 10 mm and 20 mm diameter, two meter long aluminized mylar straws has been assembled and tested with a one GeV/c pion beam. While operating with dimethyl ether, gas gain, space resolution, and device systematics have been studied. A simple method of correction for systematics due to straw eccentricity has been developed and, once applied, a space resolution better than 40 μm can be reached. (orig.)

  16. Dimethyl (E-2-(N-phenylacetamidobut-2-enedioate

    Directory of Open Access Journals (Sweden)

    Ting Bin Wen

    2011-01-01

    Full Text Available The title compound, C14H15NO5, was obtained from the reaction of acetanilide with dimethyl acetylenedicarboxylate in the presence of potassium carbonate. The C=C double bond adopts an E configuration and the geometry around the amide N atom is almost planar rather than pyramidal (mean deviation of 0.0032 Å from the C3N plane. The packing of the molecules in the crystal structure is stabilized by intermolecular C—H...O hydrogen bonds.

  17. (2E-3-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-04-01

    Full Text Available The title compound, (2E-3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one (3 was synthesized in high yield by aldol condensation of 3-acetyl-2,5-dimethylthiophene and 3,5-dimethyl-1-phenylpyrazole-4-carboxaldehyde in ethanolic NaOH at room temperature. Its structure was fully characterized by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  18. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1989-01-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents

  19. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1989-03-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents.

  20. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  1. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  2. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    Science.gov (United States)

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  3. A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Olsen, Christian Adam

    2016-01-01

    Histone deacetylase (HDAC) enzymes are validated targets for treatment of certain cancers and have potential as targets for pharmacological intervention in a number of other diseases. Thus, inhibitors of these enzymes have received considerable attention, but these are often evaluated by IC50 value......-on–fast-off mechanism was observed, but the trifluoromethyl ketone compound exhibited differential mechanisms depending on the enzyme isoform. The trifluoromethyl ketone compound displayed a fast-on–fast-off mechanism against class-IIa HDACs 4 and 7, but slow-binding mechanisms against class-I and class-IIb enzymes...

  4. Inborn Errors of Metabolism with Acidosis: Organic Acidemias and Defects of Pyruvate and Ketone Body Metabolism.

    Science.gov (United States)

    Schillaci, Lori-Anne P; DeBrosse, Suzanne D; McCandless, Shawn E

    2018-04-01

    When a child presents with high-anion gap metabolic acidosis, the pediatrician can proceed with confidence by recalling some basic principles. Defects of organic acid, pyruvate, and ketone body metabolism that present with acute acidosis are reviewed. Flowcharts for identifying the underlying cause and initiating life-saving therapy are provided. By evaluating electrolytes, blood sugar, lactate, ammonia, and urine ketones, the provider can determine the likelihood of an inborn error of metabolism. Freezing serum, plasma, and urine samples during the acute presentation for definitive diagnostic testing at the provider's convenience aids in the differential diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of methyl ethyl ketone from the list of hazardous air pollutants. 63.61 Section 63.61 Protection of Environment ENVIRONMENTAL... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air...

  6. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function

    DEFF Research Database (Denmark)

    Hertz, Leif; Chen, Ye; Waagepetersen, Helle S

    2015-01-01

    Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more...

  7. Regioselective 1,4-trifluoromethylation of α,β-unsaturated ketones via a S-(trifluoromethyldiphenylsulfonium salts/copper system

    Directory of Open Access Journals (Sweden)

    Satoshi Okusu

    2013-10-01

    Full Text Available Regioselective conjugate 1,4-trifluoromethylation of α,β-unsaturated ketones by the use of shelf-stable electrophilic trifluoromethylating reagents, S-(trifluoromethyldiphenylsulfonium salts and copper under mild conditions is described. A wide range of acyclic aryl–aryl–enones and aryl–alkyl–enones were converted into β-trifluoromethylated ketones in low to moderate yields.

  8. Cs2CO3-Initiated Trifluoro-Methylation of Chalcones and Ketones for Practical Synthesis of Trifluoromethylated Tertiary Silyl Ethers

    Directory of Open Access Journals (Sweden)

    Cheng Dong

    2017-05-01

    Full Text Available It was found that 1,2-trifluoromethylation reactions of ketones, enones, and aldehydes were easily accomplished using the Prakash reagent in the presence of catalytic amounts of cesium carbonate, which represents an experimentally convenient, atom-economic process for this anionic trifluoromethylation of non-enolisable aldehydes and ketones.

  9. An In Silico Knockout Model for Gastrointestinal Absorption Using a Systems Pharmacology Approach - Development and Application for Ketones.

    Directory of Open Access Journals (Sweden)

    Vittal Shivva

    Full Text Available Gastrointestinal absorption and disposition of ketones is complex. Recent work describing the pharmacokinetics (PK of d-β-hydroxybutyrate (BHB following oral ingestion of a ketone monoester ((R-3-hydroxybutyl (R-3-hydroxybutyrate found multiple input sites, nonlinear disposition and feedback on endogenous production. In the current work, a human systems pharmacology model for gastrointestinal absorption and subsequent disposition of small molecules (monocarboxylic acids with molecular weight < 200 Da was developed with an application to a ketone monoester. The systems model was developed by collating the information from the literature and knowledge gained from empirical population modelling of the clinical data. In silico knockout variants of this systems model were used to explore the mechanism of gastrointestinal absorption of ketones. The knockouts included active absorption across different regions in the gut and also a passive diffusion knockout, giving 10 gut knockouts in total. Exploration of knockout variants has suggested that there are at least three distinct regions in the gut that contribute to absorption of ketones. Passive diffusion predominates in the proximal gut and active processes contribute to the absorption of ketones in the distal gut. Low doses are predominantly absorbed from the proximal gut by passive diffusion whereas high doses are absorbed across all sites in the gut. This work has provided mechanistic insight into the absorption process of ketones, in the form of unique in silico knockouts that have potential for application with other therapeutics. Future studies on absorption process of ketones are suggested to substantiate findings in this study.

  10. Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián César

    2018-04-01

    Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.

  11. Two Approaches to the Synthesis of Dimethyl Fumarate That Demonstrate Fundamental Principles of Organic Chemistry

    Science.gov (United States)

    Love, Brian E.; Bennett, Lisa J.

    2017-01-01

    Two experiments are described which lead to the preparation of dimethyl fumarate, a compound currently used in the treatment of multiple sclerosis. Preparation of a compound with "real-world" applications is believed to increase student interest in the experiment. One experiment involves the isomerization of dimethyl maleate to the…

  12. Efficient and Simple Synthesis of 6-Aryl-1,4-dimethyl-9H-carbazoles

    Directory of Open Access Journals (Sweden)

    Sylvain Rault

    2008-06-01

    Full Text Available A synthetic method for the preparation of 6-aryl-1,4-dimethyl-9H-carbazoles involving a palladium catalyzed coupling reaction of 1,4-dimethyl-9H-carbazole-6-boronic acids and (heteroaryl halides is described.

  13. Direct dimethyl ether fueling of a high temperature polymer fuel cell

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vassiliev, Anton; Olsen, M.I.

    2012-01-01

    Direct dimethyl ether (DME) fuel cells suffer from poor DME–water miscibility and so far peak powers of only 20–40 mW cm−2 have been reported. Based on available literature on solubility of dimethyl ether (DME) in water at ambient pressure it was estimated that the maximum concentration of DME at...

  14. A novel preparation of methyl-β-cyclodextrin from dimethyl carbonate and β-cyclodextrin

    DEFF Research Database (Denmark)

    Gan, Yongjiang; Zhang, Yimin; Xiao, Chuanhao

    2011-01-01

    A novel green synthesis process about methyl-β-cyclodextrin has been investigated through the reaction between β-cyclodextrin and dimethyl carbonate by anhydrous potassium carbonate as catalyst in DMF. The influence of experimental factors including the molar ratio of dimethyl carbonate to β-cycl...

  15. Low-Temperature Oxidation of Dimethyl Ether to Polyoxymethylene Dimethyl Ethers over CNT-Supported Rhenium Catalyst

    Directory of Open Access Journals (Sweden)

    Qingde Zhang

    2016-03-01

    Full Text Available Due to its excellent conductivity, good thermal stability and large specific surface area, carbon nano-tubes (CNTs were selected as support to prepare a Re-based catalyst for dimethyl ether (DME direct oxidation to polyoxymethylene dimethyl ethers (DMMx. The catalyst performance was tested in a continuous flow type fixed-bed reactor. H3PW12O40 (PW12 was used to modify Re/CNTs to improve its activity and selectivity. The effects of PW12 content, reaction temperature, gas hourly space velocity (GHSV and reaction time on DME oxidation to DMMx were investigated. The results showed that modification of CNT-supported Re with 30% PW12 significantly increased the selectivity of DMM and DMM2 up to 59.0% from 6.6% with a DME conversion of 8.9%; besides that, there was no COx production observed in the reaction under the optimum conditions of 513 K and 1800 h−1. The techniques of XRD, BET, NH3-TPD, H2-TPR, XPS, TEM and SEM were used to characterize the structure, surface properties and morphology of the catalysts. The optimum amount of weak acid sites and redox sites promotes the synthesis of DMM and DMM2 from DME direct oxidation.

  16. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  17. Efficient Baeyer-Villiger electro-oxidation of ketones with molecular ...

    African Journals Online (AJOL)

    A new and efficient method for the synthesis of lactones and esters involving the application of an molecular oxygen-based electro-catalytic oxidation system and ionic liquid [bmim][OTf] as electrolyte has been developed. The reaction between various ketones with molecular oxygen proceeds in a three-electrode cell under ...

  18. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Miziorko, Henri M; Levin, Barry E

    2014-04-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.

  19. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    Science.gov (United States)

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  20. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min

    2016-10-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  1. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    Science.gov (United States)

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  2. Poor adherence to ketone testing in patients with Type 1 Diabetes

    Science.gov (United States)

    Diabetic ketoacidosis (DKA) is an acute, still common, and preventable complication of type 1 diabetes (T1D) associated with increased health care costs, morbidity, and mortality. Clinical recommendations advise self-monitoring of ketones in people with T1D during hyperglycemia and illness to allow ...

  3. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  4. Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs

    NARCIS (Netherlands)

    Bartelds, B; Gratama, JWC; Knoester, H; Takens, J; Smid, GB; Aarnoudse, JG; Heymans, HSA; Kuipers, JRG

    No information is available on perinatal changes in myocardial metabolism in vivo. We measured myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in chronically instrumented fetal, newborn (1-4 days), and juvenile (7 wk) lambs, by measuring aorta-coronary sinus concentration

  5. The effect of ketone defects on the charge transport and charge recombination in polyfluorenes

    NARCIS (Netherlands)

    Kuik, M.; Wetzelaer, G.-J.A.H.; Laddé, J.G.; Nicolai, H.T.; Wildeman, J.; Sweelssen, J.; Blom, P.W.M.

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  6. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  7. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  8. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill

    2013-01-16

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  9. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  10. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  11. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  12. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  13. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  14. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min; Wen, Yuelu; Li, Huifang; Fu, Yejuan; Wang, Qinghao

    2016-01-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  15. Reduction of Aldehydes and Ketones to Corresponding Alcohols Using Diammonium Hydrogen Phosphite and Commercial Zinc Dust

    Directory of Open Access Journals (Sweden)

    K. Anil Kumar

    2011-01-01

    Full Text Available A mild and an efficient system has been developed for the reduction of aromatic aldehydes and ketones to their corresponding alcohols in good yield using inexpensive commercial zinc dust as catalyst and diammonium hydrogen phosphite as a hydrogen donor.

  16. Design, synthesis and biological activity of novel peptidyl benzyl ketone FVIIa inhibitors

    DEFF Research Database (Denmark)

    Storgaard, Morten; Henriksen, Signe Teuber; Zaragoza, Florencio

    2011-01-01

    Herein is described the synthesis of a novel class of peptidyl FVIIa inhibitors having a C-terminal benzyl ketone group. This class is designed to be potentially suitable as stabilization agents of liquid formulations of rFVIIa, which is a serine protease used for the treatment of hemophilia...

  17. Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones

    Directory of Open Access Journals (Sweden)

    Tanuja Bisht

    2007-11-01

    Full Text Available A facile and efficient protocol is reported for the synthesis of calix[4]pyrrolesand N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl orcycloalkyl ketones with pyrrole catalyzed by reusable AmberlystTM-15 under eco-friendlyconditions.

  18. Reduction of , -Unsaturated Ketones Using a Zn/NiCl System in ...

    African Journals Online (AJOL)

    NJD

    Reduction of , -Unsaturated Ketones Using a Zn/NiCl. 2. System in Aqueous Media in the Presence of Anionic and. Cationic Surfactants. Hocine Ilikti*, Tayeb Benabdallah, Kamel Bentayeb, Adil A. Othman and Zoubir Derriche. Organic Chemistry and Electrochemistry Laboratory, Department of Chemistry, Faculty of Science, ...

  19. Baeyer-Villiger Oxidation of Cyclic Ketones by Using Tin-Silica Pillared Catalysts

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan; Carretero, M. A.; Čejka, Jiří

    2017-01-01

    Roč. 9, č. 15 (2017), s. 3063-3072 ISSN 1867-3880 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : heterogeneous catalysis * ketones * layered * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.803, year: 2016

  20. Robust and efficient, yet uncatalysed synthesis of trialkylsilyl-protected cyanohydrins from ketones

    Czech Academy of Sciences Publication Activity Database

    Cabirol, F. L.; Lim, A. E. C.; Hanefeld, U.; Sheldon, R. A.; Lyapkalo, Ilya

    2008-01-01

    Roč. 73, č. 6 (2008), s. 2446-2449 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z40550506 Keywords : ketones * cyanosilylation * silyl protection * anionic reactivity * dimethylsulfoxide Subject RIV: CC - Organic Chemistry Impact factor: 3.952, year: 2008

  1. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis.

    Science.gov (United States)

    Liu, Shichang; Yu, Fengchao; Yang, Zhu; Wang, Tingliang; Xiong, Hairong; Chang, Caren; Yu, Weichuan; Li, Ning

    2018-05-01

    Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both C sCl d ensity g radient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl c hemical labeling with c hromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based c omputational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named S table isotope-based Qua ntitation- D imethyl labeling (SQUA-D), and finally the c onfirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain ( i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and

  2. Fatty acid-induced astrocyte ketone production and the control of food intake.

    Science.gov (United States)

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  3. Ketone Diester Ingestion Impairs Time-Trial Performance in Professional Cyclists

    Directory of Open Access Journals (Sweden)

    Jill J. Leckey

    2017-10-01

    Full Text Available We investigated the effect of pre- “race” ingestion of a 1,3-butanediol acetoacetate diester on blood ketone concentration, substrate metabolism and performance of a cycling time trial (TT in professional cyclists. In a randomized cross-over design, 10 elite male cyclists completed a ~31 km laboratory-based TT on a cycling ergometer programmed to simulate the 2017 World Road Cycling Championships course. Cyclists consumed a standardized meal [2 g/kg body mass (BM carbohydrate (CHO] the evening prior to a trial day and a CHO breakfast (2 g/kg BM CHO with 200 mg caffeine on the morning of a trial day. Cyclists were randomized to consume either the ketone diester (2 × 250 mg/kg or a placebo drink, followed immediately by 200 mL diet cola, given ~ 30 min before and immediately prior to commencing a 20 min incremental warm-up. Blood samples were collected prior to and during the warm-up, pre- and post- TT and at regular intervals after the TT. Urine samples were collected pre- and post- warm-up, immediately post TT and 60 min post TT. Pre-exercise ingestion of the diester resulted in a 2 ± 1% impairment in TT performance that was associated with gut discomfort and higher perception of effort. Serum β-hydroxybutyrate, serum acetoacetate, and urine ketone concentrations increased from rest following ketone ingestion and were higher than placebo throughout the trial. Ketone ingestion induces hyperketonemia in elite professional cyclists when in a carbohydrate fed state, and impairs performance of a cycling TT lasting ~50 min.

  4. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  5. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  6. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  7. Adducts of rare earth tris-acetylacetonates with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Kalenichenko, Yu.V.; Martynenko, L.I.

    1988-01-01

    Adducts of rare earth and yttrium (r.e.e., M) acetylacetonates with dimethyl sulfoxide (DMSO), MA 3 xnDMSO are synthesized. The acetylacetonates of light r.e.e. (M=La-Tb) are shown by different physico-chemical methods to form diadducts of the MA 3 x2DMSOxH 2 O composition, where A - -acetylacetonate-ion, and the acetyl-acetonates of heavy r.e.e. (M=Dy-Lu, Y)-monoadducts MA 3 xDMSO. The estimation of adduct thermal stability is carried out using the values of seeming activation energy of their thermal degradation. Monoadducts are shown to give volatile forms of rare earth acetylacetonates during heating in vacuum, and diadducts do not form volatile forms of acetylacetonates

  8. Fragmentation of dimethyl ether in femtosecond intense field

    Science.gov (United States)

    Zhu, Jingyi; Guo, Wei; Wang, Yanqiu; Wang, Li

    2006-08-01

    The fragmentation of dimethyl ether (DME) in intense femtosecond laser field has been studied at 810, 405 and 270 nm with intensities up to 2.48 × 10 15, 3.86 × 10 15 and 1.62 × 10 14 W/cm 2, respectively. At 405 nm, DME is possibly firstly ionized by multiphoton absorption, and then parent ion DME + dissociates into fragments via filed-induced dissociation. For 810 and 270 nm laser fields, DME firstly dissociates into CH 3O and CH 3 fragments and then these neutral fragments are ionized by field tunneling. Another possible way for DME to dissociate at 810 and 270 nm is that DME is ionized by intense field ejection of inner valance electron and then the excited DME + dissociates into fragment ions. Ultrafast rearrangement of DME or DME + in intense field may be responsible to the unpredictable fragment ions, CHO+/C2H5+andH2+.

  9. DFT Study of dimers of dimethyl sulfoxide in gas phase

    Directory of Open Access Journals (Sweden)

    Reza Fazaeli

    2014-10-01

    Full Text Available Density functional (DFT calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO dimers. The structures obtained have been ana-lyzed with the Atoms in Molecules (AIMs and Natural Bond Orbital (NBO methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interac-tions are observed, CH•••O, CH•••S hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the sulfur atom. Stabilization energies of dimers including BSSE and ZPE are in the range 27–40 kJmol-1. The most stable conformers of dimers at DFT level is cyclic structure with antiparallel orientation of S=O groups pairing with three C–H∙∙∙O and a S∙∙∙O interactions.

  10. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  11. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  12. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  13. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  14. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Nordiana; Ali, Ab Malik Marwan [Ionic Material and Devices Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Lepit, Ajis; Rasmidi, Rosfayanti [Faculty of Applied Sciences, Universiti Teknologi MARA Sabah, Beg Berkunci 71, 88997 Kota Kinabalu (Malaysia); Subban, Ri Hanum Yahaya [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur (Malaysia)

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  15. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  16. Taming Radical Pairs in Nanocrystalline Ketones: Photochemical Syn-thesis of Compounds with Vicinal Stereogenic All-Carbon Quaternary Centers.

    Science.gov (United States)

    Dotson, Jordan J; Perez-Estrada, Salvador; Garcia-Garibay, Miguel A

    2018-05-29

    Here we describe the use of crystalline ketones to control the fate of the radical pair intermediates generated in the Norrish type I photodecarbonylation reaction to render it a powerful tool in the challenging synthesis of sterically congested carbon-carbon bonds. This methodology makes the synthetically more accessible hexasusbtituted ketones as ideal synthons for the construction of adjacent, all-carbon substituted, stereogenic quaternary stereocenters. We describe here the structural and thermochemical parameters required of the starting ketone in order to react in the solid state. Finally, the scope and scalability of the reaction and its application in the total synthesis of two natural products is described.

  17. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  18. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  19. Natural 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®)

    OpenAIRE

    Wilfried Schwab

    2013-01-01

    4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these c...

  20. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide.

    Science.gov (United States)

    Mardyukov, Artur; Schreiner, Peter R

    2018-02-20

    The large number and amounts of volatile organosulfur compounds emitted to the atmosphere and the enormous variety of their reactions in various oxidation states make experimental measurements of even a small fraction of them a daunting task. Dimethyl sulfide (DMS) is a product of biological processes involving marine phytoplankton, and it is estimated to account for approximately 60% of the total natural sulfur gases released to the atmosphere. Ocean-emitted DMS has been suggested to play a role in atmospheric aerosol formation and thereby cloud formation. The reaction of ·OH with DMS is known to proceed by two independent channels: abstraction and addition. The oxidation of DMS is believed to be initiated by the reaction with ·OH and NO 3 · radicals, which eventually leads to the formation of sulfuric acid (H 2 SO 4 ) and methanesulfonic acid (CH 3 SO 3 H). The reaction of DMS with NO 3 · appears to proceed exclusively by hydrogen abstraction. The oxidation of DMS consists of a complex sequence of reactions. Depending on the time of the day or altitude, it may take a variety of pathways. In general, however, the oxidation proceeds via chains of radical reactions. Dimethyl sulfoxide (DMSO) has been reported to be a major product of the addition channel. Dimethyl sulfone (DMSO 2 ), SO 2 , CH 3 SO 3 H, and methanesulfinic acid (CH 3 S(O)OH) have been observed as products of further oxidation of DMSO. Understanding the details of DMS oxidation requires in-depth knowledge of the elementary steps of this seemingly simple transformation, which in turn requires a combination of experimental and theoretical methods. The methylthiyl (CH 3 S·), methylsulfinyl (CH 3 SO·), methylsulfonyl (CH 3 SO 2 ·), and methylsulfonyloxyl (CH 3 SO 3 ·) radicals have been postulated as intermediates in the oxidation of DMS. Therefore, studying the chemistry of sulfur-containing free radicals in the laboratory also is the basis for understanding the mechanism of DMS oxidation in the

  1. The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Nikouei, Mohammad Ali; Oroujzadeh, Maryam; Mehdipour-Ataei, Shahram

    2017-01-01

    Proton exchange membrane as the heart of fuel cell has been the topic of many research activities in recent years. Finding a suitable alternative for Nafion membranes is one of the most important issues of interest. This study is dedicated to sulfonated poly(ether ketone) and poly(ether sulfone) membranes. For synthesis of these two groups of polymers, two different isomeric biphenols (meta- and para-) were used and each group of membranes with three different degree of sulfonation (25, 35, and 45%) was synthesized. In this way, twelve different membrane samples were obtained and their properties were evaluated. Since each membrane had some strong and some weak points of properties in comparison to the other ones, using a rational analysis for choosing the best membrane between prepared samples was inevitable. For this purpose a PROMETHEE based multiple criteria decision making approach was applied and for evaluation of the weight of each criterion, Shannon entropy method was used. Final results showed that poly(ether ketone) membranes in selected criteria were better than poly(ether sulfone) membranes and as expected, membranes with the highest degree of sulfonation (45%) were placed at the top ranking levels. - Highlights: • Sulfonated poly(ether ketone)s and Poly(ether sulfone)s were synthesized. • Related membranes for PEMFC were prepared. • The properties of membranes were measured. • Multiple criteria decision making approach was used to ranking the membranes. • PROMETHEE based approach selected poly(ether ketone)s as better choices.

  2. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Rueping, Magnus

    2017-01-01

    . By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high

  3. Raspberry ketone in food supplements – High intake, few toxicity data – A cause for safety concern?

    DEFF Research Database (Denmark)

    Bredsdorff, Lea; Wedebye, Eva Bay; Nikolov, Nikolai Georgiev

    2015-01-01

    Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) is marketed on the Internet as a food supplement. The recommended intake is between 100 and 1400 mg per day. The substance is naturally occurring in raspberries (up to 4.3 mg/kg) and is used as a flavouring substance. Toxicological studies...... on raspberry ketone are limited to acute and subchronic studies in rats. When the lowest recommended daily dose of raspberry ketone (100 mg) as a food supplement is consumed, it is 56 times the established threshold of toxicological concern (TTC) of 1800 μg/day for Class 1 substances. The margin of safety (MOS......) based on a NOAEL of 280 mg/kg bw/day for lower weight gain in rats is 165 at 100 mg and 12 at 1400 mg. The recommended doses are a concern taking into account the TTC and MOS. Investigations of raspberry ketone in quantitative structure-activity relationship (QSAR) models indicated potential cardiotoxic...

  4. Thermochemical study of 2,5-dimethyl-3-furancarboxylic acid, 4,5-dimethyl-2-furaldehyde, and 3-acetyl-2,5-dimethylfuran

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Amaral, Luisa M.P.F.

    2011-01-01

    The standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous state, at T = 298.15 K, for 2,5-dimethyl-3-furancarboxylic acid, 3-acetyl-2,5-dimethylfuran, and 4,5-dimethyl-2-furaldehyde were derived from the values of the standard molar enthalpies of formation, in the condensed phase, and the standard molar enthalpies of phase transition from the condensed to the gaseous state. The values of the standard molar enthalpies of formation of the compounds in the condensed phases were calculated from the measurements of the standard massic energies of combustion obtained by static bomb combustion calorimetry. The enthalpies of vaporization/sublimation were measured by Calvet high temperature microcalorimetry. For 2,5-dimethyl-3-furancarboxylic acid the standard enthalpy of sublimation was also calculated, by the application of the Clausius-Clapeyron equation, to the temperature dependence of the vapor pressures measured by the Knudsen effusion technique. (table)

  5. cis-Bis(2,2′-bipyridine-κ2N,N′bis(dimethyl sulfoxide-κOzinc bis(tetraphenylborate dimethyl sulfoxide monosolvate

    Directory of Open Access Journals (Sweden)

    Stefania Tomyn

    2011-12-01

    Full Text Available In the mononuclear title complex, [Zn(C10H8N22(C2H6OS2](C24H20B2·C2H6OS, the ZnII ion is coordinated by four N atoms of two bidentate 2,2′-bipyridine molecules and by the O atoms of two cis-disposed dimethyl sulfoxide molecules in a distorted octahedral geometry. The S atom and the methyl groups of one of the coordinated dimethyl sulfoxide molecules are disordered in a 0.509 (2:0.491 (2 ratio. The crystal packing is stabilized by C—H...O hydrogen bonds between the dimethyl sulfoxide solvent molecules and tetraphenylborate anions.

  6. Studies on the production of hydrocarbon mixtures from waste methyl ethyl ketone

    International Nuclear Information System (INIS)

    Kokitkar, P.B.; Roth, O.B.; Debelak, K.A.

    1992-01-01

    Large quantities of waste solvents are generated annually around the world in a large number of diverse industries, the paints and plastics industry being the largest consumer. The management of these waste solvents is becoming more and more difficult due to stricter environmental regulations by the EPA. The paint and allied products industry is expected to shift its solvent use from aliphatics and aromatics to oxygenated solvents to meet emissions and disposal standards. Many researchers have studied the dehydration reactions of oxygenated solvents to produce dehydration. However, most researchers have obtained only low molecular weight compounds (C 3 - C 4 hydrocarbons) from C 1 - C 4 alcohols and ketones. The kinetics of this class of reactions are not available in the open literature. The objective of this paper is to investigate the thermodynamic feasibility of this class of reactions and to compare the hydrocarbon products obtained using methylethyl ketone with regular unleaded gasoline

  7. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  8. The inverse problem of brain energetics: ketone bodies as alternative substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calvetti, D; Occhipinti, R [Case Western Reserve University, Department of Mathematics, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Somersalo, E [Helsinki University of Technology, Institute of Mathematics, P. O. Box 1100, FIN-02015 HUT (Finland)], E-mail: daniela.calvetti@case.edu, E-mail: rossana.occhipinti@case.edu, E-mail: erkki.somersalo@tkk.fi

    2008-07-15

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing.

  9. The inverse problem of brain energetics: ketone bodies as alternative substrates

    International Nuclear Information System (INIS)

    Calvetti, D; Occhipinti, R; Somersalo, E

    2008-01-01

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing

  10. The inverse problem of brain energetics: ketone bodies as alternative substrates

    Science.gov (United States)

    Calvetti, D.; Occhipinti, R.; Somersalo, E.

    2008-07-01

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing.

  11. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins.

    Science.gov (United States)

    Miles-Barrett, Daniel M; Neal, Andrew R; Hand, Calum; Montgomery, James R D; Panovic, Isabella; Ojo, O Stephen; Lancefield, Christopher S; Cordes, David B; Slawin, Alexandra M Z; Lebl, Tomas; Westwood, Nicholas J

    2016-10-25

    Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.

  12. A SENSITIZED PHOTOINITIATION SYSTEM——BIS (7- DIETHYLAMINO COUMARIN )KETONE- 3 AND DIPHENYLIODONIUM SALT COMBINATION

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WANG Xiuzhi; YANG Yongyung; LI Miaozhen; WANG Erjian

    1993-01-01

    Bis (7- diethylaminocoumarin ) ketone- 3(DACK) and diphenyliodonium salt (DPIO)combination as an effective photoinitiation system for radical polymerization has been investigated. The sensitized photolysis of DACK/DPIO leads to bleaching of DACK and decomposition of DPIO to generate initiating radical species. The electron transfer sensitization occurs mainly from the triplet state of DACK. The photobleaching obeyed a second-order kinetics and the rate constant was evaluated to be 31.3mol-1.l.s-1. Photopolymerization of MMA initiated by DACK/DPIO was carried out in acetonitrile solution. The polymerization rate was found to be proportional to the concentration of DACK, DPIO and MMA with the exponents of 0.34, 0.40 and 1.0 respectively. The initiated efficiency is comparable to those of small molecular ketones. The sensitized photoinitiation mechanism has been discussed.

  13. Potentiometric titrations of para and nitro substituted aromatic acids and their mixtures in methylethyl ketone

    International Nuclear Information System (INIS)

    Ozeroglu, C.; Karahan, M.

    2011-01-01

    In this study, it was the purpose to examine the potentiometric titrations of para and nitro substituted aromatic acids in methylethyl ketone (MEK) as a non-aqueous solvent. Good analytical results were obtained in determining the amount of each acid and the amounts of acids in their ternary mixtures by using 0.0964 N tetrabuthylammoniumhydroxyde (TBAH) as a standard titrant. Methylethyl ketone (MEK) which is a good solvent for many organic compounds and has a convenient liquid range of -86 to 80 deg. C was used for titration of the para and nitro substituted aromatic acids. A linear relationship has been found between pKa values of the para and nitro substituted aromatic acids in water and the half neutralization potential (HNP) values determined by potentiometric titration curves of the same acids in MEK. (author)

  14. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  15. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae)

    OpenAIRE

    Zheoat, Ahmed M.; Gray, Alexander I.; Igoli, John O.; Kennedy, Alan R.; Ferro, Valerie A.

    2017-01-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carb?oxy?lic acid dimethyl sulfoxide monosolvate], C6H6O7?C2H6OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carboxyl?ate], C8H10O7, (II). Compound (I) forms a layered structure with alternating laye...

  16. USE OF DIMETHYL FUMARATE IN THE TREATMENT OF MULTIPLE SCLEROSIS: CLINICAL AND ECONOMIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. R. Mkrtchyan

    2016-01-01

    Full Text Available The paper presents a review of an update on the comparative pharmacoeconomic analysis of using dimethyl fumarate in the treatment of multiple sclerosis (MS in European countries. A pharmacoeconomic evaluation was made to study the use of first-line oral dimethyl fumarate versus another first-line oral teriflunomide in the treatment of MS in the Russian Federation (for 1 year and second-line natalizumab and fingolimod. Among first-line oral drugs, dimethyl fumarate was shown to be superior to teriflunomide in a cost-effectiveness ratio and to be slightly ahead of the MS-modifying drugs (MSMDs  and the second-line drugs natalizumab and fingolimod. According to clinical and economic indicators, dimethyl fumarate is the drug of choise among other MSMDs in the treatment of MS.

  17. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Science.gov (United States)

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  18. Kinetics of periodate oxidation of tris -(4,4'-dimethyl-2,2'-bipyridine ...

    African Journals Online (AJOL)

    dimethyl-2,2'-bipyridine) iron(II) in acid medium was investigated. The complex undergoes extensive protonation in acid medium. Both protonated and the unprotonated species undergo electron transfer reaction with the active periodate species ...

  19. The stability study of myristyl dimethyl amine oxide as an amphoteric ...

    African Journals Online (AJOL)

    The stability study of myristyl dimethyl amine oxide as an amphoteric surfactant in strong oxidant media containing 5 % m/m sodium hypochlorite through measurement of decomposing rate using high performance liquid chromatography and two phase titration.

  20. Direct synthesis of dimethyl carbonate from CO2 and methanol over ...

    Indian Academy of Sciences (India)

    The direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO2) and methanol is ... Zirconia and ceria-based catalysts were most effective ... construction of a validation plant for dialkyl carbonates .... (mmol of MeOH consumed/2).

  1. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Data.gov (United States)

    U.S. Environmental Protection Agency — A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon...

  2. Modeling of a Reaction-Distillation-Recycle System to Produce Dimethyl Ether through Methanol Dehydration

    Science.gov (United States)

    Muharam, Y.; Zulkarnain, L. M.; Wirya, A. S.

    2018-03-01

    The increase in the dimethyl ether yield through methanol dehydration due to a recycle integration to a reaction-distillation system was studied in this research. A one-dimensional phenomenological model of a methanol dehydration reactor and a shortcut model of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to the system increases the dimethyl ether yield by 8%.

  3. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Toxicity of Aromatic Ketone to Yeast Cell and Improvement of the Asymmetric Reduction of Aromatic Ketone Catalyzed by Yeast Cell with the Introduction of Resin Adsorption

    Directory of Open Access Journals (Sweden)

    Zhong-Hua Yang

    2008-01-01

    Full Text Available Asymmetric reduction of the prochiral aromatic ketone catalyzed by yeast cells is one of the most promising routes to produce its corresponding enantiopure aromatic alcohol, but the space-time yield does not meet people’s expectations. Therefore, the toxicity of aromatic ketone and aromatic alcohol to the yeast cell is investigated in this work. It has been found that the aromatic compounds are poisonous to the yeast cell. The activity of yeast cell decreases steeply when the concentration of acetophenone (ACP is higher than 30.0 mmol/L. Asymmetric reduction of acetophenone to chiral S-α-phenylethyl alcohol (PEA catalyzed by the yeast cell was chosen as the model reaction to study in detail the promotion effect of the introduction of the resin adsorption on the asymmetric reduction reaction. The resin acts as the substrate reservoir and product extraction agent in situ. It has been shown that this reaction could be remarkably improved with this technique when the appropriate kind of resin is applied. The enantioselectivity and yield are acceptable even though the initial ACP concentration reaches 72.2 mmol/L.

  5. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries

    Science.gov (United States)

    Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao

    2017-07-01

    A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).

  6. N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones

    KAUST Repository

    Du, Guang-Fen; Wang, Ying; Xing, Fen; Xue, Mei; Guo, Xu-Hong; Huang, Kuo-Wei; Dai, Bin

    2015-01-01

    © Georg Thieme Verlag Stuttgart · New York · Synthesis 2016. N-Heterocyclic carbene (NHC)-catalyzed vinylogous Mukaiyama aldol reaction of ketones was developed. Under the catalysis of 5 mol% NHC, α-keto esters and α-trifluoromethyl ketones reacted with 2-(trimethysilyloxy)furan efficiently to produce γ-substituted butenolides containing adjacent quaternary and tertiary carbon centers in high yields with good diastereoselectivities.

  7. Fragrance material review on methyl-2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone when used as a fragrance ingredient is presented. Methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    Science.gov (United States)

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O 2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  9. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  10. Iodine-Promoted Deoxygenative Iodization/Olefination/Sulfenylation of Ketones with Sulfonyl Hydrazides: Access to β-Iodoalkenyl Sulfides.

    Science.gov (United States)

    Bao, Yishu; Yang, Xiuqin; Zhou, Qingfa; Yang, Fulai

    2018-04-06

    A highly regio- and stereoselective synthesis of β-haloalkenyl sulfides using commercially available ketones and sulfonyl hydrazides as starting materials has been developed. This protocol obviates the need for alkynes and traditional sulfenylating agents and therefore opens up a new door to construct β-iodoalkenyl sulfides in a highly simple manner. This study reveals that ketones could be used as vinyl iodide precursors in organic synthesis.

  11. Synergic extraction of europium (III) by TTA and selected carbinols or ketons in carbontetrachloride

    International Nuclear Information System (INIS)

    El-Naggar, H.A.; El-Madany, S.

    1988-01-01

    The extraction of Eu(III) by HTTA dissolved in CCl 4 has been carried from acid-perchlorate and acid-acetate solutions. Some oxygen containing solvents have been added to the chelate in extraction of the acetate complex of Eu(III). The reaction mechanisms and the equilibrium constants are calculated for the different extracted species. The data obtained are discussed in the light of the structure of carbinols and ketones used as adducts

  12. Synthesis and research of derived oxazol-5-ones based on α,β – unsaturated ketones

    Directory of Open Access Journals (Sweden)

    Сергей Александрович Петров

    2015-11-01

    Full Text Available The article deals with the production of new fluorescent dyes derived oxazol-5-ones based on α, β-unsaturated ketones, as well as confirmation of the structure of the compounds obtained using NMR and IR spectroscopy. The dyes of this series are relevant because one of the important practical problems in organic chemistry and chemical technology is currently seeking new fluorescent dyes for dyeing polyester materials and polymers

  13. Determination of ketone bodies in blood by headspace gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Karen Marie Dollerup; Linnet, Kristian; Rasmussen, Brian Schou

    2010-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for determination of ketone bodies (ß-hydroxybutyrate, acetone, and acetoacetate) in blood is presented. The method is based on enzymatic oxidation of D-ß-hydroxybutyrate to acetoacetate, followed by decarboxylation to acetone, which...... was quantified by the use of headspace GC-MS using acetone-(13)C(3) as an internal standard. The developed method was found to have intra- and total interday relative standard deviations

  14. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism?

    Directory of Open Access Journals (Sweden)

    Marwa Elamin

    2017-11-01

    Full Text Available The ketogenic diet’s (KD anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD, a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.

  15. Thermodynamic properties of donor-acceptor complexes of tertiary amine with aryl ketones in hexane medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. [Department of Physics, The New College, Chennai 600 014 (India); Jayakumar, S. [Department of Physics, R.K.M. Vivekananda College, Chennai 600 004 (India); Kannappan, V., E-mail: vkannappan@hotmail.com [Department of Chemistry, Presidency College, Chennai 600 005 (India)

    2012-05-20

    Highlights: Black-Right-Pointing-Pointer Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. Black-Right-Pointing-Pointer Formation of CT complexes is found between tertiary amine with aryl ketones. Black-Right-Pointing-Pointer Stability constant values are computed by ultrasonic and spectral methods are compared. Black-Right-Pointing-Pointer The trend in the 'K' suggests that substituents in ketones influence the stabilities of these complexes. Black-Right-Pointing-Pointer The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15-313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute-solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor-acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy ({Delta}G), enthalpy ({Delta}H) and entropy ({Delta}S) changes for complex formation are computed and discussed.

  16. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  17. Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones.

    Science.gov (United States)

    Li, Shuai-Shuai; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2015-01-28

    In this paper, a simple and highly efficient ruthenium-catalyzed direct C3 alkylation of indoles with various α,β-unsaturated ketones without chelation assistance has been developed. This novel C-H activation methodology exhibits a broad substrate scope such as different substituted indoles, pyrroles, and other azoles. Further synthetic applications of the alkylation products can lead to more attractive 3,4-fused tricyclic indoles.

  18. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  19. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu; Zhu, Bo; Lee, Richmond; Yang, Wenguo; Tan, Davin; Yang, Caiyun; Han, Zhiqiang; Yan, Lin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  20. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease.

    Science.gov (United States)

    Newport, Mary T; VanItallie, Theodore B; Kashiwaya, Yoshihiro; King, Michael Todd; Veech, Richard L

    2015-01-01

    Providing ketone bodies to the brain can bypass metabolic blocks to glucose utilization and improve function in energy-starved neurons. For this, plasma ketones must be elevated well above the ≤ 0.2 mM default concentrations normally prevalent. Limitations of dietary methods currently used to produce therapeutic hyperketonemia have stimulated the search for better approaches. Described herein is a new way to produce therapeutic hyperketonemia, entailing prolonged oral administration of a potent ketogenic agent--ketone monoester (KME)--to a patient with Alzheimer's disease dementia and a pretreatment Mini-Mental State Examination score of 12. The patient improved markedly in mood, affect, self-care, and cognitive and daily activity performance. The KME was well tolerated throughout the 20-month treatment period. Cognitive performance tracked plasma β-hydroxybutyrate concentrations, with noticeable improvements in conversation and interaction at the higher levels, compared with predose levels. KME-induced hyperketonemia is robust, convenient, and safe, and the ester can be taken as an oral supplement without changing the habitual diet. Published by Elsevier Inc.

  1. Dermal absorption and disposition of musk ambrette, musk ketone and musk xylene in human subjects.

    Science.gov (United States)

    Hawkins, David R; Elsom, Lionel F; Kirkpatrick, David; Ford, Richard A; Api, Anne Marie

    2002-05-28

    Musk ambrette, musk ketone and musk xylene have a long history of use as fragrance ingredients, although musk ambrette is no longer used in fragrances. As part of the review of the safety of these uses, it is important to consider the systemic exposure that results from these uses. Since the primary route of exposure to fragrances is on the skin, dermal doses of carbon-14 labelled musk ambrette, musk ketone and musk xylene were applied to the backs (100 cm2) of healthy human volunteers (two to three subjects) at a nominal dose level of 10-20 microg/cm2 and excess material removed at 6 h. Means of 2.0% musk ambrette, 0.5% musk ketone and 0.3% musk xylene were absorbed based on the amounts excreted in urine and faeces during 5 days. Most of the material was excreted in the urine with less than 10% of the amount excreted being found in faeces. No radioactivity was detected in any plasma sample, consistent with low absorption, and no radioactivity was detected (<0.02% dose) in skin strips taken at 120 h. Analysis of urine samples indicated that all three compounds were excreted mainly as single glucuronide conjugates. The aglycones were chromatographically different, but of similar polarity, to the major rat metabolites excreted in bile also as glucuronides.

  2. Fumigant toxicity of five essential oils rich in ketones against Sitophilus zeamais (Motschulsky

    Directory of Open Access Journals (Sweden)

    J.M Herrera

    2014-06-01

    Full Text Available Essential oils (EOs and individual compounds act as fumigants against insects found in stored products. In fumigant assays, Sitophilus zeamais Motschulsky adults were treated with essential oils derived from Aphyllocladus decussatus Hieron, Aloysia polystachya Griseb, Minthostachys verticillata Griseb Epling and Tagetes minuta L , which are rich in ketones and their major components: a- thujone, R-carvone, S-carvone, (- menthone, R (+ pulegone and E-Z- ocimenone. M. verticillata oil was the most toxic ( LC50: 116.6 µl /L air characterized by a high percentage of menthone (40.1% and pulegone (43.7%. All ketones showed insecticidal activity against S. zeamais. However, pulegone (LC50: 11.8 µl/L air, R- carvone (LC50: 17.5 µl/L air, S-carvone (LC50: 28.1 µl/L air and E-Z-ocimenone (LC50: 42.3 µl/L air were the most toxic. These ketones are a,b-unsaturated carbonyl. This feature could play a fundamental role in the increase of insecticidal activity against S. zeamais.

  3. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    Science.gov (United States)

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  4. Biofiltration of odours - industrial pilot to treat methyl ethyl ketone and toluene

    International Nuclear Information System (INIS)

    Otten, L.; Elsie, K.

    2002-01-01

    Methyl ethyl ketone and toluene in the off-gases of a plant producing polyvinyl chloride sheeting for the automotive industry and swimming pools caused frequent odour complaints from the neighbourhood. A pilot project was developed to investigate the removal of the compounds under actual operating conditions by passing part of the exhaust through a compost-based, three-stage biofilter. It was determined over the 156 days of operation that the removal efficiencies of methyl ethyl ketone and toluene averaged 73% and 49%, respectively. It was also shown that shutdowns and disruptions of the laminating process for short and extended periods did not affect the biofilter performance. Addition of 100g/L solution of KNO 3 as a nitrogen source did not improve the performance. Carbon dioxide concentration data and the presence of an average microbial population of 52 million colony forming units per gram provided evidence that biological degradation played a significant role in the reduction of methyl ethyl ketone and toluene in the off-gases of the laminator. (author)

  5. A rational approach to predict and modulate stereolability of chiral alpha substituted ketones.

    Science.gov (United States)

    Cirilli, Roberto; Costi, Roberta; Di Santo, Roberto; Gasparrini, Francesco; La Torre, Francesco; Pierini, Marco; Siani, Gabriella

    2009-01-01

    An effective strategy to assess and modulate the stereolability of chiral alpha substituted ketones (C alpha SKs) is presented. The tendency of C alpha SKs to retain or change their configuration in water is analyzed as a function of thermodynamic proton-release attitude of alpha asymmetric atoms inside the structures by linear Brønsted correlations. A molecular modeling procedure was developed to analyze and suggest chemical modifications of C alpha SKs in view to obtain the desired grade of stereochemical stability. The approach was employed to predict the tendency to enantiomerize in water of two ketones (1 and 2) endowed with inhibitory activity against monoamine oxidases (MAOs) and the results were confirmed by experimental kinetics measurements performed in organic medium. As a demonstration of practical potentialities of the approach, four new structures, conceived as simple chemical modifications of 1 and 2, were designed to improve/reduce the stereostability grade of the starting anti-MAO ketones. The possibility to extend easily the procedure to other classes of C-H acids appears of interest.

  6. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    Science.gov (United States)

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  7. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Haro, P.; Ollero, P.; Villanueva Perales, A.L.; Gómez-Barea, A.

    2013-01-01

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H 2 , DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MW th processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  8. Synthesis of dimethyl carbonate by oxidative carbonylation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.G.; Han, M.S.; Kim, H.S.; Ahn, B.S.; Park, K.Y.

    1999-07-01

    Dimethyl carbonate (DMC) synthesis reaction by oxidative carbonylation of methanol has been studied using vapor phase flow reaction system in the presence of Cu-based catalysts. A series of Cu-based catalysts were prepared by the conventional impregnation method using activated carbon (AC) as support. The effect of various promoters and reaction conditions on the catalytic reactivities was intensively evaluated in terms of methanol conversion and DMC selectivity. The morphological change of catalysts during the reaction was also compared by X-ray diffraction and SEM analysis. Regardless of catalyst compositions, the optimal reaction temperature for oxidative carbonylation of methanol was found to be around 120--130 C. The reaction rate was too slow below 100 C, while too many by-products were produced above 150 C. Among the various catalysts employed, CuCl{sub 2}/NaOH/AC catalyst with the mole ratio of OH/Cu = 0.5--1.0 has shown the best catalytic performance, which appears to have a strong relationship with the formation of intermediate species, Cu{sub 2}(OH){sub 3}Cl.

  9. Photoluminescence of 1,3-dimethyl pyrazoloquinoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Koscien, E. [1st Liceum, Sobieskiego 22, 42-700 Lubliniec (Poland); Gondek, E.; Pokladko, M. [Institute of Physics, Technical University of Krakow, Podhorazych 1, 30-084 Krakow (Poland); Jarosz, B. [Department of Chemistry, Hugon Kollotaj Agricultural University, Al. Mickiewicza 24/28, 30-059 Krakow (Poland); Vlokh, R.O. [Institute of Physical Optics, Dragomanova 23, 79005 Lviv (Ukraine); Kityk, A.V. [Department of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa (Poland)], E-mail: kityk@ap.univie.ac.at

    2009-04-15

    This paper presents absorption and photoluminescence of 6-F, 6-Br, 6-Cl, 7-TFM and 6-COOEt derivatives of 1,3-dimethyl-1H-Pyrazolo[3,4-b]quinoline (DMPQ). The measured absorption and emission spectra are compared with the quantum chemical calculations performed by means of the semi-empirical methods (AM1 or PM3) that are applied either to the equilibrium conformations in vacuo (T = 0 K) or combined with the molecular dynamics simulations (T = 300 K). The spectra calculated by the AM1 method appear to be for all dyes in practically excellent agreement with the measured ones. In particular, the position of the first absorption band is obtained with the accuracy up to a few nanometers, whereas the calculated photoluminescence spectra predict the positions of the emission maxima for a gas phase with the accuracy up to 10-18 nm. The photoemission spectra of DMPQ dyes are considerably less solvatochromic comparing to phenyl-containing pyrazoloquinoline derivatives. According to the quantum chemical analysis the reason for such behaviour lies in a local character of the electronic transitions of DMPQ dyes which are characterized by a relatively small difference between the excited state and ground state dipole moments. Importantly that the rotational dynamics of both methyl subunits does not change this situation.

  10. Penguins are attracted to dimethyl sulphide at sea.

    Science.gov (United States)

    Wright, Kyran L B; Pichegru, Lorien; Ryan, Peter G

    2011-08-01

    Breeding Spheniscus penguins are central place foragers that feed primarily on schooling pelagic fish. They are visual hunters, but it is unclear how they locate prey patches on a coarse scale. Many petrels and storm petrels (Procellariiformes), the penguins' closest relatives, use olfactory cues to locate prey concentrations at sea, but this has not been demonstrated for penguins. Procellariiforms are attracted to a variety of olfactory cues, including dimethyl sulphide (DMS), an organosulphur compound released when phytoplankton is grazed, as well as fish odorants such as cod liver oil. A recent study found that African penguins Spheniscus demersus react to DMS on land. We confirm this result and show that African penguins are also attracted by DMS at sea. DMS-scented oil slicks attracted 2-3 times more penguins than control slicks, whereas penguins showed no response to slicks containing cod liver oil. The number of penguins attracted to DMS increased for at least 30 min, suggesting penguins could travel up to 2 km to reach scent cues. Repeats of land-based trials confirmed previous results showing DMS sensitivity of penguins on land. Our results also support the hypothesis that African penguins use DMS as an olfactory cue to locate prey patches at sea from a distance, which is particularly important given their slow commuting speed relative to that of flying seabirds.

  11. Electrochemical degradation of dimethyl phthalate ester on a DSA® electrode

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fernanda L.; Aquino, Jose M.; Miwa, Douglas W.; Motheo, Artur J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Rodrigo, Manuel A., E-mail: artur@iqsc.usp.br [Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Ciudad Real (Spain)

    2014-03-15

    The electrochemical degradation of dimethyl phthalate (DMP) using a one-compartment filter press flow cell and a commercial dimensionally stable anode (DSA®) is presented. The best electrolysis conditions were determined by the analysis of the influence of the nature and concentration of the support electrolyte, pH, current density and temperature. The abatement of DMP concentration and total organic carbon (TOC) removal were superior in the presence of NaCl, as well as the apparent first order kinetic constants. Using constant ionic strength at 0.15 mol dm{sup -3} by adding Na{sub 2}SO{sub 4}, DMP concentration decreases faster at relative low NaCl concentrations while the TOC removal after 1 h of electrolysis increases with NaCl concentration. The DMP removal was very similar for all the current densities investigated at acidic solutions. When electric energy saving is considered, since the electrochemical system was under mass transport conditions, the best operational option is to use low current density values. (author)

  12. Synthesis of dimethyl carbonate from urea and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, M.; Kalevaru, V.N.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis; Mueller, K.; Arlt, W. [Erlangen-Nuernberg Univ. (Germany); Strautmann, J.; Kruse, D. [Evonik Industries AG, Marl (Germany). Creavis Technologies and Innovation

    2012-07-01

    Alcoholation of urea with methanol to produce dimethyl carbonate (DMC) is an interesting approach from both the ecological and economical points of view because the urea synthesis usually occurs by the direct use of carbon dioxide. Literature survey reveals that metal oxide catalysts for instance MgO, ZnO, etc. or polyphosphoric acids are mostly used as catalysts for this reaction. In this contribution, we describe the application of ZnO, MgO, CaO, TiO{sub 2}, ZrO{sub 2} or Al{sub 2}O{sub 3} catalysts for the above mentioned reaction. The catalytic activity of different metal oxides towards DMC synthesis was checked and additionally a comparison of achieved conversions with that of predictions made by thermodynamic calculations was also carried out. The achieved conversions are in good agreement with those of calculated ones. The test results reveal that the reaction pressure and temperature have a strong influence on the formation of DMC. Higher reaction pressure improved the yield of DMC. Among different catalysts investigated, ZnO displayed the best performance. The conversion of urea in most cases is close to 100 % and methyl carbamate MC is the major product of the reaction. A part of MC is subsequently converted to DMC, which however depends upon the reaction conditions applied and nature of catalyst used. From the best case, a DMC yield of ca. 8 % could be successfully achieved over ZnO catalyst. (orig.)

  13. Dimethyl sulfoxyde diethyl fumarate solution for high dose dosimetry

    International Nuclear Information System (INIS)

    Al-Kassiri, H.; Kattan, M.; Daher, Y.

    2007-06-01

    Dosimetric characterization of diethyl fumarate DEF in dimethyl sulfoxyde DMSO solution has been studied spectrophotometrically for possible application at high dose radiation dosimetry in the range (0-225 kGy). The absorption spectra of irradiated solution showed broad absorption bands between (325-400 nm) with a shoulder at 332 nm. The absorption increases as the dose is increased. Absorbance at 332 nm were measured and plotted against absorbed dose. Linear relationship and good response were found between absorbed dose and absorbance of 20% DEF concentration in the range (0-225 kGy) at the wave length, and linearity up to 250 kGy of absorbance at 332 nm .Good dose rate independence was observed in the range (14-33 kGy/h). The effect of post irradiation storage in darkness and indirect daylight conditions were not found to influence the absorption up to 700 h after irradiation. The effect of irradiation temperature within the range (0 to 60 centigrade degree) on the dosimetry performance was discussed.(author)

  14. Prediction of dimethyl disulfide levels from biosolids using statistical modeling.

    Science.gov (United States)

    Gabriel, Steven A; Vilalai, Sirapong; Arispe, Susanna; Kim, Hyunook; McConnell, Laura L; Torrents, Alba; Peot, Christopher; Ramirez, Mark

    2005-01-01

    Two statistical models were used to predict the concentration of dimethyl disulfide (DMDS) released from biosolids produced by an advanced wastewater treatment plant (WWTP) located in Washington, DC, USA. The plant concentrates sludge from primary sedimentation basins in gravity thickeners (GT) and sludge from secondary sedimentation basins in dissolved air flotation (DAF) thickeners. The thickened sludge is pumped into blending tanks and then fed into centrifuges for dewatering. The dewatered sludge is then conditioned with lime before trucking out from the plant. DMDS, along with other volatile sulfur and nitrogen-containing chemicals, is known to contribute to biosolids odors. These models identified oxidation/reduction potential (ORP) values of a GT and DAF, the amount of sludge dewatered by centrifuges, and the blend ratio between GT thickened sludge and DAF thickened sludge in blending tanks as control variables. The accuracy of the developed regression models was evaluated by checking the adjusted R2 of the regression as well as the signs of coefficients associated with each variable. In general, both models explained observed DMDS levels in sludge headspace samples. The adjusted R2 value of the regression models 1 and 2 were 0.79 and 0.77, respectively. Coefficients for each regression model also had the correct sign. Using the developed models, plant operators can adjust the controllable variables to proactively decrease this odorant. Therefore, these models are a useful tool in biosolids management at WWTPs.

  15. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria.

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei; Xu, Shiguo; Luo, Feng

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.

  16. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP. PMID:28078293

  17. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    Science.gov (United States)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  18. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  19. A highly sensitive and selective dimethyl ether sensor based on cataluminescence.

    Science.gov (United States)

    Zhang, Runkun; Cao, Xiaoan; Liu, Yonghui; Peng, Yan

    2010-07-15

    A sensor for detecting dimethyl ether was designed based on the cataluminescence phenomenon when dimethyl ether vapors were passing through the surface of the ceramic heater. The proposed sensor showed high sensitivity and selectivity to dimethyl ether at an optimal temperature of 279 degrees C. Quantitative analysis were performed at a wavelength of 425 nm, the flow rate of carrier air is around 300 mL/min. The linear range of the cataluminescence intensity versus concentration of dimethyl ether is 100-6.0x10(3) ppm with a detection limit of 80 ppm. The sensor response time is 2.5 s. Under the optimized conditions, none or only very low levels of interference were observed while the foreign substances such as benzene, formaldehyde, ammonia, methanol, ethanol, acetaldehyde, acetic acid, acrolein, isopropyl ether, ethyl acetate, glycol ether and 2-methoxyethanol were passing through the sensor. Since the sensor does not need to prepare and fix up the granular catalyst, the simple technology reduces cost, improves stability and extends life span. The method can be applied to facilitate detection of dimethyl ether in the air. The possible mechanism of cataluminescence from the oxidation of dimethyl ether on the surface of ceramic heater was discussed based on the reaction products. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Management Strategies to Facilitate Optimal Outcomes for Patients Treated with Delayed-release Dimethyl Fumarate.

    Science.gov (United States)

    Mayer, Lori; Fink, Mary Kay; Sammarco, Carrie; Laing, Lisa

    2018-04-01

    Delayed-release dimethyl fumarate is an oral disease-modifying therapy that has demonstrated significant efficacy in adults with relapsing-remitting multiple sclerosis. Incidences of flushing and gastrointestinal adverse events are common in the first month after delayed-release dimethyl fumarate initiation. Our objective was to propose mitigation strategies for adverse events related to initiation of delayed-release dimethyl fumarate in the treatment of patients with multiple sclerosis. Studies of individually developed mitigation strategies and chart reviews were evaluated. Those results, as well as mitigation protocols developed at multiple sclerosis care centers, are summarized. Key steps to optimize the effectiveness of delayed-release dimethyl fumarate treatment include education prior to and at the time of delayed-release dimethyl fumarate initiation, initiation dose protocol gradually increasing to maintenance dose, dietary suggestions for co-administration with food, gastrointestinal symptom management with over-the-counter medications, flushing symptom management with aspirin, and temporary dose reduction. Using the available evidence from clinical trials and evaluations of post-marketing studies, these strategies to manage gastrointestinal and flushing symptoms can be effective and helpful to the patient when initiating delayed-release dimethyl fumarate.

  1. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on

  2. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.

    2018-05-16

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  3. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    International Nuclear Information System (INIS)

    Miller, J.H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first α-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25 0 C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA 3 (HA) 5 and (NdA 3 ) 2 (HA)/sub q/. Very small amounts of (NdA 3 ) 2 and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid

  4. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Byung Chul; Chung, Suk-Ho

    2018-01-01

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  5. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  6. Study of ketone body kinetics in children by a combined perfusion of 13C and 2H3 tracers

    International Nuclear Information System (INIS)

    Bougneres, P.F.; Ferre, P.

    1987-01-01

    Ketone body kinetics were quantified in six children (3-5 yr old), who were fasted for 13-22 h, by a combined perfusion of [3- 13 C]acetoacetate ([ 13 C]AcAc) and D-(-)-beta-[4,4,4- 2 H3]hydroxybutyrate (beta-[ 2 H3]OHB) and gas chromatography-mass spectrometry analysis. Results were analyzed according to the single-pool (combined enrichments) or the two-accessible pools models. After 20-22 h of fasting, ketone body turnover rate was 30-50 mumol.kg-1.min-1, a rate achieved after several days of fasting in adults. At low ketosis, acetoacetate was the ketone body preferentially synthesized de novo and utilized irreversibly. When ketosis increased, acetoacetate irreversible disposal was not enhanced, since it was largely converted into beta-OHB, whereas beta-OHB irreversible disposal was very much increased. The single-pool and two-pool models gave similar ketone body turnover rates when [ 13 C]AcAc was the tracer, whereas the use of beta-[ 2 H3]OHB gave some more divergent results, especially at low ketosis. These studies demonstrate that ketogenesis is very active in short-term fasted children and that the use of a combined infusion of [ 13 C]AcAc and beta-[ 2 H3]OHB is a convenient way to give insight into individual ketone body kinetics

  7. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  8. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  9. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...... angle measurements and XPS. Moreover, ATR FTIR has been used to confirm the formation of initiating groups. Grafting of PEGMA from PEEK was performed in aqueous solution. The presence of the PPEGMA grafts on PEEK was revealed by the thermograms from TGA whereas investigations with AFM rejected changes...

  10. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite

    DEFF Research Database (Denmark)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its...... fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants...

  11. Additional conformer observed in the microwave spectrum of methyl vinyl ketone

    Science.gov (United States)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-05-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one). Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis resulted in V3 barrier heights of 433.8(1) and 376.6(2) cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species of both conformers were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  12. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  13. Reaction Engineering of Biocatalytic Enantioselective Reduction: A Case Study for Aliphatic Ketones

    DEFF Research Database (Denmark)

    Leuchs, Susanne; Lima-Ramos, Joana; Greiner, Lasse

    2013-01-01

    , 15, 167–176.). In the present work, the process metrics of the ketone reduction were calculated. A cost analysis revealed that the enzyme costs are negligible, but the cost for nicotinamide cofactor NADP+ is dominating the overall cost of the chemical raw material followed by the ionic liquid (TEGO...... IL K5) used as solubiliser and the buffer. The overall cost of chemicals was €148/kgproduct. To assess the environmental impact of the process, the E-factor (kgwaste/kgproduct) 132 and the process mass intensity 133 (PMI, kgsubstrate/kgproduct) were calculated. A process model based on initial rate...

  14. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    Science.gov (United States)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  15. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  16. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Near Infrared Spectroscopic Identification of Alkyl Aromatic Esters and Phenyl Ketones

    Science.gov (United States)

    Nelyubov, D. V.; Vazhenin, D. A.; Kudriavtsev, A. A.; Buzolina, A. Yu.

    2018-03-01

    Bands characterizing the content of carbon atoms in alkyl (7177-7205 cm-1) and phenyl structural fragments (9175-9192 cm-1) in organic molecules were revealed by studying the near infrared spectra of such compounds. The optical density at the maxima of these absorption bands was shown to depend strongly on the fraction of carbon atoms in the corresponding fragments. The developed models proved to be adequate for determining the fraction of carbon atoms in alkyl aromatic esters and phenyl ketones. The feasibility of modeling the molecular structure of alkyl aromatic esters using regression models was demonstrated for the product of the condensation of oleic acid and benzyl alcohol.

  18. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2018-02-01

    Full Text Available Poly-ether-ether-ketone (PEEK fabricated by fused deposition modeling for medical applications was evaluated in terms of mechanical strength and in vitro cytotoxicity in this study. Orthogonal experiments were firstly designed to investigate the significant factors on tensile strength. Nozzle temperature, platform temperature, and the filament diameter were tightly controlled for improved mechanical strength performance. These sensitive parameters affected the interlayer bonding and solid condition in the samples. Fourier transform infrared (FTIR spectrometry analysis was secondly conducted to compare the functional groups in PEEK granules, filaments, and printed parts. In vitro cytotoxicity test was carried out at last, and no toxic substances were introduced during the printing process.

  19. Pra Desain Pabrik Dimethyl Ether (DME dari Gas Alam

    Directory of Open Access Journals (Sweden)

    Ajeng Puspitasari Yudiputri

    2014-09-01

    Full Text Available Berdasarkan data PT Pertamina (Persero, total konsumsi LPG 2008 mencapai 1,85 juta ton dan 600.000 ton di antaranya untuk program konversi. Pada 2009 kebutuhan LPG akan meningkat menjadi 3,67 juta ton dan 2 juta ton di antaranya untuk program konversi sampai akhir tahun. Namun, sumber pasokan LPG dari dalam negeri diperkirakan tidak akan beranjak dari angka 1,8 juta ton per tahun dalam beberapa tahun mendatang. Sehingga, Indonesia harus menutup kebutuhan dengan mengimpor LPG dalam jumlah cukup besar. Maka dari itu dibutuhkan bahan bakar gas lain yang mampu mengatasi permasalahan yang ditimbulkan tersebut. Dimethyl Ether (DME merupakan senyawa ether yang paling sederhana dengan rumus kimia CH3OCH3. Produksi DME dapat dihasilkan melalui sintesis gas alam. DME berbentuk gas yang tidak berwarna pada suhu ambien, zat kimia yang stabil, dengan titik didih -25,1oC. Tekanan uap DME sekitar 0,6 Mpa pada 25oC dan dapat dicairkan seperti halnya LPG. Viskositas DME 0,12-0,15 kg/ms, setara dengan viskositas propana dan butane (konstituen utama LPG, sehingga infrastruktur untuk LPG dapat juga digunakan untuk DME. Berdasarkan data Departemen ESDM pada Januari 2012, total cadangan gas alam Indonesia tercatat mencapai 150,70 Trillion Square Cubic Feet (TSCF. Berdasarkan jumlah tersebut, sebanyak 103,35 TSCF merupakan gas alam terbukti, sementara 47,35 TSCF sisanya masih belum terbukti. Berdasarkan hal tersebut, diketahui bahwa senyawa DME merupakan senyawa yang sesuai untuk bahan substitusi LPG. Dan ditinjau dari analisa ekonomi, didapatkan besar Investasi : $ 636,447,074.69 ; Internal Rate of Return\t: 20.51%; POT: 4.13 tahun; BEP : 37.36 %; dan NPV 10 year : $ 518,848,692. Dari ketiga parameter sensitifitas yaitu fluktuasi biaya investasi, harga bahan baku, dan harga jual dari produk, terlihat bahwa ketiganya tidak memberikan pengaruh yang cukup signifikan terhadap kenaikan atau penurunan nilai IRR pabrik. Sehingga pabrik DME dari Gas Alam ini layak untuk

  20. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the

  1. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    Science.gov (United States)

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®).

    Science.gov (United States)

    Schwab, Wilfried

    2013-06-13

    4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these compounds have been published and are applied by industry, but for the development of a biotechnological process the knowledge and availability of biosynthetic enzymes are required. During the last years substantial progress has been made in the elucidation of the biological pathway leading to HDMF and DMMF. This review summarizes the latest advances in this field.

  3. Gas chromatographic--mass spectrometric quantitation of 16, 16-dimethyl-trans-delta 2-PGE1

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, V.; Green, K.; Bygdeman, M.; Konishi, Y.; Imaki, K.; Hayashi, M.

    1983-02-01

    Di-deuterated and di-tritiated 16,16-dimethyl-trans-delta 2-PGE1 has been synthesized and used for development of a GC-MS method for quantitation of corresponding unlabelled drug in patient plasma. Although these carrier/internal standard molecules only contain 2 deuterium atoms the lower limit of detection at each injection is as low as about 40 pg. The maximum plasma levels of this drug following administration of vaginal suppositories used in clinical studies (1 mg 16,16-dimethyl-trans-delta 2-PGE1 methyl ester in 0.8 g Witepsol S-52) were 100-350 pg/ml i.e. in the same order of magnitude as earlier seen for 16,16-dimethyl-PGE2.

  4. Gas chromatographic--mass spectrometric quantitation of 16, 16-dimethyl-trans-delta 2-PGE1

    International Nuclear Information System (INIS)

    Dimov, V.; Green, K.; Bygdeman, M.; Konishi, Y.; Imaki, K.; Hayashi, M.

    1983-01-01

    Di-deuterated and di-tritiated 16,16-dimethyl-trans-delta 2-PGE1 has been synthesized and used for development of a GC-MS method for quantitation of corresponding unlabelled drug in patient plasma. Although these carrier/internal standard molecules only contain 2 deuterium atoms the lower limit of detection at each injection is as low as about 40 pg. The maximum plasma levels of this drug following administration of vaginal suppositories used in clinical studies (1 mg 16,16-dimethyl-trans-delta 2-PGE1 methyl ester in 0.8 g Witepsol S-52) were 100-350 pg/ml i.e. in the same order of magnitude as earlier seen for 16,16-dimethyl-PGE2

  5. Natural 4-Hydroxy-2,5-dimethyl-3(2H-furanone (Furaneol®

    Directory of Open Access Journals (Sweden)

    Wilfried Schwab

    2013-06-01

    Full Text Available 4-Hydroxy-2,5-dimethyl-3(2H-furanone (HDMF, furaneol® and its methyl ether 2,5-dimethyl-4-methoxy-3(2H-furanone (DMMF are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these compounds have been published and are applied by industry, but for the development of a biotechnological process the knowledge and availability of biosynthetic enzymes are required. During the last years substantial progress has been made in the elucidation of the biological pathway leading to HDMF and DMMF. This review summarizes the latest advances in this field.

  6. Palladium(II)-catalyzed desulfitative synthesis of aryl ketones from sodium arylsulfinates and nitriles: scope, limitations, and mechanistic studies.

    Science.gov (United States)

    Skillinghaug, Bobo; Sköld, Christian; Rydfjord, Jonas; Svensson, Fredrik; Behrends, Malte; Sävmarker, Jonas; Sjöberg, Per J R; Larhed, Mats

    2014-12-19

    A fast and efficient protocol for the palladium(II)-catalyzed production of aryl ketones from sodium arylsulfinates and various organic nitriles under controlled microwave irradiation has been developed. The wide scope of the reaction has been demonstrated by combining 14 sodium arylsulfinates and 21 nitriles to give 55 examples of aryl ketones. One additional example illustrated that, through the choice of the nitrile reactant, benzofurans are also accessible. The reaction mechanism was investigated by electrospray ionization mass spectrometry and DFT calculations. The desulfitative synthesis of aryl ketones from nitriles was also compared to the corresponding transformation starting from benzoic acids. Comparison of the energy profiles indicates that the free energy requirement for decarboxylation of 2,6-dimethoxybenzoic acid and especially benzoic acid is higher than the corresponding desulfitative process for generating the key aryl palladium intermediate. The palladium(II) intermediates detected by ESI-MS and the DFT calculations provide a detailed understanding of the catalytic cycle.

  7. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  8. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones.

    Science.gov (United States)

    Mazziotta, Andrea; Makarov, Ilya S; Fristrup, Peter; Madsen, Robert

    2017-06-02

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide. The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step. The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid and a benzyl anion.

  9. Synthesis, crystal structure, and spectra of 3,3- dimethyl-1-N-(1'-phenyl-2',3'-dimethyl-5'-oxo-3'- pyrazolin-4'-yl)imino-1,2,3,4-tetrahydroisoquinoline

    International Nuclear Information System (INIS)

    Sokol, V.I.; Ryabov, M.A.; Merkur'eva, N.Yu.; Davydov, V.V.; Zaitsev, B.E.; Shklyaev, Yu.V.; Sergienko, V.S.; Zaitsev, B.E.

    1996-01-01

    The synthesis and the crystal and molecular structure of 3,3-dimethyl-1-N-(1'-phenyl-2',3'- dimethyl-5'-oxo-3'-pyrazolin-4'-yl)imino-1,2,3,4-tetrahydroisoquinoline are reported. As is evidenced by the 1H NMR, IR, and electron spectra, the tautomeric form of the compounds observed in the crystal is also retained in solutions

  10. Raspberry Ketone

    Science.gov (United States)

    ... a pounding heart beat (palpitations). Special precautions & warnings: Pregnancy and breast-feeding: There is not enough reliable ... glimepiride (Amaryl), glyburide (Diabeta, Glynase PresTab, Micronase), insulin, metformin (Glumetza, Fortamet, Glucophage, Riomet), pioglitazone (Actos), rosiglitazone (Avandia), ...

  11. Variability in abundance and fluxes of dimethyl sulphide in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoy, D.M.; DileepKumar, M.

    , 285-300 pp. Dacey, J.W.H. and S.G. Wakeham, 1986. Oceanic dimethyl sulfide: production during zooplankton grazing on phytoplankton. Science, 233, 1314-1316. Dickson, D.M., R.G. Wyn Jones and J. Davenport, 1980. Study-state osmotic adaptation.... Seasonal and short-term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the arctic marine boundary layer during summer and autumn. Tellus, 48B, 272-299. Liss P.S., G. Malin and S.M. Turner, 1993...

  12. Multicomponent synthesis of 4,4-dimethyl sterol analogues and their effect on eukaryotic cells.

    Science.gov (United States)

    Alonso, Fernando; Cirigliano, Adriana M; Dávola, María Eugenia; Cabrera, Gabriela M; García Liñares, Guadalupe E; Labriola, Carlos; Barquero, Andrea A; Ramírez, Javier A

    2014-06-01

    Most sterols, such as cholesterol and ergosterol, become functional only after the removal of the two methyl groups at C-4 from their biosynthetic precursors. Nevertheless, some findings suggest that 4,4-dimethyl sterols might be involved in specific physiological processes. In this paper we present the synthesis of a collection of analogues of 4,4-dimethyl sterols with a diamide side chain and a preliminary analysis of their in vitro activity on selected biological systems. The key step for the synthesis involves an Ugi condensation, a versatile multicomponent reaction. Some of the new compounds showed antifungal and cytotoxic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Theoretical and Experimental Studies of N,N-Dimethyl-N'-Picryl-4,4'-Stilbenediamine.

    Science.gov (United States)

    Papper, Vladislav; Wu, Yuanyuan; Kharlanov, Vladimir; Sukharaharja, Ayrine; Steele, Terry W J; Marks, Robert S

    2018-01-01

    N,N-dimethyl-N'-picryl-4,4'-stilbenediamine (DMPSDA) was prepared, purified and crystallised in a form of black lustrous crystals, and its absorption and fluorescence spectra were recorded in cyclohexane, acetonitrile and dimethyl sulfoxide. Non-emissive intramolecular charge transfer state (ICT) was clearly observed in this molecule in all three solvents. Theoretical calculations demonstrating a betaine electronic structure of the trinitrophenyl group in the ground state of the molecule and a charge transfer nature of the long wavelength transition S 0  → S 1 supported the experimental observations of the ICT formation in the molecule.

  14. trans-Dichlorido­bis(3,4-dimethyl­pyridine)platinum(II)

    Science.gov (United States)

    Chernyshev, Alexander N.; Bokach, Nadezhda A.; Izotova, Youlia A.; Haukka, Matti

    2009-01-01

    In the title compound, trans-[PtCl2(C7H9N)2], the PtII atom is located on an inversion center and is coordinated by two 3,4-dimethyl­pyridine ligands and two chloride ligands, resulting in a typical slightly distorted square-planar geometry. The crystallographic inversion centre forces the value of the C—N—N—C torsion angle to be linear and the 3,4-dimethyl-pyridine ligands to be coplanar. PMID:21581530

  15. Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol/Poly(vinyl methyl ketone

    Directory of Open Access Journals (Sweden)

    Hana Bourara

    2014-10-01

    Full Text Available The miscibility and phase behavior of poly(4-vinylphenol (PVPh with poly(vinyl methyl ketone (PVMK was investigated by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (Tg over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained Tgs are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh and vinyl methyl ketone (VMK functional groups. These results were also established by scanning electron microscopy study (SEM.

  16. Comparison of palmitic acid kinetics during glucose or ketone body infusions

    Energy Technology Data Exchange (ETDEWEB)

    Birkhahn, R.H.; Block, D.J.; Birkhahn, G.C.; Thomford, N.R.

    1986-03-05

    Ketone body interactions can be observed for extended ketosis by infusion by monoacetoacetin (the monoglyceride of acetoacetic acid). Palmitic acid kinetics were compared on the 5th day of glucose or ketone body-glucose infusions. 20 rats were fed complete diets intravenously at the rate of 50 ml/day. All diets contained vitamins, trace minerals, electrolytes, amino acids and 1 kcal/ml of non-protein energy. Rats were divided by energy source: Group A (n = 10) received energy from glucose and Group B (n = 10) from 72% monoacetoacetin plus 28% glucose. Diets were given at 1/2 and 3/4 rats on days 1 and 2, respectively and at full rate for days 3-5. Urinary nitrogen losses, body weight and dietary intake were measured daily. Palmitate kinetics was measured on day 5 using a continuous infusion of (1-/sup 14/C) palmitate and measuring C-14 in breath and plasma and plasma palmitate by GC. The two groups had similar body weight changes and urinary nitrogen losses over the 3 days of full intake Group A had lower plasma palmitate (88 +/- 7 vs 105 +/- 6 micromol/l) but similar turnover (17.1 +/- 2.4 vs 15.0 +/- 1.9 mmol/hr) and oxidation 2.3 +/- 0.3 vs 2.2 +/- 0.05 mmol/hr) compared to Group B. These data show that feeding monoacetoacetin intravenously does not stimulate fatty acid metabolism in the well nourished rat.

  17. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  18. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  19. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    Directory of Open Access Journals (Sweden)

    Nugent Scott

    2016-01-01

    Full Text Available Brain energy metabolism in Alzheimer’s disease (AD is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA could be an alternative source of energy for the aging brain that could compensate for low brain glucose uptake. MCFA in the form of dietary medium chain triglycerides (MCT have a long history in clinical nutrition and are widely regarded as safe by government regulatory agencies. The importance of ketones in meeting the high energy and anabolic requirements of the infant brain suggest they may be able to contribute in the same way in the aging brain. Clinical studies suggest that ketogenesis from MCT may be able to bypass the increasing risk of insufficient glucose uptake or metabolism in the aging brain sufficiently to have positive effects on cognition.

  20. NHC-Copper(I) Halide-Catalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water

    KAUST Repository

    Czerwiński, Paweł

    2016-05-04

    An efficient and easily scalable NHC-copper(I) halide-catalyzed addition of terminal alkynes to 1,1,1-trifluoromethyl ketones, carried out on water for the first time, is reported. A series of addition reactions were performed with as little as 0.1-2.0mol% of [(NHC)CuX] (X=Cl, Br, I, OAc, OTf) complexes, providing tertiary propargylic trifluoromethyl alcohols in high yields and with excellent chemoselectivity from a broad range of aryl- and more challenging alkyl-substituted trifluoromethyl ketones (TFMKs). DFT calculations were performed to rationalize the correlation between the yield of catalytic alkynylation and the sterics of N-heterocyclic carbenes (NHCs), expressed as buried volume (%VBur), indicating that steric effects dominate the yield of the reaction. Additional DFT calculations shed some light on the differential reactivity of [(NHC)CuX] complexes in the alkynylation of TFMKs. The first enantioselective version of a direct alkynylation in the presence of C1-symmetric NHC-copper(I) complexes is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound

    International Nuclear Information System (INIS)

    Freitas, Vera L.S.; Gomes, Jose R.B.; Ribeiro da Silva, Maria D.M.C.

    2010-01-01

    The energetic effects caused by replacing one of the methylene groups in the 9,10-dihydroanthracene by ether or ketone functional groups yielding xanthene and anthrone species, respectively, were determined from direct comparison of the standard (p o = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of these compounds. The experimental static-bomb combustion calorimetry and Calvet microcalorimetry and the computational G3(MP2)//B3LYP method were used to get the standard molar gas-phase enthalpies of formation of xanthene, (41.8 ± 3.5) kJ . mol -1 , and anthrone, (31.4 ± 3.2) kJ . mol -1 . The enthalpic increments for the substitution of methylene by ether and ketone in the parent polycyclic compound (9,10-dihydroanthracene) are -(117.9 ± 5.5) kJ . mol -1 and -(128.3 ± 5.4) kJ . mol -1 , respectively.

  2. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    Science.gov (United States)

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L.

  3. Comparison of palmitic acid kinetics during glucose or ketone body infusions

    International Nuclear Information System (INIS)

    Birkhahn, R.H.; Block, D.J.; Birkhahn, G.C.; Thomford, N.R.

    1986-01-01

    Ketone body interactions can be observed for extended ketosis by infusion by monoacetoacetin (the monoglyceride of acetoacetic acid). Palmitic acid kinetics were compared on the 5th day of glucose or ketone body-glucose infusions. 20 rats were fed complete diets intravenously at the rate of 50 ml/day. All diets contained vitamins, trace minerals, electrolytes, amino acids and 1 kcal/ml of non-protein energy. Rats were divided by energy source: Group A (n = 10) received energy from glucose and Group B (n = 10) from 72% monoacetoacetin plus 28% glucose. Diets were given at 1/2 and 3/4 rats on days 1 and 2, respectively and at full rate for days 3-5. Urinary nitrogen losses, body weight and dietary intake were measured daily. Palmitate kinetics was measured on day 5 using a continuous infusion of [1- 14 C] palmitate and measuring C-14 in breath and plasma and plasma palmitate by GC. The two groups had similar body weight changes and urinary nitrogen losses over the 3 days of full intake Group A had lower plasma palmitate (88 +/- 7 vs 105 +/- 6 micromol/l) but similar turnover (17.1 +/- 2.4 vs 15.0 +/- 1.9 mmol/hr) and oxidation 2.3 +/- 0.3 vs 2.2 +/- 0.05 mmol/hr) compared to Group B. These data show that feeding monoacetoacetin intravenously does not stimulate fatty acid metabolism in the well nourished rat

  4. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain.

    Science.gov (United States)

    Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora

    2015-07-01

    Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Influence of Operation Temperature of the Characteristic of Sulfonated Polyether-Ether Ketone Electrolyte Membrane

    International Nuclear Information System (INIS)

    Sri Handayani; Eniya Listiani Dewi

    2008-01-01

    Recently, high temperature Direct Methanol Fuel Cell (DMFC) has been receiving great attention, because provide faster reaction kinetic, the enhance electrode kinetics, reduced size and reduce Pt-based catalyst poisoning by CO. But at high temperature, it will decrease the membrane performance i.e. low proton conductivity affected by humidification and high methanol crossover as happening to Nafion-117 membrane (commercial membrane). To solve this problems, sulfonated polyether-ether ketone and composite (silica additive) as electrolyte membrane at high temperature DMFC was tried to use. In this research, sPEEK with sulfonation degree (SD) 47 % and 68 % and addition silica 3 wt % were used as electrolyte membranes. Proton conductivity and methanol permeability of these membranes were measured at various temperatures (25, 50, 90 and 140 C ). Proton conductivity of membranes were measured by standard bridge impedance spectroscopy (LCR-meter, HIOKI 3522-50) and it was found about 0.01-0.04 S/cm. Methanol permeability of membranes were investigated by diffusion cell and gave the result about 10 - 6 - 10 - 7cm 2 /s. The best sPEEK membrane was sPEEK membrane with SD 68 % and the addition of silica 3 wt%, signed by highest selectivity value (ratio proton conductivity to methanol permeability). Therefore, electrolyte membrane based sulfonated polyether-ether ketone (SD 68 %) with silica could be used at high temperature which give promising as solid electrolyte membrane in application high temperature DMFC. (author)

  7. Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint.

    Science.gov (United States)

    Mwakaboko, Alinanuswe S; Zwanenburg, Binne

    2011-04-01

    Strigolactones are important signaling compounds in the plant kingdom. Here we focus on their germination stimulatory effect on seeds of the parasitic weeds Striga and Orobanche spp. and more particularly on the design and synthesis of new active strigolactone analogs derived from simple cyclic ketones. New analogs derived from 1-indanone, 1-tetralone, cyclopentanone, cyclohexanone and a series of substituted cyclohexanones (including carvone and pulegone) are prepared by formylation of the ketones with ethyl formate followed by coupling with a halo butenolide. Both enantiomers of the analog derived from 1-tetralone have been prepared by employing a homochiral synthon for the coupling reaction. For three other strigolactone analogs the antipodes have been obtained by chromatography on a chiral column. All analogs have an appreciable germinating activity towards seeds of Striga hermomonthica and Orobanche crenata and O. cernua. Stereoisomers having the same configuration at the D-ring as in naturally occurring strigol have a higher stimulatory effect than the corresponding antipodes. The analogs obtained from 1-indanone and 1-tetralone have an activity comparable with that of the well known stimulant GR 24. Analogs derived from 2-phenyl-cylohexanone, carvone and pulegone also have a good germinating response. The results show that the working model for designing new bioactive strigolactones is applicable.

  8. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  9. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  10. The failure of poly (ether ether ketone) in high speed contacts

    Science.gov (United States)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  11. Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions

    International Nuclear Information System (INIS)

    Lenardao, Eder J.; Silva, Marcio S.; Mendes, Samuel R.; Azambuja, Francisco de; Jacob, Raquel G.; Perin, Gelson; Santos, Paulo Cesar Silva dos

    2007-01-01

    A simple, clean and efficient solvent-free protocol was developed for hydrochalcogenation of alkynes containing a Michael acceptor (ester, ketone and nitrile) with phenylchalcogenolate anions generated in situ from the respective diphenyl dichalcogenide (Se, Te, S), using alumina supported sodium borohydride. This efficient and improved method is general and furnishes the respective (Z)-β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles, in good yield and higher selectivity, compared with those that use organic solvent and inert atmosphere. The use of microwave (MW) irradiation facilitates the procedure and accelerates the reaction. (author)

  12. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    Science.gov (United States)

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  13. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacemen...

  14. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Deng, Kai; Wang, George

    2017-01-01

    AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant...

  15. Measurement of (vapor + liquid) equilibrium for the systems {methanol + dimethyl carbonate} and {methanol + dimethyl carbonate + tetramethylammonium bicarbonate} at p = (34.43, 67.74) kPa

    International Nuclear Information System (INIS)

    Yang Changsheng; Zeng Hao; Yin Xia; Ma Shengyong; Sun Feizhong; Li Yafei; Li Jiao

    2012-01-01

    Highlights: ► VLE data for the binary system and the ternary system were measured. ► Methanol, dimethyl carbonate, and tetramethylammonium bicarbonate were studied. ► Isobaric experimental data were measured at p = (34.43, 67.74) kPa. ► VLE data of binary system were correlated with the Wilson, NRTL, and UNIQUAC models. ► The salt effect of TMAB on the VLE of {methanol + DMC} system was investigated. - Abstract: Isobaric (vapor + liquid) equilibrium (VLE) data for the binary system (methanol + dimethyl carbonate) and the ternary system (methanol + dimethyl carbonate + tetramethylammonium bicarbonate) have been measured at p = (34.43, 67.74) kPa using a modified Rose–Williams still. The experimental data for the binary system were well correlated by Wilson, NRTL, and UNIQUAC activity-coefficient models at the two reduced pressures. All the experimental results of the binary system passed the thermodynamic consistency test by the area test of Redlich–Kister and the point test of Van Ness et al. The experimental results of ternary system show that the salt tetramethylammonium bicarbonate has a salting-in effect on methanol. And this effect enhances when the salt concentration increases.

  16. Synthesis of 4-aryl-2,6-dimethyl-3,5-bis-N-(aryl-carbamoyl-1,4-dihydropyridines as novel skin protecting and anti-aging agents

    Directory of Open Access Journals (Sweden)

    Aamer Saeed

    2017-06-01

    Full Text Available A series of 4-aryl-2,6-dimethyl-3,5-bis-N-(aryl-carbamoyl-1,4-dihydropyri-dines 6a-6h were prepared by using the one-pot three component synthetic method. The target compounds 6a-6h were synthesized by reacting two molar equivalents of ketone functionality and one mole of aromatic aldehydes in ammonium acetate to obtain the desired products. The structures of newly synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. All the synthesized compounds were screened for their elastase inhibition and antioxidant activity. Almost all of the com-pounds 6a-h showed good to excellent activities against elastase enzyme more than the reference drug. Compounds 6d and 6b at 0.2 ± 0.0 µM and 0.2 ± 0.0 µM were found to most potent derivatives against elastase enzyme. Compound 6a exhibited prominent free radical scavenging activity. From the results of the biological activity, we infer that some derivatives can serve as lead molecules in pharmacology.

  17. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    Science.gov (United States)

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide

  18. Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn; Christensen, Jakob Munkholt; Temel, Burcin

    2015-01-01

    Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated ...

  19. Enthalpies of potassium iodide dissolution in dimethyl acetamide mixtures with water

    International Nuclear Information System (INIS)

    Privalova, N.M.; Gritsenko, S.I.; Vorob'ev, A.F.

    1986-01-01

    Enthalpies of potassium iodide dissolution in mixed dimethyl acetamide - water solvent at 298.15 K in the whole range of dimethyl acetamide compositions are measured by the calorimetric method. From the plots of KI dissolution enthalpy dependence and dependence of experimental ΔH p∞ 0 value deviations from calculational ones on solvent composition, as well as from the results of calculation of solvate shell composition of potassium iodide ions in the mixed solvent, it is obvious that in the region of 0-15 mol% concentrations of dimethyl acetamide insufficient enrichment of solvate ion shells by dimethyl acetamide (DMAA) occurs, in the region of 15-40 mol% DMAA compositions enrichment of solvate shells of ions by water occurs, in the region of 40-100 mol% DMAA enrichment of solvate ion shells by the organic component in comparison with mixture compostion occurs. Maximum enrichment of solvate ion shells by mixture components in three above mentioned regions of the mixed solvent occurs at 10, 30 and 80 mol% DMAA concentrations

  20. Thermodynamicy of Catalytic Formation of Dimethyl Ether from Methanol in Acidic Zeolites

    Czech Academy of Sciences Publication Activity Database

    Hyťha, Marek; Štich, I.; Gale, J. D.; Terakura, K.; Payne, M.

    2001-01-01

    Roč. 7, č. 12 (2001), s. 2521-2527 ISSN 0947-6539 Institutional research plan: CEZ:AV0Z1010914 Keywords : dimethyl ether * formation * theoretical study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.614, year: 2001

  1. 5,5-Dimethyl-2-methylseleno-1,3,2-dioxaphosphorinan-2-one

    Directory of Open Access Journals (Sweden)

    Grzegorz Cholewinski

    2010-04-01

    Full Text Available The title compound, C6H13O3PSe, was obtained in the reaction of 5,5-dimethyl-2-oxo-2-seleno-1,3,2-dioxaphosphorinane potassium salt with methyl iodide. The selenomethyl group is in the axial position in relation to the six-membered dioxaphosphorinane ring.

  2. On-board conversion of methanol to dimethyl ether as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H; Heinzelmann, G; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytic dehydration of methanol to dimethyl ether was investigated for application on-board a methanol fuelled vehicle. Several catalysts have been tested in a fixed bed reactor. Our approach is to develop a small and efficient reactor converting liquid MeOH under pressure and at low reaction temperatures. (author) 2 figs., 5 refs.

  3. Structural and spectroscopic studies of 2,9-dimethyl-1,10 ...

    African Journals Online (AJOL)

    The crystal structures of the pronated ligand, 2,9-dimethyl-1,10-phenanthrolinium (DPH) cation with selected counter anions (chloride (1), triflate (2), and gold dicyanide (3)) are reported. The role of a hydrogen bond interaction in influencing the solid state p-p stacking found in all three compounds has been investigated.

  4. On the Origin of Microheterogeneity : A Mass Spectrometric Study of Dimethyl Sulfoxide-Water Binary Mixture

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2001-01-01

    We have studied the microscopic solvent structure of dimethyl sulfoxide-water mixtures and its influence on the solvation structure of solute from a clustering point of View, by means of a specially designed mass spectrometric system. It was observed that the propensity to the cluster formation is

  5. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    Science.gov (United States)

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  6. Electrochemical stability and transformations of fluorinated poly(2,6-dimethyl-1,4-phenylene oxide)

    NARCIS (Netherlands)

    Pud, A.A.; Rogalsky, S.P.; Ghapoval, G.S.; Kharitonov, A.P.; Kemperman, Antonius J.B.

    2000-01-01

    Fluorination of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) leads to narrowing of its window of electrochemical stability in a cathodic range of potentials. It is found this is connected with appearance of both perfluorinated and incompletely fluorinated units in the polymer. The former units are

  7. The industrial production of dimethyl carbonate from methanol and carbon dioxide

    NARCIS (Netherlands)

    De Groot, Frank F T; Lammerink, Roy R G J; Heidemann, Casper; Van Der Werff, Michiel P M; Garcia, Taiga Cafiero; Van Der Ham, Louis A G J; Van Den Berg, Henk

    2014-01-01

    This work discusses the design of a dimethyl carbonate (DMC) production plant based on methanol and CO2 as feed materials, which are a cheap and environment-friendly feedstock. DMC is a good alternative for methyl-tert-butyl ether (MTBE) as a fuel oxygenating agent, due to its low toxicity and fast

  8. Controls of dimethyl sulphide in the Bay of Bengal during BOBMEX-Pilot cruise 1998

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoy, D.M.; DileepKumar, M.; Sarma, V.V.S.S

    The air-sea exchange is one of the main mechanisms maintaining the abundances of trace gases in the atmosphere. Some of these, such as carbon dioxide and dimethyl sulphide (DMS), will have a bearing on the atmospheric heat budget. While the former...

  9. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    Science.gov (United States)

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  10. Boltorn-Modified Poly(2,6-dimethyl-1,4,phenylene oxide) Gas Separation Membranes

    NARCIS (Netherlands)

    Sterescu, D.M.; Stamatialis, Dimitrios; Mendes, Eduardo; Kruse, Jan; Rätzke, Klaus; Faupel, Franz; Wessling, Matthias

    2007-01-01

    This paper describes the preparation, characterization and the permeation properties of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) dense polymer films containing aliphatic hyperbranched polyesters, Boltorn (H20, H30, and H40). The Boltorn are dispersed in PPO at various concentrations. The gas

  11. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    Science.gov (United States)

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  12. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    Science.gov (United States)

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead.

  13. Comparing Finger-stick β-Hydroxybutyrate with Dipstick Urine Tests in the Detection of Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Baris KURU

    2014-06-01

    Full Text Available SUMMARY: Objectives: Blood ketone (beta-hydroxybutyrate measurements are suggested instead of urine ketone (acetoacetate measurements in the diagnosis of diabetic ketoacidosis. Urine ketone examination is difficult and time consuming, and may result in an incorrect interpretation. Studies performed in emergency departments on blood ketones are limited. Our objective is to compare urine ketones and capillary blood ketones in patients whose serum glucose levels were ≥150 mg/dl. Methods: In our cross-sectional prospective study, finger-stick blood beta-hydroxybutyrate, arterial blood gas and urine ketone measurements of patients whose serum glucose levels were 150 mg/dL and higher were performed in the emergency department. Results: A total of 265 patients were included in the study. The mean age of the patients was 62.4±14.9 years, and 65.7% of them were female. The mean of the capillary blood ketone levels of the patients was determined to be 0.524±0.9 mmol/L (min: 0 mmol/L, max: 6.7 mmol/L. In 29 (13.1% of the 221 patients whose urine ketone levels were negative, the finger-stick blood ketone levels were positive. Three of these patients were severely ketonemic, six were moderately ketonemic, and 20 were mildly ketonemic. Conclusions: In patients admitted to the emergency department with a blood glucose level of 150 mg/dL or higher, performing a capillary blood ketone measurement instead of a urine ketone measurement was a better predictor of ketonemia. ÖZET: Amaç: Diyabetik keto asidoz tanısında idrar ketonu (asetoasetat yerine kan ketonu (beta-hidroksibütirat ölçümü önerilmektedir. İdrar ketonu bakılması zahmetli, zaman alıcı ve yanlış yorumlara yol açabilen bir testtir. Acil servislerde kan ketonu ile ilgili yapılan çalışmalar sınırlıdır. Bu çalışmadaki amacımız serum glikoz düzeyi ≥150 mg/dl tespit edilen hastalarda idrar ketonu ile kapiller kanda keton varlığını karşılaştırmaktır. Gereç ve Y

  14. An easy and efficient method to produce {gamma}-amino alcohols by reduction of {beta}-enamino ketones

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Maria Ines N.C.; Braga, Antonio C.H. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: herrera@iqm.unicamp.br

    2004-12-01

    Reduction of {beta}-enamino ketones 2 with NaBH{sub 4} in glacial acetic acid gave {gamma}-amino alcohols 1 in 70% to 98% yield with diastereomeric excesses, preferentially the syn product, from 44% to 90%. The stereochemistry of these compounds was confirmed by analysis of their tetrahydro-1,3-oxazine derivatives 3. (author)

  15. Kinetic Investigation of the Electrochemical Oxidation of Bis(benzene)chromium(0) in Diethyl ketone / N,N-Dimethylformamide

    Czech Academy of Sciences Publication Activity Database

    Tsierkezos, Nikos

    2008-01-01

    Roč. 37, č. 10 (2008), s. 1437-1448 ISSN 0095-9782 Institutional research plan: CEZ:AV0Z40550506 Keywords : bis(benzene)chromium(0) * cyclic voltammetry * diethyl ketone * half-wawe potential * N,N-dimethylformamide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.241, year: 2008

  16. Organic Solvent-Tolerant Marine Microorganisms as Catalysts for Kinetic Resolution of Cyclic β-Hydroxy Ketones

    NARCIS (Netherlands)

    Chen, B.; Liu, Hui; Zeferino Ribeiro De Souza, F.; Liu, Lan

    2017-01-01

    Chiral cyclic β-hydroxy ketones represent key motifs in the production of natural products of biological interest. Although the molecules are structurally simple, they require cumbersome synthetic steps to get access to them and their synthesis remains a challenge in organic chemistry. In this

  17. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    Science.gov (United States)

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  18. Ion-Selective Ionic Polymer Metal Composite (IPMC) actuator based on crown ether containing sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.; Vancso, G.J.; Nijmeijer, K.

    2017-01-01

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  19. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water.

    Science.gov (United States)

    Starkl Renar, K; Pečar, S; Iskra, J

    2015-09-28

    Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72-99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst. The reactions were more selective than with 100% H2O2 and due to neutral conditions also less stable products could be obtained.

  20. DISQUAC Characterization of the CarbonylůChlorine Interactions in Binary Mixtures of Linear Ketone with Chloroalkane

    Czech Academy of Sciences Publication Activity Database

    Dragoescu, D.; Teodorescu, M.; Barhala, A.; Wichterle, Ivan

    2003-01-01

    Roč. 68, č. 7 (2003), s. 1175-1192 ISSN 0010-0765 R&D Projects: GA ČR GA104/03/1555 Institutional research plan: CEZ:AV0Z4072921 Keywords : group contribution model * thermodynamics * chloroalkanes-linear ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  1. Facile and Highly Diastereoselective Synthesis of syn- and cis-1,2-Diol Derivatives from Protected alpha-Hydroxy Ketones

    Czech Academy of Sciences Publication Activity Database

    Jahn, Emanuela; Smrček, Jakub; Pohl, Radek; Císařová, I.; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 2015, č. 35 (2015), s. 7785-7798 ISSN 1434-193X Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : synthetic methods * reduction * diastereoselectivity * diols * ketones Subject RIV: CC - Organic Chemistry Impact factor: 3.068, year: 2015

  2. Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres

    International Nuclear Information System (INIS)

    Feng, Y.; Gottmann, J.; Kreutz, E.W.

    2003-01-01

    Structuring of poly ether ether ketone (PEEK) by 193 nm ArF excimer laser radiation has been investigated. Experiments were carried out in different atmospheres (air, vacuum, Ar, O 2 ) in order to study its influence on the quality of the structures and the formation of the debris. Repetition rate makes little effect on the ablation rate and roughness of the structure in presence of any kind of atmosphere, indicating for the structuring of PEEK by ArF laser radiation a large window of processing. The roughness at the bottom of the structures and the morphology of the side walls are strongly affected by the properties of the atmosphere. The smallest roughness is achieved at 0.6 J/cm 2 for all kinds of processing gases. Debris around the structures can be diminished by structuring in vacuum. Plasma expansion speed has been measured by using high speed photography

  3. Synthesis of Polycyclic Ring Systems Using Transition Metal Catalyzed Cyclizations of Diazo Alkynyl Ketones

    Directory of Open Access Journals (Sweden)

    Albert Padwa

    2000-12-01

    Full Text Available The rhodium(II-catalyzed reaction of α-diazo ketones bearing tethered alkyne units represents a new and useful method for the construction of a variety of substituted cyclopentenones. The process proceeds by addition of the rhodium-stabilized carbenoid onto the acetylenic π-bond to give a vinyl carbenoid intermediate. The resulting rhodium complex undergoes a wide assortment of reactions including cyclopropanation, 1,2-hydrogen migration, CH-insertion, addition to tethered alkynes and ylide formation. When 2-alkynyl-2-diazo-3-oxobutanoates were treated with a Rh(II-catalyst, furo[3,4-c]furans were formed in excellent yield.

  4. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  5. Dielectric and conformational studies of hydrogen bonded 2-ethoxyethanol and ethyl methyl ketone system

    Science.gov (United States)

    Pattebahadur, Kanchan. L.; Deshmukh, S. D.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    The Dielectric constant, density and refractive index of binary mixture of 2-ethoxy ethanol (2-EE) with ethyl methyl ketone (EMK) including those of the pure liquids were measured for 11 concentrations at 25°C temperature. The experimental data is used to calculate the Excess molar volume, Excess dielectric constant, Kirkwood correlation factor and Bruggemann factor. The excess parameters results were fitted to the Redlich-Kister type polynomial equation to derive its fitting coefficient. The Kirkwood correlation factor of the mixture has been discussed to yield information about solute solvent interaction. The Bruggeman plot shows a deviation from linearity. The FT-IR spectra of pure and their binary mixtures are also studied.

  6. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Xiaohu Deng

    2018-01-01

    Full Text Available Compared to the common selective laser sintering (SLS manufacturing method, fused deposition modeling (FDM seems to be an economical and efficient three-dimensional (3D printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  7. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    International Nuclear Information System (INIS)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-01-01

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  8. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  9. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  10. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide.

    Science.gov (United States)

    Jarwal, Nisha; Thankachan, Pompozhi Protasis

    2015-04-01

    The Wittig reaction of cyclopropanone, cyclobutanone and cyclopentanone with phosphorus ylide (Me3P = CH2) in gas phase was investigated computationally at B3LYP/6-31G** level of theory. In the Wittig reaction of cyclic ketones, two transition states (TS1 and TS2), corresponding to formation and decomposition of oxaphosphetane (OP) were located and investigated. Two loosely bound intermediates, a reactant complex (RC) and a product complex (PC) were also found. In the reaction of cyclopropanone, cyclobutanone and cyclopentanone, two oxaphosphetanes (OP1 and OP2) were predicted. OP1 initially formed was converted into OP2 by pseudorotation. In contrast to the reactions with cyclobutanone and cyclopentanone, an early TS1 was found in the reaction of cyclopropanone. The order of first activation energy barrier relative to reactant total energy was found to be cyclopropanone (-4.97 kcal mol(-1)) < cyclobutanone (0.30 kcal mol(-1)) < cyclopentanone (3.60 kcal mol(-1)).

  11. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Repairing a Facial Cleft by Polyether-Ether-Ketone Implant Combined With Titanium Mesh.

    Science.gov (United States)

    Deng, Yuan; Tang, Weiwei; Li, Zhengkang

    2018-05-15

    The Tessier Number 4 cleft is one of the rarest, most complex craniofacial anomalies that presents difficulties in surgical treatment. In this article, we report a case of simultaneous facial depression, eye displacement, and medial canthus deformity. In this case, the maxillary bony defect was reconstructed using computer-assisted design computer-assisted manufacturing (CAD-CAM) polyether-ether-ketone (PEEK) material, and the orbital floor defect was repaired with AO prefabricated titanium mesh. Additionally, the medial canthus was modified with canthopexy and a single Z-plasty flap. Owing to its relative rarity and varied clinical presentations, no definitive operative methods have been accepted for Tessier No. 4 facial cleft. This study presents the combination of CAD-CAM manufactured PEEK material and titanium mesh as an alternative approach for reconstructing the bony defect of Tessier No. 4 facial clefts.

  13. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.

    Science.gov (United States)

    Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima

    2016-03-01

    In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.

  14. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    International Nuclear Information System (INIS)

    Conceicao, T.F.; Bertolino, J.R.; Barra, G.M.O.; Pires, A.T.N.

    2009-01-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with 1 H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10 -2 S cm -1 , an important characteristic in some applications, such as in fuel cells

  15. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  16. Analysis of electron-irradiated poly-ether ether ketone by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Kobayashi, Yoshinori; Seguchi, Tadao; Sasuga, Tsuneo; Kudoh, Hisaaki.

    1995-01-01

    Organic polymers used in atomic power plants or space are damaged by ionizing irradiation. Radicals produced by irradiation cause oxidation, chain scission and crosslinking, all of which lead to degradation of the material. In this paper, the surface of electron-irradiated poly-ether ether ketone (PEEK) was studied by X-ray photoelectron spectroscopy (XPS). The irradiation in air was found to oxidize the PEEK surface producing carboxyl groups, the content of which dependant on the dose. Carboxyl groups were not produced in helium gas. Quantitative spectral analysis indicated that the aromatic structure might be decomposed. Some comparison was made between the semicrystalline and amorphous samples. The oxygen content resulting from irradiation, of semicrystalline PEEK increased more than that of amorphous PEEK. (author)

  17. Leaching of Oil from Tuna Fish Liver by Using Solvent of Methyl-Ethyl Ketone

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2013-12-01

    Full Text Available Research of oil leaching from Tuna Fish Liver has been carried out by extracting of tuna fish liver in soxhlet by using methyl-ethyl ketone as solvent. Liver of fresh tuna fish is blended, put into soxhlet, and extracted at temperatures of 60oC, 65oC, 70oC, 75oC, and 80oC. After obtaining the oil, separation between solvent and oil is carried out by distillation. Oil obtained is analyzed by testing the yield, acid number, Iodine value, viscosity, and its impurities content. Yield obtained is influenced by temperature and time of leaching. Both variables indicates that the higher the variables, the more fish liver oil obtained. Maximum yield obtained is 25.552% at operating condition of leaching temperature 80oC, and leaching duration of 5 hours.

  18. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Science.gov (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Solubility and solvation of alkali metal perchlorates, tetramethyl and tetraethylammonium in aqua-ketone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1998-01-01

    The KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 solubility in water and water-acetone, water-methylethylketone mixtures is determined through the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metals perchlorates in acetone and its 90% mixtures (by volume) are determined conductometrically. Solubility products and standard energies of the Gibbs transfer of the studied electrolytes from water into water-acetone and water-methylethylketone solvents. It is established that the Gibbs standard energies of Na + , K + , Rb + and Cs + cations transfer from water to water-ketone solvents are close to each other. It is shown that the effect of acetone and methylethylketone on solvation of the studied electrolytes is practically similar

  20. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  1. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    Science.gov (United States)

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  2. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, T.F.; Bertolino, J.R. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barra, G.M.O. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Pires, A.T.N. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)], E-mail: alfredotiburcio@pq.cnpq.br

    2009-03-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with {sup 1}H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10{sup -2} S cm{sup -1}, an important characteristic in some applications, such as in fuel cells.

  3. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  4. Craniofacial reconstruction using patient-specific implants polyether ether ketone with computer-assisted planning.

    Science.gov (United States)

    Manrique, Oscar J; Lalezarzadeh, Frank; Dayan, Erez; Shin, Joseph; Buchbinder, Daniel; Smith, Mark

    2015-05-01

    Reconstruction of bony craniofacial defects requires precise understanding of the anatomic relationships. The ideal reconstructive technique should be fast as well as economical, with minimal donor-site morbidity, and provide a lasting and aesthetically pleasing result. There are some circumstances in which a patient's own tissue is not sufficient to reconstruct defects. The development of sophisticated software has facilitated the manufacturing of patient-specific implants (PSIs). The aim of this study was to analyze the utility of polyether ether ketone (PEEK) PSIs for craniofacial reconstruction. We performed a retrospective chart review from July 2009 to July 2013 in patients who underwent craniofacial reconstruction using PEEK-PSIs using a virtual process based on computer-aided design and computer-aided manufacturing. A total of 6 patients were identified. The mean age was 46 years (16-68 y). Operative indications included cancer (n = 4), congenital deformities (n = 1), and infection (n = 1). The mean surgical time was 3.7 hours and the mean hospital stay was 1.5 days. The mean surface area of the defect was 93.4 ± 43.26 cm(2), the mean implant cost was $8493 ± $837.95, and the mean time required to manufacture the implants was 2 weeks. No major or minor complications were seen during the 4-year follow-up. We found PEEK implants to be useful in the reconstruction of complex calvarial defects, demonstrating a low complication rate, good outcomes, and high patient satisfaction in this small series of patients. Polyether ether ketone implants show promising potential and warrant further study to better establish the role of this technology in cranial reconstruction.

  5. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2012-09-01

    Full Text Available Abstract Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R-4-(trimethylsilyl-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone. The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da η ∅ Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to

  6. Clinical utility of Abbott Precision Xceed Pro® ketone meter in diabetic patients.

    Science.gov (United States)

    Yu, Hoi-Ying Elsie; Agus, Michael; Kellogg, Mark D

    2011-11-01

    Diagnosis and management of diabetic ketoacidosis (DKA) often rely on the measurement of urine ketones along with blood glucose, anion gap, and pH. These values, however, do not reliably reflect the severity of ketoacidosis. The Abbott Precision Xceed Pro® meter is an FDA-approved device that quantitatively measures β-hydroxybutyrate (BOH) in whole blood. This study was undertaken to determine whether the ketone meter meets the analytical criteria to aid DKA diagnosis and management in the hospital. 54 heparinized venous whole blood BOH concentrations from 27 diabetic patients were measured by the Abbott meter, and compared with the plasma BOH concentrations measured with Stanbio reagent (reference method). Measurements were done in the hospital central laboratory. Of the 54 pairs of specimens analyzed, 17 pairs displayed a difference of >15% between the two methods. Nearly all discrepant points occurred when BOH >5 mmol/L (reference method). Linearity evaluation revealed that the meter is not linear from 0.0 to 8.0 mmol/L, contrary to the claim by the manufacturer. Further, we identified acetoacetate, a metabolite commonly present in DKA patients, as a potential interfering substance for the meter BOH measurement. BOH measurements by the Abbott meter up to 3 mmol/L correlate well with the reference method, but become discrepant above that point. While this characteristic may be useful in the diagnosis of DKA, it may not allow clinicians to serially follow the response to therapy in hospitalized DKA patients with BOH values greater than 5 mmol/L (reference method). © 2011 John Wiley & Sons A/S.

  7. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  8. A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat*

    Science.gov (United States)

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.

    2010-01-01

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850

  9. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat.

    Science.gov (United States)

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L

    2010-08-20

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.

  10. Incineration of oxygenated volatile organic compounds. Experimental study and kinetic modeling of the oxidation of methyl ethyl ketone, ethyl acetate and butan-2-ol in methane flames; Incineration de composes organiques volatils oxygenes. Etude experimentale et modelisation cinetique de l'oxydation de la methyl ethyl cetone, de l'acetate d'ethyle et du butan-2-ol dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, V

    2000-12-01

    This work deals with the low pressure (0.05 atm) degradation of three volatile organic compounds (VOCs): methyl-ethyl-ketone, ethyl acetate and butan-2-ol, in premixed stoichiometric laminar methane flames seeded with 1 to 3% of each VOC. Molar fraction profiles of species have been obtained using microprobe sampling coupled with a gas chromatography and a mass spectroscopy analysis. Temperature profiles have been obtained using the covered thermocouple technique in the presence of the microprobe. The addition of a VOC in the initial reagents mixture leads to an increase of the quantity of intermediate hydrocarbon compounds and in particular of some soot precursor species. The degradation of VOCs leads to the formation of oxygenated intermediates like methanol, dimethyl-ether, acetaldehyde, propanal, acetone and vinyl acetate, the type of VOC having an effect on the quantities produced. The degradation of a VOC can lead to the formation of more toxic or polluting compounds (methyl vinyl ketone, acetic acid and acrolein) than the VOC itself. In the conditions of the study, the intermediate compounds are totally destructed inside the reactional area of the flame front and are no more present in the burnt gases. Sub-mechanisms of VOC oxidation have been developed using experimental observations and the most recent recommendations of the literature. These sub-mechanisms comprise 49 species involved in 241 elementary reactions. Their validation has been performed by comparing the experiment with the kinetic modeling on the molar fraction profiles of the detected species. Experimental data are well reproduced by the model for most species. The addition of a VOC inside the initial reagents mixture creates an important reactivity increase, in particular in the case of butan-2-ol seeded flames. The analysis of reactional ways has permitted to draw out the main reactions responsible for the degradation of the 3 VOCs and the ways of formation and consumption of the

  11. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  12. Noval 1-substituted-3,5-dimethyl-4-[(substituted phenyl diazenyl] pyrazole derivatives: Synthesis and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Sabir Hussain

    2015-05-01

    Full Text Available Several-1-carbothioamide-3,5-dimethyl-4-[(substituted phenyl diazenyl] pyrazoles 2a–d, 1-(pyridine-4-ylcarbonyl-3,5-dimethyl-4-[(substituted phenyl diazenyl] pyrazoles 3a–d, 1-(5-chloro-6-fluoro-1,3-benzothiazole-2-ylthiocarbamoyl-3,5-dimethyl-4-[(substituted phenyl diazenyl] pyrazoles 4a–d and 1-[(1,2,4-triazole-4-yl carbothioamide]-3,5-dimethyl-4-[(substituted phenyl diazenyl] pyrazoles 5a–d were synthesized. The structures of the newly synthesized compounds were supported by IR, 1H NMR and mass spectral data. These compounds were investigated for their, anti-inflammatory, analgesic, ulcerogenic, lipid peroxidation, antibacterial and antifungal activities. Some of the synthesized compounds showed potent anti-inflammatory activity along with minimal ulcerogenic effect and lipid peroxidation, compared to ibuprofen and flurbiprofen. Some of the tested compounds also showed moderate antimicrobial activity against tested bacterial and fungal strains.

  13. Dimethyl Ether (DME) Assessment of Viscosity Using the New Volatile Fuel Viscometer (VFVM)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2001-01-01

    This paper describes the development and test of a viscometer capable of handling dimethyl Ether (DME) and other volatile fuels. DME has excellent combustion characteristics in diesel engines but the injection equipment can break down prematurely due to extensive wear when handling this fuel. It ...... is present in very large proportions. It is not believed that reasonably additised DME can reach the same viscosity and lubricity as diesel oil. The solution is rather to design the pumps so they can handle pure DME.......This paper describes the development and test of a viscometer capable of handling dimethyl Ether (DME) and other volatile fuels. DME has excellent combustion characteristics in diesel engines but the injection equipment can break down prematurely due to extensive wear when handling this fuel...

  14. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  15. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  16. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  17. Quartz Crystal Microbalance Studies Of Dimethyl Methylphosphonate Sorption Into Trisilanolphenyl-Poss Films

    Science.gov (United States)

    2006-11-06

    QUARTZ CRYSTAL MICROBALANCE STUDIES OF DIMETHYL METHYLPHOSPHONATE SORPTION INTO TRISILANOLPHENYL-POSS FILMS Joshua D. Kittle Thesis ...subsequent DIMP layers form a solid- like phase as a result of nucleated growth around the first layer. Bertilsson et al. studied the adsorption of...of QCMs in liquids,55, 56 opening the door to a variety of applications, including the study of electrodeposition of metals,57,65 electrochemical

  18. Organocatalytic asymmetric michael addition of aldehydes to beta-nitroacroleine dimethyl acetal.

    Science.gov (United States)

    Reyes, Efraim; Vicario, Jose L; Badía, Dolores; Carrillo, Luisa

    2006-12-21

    [Structure: see text] The organocatalytic asymmetric Michael addition of aldehydes to beta-nitroacroleine dimethyl acetal has been studied in detail. The reaction took place with excellent yields and high stereoselectivities when a chiral beta-amino alcohol such as L-prolinol was employed as the catalyst, leaving a formation of highly functionalized enantioenriched compounds containing two differentiated formyl groups together with a nitro moiety.

  19. Nano-Structured Crystalline Te Films by Laser Gas-Phase Pyrolysis of Dimethyl Tellurium

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Pokorná, Veronika; Boháček, Jaroslav; Bastl, Zdeněk; Ouchi, A.

    2004-01-01

    Roč. 71, č. 2 (2004), s. 739-746 ISSN 0165-2370 R&D Projects: GA AV ČR IAA4072107; GA MŠk OC 523.60 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : dimethyl tellurium * tellurium films * laser Subject RIV: CA - Inorganic Chemistry Impact factor: 1.352, year: 2004

  20. 2-(5,7-Dimethyl-3-methylsulfanyl-1-benzofuran-2-ylacetic acid

    Directory of Open Access Journals (Sweden)

    Hong Dae Choi

    2008-08-01

    Full Text Available The title compound, C13H14O3S, was prepared by alkaline hydrolysis of ethyl 2-(5,7-dimethyl-3-methylsulfanyl-1-benzofuran-2-ylacetate. In the crystal structure, the carboxyl groups are involved in intermolecular O—H...O hydrogen bonds, which link the molecules into centrosymmetric dimers. These dimers are further packed into stacks along the a axis by weak C—H...π interactions.

  1. Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sulfide isotopologues: a route toward their astrophysical detection

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, C. [Dipartimento di Chimica, " Giacomo Ciamician," Università diBologna, Via F. Selmi 2, I-40126 Bologna (Italy); Senent, M. L. [Departamento de Química y Física Teóricas, Institsuto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Domínguez-Gómez, R. [Doctora Vinculada IEM-CSIC, Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid (Spain); Carvajal, M. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, E-21071 Huelva (Spain); Hochlaf, M. [Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallée (France); Al-Mogren, M. Mogren, E-mail: cristina.puzzarini@unibo.it, E-mail: senent@iem.cfmac.csic.es, E-mail: rosa.dominguez@upm.es, E-mail: miguel.carvajal@dfa.uhu.es, E-mail: majdi.hochlaf@u-pem.fr, E-mail: mmogren@ksu.edu.sa [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-11-20

    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.

  2. Interomolecular interactions in diluted solutions of potassium iodocuprates (1) in dimethyl ether of diethylene glycol

    International Nuclear Information System (INIS)

    Gorodinskaya, Eh.Ya.; Mel'nikova, N.B.; Yurin, K.V.

    1991-01-01

    The role of donor solvent in the formation of potassium mononuclear iodocuprates (1) in the system CuI-KI-dimethyl ether of diethylene glycol has been considerd. The calculated values of enthalpy, free energy and entropy of viscous flow activation in the range of temperatures 298-318 K for the solutions testify to decomposition of the solvent structure. Negative deviations of mole volumes from the additivity rule characterized strong molecular interaction

  3. Investigation into dimethyl cadmium decomposition proceeding in form of deflagration combustion

    International Nuclear Information System (INIS)

    Mikheev, V.S.; Orlov, A.S.

    1987-01-01

    Results of measuring the maximum explosion pressure of dimethyl cadmium CdMet 2 at 0.1 MPa initial pressure and ∼378 K temperature are presented. The investigation was conducted using the method of constant volume bomb-reactor with central ignition. Experimental value of the pressure increase, equalling to 0.46 MPa, agrees with evaluation, based on reaction adiabatic temperature thrmodynamic calculation. The normal burning rate, determined by the pressure increase, equals to 25±8 cm/s

  4. 2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]indane-1,3-dione

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2011-02-01

    Full Text Available The title compound 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-indane-1,3-dione (3 was synthesized in high yield by reaction of 3,5-dimethyl-1-phenyl-pyrazole-4-carbaldehyde and indane-1,3-dione in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and GC-MS spectral analysis.

  5. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  6. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, A.; Lee, S.; Tartamella, T.

    2002-04-01

    Dimethyl ether (DME) can be produced much more efficiently in a single-stage, liquid-phase process from natural gas-based syngas as compared to the conventional process via dehydration of methanol. This process, based on dual catalysts slurried in inert oil, alleviates the chemical equilibrium limitation governing the methanol synthesis reaction and concurrently improves per-pass syngas conversion and reactor productivity. The potential, therefore, for production of methyl acetate via dimethyl ether carbonylation is of industrial importance. In the present study, conversion of dimethyl ether and carbon monoxide to methyl acetate is investigated over a variety of group VIII metal-substituted phosphotungstic acid salts. Experimental results of this catalytic reaction using rhodium, iridium, ruthenium, and palladium catalysts are evaluated and compared in terms of selectivity toward methyl acetate. The effects of active metal, support types, multiple metal loading, and feed conditions on carbonylation activity of DME are examined. Iridium metal substituted phosphotungstic acid supported on Davisil type 643 (pore size 150 A, surface area 279 m{sup 2}/g, mesh size 230-425) silica gel shows the highest activity for DME carbonylation. (author)

  7. Low-Dissipation Thermosets Derived from Oligo(2,6-Dimethyl Phenylene Oxide-Containing Benzoxazines

    Directory of Open Access Journals (Sweden)

    Chien-Han Chen

    2018-04-01

    Full Text Available Poly(2,6-dimethyl phenyl oxide (PPO is known for its low dissipation factor. To achieve insulating materials with low dissipation factors for high-frequency communication applications, a telechelic oligomer-type benzoxazine (P-APPO and a main-chain type benzoxazine polymer (BPA-APPO were prepared from an amine end-capped oligo (2,6-dimethyl phenylene oxide (APPO. The APPO was prepared from a nucleophilic substitution of a phenol-end capped oligo (2,6-dimethyl phenylene oxide (a commercial product, SA 90 with fluoronitrobenzene, and followed by catalytic hydrogenation. After self-curing or curing with a dicyclopentadiene-phenol epoxy (HP 7200, thermosets with high-Tg and low-dissipation factor can be achieved. Furthermore, the resulting epoxy thermosets show better thermal and dielectric properties than those of epoxy thermoset cured from its precursor SA90, demonstrating it is a successful modification in simultaneously enhancing the thermal and dielectric properties.

  8. Dimethyl sulfoxide-inducible cytoplasmic factor involved in erythroid differentiation in mouse erythroleukemia (Friend) cells

    International Nuclear Information System (INIS)

    Watanabe, T.; Oishi, M.

    1987-01-01

    A previous report described an intracellular factor (differentiation-inducing factor I, or DIF-I) that seem to play a role in erythroid differentiation in mouse erythroleukemia (MEL) cells. The authors have detected another erythroid-inducing factor in cell-free extracts from dimethyl sulfoxide- or hexamethylenebis(acetamide)-treated MEL cells, which acts synergistically with DIF-I. The partially purified factor (termed DIF-II) triggered erythroid differentiation when introduced into undifferentiated MEL cells that had been potentiated by the induction of DIF-I. The activity in the extracts appeared in an inducible manner after addition of dimethyl sulfoxide or hexamethylenebis(acetamide), reached a maximum at 6 hr, and then rapidly decreased. The induction was inhibited by phorbol 12-myristate 13-acetate and also by cycloheximide. No induction was observed in a mutant MEL cell line defective in erythroid differentiation. These characteristics are consistent with the supposition that DIF-II is one of the putative dimethyl sulfoxide-inducible factors detected in previously reported cell-fusion and cytoplast-fusion experiments. The role of DIF-II in MEL-cell differentiation and in vitro differentiation in general is discussed

  9. Gamma-radiolysis of dimethyl sulfoxide. II. Radiolysis yields and possible mechanisms

    International Nuclear Information System (INIS)

    Gutierrez, M. C.; Barrera, R.

    1978-01-01

    As result of quantitative studies on gamma-radiolysis of DMSO at a dose range of 90-850 Mrads, constant G values have been obtained for the following radiolysis compounds: G(-DMSO) - 6.7 ±0.2; G(dimethyl sulphide) - 3.4 ±0.3; G(methane) - 0,75 ± 0.04; G(dimethyl disulphide) -0.33 ±0,03; G(tri methylsulphonium methanesulphonate) - 0.26 ± 0,01; G(methyl methanethiosulphonate) - 0,25 ±0.02; G(dimethyl sulphona)-0.21±0.02; G(H 2 )-0.18±0.02; and G(propane)--0.0092±0.0007. Initial G values have been obtained for other identified compounds: Gi(ethane)-0,46; Gi(CO)-0.052; and Gi(CO 2 )-0.030. Possible mechanisms on the radiolysis process are proposed. (Author) 17 refs

  10. A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Khaled, Fathi; Vasu, Subith S.; Farooq, Aamir

    2014-01-01

    Ketones are potential biofuel candidates and are also formed as intermediate products during the oxidation of large hydrocarbons or oxygenated fuels, such as alcohols and esters. This paper presents shock tube ignition delay times and OH reaction

  11. The synergistic effects of 2,4-D dimethyl amine and propanil herbicides on weed population in rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ramli Ishak; Sabri Junoh; Ismail Sahid

    2002-01-01

    Four treatments with the herbicides 2,4-D dimethyl amine and propanil were carried out in two consecutive rice planting seasons, to study the synergistic effect of 2,4-D dimethyl amine and propanil on rice weed populations at Pasir Panjang, the Northwest Selangor Project (PBLS), Projek Barat Laut Selangor) rice granary area. The treatments were control, 1x recommended rate (single dose), 2x recommended rate (double dose) of 2,4-D dimethyl amine and farmer practice. In all plots, propanil herbicide was applied at similar rate. Among the ecological indices measured were Simpson Index of diversity and importance (I.V.). A total number of 19 weed species was identified and the most common important weed was Najas graminae Del. The second most commonly found important weed was Scirpus lateriflorus Gmel. Other important weeds frequently found were Echinochloa crus-galli (L.) Beauv. and Fimbristylis miliacea (L.) Vahl. In the rice agroecosystem, species diversity of weeds was affected but total weed biomass was not affected synergistically by the mixture of 2,4-D dimethyl amine and propanil. The negative synergistic effect of 2,4-D dimethyl amine and propanil was to increase the total biomass of Scirpus lateriflorus, at 2x recommended dose rate of 2,4-D dimethyl amine. (Author)

  12. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling.

    Science.gov (United States)

    Chen, Xiao-Hong; Wang, Xiao-Ting; Lou, Wen-Yong; Li, Ying; Wu, Hong; Zong, Min-Hua; Smith, Thomas J; Chen, Xin-De

    2012-09-04

    The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4'-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4'-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in

  13. Asymmetric reduction of ketones with catecholborane using 2,6-BODOL complexes of titanium(IV) as catalysts.

    Science.gov (United States)

    Sarvary, I; Almqvist, F; Frejd, T

    2001-05-18

    Reductions performed with Ti(IV) complexes of ligands based on bicyclo[2.2.2]octane diols 5 and 6 are effective catalysts in the reduction of prochiral ketones to optically active alcohols, with catecholborane as the reducing agent. Methyl ketones are favored and enantiomeric excesses (ee) of octanone, which gave 2-octanol in 87% ee. Further details of the method were examined, for example, temperature, solvent composition, amount of molecular sieves (4 A), and catecholborane quality, as well as the sensitivity of the ligands towards acids. NMR spectroscopic methods were used to gain some insight into the complexes formed between the ligands and [Ti(OiPr)4]. A dimeric structure is proposed for the pre-catalyst.

  14. Preparation and characterization of electrospun poly(phthalazinone ether nitrile ketone) membrane with novel thermally stable properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Zhang, Hao; Qian, Bingqing [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wang, Jinyan, E-mail: wangjinyan@dlut.edu.cn [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Jian, Xigao [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Highlights: • Poly (phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. • Electrospun membrane exhibits a good thermostability. • Electrospun membrane. - Abstract: Electrospun nanofibrous membranes have several applications because of their excellent properties, such as high porosity, small fiber diameter, and large surface area. However, high-temperature resistant electrospun membranes remain a challenge because of the absence of precursors that offer spinnability, scalability, and superior thermal stability. In this study, poly(phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. Electrospun PPENK membranes were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain tests. Results indicated that the prepared electrospun membranes had a very high glass transition temperature, superior chemical resistance, and excellent mechanical strength. These desirable properties broaden their potential application in membranes and treatment of various hot fluid streams without strict temperature control.

  15. The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells.

    Science.gov (United States)

    Bagley, Mark C; Dwyer, Jessica E; Baashen, Mohammed; Dix, Matthew C; Murziani, Paola G S; Rokicki, Michal J; Kipling, David; Davis, Terence

    2016-01-21

    Microwave-assisted synthesis of the pyrazolyl ketone p38 MAPK inhibitor RO3201195 in 7 steps and 15% overall yield, and the comparison of its effect upon the proliferation of Werner Syndrome cells with a library of pyrazolyl ketones, strengthens the evidence that p38 MAPK inhibition plays a critical role in modulating premature cellular senescence in this progeroid syndrome and the reversal of accelerated ageing observed in vitro on treatment with SB203580.

  16. Adenosine A1 Receptor Antagonism Abolished the Anti-seizure Effects of Exogenous Ketone Supplementation in Wistar Albino Glaxo Rijswijk Rats

    Directory of Open Access Journals (Sweden)

    Zsolt Kovács

    2017-07-01

    Full Text Available The state of therapeutic ketosis can be achieved by using the ketogenic diet (KD or exogenous ketone supplementation. It was suggested previously that the adenosinergic system may be involved in the mediating effect of KD on suppressing seizure activity in different types of epilepsies, likely by means of adenosine A1 receptors (A1Rs. Thus, we tested in the present study whether exogenous ketone supplements (ketone ester: KE, 2.5 g/kg/day; ketone salt/KS + medium chain triglyceride/MCT: KSMCT, 2.5 g/kg/day applied sub-chronically (for 7 days by intragastric gavage can modulate absence epileptic activity in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats. The number of spike-wave discharges (SWDs significantly and similarly decreased after both KE and KSMCT treatment between 3rd and 7th days of gavage. Moreover, blood beta-hydroxybutyrate (βHB levels were significantly increased alike after KE and KSMCT gavage, compared to control levels. The SWD number and βHB levels returned to the baseline levels on the first day without ketone supplementation. To determine whether A1Rs can modify ketone supplement-evoked changes in absence epileptic activity, we applied a non-pro-epileptic dose of a specific A1R antagonist DPCPX (1,3-dipropyl-8-cyclopentylxanthine (intraperitoneal/i.p. 0.2 mg/kg in combination with KSMCT (2.5 g/kg/day, gavage. As expected, DPCPX abolished the KSMCT-evoked decrease in SWD number. Thus, we concluded that application of exogenous ketone supplements may decrease absence epileptic activity in WAG/Rij rats. Moreover, our results suggest that among others the adenosinergic system, likely via A1Rs, may modulate the exogenous ketone supplements-evoked anti-seizure effects.

  17. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.

    Science.gov (United States)

    Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M

    1999-10-01

    The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.

  18. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  19. Relative utilization of fatty acids for synthesis of ketone bodies and complex lipids in the liver of developing rats.

    Science.gov (United States)

    Yeh, Y Y; Streuli, V L; Zee, P

    1977-04-01

    The regulation of hepatic ketogenesis, as related to the metabolism of fatty acids through oxidative and synthetic pathways, was studied in developing rats. [1-14C] palmitate was used as a substrate to determine the proportions of free fatty acids utilized for the production of ketone bodies, CO2 and complex lipids. Similar developmental patterns of hepatic ketogenesis were obtained by measuring the production of either [14C] acetoacetate from exogenous [1-14C] palmitate or the sum of unlabeled acetoacetate and beta-hydroxybutyrate from endogenous fatty acids. The production of total ketone bodies was low during the late fetal stage and at birth, but increased rapidly to a miximum value within 24 hr after brith. The maximal ketogenic capacity appeared to be maintained for the first 10 days of life. 14CO2 production from [1-14C] palmitate increased by two- to fourfold during the suckling period, from its initial low rate seen at birth. The capacity for synthesis of total complex lipids was low at birth and had increased by day 3 to a maximal value, which was comparable to that of adult fed rats. The high lipogenic capacity lasted throughout the remaining suckling period. When ketogenesis was inhibited by 4-pentenoic acid, the rate of synthesis of complex lipids did not increase despite an increase in unutilized fatty acids. During the mid-suckling period, approximately equal amounts of [1-14C] palmitate were utilized for the synthesis of ketone plus CO2 and for complex lipid synthesis. By contrast, in adult fed rats, the incorporation of fatty acids into complex lipids was four times higher than that of ketone plus CO2. These observations suggest that stimulated hepatic ketogenesis in suckling rats results from the rapid oxidation of fatty acids and consequent increased production of acetyl CoA, but not from impaired capacity for synthesis of complex lipids.

  20. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Science.gov (United States)

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells

    OpenAIRE

    Hillreiner, Maria;Flinspach, Claudia;Pfaffl, Michael W.;Kliem, Heike

    2017-01-01

    Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC) challenged with the mastitis pathogen Escherichia coli (E. coli). Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from m...

  2. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    International Nuclear Information System (INIS)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-01-01

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  3. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  4. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  5. Amin-substituierte Spiroacetale von Grundmanns Keton als neuartige Inhibitoren der humanen ∆8,7-Sterolisomerase

    OpenAIRE

    Krojer, Melanie

    2011-01-01

    Die Cholesterolbiosynthese ist ein wichtiger Ansatzpunkt für die Kontrolle und Manipulation von biochemischen Vorgängen in Wirbeltieren und damit für die Entwicklung therapeutischer Wirkstoffe. Mit der Cholesterolbiosynthese assoziierte Krankheiten sind beispielsweise Hypercholesterinämie, die Alzheimer Erkrankung oder die Creutzfeld-Jakob Krankheit. Im Rahmen dieser Arbeit konnten ausgehend von Grundmanns Keton und alpha-Tetralon verschiedene Amin-substituierte Spiroacetale dargestellt ...

  6. N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts To Generate α,β-Unsaturated Ketones.

    Science.gov (United States)

    Rajkiewicz, Adam A; Kalek, Marcin

    2018-04-06

    An organocatalyzed metal-free, direct olefination of aldehydes with vinyliodonium salts has been achieved by an N-heterocyclic carbene-promoted C-H bond activation. The reaction proceeds under very mild conditions, delivering a range of (hetero)aryl-vinyl ketones in good yields. The retention of the double bond configuration is uniformly observed, and the application of 2-methoxyphenyl auxiliary group in iodonium salts secures a complete selectivity of the vinyl transfer.

  7. The incorporation of [1-14C] acetate into the methyl ketones that occur in steam-distillates of bovine milk fat.

    Science.gov (United States)

    Lawrence, R C; Hawke, J C

    1966-01-01

    1. The (14)C-labelling of the fatty acids and the methyl ketones in steam-distillates of milk fat from a lactating cow that had been injected intravenously with [1-(14)C]acetate was determined. 2. The labelling patterns of the C(6)-C(16) fatty acids and the corresponding methyl ketones with one fewer carbon atoms were similar, particularly so for the C(5)-C(10) compounds at 9 and 22hr. after the injection of [1-(14)C]acetate. The isolation of (14)C-labelled methyl ketones in the range C(3)-C(15) is evidence that the beta-oxo acid precursors, which are glyceride-bound in the milk fat, are synthesized in the mammary gland from acetate. The absence of heptadecan-2-one in steam-distillates and the extremely low specific radioactivity of stearic acid are further evidence for this biosynthetic pathway. 3. The specific radioactivities of the C(5)-C(15) methyl ketones were higher (with the exception of C(9) methyl ketone in the second milking) than the specific activities of the corresponding fatty acids with one more carbon atom. This is consistent with the methyl ketone precursors' being formed during the biosynthesis of fatty acids rather than being products of beta-oxidation of fatty acids.

  8. Determination coefficient distribution rhenium and tungsten using method extraction with solvent methyl ethyl ketone

    International Nuclear Information System (INIS)

    Riftanio Natapratama Hidayat; Maria Christina Prihatiningsih; Duyeh Setiawan

    2015-01-01

    Determination of the distribution coefficient (K d ) of the rhenium and tungsten conducted for the purpose of knowing the value of K d of the two elements. K d value determination is applied to the process of separation rhenium-188 from target of tungsten-188 for the purposes purification of radioisotopes that are made to meet the radionuclide and radiochemical purity. The K d value determination using solvent extraction with methyl ethyl ketone (MEK). Prior to the determination of K d values, determined beforehand the optimum conditions of extraction process based on the effect of agitation time, the volume of MEK, and the pH of the solution. Confirmation the results of the extraction was conducted using UV-Vis spectrophotometer with a complexing KSCN under acidic conditions and reductant SnCl 2 . The results showed that the optimum condition extraction process to feed each of 10 ppm is when the agitation for 10 minutes, the volume of MEK in 20 ml, and the pH below 5. Obtained the maximum recovery of rhenium are drawn to the organic phase as much as 9.545 ppm. However, the condition of the extraction process does not affect the migration of tungsten to the organic phase. Then the maximum K d values obtained at 2.7566 rhenium and tungsten maximum K d is 0.0873. Optimum conditions of extraction process can be further tested on radioactive rhenium and tungsten as an alternative to the separation of radioisotopes. (author)

  9. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    Science.gov (United States)

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.

  10. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  11. Toward Green Acylation of (Heteroarenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero­arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene as well as of natural products (eugenol and safrole. Furthermore, synthetic applications to drug molecules are showcased.

  12. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  13. Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report

    International Nuclear Information System (INIS)

    Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

    1989-02-01

    Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and ∼30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs

  14. Groundwater remediation project at Stockem railway station following a pollution with MIAK (Methyl Isoamyl Ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Daelemans, A.; Boden, A.; Schuyteneer, L.W. de; Achter, L.H. van [Soil Service of Belgium, Leuven-Heverlee (Belgium)

    2003-07-01

    On the 20{sup th} of January 2000, a derailment accident happened near the railway station of Stockem in the vicinity of the city of Arlon. An estimated 20.000 litres of MIAK (methyl isoamyl ketone or 5-methyl-2-hexanone) was spilled and lost into the soil. Immediately after the accident, the Soil Service of Belgium received a request from the Belgian National Railway Company to establish an emergency plan for the remediation of the spill, including the design and the follow-up of the clean up operations. The calamity happened to the West of the railway station at a height of 360 m above sea level and in the vicinity of the Semois river (200 m to the South). From a geological point of view, the Formation of Florenville is outcropping at the site. This formation is characterized by an alternation of sandy sediments and sandstone layers. Locally the rock layer are porous allowing vertical migration of the water. The formation is an important but vulnerable aquifer. Further to the South, water is extracted from the aquifer in large quantities for both public distribution and bottling purposes. The spilled product, 5-methyl-2-hexanone (MIAK), has a typical fruity odour and its density is slightly lower than water. The product is relative mobile and fairly easy degraded biologically in low concentrations. (orig.)

  15. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal; Pryor, Owen; Koroglu, Batikan; Sarathy, Mani; Masunov, Artë m E.; Vasu, Subith S.

    2017-01-01

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  16. Contribution of ketone bodies to cholesterogenesis in Morris hepatoma 7777 cells

    International Nuclear Information System (INIS)

    Hilderbrandt, L.; Elson, C.; Shrago, E.

    1990-01-01

    Cholesterol synthesis in neoplastic tissues is typically measured in incubations of minced tissue or tissue slices with 10 mM concentrations of individual substrates. Carbon incorporation into cholesterol from [ 14 C] labelled substrates by freshly isolated hepatoma cells was measured after one hour incubation with 10 mm single substrates. These observations were extended by measuring cholesterol synthesis supported by [ 14 C] substrates in a media containing a mixture of substrates at physiological concentrations: 5.0 mM glucose, 1.3 mM D(-)-3-hydroxybutyrate, 0.5 mM acetoacetate, 0.3 mM acetate, 0.3 mM oleate, 0.3 mM palmitate, 0.65 mM glutamine, 1.4 mM lactate and 0.1 mM pyruvate in Eagle's modified essential medium. Under single substrate conditions, the ketone bodies contribute substantially to cholesterogenesis. Estimates of the quantitative contribution of each substrate to total cholesterol synthesis are reported

  17. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kanetomo, Takuya; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We synthesized [Ln{sup III}(hfac){sub 3}(H{sub 2}O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λ{sub ex} = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] (28% at λ{sub ex} = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λ{sub ex} = 400 nm, while that of the starting material [EuI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] was 4% at λ{sub ex}=400 nm.

  18. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  19. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    Science.gov (United States)

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  20. Allergic Reaction to Polyether Ether Ketone Following Cross-Reactivity to Epoxy Resin.

    Science.gov (United States)

    Kofler, Lukas; Wambacher, Markus; Schweinzer, Katrin; Scherl, Maritta; Kofler, Heinz

    Polyether ether ketone (PEEK) is a thermoplastic polymer frequently used in engineering but also in medical devices. Only 1 case of allergic reaction to PEEK used as an implanted medical device has been reported so far; however, the route of sensitization remained unclear. Here we report on a 62-year-old male patient with a preknown, severe type IV allergy to epoxy resin. He reported strong pain in his shoulder after implantation of a PEEK-containing device after a rotator cuff injury. For testing, the device was implanted in a small pouch subcutaneously on the abdomen. The patient reported massive pain starting 8 hours after the implantation, strictly limited to the procedural area and showing perifocal erythema. A possible explanation of the sensitization mode is the source material for PEEK and epoxy resin, as both are mainly based on bisphenols. An allergic reaction to PEEK with preknown epoxy resin sensitization has not been reported so far. As epoxy resins are a frequent cause of occupational contact dermatitis and PEEK is widely used for medical and nonmedical devices, we believe that this is of great clinical relevance.

  1. Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone

    Science.gov (United States)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2016-09-01

    We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.

  2. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    Science.gov (United States)

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Science.gov (United States)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  4. Low-temperature direct heterogeneous bonding of polyether ether ketone and platinum.

    Science.gov (United States)

    Fu, Weixin; Shigetou, Akitsu; Shoji, Shuichi; Mizuno, Jun

    2017-10-01

    Direct heterogeneous bonding between polyether ether ketone (PEEK) and Pt was realized at the temperatures lower than 150°C. In order to create sufficient bondability to diverse materials, the surface was modified by vacuum ultraviolet (VUV) irradiation, which formed hydrate bridges. For comparison, direct bonding between surfaces atomically cleaned via Ar fast atom bombardment (FAB) was conducted in a vacuum. The VUV irradiation was found to be effective for creating an ultrathin hydrate bridge layer from the residual water molecules in the chamber. Tight bonds were formed through dehydration of the hydrate bridges by heating at 150°C, which also contributed to enhancing interdiffusion across the interface. The VUV-modified surfaces showed bondability as good as that of the FAB-treated surfaces, and the VUV-modified samples had shear strengths at the same level as those of FAB-treated surfaces. This technology will be of practical use in the packaging of lightweight, flexible biomedical devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanical properties of orthodontic wires covered with a polyether ether ketone tube.

    Science.gov (United States)

    Shirakawa, Nobukazu; Iwata, Toshio; Miyake, Shinjiro; Otuka, Takero; Koizumi, So; Kawata, Toshitugu

    2018-03-21

    To evaluate the esthetics and frictional force of an orthodontic wire passed through a newly designed tube made of a polyether ether ketone (PEEK) resin. Two types of standard PEEK tubes were prepared at 0.5 × 0.6ф and 0.8 × 0.9ф, and different archwires were passed through the tubes. Color values were determined according to brightness and hues. Friction was assessed with different bracket-wire combinations, and surface roughness was determined by stereomicroscopy before and after the application of friction. The PEEK tube showed a color difference that was almost identical to that of coated wires conventionally used in clinical practice, indicating a sufficient esthetic property. The result of the friction test showed that the frictional force was greatly reduced by passing the archwire through the PEEK tube in almost all of the archwires tested. Use of the new PEEK tube demonstrated a good combination of esthetic and functional properties for use in orthodontic appliances.

  6. The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone.

    Science.gov (United States)

    Zeighami, S; Mirmohammadrezaei, S; Safi, M; Falahchai, S M

    2017-12-01

    This study aimed to evaluate the effect of core shade and core and veneering thickness on color parameters and translucency of polyether ether ketone (PEEK). Sixty PEEK discs (0.5 and 1 mm in thickness) with white and dentine shades were veneered with A2 shade indirect composite resin with 0.5, 1 and 1.5 mm thickness (n=5). Cores without the veneering material served as controls for translucency evaluation. Color parameters were measured by a spectroradiometer. Color difference (ΔE₀₀) and translucency parameters (TP) were computed. Data were analyzed using one-way ANOVA and Tukey's test (for veneering thickness) and independent t-test (for core shade and thickness) via SPSS 20.0 (p⟨0.05). Regarding the veneering thickness, white cores of 0.5 mm thickness showed significant differences in all color parameters. In white cores of 1 mm thickness and dentine cores of 0.5 and 1 mm thickness, there were statistically significant differences only in L∗, a∗ and h∗. The mean TP was significantly higher in all white cores of 1 mm thickness than dentine cores of 1 mm. Considering ΔE₀₀=3.7 as clinically unacceptable, only three groups had higher mean ΔE₀₀ values. Core shade, core thickness, and the veneering thickness affected the color and translucency of PEEK restorations. Copyright© 2017 Dennis Barber Ltd.

  7. Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

    1989-02-01

    Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and approx.30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs.

  8. Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: synthesis, characterization, and catalytic application in hydrogenation of ketones.

    Science.gov (United States)

    Wang, Wan-Hui; Suna, Yuki; Himeda, Yuichiro; Muckerman, James T; Fujita, Etsuko

    2013-07-14

    A series of highly functionalized cyclopentadienyl rhodium(III) complexes, [Cp'Rh(bpy)Br](ClO4) (Cp' = substituted cyclopentadienyl), was synthesized from various multi-substituted cyclopentadienes (Cp'H). [Rh(cod)Cl]2 and Cp'H were firstly converted to [Cp'Rh(cod)] complexes, which were then treated with Br2 to give the rhodium(III) dibromides [Cp'RhBr2]2. The novel complexes [Cp'Rh(bpy)Br](ClO4) were obtained readily by the reaction of 2,2'-bipyridine with [Cp'RhBr2]2. These rhodium complexes [Cp'Rh(bpy)Br](ClO4) were fully characterized and utilized in the hydrogenation of cyclohexanone and acetophenone with generally high yields, but they did not exhibit the same reactivity trends for the two substrate ketones. The different activity of these complexes for the different substrates may be due to the influence of the substituents on the Cp' rings.

  9. Development and characterization of poli composites (ether ether ketone)(PEEK)(Hydroxyapatite(HA)

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Santos, F.S.F.; Sa, M.D. de; Fook, M.V.L.

    2016-01-01

    The objective of this work was to develop PEEK / HA composites, combining the biological activity of the ceramic phase with the properties of the polymer phase, the materials used in this research were Poly (ether-ether-ketone) (PEEK) and Hydroxyapatite (HA) (50, 60, 70 and 80% m / v HA), this material was subjected to a load of two tons followed by a thermal treatment at 390 ° for a period of 30 minutes. Then they were characterized by FTIR, DRX and MO. In the physical-chemical characterization of FTIR and XRD, it was not possible to identify significant alterations. In the FTIR spectra of the composites, there is no formation of new identifiable chemical bonds. In the composites XRD diffractograms a profile similar to the ceramic phase was observed, with peaks increasing in intensity and narrowing proportional to the increase of the hydroxyapatite concentration in the composites. In optical microscopy it is possible to observe surfaces with heterogeneous morphology, with signs of roughness and in the cross section we observe a heterogeneous aspect, rich in regions with large agglomerates and lighter particles. Considering the processing aspects, the technique proved to be effective for the development of PEEK /HA composites. (author)

  10. Potentiation of 2,5-hexanedione neurotoxicity by methyl ethyl ketone

    International Nuclear Information System (INIS)

    Ralston, W.H.; Hilderbrand, R.L.; Uddin, D.E.; Andersen, M.E.; Gardier, R.W.

    1985-01-01

    Chronic oral administration of a combination of 2.2 mmol methyl ethyl ketone (MEK) and 2.2 mmol 2,5-hexanedione (2,5-HD)/kg/day, 5 days/week resulted in more rapid onset of motor deficits than did chronic dosing with 2.2 mmol 2,5-HD/kg/day alone. In kinetic studies blood time courses of 2,5-HD were determined in rats in the presence and absence of MEK. Concomitant administration of MEK reduced blood 2,5-HD clearance and increased the area under the curve (AUC) for the blood 2,5-HD. In companion experiments with 2,5-[1,6- 14 C]HD as a tracer, neural and nonneural tissues were examined 72 hr following the last treatment at Weeks 1, 2, and 3 of chronic administration of 2,5-HD alone or in combination with an equimolar dose of MEK. Rats treated with 2,5-[ 14 C]HD alone or in combination with MEK demonstrated no difference in total or trichloroacetic acid-precipitable radioactivity in blood, in liver homogenates, or in neurofilament-enriched fractions from sciatic nerve and spinal cord. The data support a suggestion that the potentiation of hexacarbon neurotoxicity by MEK is the result of the persistence of the neurotoxic metabolite in the blood and not the enhanced metabolism of parent hexacarbon to 2,5-HD

  11. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Methyl vinyl ketone, a toxic ingredient in cigarette smoke extract, modifies glutathione in mouse melanoma cells.

    Science.gov (United States)

    Horiyama, Shizuyo; Takahashi, Yuta; Hatai, Mayuko; Honda, Chie; Suwa, Kiyoko; Ichikawa, Atsushi; Yoshikawa, Noriko; Nakamura, Kazuki; Kunitomo, Masaru; Date, Sachiko; Masujima, Tsutomu; Takayama, Mitsuo

    2014-01-01

    Cigarette smoke contains many harmful chemicals, which contribute to the pathogenesis of smoking-related diseases such as chronic obstructive pulmonary disease, cancer and cardiovascular disease. The cytotoxicity of cigarette smoke is well documented, but the definitive mechanism behind its toxicity remains unknown. Ingredients in cigarette smoke are known to deplete intracellular glutathione (GSH), the most abundant cellular thiol antioxidant, and to cause oxidative stress. In the present study, we investigated the mechanism of cigarette smoke extract (CSE)-induced cytotoxicity in B16-BL6 mouse melanoma (B16-BL6) cells using liquid chromatography-tandem mass spectrometry. CSE and ingredients in cigarette smoke, methyl vinyl ketone (MVK) and crotonaldehyde (CA), reduced cell viability in a concentration-dependent manner. Also, CSE and the ingredients (m/z 70, each) irreversibly reacted with GSH (m/z 308) to form GSH adducts (m/z 378) in cells and considerably decreased cellular GSH levels at concentrations that do not cause cell death. Mass spectral data showed that the major product formed in cells exposed to CSE was the GSH-MVK adduct via Michael-addition and was not the GSH-CA adduct. These results indicate that MVK included in CSE reacts with GSH in cells to form the GSH-MVK adduct, and thus a possible reason for CSE-induced cytotoxicity is a decrease in intracellular GSH levels.

  13. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone in tropical, boreal, temperate and marine environments

    Directory of Open Access Journals (Sweden)

    A. M. Yáñez-Serrano

    2016-09-01

    Full Text Available Methyl ethyl ketone (MEK enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia. Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  14. Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CL(pro)

    Energy Technology Data Exchange (ETDEWEB)

    Bacha,U.; Barilla, J.; Gabelli, S.; Kiso, Y.; Amzel, L.; Freire, E.

    2008-01-01

    Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CLpro (Mpro), which is highly conserved among all coronaviruses. Here 3CLpro derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CLpro with Ki's as low as 300 nm. The crystal structure of the complex of one of the compounds with 3CLpro indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.

  15. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications

    International Nuclear Information System (INIS)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2009-01-01

    In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 deg. C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T max ), exothermic onset temperature (T 0 ), and heat of decomposition (ΔH d ) was essential for identifying early-stage runaway reactions effectively for industries.

  16. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.

    Science.gov (United States)

    Kajiya, Daisuke; Saitow, Ken-ichi

    2013-08-07

    Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of

  17. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  18. Potentiometric investigation of acid dissociation and anionic homoconjugation equilibria of substituted phenols in dimethyl sulfoxide[Substituted phenols; Acid-base equilibria; Dimethyl sulfoxide (DMSO); Potentiometry

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Malgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech. E-mail: lech@chemik.chem.univ.gda.pl

    2003-10-01

    Standard acidity constants, K{sub a}{sup DMSO} (HA), expressed as pK{sub a}{sup DMSO} (HA) values, and anionic homoconjugation constants, K{sup DMSO}{sub AHA{sup -}}, (in the form of lg K{sup DMSO}{sub AHA{sup -}} values) have been determined for 11 substituted phenol-phenolate systems a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO) with a potentiometric titration. A linear relationship has been determined between lg K{sup DMSO}{sub AHA{sup -}} and pK{sub a}{sup DMSO} (HA). The tendency towards anionic homoconjugation in these systems increases with increasing pK{sub a}{sup DMSO} (HA) that is with declining phenol acidity. The pK{sub a}{sup DMSO} (HA) are correlated with both pK{sub a}{sup W} (HA) water and other polar non-aqeous solvents.

  19. Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the north-east WPCP plant of Philadelphia.

    Science.gov (United States)

    Glindemann, Dietmar; Novak, John; Witherspoon, Jay

    2006-01-01

    This study shows for the first time that overlooked mg/L concentrations of industrial dimethyl sulfoxide (DMSO) waste residues in sewage can cause "rotten cabbage" odor problems bydimethyl sulfide (DMS) in conventional municipal wastewater treatment. In laboratory studies, incubation of activated sludge with 1-10 mg/L DMSO in bottles produced dimethyl sulfide (DMS) at concentrations that exceeded the odor threshold by approximately 4 orders of magnitude in the headspace gas. Aeration at a rate of 6 m3 air/m3 sludge resulted in emission of the DMS into the exhaust air in a manner analogous to that of an activated sludge aeration tank. A field study atthe NEWPCP sewage treatment plant in Philadelphia found DMSO levels intermittently peaking as high as 2400 mg/L in sewage near an industrial discharger. After 3 h, the DMSO concentration in the influent to the aeration tank rose from a baseline level of less than 0.01 mg/L to a level of 5.6 mg/L and the DMS concentration in the mixed liquor rose from less than 0.01 to 0.2 mg/L. Finding this link between the intermittent occurrence of DMSO residues in influent of the treatment plant and the odorant DMS in the aeration tank was the keyto understanding and eliminating the intermittent "canned corn" or "rotten cabbage" odor emissions from the aeration tank that had randomly plagued this plant and its city neighborhood for two decades. Sewage authorities should consider having wastewater samples analyzed for DMSO and DMS to check for this possible odor problem and to determine whether DMSO emission thresholds should be established to limit odor generation at sewage treatment plants.

  20. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Science.gov (United States)

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  1. Isothermal Vapour-Liquid Equilibria in the Binary and Ternary Systems Composed of tert-Butyl Methyl Ether, 3,3-Dimethyl-2-butanone and 2,2-Dimethyl-1-propanol

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Pavlíček, Jan; Wichterle, Ivan

    2009-01-01

    Roč. 278, 1-2 (2009), s. 129-134 ISSN 0378-3812 R&D Projects: GA ČR GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : alcohol * ether * ketone Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  2. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; North, S.W.; Stranges, D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  3. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    International Nuclear Information System (INIS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-01-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C 6 H 2 O 5 )(C 6 H 3 O 5 )(H 2 O)] n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted

  4. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  5. Chamber simulation of photooxidation of dimethyl sulfide and isoprene in the presence of NOx

    Directory of Open Access Journals (Sweden)

    M. Jang

    2012-11-01

    Full Text Available To improve the model prediction for the formation of H2SO4 and methanesulfonic acid (MSA, aerosol-phase reactions of gaseous dimethyl sulfide (DMS oxidation products [e.g., dimethyl sulfoxide (DMSO] in aerosol have been included in the DMS kinetic model with the recently reported gas-phase reactions and their rate constants. To determine the rate constants of aerosol-phase reactions of both DMSO and its major gaseous products [e.g., dimethyl sulfone (DMSO2 and methanesulfinic acid (MSIA], DMSO was photooxidized in the presence of NOx using a 2 m3 Teflon film chamber. The rate constants tested in the DMSO kinetic mechanisms were then incorporated into the DMS photooxidation mechanism. The model simulation using the newly constructed DMS oxidation mechanims was compared to chamber data obtained from the phototoxiation of DMS in the presence of NOx. Within 120-min simulation, the predicted concentrations of MSA increase by 200–400% and those of H2SO4, by 50–200% due to aerosol-phase chemistry. This was well substantiated with experimental data. To study the effect of coexisting volatile organic compounds, the photooxidation of DMS in the presence of isoprene and NOx has been simulated using the newly constructed DMS kinetic model integrated with the Master Chemical Mechanism (MCM for isoprene oxidation, and compared to chamber data. With the high concentrations of DMS (250 ppb and isoprene (560–2248 ppb, both the model simulation and experimental data showed an increase in the yields of MSA and H2SO4 as the isoprene concentration increased.

  6. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    International Nuclear Information System (INIS)

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-01-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH 3 SOCH 3 ) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH 3 intermediate prior to dissociation to define a stepwise dissociation: (1) CH 3 SOCH 3 → 2CH 3 + SO; (2a) CH 3 SOCH 3 → CH 3 + SOCH 3 ; and (2b) SOCH 3 → SO + CH 3 . Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH 3 and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH 3 intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2

  7. Ketone bodies in blood of dairy cows: Prevalence and monitoring of subclinical ketosis

    Directory of Open Access Journals (Sweden)

    Marek Krempaský

    2014-01-01

    Full Text Available The aim of this study was to investigate the relationship between concentration of non-esterified fatty acid and ketone bodies in blood of dairy cows, and to evaluate these concentrations for the detection of prevalence of subclinical ketosis. The second aim was to compare the concentration of β-hydroxybutyric acid determined by an electronic handheld meter Precision Xtra® with serum concentration of β-hydroxybutyric acid analysed in laboratory with izotachometric and photometric method, respectively. Blood samples were collected from jugular vein 4–6 h after morning feeding in three groups of Holstein cows (n = 909 according to the lactation phase from 51 different herds with similar husbandry characteristics. High lipomobilization (non-esterified fatty acid ≥ 0.35 mmol·l-1, mean concentration 0.34 ± 0.15 mmol·l-1 was detected in 30.3% of antepartum cows, while increased concentrations of β-hydroxybutyric acid (≥ 1.0 mmol·l-1, prevalence of subclinical ketosis were detected in 18.5% and 14.1% of the early lactation and mid lactation cows, respectively. The correlation coefficient (r = 0.84, P P ® test and plasma or serum β-hydroxybutyric acid concentration determined by isotachophoresis and photometrical method, respectively. Our results show that the monitoring of changes in the blood concentration of β-hydroxybutyric acid in high-yielding cows in the early postpartum period by the electronic handheld meter Precision Xtra® may be effective in reducing the incidence of ketosis and health problems associated with ketosis in dairy cattle herds.

  8. Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.

    Science.gov (United States)

    Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C

    2017-01-01

    Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either

  9. High strength, surface porous polyether-ether-ketone for load-bearing orthopaedic implants

    Science.gov (United States)

    Evans, Nathan T.; Torstrick, F. Brennan; Lee, Christopher S.D.; Dupont, Kenneth M.; Safranski, David L.; Chang, W. Allen; Macedo, Annie E.; Lin, Angela; Boothby, Jennifer M.; Whittingslow, Daniel C.; Carson, Robert A.; Guldberg, Robert E.; Gall, Ken

    2015-01-01

    Despite its widespread clinical use in load-bearing orthopaedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer thickness was 399.6±63.3 µm and possessed a mean pore size of 279.9±31.6 µm, strut spacing of 186.8±55.5 µm, porosity of 67.3±3.1%, and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via µCT and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopaedic applications. PMID:25463499

  10. Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation

    Science.gov (United States)

    Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela

    2015-12-01

    Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.

  11. The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone.

    Science.gov (United States)

    Wang, Weiwei; Kratz, Karl; Behl, Marc; Yan, Wan; Liu, Yue; Xu, Xun; Baudis, Stefan; Li, Zhengdong; Kurtz, Andreas; Lendlein, Andreas; Ma, Nan

    2015-01-01

    Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies.

  12. Computed-tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty.

    Science.gov (United States)

    O'Reilly, Eamon B; Barnett, Sam; Madden, Christopher; Welch, Babu; Mickey, Bruce; Rozen, Shai

    2015-03-01

    Traditional cranioplasty methods focus on pre-operative or intraoperative hand molding. Recently, CT-guided polyether ether ketone (PEEK) plate reconstruction enables precise, time-saving reconstruction. This case series aims to show a single institution experience with use of PEEK cranioplasty as an effective, safe, precise, reusable, and time-saving cranioplasty technique in large, complex cranial defects. We performed a 6-year retrospective review of cranioplasty procedures performed at our affiliated hospitals using PEEK implants. A total of nineteen patients underwent twenty-two cranioplasty procedures. Pre-operative, intra-operative, and post-operative data was collected. Nineteen patients underwent twenty-two procedures. Time interval from injury to loss of primary cranioplasty averaged 57.7 months (0-336 mo); 4.0 months (n=10, range 0-19) in cases of trauma. Time interval from primary cranioplasty loss to PEEK cranioplasty was 11.8 months for infection (n=11, range 6-25 mo), 12.2 months for trauma (n=5, range 2-27 mo), and 0.3 months for cosmetic or functional reconstructions (n=3, range 0-1). Similar surgical techniques were used in all patients. Drains were placed in 11/22 procedures. Varying techniques were used in skin closure, including adjacent tissue transfer (4/22) and free tissue transfer (1/22). The PEEK plate required modification in four procedures. Three patients had reoperation following PEEK plate reconstruction. Cranioplasty utilizing CT-guided PEEK plate allows easy inset, anatomic accuracy, mirror image aesthetics, simplification of complex 3D defects, and potential time savings. Additionally, it's easily manipulated in the operating room, and can be easily re-utilized in cases of intraoperative course changes or infection. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Lee, Christopher S D; Dupont, Kenneth M; Safranski, David L; Chang, W Allen; Macedo, Annie E; Lin, Angela S P; Boothby, Jennifer M; Whittingslow, Daniel C; Carson, Robert A; Guldberg, Robert E; Gall, Ken

    2015-02-01

    Despite its widespread clinical use in load-bearing orthopedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface-porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer was 399.6±63.3 μm thick and possessed a mean pore size of 279.9±31.6 μm, strut spacing of 186.8±55.5 μm, porosity of 67.3±3.1% and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection-molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection-molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via microcomputed tomography and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopedic applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheiko, Nataliia [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Kékicheff, Patrick, E-mail: patrick.kekicheff@ics-cnrs.unistra.fr [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Marie, Pascal; Schmutz, Marc; Jacomine, Leandro [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Perrin-Schmitt, Fabienne [Faculté de Médecine, INSERM, UMR-S 1121, “Biomaterials and Bioengineering”, Université de Strasbourg, 11 rue Humann, 67085 Strasbourg Cedex (France)

    2016-12-15

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  15. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    International Nuclear Information System (INIS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-01-01

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  16. Medium-chain triglycerides in infant formulas and their relation to plasma ketone body concentrations.

    Science.gov (United States)

    Wu, P Y; Edmond, J; Auestad, N; Rambathla, S; Benson, J; Picone, T

    1986-04-01

    A mild ketosis is known to prevail in the mother, fetus, and newborn infant during the 3rd trimester and in the early neonatal period. It has been shown that during an equivalent period in the rat ketone bodies are readily oxidized and serve as key substrates for lipogenesis in brain. Since medium-chain triglycerides are known to be ketogenic, preterm infants may benefit from dietary medium-chain triglycerides beyond the point of enhanced fat absorption. Our objective was to determine the ketogenic response in preterm infants (gestational age: 33 +/- 0.8 wk) fed three different isocaloric formulas by measuring the concentrations of 3-hydroxybutyrate and acetoacetate in the plasma of these infants. At the time of entrance to the study the infants were receiving 110 kcal/kg/24 h. Study I (11 infants): the infants were fed sequentially in the order; PM 60/40 (PM), Special Care Formula (SCF), and Similac 20 (SIM). In SCF greater than 50% of the fat consists of medium-chain length fatty acids while PM and SIM contain about 25%. The concentration of 3-hydroxybutyrate in plasma was significantly higher when infants were fed SCF than PM and SIM [0.14 +/- 0.03, 0.06 +/- 0.01, and 0.05 +/- 0.01 mM, respectively (p less than 0.01)]. Study II (12 infants); the infants were fed SCF, then SIM, or the reverse. The concentration of acetoacetate in plasma was 0.05 +/- 0.01 and 0.03 +/- 0.01 mM when infants were fed SCF and SIM, respectively (0.1 greater than p greater than 0.05). The concentrations of 3-hydroxybutyrate in plasma were similar to those measured in study I for the respective formulas.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Radical cation spectroscopy of substituted alkyl phenyl ketones via tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Bohinski, Timothy; Moore Tibbetts, Katharine [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States); Munkerup, Kristin [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark); Tarazkar, Maryam [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States); Romanov, Dmitri A. [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Physics, Temple University, Philadelphia, PA 19122 (United States); Matsika, Spiridoula [Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States); Levis, Robert J., E-mail: rjlevis@temple.edu [Center for Advanced Photonics Research, Temple University, Philadelphia, PA 19122 (United States); Department of Chemistry, Temple University, Philadelphia, PA 19122 (United States)

    2014-10-17

    Highlights: • Infrared strong field spectroscopy on (o, m, p)-methylacetophenone was performed. • Electronic resonance in the radical cations at 1370 nm produces benzoyl fragment. • Magnitude of resonance feature increases from ortho to meta to para isomer. • Hydrogen interactions and moment of inertia account for the trend across isomers. - Abstract: Mass spectra are measured for 2′-, 3′- and 4′-(ortho, meta and para) methyl substituted alkyl phenyl ketones excited at wavelengths ranging from 1200 to 1500 nm in the strong field regime. The selective loss of a methyl group from the acetyl group of the parent molecular ion upon excitation at ∼1370 nm is attributed to an electronic resonance between ground D{sub 0} and excited D{sub 2} state of the radical cation. Depletion of the parent molecular ion is enhanced as the methyl substituent is moved from the 2′ to 3′ to 4′ position on the phenyl ring with respect to the acetyl group. The phenyl-acetyl dihedral angle is the relevant coordinate enabling excitation to the dissociative D{sub 2} state. Calculations on the radical cation of 2′-methylacetophenone show two stable geometries with dihedral angles of 7 degrees and 63 degrees between the phenyl and acetyl groups. The barrier to rotation for the 2′ isomer limits population transfer to the D{sub 2} state. In contrast, calculations on the radical cations of 3′- and 4′-methylacetophenone reveal no rotational barrier to prevent population transfer to the excited state, which is consistent with the enhanced dissociation yield in comparison with the 2′ substitution. The enhanced dissociation of the 4′ isomer as compared to the 3′ isomer is attributed to its lower moment of inertia about the dihedral angle.

  18. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants.

    Science.gov (United States)

    Lee, Woo-Taek; Koak, Jai-Young; Lim, Young-Jun; Kim, Seong-Kyun; Kwon, Ho-Beom; Kim, Myung-Joo

    2012-05-01

    The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental implants. Compressive loading tests were performed with glass fiber-reinforced PEEK (GFR-PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), and titanium rods. Among these tests, GFR-PEEK fatigue tests were performed according to ISO 14801. For the finite element analysis, three-dimensional models of dental implants and bone were constructed. The implants in the test groups were coated with a 0.5-mm thick and 5-mm long PEEK layer on the upper intrabony area. The strain energy densities (SED) were calculated, and the bone resorption was predicted. The fatigue limits of GFR-PEEK were 310 N and were higher than the static compressive strength of GFR-PEEK. The bone around PEEK-coated implants showed higher levels of SED than the bone in direct contact with the implants, and the wider diameter and stiffer implants showed lower levels of SED. The compressive strength of the GFR-PEEK and CFR-PEEK implants ranged within the bite force of the anterior and posterior dentitions, respectively, and the PEEK implants showed adequate fatigue limits for replacing the anterior teeth. Dental implants with PEEK coatings and PEEK implants may reduce stress shielding effects. Dental implant application of PEEK polymer-fatigue limit and stress shielding. Copyright © 2012 Wiley Periodicals, Inc.

  19. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Liu, Qinfu, E-mail: lqf@cumtb.edu.cn [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Zeng, Fangui [Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-03-15

    Graphical abstract: Snapshot of the kaolinite–DMSO system after equilibrium is reached. - Highlights: • Dimethyl sulfoxide arranges a monolayer structure between kaolinite layers. • Weak hydrogen bonds exist between methyl groups of dimethyl sulfoxide and kaolinite silica layer. • Intercalated dimethyl sulfoxide forms strong hydrogen bonds with kaolinite alumina layer. - Abstract: Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry–differential scanning calorimetry (TG–DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm{sup −1} and 1016 cm{sup −1} band due to the in-plane vibration of Si−O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite–DMSO intercalation complex, the formula of A1{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}(DMSO){sub 0.7} was obtained, with which the kaolinite–DMSO complex model was constructed. The molecular dynamics simulation of kaolinite–DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen

  20. A generalized model for the air-sea transfer of dimethyl sulfide at high wind speeds

    Science.gov (United States)

    Vlahos, Penny; Monahan, Edward C.

    2009-11-01

    The air-sea exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the air-sea flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.

  1. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    OpenAIRE

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-01-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG0, which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG0 conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ molK1, respectively, while the barriers associated with the GG0/GT and GT/GG isomerizations are 1.90 and 9.64 kJ molK1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonst...

  2. Role of dimethyl fumarate in oxidative stress of multiple sclerosis: A review.

    Science.gov (United States)

    Suneetha, A; Raja Rajeswari, K

    2016-04-15

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS affecting both white and grey matter. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis. Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapy with dimethyl fumarate. The clinical utility of DMF in multiple sclerosis is being explored through phase III trials with BG-12, which is an oral therapeutic agent. Currently a wide research is going on to find out the exact mechanism of DMF, till date it is not clear. Based on strong signals of nephrotoxicity in non-humans and the theoretical risk of renal cell cancer from intracellular accumulation of fumarate, post-marketing study of a large population of patients will be necessary to fully assess the long-term safety of dimethyl fumarate. The current treatment goals are to shorten the duration and severity of relapses, prolong the time between relapses, and delay progression of disability. In this regard, dimethyl fumarate offers a promising alternative to orally administered fingolimod (GILENYA) or teriflunomide (AUBAGIO), which are currently marketed in the United States under FDA-mandated Risk Evaluation and Mitigation Strategy (REMS) programs because of serious safety concerns. More clinical experience with all three agents will be necessary to differentiate the tolerability of long-term therapy for patients diagnosed with multiple sclerosis. This write-up provides the detailed information of dimethyl fumarate in treating the neuro disease, multiple sclerosis and its mechanism involved via

  3. Dimethyl ether reviewed: New results on using this gas in a high-precision drift chamber

    International Nuclear Information System (INIS)

    Basile, M.; Bonvicini, G.; Cara Romeo, G.; Cifarelli, L.; Contin, A.; D'Ali, G.; Del Papa, C.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Rinaldi, G.; Sartorelli, G.; Spinetti, M.; Susinno, G.; Villa, F.; Voltano, L.; Zichichi, A.

    1985-01-01

    Two years ago, dimethyl ether (DME) was presented, for the first time, as a suitable gas for high-precision drift chambers. In fact our tests show that resolutions can be obtained which are better by at least a factor of 2 compared to what one can get with conventional gases. Moreover, DME is very well quenched. The feared formation of whiskers on the wires has not occurred, at least after months of use with a 10 μCi 106 Ru source. (orig.)

  4. Potentiometric investigations of molecular heteroconjugation equilibria of substituted phenol+n-butylamine systems in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Baginska, Katarzyna; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    Molecular heteroconjugation constants, K BHA DMSO and K AHB DMSO , expressed as their logarithms, have been determined by potentiometric titration for eleven substituted phenol+n-butylamine systems in a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO). An increasing tendency towards molecular heteroconjugation in these systems without proton transfer has been found with increasing pK a DMSO (HA), i.e., with decreasing phenol acidity. Moreover, a linear correlation has been established between the determined lgK BHA DMSO values and pK a DMSO (HA). Furthermore, overall stability constants, lgK o DMSO , could be correlated linearly with pK a DMSO (HA) values

  5. Effect of dimethyl sulfoxide (DMSO) on radiation-induced heteroallelic reversion in diploid yeast

    International Nuclear Information System (INIS)

    Singh, D.R.; Mahajan, J.M.; Krishnan, D.

    1976-01-01

    Dimethyl sulfoxide has cryoprotective and radioprotective properties. It is also an efficient scavenger of radicals produced by radiolysis of water. Gamma-induced reversion of diploid yeast in the presence of this chemical during irradiation have been studied. The dose-modifying factor was in the same range as for survival. When the yeast was irradiated in the frozen state, the observed protection by DMSO disappeared. The results are discussed in terms of direct and indirect actions of radiations and the radical-scavenging ability of this chemical

  6. DFT investigation on the adsorption behavior of dimethyl and trimethyl amine molecules on borophene nanotube

    Science.gov (United States)

    Bhuvaneswari, R.; Chandiramouli, R.

    2018-06-01

    The electronic properties of borophene nanotube (BNT) are witnessed and the adsorption properties of dimethyl amine (DMA) and trimethyl amine (TMA) molecules on borophene nanotube are explored through non-equilibrium Green's function (NEGF) and density functional theory (DFT) method. The device density of states spectrum interprets the change in peak maxima, thus indicating the electron transition between DMA, TMA molecules and BNT base material. I-V characteristics strengthen the adsorption property of DMA and TMA on BNT by pointing out the variation in the current. The present work assures that borophene nanotube (BNT) can be employed as DMA and TMA sensor.

  7. Dependence of crystallinity degree with induced grafting by gamma radiation of N,N'-dimethyl acrylamide

    International Nuclear Information System (INIS)

    Queiroz, A.A.A.; Higa, O.Z.; Barrak, E.R.; Giolito, I.

    1991-01-01

    N,N' -dimethyl acrylamide (DMAA) graft copolymerization onto polyethylene films was carried out, using a organic solvent as a reaction medium and gamma rays from a 60 Co source for surface activation. Thermal analysis revealed the crystallinity and the grafting inversely proportional. The DSC curves fusion peaks decreased with grafting rate increase, the peak almost disappearing in the curve of PE 440% grafted. It was concluded that the graft occurs not only on the surface but also in the substrate bulk, being the PE absorption of DMAA an important factor for build up of grafted mass. (author)

  8. Enthalpy of solution of potassium iodide in the water-formamide-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Belova, L.N.; Solov'ev, S.N.; Vorob'ev, A.F.

    1985-01-01

    Solution enthalpies are measured for potassium iodide in the water-formamide-dimethyl sulfoxide mixtures in a sealed oscillating calorimeter with an isothermal shell at a constant water molar fraction equal to 0.3; 0.5 and 0.7 at 298.15 K. A diagram of the dependence of solution enthalpies on the of mixed solvent composition is plotted. Deviations of experimental solution enthalpies from the calculated ones are negative over the entire concentration range studied, which testifies to the preferable solvatation of electrolyte by the formid and dimthyl sulfoxide molecules

  9. The liquid–liquid coexistence curves of {x dimethyl adipate + (1 − x) n-hexane} and {x dimethyl adipate + (1 − x) n-heptane} in the critical region

    International Nuclear Information System (INIS)

    Chen Zhiyun; Cai Li; Huang Meijun; Yin Tianxiang; An Xueqin; Shen Weiguo

    2012-01-01

    Highlights: ► Coexistence curves of (dimethyl adipate + n-hexane) (+n-heptane) were measured. ► The critical exponent β are consistent with the 3D-Ising value. ► The asymmetry of the coexistence curves were discussed by complete scaling theory. - Abstract: The liquid–liquid coexistence curves for (dimethyl adipate + n-hexane), (dimethyl adipate + n-heptane) have been measured, from which the critical amplitudes and the critical exponents are deduced. The critical exponent β corresponding to the coexistence curves are consistent with the 3D-Ising value. The experimental results have also been analyzed to determine the critical amplitudes of Wegner-correction terms when β and Δ are fixed at their theoretical values, and to examine the asymmetry of the diameters for the coexistence curves.

  10. Incineration of oxygenated volatile organic compounds. Experimental study and kinetic modeling of the oxidation of methyl ethyl ketone, ethyl acetate and butan-2-ol in methane flames; Incineration de composes organiques volatils oxygenes. Etude experimentale et modelisation cinetique de l'oxydation de la methyl ethyl cetone, de l'acetate d'ethyle et du butan-2-ol dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, V.

    2000-12-01

    This work deals with the low pressure (0.05 atm) degradation of three volatile organic compounds (VOCs): methyl-ethyl-ketone, ethyl acetate and butan-2-ol, in premixed stoichiometric laminar methane flames seeded with 1 to 3% of each VOC. Molar fraction profiles of species have been obtained using microprobe sampling coupled with a gas chromatography and a mass spectroscopy analysis. Temperature profiles have been obtained using the covered thermocouple technique in the presence of the microprobe. The addition of a VOC in the initial reagents mixture leads to an increase of the quantity of intermediate hydrocarbon compounds and in particular of some soot precursor species. The degradation of VOCs leads to the formation of oxygenated intermediates like methanol, dimethyl-ether, acetaldehyde, propanal, acetone and vinyl acetate, the type of VOC having an effect on the quantities produced. The degradation of a VOC can lead to the formation of more toxic or polluting compounds (methyl vinyl ketone, acetic acid and acrolein) than the VOC itself. In the conditions of the study, the intermediate compounds are totally destructed inside the reactional area of the flame front and are no more present in the burnt gases. Sub-mechanisms of VOC oxidation have been developed using experimental observations and the most recent recommendations of the literature. These sub-mechanisms comprise 49 species involved in 241 elementary reactions. Their validation has been performed by comparing the experiment with the kinetic modeling on the molar fraction profiles of the detected species. Experimental data are well reproduced by the model for most species. The addition of a VOC inside the initial reagents mixture creates an important reactivity increase, in particular in the case of butan-2-ol seeded flames. The analysis of reactional ways has permitted to draw out the main reactions responsible for the degradation of the 3 VOCs and the ways of formation and consumption of the

  11. Dimethyl Fumarate

    Science.gov (United States)

    ... memory, or awareness that leads to confusion and personality changes extreme tiredness, loss of appetite, pain in ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  12. Qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian; Zhang Xianye; Hu Jingxin; Ye Guoan

    2004-01-01

    This paper reports the qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine. These analyses were performed on the gas chromatograph, in which porous layer open tubular column coated with aluminum oxide and flame-ionization detector are used. For the doses between 10 and 1000 kGy, the light hydrocarbons produced by radiation degradation of N,N-dimethyl hydroxylamine are methane, ethane, ethene, propane, propene and n-butane. When the concentration of N,N-dimethyl hydroxylamine is 0.2 mol/L, the volume fraction of methane is (9.996-247.5) x 10 -6 , the volume fraction of ethane, propane and n-butane is lower and that of ethene and propene is much lower. With the increase of dose the volume fraction of methane is increased but the volume fraction of ethane, ethene, propane, propene and n-butane is not obviously changed. (authors)

  13. Study of ketone body kinetics in children by a combined perfusion of /sup 13/C and /sup 2/H3 tracers

    Energy Technology Data Exchange (ETDEWEB)

    Bougneres, P.F.; Ferre, P.

    1987-11-01

    Ketone body kinetics were quantified in six children (3-5 yr old), who were fasted for 13-22 h, by a combined perfusion of (3-/sup 13/C)acetoacetate ((/sup 13/C)AcAc) and D-(-)-beta-(4,4,4-/sup 2/H3)hydroxybutyrate (beta-(/sup 2/H3)OHB) and gas chromatography-mass spectrometry analysis. Results were analyzed according to the single-pool (combined enrichments) or the two-accessible pools models. After 20-22 h of fasting, ketone body turnover rate was 30-50 mumol.kg-1.min-1, a rate achieved after several days of fasting in adults. At low ketosis, acetoacetate was the ketone body preferentially synthesized de novo and utilized irreversibly. When ketosis increased, acetoacetate irreversible disposal was not enhanced, since it was largely converted into beta-OHB, whereas beta-OHB irreversible disposal was very much increased. The single-pool and two-pool models gave similar ketone body turnover rates when (/sup 13/C)AcAc was the tracer, whereas the use of beta-(/sup 2/H3)OHB gave some more divergent results, especially at low ketosis. These studies demonstrate that ketogenesis is very active in short-term fasted children and that the use of a combined infusion of (/sup 13/C)AcAc and beta-(/sup 2/H3)OHB is a convenient way to give insight into individual ketone body kinetics.

  14. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    Science.gov (United States)

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  15. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies

    International Nuclear Information System (INIS)

    Stein, R.L.; Trainor, D.A.

    1986-01-01

    The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible Michaelis complex prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05

  16. Bias voltage dependence of molecular orientation of dialkyl ketone and fatty acid alkyl ester at the liquid–graphite interface

    Energy Technology Data Exchange (ETDEWEB)

    Hibino, Masahiro, E-mail: hibino@mmm.muroran-it.ac.jp [Department of Applied Sciences, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Tsuchiya, Hiroshi [Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2014-10-30

    Graphical abstract: - Highlights: • Self-assembled monolayers (SAMs) of 18-pentatriacontanone (as ketone) and stearyl stearate (as ester) were formed on a graphite surface at the liquid–solid interface. • Orientations of the molecules in SAMs on the substrate were studied by scanning tunneling microscopy. • A perpendicular carbon skeleton-plane orientation with the CO pointing up on the surface is favorable for a substrate with negative charge and vice versa. - Abstract: Molecular orientations of self-assembled 18-pentatriacontanone (as ketone) and stearyl stearate (as ester) monolayers adsorbed on a graphite surface were studied by scanning tunneling microscopy (STM) at the liquid–solid interface. At a positive sample bias, the central areas of the dialkyl ketone and fatty acid alkyl ester molecules in the STM images appeared as two bright regions on both sides of a dim spot and a bright region on one side of a dim spot, whereas at a negative sample bias, the areas appeared dim. This contrast variation indicates that a perpendicular carbon skeleton-plane orientation with the CO pointing down on the surface is favorable for a substrate with positive charge and vice versa because of the greater electronegativity of the oxygen atom. Upon the bias voltage reversal, the delay time for the STM image contrast change in the region was observed on a time scale of minutes. The difference between the delay time lengths for the direction of bias polarity change indicates that the perpendicular configuration with CO pointing up is more stable than that with CO pointing down. These results indicate that the use of an electric field along a direction vertical to the monolayer on the substrate provides control over the orientations of the molecules between two stable states at the liquid–solid interface.

  17. Synthesis and structure of Bis(3,3-dimethyl-3,4-dihydroisoquinolyl-1) ketoxime

    International Nuclear Information System (INIS)

    Sokol, V.I.; Davydov, V.V.; Shklyaev, Yu.V.; Kartashova, I.V.; Sergienko, V.S.; Zaitsev, B.E.

    1997-01-01

    The reaction of bis(3,3-dimethyl-3,4-dihydroisoquinolyl-1)methane with NaNO 2 resulted in the formation of bis(3,3-dimethyl-3,4-dihydroisoquinolyl-1) ketoxime (I). The crystal and molecular structure of I was determined (x-ray structure analysis, Enraf-Nonius CAD-4, MoK α -radiation, graphite monochromator, θ/2θ scan, 2θ max =58 deg. , 4800 unique reflections; a=10.327(4), b=9.070(5), and c=21.62(1) A; β=94.02(3) deg.; V=2020(1) A 3 ; Z=4; and sp. gr. Pn). In the crystal, I exists in the oxime tautomeric form. Two symmetry-independent molecules are bound into a dimer through the intermolecular N=OH···N cycl 3 hydrogen bond. Both molecules are nonplanar; the dihedral angles between the mean planes of their 3,4-dihydroisoquinoline moieties are 72 deg. and 74 deg. According to IR and electron absorption spectra, the tautomeric form of compound I is also retained in solutions, and the π-conjugation between the 3,4-dihydroisoquinoline fragments of I is actually absent

  18. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  19. "Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles.

    Science.gov (United States)

    Enami, Shinichi; Sakamoto, Yosuke; Hara, Keiichiro; Osada, Kazuo; Hoffmann, Michael R; Colussi, Agustín J

    2016-02-16

    The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols.

  20. Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting

    International Nuclear Information System (INIS)

    Gross, Henrik; Barth, Stephanie; Palermo, Richard D.; Mamiani, Alfredo; Hennard, Christine; Zimber-Strobl, Ursula; West, Michelle J.; Kremmer, Elisabeth; Graesser, Friedrich A.

    2010-01-01

    The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJκ (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJκ in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJκ.